中環審第 1190 号 令和3年7月30日

環境大臣 小泉 進次郎 殿

中央環境審議会 会長 高村 ゆかり (公印省略)

底層溶存酸素量に係る環境基準の水域類型の指定について(答申)

平成29年10月23日付け諮問第470号により中央環境審議会に対してなされた「底層溶存酸素量に係る環境基準の水域類型の指定について(諮問)」については、別添のとおりとすることが適当であるとの結論を得たので、答申する。

底層溶存酸素量に関する 環境基準の水域類型の指定について (答申)

令和3年7月

中央環境審議会

目 次

1.	はじめに		1
2.	類型指定等	等に関する事項について	2
	(1)	類型指定の基本的考え方について	2
	(2)	類型指定の具体的な手順	3
	(3)	評価方法について	. 11
	(4)	目標とする達成率の設定及びその達成期間について	. 17
3.	国のあては	はめ水域における水域類型の指定について	. 18
	(1)	東京湾	. 18
	(2)	琵琶湖	. 28

1. はじめに

環境基本法に基づく水質汚濁に係る環境基準(以下「水質環境基準」という。)のうち、生活環境の保全に関する環境基準(以下「生活環境項目環境基準」という。)は昭和46年に設定され、湖沼及び海域では現在11項目が定められている。このうち、底層溶存酸素量の設定については、「水質汚濁に係る生活環境の保全に関する環境基準の見直しについて(答申)」(平成27年12月中央環境審議会。以下「平成27年答申」という。)を受け、平成28年3月に生活環境項目環境基準に位置付けられた。

平成 27 年答申において底層溶存酸素量に関する類型指定の方向性並びに監視及び評価 方法に関する基本的な事項が示され、その後、平成 28 年に、底層溶存酸素量に関する評価 方法等について中央環境審議会水環境部会生活環境項目環境基準専門委員会において審議 した結果が、「底層溶存酸素量及び沿岸透明度の評価方法等について」(平成 28 年 11 月 1 日、第 42 回中央環境審議会水環境部会資料。以下「平成 28 年報告」という。)として、報 告された。

底層溶存酸素量類型指定専門委員会は、環境大臣による平成 29 年 10 月 23 日付けの「底層溶存酸素量に係る環境基準の水域類型の指定について(諮問)」を受けて、中央環境審議会水環境部会のもとに、環境基準の底層溶存酸素量の水域類型の指定(以下、類型指定という。)等に関する専門的事項を調査する専門委員会として設置されたものである。

今般、底層溶存酸素量の環境基準の類型指定を行うに当たって、類型指定の具体的な手順や評価方法について検討を行うとともに、東京湾及び琵琶湖の類型指定に係る検討を行ったので、ここに答申する。

2. 類型指定等に関する事項について

(1)類型指定の基本的考え方について

平成27年答申において、「COD、全窒素及び全燐の環境基準が水質改善のために大きな役割を果たしてきたところである。一方で、貧酸素水塊の発生や藻場・干潟等の減少、水辺地の親水機能の低下等の課題が残されており、水生生物の生息環境や水辺地の親水機能などを評価するには、従来の汚濁負荷削減を中心とした水質汚濁防止対策の効果を把握するために指標としている COD、全窒素、全燐のみでは不十分であり、新たな指標が必要である。」とされ、平成28年3月に環境基準として底層溶存酸素量が設定された。

また、平成27年答申では、「類型指定は、底層の貧酸素化の防止により、水生生物の保全・再生を図る必要がある水域について行うが、現に底層の貧酸素化が著しく進行しているか、進行するおそれがある閉鎖性海域及び湖沼を優先すべきである。」とされたところであるが、底層溶存酸素量は新しい指標として定められたことから、個別水域における類型指定及びその後の評価結果等を踏まえ、その意義や活用策を地域の関係者に段階的に浸透させつつ、効果的な対策を検討し講じていくことが想定されるため、個別の湾や湖沼において、現に底層の貧酸素化が著しく進行しているか、進行するおそれがある水域を優先して類型指定する方法も考えられる。また、底層溶存酸素量の低下は、水生生物の健全な生息に影響を及ぼすことから、生物多様性の観点からも、類型指定を進めていくことが重要である。

(2) 類型指定の具体的な手順

平成27年答申の「底層溶存酸素量の各水域における類型指定の手順」に以下の点 を加えたフローを図1に示す。

① 生態特性を考慮した検討対象種の抽出の追加

・保全対象種の設定の前段として、底層に依存した生活史を持ち、底層溶存酸素 量の低下が生じやすい時期に生息又は再生産を行う生態特性を持つ種(検討対 象種)を選定する手順を追加した。

② 水域の特徴の観点を踏まえた手順の追加

・平成27年答申の類型指定の手順に当該水域の過去の底層溶存酸素量の状況、底生生物の生息状況、沿岸の地形等の「水域の特徴の観点」に関する考慮事項を 追加した。

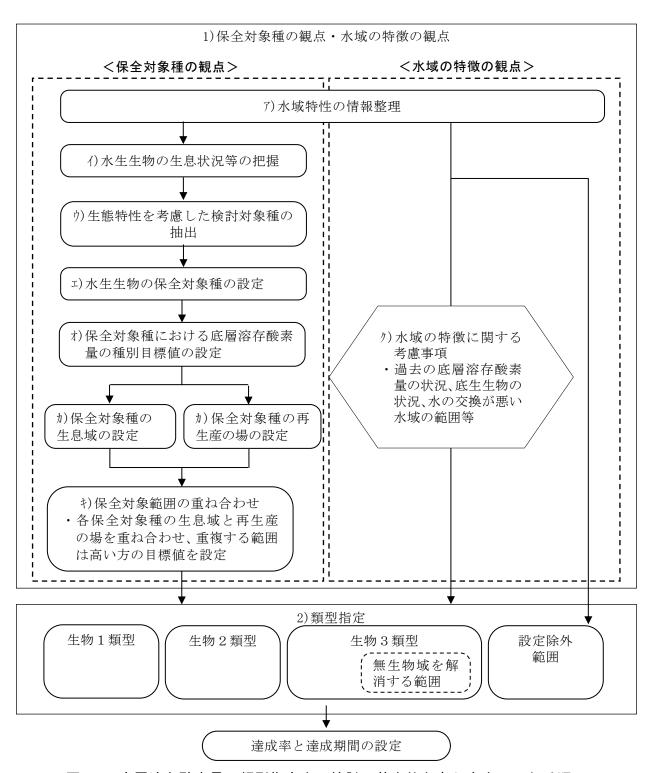


図 1 底層溶存酸素量の類型指定案の検討の基本的な考え方を示した手順

1) 保全対象種の観点・水域の特徴の観点

ア) 水域特性の情報整理

保全対象種及び水域の特徴の検討に当たり、水質の状況、水生生物の生息環境(底質、海底地形)、干潟・藻場・サンゴ礁等の状況、水域の利用状況等を把握することが必要であることから、対象水域について下記の事項について既存資料及び文献、地域関係者及び関係機関等へのヒアリング等により情報を整理する。

- ・既存の環境基準の類型指定に関する情報
- ・水質の状況(赤潮、青潮等の発生状況、水質測定結果(現在及び過去からの推移)等)
- ・ 底質の状況 (性状及び変化の変遷 等)
- ・水域の地形及び流況等(湖底または海底の地形の状況、流況 等)
- ・水域の利用状況(港湾、漁港、水浴場、公園 等)
- ・干潟・藻場・サンゴ礁(湖沼では沈水植物)の状況
- ・水産等に関する情報(漁獲量、漁業権、漁場等)
- ・行政機関等における水域に関係する計画

イ) 水生生物の生息状況等の把握

類型指定の検討に当たっては、まず、水域内において生息及び再生産をしている 水生生物の把握が必要である。そのため、既存資料の収集や地域関係者へのヒアリング等により、幅広く水生生物の生息及び再生産の状況を把握する。

把握対象とする水生生物は、地域に生息する水生生物のうち、主に魚類、甲殻類及び軟体動物について把握する。

り) 生態特性を考慮した検討対象種の抽出

保全対象種として検討する種(以下「検討対象種」という。)は、表 1に示すような底層溶存酸素量の低下の影響を受ける可能性のある種とし、「イ)水生生物の生息状況等の把握」により把握した水生生物の中から抽出する。

表 1 検討対象種設定のための生態特性

生態特性	検討対象とした水域において、「底層に依存する生活史」を持つこと
解説	「底層に依存する生活史」とは、生活史のいずれかの段階において、検討対象とした湖沼・海域内の底質を構成する砂や泥、水草等を、生息場や産卵場、餌場として利用することを指す。

エ) 保全対象種の設定

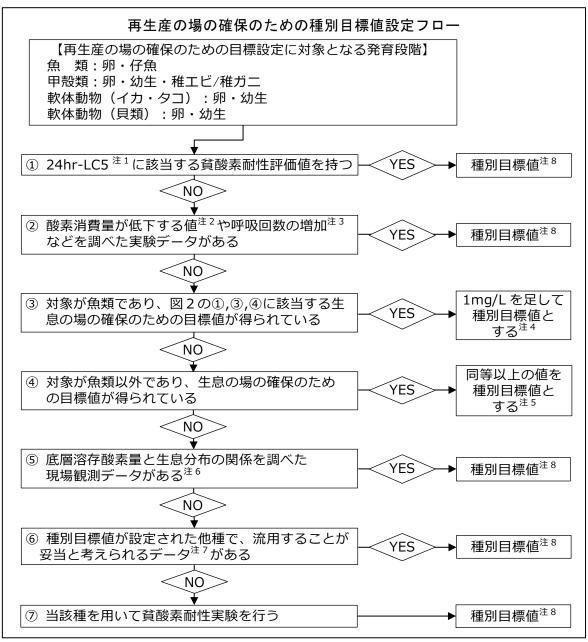
保全対象種は「ウ)生態特性を考慮した検討対象種の抽出」で抽出した検討対象種から表 2に例示する項目等を整理し、地域関係者等の意見を踏まえて設定する。

表 2 保全対象種として相応しいかどうかの判断に用いる観点(例)

設定の観点	解説
①計画等で保全すべきとさ	検討対象とした湖沼・海域に係る計画等で保全を図るべき種とし
れているか	て掲げられている種は、保全対象種とするか検討する。
の分配主の影響を受けめよ	貧酸素水塊から逃避するための遊泳能力が低いと考えられる種
②貧酸素の影響を受けやす	は、底層溶存酸素量の低下による影響を受けやすいと考えられ、
い種であるか	保全対象種とするか検討する。
③水産利用や地域の食文	主要な漁獲対象種や地域の食文化からみて重要な種、釣りや潮干
化、親水利用において重	狩りなどの親水利用の対象となる種については、保全対象種とす
要であるか	るか検討する。
	水質浄化において重要な種、希少種、その他、地域関係者が今後必
 ④その他	要であると考えている種等については、保全対象種とするか検討す
4)て 70他	る。ただし、外来種(①、③で保全対象種として設定された種は除
	く。) は保全対象種としてふさわしくないため、除外する。

オ) 保全対象種における底層溶存酸素量の種別目標値の設定

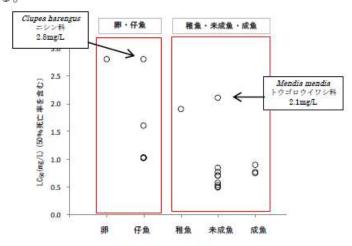
- 「エ)保全対象種の設定」で設定した各保全対象種に対して、生息及び再生産のために必要な底層溶存酸素量の種別目標値を設定する。種別目標値については、平成27年答申の底層溶存酸素量及び沿岸透明度に係る目標設定に関する参考資料「2.
- (1) 貧酸素耐性評価値の導出方法」に基づき設定する。しかし、保全対象種によっては貧酸素耐性評価値が得られていないものもあり、この場合は貧酸素耐性に関する水生生物の生理的な知見、現場観測データの活用等、可能な限り科学的知見に基づいて種別目標値を設定する。


既存の情報では種別目標値を設定することができない場合には、必要に応じて保 全対象種の貧酸素耐性試験を行い、その結果を活用することも考えられる。

種別目標値の設定フローは図 2、図 3に示すとおりであるが、各保全対象種の分類ごとに「生息の場の確保のための種別目標値」と「再生産の場の確保のための種別目標値」の対象となる発育段階が異なることに留意が必要である。再生産段階の種別目標値は、魚類については卵・仔魚の貧酸素耐性評価値を、甲殻類については卵、幼生・稚エビ・稚ガニの貧酸素耐性評価値を、軟体動物(イカ・タコ類、貝類)については卵、幼生の貧酸素耐性評価値を用いることとする。

- 注) 1. 24 時間の暴露時間における 95%の個体が生存可能な溶存酸素量。詳細は平成 27 年答申 7 頁を参照。
 - 2. 図 3を参照。
 - 3. 設定した目標値の妥当性については、専門家の意見を参考にすること。
 - 4. 対象生物が貧酸素条件下に暴露されると、代謝を下げるための生理的な反応として酸素消費量が低下する。
 - 5. 溶存酸素が低下しても呼吸回数が増加しない種がみられることから、当該種の生態的特徴が十分に観察された実験データを用いること。
 - 6. 検討対象とした湖沼・海域において底層溶存酸素量が 4mg/L 以下となる時期及び場所での現場観測データであること。
 - 7. 妥当性について専門家の意見を参考にし、複数ある場合は妥当性の高いものを採用する。例としては、他種と同様な生活史、生態特性を持つ近縁の種に関するデータ等。
 - 8. 種別目標値は 2mg/L、3mg/L、4mg/L の 3 段階とし、 $2\sim 4mg/L$ の間の種別目標値は小数点以下を切り上げる。

図 2 生息の場の確保のための種別目標値設定フロー



- 注) 1.24 時間の暴露時間における95%の個体が生存可能な溶存酸素量。詳細は平成27 年答申7頁を参照。
 - 2. 対象生物が貧酸素条件下に暴露されると、代謝を下げるための生理的な反応として酸素消費量が低下する。
 - 3. 溶存酸素が低下しても呼吸回数が増加しない種がみられることから、当該種の生態的特徴が十分に観察された実験データを用いること。
 - 4. 本資料「【参考】再生産段階の貧酸素耐性評価値の推定」を参照。なお、生息の場の確保のための目標値と再生産の場の確保のための目標値が同じ値であっても差し支え無いと判断できる知見があれば、 1mg/L を足さなくてもよい。
 - 5. 既往知見を参考にして適切に設定し、設定した目標値の妥当性について専門家に確認すること。
 - 6. 検討対象とした湖沼・海域において底層溶存酸素量が 4mg/L 以下となる時期及び場所での現場観測データであること。
 - 7. 妥当性について専門家の意見を参考にし、複数ある場合は妥当性の高いものを採用する。例としては、 他種と同様な生活史、生態特性を持つ近縁の種に関するデータ等。
 - 8. 種別目標値は 2mg/L、3mg/L、4mg/L の 3 段階とし、 $2\sim 4mg/L$ の間の種別目標値は小数点以下を切り上げる。

