Hydrogen Is Hot: What is really happening here?

Daryl Wilson Executive Director

August 25, 2022

140 Members Cross Sector / Global CEO Council

Same Hydrogen Different Place

Industrial Gas

- Captive markets
- Behind the fence
- Private ownership
- Industrial Customer
- Traditional Markets
- High user competence
- Long history of practice
- Mostly fossil origin
- Traditional built environment
 fire & building codes; installation
 Environmental / Sustainability codes, pressure vessel codes
 attributes

Hydrogen Energy

- Public domain
- Outside the fence
- Public project proponent
- Public Customer
- Residential sector
- Public risk profile
- New users / markets
- Energy markets / utility integration

Implications:

- Mega growth
- International Standards
- Maturing Standards
- Global Tech
 Regulations
- Extension
- Regulation of new applications space
- Sustainability agenda

Global Perspective

5

Strong momentum globally with more than 520 projects announced

1. Focus on projects of >1 MW, including commissioning after 2030, >1000 small scale projects and project proposals not included 2. Includes 9 hydrogen production projects in China without announced end-use

43

Giga-scale production Renewable H₂ projects >1 GW, low-carbon H₂ projects >200 ktpa

221

Large-scale industrial usage Refinery, ammonia, methanol, steel, and industry feedstock

• 133

Transport

Trains, ships, trucks, cars and other hydrogen mobility applications

• 74

Integrated H₂ economy

cross-industry, and projects with different types of end-uses

• 51

Infrastructure projects² H₂ distribution, transportation,

conversion, and storage

Announced clean hydrogen production capacity almost quadrupled since YE 2020

Cumulative production capacity MT p.a.

3.9x capacity

increase in capacity announced in the past 16 months

176 GW

electrolysis capacity by 2030 announced

Renewable hydrogen

Low-

carbon

hydrogen

+15.2 MT

additional capacity (lowcarbon and renewable) announced for post-2030

1. Preliminary studies or at press announcement stage

2. Feasibility study, front-end engineering and design stage, final investment decision has been taken, under construction, commissioned or operational

Project sizes are increasing and there are ~78 bn of projects under development, likely to seek funding in the next years

I. Estimated deployed investment by 2030. Projects with commissioning date post-2030 show full investment

Step-up of investments to ~700bn needed until 2030

Global hydrogen investment requirement by 2030 (direct investment, by sector), USD bn

USD 300 bn

Required for hydrogen production (excluding new-build renewables)

USD 200 bn

required to build out global hydrogen shipping, pipelines, local distribution and conversion

USD 200 bn

for hydrogen end-use applications, e.g. industrial plants, vehicles, refuelling stations etc.

Implementation Progress Tracking

3

Status of Hydrogen Funding

Hydrogen Europe Clean Hydrogen Monitor 2021 National hydrogen strategies

Funding & Policy Implementation Progress

Industry Evolution

Hydrogen Council's latest reports presented at COP 26

- <u>Hydrogen For Net Zero</u> exploring the carbon abatement potential of hydrogen by 2030 and by 2050
- <u>Policy Toolbox for Renewable and Low Carbon</u>
 <u>Hydrogen</u> setting outs key pillars of efficient policy design to underpin the enabling frameworks for hydrogen (covering the entire value chain and different stages of market maturity)
- <u>Roadmap towards zero emissions in transport</u> exploring the complementary role of BEVs and FCEVs

1. Insights from the Hydrogen Council's *Hydrogen for Net Zero* report

Hydrogen is essential to achieve net-zero long-term

• Hydrogen end-use demand by segment, MT H₂ p.a.

IEA net-zero scenario with 340 EJ final energy demand in 2050. HHV assumed. Excluding power. 1.

China, Europe, and North America will be the largest hydrogen markets in 2050

• Hydrogen end-use demand by region, MT H₂ p.a. in 2030 and 2050

Hydrogen Council Hydrogen Council

Clean hydrogen can abate 80 GT CO₂ until 2050

CO₂ abated from hydrogen end-use, gigaton CO₂ cumulative until 2050

1. Assumes annual emissions gradually decline to 35 GT in the year 2050 in current trajectory and a CO₂ budget 420 GT

2. Roadmap towards Zero Emissions: The Complementary Role of BEVs and FCEVs

Roadmap towards zero emissions

Hydrogen Council

The complementary role of BEVs and FCEVs Summary document

September 2021

Hydrogen Council 21

Transport accounts for a large share of emissions and needs to contribute

Road transport accounts for more than 20% of final energy consumption¹.

