1. 国内外の技術動向調査

1.1. CCS 技術の動向調査

CCS 技術は、排出源からの二酸化炭素(CO2)を分離・回収し、輸送し、貯留を行うた めの技術や CCS に係る各種モニタリング技術から成る。革新的技術の着実な開発と普及に より、世界の温暖化問題やエネルギー需給の逼迫等の課題の解決に貢献することを目標と した「環境エネルギー技術革新計画」(2013年9月13日改訂版)においても、CCS 技術が 取り上げられ、2050年を見据えたロードマップが定められている。これによると、分離・ 回収技術では分離コストの低コスト化や分離・回収エネルギーの削減が目標として掲げら れている。一方、貯留技術では、実証試験を実施しつつ実証規模の大規模化も行い、帯水 層、枯渇ガス田、炭層等への貯留を実現するという行程の目標が示されている。また、モ ニタリング技術の確立も環境整備として挙げられている。

図 1-1 「環境エネルギー技術革新計画」における CCS 技術のロードマップ (出典)「環境エネルギー技術革新計画」(2013 年 9 月 13 日改訂版)[1]から一部抜粋

本項目では、CCS 技術に対して動向を整理する。また、「環境エネルギー技術革新計画」 において環境整備で挙げられている社会受容性・制度整備の動向も併せて整理する。

1.1.1. 分離・回収

CO2 の分離・回収は、燃焼後に CO2 を分離・回収する Post-Combustion、燃焼前に CO2 を分離・回収する Pre-Combustion、そして純酸素で燃焼し、燃焼中に分離・回収する Oxy-Combustion (Oxy-fuel、酸素燃焼法)の3通りが知られている。

図 1-2 CO2の分離・回収

(出典) 各種資料から作成

Post-Combustion では、発電所のボイラー等から発生する燃焼排ガスより CO2 を分離・ 回収する。燃焼後排ガスからの CO2 回収技術としては、<u>化学吸収法</u>(アミン等の溶剤を用 いて化学的に CO2 を吸収液に吸収させ分離する方法)、<u>物理吸収法</u>(高圧下で CO2 を物理 吸収液に吸収させて分離する方法)、<u>膜分離法</u>(CO2 が選択的に透過する膜を用いて分離す る方法)、深冷分離法(極低温下で液化し沸点の違いを用いて分離する方法)がある。

Pre-Combustion では、天然ガスの水蒸気改質や、天然ガス、石炭の部分酸化法等により、 H2、CO、CO2 を生成させ、燃焼前の燃料ガスを分離・精製することにより、あらかじめ CO2 を回収する。CO2 回収技術としては、<u>物理吸収法、物理吸着法</u>が用いられている。ア ンモニア、水素製造の目的で商用的に用いられている。一方、発電分野においては、石炭 ガス化複合発電(IGCC)において、ガス化後の燃料ガスから CO2 を回収する技術が検討 されている。

Oxy-Combustion (Oxy-fuel、酸素燃焼法)では、空気分離により酸素を製造し、CO2 リッチの排ガスをボイラーへ再循環させながら、燃焼温度を下げて燃焼させる。排ガス中 のCO2濃度は濃縮され95%程度まで上がり、CO2を90%以上回収することが可能である。

また、上記の 3 種類とは異なる概念として、<u>化学ループ燃焼法</u>(Chemical Looping Combustion)という排ガスが CO2 と H2O(水蒸気)のみとなる燃焼法を用いて CO2 を 回収する方法も検討されている。

上記のCO2の分離・回収技術は、排出源から排出されるCO2の濃度や圧力といった物性 に応じて最適な手法を選択し実施される。排出源の種類により、CO2 濃度やCO2分圧、そ してガス中のその他の成分は異なる。排出源の種類による違いを表 1-1に示す。

アミン等のCO2と化学反応を起こし強く結合する媒体を用いた化学吸収法は、高い反応

性があるため燃焼排ガスなどの低分圧CO2 にも適用できるが、化学的に強く結合した媒体 からCO2 を再生するに大きなエネルギーを必要とする。これに対して、物理的な溶解現象 を利用して分離を行う物理吸収法では、CO2 再生のための消費エネルギーは小さいが、高 いCO2 分圧が必要となり、IGCC などの全圧およびCO2 濃度も高いガスに適合するが、 低CO2 分圧の燃焼排ガスには不向きである。また、CO2 と分離する物質との直径の差が 大きい場合(例えばCO2 とCH4)には、分子ふるいによる膜分離が適しており、直径差が 小さい場合には親和性の差を利用することができる。駆動力としては圧力差を用いる。

ソース	CO2 (%)	ガス圧 (MPa)	CO2 分圧	他の成分
			(MPa)	
発電所				
天然ガス	7-10	0.1	0.007 - 0.01	
天然ガス CC	3-4	0.1	0.003-0.004	N2, U2, SUX,
重油	11-13	0.1	0.011-0.013	NOX
石炭	12-14	0.1	0.012-0.014	
製鉄所				
燃焼前	20	0.2-0.3	0.04-0.06	N2、CO
セメント	14-33	0.1	0.14-0.33	N2、O2、SOx
IGCC : 合成ガス	30-50	3-4	0.9-2.0	H2、CO、H2S
天然ガス生産	2-65	0.9-8	0.05-4.4	CH4

表 1-1 排出源の種類と CO2 濃度、CO2 分圧、およびガス中のその他の成分

(出典) 高木 (2012) [2]

CO2 の分離・回収法、技術の実用化状況を以下に示す。発電所燃焼排ガスからの CO2 回 収技術については、化学吸収法が最も進んでおり実用化されている。

コストや技術の適性等の面で、火力発電所には化学吸収法、セメント・鉄鋼プラントに は膜分離法、化学プラントには物理吸着法、石炭ガス化複合発電(IGCC)では物理吸収法 がそれぞれ有利とされている。

is processing on and steel fining	direct reduced iron (DRI)', smelting (e.g. Corex)		*	Sweetening DRI*
n and steel	direct reduced iron (DRI)', smelting (e.g. Corex)			DRI'
fining				Coal-to-liquids
1112/201		+	2	synthetic natural gas from coal
				Hydrogen production
vemicals		*		Ammonia/methanol
ofuels	1.00			Ethanol fermentation
15	Gas reforming and combined cycle	Natural gas combined cycle	Oxy-fuel combustion	Chemical looping combustion
al	Integrated gasification combined cycle (IGCC)	Pulverised coal- fired boiler	Oxy-fuel combustion	Chemical looping combustion
omass	IGCC	Biomass-fired boiler	Oxy-fuel combustion	Chemical looping combustion
on and steel	Hydrogen reduction	Blast furnace capture	Oxy-fuel blast furnace	253
Refining	Hydrogen fuel steam generation	Process heater and combined heat and power (CHP) capture	Process heater and CHP oxy-fuel	-
nemicals		Process heater, CHP, steam cracker capture	Process heater and CHP oxy-fuel	
ofuels	Biomass-to-liquids	1 × 1		Advanced biofuels
ment		Rotary kiln	Oxy-fuel kiln	Calcium looping
lp and paper	Black liquor gasification	Process heater and CHP capture	Process heater and CHP oxy-fuel	800
chnical maturi	ity of operational CO ₂ c	apture plants to date		
nercial	Demonstration	Pilot		Lab or concept
	s al mass mass n and steel fining emicals emicals fuels ment lp and paper chnical maturi hercial roach is depende	s Gas reforming and combined cycle description cycle description cycle description cycle description cycle description descrip	s Gas reforming and combined cycle Chipmens combined cycle combined cycle combined cycle (IGCC) Pulverised coal-fired boiler fired boiler fired boiler fired boiler fired boiler combined sycle (IGCC) Biomass-fired boiler fired boiler combined sycle coal-fired boiler fired boiler fired boiler fired boiler combined sycle coal-fired boiler fired boiler combined sycle coal-fired boiler combined system combined system combined system combined system combined field combined field combined field combined heat and power (CHP) capture combined heat and power (CHP) capture fields Biomass-to-liquids - CHP, steam cracker capture combined part of gasification Process heater and CHP capture combined part of operational CO ₂ cyture plants to date there cial Opemonstration CHP capture fields combined process heater and combined part of the combined system coal-field combined field combined combined field combined combined combined combined combined field combined field combined field combined combined field combined field combined field combined combined combined combined field combined comb	s Gas reforming and combined cycle combined cycle combustion combined cycle combined cycle combustion combined cycle fired boiler combustion combustion (GCC) Biomass-fired boiler combustion combustion and steel Hydrogen reduction Hydrogen fuel steam combined heat and generation generation combined heat and combined heat and generation fuels Biomass-to-liquids - CHP, steam cracker capture fired boiler combustion combined heat and combined heat and generation fuels for the steam cracker capture fired boiler capture fired boiler and combined heat and combined heat and combined heat and combined heat and generation for the steam cracker capture fired boiler capture fired boiler and capture f

表 1-2 CO2 回収技術の実用化状況

(出典) IEA (2013) [3]

以上の整理を踏まえ、本節では、化学吸収法、物理吸収法、膜分離法、深冷分離法、物 理吸着法、酸素燃焼法、化学ループ燃焼法についてその技術動向を整理する。また、個別 技術動向の各論に入る前段階として、表 1-3 に主な分離・回収技術の比較表を示す。

手法		原理	起因力	長所	短所
化学吸収法		化学反応	温度差	 ・低分圧ガス向き ・炭化水素への親和力が 低い ・大容量向き 	 ・吸収液が高価 ・腐食、浸食、泡立ちがある ・適用範囲が限定的 ・再生用熱源が必要
物理吸収法		物理吸収	分圧差 (濃度差)	 高分圧ガス向き 適用範囲が広い 腐食、浸食、泡立ちが 少ない 再生熱源を必要としない。 	 ・吸収液が高価 ・重炭化水素への親和力が高い
	PSA	吸着	分圧差 (濃度差)	 ・高純度精製が可能 ・装置が比較的簡易 ・適用範囲が広い 	・再生ガスが必要 ・水分の親和性が強い
物理吸着法	TSA	吸着	温度差	 ・高純度精製が可能 ・適用範囲が広い 	 ・吸着材量が多く、装置 が大型化する ・吸着材費用が掛る ・再生用熱源が必要
膜分離法		透過	分圧差 (濃度差)	・簡便 ・安価 ・小容量向き	 ・低純度 ・運転費が高い ・大容量に不向き ・油脂分含有ガスに弱い
深冷分離法		液化 ・精留	相変化	 ・高純度精製が可能 ・大容量向き 	 ・装置が複雑 ・建設費が高価 ・運転費が高い
酸素燃焼法		空気分離	温度差	・高純度精製が可能	 ・空気分離設備が大型 ・空気分離装置に動力が 必要
化学ループ燃	焼法	空気分離	温度差	・低消費エネルギー	・装置の耐久性に課題

表 1-3 CO2 分離・回収技術の比較

(出典) エネルギー総合工学研究所、NEDO 委託事業(1992)[4](酸素燃焼法、化学ル ープ法については各種資料を基に作成)

1.1.1.1. 化学吸収法

①技術概要

CO2 吸収液の化学反応を利用して CO2 を分離する技術である。炭酸ガスを選択的に大量 溶解できる液体と排ガスを接触させ、反応吸収の原理によって液体中に CO2 を取り込む方 法で、反応吸収法とも呼ばれる。常圧のガスから大量の CO2 を分離・回収するのに適した 技術で、微粉炭火力発電、GTCC (Gas Turbine Combined Cycle: ガスタービン複合サイ クル発電) などで使われている。

吸収液によって技術が分かれ、炭酸カリ水溶液に CO2 を吸収させる熱炭酸カリ吸収法 (Benfield 法や Catacarb 法) や、アルカリ性の吸収液に CO2 を吸収させるアミン法(モ ノエタノールアミン法: MEA 法) などがある。古くは熱炭酸カリが用いられていたが、現 在では MEA などのアミン水溶液の利用が中心となっている。アミン法では、ヒンダードア ミン系高性能化学吸収剤と回収システムを用いるシステムにより、排ガス中に含まれる CO2 を 90%以上回収可能である。吸収液の純度は 99.9%に達する。また近年、冷却アンモ ニアを CO2 吸収液として使用する、冷却アンモニア法の技術開発も進んできている。

図 1-3 化学吸収法による排ガスからの CO2 回収プロセスフロー (出典) 飯嶋ほか(2011)[5]

アミン法は、二酸化炭素の分離・回収技術の一つである化学吸収法において、吸収液と してアルカノールアミン水溶液などのアミン系の吸収液を利用する方法である。これらの 吸収液は、アミノ基を分子構造の中に有しており、一般的にアミンと呼ばれる。40~50℃ の温度でアミノ基と二酸化炭素は結合反応を起こし、アミン炭酸塩を形成する。このアミ ン炭酸塩を110~130℃に加熱すると、二酸化炭素は吸収液から解離し、放散される。二酸 化炭素が低圧、低濃度でも高い除去率を得られることから、火力発電所のような大規模処 理に向いている。アミンによる CO2 の吸収反応は以下の通りである。

$2R-NH_2+CO_2 \Leftrightarrow R-NH_3+R-NH-COO^-$

$R-NH_2+CO_2+H_2O \Leftrightarrow R-NH_3+R-NH-CO_3$

(MEAでは上段の反応が主反応となる。)

アンモニアを用いた化学吸収法は冷却アンモニア法(チルドアンモニア法)と常温アン モニア法の2種類がある。

冷却アンモニア法は、EPRI-Alstom により開発が進められており、燃焼排ガス中の CO2 分離に適用可能である。MEA 法と比べて反応熱が低いため、低コスト・低エネルギーの CO2 分離回収技術として注目されている。

アンモニア水での CO2 の吸収反応は以下の通りである。アンモニア水と CO2 を含むガ スを低温で接触吸収後、拡散塔にて加圧・加熱により CO2 を分離回収する。一部重炭酸ア ンモニウムの沈殿(NH4HCO3 (s))を生じ、それを含んだスラリー溶液を拡散塔に送る。

$NH_3(aq) + H_2O + CO_2 = NH_4HCO_3 (aq)$	Δ H= -1.4 (GJ/t-CO ₂)
$2NH_3(aq) + H_2O + CO_2 = (NH_4)2CO_3 (aq)$	Δ H= -2.3 (GJ/t-CO ₂)
$(NH_4)_2CO_3 (aq) + H_2O + CO_2 = 2NH_4HCO_3 (aq)$	Δ H= -0.6 (GJ/t-CO ₂)
NH_4HCO_3 (aq) = NH_4HCO_3 (s)	Δ H= -1.2 (GJ/t-CO ₂)

※aq: 水溶液、s: 固体

アンモニアは高い CO2 吸収容量、低反応熱、安価、および高い分解耐性等の利点を有す るが、一方で高揮発性、アンモニアガスの爆発性、水への溶解度が低いことなどの課題が 挙げられる。

一方、常温アンモニア法としては、米国 Powerspan 社がエネルギー省(DOE)の国立エネルギー技術研究所(NETL)と共同開発した ECO2 がある。これは常温のアンモニアでCO2 を回収し、温度上昇により CO2 を放散させる方法である。

②経済性(コスト)

本項目では、化学吸収法の CO2 回収コストに関する情報を整理する。CO2 回収コスト (Cost of CO2 Avoided)は、IPCC が 2005 年に公開した"Special Report on Carbon Dioxide Capture and Storage"で用いられた算定手法に基づき計算されている事例が中心である。 算定手法を以下に示す。

Cost of CO2 Avoided(円/t-CO2)

= [(COE)_{capture} - (COE)_{ref}] / [(CO2/kWh)_{ref} -(CO2/kWh)_{capture}] ここで、COE は発電単価を示しており、CO2/kWh は発電当たりの CO2 排出量を示す。 添字の capture は CO2 回収設備付きの発電所を、ref は CO2 回収設備無しの発電所を示す。 なお、発電単価 (COE) は以下の式で定義されている。

COE = [(TCR)(FCF) + (FOM)]/[(CF)(8760)(kW)] + VOM + (HR)(FC)

COE : レベル化された発電単価(円/kWh)
TCR:総資本(円)
FCF:固定配当率 fixed charge factor (割合/年)
FOM : 固定費(円/年)
VOM : 変動費(円/kWh)
HR : 正味のプラント熱消費率(kJ/kWh)
FC : 単位燃料コスト(円/kJ)
CF:運転率
8760:1年間の時間数
kW:送電端出力(kW)

本項目では、IPCC、IEA、RITE が上記の算定手法に基づき算定し CO2 回収コストを、 整理する。IPCC、IEA は CO2 回収コストを分析した事例(論文)を取りまとめたもので あり、複数の事例が記載されているため、CO2 回収コストの幅を示す。

(1)IPCC における整理

IPCC(2005)[6]では、MEA による化学吸収法での CO2 回収コストに関する研究事例を収 集整理している。事例は 2000 年から 2005 年の期間に発表されたものが整理されている。 これらの CO2 回収コストの範囲は、以下の通りである。

- 新設石炭火力発電向け: 29~51\$/t-CO2
- 既設石炭火力発電向け: 45~73\$/t-CO2
- 新設天然ガス火力発電向け:37~74\$/t-CO2

新設石炭火力発電所向けの CO2 回収コストの幅は、それぞれの研究において想定してい る発電設備や CO2 回収設備の資本コストや稼働率、さらには燃料種や微粉炭燃焼技術の種 類(亜臨界、超臨界、超々臨界)等の差により出ている。CO2 回収コストが最も安い研究 では、資本コストが最低限で稼働率は高く、瀝青炭などの高品位炭を燃料とした超々臨界 の発電所という設定になっている。

既設石炭火力発電所向けの CO2 回収コストの幅も、新規の場合と同様に各コストの想定 の差による。新規と比較して既存石炭火力発電所向けの CO2 回収コストが高くなる理由は、 既存石炭火力発電所は効率の悪い亜臨界の発電所が多いと共に、CO2 回収に必要な熱を低 効率の発電所から供給するもしくは他に補助設備を設けるといった措置が必要となること による。

新設天然ガス火力発電向けについても、CO2 回収コストの幅は各種想定の差から来るものである。ただし、石炭火力と比較した場合、ガス火力は燃料コストが COE に与える影響が大きいという特徴がある。また、ガス火力では石炭火力と比較して、排気中の CO2 濃度が低いため、CO2 回収コストは石炭火力発電所向けと比較して高くなる。