図 3 再生産の場の確保のための種別目標値設定フロー

【参考】再生産段階の貧酸素耐性評価値の推定(平成27年答申からの抜粋)

魚類については、卵や仔魚等の発育段階初期の貧酸素耐性評価値が得られていない。 米国環境保護庁(2000) 3 において、魚介類等の貧酸素耐性について、知見の集積を図っている。図 21 は、知見が得られている全魚類のうち、 LC_{50} が求められているデータを、発育段階別に抽出した(暴露時間が 24 時間以下の結果を抽出した)。この結果では、仔魚($Clupea\ harengus = シン科の魚類、暴露時間 6hr)の <math>LC_{50}$ の最大値は $2.8 \, mg/L$ 、未成魚($Mendia\ mendia\ トウゴロウイワシ科の魚類、暴露時間 6hr)の最大値は <math>2.1 \, mg/L$ であり、 LC_{50} の最大値の差は $0.7 \, mg/L$ である。 3. (2)の $24 \, hr - LC_{50}$ から $24 \, hr - LC_{5}$ への算出 方法と同様の考え方により、魚類の LC_{5}/LC_{50} 比 1.31 を使うと、仔魚の LC_{5} は $2.75 \, mg/L$ と換算でき、その差は $0.92 \, mg/L$ となる。このため、再生産段階の貧酸素耐性評価値は、生息段階の貧酸素耐性評価値に $1 \, mg/L$ を加えた値として推定する。 なお、今後、再生産段階の貧酸素耐性評価値が得られる場合には、基本的にその値を 用いることとする。

曝露時間が24時間以下の結果

注) 図は曝露時間が6時間の値での比較であり、24時間の暴露時間ではLC50の最大値の差が0.7mg/L以上になる可能性がある。

図 21 発育段階別の LC₅₀

なお、底層溶存酸素量が低下する時期に再生産を行わない魚種については、生息段階における水生生物の生息の場の底層溶存酸素量が確保されることで、再生産もできることが明らかな場合であれば、必ずしも上記のように 1mg/L を加えた値として推定する必要はない。

出典:「水質汚濁に係る生活環境の保全に関する環境基準の見直しについて(答申)」(平成27年12月、中央 環境審議会)

カ) 保全対象種の生息域及び再生産の場の設定

保全対象種の生息域及び再生産の場は、「エ)保全対象種の設定」により設定した 各保全対象種について、生息域及び再生産の可能性のある範囲を水深及び底質の情報に基づいて設定する。この各保全対象種に対して設定した生息域及び再生産の場に「オ)保全対象種における底層溶存酸素量の種別目標値の設定」で設定した種別目標値を当てはめる。

なお、個体群の維持に重要な水域の範囲の情報や生息域及び再生産に係る追加的な情報(既存資料、漁業標本船調査結果、水産関係者へのヒアリング等)がある場合は、それらについても考慮する。

キ) 保全対象範囲の重ね合わせ

「オ)保全対象種における底層溶存酸素量の種別目標値の設定」により設定された種別目標値と「カ)保全対象種の生息域及び再生産の場の設定」により設定された各保全対象種の生息域及び再生産の場を重ね合わせる。重複する範囲の目標値は、底層溶存酸素量の最も高い種別目標値を設定する。

り) 水域の特徴に関する考慮事項

「ア)水域特性の情報整理」で収集した情報のうち、水域の特徴の観点において、類型指定に資するために、考慮しなければならない事項を整理する。主な事項は、過去の底層溶存酸素量の状況、底生生物の生息状況、水の交換が悪いと想定される水域の範囲等が考えられる。

2) 類型指定

類型指定に当たっては、「1) *1) 保全対象範囲の重ね合わせ」の検討結果により保全対象種の観点から求められる底層溶存酸素量の類型指定を基本としつつ、一方で、「1) /1) 水域の特徴に関する考慮事項」による地形や過去の底層溶存酸素量の状況等の考慮事項について総合的に検討して類型指定を行う。なお、底層溶存酸素量の類型は、底層を利用する水生生物の個体群が維持できる場を保全・再生するという観点から指定するものであり、指定に当たっては、現状の底層溶存酸素量と比較することは必ずしも必要はない。

生物 3 類型における無生物域について、平成 27 年答申では以下のとおり示されており、水域の特徴に関する考慮事項を踏まえ、生物 3 類型を指定する際に必要に応じて考慮する。

無生物域を解消する水域の設定については、底層が無酸素状態になっている、あるいは無酸素状態になるおそれがあるところで、無生物域の解消のために最低限の溶存酸素量を確保する必要がある範囲について類型指定を行う。

資料:「水質汚濁に係る生活環境の保全に関する環境基準の見直しについて(答申)」(平成27年12月、中央 環境審議会)

また、平成 27 年答申に記載されている設定除外範囲の考え方は下記のとおり示されており、以下の範囲は必ずしも類型指定を行う必要はない。

- ①自然的要因による水深の深い範囲や、成層、底質の環境が水生生物の生息に適さない 範囲等、設定する保全対象種が生息・再生産の場として底層の利用が困難な範囲
- ②ダムの死水域に代表されるような、構造物等により底層が構造上貧酸素化しやすくなっている範囲であって、その利水等の目的で、水生生物が生息できる場の保全・再生を図る必要がないと判断される範囲

資料:「水質汚濁に係る生活環境の保全に関する環境基準の見直しについて(答申)」(平成27年12月、中央 環境審議会)

最後に、保全対象範囲の重ね合わせた結果、基準値の異なる範囲が狭い水域に混在する場合(飛び地)がある。このような場合は常時監視や水域評価の運用上の観点等から、必要に応じて周辺の類型を考慮して類型指定を行う。

(3) 評価方法について

評価方法について、平成28年報告において、以下の2点が示されている。

- I. 底層溶存酸素量について
- 1. 底層溶存酸素量の評価方法
- (1) 日間平均値の年間における評価方法について 答申に記載された内容をもとに、次のとおりまとめた。
 - 1) 評価方法の考え方

底層溶存酸素量の年間における評価について、連続測定を実施する場合は、目標値を下回る観測結果(日間平均値)が2日以上続いた場合は「非達成」、そうでない場合は「達成」と評価する。連続測定を実施しない場合は日間平均値の年間最低値により評価する。

「中略〕

- (2) 複数の環境基準点をもつ水域における評価の方法
 - 1) 底層溶存酸素量の達成評価の考え方

U. S. EPA (2007) によると、底層溶存酸素量のような水質項目は時間的また空間的にも変化するため、健全な生態系といえどもすべての地点とすべての時間で目標値を上回るとは限らないとされている。すなわち、底層溶存酸素量が目標値を下回る場所が少なかったり、一時的であったり、速やかに回復するのであれば、それは生態系の劣化をもたらさないと考えられる。このことから、底層溶存酸素量の一時的かつ部分的な低下が生じたとしても、当該水域全体の個体群維持に問題が生ずる可能性は低いと考えられる。

ただし、個体群の維持が可能な最低限度の水域割合及び期間割合を求めることは、 水生生物種や対象水域の特性によって異なるため極めて困難である。

以上のことから、底層溶存酸素量の基準値の達成評価を考える上では、当該水域における保全対象種の個体群の維持を目的とする場合、類型あてはめを行った対象 水域のすべて測定地点(環境基準点)で、またすべての期間で基準値に適合しなく ても、目的は達成できると考えられる。

2) 底層溶存酸素量における評価の方法

1)を踏まえ、底層溶存酸素量の評価方法として、個々の測定地点(環境基準点)について、目標値に適合しているか否かの判断はするが、類型指定より区分された水域ごとに達成又は非達成の評価はせず、水域内の全ての測定地点(環境基準点)うち、目標値に適合している測定地点(環境基準点)数の割合で評価す方法が適当であると考えられた。[後略]

資料:「底層溶存酸素量及び沿岸透明度の評価方法等について」(平成28年11月1日、第42回中央環境審議会水環境部会資料)

この評価方法による評価の例が平成28年報告に示されたが、底層溶存酸素量は季節的な変動が大きいということを踏まえ、どの地点でどのような適合状況であるかをより具体的に把握することが可能となるよう、図表を用いて月ごとの適合状況を含めて示す方法の例を次頁からの二重枠内「評価方法の例(仮想水域)」に示す。

この例で示した仮想水域では水域内に4つの類型が存在し、生物1類型については2つの水域区分に分かれている。参考表1においては、各測定地点の一番右の欄がその測定地点の適合状況であり、これが100%の場合、当該測定地点(環境基準点)が基準に適合していると判断する。区分された水域(以下「水域区分」という。)内における全測定地点のうち環境基準に適合している測定地点の割合が、その水域区分の達成率となる。さらに、当該水域全体における[適合した測定地点の数]の[当該水域の全測定地点数]に対する割合が、一番右下の水域全体の達成率となる。

参考表 2については、連続測定を行った場合の例であり、2日間以上目標値を下回る結果が頻出した時期について説明を付すなど適合しなかった状況について具体的に把握できるようにする。

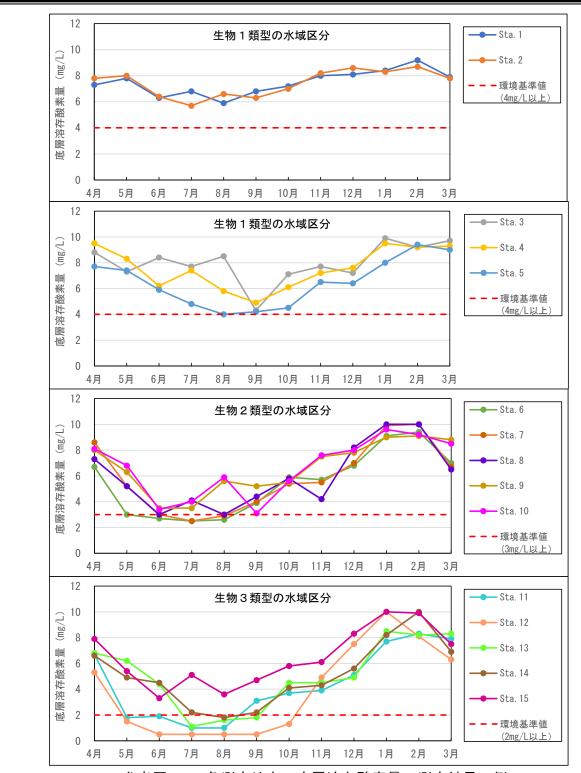
評価方法の例(仮想水域)

- ・ある水域に生物 1 類型~生物 3 類型の類型があてはめられ、4 つの水域区分があり、各 水域区分に環境基準点が 2~5 地点設定されていると仮定。
- ・測定頻度は月1回と仮定、日間平均値を用いて当てはめられた類型の環境基準に適合しているかどうかを判断(地点別適合状況欄にその地点のすべての日間平均値のうち、基準に適合した日間平均値の個数の割合を記載。)。

◆水域の底層溶存酸素量の状況の把握

- ・地点別適合状況において、適合状況が最も低い地点は生物3類型のSta.12の50%、各水域区分で年間最低値が環境基準を満足している地点数は、生物1類型の2水域でそれぞれ3地点(達成率100%)、2地点(達成率100%)、生物2類型の水域で3地点(達成率60%)、生物3類型の水域で1地点(達成率20%)あり、類型指定された水域全体の達成率は60%(9地点/15地点)になる。
- ・生物1類型の各水域では、すべて期間、すべての地点で環境基準に適合している。
- ・生物 2 類型の水域の達成率は 60%であるが、Sta. 6 では 6~8 月、Sta. 7 では 7~8 月で 環境基準値をやや下回っている状況である。
- 生物 3 類型の水域の達成率は 20%であり、Sta. 11 では 5~8 月、Sta. 12 では 5~10 月、Sta. 13 では 7~9 月、Sta. 14 では 8 月で環境基準値を下回っている。特に Sta. 11 では 7 月~8 月で 1.0mg/L、Sta. 12 では 6~9 月で 0.1mg/L と貧酸素状態が顕著に現れている。当該地点付近の貧酸素状態の改善が課題であることが分かる。

参考表 1 底層溶存酸素量の状況の把握の例


(単位:mg/L)

