Energy Transition and Japan's Strategy for Hydrogen Society

Professor and Vice Director University Industry **Co-Creation** Office, Osaka University

Professor

Global Hydrogen Energy Research Unit, Tokyo Institute of Technology

19 February, 2020 @International Symposium on CCUS and H2

OSAKA UNIVERSITY

Ongoing Energy Transition in Japan

Power generation mix in Japan

Expansion of **RE** introduction in Japan

 (\mathbf{GW})

	2012 (June)	2019 (March)	Introduced +	2030 Target
	Before FIT	7yrs from FIT	Approved (2019 March)	
PV	5.6	48.7	82.3	64
Wind	2.6	3.7	10.8	10
Small Hydro	9.6	9.7	9.9	11.0 – 11.7
Biomass	2.3	3.8	11.3	6.0 -7.8
Geotherm al	0.5	0.5	0.6	1.4 – 1.6
Total	20.6	66.4	114.9	92.4 – 94.5

(Source : Calculated from METI announcement)

National Hydrogen Strategy

"Basic Hydrogen Strategy" (Prime Minister's Initiative)

- ✓ World's first national strategy
- ✓ 2050 Vision: position H₂ as a new energy option (following Renewables)
- ✓ Target: make H_2 affordable (\$3/kg by 2030 ⇒ \$2/kg by 2050)

Scenarios on Hydrogen Basic Strategy

			Current	2020	2025	> 2030	2050
Andrac	Cimply	(as	of March 2019 Domestic H ₂) (RD&D)	H_2 S	emational Supply Chains c Power-to-ga	$\rightarrow CO_2$ -free H ₂ as
Vo	lume	(t/y)	200	4k		300k	5~10m
Со	st (\$/	kg)	~10			3	2
Demand	ະດ	Large	Power Plant	(RI)&D)	>1 <mark>GW</mark> —	→ 15~30GW
	iene- ation	FC CH *Prima	IP* 274k — ary energy: natural gas.	1.4 m		5.3m	$\rightarrow \frac{\text{Replace}}{\text{Old Systems}}$
	Mobility	HRS	103 —	160	320	<u>(900)</u>	\rightarrow Replace
		FCV	3.0k —	40k	200k	800k	Pilling Stations
		FC Bu	IS <u>18</u> —	100		<u>1.2k</u>	\rightarrow Conventional
		FC FL	160 —	500		10 k	Mobility
		Indus	try Use		(RD&D)	·> E	Expand H ₂ Use

NEDO R&D Program (1)

1. Fuel Cells:

(1) PEFC: for mobility

- Target: 0.03-0.1 g-PGM/kW (depend on durability), 50,000 hrs. life time (commercial vehicle), Power Density:> 4kW/L (in 2030)

(2) SOFC: for stationary use

- Complete co-generation model (> 50%) by 2017
- New target: >60% efficiency (mono-generation)

2. Hydrogen Refueling Station:

Reducing CAPEX / OPEX

- To address regulatory reform on FCV/HRS in Japan

ex. Unmanned operation with remote monitoring, Risk assessment on HRS, etc.

- Developing low cost equipment (incl. polymer materials, Electro-chemical compressor, etc.)

NEDO R&D Program (2)

3. Hydrogen Supply Chain / Gas Turbine:

- Developing combustor for Hydrogen Gas Turbine Control of combustion for low NOx, back fire, etc.
- Realizing large scale hydrogen supply chain
 Hydrogen carriers for long distance transportation

4. Power to Gas:

- Developing System Technology
 Operation, Energy management, for demand response
- Improving electrolysis technology Analyzing reaction mechanism, develop lifetime evaluation, etc. (Alkaline, PEM, SOEC)

Overseas H2 Supply Chain Demonstration Projects

Japan-Australia H₂ Supply Chain Project

Brunei

Liquefied H2 Supply Chain Demonstration Project

The Organic Chemical Hydride Supply Chain Demonstration Project

MCH : Methyl cyclohexane, TOL : Toluene

Integration with Renewable Energy Sources

R HYDROGEN ENERGY RESEARCH

Fukushima (w/ 10MW Alkaline Electrolysis)

ltem	Specification
Function	 (1) Manufacturing • Storage • Supply of hydrogen (2) Balancing the supply and demand of the electricity grid
Annual manufacturing capability of hydrogen (Rated output)	900t-H2∕year
Input power of electrolyzer	(Max.) 10MW (Rated) 6MW (Range) 1.5MW \sim 10MW

H2 fueled Gas Turbine

Developing combustor for H₂ Gas Turbine

Demonstration Project / H₂ Gas Turbine providing heat & power

Conclusion

- Energy transition is ongoing in Japan. Renewable is expanding beyond the target while nuclear still remains low.
- Expansion of VRE requires higher level of flexibility in grid management. Short of nuclear may require cleaner fuel in thermal power generation. H2 could be a solution for both challenges.
- R&D efforts are ongoing in order to realize "Hydrogen Society" including H2 gas turbine. Two major challenges are reducing H2 cost and expanding applications that generate hydrogen demand.