Jondy Assumptions and Accurate And Activity (without capture) 2002b 2002b 2004 2004 2005 min max Reference Plant (without capture) supper supper $*$	Interpreted 2005 min 0MINOUS COALS * * * super * % S bit, 2.1% S * % S 7 6 462 7 40.9 41 * 1 0.811 0.74 * 0 1.25 0.98 * 47 0.811 0.74 * 6 492 329 * 6 492 329 * 6 1.1.25 0.09 * 6 1.1.3 30 * 6 1.1.2 3.10 1.13 6 1.3.9 8 * 7 31	max 758 85 85 85 85 85 85 85 85 0.81 0.81 0.81 0.81 0.15 0.15 4.17 4.17	2002 2002 2002 SUBCRIT UNITS * * * subcritical subcritical ubcritical subcritical subcritical int, 25, stas subcritical subcritical 397 462 75 38,9 75 75 38,9 36,1 1.25 0.835 0.941 MEA MEA MEA 264 283 326 27.7 283 0.059 0.133 0.059 0.133 2.544 23.346 2.580 0.133	2005 2005 2005 2005 2005 2005 2005 2005
SUPERCENTICAL UNITS / BITUMINOUS COMIS Reference Flant (without copter) $*$ SUPERCENTICAL UNITS / BITUMINOUS COMIS Reference Flant (without copter) $*$ $*$ $*$ $*$ Coal type (with, subbit, lig) and %S bit, 25%	UMINOUS COALS Ratic super % S bit, 2.1% S SCR FGD, SCR 4 524 462 5 75 65 6 40.9 41 1.25 0.98 47 0.811 0.74 6 492 329 6 492 329 6 492 329 6 3.102 1.83 0 13.9 8 8 87 81 1 24 1	758 758 85 45 45 45 45 45 1.50 0.81 0.81 0.81 0.81 0.15 90 0.15 4.17 4.17	SUBCRIT UNITS * * * subcritical ubbritical subbritical oit, 2.5%S subbritical 397 FGD, SCI 76D FGD, SCI 38.9 36.1 1.03 1.25 0.835 0.941 MEA MEA 283 326 283 0.541 0.835 0.941 0.835 0.941 283 326 283 326 27.7 25.4 95 90 0.059 0.133 2.346 2.580	//LOWRANK COALS super %S lignite %S FGD, SCR, LoTOX 424 90 90 883 0.883 0.883 0.883 0.883 0.883 0.060 0.060 0.060
Reference Plant (without capture) " " " " " " " " " " " " Test of the subscription of the subscrip subscrip of the subscription of the subscription of the subscr	* * Ra super % S bit, 2.1% S SCR FGD, SCR 5 SCR 7 40.9 7 40.9 1.25 0.98 1.25 0.98 1.125 0.98 1.125 0.98 1.1 MEA 1.1 0.74 1.1 0.74 0.0 1.25 0.90 85 0.1 30 0.1 0.09 8 3.102 1.30 0.85 0.13.9 8 8 87 8 87 94 2002	758 758 85 85 85 85 85 85 85 1.50 0.81 0.81 0.81 0.81 0.15 0.15 0.15 14 14	* * * ubbritical subbrit_0.5 FGD FGD, SCI FGD FGD, SCI 962 95 397 462 36.1 125 38.9 36.1 1.03 1.25 0.835 0.941 0.941 MEA MEA MEA 283 326 236 27.7 283 326 27.7 25.4 0.033 0.059 0.133 0.133 0.059 0.133 2.580	I super super &S Hgnite &S FGD, SCR, LoTOx 424 90 90 43.4 0.883 0.883 0.883 0.883 0.883 0.883 0.883 0.883 0.100 0.060 0.060 2.795
	rat super % S bit.21% S SCR FGD.SCR 5 57 4 524 7 40.9 7 40.9 1 0.811 0 1.25 0 1.25 0 1.25 0 1.25 0 1.25 0 1.25 0 1.25 0 1.25 0 1.25 0 811 0.74 0 1.1 0 1.30 0 90 0 90 0 1.30 8 87 8 87 94 2002	758 758 85 85 85 85 85 85 85 85 150 0.81 0.81 0.15 90 0.15 14	ubbritical subcritical it, 2.5%S sub-bit, 0.5 FGD FGD, SCI 397 462 38.9 36.1 1.03 1.25 0.835 0.941 0.835 0.941 MEA MEA 283 0.941 0.835 0.941 0.835 0.941 0.835 0.941 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 25.4 90 0.059 0.133 2.346 2.580 2.580	I super lignite %S Figh, SCR, LoTOx 424 90 43.4 90 0.883 0.883 0.883 0.883 0.883 0.883 0.883 0.883 0.100 0.060 0.060 2.795
	% S bit, 2.1% S SCR FGD, SCR 4 524 462 5 75 65 7 40.9 41 10 1.25 0.98 47 0.811 0.74 6 492 329 6 492 329 6 31.1 30 9 0.017 0.09 68 3.102 1.83 60 13.9 8 7 31.1 24 8 87 81 7 2002 1.33	758 758 85 85 85 85 45 1.50 0.81 0.81 0.81 0.81 0.81 0.15 90 0.15 4.17	Dit, 2.5%S sub-bit, 0.5 FGD FGD, SCI 397 462 85 75 85 75 38.9 36.1 1.03 1.25 0.835 0.941 MEA MEA 283 326 283 326 283 326 283 326 283 326 283 326 27.7 25.4 95 90 0.059 0.133 2.346 2.580	%S lignite R FGD, SCR, LoTOx 424 90 90 43.4 0.883 0.883 0.883 0.883 0.883 0.883 0.31.0 95 0.060 95 0.060 2.795
FGD, SCR FGD FGR Contenter	SCR FGD. SCR 4 524 462 5 75 65 6 75 65 1 125 0.98 1 25 0.98 1 25 0.98 1 25 0.98 6 492 329 6 492 329 6 31.1 30 8 3.102 1.83 6 3.102 1.83 8 8 3.102 1.83 6 13.9 8 1 31 24 1 24	758 85 45 45 1.50 0.81 0.81 0.81 0.81 0.81 0.15 90 0.15 4.17	FGD FGD, SCI 397 462 38.9 75 85 75 38.9 36.1 1.03 1.25 0.835 0.941 MEA MEA 28.3 326 28.3 326 283 326 283 326 283 326 283 326 283 326 27.7 25.4 95 90 0.059 0.133 2.346 2.580	 FGID, SCR, LoTOX 424 90 93.4 93.4 0.883 0.883 0.883 0.883 0.883 0.883 0.883 0.883 0.883 0.95 0.060 2.795
Reference plant net output (MW) 462 506 520 758 754 524 462 758 Plant capacity factor (%) 65 65 80 85 85 75 65 75 Plant capacity factor (%) 65 65 80 85 85 75 65 65 Coal cost, LHV (FS) 1.29 0.743 0.747 0.811 0.74 0.81 Coal cost, LHV (FS) 1.29 0.766 0.743 0.747 0.811 0.74 0.81 Coal cost, LHV (FS) 1.29 367 408 666 676 492 329 567 CO, capture transion rate (t 0.774 0.745 0.117 0.092 329 567 90 Net plant efficiency, LHV (%) 30.1 32.5 34.9 35.4 31.1 30 34.17 CO, endoure trafficiency (HW) 32.9 567 408 55.4 31.01 30 90 CO, endouton trafficiency (HV) 32.0	4 524 462 7 75 65 7 409 41 00 1.25 0.98 47 0.811 0.74 6 492 329 6 492 329 6 492 329 6 31.1 30 92 0.107 0.09 68 3.102 1.83 6 13.9 8 7 31 30 92 0.107 0.09 68 3.102 1.83 6 13.9 8 7 31 24 8 87 81 94 2002 0.02	758 85 85 145 1.50 0.81 0.81 676 676 90 0.15 0.15 14	397 462 85 75 85 75 38.9 36.1 1.03 1.25 0.835 0.941 0.835 0.941 MEA MEA 283 3.56 0.835 0.941 283 0.941 283 0.941 283 0.941 283 0.941 283 0.941 283 3.26 283 3.26 283 3.26 283 3.26 283 3.26 283 0.059 0.059 0.133 2.346 2.580	424 90 43.4 0.88 0.883 0.883 0.883 0.883 0.883 0.883 31.0 31.0 31.0 31.8 95 0.060 0.060
Plant capacity factor (%) 65 65 80 85 75 65 65 85 Net plant efficiency. LHV (%) 42.2 44.8 44.5 44.0 43.7 40.9 41 45 Net plant efficiency. LHV (%) 12.9 0.744 0.747 0.811 0.744 0.81 Reference plant emission rate (1 0.774 0.736 0.743 0.747 0.811 0.74 0.81 Cold cost LHV (%) 329 367 0.76 0.743 0.747 0.811 0.74 0.81 CO, MWh') 225 34.9 35.4 31.1 30 35 Net plant efficiency (K) 30.1 32.5 34.9 35.4 31.1 30 35 CO, capture technology 30.1 1.83 3.417 0.017 0.092 0.107 0.09 91 CO, esplure fifticiency (K) 30.1 1.83 3.102 1.83 4.17 CO, esplure fifticiency (K) 30.1 1.83 1.10	5 75 65 7 409 41 00 1.25 0.98 -1 MEA 0.311 -1 MEA 329 6 492 329 6 492 329 6 31.1 30 92 0.107 0.09 68 3.102 1.83 6 13.9 8 7 31 24 8 87 81 7 2002 0.02	85 45 1.50 0.81 0.81 676 676 90 0.15 4.17 14	85 75 38.9 36.1 1.03 1.25 0.835 0.941 0.835 0.941 MEA MEA 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 326 283 254 90 90 95 90 93 0.133 2.346 2.580	90 43.4 0.88 0.883 0.883 0.883 0.883 0.883 31.0 31.0 31.0 31.8 95 0.060 0.060
Net plant efficiency, LHV (%) $4.2.2$ 44.8 44.5 44.0 43.7 40.9 41 45 Coal cost, LHV (USS G1') 1.29 0.744 0.731 0.747 0.811 0.74 0.81 Coal cost, LHV (USS G1') 1.29 0.774 0.774 0.774 0.811 0.74 0.81 Coal cost, LHV (USS G1') 1.29 0.747 0.811 0.74 0.81 1.50 Copture technology MEA MEA MEA MEA MEA 666 676 492 329 676 Copture technology 30.1 32.5 34.9 35.4 31.1 30.1 366 Net plant output with capture (M 30.1 32.5 34.9 35.4 31.1 30.9 35.5 CO, cupture sternology 0.108 0.101 0.145 0.117 0.092 0.107 0.99 91.5 CO, cupture protect 1.830 2.360 4.061 4.168 3.102 1.83 4.17	7 40.9 41 00 1.25 0.98 -1 MEA 0.74 -1 MEA 329 6 492 329 6 31.1 30 90 90 85 91 0.07 0.09 68 3.102 1.83 6 13.9 8 6 13.9 8 6 13.9 8 7 31 24 8 87 81 8 87 81	45 1.50 0.81 0.81 676 676 9.0 0.15 4.17 14	38.9 36.1 1.03 1.25 0.835 0.941 MEA MEA MEA 23.4 28.3 326 27.7 25.4 95 90 0.059 0.133 2.346 2.580	43.4 0.883 0.883 0.883 0.883 0.883 0.883 0.883 31.0 31.0 31.8 95 0.060 0.060 2.795
	00 1.25 0.98 47 0.811 0.74 -1 MEA 0.74 6 492 329 7 31.1 30 92 0.107 0.09 68 3.102 1.83 60 13.9 8 7 31 24 8 8 8 4 31 24	1.50 0.81 0.81 676 676 90 0.15 4.17 14	1.03 1.25 0.835 0.941 MEA MEA 283 326 27.7 25.4 95 90 0.059 0.133 2.346 2.580	0.88 0.883 0.883 311.0 31.0 31.8 95 0.060 2.795
Reference plant emission rate (1 0.774 0.714 0.714 0.811 0.74 0.811 ColumNh ¹) ColumNh ¹) MEA MEA MEA MEA KS-1 MEA 0.74 0.81 ColumNh ¹) Contre Plant output with capture (MW) 329 367 408 666 676 492 329 676 Net plant efficiency. LHV (%) 30.1 32.5 34.9 35.4 31.1 30 35 Net plant efficiency. LHV (%) 30.1 32.5 34.9 35.4 31.1 30 35 Oct capture technology 0.101 0.145 0.117 0.092 0.077 0.99 35 CO, capture of MI yr ¹) 1.830 2.350 2.360 4.061 4.168 3.102 1.830 0.173 CO, apture of MI yr ¹) 1.830 2.350 2.360 4.061 4.168 3.102 1.83 4.17 CO, apture system (MY yr ¹) 1.830 </td <td>47 0.811 0.74 -1 MEA 0.74 -1 MEA 329 6 492 329 0 90 85 0.107 0.09 85 0.107 0.09 85 0.1139 8 3.102 1.139 34 34 1.139 34 34 1.139 8 3.102 1.139 8 8 1.139 8 8 1.139 2.4 1.4 2002</td> <td>0.81 676 35 90 0.15 4.17 14</td> <td>0.835 0.941 MEA MEA 283 326 277 254 95 90 0.059 0.133 2.346 2.580</td> <td>0.883 0.883 0.883 0.18 0.11.0 0.11.0 0.060 0.060 0.060 0.050</td>	47 0.811 0.74 -1 MEA 0.74 -1 MEA 329 6 492 329 0 90 85 0.107 0.09 85 0.107 0.09 85 0.1139 8 3.102 1.139 34 34 1.139 34 34 1.139 8 3.102 1.139 8 8 1.139 8 8 1.139 2.4 1.4 2002	0.81 676 35 90 0.15 4.17 14	0.835 0.941 MEA MEA 283 326 277 254 95 90 0.059 0.133 2.346 2.580	0.883 0.883 0.883 0.18 0.11.0 0.11.0 0.060 0.060 0.060 0.050
Capture Plant Design MEA MEA MEA KS-1 MEA F C0, capture technology MEA MEA MEA KS-1 MEA 666 676 492 329 676 Net plant efficiency. HW (%) 329 367 408 666 676 492 329 676 Net plant efficiency. (%) 90 90 85 34,9 348 35,4 31,1 30 35 OC capture system efficiency (%) 90 90 85 84,5 0,117 0.092 0,107 0.09 85 90 CO, capture system efficiency (%) 90 0,101 0,145 0,117 0.092 0,107 0.09 84 17 CO, capture system efficiency (%) 18,30 2,350 2,360 4,061 4,168 3,102 1,83 4,17 CO, capture system efficiency (%) 86 81 8,4 11,0 11,0 11,0 1,13 0,09 0,15 CO, capturedit	-1 MEA 6 492 329 6 492 329 9 90 85 92 0.107 0.09 68 3.102 1.83 6 13.9 8 1 31 24 1 31 24 1 31 24 1 31 24 1 202 94	676 676 35 90 0.15 4.17 14	MEA MEA 283 326 27.7 25.4 95 90 0.059 0.133 2.346 2.580	MEA 311.0 31.8 95 0.060 2.795
CO, capture technology MEA MEA MEA MEA MEA KS-1 MEA MEA 676 676 676 492 329 676 Net plant enticiency. LHV (%) 329 367 408 6666 676 492 329 676 Net plant efficiency. LHV (%) 30.1 32.5 34.9 34.8 35.4 31.1 30 35 Not plant efficiency (%) 0.01 0.145 0.117 0.092 0.107 0.09 676 CO, capture system efficiency (%) 0.101 0.145 0.117 0.092 0.107 0.09 0.15 MVh ¹) U. 1.830 2.350 2.350 2.360 4.061 4.168 3.102 1.83 4.17 CO_5 capture (Mt yr ¹) 1.830 2.350 2.360 4.061 4.168 3.102 1.40 CO_5 capture (Mt yr ¹) 1.830 2.350 2.360 2.4 3.102 1.83 4.17 CO_5 capture (Mt yr ¹) <	-1 MEA 6 492 329 6 492 329 7 31.1 30 9 90 85 92 0.107 0.09 68 3.102 1.83 0 13.9 8 1 31 24 1 31 24 1 31 24 1 31 24 1 202 94	676 35 90 0.15 4.17 14	MEA MEA 283 326 27.7 25.4 95 90 0.059 0.133 2.346 2.580	MEA 311.0 31.8 95 0.060 2.795
Net plant output with capture (MW) 329 367 408 666 676 492 329 676 Net plant efficiency. LHV (%) 30.1 32.5 34.9 34.8 35.4 31.1 30 35 CO capture system efficiency. LHV (%) 30.1 32.5 34.9 34.8 35.4 31.1 30 35 CO capture system efficiency. LHV (%) 90 90 87 81 31.02 1.83 90 90 CO capture system efficiency. LHV (%) 1.830 2.350 2.360 4.061 4.168 3.102 1.83 91.17 CO aptured (Mt yr ¹) 1.830 2.350 2.360 4.061 4.168 3.102 1.83 4.17 CO aptured (Mt yr ¹) 1.830 2.350 2.360 4.061 4.168 3.102 1.83 4.17 CO aptured (Mt yr ¹) 1.830 2.350 2.360 2.46 4.17 1.100 11.0	6 492 329 4 31.1 30 0 90 85 92 0.107 0.09 68 3.102 1.83 60 13.9 8 1 31 24 1 31 24 1 31 24 1 31 24 1 31 24 1 202 81	676 35 90 0.15 4.17 14	283 326 27.7 25.4 95 90 0.059 0.133 2.346 2.580	311.0 31.8 95 0.060 2.795
Net plant efficiency, LHV (%) 30.1 32.5 34.9 34.8 35.4 31.1 30 35 CO, capture system efficiency (%) 90 90 85 87.5 90 90 85 90 CO, capture system efficiency (%) 90 90 87.5 90 90 81 8 90 0.107 0.09 85 90 0.15 0.09 0.15 0.107 0.09 0.15 0.11 0.101 0.145 0.117 0.092 0.107 0.09 0.15 0.15 0.15 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0.17 0.09 0.15 0	4 31.1 30 9 90 85 92 0.107 0.09 68 3.102 1.83 0 13.9 8 1 31 24 1 31 24 1 31 24 1 31 24 1 31 24 1 31 24 1 31 24 1 31 24 1 31 24 1 2002 81	35 90 0.15 4.17 14	27.7 25.4 95 90 0.059 0.133 2.346 2.580	31.8 95 0.060 2.795
CO, capture system efficiency (%) 90 90 85. 87.5 90 90 85 90 CO, emission rate affer capture (t 0.108 0.101 0.145 0.117 0.092 0.107 0.09 0.15 CO, emission rate affer capture (t 0.108 0.101 0.145 0.117 0.092 0.107 0.09 0.15 CO, emission rate affer capture (t 0.108 0.101 0.145 0.117 0.092 0.107 0.09 0.15 CO, enduction pressure (MPa) 8.4 13.7 11.0 11.0 13.9 8 14 CO, product pressure (MPa) 8.4 13.7 11.0 11.0 13.9 8 14 CO, product pressure (MPa) 8.6 80 80 26 24 31 24 40 CO, product pressure (MPa) 86 86 81 88 7 81 44 CO, product pressure (MPa) 86 86 81 310 24 31 24	0 90 85 92 0.107 0.09 68 3.102 1.83 0 13.9 8 1 31 24 8 87 81 94 2002 91	90 0.15 4.17 14	95 90 0.059 0.133 2.346 2.580	95 0.060 2.795
CO, emission rate after capture (t) 0.108 0.101 0.145 0.117 0.092 0.107 0.09 0.15 MWh^{1} , MWh^{1} , MWh^{1} , 1.830 2.350 2.360 4.061 4.168 3.102 1.83 4.17 CO_{1} explured (Mt yr ¹) 1.830 2.350 2.360 4.061 4.168 3.102 1.83 4.17 CO_{1} product pressure (MFa) 8.4 8.4 8.4 8.4 8.4 8.4 4.06 CO_{1} product pressure (MFa) 8.6 81 8.4 8.7 81 4.16 CO_{1} product pressure (MFa) 86 81 84 88 87 81 40 CO_{2} shorty 8.6 81 84 88 87 81 40 CO_{2} shorty 86 81 84 88 87 81 40 CO_{2} shorty 2000 2000 2000 2004 2002	92 0.107 0.09 68 3.102 1.83 0 13.9 8 1 31 24 8 87 81 9 2002 14	0.15 4.17 14	0.059 0.133 2.346 2.580	0.060
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	68 3.102 1.83 0 13.9 8 1 31 24 8 87 81 14 2002	4.17 14	2.346 2.580	2.795
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	0 13.9 8 1 31 24 8 87 81 14 2002	14		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 31 24 8 87 81 94 2002		10.3 13.9	13,9
CO, reduction per kWh (%) 86 81 84 88 87 81 88 Cost Results Cost Results *** ** ** ** ** 88 Cost Results Cost Nesults 2000 2000 2000 2004 2002 15.5 Fixed charge factor (%) 233 15.5 12.7 11.0 11.0 14.8 11.0 15.5 Reference plant TCR (USs kW ⁻¹) 2219 1943 2578 1894 2007 1466 1486 Capture plant TCR (USs kW ⁻¹) 2219 1943 2578 1894 2007 1936 1894 2578 Incremental TCR for capture 938 782 1092 575 742 731 575 1092 Reference plant COE (US\$ kW ⁻¹) 251.0 43.9 43.9 45.1 46.1 43 5278	8781 1002 81 81 81 81 81 81 81 81 81 81	40	40 42	36
Cost Results *** ** ** ** ** Cost Results Cost Vear basis (constant dollars) 2000 2000 2000 2004 2002 10.0 15.5 Fixed charge factor (%) 15.5 15.5 12.7 11.0 11.0 14.8 11.0 15.5 Reference plant TCR (US\$ kW ⁻¹) 1281 1161 1486 1319 1265 1305 1161 1486 Capture plant TCR (US\$ kW ⁻¹) 2219 1943 2578 1894 2007 1936 1894 2573 Incremental TCR for capture 938 782 1092 575 742 731 575 1092 (US\$ kW ⁻¹) 25.5 51.0 43.9 43.9 45.1 43 55 MWh ⁺) 8 43.9 43.9 45.1 45.1 57 57	× 002 × 2002	88	93 86	93
Cost year basis (constant dollars) 2000 2000 2004 2002 15.5 Fixed charge factor (%) 15.5 15.5 12.7 11.0 11.0 14.8 11.0 15.5 Reference plant TCR (USS kW ⁻¹) 1281 1161 1446 1319 12.65 13.05 11.61 1446 Capture plant TCR (USS kW ⁻¹) 2219 1943 2578 1894 2007 1936 1894 2578 Incremental TCR for capture 938 782 1092 575 742 731 575 1092 Reference plant CCE (USS kW ⁻¹) 51.6 42.9 43.9 45.1 46.1 43 5278	04 2002			***
Fixed charge factor (%) 15.5 15.5 12.7 11.0 11.0 14.8 11.0 15.5 Reference plant TCR (USS kW ⁻¹) 1281 11.61 1486 1319 12.65 1205 11.61 1486 Capture plant TCR (USS kW ⁻¹) 2219 1943 2578 1894 2007 1936 1894 2578 Incremental TCR for capture 938 782 1092 575 742 731 575 1092 Reference plant COE (USS 51.5 51.0 42.9 43.9 42.8 46.1 43 575 1092			2002 2000	2003
Reference plant TCR (USS kW ⁻¹) 1281 1161 1486 1319 1265 1205 1161 1486 Capture plant TCR (USS kW ⁻¹) 2219 1943 2578 1894 2007 1936 1894 2578 Capture plant TCR for capture 938 782 1092 575 742 731 575 1092 (USS kw ⁻¹) 251.6 43.9 43.9 42.8 46.1 43 575 1092 Reference plant COE (USS 51.5 51.0 42.9 43.9 42.8 46.1 43 52	0 14.8 11.0	15.5	14.8 15.0	
Capture plant TCR (USS kW ⁴) 2219 1943 2578 1894 2007 1936 1894 2578 Incremental TCR for capture 938 782 1092 575 742 731 575 1092 Incremental TCR for capture 938 782 1092 575 742 731 575 1092 Reference plant COE (USS 51.6 42.9 43.9 42.8 46.1 43 52 MWh ¹ 3 51.6 42.9 43.9 42.8 46.1 43 52	55 1205 1161	1486	1268 1236	1891
Incremental TCR for capture 938 782 1092 575 742 731 575 1092 (USS kW ⁻¹) 848 782 1092 575 742 731 575 1092 (USS kW ⁻¹) 861 75 1092 731 742 731 743 75 1092 861 731 742 731 745 75 1092 745 745 745 745 745 745 745 745 745 745	07 1936 1894	2578	2373 2163	3252
Reference plant COE (US\$ 51.5 51.0 42.9 43.9 42.8 46.1 43 52 MWh') MWh') 43.9 43.9 42.8 46.1 43 52	2 731 575	1092	1105 927	1361
	8 46.1 43	52	42.3 49.2	44.5
Capture plant COE (US\$ MWh ¹) 85.6 82.4 70.9 62.4 63.0 74.1 62 86	0 74.1 62	86	76.6 87.0	74.3
Incremental COE for capture 34.1 31.4 28 18.5 20.2 28 18 34 (USS MWh')	2 28 18	¥	37.8 37.8	29.8
% increase in capital cost (over ref. 73 67 74 44 59 61 44 74 plant)	9 61 44	74	87 75	72
% increase in COE (over ref. 66 62 65 42 47 61 42 66 plant)	7 61 42	99	81 77	67
Cost of CO, captured (USS/rCO,) 35 28 34 23 24 29 23 35	t 29 23	35	31 31	26
Cost of CO, avoided (USS/rCO.) 51 49 43 29 31 40 29 51	1 40 29	51	43 47	36
Capture cost confidence level (see			u	toderate