						_									単位:mg/L)
類型	水域	月 地点	4	5	6	7	8	9	10	11	12	1	2	3	地点別 適合状況
		Sta. 1	7. 3	7.8	6.3	6.8	5. 9	6.8	7. 2	8.0	8. 1	8. 4	9. 2	7. 9	12/12 (100%)
		Sta. 2	7.8	8. 0	6. 4	5. 7	6.6	6.3	7. 0	8. 2	8.6	8. 3	8. 7	7.8	12/12 (100%)
	A	Sta. 3	8.8	7. 3	8.4	7. 7	8. 5	4.3	7. 1	7. 7	7.2	9. 9	9.2	9. 7	12/12 (100%)
生物 1 類型 (4mg/L		水域区 分内月 別達成 状況	3/3 (100%)	3/3 (100%)	3/3 (100%)	3/3 (100%)	3/3 (100%)	3/3 (100%)	3/3 (100%)	3/3 (100%)	3/3 (100%)	3/3 (100%)	3/3 (100%)	3/3 (100%)	水域区分 の達成率 100%
以上)		Sta.4	9. 5	8. 3	6.2	7. 4	5.8	4. 9	6. 1	7.2	7.6	9.5	9.2	9.3	12/12 (100%)
		Sta. 5	7. 7	7. 4	5.9	4.8	4.0	4.2	4. 5	6.5	6.4	8.0	9.4	9.0	12/12 (100%)
	В	水域区 分内月 別達成 状況	2/2 (100%)	2/2 (100%)	2/2 (100%)	2/2 (100%)	2/2 (100%)	2/2 (100%)	2/2 (100%)	2/2 (100%)	2/2 (100%)	2/2 (100%)	2/2 (100%)	2/2 (100%)	水域区分 の達成率 100%
		Sta. 6	6. 7	3. 0	<u>2. 7</u>	<u>2. 5</u>	<u>2. 6</u>	3.9	5. 9	5. 7	6.8	9. 1	9.4	7.0	9/12 (75%)
		Sta. 7	8.6	5. 2	3.0	<u>2. 5</u>	<u>2. 9</u>	4.0	5. 4	5.5	7.0	9. 9	10	6. 7	10/12 (83%)
生物 2		Sta. 8	7. 3	5. 2	3.0	4. 1	3.0	4. 4	5.8	4.2	8.2	10	10	6. 5	12/12 (100%)
類型 (3mg/L	С	Sta. 9	8.0	6. 3	3.5	3. 5	5. 6	5. 2	5. 5	7.5	7.8	9.0	9. 1	8.8	12/12 (100%)
以上)		Sta. 10	8. 1	6.8	3. 4	4. 0	5. 9	3. 1	5. 6	7.6	8.0	9. 6	9.2	8. 5	12/12 (100%)
		水域区 分内月 別達成 状況	5/5 (100%)	5/5 (100%)	4/5 (80%)	3/5 (60%)	3/5 (60%)	5/5 (100%)	5/5 (100%)	5/5 (100%)	5/5 (100%)	5/5 (100%)	5/5 (100%)	5/5 (100%)	水域区分 の達成率 60%
		Sta. 11	6. 7	<u>1.8</u>	<u>1. 9</u>	<u>1.0</u>	<u>1.0</u>	3. 1	3. 7	3.9	5. 1	7. 7	8.3	7. 9	8/12 (67%)
		Sta. 12	5. 3	<u>1. 5</u>	<u>0. 1</u>	<u>0. 1</u>	<u>0. 1</u>	<u>0. 1</u>	<u>1. 3</u>	4.9	7.5	8.0	8. 1	6.3	6/12 (50%)
生物3		Sta. 13	6.8	6. 2	4. 4	<u>1. 1</u>	<u>1. 6</u>	<u>1.8</u>	4. 5	4. 5	4. 9	8. 5	8.2	8. 3	9/12 (75%)
類型 (2mg/L	D	Sta. 14	6.6	4. 9	4. 5	2. 2	<u>1.8</u>	2.2	4. 1	4.3	5.6	8. 2	10	6. 9	11/12 (92%)
以上)		Sta. 15	7. 9	5. 4	3.3	5. 1	3. 6	4. 7	5.8	6. 1	8.3	10.0	9.9	7. 5	12/12 (100%)
		水域区 分内月 別達成 状況	5/5 (100%)	3/5 (60%)	3/5 (60%)	2/5 (40%)	1/5 (20%)	3/5 (60%)	4/5 (80%)	5/5 (100%)	5/5 (100%)	5/5 (100%)	5/5 (100%)	5/5 (100%)	水域区分 の達成率 20%
	《域全体》 別達成状		15/15 (100%)	13/15 (87%)	12/15 (80%)	10/15 (67%)	9/15 (60%)	13/15 (87%)	14/15 (93%)	,		,	15/15 (100%)	l '	水域全体 の達成率 60%

- 1. 表中に示している底層溶存酸素量の測定値(日間平均値)は例であり実測値ではない。 2. 区分欄の各類型の()は環境基準値であり、表中の**太数字**は、環境基準に非適合であることを表す。 3. 地点別適合状況は、地点毎の「環境基準に適合した日間平均値/全ての日間平均値」である。 4. 水域区分内月別達成状況は、月ごとに水域区分内の適合状況を集計した結果である。

 - 5. 月別達成状況の欄は、類型指定された水域全体の測定地点の集計結果である。 6. 水域区分の達成率は、各水域区分内の全測定地点のうち環境基準に適合している測定地点の割合である。

 - 7. 水域全体の達成率は、当該水域全体における「適合した測定地点数(上記の例では「12/12(100%)」となっている地点)/当該水域の全測定地点数」の割合である。
 8. 上記の例では、底層溶存酸素量が 0.5mg/L 未満の場合についても測定値を示しているが、0.5mg/L 未満の値を示すことができない場合は、「<0.5」として報告する。

参考図 1 各測定地点の底層溶存酸素量の測定結果の例

- ・次に、改善対策例を以下に示す。
 - ・藻場・干潟の造成及び保全
 - ・環境配慮型港湾構造物の整備
 - ・底質改善対策(浚渫、覆砂)による溶出負荷の抑制、深堀り跡の埋め戻し
 - ·水質汚濁防止対策 (流入負荷対策)
 - ・過剰に繁茂した水草の除去(水草対策) 等

◆水域の状況の把握(連続測定の場合の例)

- ・連続測定をしている地点毎の水質の状況把握は参考表 2 に示すとおりである。
- ・参考表1の測定地点(環境基準点)のうち、Sta. 12とSta. 14が連続測定である場合

参考表 2 水質の状況の把握例:連続測定地点を含む場合

区分	測定地点		地点別 適合状況
水域(生物 3 類型) の水域区分	Sta. 12	×	・5 月下旬から 10 月上旬にかけて、環境基準値を下回る状況が継続している(参考表3参照)。 ・上記の状況から、特に夏季の貧酸素状態の改善が課題であることが分かる。
	Sta. 14	×	・地点別適合状況としては非適合であるが、 環境基準値を若干下回る程度であり、そ の時期も限定的である。(参考表3参照)。

注)上記2地点は、環境基準値を下回る観測結果(日間平均値)が2日以上続いたため非適合となる。

参考表 3 評価方法 (案): Sta. 12 及び Sta. 14 が連続測定の場合の例

[Sta. 12]

			_																												
月日	1日	2日	3日	4日	5日	6日	7日	8日	9日	10日	11日	12日	13日	14日	15日	16日	17日	18日	19日	20日	21日	22日	23日	24日	25日	26日	27日	28日	29日	30日	31日
4月	6.4	6.2	5.3	5.5	5.3	5.5	5.3	5.4	5.7	5.6	6.1	5.6	5.3	5.5	5.3	5.4	5.5	5.6	5.4	5.3	6.0	6.1	6.2	6.0	5.3	5.6	5.5	5.4	5.3	5.5	
5月	4.3	4.4	3.4	3.6	3.3	2.8	2.5	2.5	2.6	2.5	2.7	2.4	2.7	2.5	2.6	2.4	2.5	2.3	2.4	2.3	2.3	3.2	2.8	2.6	2.2	2.0	2.3	2.3	1.5	1.6	1.5
6月	0.9	1.1	2.1	2.2	1.2	2.6	5.2	4.9	3.5	1.9	1.6	2.7	1.5	0.7	1.6	0.7	0.2	0.1	0.4	0.1	0.2	0.6	0.7	0.3	0.1	0.1	0.1	0.3	0.8	0.8	
7月	0.6	1.0	0.2	0.4	1.1	0.7	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
8月	0.1	0.1	0.1	0.1	0.1	0.3	1.8	1.9	0.1	0.2	0.2	0.5	0.9	0.6	0.2	0.2	1.1	0.5	0.2	0.2	0.5	0.3	0.2	0.2	0.2	0.2	1.2	1.6	1.2	1.8	2.6
9月	2.3	3.0	1.2	1.1	0.7	0.4	1.0	1.3	1.9	1.5	8.0	0.7	0.2	0.2	0.1	0.4	0.6	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	1.0	2.3	2.0	
10月	1.8	1.5	1.3	2.1	2.2	2.3	3.4	3.1	3.0	3.2	4.1	3.3	4.1	4.1	3.7	2.9		3.5	4.7	4.5	4.6	4.7	4.9	5.1	4.5	5.1	4.5	4.8	5.2	5.1	4.8
11月	5.3	5.2	5.4	5.1	5.8	5.3	5.5	5.7	5.5	5.3	5.1	5.1	5.1	5.2	5.1	5.1	5.6	5.4	5.7	5.8	5.5	5.3	5.1	5.8	5.7	5.6	4.9	5.5	5.5	5.1	
12月	5.5	5.4	5.3	5.6	6.0	6.2	6.8	7.2	7.6	7.6	7.6	7.5	8.3	8.1	7.8	7.7	7.5	8.0	8.1	7.6	8.3	8.1	8.1	8.3	7.9	7.5	7.7	8.3	8.3	8.3	7.8
1月	8.0	8.1	8.0	8.2	8.3	8.5	8.2	8.0	8.3	8.4	8.5	8.6	8.2	8.1	8.5	8.4	8.6	8.3	8.7	8.5	8.3	8.4	8.2	8.8	9.0	9.2	9.1	9.5	9.4	9.2	9.5
2月	9.3		9.8	8.1	9.8	8.1	10.0	10.5	10.2	10.5	11.4	11.5	12.1	10.8	11.0	8.1	8.1	10.1	9.9	10.1	10.3	10.4	10.1	9.7	9.9	10.2	10.0	9.6			
3月	7.8	7.2	7.1	6.8	6.4	6.3	7.1	6.3	7.0	6.8	7.1	8.4	8.7	9.6	9.3	7.0	6.7	6.3	7.1	7.1	7.6	6.5	6.8	6.3	6.7	7.1	7.1	7.2	7.0	7.4	7.2

[Sta. 14]

月	18	2日	3日	4日	5日	6日	7日	8日	9日	10日	11日	12日	13日	14日	15日	16日	17日	18日	19日	20日	21日	22日	23日	24日	25日	26日	27日	28日	29日	30日	31日
4月	8.8	9.8	10.3	9.1	8.9	8.8	7.0	9.0	10.6	10.1	7.0	8.9	10.2	12.2	12.5	10.7	10.4	8.9	8.5	7.4	6.6	6.8	6.6	6.8	7.6	7.9	9.1	8.6	8.1	7.6	
5月	7.5	7.5	6.7	7.6	8.3	7.8	8.7	8.9	6.9	6.2	7.8	8.7	7.6	8.1	7.5	7.8	5.4	6.2	7.4	7.9	5.7	4.9	5.4	6.6	8.5	9.9	7.0	6.1	4.9	5.0	5.4
6月	4.9	5.6	5.8	4.9	6.2	5.0	5.0	4.5	4.6	4.5	4.7	4.7	4.8	8.6	8.4	8.9	9.1	6.9	6.0	5.9	5.6	5.1	5.5	5.2	4.8	5.0	5.1	4.8	4.5	4.5	
7月	5.0	5.1	4.9	4.5	3.5	2.2	2.8	2.3	3.0	3.5	3.2	3.0	4.0	4.5	4.4	4.0	3.8	3.2	3.0	2.5	2.3	2.2	2.4	2.6	2.4	2.8	2.3	2.5	2.4	2.9	2.3
8月	3.5	3.4	3.0	3.8	3.5	2.9	2.5	2.0	2.4	2.0	1.8	1.9	1.8	1.8	2.5	3.0	3.5	2.5	2.2	2.0	2.1	2.5	2.3	2.2	2.0	2.5	2.3	1.8	1.9	1.9	2.9
9月	3.0	3.5	2.2	2.2	4.4	4.0	4.5	4.3	4.2	3.9	3.4	4.5	4.0	3.9	3.5	3.0	2.9	2.8	3.0	3.5	3.4	3.3	3.6	3.4	3.3	3.6	3.7	3.5	3.3	3.6	
10月	4.1	4.2	4.4	4.2	4.1	4.9	4.5	4.4	4.3	4.5	4.1	4.6	4.9	4.3	4.4	4.1	4.2	4.5	4.2	4.9	4.8	4.7	4.9	5.3	4.6	5.2	5.0	4.9	5.2	5.3	5.5
11月	6.0	5.5	5.8	5.3	5.9	5.4	5.7	5.5	5.3	4.3	5.0	5.1	5.5	5.2	5.9	6.5	6.3	6.4	6.5	6.4	6.5	6.7	6.7	6.6	6.4	6.1	6.4	6.3	6.2	6.7	
12月	5.6	7.1	7.4	7.6	7.6	7.5	7.4	7.5	7.8	7.7	8.0	8.3	8.6	8.8	8.9	8.7	8.7	8.7	9.2	9.3	9.1	9.0	9.6	10.1	10.4	9.9	9.4	9.2	9.4	9.6	9.7
1月	8.2	8.3	8.2	8.2	8.8	9.0	8.8	8.7	8.5	8.4	8.8	8.8	9.3	9.2	8.9	9.2	9.4	8.9	8.9	8.9	8.8	8.6	8.5	8.9	9.5	10.4	10.0	9.9	10.6	10.0	8.8
2月	10.0	10.2	10.5	11.1	11.7	11.5	12.4	12.2	12.1	12.6	12.9	13.7	11.7	10.7	10.5	10.0	10.1	10.3	10.0	10.2	10.9	11.6	11.4	11.3	11.6	10.6	10.4	10.3			
3月	10.1	8.7	9.1	9.9	10.1	10.7	10.8	9.4	9.3	8.1	8.1	9.1	9.6	10.5	10.9	11.4	11.3	10.0	9.4	10.0	9.9	10.4	9.2	8.6	6.9	8.0	10.6	12.4	13.5	14.1	13.5

- 注) 1. 表中の測定値は例であり実測値ではない。
 - 2. 表中の塗りつぶしは、環境基準値を下回った日間平均値を表す。

参考図 2 連続測定地点の底層溶存酸素量の測定結果の例

(4) 目標とする達成率の設定及びその達成期間について

達成期間については、平成28年報告では以下のとおり示されている。

- (3) 底層溶存酸素量の達成期間の取扱い
 - 既存の生活環境項目環境基準の達成期間 「略」
 - 2) 底層溶存酸素量の達成期間
- (2) 1) に記載のとおり、水域における底層溶存酸素量は、個体群の維持が可能である限り、必ずしもすべての地点で、またすべての期間で底層溶存酸素量の基準値を常に上回る必要はないと言える。しかし、個体群の維持が可能な最低限度の水域割合及び時間的割合は、保全対象や対象水域の特性によって異なるため、国が一律に求めることは困難である。

また、底層溶存酸素量の改善には、長期的な改善計画等(水質総量削減(環境省)、 海の再生プロジェクト(国土交通省、海上保安庁)、藻場・干潟ビジョン(水産庁)等) も視野に入れ、対象水域ごとに適切な改善手法を検討することが必要と考えられる。

以上より、達成率や達成期間等に係る目標の設定ついて、事前の関連調査及び改善 手法とその進捗度合を踏まえた上で、類型区分された水域ごとに検討することが適当 と考えられる。

