March 12, 2021:霞が関プラザホール・オンライン

CCUS・水素に関する国際シンポジウム(環境省)

大規模展開を目指した光触媒水分解を用いる水素製造 "Solar hydrogen production using photocatalytic water splitting for large scale application"

Kazunari Domen

Shinshu University & The University of Tokyo

[1] Introduction

[2] Particulate photocatalysts for water splitting

- Al-doped SrTiO₃
- $Y_2 Ti_2 O_5 S_2$

[3] Photocatalyst sheets & water splitting panel

- La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
- Al-doped SrTiO₃

[4] Construction of a prototype solar hydrogen production system

[1] Introduction

[2] Particulate photocatalysts for water splitting

- Al-doped SrTiO₃
- $Y_2 Ti_2 O_5 S_2$

[3] Photocatalyst sheets & water splitting panel

- La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
- Al-doped SrTiO₃

[4] Construction of a prototype solar hydrogen production system

Comparison of Energies (J/y)

- Solar energy on the Earth 3.0×10^{24}
- Consumption by human beings 5.5 × 10²⁰
- Photosynthesis on the Earth 3.0×10^{21}

About 0.02 % of solar energy is enough to support our life.

If solar energy will be one of the major energy resources in future

• Technology available for ~10⁵ km²

Assuming to provide 1/3 of total energy in 2050, 10 % solar energy conversion efficiency with a scale of 5 km x 5 km = 25 km²,

10,000 plants have to be constructed.

Scalability is the most important factor!

Storable and transportable Energy

Chemical Energy H₂, CH₃OH, CH₄, NH₃ etc.

$$H_2O \xrightarrow{hv} H_2 + \frac{1}{2}O_2 \quad \Delta G^0 = 238 \text{ kJmol}^{-1}$$

- Solar cell (PV) + Electrolysis
- Artificial Photosynthesis :Photocatalysis
 Inorganic solid state materials
 metal complexes
 organic materials
 biomaterials

Target Reaction

$$H_2O \xrightarrow{hv} H_2 + \frac{1}{2}O_2 \quad \Delta G^0 = 238 \text{ kJmol}^{-1}$$

using solar energy on heterogeneous photocatalysts

•H₂ produced from solar energy and H₂O is clean & sustainable energy carrier and chemical resource.

 Production of solar fuels on a large scale at a low cost in a near future

Photocatalytic & Photoelectrochemical water splitting

Basic principles of overall water splitting

[1] Introduction

[2] Particulate photocatalysts for water splitting • Al-doped SrTiO₃

• $Y_2 Ti_2 O_5 S_2$

[3] Photocatalyst sheets & water splitting panel

- La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
- Al-doped SrTiO₃

[4] Construction of a prototype solar hydrogen production system

Potential of SrTiO₃ as photocatalyst

Activities of various RhCrOx/SrTiO₃:Al

SEM image of AI doped SrTiO₃ prepared by flux method

$SrCl_2(flux) : SrTiO_3 : Al_2O_3(dopant) = 10 : 1 : 0.1$

Amount of doped AI = ~0.1 at%

Wavelength dependence of AQY

THE UNIVERSITY OF TOKYO

Preparation procedure of CrO_x-Rh / SrTiO₃:Al / CoO_x

Photodeposition method in H₂O

H₂ evolution cocatalyst: CrO_x-Rh

 $Rh^{3+} + 3e^{-} \longrightarrow Rh^{0} \text{ (metal)}$ $Cr^{6+} + 3e^{-} \longrightarrow Cr^{3+} \text{ (oxide)}$ $Cr^{6+} + 3e^{-} \longrightarrow Cr^{3+} \text{ (oxide)}$

O₂ evolution cocatalyst: CoO_x
 Co²⁺ + h⁺ → Co³⁺ (oxide)
 "photooxidation"

SEM images after deposition of cocatalysts

SEM images after deposition of cocatalysts

STEM image & ED after deposition of cocatalysts

e⁻ & h⁺ are transported to different facets with almost 100% efficiency

What is the driving force?