表 1-4 新設石炭火力発電所におけるアミンによる CO2 回収のコスト事例

Monte for the formation of the formatio the formatio the formation of the formation of the formation o		Simbeck &	Alstom	Rao &	Rao &	Chen	Chen	Chen	Singh	Gibbins	Ran	e e	Gibbins	Gibbins	Chen		
Mode Mode <th< th=""><th>Study Assumptions and Results</th><th>McDonald</th><th>et al.</th><th>Rubin</th><th>Rubin</th><th>et al.</th><th>et al.</th><th>et al.</th><th>et al.</th><th>et al.</th><th></th><th></th><th>et al.</th><th>et al.</th><th>et al.</th></th<>	Study Assumptions and Results	McDonald	et al.	Rubin	Rubin	et al.	et al.	et al.	et al.	et al.			et al.	et al.	et al.		
Image: matrix static		2000	2001	2002	2002	2003	2003	2003	2003	2005	mim	max	2006	2006	2003		
Interpretation int int<				AMI	NE SYSTER	A RETRO	FITS TO EXE	STING BOIL	ERS				RE	POWERING +	CO, CAPTURE		
Bit for the field of	Reference Plant (without capture)		춯	*	*	*	*	*									
Cutoper for, unify and static stati	Boiler type (subcritical, super, ultra)	dus	qns	sub	sub	qns	sub	qns		dus			super	super	sub		
Binding to the function of the function	Coal type (bit, sub-bit, lig) and %S	sub-bit, 0.5%	bit, 2.7%S	sub-bit, 0.5%	sub-bit, 0.5%	sub-bit, 1.1%S	sub-bit, 1.1%S	sub-bit, 1.1%S	sub-bit				X.	8			
Referencial function 28 4.0 2.8 4.0 2.8 4.0 2.9 4.0 2.9 <th2.9< th=""> 2.9 <th2.9< th=""></th2.9<></th2.9<>	Emission control technologies	none	FGD	none	FGD	FGD	FGD	FGD	not renorted	not renorted			not reported	not reported	FGD		
Inder opering frame (6) 9 9 7 9	Reference plant size (MW)	292	434	470	470	248	248	248	400	and ar	248	470			248		
Wein Main Main <th< td=""><td>Plant capacity factor (%)</td><td>80</td><td>67</td><td>75</td><td>75</td><td>80</td><td>76</td><td>76</td><td>91.3</td><td>80</td><td>67</td><td>91</td><td>80</td><td>80</td><td>80</td></th<>	Plant capacity factor (%)	80	67	75	75	80	76	76	91.3	80	67	91	80	80	80		
Circle duel, LIV, USS (G1), (98) (19) (12) <t< td=""><td>Net plant efficiency, LHV (%)</td><td>36.2</td><td>36.2</td><td>36.6</td><td></td><td>33.1</td><td>(Capture= 80) 33.1</td><td>(Capture=80) 33.1</td><td></td><td>36.0</td><td>33</td><td>37</td><td>43.5</td><td>43.5</td><td></td></t<>	Net plant efficiency, LHV (%)	36.2	36.2	36.6		33.1	(Capture= 80) 33.1	(Capture=80) 33.1		36.0	33	37	43.5	43.5			
Explore Columnitation Columnitation<	Coal cost, LHV (US\$ GJ ⁻¹)	0.98	1.30	1.25	1.25	1.20	1.20	1.20		3.07	0.98	3.07	3.07	3.07	1.20		
Commentant Comment	Reference plant emission rate	0.901	0.908	0.941	0.95	1.004	1.004	1.004	0.925		06.0	1.00		6	1.004		
Container technology MEA MEA <th mea<="" th=""> MEA <th mea<="" th=""></th></th>	MEA <th mea<="" th=""></th>		Capture Plant Design											T			
Operational conditional conditende conditional conditional conditional conditio	CO, capture technology	MEA	MEA	MEA	MEA	MEA	MEA	MEA	MEA	MEA			MEA	KS	Selexol		
Microbine time (MV), oxional control (MV), oxional controtended (MV), oxional control (MV), oxional control (Other equipment included	new FGD	FGD upgrade	New FGD	FGD upgrade	FGD upgrade	FGD upgrade	FGD upgrade	FGD				Advanced supercrit boiler retrofit	Advanced supercrit boiler retrofit	IGCC (Texaco Q) repow +current steam turbine		
Aucliab pollec/thal used? (cypc. LHV (6); Cur3 Cur3 <thcur3< th=""> Cur3 Cur3<td>Net plant size with capture (MW)</td><td>294</td><td>255</td><td>275</td><td>275</td><td>140</td><td>282</td><td>282</td><td>400</td><td></td><td>140</td><td>400</td><td></td><td></td><td>590</td></thcur3<>	Net plant size with capture (MW)	294	255	275	275	140	282	282	400		140	400			590		
Weip plane efficiency, LHV (§) 233 21.4 21.4 18.7 · · 24.0 19.5 24.5 34.5 32.6 32.6 O, optime efficiency, LHV (§) 0.13 0.05 0.0	Auxilary boiler/fuel used? (type, LHV cost)	NG. \$4.51 GJ ⁴	none	none	none	none	NG. \$2.59 GJ ⁻¹	NG. \$5.06 GJ ⁴	NG. \$3.79 GJ ⁻¹	none			none	none	none		
CO. cpattere system efficiency (6). 90 90 90 96 CO. production per kWh (5) 87 94 83 82 63 70 71 73 86 7 86 7 86 7 86 7 86 7 86 7 86 7 7	Net plant efficiency, LHV (%)	25.3	21.3	21.4	21.4	18.7				24.0	19	25	31.5	34.5	32.6		
C) consistent rate after capture (MW-Y) 0113 0.059 0.17 0.369 0.324 0.60 0.77 0.06 0.77 0.09 C) poletimeter (MP-Y) 137 139 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 </td <td>CO, capture system efficiency (%)</td> <td>90</td> <td>96</td> <td>90</td> <td>90</td> <td>90</td> <td>90</td> <td>90</td> <td>06</td> <td></td> <td>90</td> <td>96</td> <td></td> <td></td> <td>06</td>	CO, capture system efficiency (%)	90	96	90	90	90	90	90	06		90	96			06		
Clocentered (M1yrt) 2.000 2.228 · 1.480	CO, emission rate after capture (t MWh ⁻¹)	0.113	0.059	0.155	0.16	0.177	0.369	0.369	0.324		0.06	0.37			0.099		
C0 product presure (MPa) $ 3.7$ $ 3.9$ $ 3.9$ $ 3.9$ $ 3.9$ $ 3.9$ $ 3.9$ $ 3.9$ $ 3.9$ $ 3.9$ $ 3.9$ $ 3.9$ $ 3.9$ $ 3.9$ $ 1.6$	CO, captured (Mt yr1)	2.090	2.228			1.480	1.480	1.480	2.664		1.48	2.66			3.684		
CGS energy requirement 43 70 71 77 38 26 43 77 38 26 ℓ more input MW1 ¹) 87 94 81 83 82 63 65 63 94 56 <td>CO, product pressure (MPa)</td> <td>13.7</td> <td>13.9</td> <td>13.9</td> <td>13.9</td> <td>13.9</td> <td>13.9</td> <td>13.9</td> <td></td> <td>10.0</td> <td>10</td> <td>14</td> <td>10.0</td> <td>10.0</td> <td>14.5</td>	CO, product pressure (MPa)	13.7	13.9	13.9	13.9	13.9	13.9	13.9		10.0	10	14	10.0	10.0	14.5		
C0, reduction per Wh (%) 87 94 83 82 63 63 65 94 94 96 94 96 94	CCS energy requirement (% more input MWh ¹)	43	70	11		77				20	43	7	38	26			
Cost Results *** <t< td=""><td>CO, reduction per kWh (%)</td><td>87</td><td>94</td><td>84</td><td>83</td><td>82</td><td>63</td><td>63</td><td>65</td><td></td><td>63</td><td>94</td><td></td><td></td><td></td></t<>	CO, reduction per kWh (%)	87	94	84	83	82	63	63	65		63	94					
Cost year basis (constant dollars) 1999 n'a 2000	Cost Results	**							**								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cost year basis (constant dollars)	6661	n/a	2000	2000	2000	2000	2000	2001								
Reference plant (LK (USS KW [*]) 112 0	Fixed charge factor (%)	9.71	15.0	0.61	0.01	14.8	14.8	14.8	9.4	9.11	9.4	0.61	8.11	9.11	<u>c</u>		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Canture plant TCR (US\$ KW ¹)	1050	1941			837	0	0	846	1001	147	101	1787	1170	1403		
Reference plant COE (USS MWh ⁻¹) 18.8 18.0 18.0 20.6 20.6 20.6 1 2 3 3 2 3 <	Incremental TCR for capture (US\$ kW ⁻¹)	947	1602			837	647	654	846	868	647	1602	802	690	1493		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reference plant COE (US\$ MWh ⁻¹)	18.8		18.0	18.0	20.6	20.6	20.6		26.0	18	26	27.0	27.0	21		
	Capture plant COE (US\$ MWh ⁴)	54.3		70.4	66.7	66.8	51.1	62.2		65.0	51	70	58.0	53.0	62.2		
% increase in capital cost (over ref. plant) 189 291 271 225 149 203 150 115 96 196 % increase in COE (over ref. plant) 189 291 271 225 149 203 150 149 291 115 96 196 Cost of CO, captured (US\$/CO) 35 42 7 31 41 56 40 31 56 46 46 Cost of CO, avoided (US\$/CO) 45 73 67 59 56 48 66 55 45 73 46 Cost of CO, avoided (US\$/CO) 45 73 67 59 56 48 66 57 45 73 46 Cost of CO, avoided loce inter cost confidence level moderate moderate moderate moderate	Incremental COE for capture (US\$ MWh ⁻¹)	35.5	61.7	52.4	48.7	46.2	30.6	41.7	33.2	39.0	31	62	31.0	26.0	41.2		
% increase in COE (over ref. plant) 189 291 271 225 149 203 150 115 96 196 Cost of CO, captured (US\$//CO) 35 42 71 21 21 21 203 203 201 13 96 196 196 Cost of CO, captured (US\$//CO) 35 42 73 31 41 56 40 31 56 46 46 Cost of CO, avoided (US\$//CO) 45 73 67 36 48 66 55 45 73 46 Cost of CO, avoided (US\$//CO) 45 73 67 48 66 55 45 73 46 Cost of CO, avoided lost	% increase in capital cost (over ref. plant)																
Cost of CO, captured (US\$nCO.) 35 42 31 41 56 40 31 56 40 31 56 46 46 Cost of CO, captured (US\$nCO.) 45 73 67 59 56 48 66 55 45 73 46 Cost of CO, avoided (US\$nCO.) 45 73 56 48 66 55 45 73 46 Capture cost confidence level 46 Capture cost confidence level 46	% increase in COE (over ref. plant)	189		291	271	225	149	203		150	149	291	115	96	196		
Cost of CO, avoided (US\$/rCO.) 45 73 67 59 56 48 66 55 45 73 46 46 Capture cost confidence level (see Table 3.6) As 73 67 59 56 48 66 55 45 73 46 46 46 46 46 45 73 moderate 46 46 45 73 10 moderate 46 46 45 16 46 46 45 16 4	Cost of CO, captured (US\$/tCO,)	35	42			31	41	56	40		31	56					
Capture cost confidence level moderate cost confidence level level level moderate	Cost of CO, avoided (US\$/tCO ₃)	45	73	67	59	56	48	99	55		45	73			46		
	Capture cost confidence level					-	noderate							moder	ate		

表 1-5 既設石炭火力発電所におけるアミンによる CO2 回収のコスト事例

Reference Plant (without capture)	CONTRACTOR DATABASE AND	NEIL	IEA GHG	IEA GHG	CCP	Rubin et al.	Rubin et al.		Range
Reference Plant (without capture)	2002(b)	2002	2004	2004	2005	2005	2005	min	max
	*					×	*		
Plant type (boiler, gas turbine, comb.cycle)	comb.cycle	comb.cycle	comb.cycle	comb.cycle	comb.cycle	comb.cycle	comb.cycle		
Reference plant size (MW)	509	379	776	776	392	507	507	379	776
Plant capacity factor (%)	65	85	85	85	95	75	50	50	95
Net plant efficiency, LHV (%)	55.1	57.9	55.6	55.6	57.6	55.8	55.8	55	58
Fuel cost, LHV (US\$ GJ ⁻¹)	2.82	3.55	3.00	3.00	2.96	4.44	4.44	2.82	4.44
Reference plant emission rate (tCO, MWh ⁻¹)	0.364	0.344	0.379	0.379	0.37	0.367	0.367	0.344	0.379
Capture Plant Design									
CO, capture technology	MEA	MEA	MEA	KS-1	MEA	MEA	MEA		
Net plant size with capture (MW)	399	327	662	692	323	432	432	323	692
Net plant efficiency, LHV (%)	47.4	49.9	47.4	49.6	47.4	47.6	47.6	47	50
CO, capture system efficiency (%)	90	90	85	85	86	06	90	85	96
CO, emission rate after capture (t MWh ⁻¹)	0.045	0.040	0.066	0.063	0.063	0.043	0.043	0.040	0.066
CO, captured (Mt yr ¹)	0.949	0.875	1.844	1.844	1.09	1.099	0.733	0.733	1.844
CO, product pressure (MPa)	8.4	10.3	11.0	11.0		13.7	13.7	8	14
CCS energy requirement (% more input MWh ⁻¹)	16	16	15	11	22	17	17	п	22
CO, reduction per kWh (%)	88	88	83	83	83	88	88	83	88
Cost Results									
Cost year basis (constant dollars)	2000	2002	2004	2004		2001	2001		
Fixed charge factor (%)			11.0	11.0	11.0	14.8	14.8	11.0	14.8
Reference plant TCR (US\$ kW ⁻¹)	549	515	539	539	724	554	554	515	724
Capture plant TCR (US\$ kW-1)	1099	911	938	958	1261	606	606	606	1261
Incremental TCR for capture (US\$ kW ⁻¹)	550	396	399	419	537	355	355	355	550
Reference plant COE (US\$ MWh ⁻¹)	34.2	34.7	31.3	31.3	34.2	43.1	50	31	50
Capture plant COE (US\$ MWh ⁻¹)	57.9	48.3	44	43.1	51.8	58.9	72	43	72
Incremental COE for capture (US\$ MWh ⁻¹)	23.7	13.6	12.7	11.8	17.6	15.8	22	12	24
% increase in capital cost (over ref. plant)	100	77	74	78	74	64	64	64	100
% increase in COE (over ref. plant)	69	39	41	38	51	37	44	37	69
Cost of CO, captured (US\$/tCO,)	57	38	34	33	46	41	57	33	57
Cost of CO, avoided (US\$/tCO,)	74	45	41	37	57	49	68	37	74
Capture cost confidence level (see Table 3.6)					moderate				

表 1-6 新設天然ガス火力発電所におけるアミンによる CO2 回収のコスト事例

(2)IEA における整理

IEA (2011) [7]では、2005 年から 2009 年に発表されたデータに基づき、MEA による CO2 回収コストを算定している。先に挙げた IPCC (2005) よりも新しいデータに基づい たものとなっている。表中の"Average (OECD)"は OECD の 13 データの単純平均値を 項目ごとに算出した結果である。これらの CO2 回収コストの範囲は、以下の通りである。

● 新設石炭火力発電向け: 40~74\$/t-CO2

Regional focus							OECD							China	Average (OECD)
Year of cost data	2005	2005	2005	2005	2007	2007	2007	2007	2007	2007	2009	2009	2009	2009	
Year of publication	2007	2007	2007	2007	2009	2009	2009	2009	2010	2010	2009	2009	2009	2009	
Organisation	сми	МІТ	GHG IA	GHG IA	EPRI	EPRI	EPRI	МІТ	NETL	NETL	GCCSI	GCCSI	GHG IA	NZEC	
ORIGINAL DATA AS PUBLISHED (c	onverte	d to US	5D)												
Region	US	US	EU	EU	US	US	US	US	US	US	US	US	EU	CHN	
Specific fuel type	Bit coal	Lignite	Bit coal	Bit coal	Sub-bit coal	Sub-bit coal	Bit coal	Bit+10% Biomass	Bit coal						
Power plant type	SCPC	CFB	USCPC	USCPC	SCPC	USCPC	SCPC	SCPC	SCPC	Sub-PC	SCPC	USCPC	SCPC	USCPC	
Net power output w/o capture (MW)	528	500	758	758	600	600	600	500	550	550	550	550	519	824	582
Net power output w/ capture (MW)	493	500	666	676	550	550	550	500	550	550	550	550	399	622	545
Net efficiency w/o capture, LHV (%)	41.3	36.5	44.0	44.0	39.2	39.8	40.0	40.4	41.2	38.6	41.4	46.8	44.8	43.9	41.4
Net efficiency w/ capture, LHV (%)	31.4	26.7	34.8	35.3	28.2	28.8	29.1	30.7	29.9	27.5	29.7	34.9	34.5	33.1	30.9
CO2 emissions w/o capture (kg/MWh)	811	1030	743	743	879	865	836	830	802	856	804	707	754	797	820
CO2 emissions w/ capture (kg/MWh)	107	141	117	92	124	121	126	109	111	121	112	95	73	106	111
Capital cost w/o capture (USD/kW)	1 442	1 330	1 408	1 408	2 061	2 089	2 007	1 910	2 024	1 996	2 587	2 716	1 710	856	1 899
Capital cost w/ capture (USD/kW)	2 345	2 270	1 979	2 043	3 439	3 485	3 354	3 080	3 570	3 610	4 511	4 279	2 790	1 572	3 135
Relative decrease in net efficiency	24%	27%	21%	20%	28%	28%	27%	24%	28%	29%	28%	26%	23%	25%	25%
RE-EVALUATED DATA (2010 USD)															
Overnight cost w/o capture (USD/kW)	1 508	1 868	1 720	1 720	2 580	2 615	2 512	2 391	2 203	2 172	2 409	2 529	1 873	938	2 162
Overnight cost w/ capture (USD/kW)	2 664	3 404	2 581	2 664	4 596	4 657	4 482	4 116	4 148	4 195	4 485	4 255	3 263	1 838	3 808
LCOE w/o capture (USD/MWh)	50	49	69	69	62	63	73	70	65	66	70	70	78	51	66
LCOE w/ capture (USD/MWh)	80	84	95	97	107	109	121	112	113	117	121	112	118	80	107
Cost of CO ₂ avoided (USD/tCO ₂)	43	40	42	42	60	61	68	58	69	69	74	68	59	42	58
Relative increase in overnight cost	77%	82%	50%	55%	78%	78%	78%	72%	88%	93%	86%	68%	74%	96%	75%
Relative increase in LCOE	59%	73%	38%	40%	72%	72%	67%	60%	73%	77%	73%	59%	52%	57%	63%

表 1-7 石炭火力発電所におけるアミンによる燃焼後回収のコスト事例

Notes: Data cover only CO₂ capture and compression but not transportation and storage. Overnight costs include owner's, EPC and contingency costs, but not IDC. A 15% contingency based on EPC cost is added for unforeseen technical or regulatory difficulties for CCS cases, compared to a 5% contingency applied for non-CCS cases. IDC is included in LCOE calculations. Fuel price assumptions differ between regions.