資料:「底層溶存酸素量及び沿岸透明度の評価方法等について」(平成 28 年 11 月 1 日、第 42 回中央環境審議会水環境部会資料)

底層溶存酸素量は新しい基準であるため、類型指定された後、当該水域の底層溶存酸素量を評価するための測定地点を設定することが必要となる。

類型指定された後、最初の5年間程度の中で底層溶存酸素量の状況に照らして、保全対象種の生息状況の健全性についても可能な限り把握する。この間に把握した情報等を踏まえ、各水域区分における保全対象種を中心とした水生生物の生息が健全に保たれることを目指し、目標とする各水域区分の達成率を設定する。達成期間については、関係機関間での改善対策も把握した上で、直ちに達成する、又は、5年から10年程度で達成するとする。若しくは、目標の達成に10年程度以上の長期を要すると考えられる場合には、10年程度以内に目指す暫定的な目標(達成率又は地点別適合状況等)を柔軟に設定し、必要な施策に段階的に取り組むことも可能とする。なお、達成期間(暫定的な目標に係る期間を含む。)が10年又は10年に近い場合には、必要に応じて中間的な評価を行うことが望ましい。また、保全対象種の生息状況の健全性について新たな知見が得られた場合には、測定地点、目標とする達成率、達成期間について、必要な見直しを行うことが望ましい。

3. 国のあてはめ水域における水域類型の指定について

東京湾及び琵琶湖の水域類型の指定について、各水域別の検討結果は以下のとおりである。

(1) 東京湾

- 1) 保全対象種の観点・水域の特徴の観点の検討結果
- ア) 水域特性の情報整理
- i) 既存の類型指定に関する情報
- ii)水質の状況
 - ・赤潮、青潮、貧酸素水塊の発生状況
 - 水質測定結果
 - 流入汚濁負荷量
 - ・底層溶存酸素量の分布
- iii) 底質の状況
 - ・ 底質の分布状況
 - ・ 底質の経年変化
 - ・総量削減開始前の底質の状況
 - ・ 底質変化の要因や影響
 - ・ 底生生物の状況
- iv)水域の地形及び流況等
 - · 海底地形 (水深)
 - ・水流
 - ・埋立ての変遷
- v) 水域の利用状況
 - ・港湾
 - ·港湾区域 · 航路
 - 水浴場
 - · 国立公園 · 国定公園区域
- vi)干潟·藻場の状況
- vii)水産等に関する情報
 - ・ 漁獲量の経年変化
 - 漁業権
 - 主要水産物の漁場
 - ・プランクトン量

イ) 水生生物の生息状況等の把握

東京湾に生息する水生生物のうち、魚類 90 分類群、甲殻類 12 種、軟体動物のうちイカ・タコ類 7 種、貝類 26 種、棘皮動物 1 種の計 136 分類群であった。

り) 生態特性を考慮した検討対象種の抽出(東京湾)

上記の種のうち、<u>魚類 41 分類群、甲殻類 11 種、軟体動物のうちイカ・タコ類 5</u>種、<u>貝類 17 種、棘皮動物 1 種を検討対象種とした。</u>なお、岩礁域や河口部などの、湾奥部と比較して貧酸素化の影響が小さい場所を主な生息域とする種については、この生態特性に該当しないものとした。

エ) 保全対象種の設定

保全対象種として相応しいかどうかについて、以下の判断項目に基づき、地域関係者の様々な意見を踏まえ、表 3に示す種を東京湾における保全対象種と設定した。

- ・東京湾に関する計画等で保全を図るべき種とされている種
- ・卵の性状が沈性卵である種
- ・貧酸素化が著しい時期(6~9月)に再生産を行う種
- 成魚、成体段階の移動能力が低い種
- ・資源減少の要因が貧酸素とされている種
- ・主要な漁獲対象種
- ・地域の食文化からみて重要な種
- ・親水性(釣り等)の観点からみて重要な種
- ・地域関係者が必要としている種又は物質循環の保全(水質浄化)において重要 な種

表 3 東京湾における保全対象種

						判断項目				<u> </u>		
		①計画等		②貧酸素影響	響の受けやすさ		③水産利	用、地域の食文化、	親水利用	④その他の事項		
分類群	保全対象種	計画等で保全を 図るべき種とさ れている	卵の性状が沈性 卵である	貧酸素化が著し い時期(6-9月) に再生産を行う	成魚・成体段階 の移動能力が低 い	資源減少の要因 が貧酸素とされ ている		地域の食文化か らみて重要	親水性の観点からみて重要	地域関係者が必要としている種又は物質循環の保全(水質浄化)において重要	満たした判断項目の数	総合評価
	マアナゴ	•			•	•	•	•	•		6/9	多くの判断項目に適合し、江戸前の食文化を代表する重要な種であるため、保 全対象種に選定した。
	シロギス	•		•	•		•	•	•		6/9	多くの判断項目に適合し、古くから東京湾における釣りの対象魚であり、市民 にとって身近で親しみやすく、江戸前の魚としても重要な種であるため、保全 対象種に選定した。
魚類	マハゼ	•	•		•	•	•	•	•		7/9	多くの判断項目に適合し、江戸前の食文化を代表する種であるとともに、古く から東京湾における釣りの対象魚であることなどから、市民にとって身近で親 しみやすい種であるため、保全対象種に選定した。
	ヒラメ			•	•		•	•	•	•	6/9	東京湾では主要な漁獲対象種となっており、食文化の視点からも重要であることから、判断項目の適合数に囚われることなく、保全対象とすべきであるとの 地域関係者からの意見を反映し、保全対象種に選定した。
	マコガレイ	•	•	000000000000000000000000000000000000000	•	•	•	•	•		7/9	多くの判断項目に適合し、東京湾の主要な漁獲対象種であるため、保全対象種 に選定した。
甲殼類	クルマエビ	•		•	•	•	•	•			6/9	多くの判断項目に適合し、江戸前の食文化を代表する重要な種であるため、保 全対象種に選定した。
	シャコ	•	•	•	•	•	•	•			7/9	多くの判断項目に適合し、主要な漁獲対象種であるとともに、最近では貧酸素の影響とみられる漁獲量の減少が著しいことから、保全対象種とすべきであるとの地域関係者からの意見も反映し、保全対象種に選定した。
	コウイカ	•	•	•	•	•	•	•	•		8/9	多くの判断項目に適合し、東京湾では主要な漁獲対象種となっているととも に、主要な釣りの対象種でもあるため、保全対象種に選定した。
軟体動物 (イカ・タコ類・	アカガイ		•	•	•	•	•	•	000000000000000000000000000000000000000	•	7/9	多くの判断項目に適合し、東京湾では主要な漁獲対象種となっているととも に、本種は二枚貝の中でも特に深場に生息し、貧酸素水塊の影響を受けやすい と考えられることから、保全対象種とすべきであるとの地域関係者からの意見 も反映し、保全対象種に選定した。
貝類)	ハマグリ	•		•	•	•	•	•	•	•	8/9	多くの判断項目に適合し、江戸前の食文化を代表する種であるとともに、古く から東京湾における潮干狩りの対象種であり、市民にとって身近で親しみやす い種であるため、保全対象種に選定した。
	アサリ	•		•	•	•	•	•	•	•	8/9	多くの判断項目に適合し、江戸前の食文化を代表する種であるとともに、古く から東京湾における潮干狩りの対象種であり、市民にとって身近で親しみやす い種であるため、保全対象種に選定した。
棘皮動物	マナマコ		-	•	•	•	•	•		•	6/9	多くの判断項目に適合し、近年の需要の高まりによる乱獲の影響で漁獲量が減 少していることから、保全対象種とすべきであるため、保全対象種に選定し た。

注)「-」は、生態学的な情報の知見がないことを指す。

オ) 保全対象種における底層溶存酸素量の目標値の設定

「2. (2) 1) か 保全対象種における底層溶存酸素量の種別目標値の設定」の図 2及び図 3に基づき、表 4に示すとおり各保全対象種の種別目標値を設定した。

表 4 保全対象種の種別目標値及び類型

種名	発育 段階	設定 フロー	種別目標	値と類型				
(里)石	段階	番号	種別目標値	類型				
マアナゴ	生息	5	3mg/L	生物 2				
マノソコ	再生産	_	設定しない(東京湾で	再生産を行わないため)				
シロギス	生息	1)	3mg/L	生物 2				
ンロイス	再生産	3	4mg/L	生物 1				
マハゼ	生息	1)	2mg/L	生物 3				
47.16	再生産	3	3mg/L	生物 2				
ヒラメ	生息	1)	3mg/L	生物 2				
	再生産	3	4mg/L	生物 1				
マコガレイ	生息	1)	3mg/L	生物 2				
4200	再生産	3	4mg/L	生物 1				
クルマエビ	生息	1)	2mg/L	生物 3				
クルイエピ	再生産	1)	4mg/L	生物 1				
シャコ	生息	4	3mg/L	生物 2				
ンヤコ	再生産	5	4mg/L	生物 1				
コウイカ	生息	5	3mg/L	生物 2				
291 N	再生産	6	4mg/L	生物 1				
アサリ	生息	5	2mg/L	生物 3				
7 9 9	再生産	1	4mg/L	生物 1				
ハマグリ	生息	5	2mg/L	生物 3				
/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	再生産	5	4mg/L	生物 1				
アカガイ	生息	5	2mg/L	生物 3				
1 11 11 11 11 11 11 11 11 11 11 11 11 1	再生産	5	4mg/L	生物 1				
マナマコ	生息	2	2mg/L	生物 3				
47.47	再生産	1	2mg/L	生物 3				

備考:設定フロー番号は、「2. (2) 1) t) 保全対象種における底層溶存酸素量の種別目標値の設定」の図 2 及び図 3に対応している。

カ) 保全対象種の生息域及び再生産の場の設定

東京湾の保全対象種の生息域及び再生産の場は、各保全対象種の生態特性(生息 又は再生産に適した水深、底質(砂、泥、岩礁等))に係る知見、地域関係者からの 情報を踏まえて設定した。

キ) 保全対象範囲の重ね合わせ

保全対象種 12 種の生息域及び再生産の場を重ね合わせた保全対象範囲は図 4 に示すとおりである。重ねあわせの前の各保全対象種の保全対象範囲は資料編1のとおり。

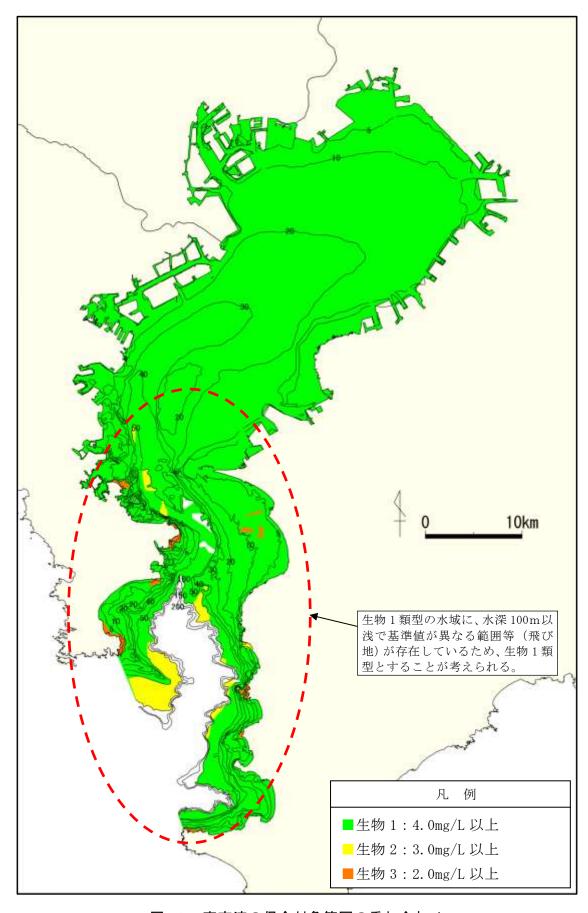


図 4 東京湾の保全対象範囲の重ね合わせ

り) 水域の特徴に関する考慮事項

i) 過去の底層溶存酸素量の状況

東京湾では、湾奥部を中心に水質汚濁が現在のように問題となっていないと考えられる昭和30年代前半であっても底層溶存酸素量が2.0mg/L未満、3.0mg/L未満の水域が存在していたことから、<u>湾奥部(水深10~20mの水域)は貧酸素化しやすい</u>特性を持っていると考えられる(図 5参照)。

底層溶存酸素量の類型指定において、上記のような貧酸素化しやすい特性を持つ 水域について、底層溶存酸素量が 2.0mg/L 未満の水域は生物 3 類型 (2mg/L 以上)、 底層溶存酸素量が 3.0mg/L 未満の水域は生物 2 類型 (3mg/L 以上) 相当と考えられ る。

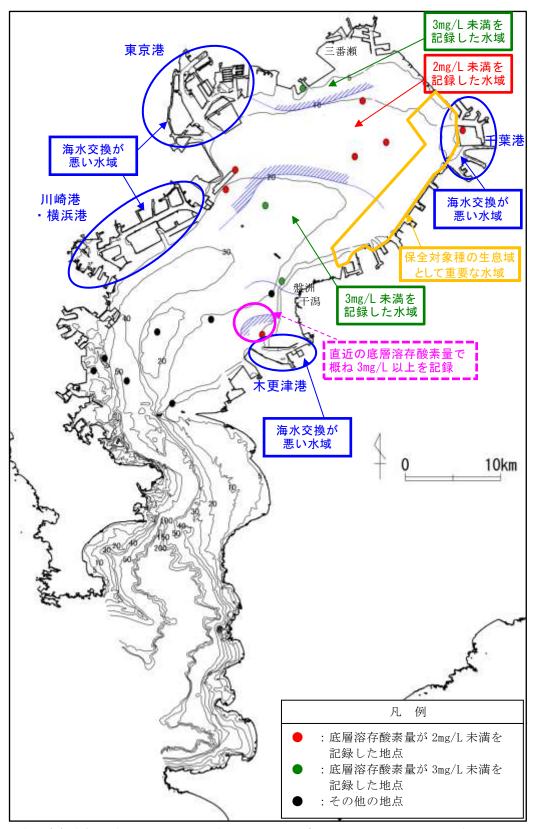
ii)近年の底層溶存酸素量の状況

三番瀬、盤洲干潟等については、水生生物保全の環境基準が特 A 類型であり、夏季下層の溶存酸素量 3mg/L 以上が特別域の要件のひとつであるため、生物 2 類型 (3mg/L 以上)にすることが考えられる。