Simulation of internal electric field (ΔW=0.2 eV)

[1] Introduction

[2] Particulate photocatalysts for water splitting

- Al-doped SrTiO₃
- $Y_2 Ti_2 O_5 S_2$

[3] Photocatalyst sheets & water splitting panel

- La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
- Al-doped SrTiO₃

[4] Construction of a prototype solar hydrogen production system

[1] Introduction

[2] Particulate photocatalysts for water splitting

- Metal-doped SrTiO₃ & Al-doped SrTiO₃
- $Y_2 Ti_2 O_5 S_2$

[3] Photocatalyst sheets & water splitting panel

- La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
- Al-doped SrTiO₃

[4] Is safety operation of water splitting panel & system possible?

Structure of Y₂Ti₂O₅S₂

UV-vis DRS of Y₂Ti₂O₅S₂

SEM image and ED patterns of Y₂Ti₂O₅S₂

Confirmation of defect structure by STEM

Water splitting on $Cr_2O_3/Rh/Y_2Ti_2O_5S_2/IrO_2$

Image of large scale application

Microscopic Scale

Development of materials Development of cocatalysts Mechanism analysis

Medium Scale

Immobilization of photocatalysis Reactor design H_2/O_2 gas separation

"Water splitting panel"

Photocatalyst sheet

Large Scale Feasibility study Chemical plant design

[1] Introduction

[2] Particulate photocatalysts for water splitting

- Al-doped SrTiO₃
- $Y_2 Ti_2 O_5 S_2$

[3] Photocatalyst sheets & water splitting panel

- La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
- Al-doped SrTiO₃

[4] Construction of a prototype solar hydrogen production system

Photocatalytic & Photoelectrochemical water splitting

Photocatalysts for H₂ and O₂ evolution

SrTiO₃:La,Rh (H₂)

BiVO₄:Mo (O₂)

Preparation procedure of photocatalyst sheet

SEM-EDX Elemental Mapping of (Ru/SrTiO₃:La,Rh/Au/BiVO₄:Mo) Photocatalyst Sheet

Water splitting on photocatalyst sheet (SrTiO₃:Rh,La / C / BiVO₄:Mo)

Nature Mater., <u>15</u>, 611 (2016); JACS, <u>139(4)</u>, 1675 (2017)

the University of Tokyo

[1] Introduction

[2] Particulate photocatalysts for water splitting

- Al-doped SrTiO₃
- $Y_2 Ti_2 O_5 S_2$

[3] Photocatalyst sheets & water splitting panel

- La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
- Al-doped SrTiO₃

[4] Construction of a prototype solar hydrogen production system

Water splitting on RhCrO_x/SrTiO₃:Al + SiO₂ photocatalyst sheet

[1] Introduction

[2] Particulate photocatalysts for water splitting

- Al-doped SrTiO₃
- $Y_2 Ti_2 O_5 S_2$

[3] Photocatalyst sheets & water splitting panel

- La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
- Al-doped SrTiO₃

[4] Construction of a prototype solar hydrogen production system

Schematic Diagram of Solar H₂ Plant (1 atm Thin-layer reactor, Low-pressure-gradient tubing, and H₂/O₂ Gas separation device)

Reactant Water Holder

3 m² prototype water splitting panel

September 7, 2019, 9:45 am, 304 K at Kakioka Research Facility

214 mL(H₂+1/2O₂)/min

Design of prototype solar H₂ production system

Reactant Water Holder

[1] Introduction

[2] Particulate photocatalysts for water splitting

- Al-doped SrTiO₃
- $Y_2 Ti_2 O_5 S_2$

[3] Photocatalyst sheets & water splitting panel

- La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
- Al-doped SrTiO₃

[4] Construction of a prototype solar hydrogen production system

Image of future implementation into the real world

Absorption edge vs AQY for overall water splitting reaction

Research Projects for Future Development: "Artificial Photosynthetic Chemical Process" (ARPChem)" ARPChem (NEDO, METI: 2012-2021)

ARPChem Association

- Mitsubishi Chemicals
 Mitsui Chemicals
- Fuji Films TOTO INPEX
- •AIST •Fine Ceramic Center
- •<u>Univ. Tokyo</u> •Tokyo Univ. Science •Kyoto Univ.
- •Shinshu Univ.•Meiji Univ. •Nagoya Inst. Tech.
- Yamaguchi Univ.