(出典) IEA (2011) [7]

(3)RITE における整理

公益財団法人地球環境産業技術研究機構(RITE)(2005)[8]では、先に挙げた IPCC の報 告書と同様の方法論を用いた国内想定の CO2 回収コストを算定した。その結果は、以下の 通りである。

- 新設石炭火力発電向け:¥4,256/t-CO2
- 既設石炭火力発電向け:¥7,752/t-CO2

RITE(2005)[8]によれば、新設と既設で CO2 回収コストが大きく異なる理由として、既設 は新設と比較して発電効率が低いことや、既設は CO2 回収に伴う熱を供給するための熱源 設備を追加していることが挙げられている。

	75.8	38.64	ACRO UNIT OF ON TO	27 - 414
	現日	単位	新設火刀完電所	7件 6元
リファレンスフ	フラント	3		
運転率	200	96	85	
年間運転時	宇間	hr/y	7,446	
発電端出力)	MW	830	IPCC時別報告書の引用文材であるImprovement in Power Generation
発電端効率	I LHV	96	48.3	with Post-Combution Capture of CO。 IEA-GHG PH4/33 (2004)に進
送電端出力)	MW	758	M.
送電端効率	I LHV	96	43.9	
石炭使用量	LHV	GJ/hr	6 203	1
固定者		百万円/年	6 530	18=115円で計算
変動費(数)	的目标》	百万円/年	743	- 10
設備進	PT8A/1/	百万円/平	108.400	1
二 一 二 一 二 一 二 二 二 二 二 二 二 二 二 二 二 二 二 二		8//1	100,490	2005年6月時改化翌月休日
有限価格		H/t	7,000	2003年5月期街11員初続計
熱重調たり	の 石灰 価格 LHV	H/GJ	242.9	上記を熱重28,819KJ/kg LHVで除する
排出係致L	HV	kg-GO ₂ /MJ	0.09542	温对法施行令
発電	コスト (COE)ref	円/kWh	4.97	年経費率9% COE = [(設備費×(年経費率)+(固定費)+(石炭使用量)×(石炭価 格)×(年間運転時間)+(変動費)]/[(年間運転時間)×(送電缝出力)]
排()	出CO₂原単位 CO₂/kWh)ref	t-CO ₂ /MWh	0.781	(排出係数LHV)×(石炭使用量)/(送電端出力)
分離回収プラ	フント(回収+昇圧付き			
■エネルギー消	費	8 8		
8.30	必要熱量	MJ/t-CO ₂	3,000	KS-1使用時の熱負荷、MHI2005
熱	電力ロス係数	kWh/MJ	0.052	発電所蒸気システムからの抽気、Rao2004の最大値を採用
	抽気による発電ロス	kWh/t-CO2	156	(必要熱量)×(発電ロス係数)
動力	動力原単位	kWh/t-CO2	28.4	3,600kW×7900hr/(百万t-CO2) MHI2005
昇圧	原単位(→7MPa)	kWh/t-CO2	115	13,500kW×8497hr/y/100万t=114.7 NSC2005
臣入	原単位(5.5→10MPa)	kWh/t-CO ₂	16	NSC2005
	筆電口ス合計	kWh/t-CO.	315.4	
		101111 1 0 0 0 2	010.4	(リファレンスブラント送雷候出力)-((発電ロス合計)
■送電端出力		MW	716	×100万t-CO ₅ /(年間運転時間)]
■回収CO2量		千t-C0。/年	1,000	
時間当たり	の回収CO2量	t-CO ₃ /h	134	
■発電プラント	费用	百万円/年	28.076	リファレンスプラント費用合計
■分離回収費用	R .	- HARLES		
吸収液	原単位	千t/年	0.490	SO _x 濃度1ppm時の吸収液損失:0.32kg/t-CO ₂ MHI2005 吸収液でのSO _x 反応率99.5%、1モルSO ₂ に対しMEA2モルが反応、よっ て2×61/64=1.9重量比のアミンが減少。 CO ₂ 回収率:90%、CO ₂ 濃度12.4%、SO _x 10ppmのガスを処理する場合の アミン減少量は 100万f:/0.124/0.9*10/1000.000*1.9
1	単価	円/kg	880	MH12005
	費用	百万円/年	431	
	設備投資額(分離回収)	百万円	7,808	9300百万円 〈2005年、127t-CO ₂ /h処理ペース 〉MHI2005 9300/1.23*〈134/127〉 [°] 0.6
632, 1944	設備固定費	百万円/年	703	(設備投資額)×9%
	修繕費	百万円/年	251	(設備投資額)×3.22%(固体取り扱いを含むため修繕費高)
5	離回収費用	百万円/年	1,386	6
■昇圧費用				
*5.48	設備投資額	百万円	2,106	2400百万円(2005年、118t-CO₂/h処理ベース)NSC2005 2400/1.23≠(134/118) [°] 0.6
設備	設備固定費	百万円/年	190	(設備投資額)×9%
	修繕費	百万円/年	63	(設備投資額)×3%
	昇圧費用	百万円/年	253	
発電コス	자 (COE)Capture	円/kWh	5.58	COE = [(発電ブラント費用) + (分離回収費用) + (昇圧費用)]/(送電 端出力) Capture
排 (CO	出CO ₂ 原単位 ₂ /kWh)Capture	t-CO ₂ /MWh	0.639	{(排出係数LHV)×(石炭使用量)-100万t-CO ₂ /(年間運転時間)}/ (送電端出力)
分離回収・	昇圧コスト(Capture)	円/t-CO2	3,207	Cost of CO ₂ Captured (US\$/tonne CO ₂) = [(COE)Capture - (COE)ref] / (CO ₂ , Captured/kWh)
分離回収・	昇圧コスト(Avoided)	円/t-CO ₂	4,256	Cost of CO ₂ Avoided (US\$/tonne CO ₂) = [(COE)capture - (COE)ref] / [(CO ₂ /kWh)ref -(CO ₂ /kWh)Capture]

表 1-8 国内における新設石炭火力からの分離回収・昇圧コストの事例

(出典) RITE(2005)[8]

	項目	単位	既設火力発電所	解説
リファレンスプ	ラント			
運転率		96	80	
年間運転時間	1	hr/y	7.008	
発電端出力		MW	540	
発電蜂効率	HHV	96	43	A. B. Rao, E. S. Rubin, M. B. Berkenpas, An Integrated Modeling
送電端出力		MW	508	DE-FC26-00NT4093 (2004) 仁準期
送電蜂効率	HHV	96	40	
石炭使用量	HHV	GJ/hr	4,521	
固定費	and the second sec	百万円/年	2,013	15=115円で計算
変動費(燃料	以外)	百万円/年	0	1
設備費		百万円	0	
石炭価格		円/t	7,000	2005年5月財務省貿易統計
熱量当たりの	石炭価格 HHV	円/GJ	231	上記を熱量28,819/0.95 KJ/kg HHVで除する
排出係数 HH	V	kg-CO ₂ /MJ	0.09065	温对法施行令
発電コ	スト (COE)ref	円/kWh	2.62	年経費率9% COE = [(設備費×(年経費率) *(固定費)+(石炭使用量)×(石炭価 格HHV)×(年間運転時間)+(変動費)]/[(年間運転時間)×(送電端出 力)]
排出	iCO ₂ 原单位 O ₂ /LWb)ref	t-CO2/MWh	0.807	(排出係数HHV)/×(石炭使用量)/(送電端出力)
公離回版プラン	小(回収土見圧けき)		Statistics a	
「日本ルギー湾」				
	心亜熱量	MJ/t=CO.	3,000	KS-1体用時の動負荷 MHI2005
98	\$29安款里 基甸島	+/h	102	K3-1度用時の2款員何、MRI2003 (必要執号)/(2225M1/+-茶蕉)×100万+/(運転時間)
107	深风里 石炭体田揃	O L/h-	192	(公室執号)×100万+/(任間運転結明)//モノニーが売りてまた)
新力	10次使用唱 動力 回避 位	kWb/t=CO	375	(必要然重)×100万0(年間連転時間)/(ホイラー効率0.745) 3.600/W×3900hr/(百万h-00.) MH29005
卵刀	劉刀原年位 廣業校(→3MD-)	kWh/t-CO	28.4	12 500kW × 7300H7 (E7)(-002) MH2003
<u>并</u> 任	原単位(→/MPa/ 原単位(FE_MOND_)	kWh/t-002	110	13,500kW × 8497hr/y/100/3t=114,7 NSG2005
11.0	原単位(5.0→TUMPa) ●ロス合計	kWh/t-CO	10	NSG2005
光		KWII/C-00g	109.4	(リファレンスブラント洋雷雄出力)-((発電ロス会社)
■送電端出力		MW	485	×100万t-CO。/(年間運転時間)}
■回収CO2量		千t-C0。/年	1,000	
時間当たりの	回収CO2量	t-CO ₂ /h	143	
■発電プラント費	用	百万円/年	9,323	リファレンスプラント費用合計
■分離回収費用				
	原単位	千t/年	0.320	SO _x 濃度1ppm時の吸収液損失:0.32kg/t-CO。MHI2005
吸収液	単価	円/kg	880	MHI2005
0.044.0036977	費用	百万円/年	282	(原単位)×(単価)
	燃料費	百万円/年	929	(石炭使用増)×(石炭価格HHV)×(年間運転時間)
補助ポイラー	その他の変動費	百万円/年	180	243.5百万円/年(260t-s/hベース) NGC2005
THE MAN IN T		6211/4	100	243.5 × 192/260
	補助ホイラー変動費合計	自万円/年	1,109	11/2_N=0H/2_COHH/2005@30(0.0/2
脱硫用アルカリ	NaOH	百万円/年	70	1/1000 x 1000 ft-CO. /ft x 70 000 H/t
	1+* BL -17 / =	モデの	E (00	8000百万円(2005年、260t-s/hベース)NGC2005
	111-11-11-11-11-11-11-11-11-11-11-11-11	自方円	5,422	8000/1.23×(192/260) ⁰ .6
	高次脱硫	百万円	1,135	1300百万円(2005年、127t-CO ₂ /h処理ベース)MHI2005
設備	2.34.67.2.35		2015/375	1300/1.23×(143/127) 0.6 9300万万円(2005年 127)-00./b年編ペース)Mは12005
	設備投資額(分離回収)	百万円	8,119	9300日7月12003年、1271-002/1981建へ一人/MHI2003 9300/1 23×(143/127)106
	設備固定費	百万円/年	1,321	(設備投資額)×95
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	百万円/年	473	(設備設資額)×32%(固体取り扱いを含わため修繕豊富)
41	諸回収費用	百万円/年	3 254	COMPANY REAL TO A COMPANY OF A TOTAL STORY OF A CONTRACT O
	1. M. M. M. M.	10/1/ 1	0,204	
-HGAM			157653	2400百万円(2005年、118t-CO ₁ /h処理ベース)NSC2005
	設備投資額	百万円	2,106	2400/1.23*(134/118)^0.6
設備	設備固定費	百万円/年	190	(設備投資額)×9%
	修繕費	百万円/年	63	(設備投資額)×3%
昇日	王費用合計	百万円/年	253	
発電コス	ト (COE)Capture	円/kWh	3.78	COE = [(発電プラント費用) + (分離回収費用) + (昇圧費用)]/(送電 端出力) cap
排出 (CO ₂ /	ICO₂原単位 /kWh)Capture	t-CO ₂ /MWh	0.658	{(排出係数HHV)×(石炭使用量+石炭使用增)-100万t-CO₂/(年間運 転時間)}/(送電端出力)
分離回収·昇	圧コスト(Capture)	円/t-CO2	3,925	Cost of CO ₂ Captured (US\$/tonne CO ₂) = [(COE)Capture - (COE)ref] / (CO ₂ , Captured/kWh)
分離回収·昇	庄コスト(Avoided)	円/t-CO2	7,752	Cost of CO ₂ Avoided (US\$/tonne CO ₂) = [(COE)Capture - (COE)ref] / [(CO ₂ /kWh)ref -(CO ₂ /kWh)Capture]

表 1-9 国内における既設石炭火力からの分離回収・昇圧コストの事例

(出典) RITE(2005)[8]

③技術の適用事例

燃焼後排ガスに含まれる酸素や硫黄酸化物や窒素酸化物等の不純物の影響で以下の反応 が生じ吸収液が劣化するため、石炭火力発電へのアミン吸収液の適用はハードルが高いと されてきた。

$2Amine+SO_2+H_2O+O_2 \rightarrow (Amine-H^+)_2SO_4^2$

※Amine:種々のアミン

しかし、近年はアミン系吸収液やアンモニア水を用いた化学吸収法の適用事例は、世界的 に進展しており、大規模実証にも取り組まれ始めている。

方法	開発主体	適用先	運転開始	規模	貯留
アミン	三菱重工	松島発電所	2006年	10t/日	無
系吸収	三菱重工	米国 Barry 発電所	2011 年	500t/日	有
液	東芝	三川発電所	2009 年	10 t/日	無
	CESAR	デンマーク Esbjerg 発電所	2008年	24 t/日	無
	(FP7)				
アンモ	ALSTOM	米国 Mountaineer 発電所	2009 年	10万t/年	有
ニア水	Powerspan	米国 R.E. Burger 発電所	2010年	25t/日	無

表 1-10 化学吸収法の石炭火力発電所への適用事例

(出典) 各社資料から作成⇒以下の個社調査の出典と同じ

(1)三菱重工

三菱重工は、関西電力と共同開発した KS-1 吸収液の実証を、三菱重工広島研究所に設置 した小規模パイロット装置(lton/day)からスタートした。ここでは、石炭焚き排ガスか らの CO2 回収実証試験が実施された。その後、財団法人地球環境産業技術研究機構(RITE) の補助及び電源開発株式会社の協力を得て、長崎県松島の既設石炭火力発電所に 10t/日の パイロットプラントを建設し、2006 年~2008 年の期間で 5,000 時間以上の連続運転実証を 行った。そして、2011 年 6 月からは、松島での長期実証試験で得られた知見を元に、米国 Southern Company と共同で米国アラバマ州の Alabama Power の Barry 発電所において、 500 ton/日の CO2 回収・貯留実証試験を開始している。 プラント概要 導入場所:米国 Barry 発電所 処理能力:500トン CO2/日 CO2 分離回収方式:燃焼後回収方式(化学吸収法) 運転開始:2011年6月

(出典) 飯嶋ほか(2011)[5]

(2)東芝

東芝は、福岡県大牟田市の株式会社シグマパワー有明の三川発電所内において、実際の 石炭火力発電プラントのボイラーから排出される排ガスの一部を利用して、CO2 分離・回 収システムの性能実証を 2009 年より開始し、高性能の吸収液の実証を行っている。

プラント概要 導入設備: 福岡県三川発電所 処理能力: 10トン CO2/日 CO2 分離回収方式: 燃焼後回収方式(化学吸収法) 運転開始: 2009年9月

(出典) 東芝[9]

(3)CESAR

欧州では FP6 (Framework Programme 6) のもとで行われた CASTOR プロジェクトを 後継し、FP7 (Framework Programme 7) のもとで 2008 年~2011 年にわたり、石炭火力 発電所からの CO2 回収実証事業が実施された。予算は 600 万ユーロで、大学や民間企業な ど 22 の組織が参加している。

デンマークの Esbjerg 発電所敷地内の CO2 回収パイロットプラントで燃焼後回収技術の 分離回収コストが低い新規吸収液の開発を行い、15 ユーロ/t-CO2(約 1650 円/t-CO2)、 2GJ/t-CO2 を目標としている。

プラント概要	
導入場所:デンマーク Esbjerg 発電所	
処理能力:24 トン CO2/日	
CO2 分離回収方式:燃焼後回収方式(化学吸収法)	
運転開始:2008年	
(出典) CESAR[10]	

(4)ALSTOM

American Electric Power 社の米国 Mountaineer 石炭火力発電所における CCS 実証試験 場は 2008 年に建設が始まり、2009 年 9 月に最初の CO2 回収が行われ、翌 10 月に最初の CO2 圧入・貯蔵が行われた。この実証試験では ALSTOM 社の冷却アンモニア法による燃 焼後 CO2 回収技術が採用されている。実証試験は 2 つのフェーズから成り、フェーズ 1 は 燃焼後の排ガスの一部(20MW の発電規模の排ガスに相当)を使った試験で、年間 10 万ト ンの回収・貯留を実施した。フェーズ 2 は年間 150 万トンの CO2 回収を 2015 年度から開 始する予定であったが、2011 年にプロジェクトを統括する American Electric Power から 中止が発表された。中止の理由として、気候変動政策が不明確であることや景気低迷が挙 げられている。

一方、カナダの TransAlta 社による Pioneer プロジェクト(Keephills-3 超臨界石炭火力 発電所(中央アルバータ)への実証施設の組み込み)においても、ALSTOM 社の冷却アン モニア法による燃焼後 CO2 回収技術が採用され、年間 100 万トンの CO2 回収が今後実施 される予定である。

プラント概要	
導入場所:米国 Mountaineer 発電所	
処理能力:10 万トン CO2/年	
CO2 分離回収方式:燃焼後回収方式(化学吸収法)	
運転開始:2009年	

(出典) ALSTOM[11]

(5)Powerspan

Powerspan 社は、Electro-Catalytic Oxidation (ECO) 技術を開発している。この技術 の特徴は、SO2、NOx、PM2.5、酸性ガス、水銀、およびその他金属を石炭火力発電所の 排ガスから同時に除去できることである。同社は、2008 年~2010 年にかけて、オハイオ州 Shadyside に所在する FirstEnergy 社の R.E. Burger プラント内にある、Powerspan 社の 1MW パイロット施設で ECO2 プロセスの試験を実施した。その後パイロット設備の規模 を 1.3MW に拡張し、CO2 回収量も 20 トン/日から 25 トン/日に拡張された。

プラント概要
導入場所:米国 R.E. Burger 発電所
処理能力:25 トン CO2/日
CO2 分離回収方式:燃燒後回収方式(化学吸収法)
運転開始:2008年

(出典) Powerspan[12]

④技術を開発/保有する機関

化学吸収法に取り組む機関はそれぞれ独自の吸収液技術を保有している。CO2 吸収液と してアミン溶液を用いるアミン吸収法については、日本の企業が先行しているといわれて いる。下表に代表的な国内外のアミン吸収液のエネルギー効率およびそのエネルギー効率 を達成した際の諸条件(CO2 回収量、CO2 回収率等)、並びに発表年を示す。回収液のエ ネルギー効率は事例により差があることが分かる。ただし、吸収液の性能を評価する場合 には、エネルギー効率のみではなく、その効率がどの様な条件(例えば、排ガスの CO2 濃 度や実証を行ったプラントの規模等)で達成されたものであるかといった点や、回収後の CO2 脱離温度が何度であるかといった点、さらには吸収液の放散による環境負荷の起こり やすさといった点等の様々な指標により総合的に評価がなされるべきであることに注意が 必要である。

	吸収液	メーカー	エネルギー 効率	CO2 回収量	CO2 回収率	排ガスの CO2 濃度	吸気ガス 流速	脱離温度	発表年
	KS-1	三菱重工業 関西電力	2.44GJ/t-CO2	2t/日	82.5%	10.2%	-	-	2011
	TS-1	東芝	2.6 GJ/t-CO2	10t/日	90%	12%	2,100Nm3/h	120°C	2013
	H3-1	日立製作所 バブコック日立	2.4GJ/t-CO2	10t/日	91%	11~13%	1,800~ 2,700kg/h	36∼46℃	2011
玉	化学吸収液	IHI	2.9 GJ/t-CO2	50kg/日	90%	15%	7m3/h		2013
内	HiPACT	日揮、BASF	-	-	-	-	-	-	
	RH-3c	RITE	1.5 GJ/t-CO2 [*]	-	-	46%	60L/h	120°C	2013
	RN-3	COURSE50 (RITE)	2.34 GJ/t-CO2	-	-	-	-	-	2012
	MDEA	EAGLE (日立製作所)	1.93GJ/t-CO2	24t/日	90%	約 40%	1,000Nm3/h	45~100°C	2010
	CASTOR1 CASTOR2	DONG Energy	3.8GJ/t-CO2 3.6GJ/t-CO2	1t/h	90%	不明	-	-	2009
国 外	Econamine FG+	Fluor	3.6GJ/t-CO2	-	-	<3%	-	\sim 70-90°C	2008
	DMX-ITM	IPF	2.3GJ/t-CO2	-	-	-	-	-	2012

表 1-11 代表的なアミン系吸収液の分離回収エネルギー比較

"-"は、エネルギー効率の値を収集した同一文献情報から情報が得られなかった項目である。

(出典)

KS-1:飯嶋ほか (2011)[5]

TS-1 : Yasuhiro Kato et al. (2013) [13]

H3-1 : Sandhya Eswaran et al. [14]

IHI : Shiko Nakamura et al. (2013) [15]

RH-3c : Shin Yamamoto et al. (2013) [16]

RN-3 : NEDO[17]

MEDA:長崎ほか(2010)[18]

CASTOR : CESAR[10]

Econamine FG+ : Satish Reddy et al. (2008)[19] DMX-ITM : L. Raynal et al. (2012)[20]