木更津港沖は、昭和 30 年代前半に底層溶存酸素量が 2mg/L 未満であった水域ではあるが、近年、近傍の公共用水域水質測定地点の底層溶存酸素量の年間最低値が 2mg/L 未満となる状況が 50%未満となる地点もあり、湾奥部と比べると改善がみられる。

よって、木更津港沖は過去の底層溶存酸素量の状況に関わらず<u>生物2類型(3mg/L</u>以上)以上にすることが考えられる。

iii) 底生生物の状況


無生物域を解消する水域については生物3類型となることが考えられるが、東京 湾では長期に渡って特定の範囲に無生物域が存在したことがない。

iv) 埋立てや港湾施設の建設に伴う流動変化により海水交換が悪い水域

千葉港、東京港の港湾区域内のうち、埋立てや港湾施設の建設に伴う流動変化により閉鎖的で海水交換が悪いと推測される水域は、底層溶存酸素量が低くなるため、 目標値としては生物3類型相当と考えられる。

川崎港・横浜港に位置する京浜運河ではマコガレイの生息が確認されていることから、生物3類型(2mg/L以上)より高い目標である生物2類型(3mg/L以上)にすることが考えられる。

湾口部の一部では水深が深く保全対象種の生息・再生産と関係が薄いため、水生 生物が生息できる場の保全・再生を図る必要がないと判断した。

注)過去の底層溶存酸素量(凡例: ●、●、●)について、対象期間は昭和30年~34年(7月及び9月の観測結果)の5年間とし、各地点の濃度は千葉県水産総合研究センターのデータを変換した。 資料:千葉県水産総合研究センター提供資料

図 5 東京湾における類型指定を検討する際に考慮すべき水域

2) 類型指定の検討結果

図 4の保全対象範囲の重ね合わせより、生物 1 類型の湾央部 (2) 及び湾口部において、生物 1 類型に囲まれた生物 2 類型、生物 3 類型等の狭い水域については、水環境管理に当たって一体の水域として保全対象範囲の保全を図ることが適当と考えられるため、生物 1 類型としてまとめた。

3) 目標とする達成率及び達成期間

東京湾において、今後、底層溶存酸素量を評価するための測定地点を設定し、5年程度の測定結果及び達成率の状況を踏まえて、目標とする達成率及び達成期間を決定する。

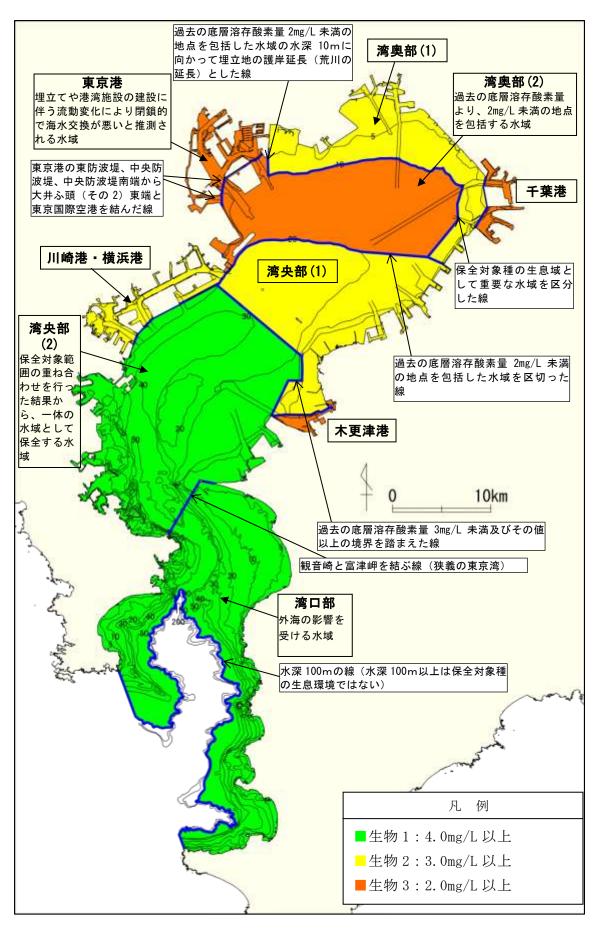


図 6 東京湾の類型指定

(2) 琵琶湖

- 1) 保全対象種の観点の検討結果
- ア) 保全対象種及び水域特性の検討のための情報整理
- i) 既存の類型指定に関する情報
- ii)水質の状況
 - ・淡水赤潮・アオコの発生状況
 - 水質測定結果
 - 流入汚濁負荷量
 - ・底層溶存酸素量の分布
- iii) 底質の状況
- iv)水域の地形及び流況等
 - ・湖底地形 (水深)
 - ・水流
 - ・埋立ての変遷
- v)水域の利用状況
 - ·港湾·漁港·舟溜
 - 水浴場
 - · 国立公園 · 国定公園区域
- vi) 沈水植物群落の状況
- vii)水産等に関する情報
 - ・漁獲量の経年変化及び放流量の経年変化
 - 区画漁業権等
 - ・保護水面及び禁止区域の設定状況
 - 主要水産物の漁場
 - ・プランクトン量
- イ) 水生生物の生息状況等の把握

琵琶湖に生息する水生生物のうち、魚類 81 分類群、甲殻類 10 種、軟体動物のうち巻貝類 43 種、二枚貝類 23 種の計 157 分類群であった。

り) 生態特性を考慮した検討対象種の抽出(琵琶湖)

上記の種のうち、**魚類 54 分類群、甲殻類 9 種、軟体動物(貝類)49 種**を<u>検討対象種</u>とした。なお、琵琶湖周辺の流入河川を主な生息域とする種については、この生態特性に該当しないものとした。

エ) 保全対象種の設定

保全対象種として相応しいかどうかについて、以下の判断項目に基づき、地域関係者の意見を踏まえ、表 5に示す種を琵琶湖における保全対象種と設定した。

- ・琵琶湖に関する計画等で保全を図るべき種とされている種
- ・琵琶湖内において貧酸素化が著しい時期(6~12月)に再生産を行う種
- ・琵琶湖において貧酸素の影響を受けているという知見が存在する種
- ・主要な漁獲対象種
- ・地域の食文化からみて重要な種
- ・親水性(釣り等)の観点からみて重要な種
- ・地域関係者が必要としている種又は物質循環の保全(水質浄化)において重要 な種

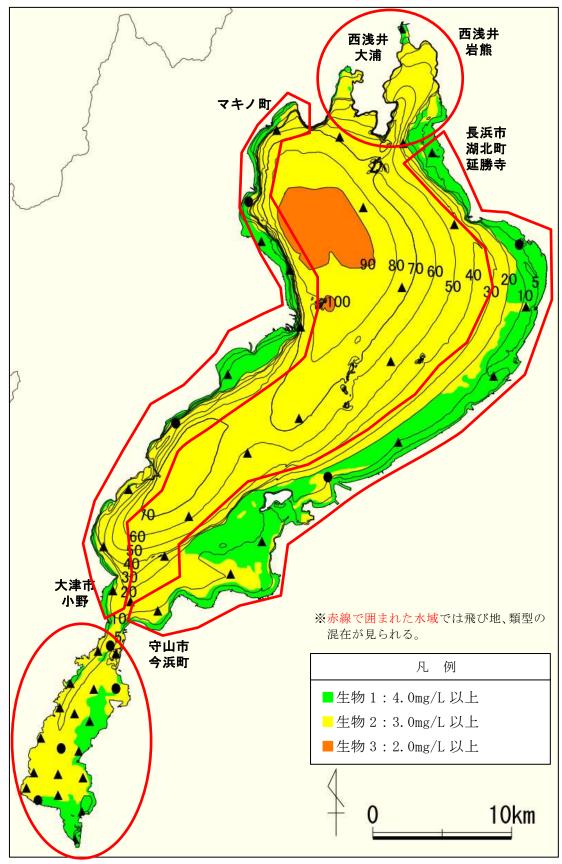
表 5 琵琶湖における保全対象種

					判断項目					
	保全対象種	①計画等	②貧酸素影響	の受けやすさ	③水産利用	月、地域の食文化	、親水利用	④その他の事項		
分類群	保全対象種 (定)	計画等で保全を 図るべき種とさ れている	て、貧酸素化が	て、貧酸素の影 響を受けている	主要な浪獲対象権	地域の食文化か らみて重要(姫 置湖八珍)		地域関係者が必 要としている程 又は物質循環の 保全(水質浄化) において重要	満たした判 定項目の数	総合評価
	コイ (在来型)		•		•	•	•		4/7	市民にとって身近で親しみやすい種であり、 漁獲対象としても古くから重要であるため、 保全対象種に遜定した。
	ニゴロブナ	•	•	•	•	•			5/7	整管湖八珍に選定され、射寿可に用いられるなど、市民にとって身近で親しみやすい種であり、淡賀県としても推薦している食材であるため、保全対象種に選定した。
	ホンモロコ	•	•	•	•	•	•		6/7	多くの判断項目に適合し、発管湖八珍に選定 されるなど、市民にとって身近で親しみやす い種であるため、保全対象種に選定した。
魚類	イ サザ	•		•	•	•			4/7	古くから食用として利用されており、主要な 漁獲対象種であるとともに、地域の食文化と して重要な琵琶湖を代表する種であるため、 保全対象種に選定した。
	イワトコナマズ	•	•		•	•	•		5/7	古くから食用として利用されており、地域の 食文化として重要な発管湖を代表する種であ るため、保全対象種に選定した。
	ピワマス	•			•	•	•	•	5/7	整管湖のシンボル的な魚種であり、底層由来 の生物も採餌することから、底層に依存する 種と考えるべきであるとの地域関係者からの 意見を反映し、保全対象種に進定した。
甲殼類	スジエビ		•	•	•	•			4/7	地域の食文化として重要な種であるため、保 全対象種に選定した。
軟体動物 (貝類)	セタシジミ	•	•	•	•	•	•	•	7/7	多くの判断項目に適合し、古くから食用とされ、貝採りなどを通じて市民にとって身近で 裁しみやすい種であるため、保全対象種に選定した。

オ) 保全対象種における底層溶存酸素量の目標値の設定

「2. (2) 1) か 保全対象種における底層溶存酸素量の種別目標値の設定」の図 2 及び図 3 に基づき、表 6 に示すとおり各保全対象種の種別目標値を設定した。 保全対象種の目標値及び類型を表 6 に示す。

表 6 保全対象種の種別目標値及び類型


年力	発育	設定フロー	目標値	と類型			
種名	段階	番号	目標値	類型			
コイ(在来型)	生息	1	3mg/L	生物 2			
二个 (往来至)	再生産	3	3mg/L	生物 2			
ニゴロブナ	生息	3	2mg/L	生物 3			
	再生産	1	2mg/L	生物 3			
ホンモロコ	生息	1	2mg/L	生物 3			
か/モロコ	再生産	1	3mg/L	生物 2			
イサザ	生息	5	2mg/L	生物 3			
199	再生産	3	3mg/L	生物 2			
イワトコ	生息	5	2mg/L	生物 3			
ナマズ	再生産	3	3mg/L	生物 2			
ビワマス	生息	5	3mg/L	生物 2			
Lyvx	再生産	_	設定しない(琵琶湖で戸	写生産を行わないため)			
スジエビ	生息	1	2mg/L	生物 3			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	再生産	6	4mg/L	生物 1			
セタシジミ	生息	5	2mg/L	生物 3			
ピタンシミ	再生産	6	4mg/L	生物 1			

カ) 保全対象種の生息域及び再生産の場の設定

前述の琵琶湖の保全対象種の生息域及び再生産の場は、各保全対象種の生態特性 (生息又は再生産に適した水深、底質(砂、泥、岩礁等))に係る知見、地域関係者 からの情報を踏まえて設定した。

キ) 保全対象範囲の重ね合わせ

保全対象種 8 種の生息域及び再生産の場を重ね合わせた保全対象範囲は図 7 に示すとおりである。重ねあわせの前の各保全対象種の保全対象範囲は資料編2のとおり。

注)図中の●は公共用水域水質測定における生活環境項目の環境基準点を、▲は補助地点を表す。

図 7 琵琶湖の保全対象範囲の重ね合わせ

り) 水域の特徴に関する考慮事項

i) 過去の底層溶存酸素量の状況

琵琶湖では、継続して貧酸素化(底層溶存酸素量 2mg/L 未満)が顕著になっている水域はみられない。

水深 77m 地点及び 90m 地点における 1950 年以降の観測結果によると、琵琶湖北 湖湖底の溶存酸素濃度は 1950 年代より低下しており、その要因は 1980 年代までは 富栄養化が主であり、1980 年代以降は気候変動による鉛直循環の遅れが主原因であ るとされている。

ii)近年の底層溶存酸素量の状況

北湖の今津沖中央 (17B:資料編2 2-38 頁) が位置する水域は生物 2 類型となる。この今津沖中央 (17B) では、底層溶存酸素量が 3mg/L 未満になる年があるが、他の地点では 3mg/L 以上となっている。

第一湖盆(水深約90m以深)は生物3類型となるが、底層溶存酸素量は2mg/L未満となる年度があるものの、全ての年度で測定されているわけではない。

iii) 底生生物の状況(生物3類型のうち無生物域を解消する範囲について)

北湖の今津沖中央付近では、底層溶存酸素量が 2mg/L 未満を記録したことはあるが継続的に貧酸素水塊が発生したことがないため、底生生物が生息していると考えられることから、無生物域を解消する範囲は設定しない。

南湖において、水草の過繁茂の影響により、平成 19 年 (2007 年) 以降、底層溶存酸素量が 2.0mg/L 未満の水域が存在するようになった。しかしそのような水域が継続的に発生するものとは限らないこと、底生生物への影響が局所的及び限定的であると考えられることから、無生物域を解消する範囲は設定しない。

iv)水域の利用状況等

琵琶湖において埋立てや漁港等の施設により閉鎖的で水交換が悪いと推測される 水域は局所的に存在する。

しかし、既存の環境基準の類型指定では局所的に類型指定している水域はないことから、底層溶存酸素量においても局所的な類型指定はしない。

なお、琵琶湖では、底層が構造上貧酸素化しやすくなっている範囲であって、その利水等の目的で、水生生物が生息できる場の保全・再生を図る必要がないと判断 される範囲は存在していないと考える。そのため**設定除外範囲は設定しない**。