Here, fossil fuels today account for even more than 95% of the energy supply.

Thus, road transport will need to contribute massively to the **global decarbonization** race.

Total global CO2 emissions, 2020 (Gt)

In road transport, Hydrogen augments direct electricity use – both BEV and FCEV are needed

12 facts about the complementary role of BEV and FCEV

• Why a "combined world" will be greener, faster, and cheaper

Greener

Comparable systemic efficiency

In a systemic view, BEVs and FCEVs have comparable "wind/sun-to-wheel" efficiencies

Similar CO₂ life-cycle BEVs and FCEVs similarly beneficial in CO2 life-cycle

3

Storage & import

assessment

Hydrogen can store local RE across seasons and enable RE import from optimal production locations

4

Resource demand reduction

Lower total resource demand due to re-use of recycled platinum and reduced Nickel, Cobalt, Lithium mining

Faster

5

6

One path is not enough: Faster decarbonization can be combined with a low carbon energy system independent from electricity mix

Additional capacity

Transition towards decarbonized transport just kicking off, BEV and FCEV needed to accelerate

Building momentum

Greater momentum on hydrogen than is visible on the road

8 – Convenience & flexibility

Convenience and flexibility are key customer needs, which FCEV can meet with long range, fast refueling

Situational benefits

Optimal choice is not blackand-white, varies by location and context of use

Cheaper

H₂ cheapest option

Getting from A to B with hydrogen will be the cheapest option in many road transport segments already in this decade

10

Infrastructures complement each other

Two infrastructures are cheaper than one: hydrogen supply can reduce peak loads and thus reduce necessary grid upgrades

De-risking by hedging

Hedging our bets on two pathways de-risks the most significant transition in the automotive industry's history

In a systemic view, BEVs and FCEVs have comparable "sun-to-wheel" efficiencies: case Germany

• Illustrative pathway example: Exact efficiency of each component can vary depending on context

1. Tank-to-wheel losses; 4% Battery, 7% power electronics, 4% motor drive electronics, 4% gearbox; FCEV stack 39%; FCEV BoP 10%; FCEV addtl. recuperation -10%

Note: There are additional effects along the life cycle that can bring further energy balance benefits to FCEV

Assumptions: 11,2 kWh/100km WLTP consumption at wheel (Tesla Model 3 Std. Range); 20% curtailment losses forecasted for a steady-state German renewable electricity scenario Source: Expert interviews; Kim et al. (2020); Nedstack (2019); Lohse-Busch (2019); NREL; Büchi et al. (2005); Eberle & Helmolt (2012); Sun (2010; Besselink et al. (2010), H2 Council Cost Roadmap

- Easy storage and longdistance shipment of Hydrogen from optimal regions
- Renewables can be used
 more effectively
- Increased total amount of energy available from same renewable installation
- Local H2 generation not subject to demand fluctuation or grid constraints, thus avoids curtailment

5 One path is not enough: Every FCEV contributes to decarbonization on top of the shift in the electricity grid

Grid electricity by source in Top 10 EU countries % of generation, 2020

- Today's grid electricity (used to charge BEVs) is not decarbonized in many countries
- Renewable and low-carbon
 Hydrogen as additional
 decarbonized energy source
 independent from grid electricity
- Thus, every additional FCEV vehicle fueled with renewable or lowcarbon hydrogen contributes to decarbonization beyond ongoing shift in the electricity grid

The optimal choice is not black-and-white, it varies according to the location and context of use