1.1.1.2. 物理吸収法

①技術概要

物理吸収法は、炭酸ガスを大量に溶解できる液体中に CO2 を取り込む技術である。排出 源からの排ガスを液体に接触させ、高圧・低温下で物理的に CO2 を吸収し、減圧または加 熱して CO2 を回収する。化学反応によって液体に吸収させる化学吸収法とは別の技術であ る。湿式脱硫法として技術的にも確立されている。IGCC(Integrated coal Gasification Combined Cycle: 石炭ガス化複合発電)のような高温・高圧の石炭ガスから CO2 を分離 する場合に適している。

様々な吸収液に対応した技術が存在し、吸収液に N-メチル・ヒロリドンを利用する Purisol 法、メタノールを利用する Rectisol 法、ポリエチレングリコールのジメチルエーテ ル溶液を利用する Selexol 法、ポリプロピレンカーボネートを利用する Flour Solvenni 法 などが主な技術である。

②経済性(コスト)

(1)IPCC における整理

IPCC(2005)[6]では、新設石炭ガス化複合発電(IGCC)発電向けの CO2 回収コストに関 する研究事例を収集整理している。事例は 2000 年から 2005 年の期間に発表されたものが 整理されている。これらの CO2 回収コストの範囲は、以下の通りである。

新設 IGCC 発電向け: \$13~37/t- CO2
 (Selexol 法の利用を想定した値)

新設 IGCC 発電所向けの CO2 回収コストの幅は、それぞれの研究において想定している 発電設備や CO2 回収設備の資本コストや稼働率等の差により出ている。

石炭火力発電所向けの CO2 回収コストが安くなる理由の1つとしては、IGCC システム の平均エネルギー必要量が低いことが挙げられる。酸素吹きガス化炉のガス容量が少なく 済むため、結果として装置の規模とコストを削減できることが、その他の主要要因として 考えられている。

Table 3.10 CO ₂ capture costs: new IG	CC power I	plants using	g current te	chnology.									
Study Assumptions and Results	NETL	NETL	NETL	Parsons	Simbeck	Nsakala, et al.	IEA GHG	IEA GHG	IEA GHG	Rubin et al.	Rubin et al.		Range
•	2002	2002	2002	2002b	2002	2003	2003	2003	2003	2005	2005	mim	max
					PLANTS	WITH BITUI	MINOUS C	OAL FEEDS	TOCK				
Reference Plant without capture)	*	*	*	*		*							
Gasifier name or type	Shell,	E-gas,	Texaco	E-gas,	Texaco	Texaco	Texaco	Texaco	Shell,	Texaco	Texaco	<i>a.</i>	
	O ₂ blown,	O ₂ blown,	quench, O blown	O ₂ blown	quench, O blown	syngas cooler, O blown	quench, O blown	quench, O hlown	O_2 blown	quench, O2 hlown	quench, O blown		
Fuel type (bit, subbit, lig; other) and %S	Illinois #6	Illinois #6	Illinois #6	bit. 2.5% S	bit. 1% S	bit	bit. 1%S	bit. 1%S	bit. 1%S	bit. 2.1%S	bit. 2.1%S		
Reference plant size (MW)	413	401	571	425	521		827	827	776	527	527	401	827
Plant capacity factor (%)	85	85	65	65	80	80	85	85	85	75	65	65	85
Net plant efficiency, LHV (%)	47.4	46.7	39.1	44.8	44.6		38.0	38.0	43.1	39.1	39.1	38	47
Fuel cost, LHV (US\$ GJ-1)	1.03	1.03	1.28	1.29	0.98	1.23	1.50	1.50	1.50	1.25	1.25	96.0	1.50
Reference plant emission rate (tCO, MWh ¹)	0.682	0.692	0.846	0.718	0.725		0.833	0.833	0.763	0.817	0.817	0.68	0.85
Capture Plant Design	2												
CO, capture technology	Selexol	Selexol	Selexol	Selexol	Selexol	Selexol	Selexol	Selexol. NS	Selexol	Selexol	Selexol		
Net plant size, with capture (MW)	351	359	457	404	455		730	742	676	492	492	351	742
Net plant efficiency, LHV (%)	40.1	40.1	31.3	38.5	39.0	31.5	31.5	32.0	34.5	33.8	33.8	31	40
CO, capture system efficiency (%)	89.2	87.0	89.0	91.0	91.2		85	85	85	06	60	85	91
CO ₂ emission rate after capture (t MWh ⁻¹)	0.087	0.105	0.116	0.073	0.065	0.104	0.152	0.151	0.142	0.097	0.097	0.07	0.15
CO, captured (Mt/yr)	1.803	1.870	2.368	1.379	2.151		4.682	4.728	4.050	2.749	2.383	1.38	4.73
CO, product pressure (MPa)	14.5	14.5	8.3	8.3			11.0	11.0	11.0	13.7	13.7	8	14
CCS energy requirement (% more input MWh ⁻¹)	18	16	25	16	14		21	19	25	16	16	14	25
CO, reduction per kWh (%)	87	85	86	90	91	73 54	82	82	81	88	88	81	91
Cost Results							林林	非非	**				
Cost year basis (constant dollars)	2002	2002	2002	2000	2000	0 - c	2002	2002	2002	2001	2001		
Fixed charge factor (%)	14.8	14.8	15.0	13.8	13.0		11.0	11.0	11.0	14.8	17.3	11	17
Reference plant TCR (US\$ kW-1)	1370	1374	1169	1251	1486	1565	1187	1187	1371	1311	1311	1169	1565
Capture plant TCR (US\$ kW1)	2270	1897	1549	1844	2067	2179	1495	1414	1860	1748	1748	1414	2270
Incremental TCR for capture (US\$ kW1)	006	523	380	593	581	614	308	227	489	437	437	227	900
Reference plant COE (US\$ MWh ⁻¹)	40.6	40.9	43.4	47.7	43.0	53.0	45.0	45.0	48.0	48.3	61	41	61
Capture plant COE (US\$ MWh ⁻¹)	62.9	54.4	59.9	65.8	57.7	71.5	56.0	54.0	63.0	62.6	79	54	79
Incremental COE for capture (US\$ MWh ⁻¹)	22.3	13.5	16.5	18.1	14.7	18.5	п	9	15	14.3	18.2	6	22
% increase in capital cost (over ref. plant)	66	38	33	47	39	39	26	19	36	33	33	19	66
% increase in COE (over ref. plant)	55	33	38	38	34	35	24	20	31	30	30	20	55
Cost of CO, captured (US\$/tCO,)	32	19	18	30	21		13	Ш	19	17	21	11	32
Cost of CO ₂ avoided (US\$/tCO ₂)	37	23	23	28	22	23	16	13	24	20	25	13	37
Capture cost confidence level (see Table 3.6)						moderate							
Notes: All costs in this table are for capture LHV/HHV = 0.96 for coal. ** Reported cap	only and do bital costs inc	not include creased by 8'	the costs of % to include	CO ₂ transport interest durin	and storage; g constructio	see Chapter 8 1 n. **Reported	for total CCS capital costs	s costs. * Rep increased by	orted HHV v 15% to estin	alues convert iate interest d	ted to LHV luring const	assuming	
and other owners' costs.													

表 1-12 新設 IGCC 発電所における CO2 回収のコスト事例

(2)IEA (2011) における整理

IEA (2011) [7]は、2005 年から 2009 年に発表されたデータに基づき、IGCC における CO2 回収コストを算定している。先に挙げた IPCC よりも新しいデータに基づいたものと なっている。表中の"Average (OECD)"は OECD の 10 データの単純平均値を項目ごと に算出した結果である。これらの CO2 回収コストの範囲は、以下の通りである。

● IGCC 発電向け: 18~79\$/t-CO2

表 1-13 IGCC 発電所における燃焼前回収のコスト事例

Regional focus					OE	CD			-		China	Average (OECD)
Year of cost data	2005	2005	2005	2007	2007	2007	2008	2008	2008	2009	2009	
Year of publication	2007	2007	2007	2010	2010	2010	2009	2009	2009	2009	2009	
Organisation	MIT	GHG IA	GHG LA	NETL	NETL	NETL	CMU	EPRI	EPRI	GCCSI	NZEC	
ORIGINAL DATA AS PUBLISHED (onvert	ed to U	SD)									
Region	US	EU	EU	US	US	US	US	US	US	US	CHN	
Specific fuel type	Bitcoal	Ditcoal	Bitcoal	Bit coal	Bitcoal	Sitcoal	Bit coal	Sub-bit coal	Bitcoal	Bik coal	Bitcoal	
Power plant type	GE	Shell	GE Duench	68 R+Q	CoP E- Geo PSD	Shell	GE Quench	(Dewerhi)	(Dentric)	Shell	TPRI	
Net power output w/o capture (MW)	500	776	826	622	625	629	538	573	603	636	18	633
Net power output w/ capture (MW)	500	676	730	543	514	497	495	482	507	517	662	546
Net efficiency w/o capture, LHV (%)	40.3	43.1	38.0	40.9	41.7	44.2	40.0	41.0	41.2	43.2	14	41.4
Net efficiency w/ capture, LHV (%)	32.7	34.5	31.5	34.3	32.6	32.8	34.5	32.3	32.3	33.6	36.8	33.1
CO3 emissions w/o capture (kg/MWh)	832	763	833	782	776	723	819	845	805	753	1	793
CO2 emissions w/ capture (kg/MWh)	102	142	152	93	98	99	94	141	135	90	95	115
Capital cost w/o capture (USD/kW)	1 430	1 6 1 3	1 439	2 447	2 351	2 716	1 823	3 2 3 9	2 984	3 5 2 1	1.4	2 356
Capital cost w/ capture (USD/kW)	1 890	2.204	1 815	3 334	3,466	3 904	2 513	4 221	3 940	4 373	1 471	3 266
Relative decrease in net efficiency	19%	20%	17%	16%	22%	26%	14%	21%	22%	22%		20%
RE-EVALUATED DATA (2010 USD)		(8 [.] 2	a 3	2 E	9 S	8 - 28	5 52		22	100 - 1	19. I	e - 3
Overnight cost w/o capture (USD/kW)	2 009	1 970	1 758	2 663	2 559	2 956	1 551	3 702	3 410	3 279		2 586
Overnight cost w/ capture (USD/kW)	2 834	2 874	2 367	3 874	4 027	4 5 3 6	2 323	5 150	4 808	4 348	1 721	3 714
LCDE w/o capture (USD/MWh)	62	69	75	76	73	81	52	86	92	88	1.+	75
LCDE w/ capture (USD/MWh)	83	102	95	104	109	120	71	118	126	115	73	104
Cost of CO, avoided (USD/tCO)	29	53	30	42	53	62	26	45	51	41		43
Cost of CO ₂ avoided vs PC baseline (USD/tCO ₂)	18	53	38	57	64	86	28	64	79	64	32	55
Relative increase in overnight cost	41%	45%	35%	45%	57%	53%	50%	39%	41%	33%		44%
Relative increase in LCOE	35%	48%	27%	38%	49%	48%	17%	37%	37%	31%		39%

Table 5. Pre-combustion capture from integrated gasification combined cycles

Notes: Data cover only COs capture and compression but not transportation and storage. Overnight costs include owner's, EPC and contingency costs, but not IDC. A 15% contingency based on IPC cost is added for universeen technical or regulatory difficulties for CCS cases, compared to a 5% contingency applied for non-CCS cases. IDC is included in LCOE calculations. Fuel price assumptions differ between regions. Generic data shown for EPRI; further details for individual gasifier designs, including data for Sections gasifiers are available in EPRI (2009).

(出典) IEA (2011) [7]

③技術の適用事例

IGCC に物理吸収法を組み合わせた大規模実証試験の計画は世界的に存在している。日本 では、電源開発株式会社の若松発電所において、EAGLE プロジェクト(多目的石炭ガス製 造技術開発プロジェクト)が実施されているが、小規模実証試験に取り組んでいるところ である。

プロジェクト名 (実施場所)	プラント種類	開始予定年	プラント 能力	回収タイプ	年間回収量 (百万 t/年)
Summit Power (Penwell, Texas)	Coal IGCC	2014	400MWg	Selexol	3.0
Southern California Edison IGCC (Utah)	Coal IGCC	2017	$500 \ \mathrm{MW}$	Selexol	3.5
Hartfield IGCC (Hartfield, UK)	Coal IGCC	2014	900MW	Selexol	4.5
EAGLE プロジェクト (若松、日本)	Coal IGCC	2010	170MW	Selexol	24t/day ^{**}

表 1-14 IGCC プロジェクト事例

※EAGLE プロジェクトでは、170MW 級のプラントから、石炭ガスの一部(1,000m³N/h)を分岐させて 実証を行っているため、回収量が他の事例と比較して小さい。

④技術を開発/保有する機関

物理吸収法に取り組む機関は多数存在している。米国での Summit Power プロジェクト や英国での Hartfield IGCC プロジェクトでは Linde が技術を提供している。また、日本で は、電源開発株式会社が NEDO からの助成を受けて実施する「EAGLE プロジェクト」に おいて、物理吸収法の技術開発に取り組んでいる。

1.1.1.3. 膜分離法

①技術概要

膜分離法は高分子膜等を用いて圧力差を駆動力として CO2 を分離回収する技術である。 CO2 を膜で分離できれば、吸収法や吸着法に比べて媒体の移動や再生に対するエネルギー 投入が不要になるため、理論的に最も省エネルギーな CO2 分離回収プロセスである。しか し、分離対象のガスには CO2 よりも小さい H2 や N2 等の成分も含まれていて膜を透過す るため、膜によって CO2 を高選択率、高生産性で分離回収することは難易度の高い技術で ある。この難しさの度合いは CO2 を分離する対象のガスの種類によっても異なっている。

②経済性(コスト)

カーネギーメロン大学の Haibo Zhai 氏が GHGT-11 で発表した研究成果[22]によると、 超臨界石炭火力発電における膜分離法による回収コストは、

● 新設石炭火力発電向け:83\$/t-CO2

と算定されている。また、算定の前提条件は以下の通りである。

	CCS:無	CCS:有
Plant type	Supercritical	Supercritical
Coal type	Illinois #6	Illinois #6
Gross electrical output (MW)	589.7	883.2
Net electrical output (MW)	550.0	550.0
Net plant efficiency(%, HHV)	38.4	25.7
CO2 emission rate (kg/kWh)	0.816	0.122
Plant cost of electricity (COE) (\$/MWh)	59.4	117.0
Added COE for CCS (\$/MWh)	-	57.6
Cost of CO2 avoided (\$/mt)	-	83

表 1-15 膜分離法による CO2 回収コスト算定の前提条件

(出典) Haibo Zhai and Edward S. Rubin (2013) [22]

③技術の適用事例

ラボスケールでの実験が中心であり、商業的に適用されていない。

④技術を開発/保有する機関

我が国では RITE が膜分離の研究に取り組んでいる。分子ゲート膜機構というコンセプトで、膜並びに分離システムの開発に取り組んでいる。

1.1.1.4. 深冷分離法

①技術概要

気体の種類による沸点の違いを利用して、CO2 だけを分離する方法である。化石燃料の 燃焼時に空気ではなく酸素を使う「酸素燃焼」の場合は、排気中の CO2 濃度が高くなるの で、この方法で効果的に CO2 を除去することができる。

深冷分離法は、空気分離(酸素と窒素の分離)や天然ガス中のヘリウム、合成ガス中の CO の分離などで実用化されている。CO2の深冷分離は気体混合物を低温(加圧、-20~-40℃ 程度)で CO2を液化し蒸留分離する方法であるが、実用化された技術はない。

②経済性(コスト)

IEA (1994) では IGCC プラントに適用した場合の試算結果が示されている。一般に深 冷分離法は高濃度の CO2 排出源以外には適応が難しいとされているが、IEA-GHG (1994) によると、排ガス中の CO2 排出量が 7%程度でも回収率 85%、回収後の CO2 濃度 97%が 可能と試算されている。

● IGCC 向け分離・回収コスト: \$23/t-CO2

前提条件	・排ガス中 CO2 濃度	7%
	・回収率	85%
	・回収後 CO2 濃度	97%
	・発電効率の低下	6ポイント

(出典) IEA-GHG(1994)[23]

他の分離・回収法に比べて設備費が高額となる。また、CO2 濃度が 10~20%の排ガスに 適用する場合には、分離した CO2 が固化しないように排ガスを圧縮する必要があるために 所要エネルギーが非常に大きくなる。必要熱量が大きいため、高圧かつ高 CO2 濃度の排出 源に適用が限定される。

③技術の適用事例

CO2 分離のための深冷分離法は、商業的に適用されていない。

④技術を開発/保有する機関

以下に、当該技術開発に取り組む代表的な研究機関と研究の概要を示す。

表 1-16 技術を開発/保有する機関とその概要

ExxonMobil	ExxonMobil は、1980 年代から「Controlled Freeze Zone (CFZ)」と
	称する深冷分離技術を開発している。米国ワイオミング州の LaBarge
	ガス処理プラントでパイロットテストを行っている。LaBarge のガス
	は CO2 濃度が 65%以上と高い地域であり、CFZ は不純物の多いガスか
	ら低コストに分離する技術として期待されている。また、当社はインド
	ネシアの Natuna 油田において深冷分離法を用いて CO2 濃度が 70%の
	ガスから CO2 を分離し、CO2 濃度を 17%程度とする研究をペルタミナ
	(インドネシアの国有石油関連会社)と共同で実施した。

(出典) Putu Suarsana(2009)[24]

1.1.1.5. 物理吸着法

①技術概要

吸着法は活性炭やゼオライトなどの固体の吸着剤に CO2 を吸着させ、減圧あるいは加熱 によって CO2 を脱離させる回収方法である。固体と CO2 の間に化学反応が起こる場合は 固体吸収法と呼ぶ。吸着法と固体吸収法の関係は、物理吸収法と化学吸収法の関係と同じ である。媒体が固体であるため、媒体が液体の場合とは異なり CO2 の吸収部と再生部間の 媒体移動が難しい。このため複数の塔を用意し、媒体を固定して、圧力や温度などの環境 条件を変化させるスイング法がよく使用される。圧力をスイングさせる PSA 法と温度をス イングさせる TSA 法、両者を組み合わせた PTSA 法がある。また、媒体自体を移動させ る移動床や流動床方式も使用される。

課題は分離回収前の除湿エネルギー消費である。IGCC などガス化反応のプロセスガス には水蒸気が含まれており、水蒸気が存在によってゼオライトの CO2 の吸着特性が著しく 阻害されるため、CO2 の分離回収の前に通常は除湿を行う必要がある。このとき消費され る除湿のためのエネルギーは CO2 回収に要する全エネルギーの 30%程度である。

②経済性(コスト)

物理吸着法による CO2 回収コストの算定は、NEDO の調査において実施された事例がある。これによれば、空気吹き IGCC に物理吸着を適用した際の CO2 回収コストは、4,975 円/t-CO2 とされている。

プロセス	送電端効率	発電コスト	CO2 回収コスト
	%	円/kWh	円/t-CO2
IGCC(Air)	43.0	10.3	-
IGCC(Air)+物理吸着 (PSA)	32.7	16.1	4,975

表 1-17 空気吹き IGCC における物理吸着による CO2 回収コスト

(出典) エネルギー総合工学研究所、NEDO 委託事業(1993) [25]

③技術の適用事例

物理吸着法による CO2 回収は、現状では実証段階であり、数 MW 規模のプラントで試験 が行われている。

韓国では、2010~2014 年の期間で 10MW 規模の試験プラントを用いて、物理吸着法に よる CO2 回収技術の実証プロジェクトを実施している。2014 年のプロジェクト終了直後 から、300MW 規模での商用化を目指す計画となっている。

④技術を開発/保有する機関

以下に、当該技術開発に取り組む代表的な研究機関と研究の概要を示す。

	RITE では水蒸気の存在下でも活性低下が少なく、かつ圧力の変化に対
DITTE	して吸着量が大きく変化するような疎水性吸着剤の開発に取り組んで
KIIE	いる。この吸着剤を用いて除湿工程を不要とする省エネプロセスの構築
	を目指している。
	AIST では、セリウムの酸化物を用いて、優れた CO2 吸着能を示す新し
	い多孔質吸着体を、安価で簡単に合成する技術を開発した。これにより、
AIST	これまで表面積の増大に必須であった高価な添加剤(テンプレート)を
	用いないで、簡単なプロセスで大きな表面積を持つセリウム酸化物の多
	孔質吸着体を合成できるようになった。合成されたセリウム酸化物の多
	孔質吸着体は、他の CO2 の吸着材として知られる、活性炭の4倍、ゼ
	オライトの2倍以上のCO2吸着量を達成した。
ZIED	韓国の実証プロジェクトにおいて炭酸ナトリウムや炭酸カリウム系の
KIEK	吸着剤の開発を担当しており、80%程度の CO2 回収率が得られている
KEPKI	と報告されている。

表 1-18 技術を開発/保有する機関とその概要

(出典)

RITE: RITEホームページ公開資料 (2013) [26] AIST: AISTニュースリリース (2014) [27] KIER: Young Cheol Park et al. (2013) [28]