2) 類型指定の検討結果

「1) ‡) 保全対象範囲の重ね合わせ」の検討結果と「1) り) 水域の特徴に関する考慮 事項」の情報に基づいて、琵琶湖の類型指定を検討した。結果は図 8 に示すとおり である。

図 7の保全対象範囲の重ね合わせより、以下の水域については、水環境管理に当たって一体の水域として保全対象範囲の保全を図ることが適当と考えられるため類型をまとめた。

- 北湖の西浅井岩熊地先及び西浅井大浦地先では水深 50m までの水域を沖合と同じ 生物 1 類型としてまとめた (図 8 の線 A 参照)。
- 北湖のマキノ町地先から大津市小野地先においても、沿岸部に生物 1 類型等の飛び地があることから、それらを包括できるように水深 30m~60m までの水域を生物 1 類型としてまとめた (図 8 の線 B 参照)。
- 北湖の長浜市湖北町延勝寺地先から守山市今浜町地先において、沿岸部に生物 2 類型の飛び地があること、水深 20m 前後で底質の性状に依存した複雑な類型が存在しており、公共用水域の常時監視の運用が複雑になり、管理に支障が生じる場合も考えられることから、それらを包括できるように、水深 20m 以浅の水域を生物 1 類型としてまとめた (図 8 の線 C 参照)。
- 北湖には第一湖盆の南側に飛び地となっている生物 3 類型が存在している。<u>この</u>水域に関しても生物 2 類型の水域内に存在していることから、包括できるように生物 2 類型としてまとめることとする(図 8 参照)。
- 南湖において、生物 1 類型と生物 2 類型が混在していることから生物 1 類型とする。

3) 目標とする達成率及び達成期間

琵琶湖において、今後、底層溶存酸素量を評価するための測定地点を設定し、5年程度の測定結果及び達成率の状況を踏まえて、目標とする達成率及び達成期間を決定する。

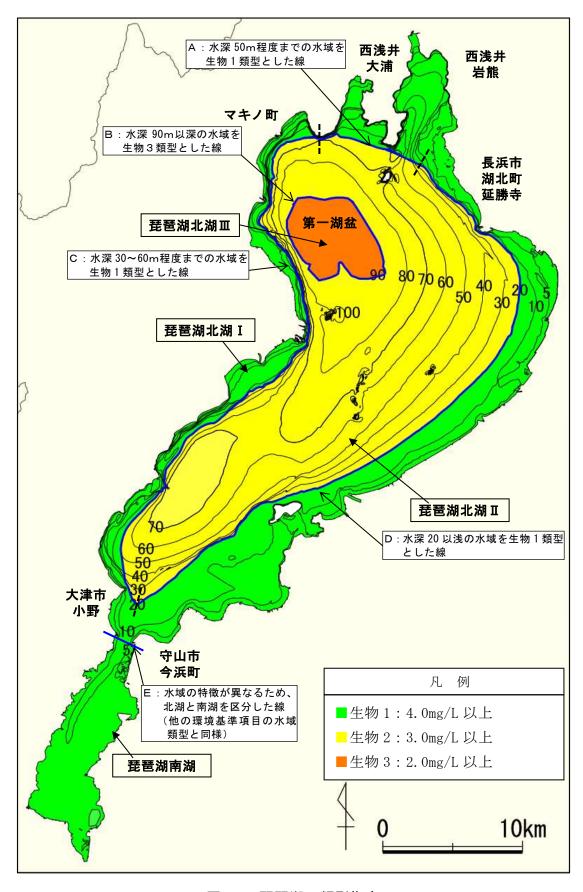


図 8 琵琶湖の類型指定

底層溶存酸素量に関する東京湾の類型指定検討結果

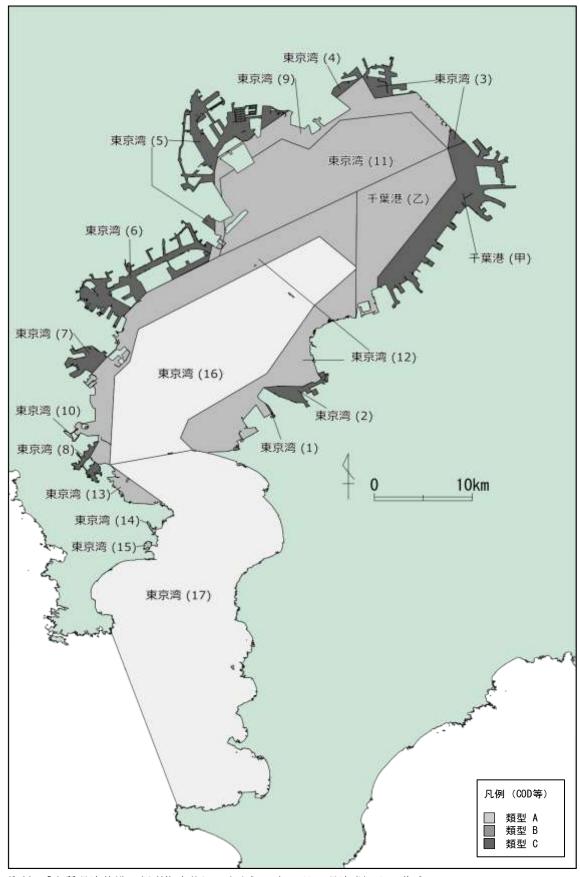
一 目 次 一

1. 保全対象種	重の観点・水域の特徴の観点1-1
1.1 水域特	性の情報整理1-1
1.1.1 既	存の類型指定に関する情報1-1
(1)	類型指定状況1-1
(2)	環境基準点1-1
(3)	類型指定時の設定根拠と利用目的1-7
(4)	類型指定時から変化していると考えられる場合の現在の水域の利用目的1-9
1.1.2 水	質の状況1-10
(1)	赤潮・青潮、貧酸素水塊の発生状況1-10
(2)	水質測定結果1-12
(3)	流入汚濁負荷量1-26
(4)	底層溶存酸素量の分布1-27
1.1.3 底	質の状況1-75
(1)	底質の分布状況1-75
(2)	底質の経年変化1-76
(3)	総量規制開始前の底質の状況1-79
(4)	底質変化の要因や影響1-79
(5)	底生生物の状況1-81
1.1.4 水	域の地形及び流況等1-85
(1)	海底の地形(水深)1-85
(2)	潮流1-86
(3)	埋立ての変遷1-87
1.1.5 水	域の利用状況1-89
(1)	港湾1-89
(2)	港湾区域・航路1-90
(3)	水浴場1-91
(4)	国立公園・国定公園等1-92
1.1.6 藻	場・干潟の状況1-93
1.1.7 水	産等に関する情報1-95
(1)	漁獲量の経年変化1-95
(2)	区画漁業権1-99
(3)	主要水産物の漁場1-100
(4)	プランクトン量1-103
1.2 水生生	物の生息状況等の把握1−107

3 生態特性を考慮した検討対象種の抽出(東京湾)	. 1-111
.4 保全対象種の設定	. 1-113
.5 保全対象種における底層溶存酸素量の目標値の設定	. 1-116
(1) マアナゴ	. 1-116
(2) シロギス	. 1-116
(3) マハゼ	. 1-116
(4) ヒラメ	. 1-116
(5) マコガレイ	. 1-117
(6) クルマエビ	. 1-117
(7) シャコ	. 1-117
(8) コウイカ	. 1-117
(9) アサリ	. 1-118
(10) ハマグリ	. 1-118
(11) アカガイ	. 1-118
(12) マナマコ	. 1-118
.6 保全対象種の生息域及び再生産の場の設定	. 1-123
(1) マアナゴ	. 1-125
(2) シロギス	. 1-127
(3) マハゼ	. 1-129
(4) ヒラメ	. 1-131
(5) マコガレイ	. 1-134
(6) クルマエビ	. 1-136
(7) シャコ	. 1-138
(8) コウイカ	. 1-140
(9) アサリ	. 1-141
(10) ハマグリ	. 1-143
(11) アカガイ	
(12) マナマコ	
7 保全対象範囲の重ね合わせ	. 1-148
8 水域の特徴に関する考慮事項	
(1) 過去の底層溶存酸素量の状況	. 1-150
(2) 近年の底層溶存酸素量の状況	
(3) 底生生物の状況(生物3類型のうち無生物域を解消する範囲について).	. 1-150
(4) 埋立てや港湾施設の建設に伴う流動変化により海水交換が悪い水域	. 1-151
東京湾の類型指定の設定結果	. 1-157
2.1 東京湾の類型指定の設定結果	1-157

1. 保全対象種の観点・水域の特徴の観点

1.1 水域特性の情報整理


1.1.1 既存の類型指定に関する情報

(1)類型指定状況

東京湾における COD 等の環境基準の類型指定は図 1.1.1、全窒素・全燐における 環境基準の類型指定は図 1.1.2、水生生物保全環境基準項目の類型指定は図 1.1.3 に示すとおりである。

(2) 環境基準点

東京湾における COD 等の環境基準点は図 1.1.4、全窒素・全燐における環境基準 点は図 1.1.5 に示すとおりである。

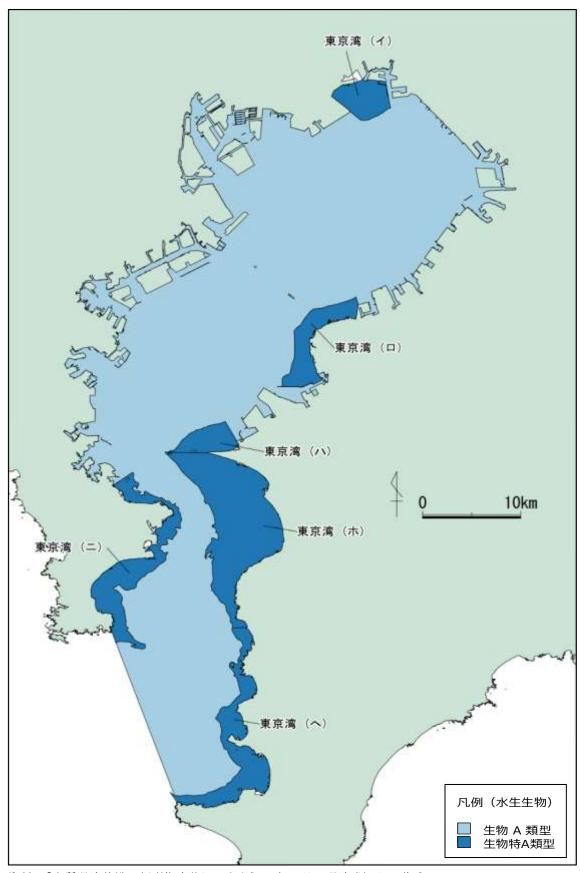

資料:「水質環境基準の類型指定状況」(平成17年3月、環境省)より作成

図 1.1.1 水質汚濁に係る環境基準の類型指定 (COD)

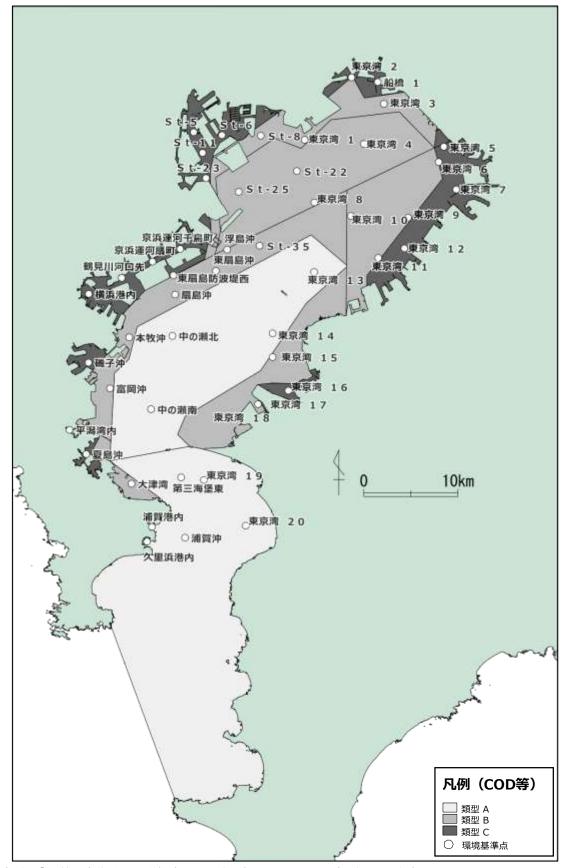

資料:「水質環境基準の類型指定状況」(平成17年3月、環境省)より作成

図 1.1.2 水質汚濁に係る環境基準の類型指定(全窒素・全燐)

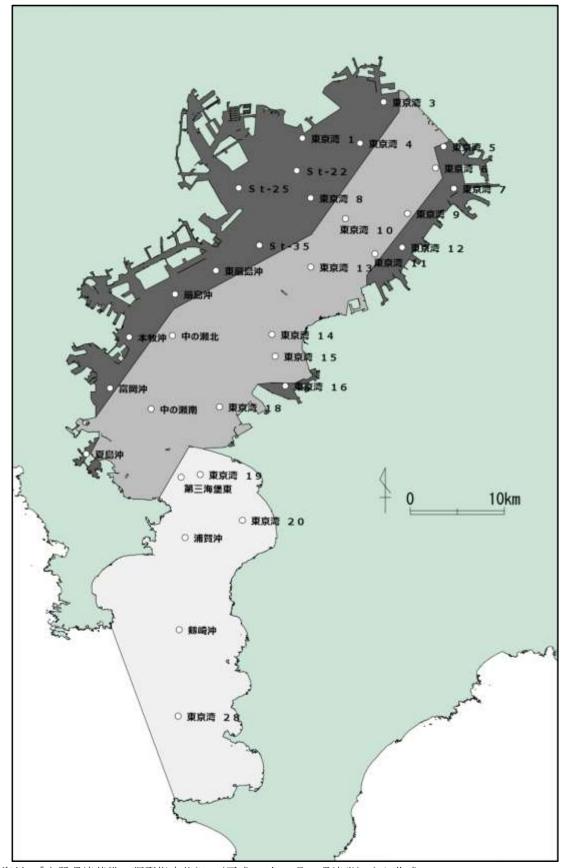

資料:「水質環境基準の類型指定状況」(平成17年3月、環境省)より作成

図 1.1.3 水生生物の保全に係る水質環境基準の類型指定

資料:「水質環境基準の類型指定状況」(平成17年3月、環境省)より作成

図 1.1.4 水質汚濁に係る環境基準点 (COD)