Powertrain purchase criteria	Stereotypical user personas							
	Middle-aged in suburbs	Parents in city home	Environmentally conscious young adult	y g Family on holidays	Couple in a city apartment	Driver with busy schedule	Taxis, LCV, autonomous	Buses and MDT/ HDT
Cost (CAPEX and OPEX)	(H2)	(H2)	(7 =	(F) (H2)	(F) (H2)	(H2)	(/]= (H ₂)	(H2)
Range	4	(4)=	4	(7) (H2)	(7) (H2)	(H ₂)	(7) - (H2)	(H2)
Charging access and convenience	4	(4)=	(H2)	(Hz)	(H2)	(H ₂)	(H2)	(7) (H2)
Infrastructure requirements	4	(7) - (H2)	(7) - (H2)	4	(H ₂)	(7) - (H2)	4	(H ₂)
Durability (Reliability, Maintenance)	(F)	4	(7)=	4	4	(Hz)	FCE	(Hz) (drogen Council 27

Clean hydrogen can abate 80 GT CO₂ by 2050 and 730 MT CO₂ by 2030

Policy Toolbox for Low Carbon and Renewable Hydrogen

November 202

Enabling low carbon and renewable hydrogen globally

...and the Hydrogen Council Policy Toolbox provides a practical guide for policymakers who want to tap into this potential

Hydrogen Council

The Policy Toolbox is designed to

Capture the evolution of policy design along different stages of hydrogen market maturity

Offer insights into the cross-cutting policies and instruments that are vital to enable cross border trade in hydrogen, such as hydrogen certification systems

Set out policy pathways through country archetype examples that can be used to inform hydrogen policy and regulation in different national and regional contexts

Shed light on the societal value of hydrogen economy development

Unlocking the full potential of low carbon and renewable hydrogen investment requires a strong and comprehensive policy roadmap

USD bn¹

Hydrogen Council

 Investment in line with the "Hydrogen for Net Zero" scenario; upstream includes hydrogen production (electrolyzers, CCS retrofits for blue H2, new SMR/ATR plants), excludes renewables/gas upstream; midstream includes distribution, transmission (shipping, pipelines, conversion etc.) and storage; downstream investments for end-applications (ammonia plants, fuel cells etc.)

6 pillars of efficient policy design for low carbon and renewable hydrogen

1. Make use of local strengths & benefit from cross-border cooperation

Leveraging local strengths is an important starting point in policy design, which should be complemented by cross-border cooperation and trade to unlock efficiency gains.

2. Create certainty through targets and commitment

To drive down cost and attract investment, governments can reduce policy-risks and market uncertainty through legislation

To catalyze and grow new markets, hydrogenspecific support is required across production, midstream infrastructure and end use sectors (focusing on industry and transport as a matter of priority).

4. Support robust carbon pricing

Robust regional carbon pricing mechanisms should be built up from existing schemes and work together with hydrogen-specific support to drive efficient and effective uptake in the longer term.

International standards and robust certification systems play a crucial role in the development of the hydrogen economy, enabling cross-border trade in hydrogen.

6. Factor in societal value and values

Societal value and values should be factored into policy decisions. Well-designed hydrogen policies can have a positive contribution to several UN Sustainability Development Goals

Hydrogen Council

2022 Work Plan

Materials Sustainability Study Hydrogen Trade Flow Study Hydrogen in the Energy System Study

32

Materials Sustainability Investigation – July 2022

CRITICALITY (Materials / H₂ technologies)

33

New trade paths have be activated by hydrogen Standardization and Certification need Focus now

Hydrogen Council

Hydrogen History is Made January 2022

Left Kobe for Australia on December 24th, 2021

Return to Kobe in March, 2022

Maiden Voyage Ceremony at Port of Hastings on January 21st, 2022

Powering your potentia

1869 Oil (153y) 1959 LNG (63 yrs) 2022 Hydrogen

The Hydrogen Trade Model will identify the costminimizing flows between sources of hydrogen supply and end-use products

Over 100 years & Billions of Infrastructure How will it work in time and space in 2050?

Some Suggestions on CCS

- 1. Recognize the need to engage in public dialogue
- 2. Recognize social license is starting in a deficit position currently
- 3. Participate in the global standards process for a singular hydrogen certification process and standard
- 4. Advocate and practice transparency on industry status and progress
- 5. Make your contribution to mitigation of carbon release:
 - the safest possible
 - biggest possible
 - in the best places possible

Hydrogen Council

For any questions or comments: Daryl.Wilson@hydrogencouncil.com