1.1.1.6. 酸素燃焼法

①技術概要

空気分離装置で製造した酸素を燃焼させ、CO2 濃度を 95%以上の高濃度にして排ガスを 回収する技術である。酸素環境下で完全燃焼された排ガス中には、CO2 と H2O しか現れな いため、温度を 50℃以下にして燃焼排ガス中の水分の大半を凝縮させて除去することで CO2 が回収可能となる。また、他の分離・回収技術と併用することが可能である。なお、 空気中からの酸素の分離には、前述の PSA (Pressure Swing Adsorption) 法や深冷分離法 が用いられている。純粋に酸素のみの環境下では燃焼温度が高温化し、耐熱性能などの技 術的な課題も多いため、一般的には CO2 を混入して燃焼を行う。この場合、回収した CO2 を再度燃焼室に戻して利用する事ができるため、CO2 Recycle Power Generation とも呼ば れる。酸素燃焼法のプロセス概要を以下に示す。

図 1-4 酸素燃焼法による分離プロセスの模式図 (出典) NEDO (2004) [29]

従来の発電所の構成に、酸素製造(空気分離)装置と排ガスの循環装置を追加する構成で あるため、既設、新設の発電所に適用が可能という利点がある。また、空気分離後に燃焼 を行うため、排出される窒素酸化物(NOx)の量を低減可能であると共に CO2 回収エネル ギーと回収コストの低減が可能といった利点を有する。 ②経済性(コスト)

(1)IPCC における整理

IPCC(2005)[6]では、新設石炭火力発電向けの CO2 回収コストは以下の様に示されている。

● 新設石炭火力発電向け: \$27~72/t-CO2

酸素燃焼法を適用した際の特徴としては、排ガスの主成分が CO2、蒸気、少量の SO2、 窒素及びその他微量不純物であるため、燃焼後 CO2 回収システムの設備コストと運用コス トが低減される点、空気分離装置及びその他システム設計の修正に伴う新たなコストが発 生する点が挙げられる。

IPCC報告書において、回収コストの幅は、設備コストの想定の差等が影響している。た とえば、72 USD/t-CO2 と結論付けられた研究における酸素燃焼ユニットは、完全な空気燃 焼も行える装置を想定しており、このユニットの設備コストは、酸素燃焼法運用のためだ けに設計された新ユニットの設備コストよりもはるかに高い。

			0	KY-FUEL CO	MBUSTION		
Study Assumptions and Results	Alstom et al.	Singh et al.	Stobbs &Clark	Dillon et al.	Nsakala et al.	Nsakala et al.	Nsakala et al.
	2001	2003	2005	2005	2003	2003	2003
Reference Plant (without capture)	*				*	*	*
Power plant type	RETROFIT subcrit PC	RETROFIT PC + aux NGCC	RETROFIT PC	New PC	Air-fired CFB	Air-fired CFB	Air-fired CFB
Fuel type (bit, sub-bit, lig; NG, other) and %S	bit, 2.7%S	sub-bit	lignite	bit	bit, 2.3%S	bit, 2.3%S	bit, 2.3%S
Reference plant net size (MW)	434	400	300	677	193	193	193
Plant capacity factor (%)	67	91		85	80	80	80
Net plant efficiency, LHV (%)				44.2	37.0	37.0	37.0
Fuel cost, LHV (US\$ GJ ⁻¹)	1.30			1.50	1.23	1.23	1.23
Reference plant emission rate (tCO ₂ MWh ⁻¹)	0.908	0.925	0.883	0.722	0.909	0.909	0.909
Capture Plant Design							
CO ₂ capture technology	oxy-fuel	oxy-fuel	oxy-fuel	oxy-fuel	oxy-fuel	oxy-fuel with CMB	chemical loopin with CMB
Net plant size with capture (MW)	273	400		532	135	197	165
Net plant efficiency, LHV (%)	23.4			35.4	25.8	31.3	32.2
CO ₂ capture system efficiency (%)				about 91			
CO ₂ emission rate after capture (t MWh ⁻¹)		0.238	0.145	0.085	0.086	0.073	0.005
CO ₂ captured (Mt yr ⁻¹)		2.664					
CO ₂ product pressure (MPa)	13.9	15	13.7	П			_
CCS energy requirement (% more input MWh ⁻¹)				25	43	18	15
CO ₂ reduction per kWh (%)	0	74		88.2	90.5	92.0	99.5
Cost Results	**	**					
Cost year basis (constant dollars)		2001	2000		2003	2003	2003
Fixed charge factor (%)	13.0	9.4		11			
Reference plant TCR (US\$ kW-1)		0		1260	1500	1500	1500
Capture plant TCR (US\$ kW-1)	1527	606	4570	1857	2853	2731	1912
Incremental TCR for capture (US\$ kW-1)	1198	606		597	1354	1232	413
Reference plant COE (US\$ MWh ⁻¹)			44.5	44	45.3	45.3	45.3
Capture plant COE (US\$ MWh-1)			97.5	61.2	82.5	70.5	58.4
Incremental COE for capture (US\$ MWh ⁻¹)	44.5	23.9	53	17.2	37.2	25.2	13.1
% increase in capital cost (over ref. plant)			2	47	90	82	28
% increase in COE (over ref. plant)			119	39	82	56	29
Cost of CO ₂ captured (US\$/tCO ₂)		29					
Cost of CO ₂ avoided (US\$/tCO ₂)	54	35	72	27	45	30	14
Continue and confidence level food Toble 2 6			low			vieru lour	were low

表 1-19 発電所における酸素燃焼による CO2 回収のコスト事例

(2)IEA における整理

IEA (2011) [7]は、2007 年から 2009 年に発表されたデータに基づき、石炭火力発電所 における酸素燃焼による CO2 回収コストを算定している。先に挙げた IPCC よりも新しい データに基づいたものとなっている。表中の "Average (OECD)"は OECD の 13 データ の単純平均値を項目ごとに算出した結果である。これらの CO2 回収コストの範囲は、以下 の通りである。

● 石炭火力発電向け: 27~72\$/t-CO2

Regional focus	20				OE	CD ;				,	China	Average (OECD)
Year of cost data	2005	2005	2007	2007	2007	2007	2007	2007	2009	2009	2009	
Year of publication	2007	2007	2008	2010	2010	2010	2010	2010	2009	2009	2009	
Organisation	GHG IA	МІТ	NETL	NETL	NETL	NETL	NETL	NETL	GCCSI	GCCSI	NZEC	
ORIGINAL DATA AS PUBLISHED (onverte	d to U	SD)									
Region	EU	US	US	US	US	US	US	US	US	US	CHN	
Specific fuel type	Bit coal	Bitcoal	thit coul	Sub-bit coal	Sub-bit coal	Ugnite	Sub-bit coal	Lignite	Bit coal	Bitcoal	Bit coal	
Power plant type	USCPC	SCPC	SCPC	SCPC	SCPC	SCRC	CFB	OFE	SCPC	USEPC	USCPC	
Net power output w/o capture [MW]	758	500	550	550	550	550	550	550	550	550	824	566
Net power output w/ capture (MW)	532	500	550	550	550	550	549	550	550	550	673	543
Net efficiency w/o capture, LHV (%)	44.0	40.4	41.4	40.6	40.6	39.4	40.9	40.2	41.4	46.8	43.9	41.6
Net efficiency w/ capture, LHV (%)	35.4	32.1	30.7	32.5	29.5	31.4	31.6	30.7	30.8	34.7	35.6	31.9
CO2 emissions w/o capture (kg/MWh)	743	830	800	859	859	925	846	884	800	707	797	825
CO2 emissions w/ capture (kg/MWh)	84	104	٥	98	0	103	99	105	0	0	98	59
Capital cost w/o capture (USD/kW)	1 408	1 330	1 579	1 851	1851	2 003	1938	2 048	2 587	2 716	856	1 931
Capital cost w/ capture (USD/KW)	2 205	1 900	2 660	3 093	3 086	3 163	3 4 9 1	3 B21	4 121	3 985	1 265	3 153
Relative decrease in net efficiency	20%	21%	26%	20%	27%	20%	23%	24%	26%	26%	19%	23%
RE-EVALUATED DATA (2010 USD)	-				and the second second	a second se				Contract of the	are and a second	
Overnight cost w/o capture (USD/KW)	1 720	1 868	1 976	2 317	2 317	2 507	2 4 2 6	2 563	2.409	2 5 2 9	938	2 263
Overnight cost w/ capture (USD/KW)	2 875	2 849	3 555	4 133	4 124	4 227	4 665	5 106	4 098	3 962	1.481	3 959
LCOE w/o capture (USD/MWh)	69	59	61	56	56	62	59	63	70	70	51	62
LCOE w/ capture (USD/MWh)	101	84	100	96	97	100	108	119	112	106	69	102
Cost of CO ₂ avoided (USD/tCO ₂)	49	35	49	52	47	46	66	72	52	50	27	52
Relative increase in overnight cost	67%	53%	80%	78%	78%	69%	92%	99%	70%	\$7%	58%	74%
Relative increase in LCOE	47%	43%	65%	71%	72%	62%	84%	89%	60%	51%	36%	64%

表 1-20 石炭火力発電所における酸素燃焼回収のコスト事例 Table 7. Oxy-combustion capture from coal-fired power generation

Notes: Data cover only CD; capture and compression but not transportation and storage. Overnight costs include owner's, EPC and contingency tools, but not IDC. A 15% contingency based on EPC cost is added for unforeseen technical or regulatory difficulties for CCS cases, compared to a 5% contingency applied for non-CCS cases. IDC is included in ECDE calculations. Fuel price assumptions differ between regions. CD; partities >99:9% apart from GHG IA (90%), GCCSI (83%) and NETL case with 39:5% (UHV) efficiency (83%).

(出典) IEA (2011) [7]

③技術の適用事例

(1)Callide 酸素燃焼プロジェクト (豪州)

IHI、三井物産、電源開発、豪州石炭協会、CS energy 社、Schlumberger 社、Glencore 社のジョイントベンチャーによるプロジェクトであり、日本の経済産業省と豪州連邦政府 およびクイーンズランド州政府より財政支援を受けている。2012年よりクイーンズランド 州の Callide A 発電所 4 号機(石炭焚き、30MW)において酸素燃焼の実証運転を開始し、 既に累計 4,600時間の運転を達成している。プロジェクト予算は約 2.4 億ドルであり、CO2 回収量は 75 トン/日(発電所からの CO2 発生量の約 11%)が計画されている。

(2)FutureGen 2.0, Illinois (米国)

FutureGen 2.0 は DOE が進めている石炭火力の大規模 CCS 実証プロジェクトの一つで あると共に、米国の酸素燃焼方式による最初の CCS 実証プロジェクトでもある。2016 年 より酸素燃焼方式による 200MW 級実証試験が行われる予定である。プロジェクト総予算 は約 13 億ドルであり、そのうち酸素燃焼・CO2 回収設備費は 7.37 億ドルである。CO2 回収については年間 130 万トン/年が計画されている。

(3)CIUDEN oxyfuel programme (スペイン)

CIUDEN は 2006 年 5 月に環境・エネルギー技術の開発推進を目的としてスペイン政府 によって設立された財団であり、2011 年から 2012 年にかけて酸素燃焼方式による 30MWth 級実証試験を行っている。このパイロットプラントに投入された総資金は約 1 億ユーロで あり、うち 9,000 万ユーロを EU のファンドが負担している。また、今後 300MWe 級の実 証試験も計画中とみられる。

④技術を開発/保有する機関

以下に、当該技術開発に取り組む代表的な研究機関と研究の概要を示す。

IHI (日)	ボイラ技術をベースに 1989 年より酸素燃焼の研究開発を開始し						
	ている。1990 年代に基礎研究および FS を行い、2008 年から豪						
	州において実証試験(Callide 酸素燃焼プロジェクト)に取り組ん						
	でいる。今後は実証で得られた成果をもとに改善のための基礎研						
	究を行い、2015年以降の商用化を目指している。						
Babcock & Wilcox	フランスの酸素製造装置メーカーの AirLiquide 社と共同で酸素						
Company (米)	燃焼技術の開発に取り組んでいる。2001年からラボスケール試験						
	を経て、2007 年からは Barberton, Ohio 州にある 30MWth サイ						
	ズのパイロット試験装置で開発を実施してきた。CCS 実証プロジ						
	ェクトの FutureGen 2.0 にも取り組んでいる。						
Alstom Power (米)	フランスの酸素製造装置メーカーの AirLiquide 社と共同で酸素						
	燃焼技術の開発に取り組んでいる。ドイツ Vattenfall 社で実施し						
	ている 30MWth パイロットプラントに微粉炭燃焼方式酸素燃焼						
	技術が採用され、実証が行われた。						
Foster Wheeler	2009 年から 1MWth の小型試験装置で実証を行い、2011 年から						
Finland (スペイン)	は CIUDEN(Ciudad de la Energía)が実施する 30MWth 級の						
	パイロットプラントの実証に取り組んでいる。						

表 1-21 技術を開発/保有する機関とその概要

(出典)株式会社 IHI (2011) [30]を基に作成

1.1.1.7. 化学ループ燃焼法

①技術概要

金属の酸化と還元を利用した新しい概念の燃焼法である。2つのリアクターの中に金属粒 を周回させることにより、酸素を輸送し燃料の燃焼を行う。空気中の酸素と金属粒の酸化 反応により酸化金属を作り、これを燃料と還元反応させることで酸化金属を金属に戻す。 金属を媒体として空気中の酸素を燃料反応系へ供給するため、空気と燃料は直接的に混ざ ることはなく、排ガスは CO2 と H2O(水蒸気)のみとなる。

図 1-5 石炭火力発電所におけるケミカルループ反応

金属粒を酸素輸送キャリアとして用いることで空気分離装置を不要としている点が特徴で ある。理論的には回収の消費エネルギーが最も少ない回収方法の一つと考えられる。金属 を酸素キャリアとして燃焼場に循環させるため、配管の磨耗や酸化還元の繰り返しに対す る金属粒の耐久性が主な課題である。

図 1-6 Chemical looping の仕組み

(出典) IPCC (2005) [6]

②経済性(コスト)

IPCC (2005) [6]では、新設石炭火力発電向けのケミカルループによる CO2 回収コスト は\$14/t-CO2 という試算結果が示されている。この試算は、ケミカルループを使用し CO2 排出量をほぼ 100%削減するシステムが前提となっているため、非常に安い CO2 回収コス トとなっている。ただし、現状では 1~3MWth 規模で原理、キャリア金属粒子、循環系の 検証研究が進められている段階の技術であり、現時点では非常に不確実性が高い試算結果 である。

③技術の適用事例

実証試験に取り組まれている段階であり、CCS への適用事例は今のところ存在しない。 技術開発においては、ALSTOM 社が政府支援の下で1~3MWth 規模でのパイロット試験 を実施しており、先行している状況にある。

④技術を開発/保有する機関

表 1-22 に、当該技術開発に取り組む代表的な研究機関と研究の概要を示す。

表 1-22 技術を開発/保有する機関とその概要

	Fe 系の酸素キャリアを使用したケミカルルーピング燃焼技術
	を開発している。RFCP(Research Fund for Coal and Steel)
ALSTOM (仏)	の E 'CLAIR プロジェクト(2008~2012 年)において 1MWth
	装置での試験を Chalmers 工科大、Darmstadt 工科大、
	Vattenfall 社、Air liquid 社と共同で実施した。
	Ca 系のキャリアを使用したケミカルルーピング燃焼技術を開
AISTON (¥)	発している。DOE のプロジェクト(2008~2011 年)において
	3MWth 装置での試験を NETL (National Energy Technology
	Laboratory)と共同で実施した。
	石炭ガス化を触媒により行うために、Ca 系のキャリアを使用し
一般財団法人石炭工	たケミカルループ燃焼法が検討された。この事業は NEDO 事業
ネルギーセンター、産	の「ゼロエミッション石炭火力技術開発プロジェクト 次世代高
業技術総合研究所等	効率石炭ガス化技術開発(平成 19 年度~平成 23 年度)」の中で
	実施された。
	2020年までに、ケミカルループ燃焼技術を確立し、天然ガスな
	どの化石燃焼から CO2 を低コストに回収すると共に、エネルギ
東京ガス	ー(熱、電気)と物質(二酸化炭素、窒素、水素)を同時に生
	み出す「コプロダクションシステム」の実現を目指している。
	神奈川工科大学と共同研究を行っている。

(出典)

ALSTOM:一般財団法人石炭エネルギーセンターほか(2013)[31]を基に作成

一般財団法人石炭エネルギーセンター、産業技術総合研究所:

一般財団法人石炭エネルギーセンターほか(2012)[32]を基に作成

東京ガス:東京ガス[33]

1.1.2. 輸送

CO2 の輸送は、気体、液体、固体という3相で行われる。気体および液体の CO2 の商業 規模の輸送には、タンクローリー、パイプラインおよび船舶が使用可能である。ただし、 CO2 の固化は他のオプション(気体、液体)と比べてはるかに多くのエネルギーを必要と し、コスト面およびエネルギー面で他のオプションより劣る。また、液化 CO2 のタンクロ ーリー輸送については、大規模な CO2 回収・貯留プロジェクトにとっては魅力的なオプシ ョンにならないと考えられる。

以上の背景を踏まえ、本節では、パイプライン輸送、船舶輸送についてその概要を整理 する。

なお、輸送技術に関するコスト分析は、パイプラインと船舶を同時に分析している例を 1.1.2.3 に記載する。

1.1.2.1. パイプライン

①技術概要

パイプライン輸送は歴史が長く、世界的に普及している技術である。CO2を輸送する CO2 パイプラインはすでに米国テキサス州周辺に数多く敷設されている。また、CO2 パイプラ インと類似の技術を用いる、天然ガスや石油の輸送を目的としたパイプラインも、日欧米 各国にすでに広範囲に敷設されている。

パイプラインでは腐食対策が重要である。乾いた CO2 ガスは酸素や H2S、SOx、NOx を不純物として含んでいたとしてもパイプラインに対して腐食性はないが、湿り気の多い CO2 ガスは腐食性を持つため、パイプライン材料に耐腐食性を持たせる必要がある。その ため、CO2 ガスの乾燥ができない場合には、炭素マンガン鋼のような低合金鋼ではなく、 ステンレス鋼を用いるといった方法がある。ただし、この方法はコストの増大につながる 可能性がある。

また、成長が続くにつれ人口密度の高い地域が CO2 の大量発生源となるが、人口密集地 域での大規模の CO2 輸送についてはほとんど実績がなく、今後このような地域にパイプラ インを通す場合は、経路や過圧保護、リーク検知などに関する検討が必要である。

②技術の適用事例

世界の大規模 CCS プロジェクト(検討中のものも含む)の 50 件においてパイプライン 輸送が採用または想定されている。Global CCS Institute (GCCSI)が取りまとめた"THE GLOBAL STATUS OF CCS 2013"によれば、50 件のうち 41 件は陸域間パイプラインであ り、9 件が陸・海域間パイプラインである。陸域間パイプラインは米国、中国、カナダの件 数が多い。陸・海域間パイプラインはほぼ欧州での件数である。輸送距離については、51~ 150km が最も多く 19 件、151~250km が次いで 13 件となっており、ほとんどが 250km 以下の輸送距離である。

図 1-7 世界の大規模 CCS プロジェクトにおけるパイプライン輸送の概要 (出典) Global CCS Institute[34]

一方、国内のパイプライン事例を見ると、CCS 向けのものはなく、天然ガス輸送のためのパイプラインが設置されている。

(出典) みずほコーポレート銀行産業調査部[35]

③技術を開発/保有する機関

パイプライン輸送技術は天然ガス等の輸送手段として世界的に適用されており、成熟し た技術である。そのため、事業者も多く存在している。パイプライン関連企業は、製造(製 鉄会社)と建設(エンジニアリング会社)に大別される。ここでは国内企業に焦点をあて て整理する。

(1)パイプライン製造

1)新日鉄住金株式会社

CO2 や硫化水素(H2S)が含まれる環境で使用可能なステンレス鋼シームレスラインパイプの開発が行われている。

他に、天然ガス向けとしては、ExxonMobil と共同で世界最高強度のラインパイプ(規格 名称:X120(引張強度 915MPa 以上))を開発している。天然ガスをより高圧にすること で一度に大量に遠くまで輸送できるというメリットがある。また、薄肉化・軽量化が可能 となるため、コストが大幅に低下するメリットがある。

2)JFE スチール株式会社

JFE スチール株式会社もパイプライン用鋼材で多くの国外導入実績を有している。2012 ~2013 年の受注・納入実績について下表にまとめる。

玉	納入先	用途	陸域/海域・水深	設備能力(直径、距離、重量)
豪州	Chevron	天然ガス	海域・N/A.	44インチ, 225km, 150,000t
米国	Jack&St.Malo	原油	海域・2,100m	24インチ, 223km, 100,000t
モザンビーク	SASOL	天然ガス	陸域	26インチ, 130km, 23,000t
ノルウェー	STATOIL	天然ガス	海域・1,265m	36インチ, 482km, 325,000t

表 1-23 JFE スチール株式会社の納入実績

(出典) JFE スチール株式会社ニュースリリース[36]