資料:「水質環境基準の類型指定状況」(平成17年3月、環境省)より作成

図 1.1.5 水質汚濁に係る環境基準点(全窒素・全燐)

(3) 類型指定時の設定根拠と利用目的

東京湾における COD 等の環境基準の類型別利用目的の適応性と設定根拠は表 1.1.1、全窒素・全燐における環境基準の類型別利用目的の適応性と設定根拠は表 1.1.2、水生生物の保全に係る水質環境基準の類型指定の適応性と設定根拠は表 1.1.3に示すとおりである。

表 1.1.1 COD における環境基準の類型別利用目的の適応性と設定根拠

類型	利用目的の適応性	東京湾における類型設定根拠
A	水産1級、水浴、自然環境保全 及びB以下の欄に掲げるもの	水質基準設定の基本的な考え方 (1) 水質保全の目的 東京湾水域の近年の急速な汚濁進行にかんがみ将来 における沿岸の人口増加および工業発展による、これ以 上の汚濁を防止するとともに湾内の水産生物を保護し、 環境保全上の問題を解決するために、更に積極的な水質
В	水産2級、工業用水及びCの欄 に掲げるもの	環境保主工の问題を解決するために、更に積極的な水質 改善を計ることとする。このため、既設工場等に対して は、技術的、経済的に可能なできる限り厳しい排水規制 を行うとともに、新設工場等については更に厳しい規制 を行なうものとする。また、東京湾に流入する諸河川からの汚濁負荷量が東京湾汚濁の大きな要因となってい ることから、水質保全法により既に指定されている河川 を除く全流入河川への排水についても規制を行なう。 (2)指定水域の範囲 指定水域は千葉県館山市洲崎と神奈川県三浦市剣崎 とを結ぶ線と陸岸により囲まれた海域およびこれに流 入する公共用水域とする。ただし、既指定水域を除く。
С	環境保全	

- 注) COD 等の利用目的の適応性の内容は以下のとおりである。
 - 1. 自然環境保全:自然探勝等の環境保全
 - 2. 水産1級:マダイ、ブリ、ワカメ等の水産生物用及び水産2級の水産生物用水産2級:ボラ、ノリ等の水産生物用
- 3. 環境保全:国民の日常生活(沿岸の遊歩等を含む。)において不快感を生じない限度 資料:「東京湾水域における水質基準設定のための基本的な考え方」(昭和46年4月、経済企画庁国民生活局)

表 1.1.2 全窒素・全燐における環境基準の類型別利用目的の適応性と設定根拠

類型	利用目的の適応性	東京湾における類型設定根拠
I	自然環境保全及びⅡ以下の 欄に掲げるもの (水産2種及び3種を除く。)	該当なし
П	水産 1 種、水浴及びⅢ以下の 欄に掲げるもの (水産 2 種及び 3 種を除く。)	【東京湾(ホ)】湾口部 現在及び将来における主たる水域利用は、水産1種 に該当する水産、水浴であること等から、全窒素及び全 燐の環境基準は類型Ⅱをあてはめるものとする。なお、 当該水域の現状の平均的な水質は、全窒素及び全燐に ついて、おおむね類型Ⅲのレベルにある。
Ш	水産 2 種及びIVの欄に掲げるもの(水産3種を除く。)	【東京湾(二)】習志野市沖から横須賀市沖に位置 現在及び将来における主たる水域利用は、水産2種 に該当する水産、人工海浜における水浴であること等 から、全窒素及び全燐の環境基準は類型Ⅲをあてはめ るものとする。なお、当該水域の現状の平均的な水質 は、全窒素及び全燐について、おおむね類型Ⅳのレベル にある。
IV	水産3種、工業用水、生物生息環境保全	【千葉港(甲)】 現在及び将来における主たる水域利用は工業用水であること等から、類型IVをあてはめるものとする。当該水域の現状の平均的な水質は、全窒素については類型IVのレベルにある。 【東京湾(イ)及び東京湾(ハ)】 現在及び将来における主たる水域利用は工業用水であること等から、類型IVをあてはめるものとする。なお、当該水域の現状の平均的な水質は、いずれの水域も全窒素及び全燐について、おおむね類型IVのレベルにある。 【東京湾(ロ)水域】東京港、川崎港及び横浜港を含む湾奥部 現在及び将来における主たる水域利用は、ノリ漁場、工業用水であること等から、全窒素及び全燐の環境基準は類型IVをあてはめるものとする。なお、当該水域の現状の平均的な水質は、全窒素及び全燐について、類型IVを超えるレベルにある。

- 注) 全窒素及び全燐の利用目的の適応性の内容は以下のとおりである。
 - 1. 自然環境保全:自然探勝等の環境保全
 - 2. 水産1種:底生魚介類を含め多様な水産生物がバランス良く、かつ、安定して漁獲される水産2種:一部の底生魚介類を除き、魚類を中心とした水産生物が多獲される

水産3種:汚濁に強い特定の水産生物が主に漁獲される

- 3. 生物生息環境保全:年間を通して底生生物が生息できる限度
- 資料:「東京湾の全窒素及び全燐に係る環境基準の水域類型の指定について(報告)」(平成6年12月、中央環境審議会水質部会海域環境基準専門委員会)

表 1.1.3 水生生物の保全に係る水質環境基準の類型指定の適応性と設定根拠

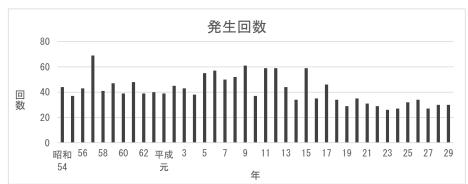
類型	水生生物の生息状況の適応性	東京湾における類型設定根拠
生物 A	水生生物の生息する水域	東京湾では、全域(生物特Aに指定される水域を除く)が生物Aすることが適当である。また、三番瀬(干
生物 特 A	生物 A の水域のうち、水生生物の産卵場 (繁殖場) 又は幼稚仔の生育場として特に保全が必要な水域	湯部及びその周辺にあるおおむね水深 5m 以浅の水域)、盤洲干潟(干潟部(アマモ場を含む)及びその周辺にあるおおむね水深 5m 以浅の水域)、富津干潟(干潟部(アマモ場を含む)及びその周辺にあるおおむね水深 10m 以浅の水域)、三浦半島(三浦市猿島周辺海域から三浦市剣崎の間)の岩礁性藻場及びその周辺の浅場、内房沿岸(富津岬周辺から富津市及び鋸南町の境界周辺の間)の浅場について生物特 A に指定することが適当である。また、その後、東京湾内房南部沿岸海域の浅場においても魚卵及び稚仔魚が確認されたことから、平成24年(2012年)に追加で生物特 A に指定された。

資料:「水生生物の保全に係る水質環境基準の類型指定について(第2次報告)」(平成20年6月、中央環境審議会水環境部会 水生生物保全環境基準類型指定専門委員会)

「水生生物の保全に係る水質環境基準の類型指定について (第5次報告)」(平成24年3月、中央環境審議会水環境部会 水生生物保全環境基準類型指定専門委員会)

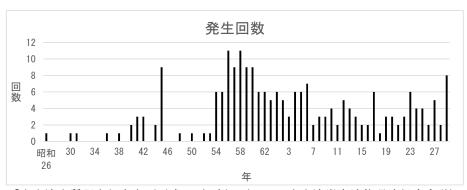
(4) 類型指定時から変化していると考えられる場合の現在の水域の利用目的

東京湾における現在の水域の利用目的を調べた結果、類型指定時から変化していなかった。


1.1.2 水質の状況

(1) 赤潮・青潮、貧酸素水塊の発生状況

赤潮の発生状況は図 1.1.6 に示すとおりであり、昭和 54 年 (1979 年) ~平成 4 年 (1992 年) 頃までは年 40 回前後の発生回数であったが、平成 5 年 (1993 年) ~ 平成 15 年 (2003 年) 頃は年 50 回程度の発生回数となり、平成 18 年 (2006 年) 以降は減少して年 30 回程度となっている。


青潮の発生状況は図 1.1.7 に示すとおりであり、年度によって回数にばらつきがあるものの、昭和 45 年 (1970 年) に 9 回と過年度に比べ回数が多くなり、昭和 54 年 (1979 年) 以降は、昭和 56 年 (1981 年) ~昭和 58 年 (1983 年) をピーク (10 回前後) に増加傾向にあり、平成 7 年以降は 1 回~6 回程度となっていたが、平成 29 年度は 8 回と増加した。

貧酸素水塊の状況は図 1.1.8 に示すとおりであり、平成 13 年 (2001 年) では 35 回以上確認されているが、以降は、25 回程度で推移している。

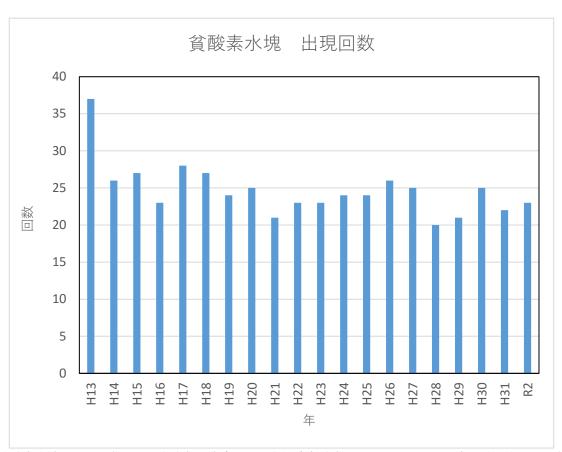

資料:「平成17年版 環境統計集」(2005、環境省総合環境政策局) 「東京湾水質調査報告書(平成24年度)」(2014、東京湾岸自治体環境保全会議) 「東京湾水質調査報告書(平成29年度)2017」(平成31年3月、東京湾岸自治体環境保全会議)より作成

図 1.1.6 東京湾における赤潮の発生回数

資料:「東京湾水質調査報告書(平成24年度)」(2014、東京湾岸自治体環境保全会議) 「平成17年版 環境統計集」(2005、環境省総合環境政策局) 「東京湾水質調査報告書(平成29年度)2017」(平成31年3月、東京湾岸自治体環境保全会議) 千葉県環境研究センター資料より作成

図 1.1.7 東京湾における青潮の発生回数

注)貧酸素水塊の出現回数とは、貧酸素水塊速報より底層溶存酸素量 2.5 mg/L 以下の地点が確認された回数を意味する。貧酸水塊速報は貧酸素水塊が確認された日から基本的に週 1 回の観測結果が公開されている。公開は、2 回連続で貧酸素水塊が確認されず、今後、広範囲にわたる貧酸素水塊は発生しないと判断されると終了する。貧酸素水塊の観測は千葉県水産総合研究センターが関係機関(神奈川県水産技術センター、内湾底びき網研究会連合会、東京都環境局、千葉県環境研究センター、海上保安庁海洋情報部、第三管区海上保安本部)と協同で実施されている。

資料:千葉県水産総合研究センター資料

図 1.1.8 貧酸素水塊の出現回数

(2) 水質測定結果

東京湾における公共用水域水質測定結果について、千葉県の測定した地点及び結果は図 1.1.9~図 1.1.14 に、東京都の測定した地点及び結果は図 1.1.15~図 1.1.16 に、神奈川県の測定した地点及び結果は図 1.1.17~図 1.1.21 に示すとおりである。

千葉県(図 1.1.10~図 1.1.14)は、湾奥部と内房一帯に調査地点を設けている。COD(年平均値)の経年変化をみると、平成3年度(1991年度)頃までは減少傾向にあるが、それ以降はほぼ横ばいである。COD75%値の経年変化をみると、平成3年度(1991年度)頃まではCODと同様に減少傾向であるが、それ以降は変動しつつもほぼ横ばいである。全窒素及び全燐の経年変化をみると、測定が始まった平成7年度(1995年度)から緩やかな減少傾向にある。

東京都(図 1.1.15~図 1.1.16) は、東京湾の湾奥部の隅田川、荒川、中川及び旧江戸川河口付近とその沖合に調査地点を設けている。COD の経年変化をみると、測定が始まった昭和60年度(1985年度)頃から緩やかな減少傾向にある。COD 75%値の経年変化をみると、昭和4年度(1992年度)頃まで減少傾向にあったが、平成6年度(1994年度)頃に上昇し、それ以降は変動しつつもほぼ横ばいである。窒素の経年変化をみると、測定が始まった平成7年度(1995年度)から緩やかな減少傾向にあり、全燐の経年変化をみると、平成23年度(2011年度)まで変動しながら減少傾向であったが、平成24年度(2012年度)以降は上昇傾向を示している。

神奈川県(図 1.1.18~図 1.1.21) は、多摩川、鶴見川の河口付近から三浦半島を経て湾口に至る沿岸一帯に調査地点を設けている。COD の経年変化をみると、平成3年度(1991年度)頃までは減少傾向であるが、平成15年度(2003年度)以降は全観測地点でほぼ横ばいであり、COD 75%値の経年変化をみると、平成3年度(1991年度)頃までは減少傾向であるが、それ以降は変動しつつもほぼ横ばいである。ほとんどの観測地点における全窒素の経年変化をみると、測定が始まった平成7年度(1995年度)から緩やかな減少傾向にあり、全燐の経年変化をみると、測定が始まった平成7年度(1995年度)からほぼ横ばいである。