(2)パイプライン建設

1)日鉄住金パイプライン&エンジニアリング株式会社

日鉄パイプライン、住友金属パイプエンジの合併により 2012 年 10 月 1 日に発足した。 新日鉄住金グループのパイプライン事業のうち、日本国内のパイプライン事業を担っている。 2)JFE エンジニアリング株式会社

JFE エンジニアリングは、高圧ガスパイプライン建設事業を行っている。1960年代の帝 国石油(株)「東京ライン」を始め、同「松本ラインパイプライン」や都市ガス・産業用 から火力発電所用まで、数多くの設計・施工実績を有している。また、国外ではインドネ シアでの天然ガスパイプライン建設実績も有している。

3)東洋エンジニアリング株式会社

東洋エンジニアリング株式会社もパイプライン事業で多くの国外導入実績を有している。 同社の納入実績について下表にまとめる。

国	納入先	用途	設備能力(直径、距離)
インド	インド・ガス公社	天然ガス	36"/30"/24"/18"×1,700 km
アゼルバイジャン	アゼリガス社	天然ガス	$40"\times45$ km、 $28"\times45$ km
ブラジル	ブラジル石油公社	天然ガス	28"×455 km、26"×441 km、16"
			imes 12 km、 14 " $ imes 56$ km

表 1-24 東洋エンジニアリング株式会社の納入実績

(出典) 東洋エンジニアリング株式会社 [37]

1.1.2.2. 船舶

①技術概要

船舶輸送は、陸上の CO2 貯蔵設備から CO2 を受け取り貯留地まで輸送する技術である。 技術的には、液化石油ガス(LPG、主成分はプロパンとブタン)を輸送するタンカーが商 業的に用いられており、これを CO2 輸送に適用できると考えられている。

CO2 は継続的に陸上の排出源から回収されるが、船舶の輸送サイクルは不連続であるため、海上輸送システムでは、陸上に一時的な貯蔵設備と荷役施設を持つことが特徴である。 CO2 の引渡についても、貯留システムにより状況は異なる。引渡地が陸上の場合、CO2 は 船舶から一時貯蔵タンクに荷卸される。一方、引渡地が海上の場合、船は着底式プラット フォームや浮遊式貯留施設に、一点係留を通してまたは貯留システムに直接荷卸すること となる。

現状、CO2の船舶輸送を請け負う業者がないため、原則専用船を準備する必要があるが、 専用船を新造するには多大な初期投資が必要となるため、大量かつ長距離輸送に適した輸 送方法と言える。パイプライン輸送とは異なり、多少離れた複数箇所の集中排出源を自由 に組み合わせて CO2 を回収し、貯留することができる点が利点と考えられる。

実用化に当たっては、積出・受入港の施設(貯蔵設備等)整備、停泊可能期間などについて、個別の案件ごとに調査・検討する必要がある。

②技術の適用事例

現在、CCS を目的とした CO2 の大規模船舶輸送が行われている例はない。GCCSI が取 りまとめた"THE GLOBAL STATUS OF CCS 2013"によれば、船舶による輸送を計画して いるプロジェクトは 3 件あり、その内訳は韓国 2 件、中国 1 件となっている。その概要は 以下の通りである。

表 1-25 韓国・中国における船舶輸送 CCS プロジェクトの概要

No.1(韓国): 既設石炭火力(微粉炭 500MW)から年間 150 万 t-CO2 回収し、パイプ ラインと船舶で輸送して海域の帯水層に貯留する計画。プレ FS が 2009 年に開始し、2014 年の中頃に完了する予定。

No.2(韓国):新設石炭火力(酸素燃焼 500MW または IGCC 300MW)から年間 200 万 t-CO2 回収し、船舶輸送して海域の帯水層に貯留する計画。

No.3(中国): 広東省の新設石炭火力 (IGCC,出力 101-250MW) から年間 100 万 t-CO2 回収し、船舶輸送して海域の枯渇油ガス田に貯留する計画。当初は陸上 パイプラインを計画していたが、2013 年に船舶輸送へと計画変更。

No.	1	2	3
プロジェクト名	Korea-CCS 1	Korea-CCS 2	Dongguan Taiyangzhou
			IGCC with CCS Project
玉	韓国	韓国	中国
操業開始	2017	2019	2019
排出源	発電	発電	発電
回収タイプ	燃焼後	未定	燃焼前(ガス化)
回収能力	1	1	1
(百万 t-CO2/年)			
輸送距離(km)	不明	不明	201-250
貯留タイプ	帯水層(海域)	帯水層(海域)	枯渇油ガス田(海域)

(出典) Global CCS Institute[34]

また、オランダでは CINTRA (Carbon In Transport)プロジェクトにおいて CO2 船舶輸 送が計画されている。発電所や石油化学プラント、水素製造プラント等で生じた CO2 を分 離回収し、パイプライン輸送やタンカー輸送によってロッテルダムの CO2 ハブに集約した 後、Anthony Veder 社が運用する CO2 タンカーを利用してデンマーク沖の Dan Field まで CO2 を輸送し、EOR を行う計画である。2016 年の操業開始を目指しており、輸送量は 150 万 t-CO2/年としている。

(出典) Rotterdam Climate Initiative[38]

③技術を開発/保有する機関

CCS のための CO2 輸送船は現在のところ実現していないため、船舶輸送を検討した機関の事例を整理する。

(1)三菱重工業

三菱重工業 (MHI) は 2004 年、IEA の Greenhouse Gas R&D Programme のもとで CO2 の船舶輸送に関する検討を行っている。この検討では、輸送距離や船の大きさ、速度等の パラメータを変化させた際の、液化 CO2 の船舶輸送コストおよび CO2 排出量が推定され ている。CO2 の輸送量は 20,000 トン/日と設定されており、これは 1,000MW の石炭火力 発電所および 2,200MW の天然ガス火力発電所からの排出量を想定した値となっている。

船の大きさおよび液化プラントへの供給 CO2 圧力を変化させた場合の、輸送距離と輸送 コストの関係としては、速度一定(27.78km/h)の下で船のサイズを 10,000 トンから 30,000 トンへと変化させると輸送コストは大きく減少するが、さらに 50,000 トンへ変化させた場 合のコスト減少幅は非常に小さく、スケールメリットは限定的であると結論付けられてい る。

図 1-10

また、一定条件(船の大きさ 50,000 トン、速度 27.78km/h、液化プラントへの供給 CO2 圧力 10MPa) における、距離別のコスト内訳については、1.000km 以下では合計コストに 大きな差はなく\$10/tCO2 程度であり、港湾や貯蔵にかかるコストの割合が高いが、長距離 の輸送になると船舶に係るコスト(主に船舶の隻数)の割合が大きくなり、合計コストも 上昇するという傾向が示されている。船の速度に関しては、最高速度を高くすることで船 の建造コストが上昇する反面、年間輸送量も増大するため単位 CO2 あたりの輸送コストは 減少するが、速度向上による燃費の悪化も加味するとコスト削減効果は限定的と結論付け られている。

(出典) IEA GHG (2004) [39]

(2)財団法人エンジニアリング振興協会

NEDO が平成 22 年度に実施した「革新的ゼロエミッション石炭ガス化発電プロジェク ト 発電から CO2 貯留までのトータルシステムの フィジビリティー・スタディー CO2 輸送システムの概念設計」において、液化 CO2 輸送船の概念設計として、液化 CO2 タン ク構造の検討や、実証船、商用船(内航船)、商用船(外航船)それぞれの輸送パターンに

⁽出典) IEA GHG (2004) [39]

ついて検討を行っている。その結果、商用船の液化 CO2 積載重量は、1 隻運用とした場 合で約 40,000t 規模となると結論付けている。これは、年間 200 万トンの CO2 を、発生 源から 1,000 マイル離れた貯留地に満載時 12 ノット、空船時 14 ノットで輸送すること を想定し、算定を行っている。

(3)Anthony Veder

液化ガス(LNG、LPG、CO2等)のタンカー輸送に特化した運送会社であり、約25 集 の液化ガスタンカーを保有している。CINTRA プロジェクトにおいては液体貨物輸送会社 である Vopak 社とともに GCCSI より補助金を得て、液化 CO2の船舶輸送を担当している。 このプロジェクトでは"Coral Carbonic"および"Coral Carbon"という2 隻の CO2 タンカー を使用する予定である。Coral Carbonic の積載量は1,250 m³であり、Coral Carbon の積 載量はその 20~30 倍が想定されている。輸送時の圧力は 1.4~1.8MPa、温度は-25~-35℃となる。(詳細については、2.1.4 で整理する。)

図 1-12 Coral Carbon のイメージ図

(出典) Schuttevaer 記事[40]

(4)千代田化工建設

新しい船舶輸送方法であるシャトル船・洋上圧入方式に取り組んでいる。GCCSI (Global CCS Institute) から2年にわたる補助金を得て、発案者である東京大学・尾崎雅彦教授と 共同で、シャトル船・洋上圧入方式の技術および経済性の検証を実施した。この方式は、 火力発電所などから無人の海域貯留サイトまで中型(積載量 3,000 トン)のシャトル船で 液体 CO2 を輸送し、フレキシブル・パイプを通じて直接 CO2 を圧入することを想定して いる。パイプラインと比べ長い輸送距離や深い水深に対応でき、輸送量・輸送距離の計画 変更に対応しやすく、大型船と比べ陸上施設・洋上施設が小規模で済むことなどの利点が ある。(詳細については、2.1節で整理する。)

図 1-13 シャトル船・洋上圧入方式 CCS の概要 (出典) 千代田化工建設[41]

1.1.2.3. 輸送コスト

パイプライン輸送並びに船舶輸送のコストに関する検討は、IPCCの特別報告書やRITE が検討した事例が既存資料として存在する。本項目では、これらの検討結果を整理する。

(1)IPCC における整理

IPCC(2005)[6]では、陸上パイプラインおよび船舶による 600 万 t/年を輸送する場合の推定コストを示している。この推定結果では、損益分岐距離、つまり輸送形態によるコストが同じになる距離は、約 1,000km と結論付けられている。すなわち、船舶輸送は、パイプライン輸送に対して長距離ではコスト的に競争力を持つとされている。ただし、CO2 輸送量がさらに大量になると、損益分離距離はさらに長距離になると考えられる。また、船舶輸送の方がパイプライン輸送よりも安くなる要因としては、距離以外にも荷役ターミナル、パイプライン沿岸横断、水深、海底安定性、燃料コスト、建設コスト等の多くの要因が関連し変動する可能性があると同報告書で述べられている。以下に同報告書での推定結果を示す。

図 1-14 欧米を前提としたパイプライン輸送と船舶輸送の輸送距離とコスト (出典) IPCC (2005) [6]

(2)RITE における整理

RITE(2005)[8]が国内を対象にパイプライン輸送と船舶輸送の輸送距離とコストを検討 した結果を下図に示す。日本の場合、CO2パイプライン建設コストは高く、また、CCSの ための CO2輸送量は、現実的なところで年間 100万 t-CO2 程度と小さいため、CO2パイ プライン輸送コストは、世界での報告例よりもかなり高くなることが特徴である。特にパ イプライン輸送では、排出源から貯留層までの輸送距離、輸送規模等がコストに大きく影響するという結果になっている。日本での CO2 輸送を考える場合、長距離輸送はタンカー 輸送が効果的だが、全体的に高く、輸送コストを抑えるには、短距離のパイプライン輸送 が現実的との結果となっている。また、海外は ROW(占用権を有する道を確保して設置) に対し、日本は主として公道下を通すため、工事制約(作業時間・作業帯寸法の制約、試 掘・伏越しが多発)や舗装面の復旧の必要性等のため工事進捗が遅いといった課題も同報 告書では挙げられている。

RITE の研究結果に補助線を追加し、損益分離距離を読み取った結果、1Mt-CO2/年の場合には 190km 程度となった。すなわち、日本での CO2 輸送を行う場合、190km 程度以上では船舶輸送がパイプライン輸送より安価で済むと考えられる。

図 1-15 日本国内を前提としたパイプライン輸送と船舶輸送の輸送距離とコスト (出典) 秋元(2006)[42]に補助線(図中の黄色点線)を追加

以上の調査結果から、国内における CO2 のパイプライン輸送では、近距離かつ一定の貯 留量が無ければ経済性の確保が困難だと考えられる。また、国内で考えた場合、CO2 の排 出源は全国に分散しており、パイプライン輸送が成り立つ条件を満たすことは難しいと考 えられる。一方、船舶輸送は長距離かつ一定の貯留量があると経済性が確保し易い。船舶 の場合は、分散する排出源の中から都度最適な排出源を選択し、CO2 を回収することがで きるため、フレキシビリティが高いという長所がある。そのため、船舶輸送に関するハー ドとソフト(輸送船や関連設備、輸送計画の最適化等)が確立されれば、経済性を確保で きる可能性があると考えられる。

1.1.3. 貯留

1.1.3.1. CO2 地中貯留の仕組み

CO2 地中貯留の有効性は、物理的トラッピング(捕捉)と化学的トラッピングの組み合わせに依存するとされている(IPCC 特別報告書, 2005)。

物理的トラッピングには、構造的・層序的トラッピングおよび残留 CO2 トラッピングが ある。化学的トラッピングには、溶解トラッピングおよび鉱物トラッピングがある。それ ぞれ作用する時間スケールが異なっている。図 1-16 に示すように、圧入当初は物理的トラ ッピングの貢献が大きいが、数千年以上経つと化学的トラッピングの貢献が大きくなる。 ここではそれぞれのトラッピングのメカニズムについて説明する。

図 1-16 トラップメカニズムの貢献度の時間変化

① 構造的・層序的トラッピング

構造的・層序的トラッピングは、基本的に低浸透率の岩石をシールとして期待するもの である。高緯度地域には、地下浅部のガスハイドレート層がシールとして作用する可能性 がある。

構造的トラッピングは、超低浸透性の頁岩(シェール)や岩塩層などのキャップロック (帽岩)の下部に CO2 を捕捉するものである。堆積盆は閉鎖系かつ物理的な構造を有して

⁽出典) IPCC (2005) [6]

おり、主に塩水や石油やガスで占められている。構造的トラッピングは褶曲または破砕し た岩石で形成されている場合もある。

層序的トラッピングは、岩石が堆積したサイトの環境変動により、岩石種類が変化する ことによって形成されるものである。

② 残留 CO2 トラッピング

地層中に圧入された CO2 は水よりも密度が小さいため、地層の孔隙内を上方へ移動して いく。しかし、一部の CO2 には地層中の毛細管圧力が働き、移動が妨げられる。これが残 留 CO2 トラッピングと呼ばれている。移動できず残留した CO2 が孔隙を占める割合は、 残留ガス飽和率と呼ばれている。残留 CO2 トラッピングは CO2 の移動に伴い働くため、 貯留後の比較的早い時期に貢献することが期待される。

③ 溶解トラッピング

溶解トラッピングとは、圧入された CO2 が地層内にもともと存在している水に溶解する ことである。CO2 は独立相ではなく水相としてふるまうため、浮力で上昇することを避け ることができる。さらに、CO2 が溶解した水は、もともと存在している水よりも密度が大 きくなるため、下方へ沈む。

温度や塩分濃度が上昇するにつれ、CO2の水への溶解度は減少する。地層水とCO2が孔隙中で共存する場合は溶解が急速に進行するが、いったん地層水がCO2で飽和すると溶解 速度が低下し、拡散や対流といった流動が卓越するようになる。

④ 鉱物トラッピング

鉱物トラッピングとは、CO2 を含む水が岩石を溶かし、pH を上昇させ、安定した炭酸塩 鉱物へと変化することである。地中貯留のうち最も永久的な貯留形態といえる。鉱物トラ ッピングは比較的ゆっくりと進行し、1000 年以上かかるとされている。代表的な炭酸塩鉱 物としては、CaCO3 (カルサイト)が挙げられる。

1.1.3.2. 帯水層

①概要

帯水層は孔隙が多く、水などの流体を通しやすい地層であり、通常、体積割合の20%程度存在する空隙の中は水(あるいは塩水)で満たされている。CO2を貯留する対象となる地層は、CO2の状態を超臨界状態とすると効率よく貯留できるため、地下800m以深が適している。必要とされる技術はEORなど油田・ガス田への貯留(後述)と同様である。

圧入された CO2 の貯留性を確保するために、圧入された CO2 の移動を阻止するトラッ プ構造(遮へい性能)と、貯留を行える十分な空隙(貯留性能)を必要とする。また、カ ルシウムやマグネシウム、鉄等の珪酸塩に富んだ地層では、CO2 により炭酸塩が生成され ることから高い貯留性が期待できるとされる。

塩水で満たされた帯水層は世界的に広く分布しており、貯留ポテンシャルが大きいこと はメリットである一方、帯水層の上位に遮蔽層が伴わない場合は、貯留の完全性の確保が 課題となる。また、帯水層は油ガスを生産し終わった枯渇油ガス田とは異なり、一般に高 い地層圧力を保持している。そのため、帯水層に CO2 を圧入する際には、圧入性が問題と なる。

図 1-17 帯水層貯留の概念(In Salah プロジェクト)

(出典) BP(2008)[43]

②経済性(コスト)

IPCC 特別報告書でまとめられている、帯水層への CO2 貯留コストを表 1-26 に示す。

時のカイプ	陆标演标	相示	コス	⊦(US\$/t	CO2)	/ 世 本
町笛グイフ	座坝//	场内	低位	中位	高位	佣石
塩水層	陸域	豪州	0.2	0.5	5.1	20 サイトの統計
塩水層	陸域	欧州	1.9	2.8	6.2	代表的範囲
塩水層	陸域	米国	0.4	0.5	4.5	米国の低位/中位/高位事例
塩水層	海域	豪州	0.5	3.4	30.2	34 サイトの統計
塩水層	海域	北海	4.7	7.7	12.0	代表的範囲

表 1-26 CO2 貯留コスト(帯水層)

(出典) IPCC (2005)[6]

③技術の適用事例

GCCSI(2013)において商業段階とされているプロジェクトを表 1-27 に示す。

No.	国	プロジェクト名	運転開始年	排出源	回収能力 (MTPA)
1	アルジェリア	In Salah CO2 Storage	2004	天然ガス処理	0(圧入停止中)
2	ノルウェー	Sleipner CO2 Injection	1996	天然ガス処理	0.9
3	ノルウェー	Snohvit CO2 Injection	2008	天然ガス処理	0.6-0.8

表 1-27 帯水層貯留プロジェクト

(出典) GCCSI(2013)[34]

1.1.3.3. 枯渇油ガス田

①概要

枯渇した油ガス田を CO2 貯留層とする技術である。IPCC 特別報告書では、枯渇油ガス 田を CO2 貯留の主要な候補とする理由として以下が挙げられている。

- 元々構造的トラッピング・層序的トラッピングにより、蓄積された石油やガスが 逃げなかったこと(ある場合には数百万年)から、その完全性と安全性が実証さ れている
- ▶ ほとんどの油田・ガス田で地層構造と物理的特性が広範に研究、評価されている
- 炭化水素の挙動とトラップの動き、位置変化を予測するコンピュータモデルが石 油・ガス産業で開発されている
- ▶ 既に設置されているインフラや坑井の一部が CO2 貯留操業に使える可能性がある

②経済性

IPCC 特別報告書でまとめられている、枯渇油ガス田への CO2 貯留コストを表 1-28 に 示す。

時のカイプ	陆城海城	相同氏	コス	⊦(US\$/t	CO2)	世 孝
「町笛ダイノ	座域//	场内	低位	中位	高位	佣芍
枯渇油田	陸域	米国	0.5	1.3	4.0	米国の低位/中位/高位事例
枯渇ガス田	陸域	米国	0.5	2.4	12.2	米国の低位/中位/高位事例
不使用	陸域	欧州	1.2	0.7	3.8	代表的範囲
油ガス田						
不使用	海域	北海	3.8	6.0	8.1	米国の低位/中位/高位事例
油ガス田						

表 1-28 CO2 貯留コスト(枯渇油ガス田)

(出典) IPCC (2005)[6]

③技術の適用事例

GCCSI(2013)によると、枯渇油ガス田を貯留層とした商業段階のプロジェクトはない。

1.1.3.4. EOR

①概要

CO2-EOR (Enhanced Oil Recovery) は、地下の原油層に高圧の CO2 を圧入して原油層 内の圧力を維持し、さらに、原油の粘性、界面張力を低下させ流動性を高め、原油の回収 率を高めようとする技術である。CO2-EOR は古くから米国を中心に普及し始め、ほとんど が商業的に成立している。

CO2-EOR 実施に適した油田条件は以下のようになっている。

- ·油層深度>600m
- ・油層圧>MMP(最小ミシビリティ圧力:10-15MPa)
- ·軽質(25~48API)かつ低粘性の原油

図 1-18 EOR の概念(Weyburn-Midale プロジェクト)

②経済性(コスト)

IPCC 特別報告書(2005)[6]で示されている EOR の貯留コストは、米国の陸上での事例と して、-14.8\$/t-CO2 とされている。これは原油1バレルあたり 15US\$を仮定した場合の値 である。原油増産により収益が上がるため、コストとしてはマイナスの値となっている。

⁽出典) Cenovus Energy[44]

③技術の適用事例

GCCSI(2013)[34]において商業段階とされているプロジェクトを表 1-29 に示す。

No.	国	プロジェクト名	運転開始年	排出源	回収能力
					(MTPA)
1	米国	Val Verde Natural Gas Plants	1972	天然ガス処理	1.3
2	米国	Enid Fertilizer CO2-EOR Project	1982	肥料製造	0.7
3	米国	Shute Creek Gas Processing Facility	1986	天然ガス処理	7
4	カナダ	Great Plains Synfuel Plant and	2000	合成ガス製造	3
		Weyburn-Midale Project			
5	米国	Century Plant	2010	天然ガス処理	8.4
6	米国	Air Products Steam Methane	2013	水素製造	1
		Reformer EOR Project			
7	ブラジル	Petrobras Lula Oil Field CCS Project	2013	天然ガス処理	0.7
8	米国	Coffeyville Gasification Plant	2013	肥料製造	1
9	米国	Lost Cabin Gas Plant	2013	天然ガス処理	0.8-1.0

表 1-29 EOR プロジェクト

(出典) GCCSI(2013)[34]

1.1.3.5. 炭層固定

①概要

非採掘石炭層への CO2 貯留は ECBM (炭層メタン増進回収) と呼ばれている。そのメカ ニズムは、採掘不能な石炭層に CO2 を注入することによって、石炭に吸着しているメタン に優先して CO2 が吸着され、メタンを置換するというものである。この方法により、減圧 によるメタン抽出方法に比較して炭層からのメタン回収量の増産が見込まれる。

石炭がメタンよりも CO2 を 2 倍吸着しやすいと仮定すれば、炭層メタン増進回収により、 最大 2000 億トンもの CO2 を貯留するポテンシャルがあるとされている(IPCC, 2005[6])。 石炭層貯留の課題は、貯留に適した炭層の深度範囲が狭いことである。

▶ 一般に炭坑は深さ 500m より浅いところで操業されている。このような深度では採 炭の可能性があることから、本来 CO2 貯留を行うべきではない。

▶ 1000mより深いところでは石炭層の浸透率が小さくなるため、貯留に適さない。

図 1-19 炭層固定の概念

(出典) IEAGHG(2001)[45]

②経済性(コスト)

石炭層への CO2 圧入コストに関して、-20~150\$/t- CO2 (IPCC, 2005)、-5.59\$/t-CO2 (MIT, 2003) というコスト算出例がある。メタン回収による収益が見込まれるため、コストがマイナスの値となる場合がある。

③技術の適用事例

炭層メタン増進回収の実験プロジェクトは、

- ・米国・ニューメキシコ州 (Allison プロジェクト)
- ・カナダ・Alberta 州 (Fenn Big Valley)
- ・ポーランド・Silesian 炭田 (EU RECOPOL プロジェクト)
- ・中国・山西省沁水炭田
- ・日本・夕張炭田

等で行われている。

カナダのアルバータ州では世界で始めて燃焼排ガスを使用した CO2 の炭層貯留の実証プ ロジェクトが、1997~2007 年に実施された。

ポーランドにおける RECOPOL プロジェクト(オランダの TNO が実施)は EU のプロ ジェクトとして 2001~2006 年に実施された。

日本においては環境総合テクノスを中心としたコンソーシアムが経済産業省からの補助 を受け、夕張市の炭層への CO2 圧入実験を 2002 年度から 2007 年度まで実施した。プロ ジェクトの概要を表 1-30 に、CO2 圧入レートとメタン生産レートを図 1-20 に、それぞれ 示す。

プロジェクト名	経済産業省「二酸化炭素固定化・有効利用技術等対策事業」				
実施主体	(株)環境総合テクノス、(財)石炭エネルギーセンター、北海道大				
	学、秋田大学、京都大学、九州大学 ほか				
期間	2002~2007 年度				
場所	北海道夕張市南大夕張(夕張炭田南部)				
CO2 圧入量	35.7t (2004年11月9日~24日)				
	121.2t(2005年8月26日~10月6日)				
	356.2t(2006 年 5~9 月)				
	370.1t(2007年5~9月)				
	全期間の圧入累計量:884t				

表 1-30 夕張プロジェクトの概要

(出典) 中村(2007)[46]、大賀·本位田(2008)[47]

図 1-20 夕張プロジェクトの CO2 圧入レートと CH4 生産レート (出典) 大賀・本位田(2008)[47]

1.1.3.6. 海洋隔離

①概要

CO2 の海洋隔離は、土地が狭く油田に乏しい島国である日本において大変注目されていた技術であった。しかしながら、環境保護の視点から反対の声が強まり、国際的な海洋実験が中止になるなどの経緯から、研究は継続して行われているが、長期的な温暖化対策として取り組むべき技術という位置付けに変わった。

CO2 の海洋隔離は現行の国際法ならびに国内法により実施することができない。ロンド ン条約 96 年議定書により、CO2 は原則として海洋へ投棄することが禁じられている。また、 我が国の海洋汚染防止法(海洋汚染等及び海上災害の防止に関する法律)においては、廃 棄物等の海水への排出の原則禁止を規定しており(第10条、第18条)、CO2 を海洋に投 棄することが禁じられている。

IPCC 特別報告書(2005)において、以下が報告されている。

海洋はすでに過去 200 年にわたる化石燃料由来の CO2、1,300Gt のうち 400 Gt を吸収 しており、現在も毎年 7 Gt-CO2 吸収している。大気に放出された CO2 のほとんどは今後 数世紀後には海洋に吸収される。海洋観測及びモデルによる研究から、注入された CO2 は 少なくとも数百年は大気から隔離され、さらに注入場所が深いほど CO2 の海洋への残留の 割合が高いことが示されている。

注入された CO2 の大量の突発的放出のメカニズムに関しての知見は存在しない。モデル 計算では海洋への CO2 溶解の容量は数千 Gt- CO2 ほどあるとされる。この値は安定化され た大気中の CO2 濃度の仮定と海洋の pH 変化などの環境的制約に影響される。

②海洋隔離技術

海洋隔離技術には、溶解・希釈型隔離法(液体 CO2 の浅中層放流)と深海底貯留隔離法 がある。

(1) 溶解・希釈型隔離法(液体 CO2 の浅中層放流)

数百 m~3,000m 程度の深度に CO2 を注入する。注入方法は固定式パイプラインまたは 船舶による航行時の放流が代表的である。

a)パイプライン方式(液体 CO2、中深層)

既存の海底パイプライン技術を利用し、1,500 m 以深に CO2 を注入する。3,000 m 以浅 では、液化 CO2 は海水よりも密度が小さいため上昇していく。適切に設計された拡散装置 があれば、注入装置より高さ 100 m 以内の周辺海域において全ての CO2 を溶解させること ができる。その後、高濃度 CO2 が溶解した海水は水平方向に分散しつつ、海流の助けによ り希釈される。 b)パイプライン方式(気体または液体 CO2、浅層)

水深 500m 付近に注入した場合、液体 CO2 の比重は海水よりも小さいため上昇するが、 その過程で海水中に溶解する。CO2 が溶解した海水は比重が重く、海洋の下降流を利用す れば中層まで拡散させることが可能となる。

c)Moving Ship 方式

より早く CO2 に富んだ海水を分散させるため、航行中の船舶より 2,000 m 深付近まで垂 直に下ろしたパイプから液化 CO2 を注入する。3,000 m 以浅では、液化 CO2 は海水より も密度が小さいため上昇していく。パイプライン方式より早く希釈することが可能であり、 海洋生物への影響を最小限に抑えられる。溶解した CO2 は HCO3-イオンになり、海水中 の HCO3-濃度を若干増やすことになる。

(2) 深海底貯留隔離法(液体 CO2 の深層投入)

液化 CO2 の密度が周囲の海水よりも大きくなる約 3,000 m 以深において、液化 CO2 を 海中に注入し、CO2 の自由落下により海底にクラスレート(ハイドレート、包摂化合物) で覆われた CO2 プールを形成する方式である。注入方法としては、沿岸または洋上プラッ トフォームからパイプラインによって深海まで CO2 を運搬する方法が存在する。

③経済性(コスト)

CO2 注入の方法として、パイプライン法、船舶・プラットフォーム法があるが、海岸から近距離(約 100km)の場合はパイプラインによる方式がより安価であり、長距離(約 500km)の場合は船舶法あるいは船舶によるプラットフォームへの輸送による方式のいずれも、より魅力的となる。

3000m以深の海洋隔離技術のコストを下表に示す。

海洋喧噪千光	コスト(US\$/tCO2net)				
(毋仟)隋两于(云	海岸から 100km 離れた海域	海岸から 500km 離れた海域			
固定パイプライン	6	31			
移動船/プラットフォーム	12-14	13-16			

表 1-31 3,000m 以深の海洋隔離技術のコスト

④技術の適用事例

海洋隔離に関する実海域プロジェクトは少なく、これまで実施された代表的なプロジェ クトは以下のとおりである。

	方式	主な推進主体	進捗状況
溶解・希釈型隔離	パイプライン方式 (中	米 PICHTR (Pacific	2001 年の実海域実
法 (液体 CO2 の浅	層)*	International Centre	験(ハワイ)が反対
中層放流)		for High Technology	運動により中止
		Research)	
	航行時放流方式	経済産業省/RITE	2002年の実海域実
			験(ノルウェー)が
			反対運動により中止
	GLAD 方式	経済産業省/産総研	経産省の予算配賦中
	(Gas-Lift Advanced		止(2002年)により
	Dissolution)		事業休止
深海底貯留隔離法	パイプライン方式	国土交通省/海技研、米	深海底での挙動観察
(液体 CO2 の深		MBARI(Monterey	実験を実施(1999~
層投入)		Bay Aquarium	2003年)
		Research Institute)	

表 1-32	海洋隔離プロジェ	クト	`
--------	----------	----	---

*実験のため採用された方式である

1.1.3.7. マイクロバブル

①概要

マイクロバブル技術は、CO2を数十ミクロン以下の微細泡(マイクロバブル)にして地下に圧入する技術である。微細泡は大きな泡にくらべて、体積あたりの表面積が大きいために、地層水への溶解が促進されることが利点である。CO2が地層水に溶解すると、密度が地層水よりも相対的に大きくなるため浮力が働かず、上昇しない。

小規模・中規模の排出源の近傍において、地層浅部へ経済性を伴って圧入する手法として、一部の研究者によって開発が検討されているが(図 1-21)、微細泡の性質については、 まだ不明な点が多く、今後の研究が必要である。

なお、マイクロバブル発生装置は化学プロセスにおける分離手法としても研究開発されている(寺坂, 2014)[47]。

図 1-21 マイクロバブル技術を利用した貯留の概念図 (出典) Koide, H. and Xue, Z.(2008)[49]

1.1.4. モニタリング

本項目では、CCS におけるモニタリング技術として、下表に挙げる項目を整理する。

		反射法地震探查(2D/ 3D/4D 反射法)			
	地震探查法	弾性波トモグラフィ			
地下(腔図層)の		微小地震			
地下(灯笛層)の		電気/電磁探査			
1-9929	地震探查以外/坑内測定	重力探查			
		物理検層			
		坑内検層			
	地表傾斜				
地志(仕浜)のエ	リモートセンシング				
地衣 (付近) のモ ニタリング	地球化学的调木	pH センサー			
	地球位子的前值	pCO2 センサー			
	生物学的調查				

表 1-33 CCS 実施に当たり関連するモニタリング技術

1.1.4.1. 技術概要

上記の技術は、石油ガス開発において実用化がなされている技術がほとんどであり、CCS の実証事業においても適用されている技術が多い。下表に各モニタリング技術の概要を整 理し示す。

技術		支術	概要
地下のモニタリング	地震探查法	5 反射法地震探 査(2D/3D/4D 反射法)	機要 人工震源により弾性波を発生させ地表あるいは水中の受振器で観測 し、この観測記録からデータ処理により反射波を抽出し、反射記録断 面を作成して、構造形態だけでなく物性をも推定できる調査法である。 陸上では、震源としてインパルス型(地面打撃やダイナマイト)や制 御型(バイブレータ)の震源を用い、海上では、一般的に、震源とし て圧搾空気を放出するエアガンを用いる。2D では地下を断面として 表示した記録断面図として、3D では調査エリア下の3次元データボ リュームとして得られる。3D を同一場所である時間間隔をおいて繰 り返し実施する手法は繰り返し地震探査法(4D time-lapse seismic survey)と呼ばれている

表 1-34 CCS 関連モニタリング技術の概要

技術		支術	概要
		硝肼油トエガ	坑井を用いて弾性波速度を観測する手法である。坑井間トモグラフィ
		弾住板トモクラフィ	は、一つの坑井内に震源を置き、そこから地中を伝播する弾性波を、
			他の坑井内で記録し、坑井間のデータを得る手法である。
			マグニチュードが1より更に小さい地震波を利用して地下構造の観測
			を行う手法である。定常状態の帯水層へ CO2 を注入することによる圧
		微小地震	力変化が微小な亀裂を発生することも考えられるため、極微小地震を
			観測することは、CO2の注入や回収の影響域を特定するのに有効なモ
			ニタリング手法の一つといえる。
			大地に直流電流を流し、それにより形成される電位から地下の比抵抗
			分布を解析する方法を比抵抗法という。2 つの坑井を利用して、坑井
			にはさまれる断面について比抵抗分布を観測・解析する手法を坑井間
		承与你木	比抵抗トモグラフィという。坑井間の調査対象範囲をはさみこむよう
		电风休宜	に電極を配置して地盤に電流を流し、発生する電位分布を観測・解析
			することにより地下の比抵坑分布を求める。2 度以上の繰り返し測定
			を行い、比抵坑の変化量から CO2 状態変化を推定する。これは、CO2
			濃度変化により比抵抗値が上昇する性質を利用した手法である。
		電磁探查	電磁探査法は、電気探査と同じく大地の比抵抗を調査することにより
			地下構造を推定するが、電気探査では直流電流を用いるのに対し、電
	地雷把		磁探査では時間変動する電磁場を用いるところが異なる。地表面で測
	地長休		定した電磁場は地下の比抵抗分布の影響を反映しているので、地下の
	重以7F (信内		比抵抗構造を推定することができる。電気探査法同様、2 つの坑井を
	/ 儿内		利用して、坑井にはさまれる断面について比抵抗分布を観測・解析す
	側た		る手法を坑井間電磁トモグラフィという。
			重力探査は、地球上のある場所での重力を測定し、基盤構造の決定、
			褶曲構造、潜在断層、カルデラ構造の検出や金属鉱床に関する情報を
		重力探查	得ることができる手法である。石油や天然ガスは、背斜の部分に溜る
			ので、ブーゲー異常による褶曲構造の調査は、概査として実施されて
			いる。
			物理検層は、掘削された坑井により交差した地層の物理的特性、坑井
			あるいはケーシングの幾何学的特性(孔径、方位・傾斜等)、油層の流
		物理検層	れの挙動等を深度毎に記録するモニタリング手法である。坑井中に各
			種の物理計測器を挿入し連続的に測定を行い、深度に対して記録を取
			る手法である。

技術		支術	概要				
			孔内流体は、貯留層中の流体の挙動モニタリングと化学変化過程を解				
		孔内流体	明するために、サンプルを採取し、流体の組成変化や流体の温度・圧				
			力をモニタリングする手法である。				
			近年商用化された高精度傾斜計を利用して地表面の傾斜計測を行い、				
			CO2 圧入による地形変化をモニタリングして CO2 の挙動を把握する				
	地主店会		手法である。注入 CO2 により帯水層内で起こる圧力変化と貯留流体の				
	地衣傾斜		流動に伴って貯留層の体積が増減するため、地表に現れる微小な変位				
			を計測する。一般的に CO2 を圧入する帯水層の体積変化は層内の流れ				
եթ			が激しい方向に起こり、それに沿って体積変化も起こる。				
地			対象物から反射・放射される電磁波(可視・近赤外線・赤外域・マイ				
衣の	11 - L	トリントノガ	クロ波域)を用いて探査する技術で、人工衛星または航空機から光、				
() T	リモートセンシンク 紫外線、赤外線、		紫外線、赤外線、電波、レーザー等の各種の電磁波を使って行う手法				
+ -			である。				
- 			海水中の pH を直接計測する技術。電極間の電位差を計測する。深海				
			用には、従来型のガラス製電極に加え、半導体素子である ISFET(イ				
<i>y</i>	地球化	pH e > y -	オン感応性電界効果型トランジスタ)を使った電極が研究開発されて				
<i>イ</i> ガ	地球16		いる。長期間の連続観測には課題がある。				
2	子的祠		海水中の CO2 濃度を直接計測する技術。pCO2 の測定原理は、pH セ				
		pCO2 センサ	ンサーの電極部を内部液で満たしたガス透過性膜で封止し,膜を透過				
		-	してくる二酸化炭素を内部液の pH 変化として計測するものである。				
			長期間の連続観測には課題がある。				
	件业公司		大型底生生物の観察ならびに海底堆積物中の生物群集を採取して生物				
	生物字的調査 		細胞量や ATP 含量を同定する。				

1.1.4.2. 経済性(コスト)

モニタリングのコストに関する検討は、IPCCの特別報告書やRITE が検討した事例が既存資料として存在する。本項目では、これらの検討結果を整理する。

(1)IPCC における情報

IPCC(2005)[6]では、地震探査コストは使用技術、場所、及び地形及び複雑性によってかなり変動するとしたうえで、Myer et al.(2003)[50]の検討事例を紹介している。示されているコストと推定の前提条件は以下の通りである。

モニタリングコスト: 0.03US\$/t-CO2

<前提条件>

・30年の1,000MW発電所に関する陸上貯留プロジェクト

・注入期間中、5年間隔で地震調査を繰り返し実施

・この推定には割引率は使用されていない

同報告書では、この結果から、地震モニタリングは全体的な貯留コストのわずかな一部 を占めるのみと結論付けている。

(2)RITE による分析

RITE(2005)[8]によるモニタリングコストの検討事例では、貯留層付近の地質について相当の情報が得られているという前提で、地質調査は3D 地震探査と調査井1本とおいて試算がなされている。下表の結果は、地震探査は5×5km 程度、データ密度は25×25m、対象 深度は3,000mまでという条件に基づくものである。ただし、実際のモニタリングコストは、調査すべき場所の環境(水深、周囲の状況)によって、取りうる調査方法が異なり、費用 も異なるとの見解も併せて示されている。

表 1-35 海域での事前調査・モニタリング費用

(単位:百万円)

項目	苫小牧沖	鵜川沖	阿賀沖	平均
貯留層環境		海陸境界部	海岸より遠距離	
3D 探查+解析	406	620	423	
調査井	400	300	1500	
事前調査費合計	806	920	1,923	863(苫、鵜)
モニタリング (1回)	414	629	433	492 (3者)

(出典) RITE(2005) [8]

1.1.4.3. 技術の適用事例

国内外の CCS 事例に対するモニタリング技術の適用状況を下表に整理する。油ガス田開

発の実績が多く、技術の完成度が高いこともあり、反射法地震探査は、取り上げた全ての 事例において実施されており主流である。他のモニタリング技術も CCS での実施実績があ る。

		地下(貯留層)のモニタリング							地表(付近)のモニタリング			
	地震探查法 地震探查以外/孔内測定					リモ	地球					
	国 貯留層の種類 操業開始(年) 地表条件	反法震査	弾性波 トモグ ラフィ	微 小 地震	電気/電 磁探査	重 力 探査	物 理 検層	孔内 流体	地 表 傾斜	ート ンン グ	² 化 学 的 調 査	生 物 学 的 調査
In salah	アルジェリア 枯渇ガス層 2004 陸	0	0	0		0		0	0	0	0	0
Sleipner	ノルウェー 帯水層 1996 海	0			0	0						0
Snøhvit	ノルウェー 帯水層 2002 海	0				0						
Weyburn	カナダ 枯渇油田 2000 陸	0	0	0				0			0	
Gorgon	オーストラリア 帯水層 2008 海・陸	0	0								0	
長岡	日本 帯水層 2000 陸	0	0		0		0	0				

表 1-36 CO2 挙動モニタリング技術の適用状況

(出典) NEDO (2013) [51]より作成

1.1.4.4. 技術を開発/保有する機関

以下に、当該技術開発に取り組む代表的な研究機関と研究の概要を示す。

太 10	· Kuching / Sigge Covids
	株式会社地球科学総合研究所 (日)
	Schlumberger Ltd. (米)
弾性波探査	応用地質株式会社(日)
	株式会社ダイヤコンサルタント(日)
	阪神コンサルタンツ(日)
	株式会社地球科学総合研究所(日)
重力探査	応用地質株式会社(日)
	三井金属資源開発株式会社(日)
	地熱技術開発(日)
電気・電磁探査	三井金属資源開発株式会社(日)
	松永ジオサーベイ 株式会社(日)
	株式会社地球科学総合研究所(日)
「明井町トモクノノイ	応用地質株式会社(日)
	Schlumberger Ltd. (米)
物理検層	地熱技術開発(日)
	物理計測コンサルタント(日)
pH センサー	株式会社堀場製作所(日)

表 1-37 技術を開発/保有する機関とその概要

(出典) 各社ウェブサイト等から作成