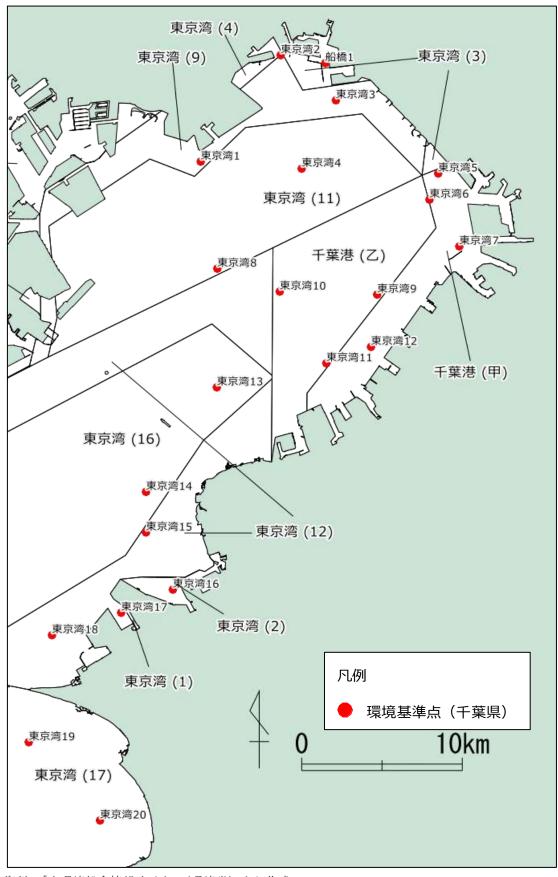
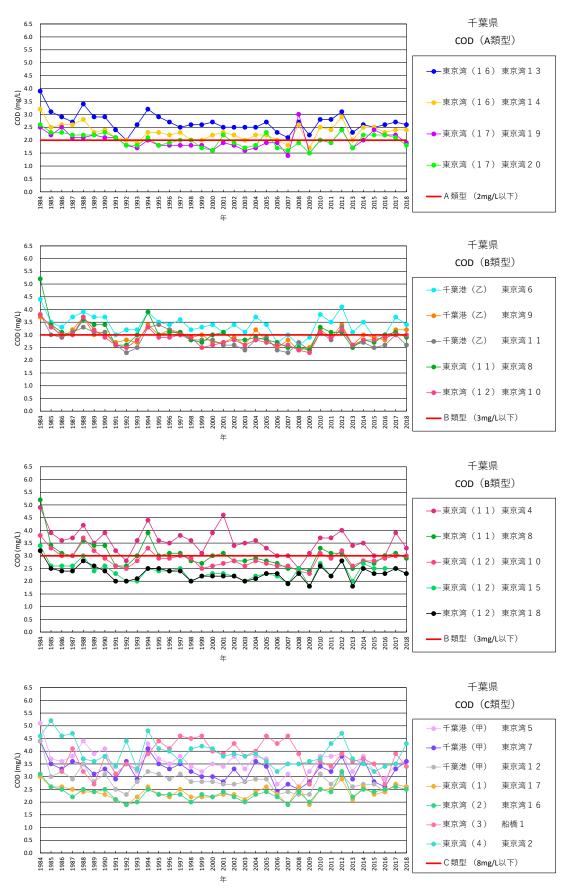
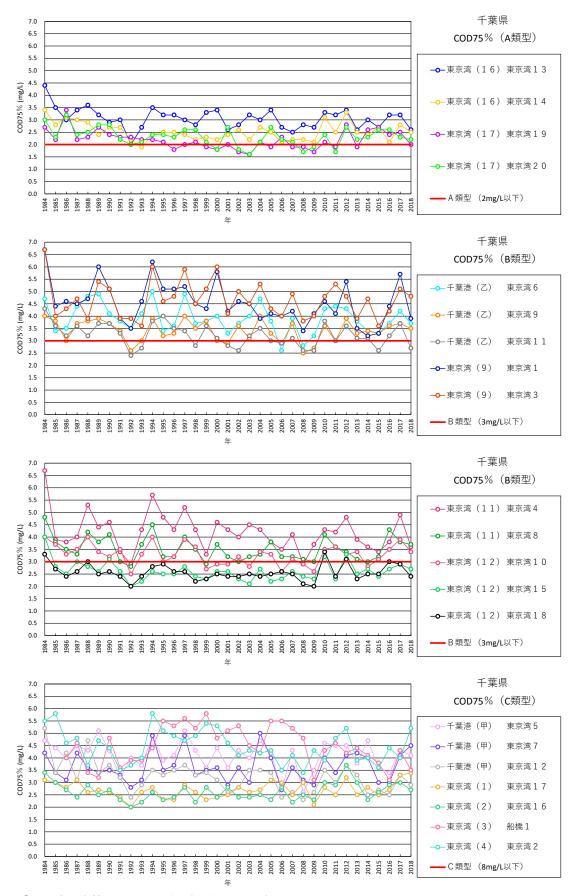




図 1.1.9 東京湾における公共用水域水質測定地点:千葉県

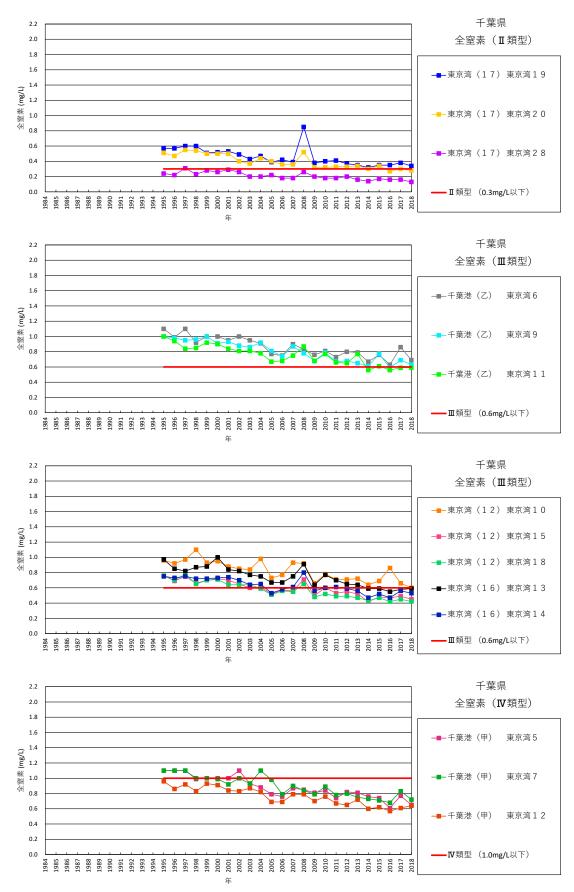

資料:「水環境総合情報サイト」(環境省)より作成

図 1.1.10 東京湾における公共用水域水質測定結果:千葉県(COD)

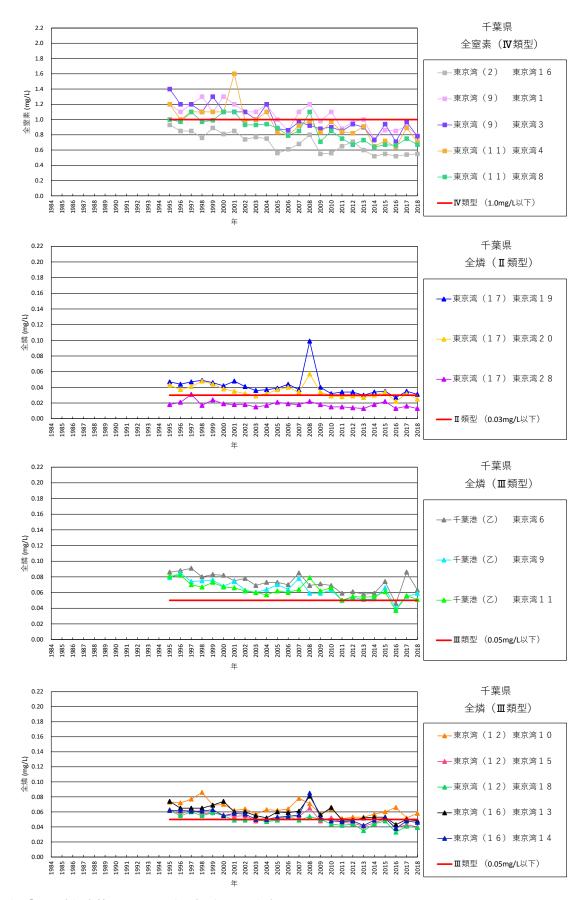

資料:「水環境総合情報サイト」(環境省)より作成

図 1.1.11 東京湾における公共用水域水質測定結果:千葉県(COD 75%値)

資料:「水環境総合情報サイト」(環境省)より作成

図 1.1.12 東京湾における公共用水域水質測定結果:千葉県(全窒素)

資料:「水環境総合情報サイト」(環境省)より作成

図 1.1.13 東京湾における公共用水域水質測定結果:千葉県(全窒素・全燐)

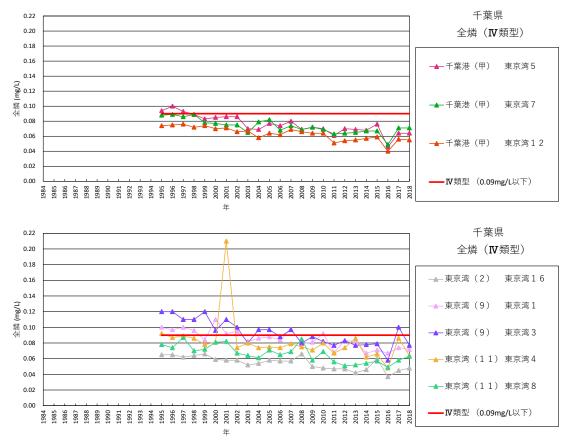
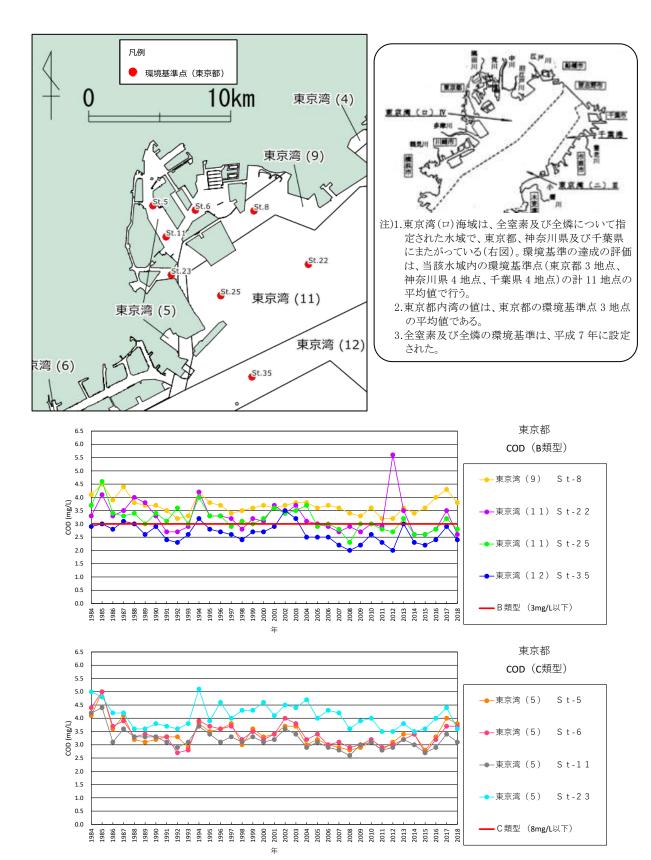
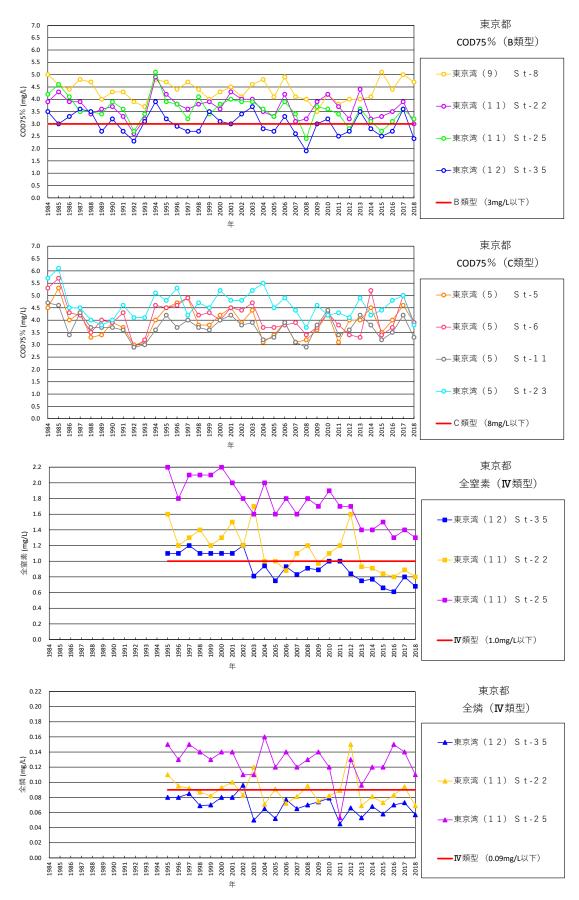




図 1.1.14 東京湾における公共用水域水質測定結果:千葉県(全燐)

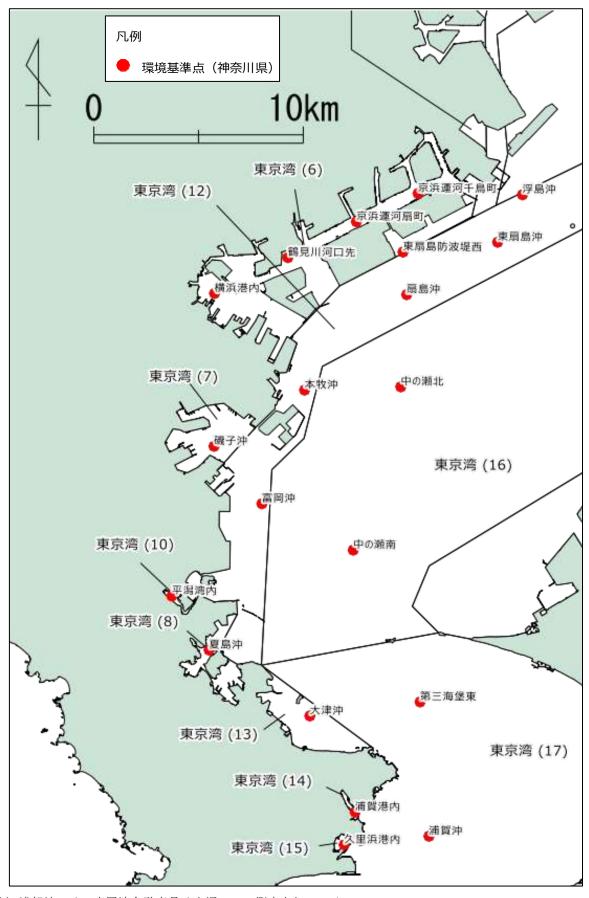

資料:「水環境総合情報サイト」(環境省)より作成

図 1.1.15 東京湾における公共用水域水質測定地点及び測定結果:東京都 (COD)

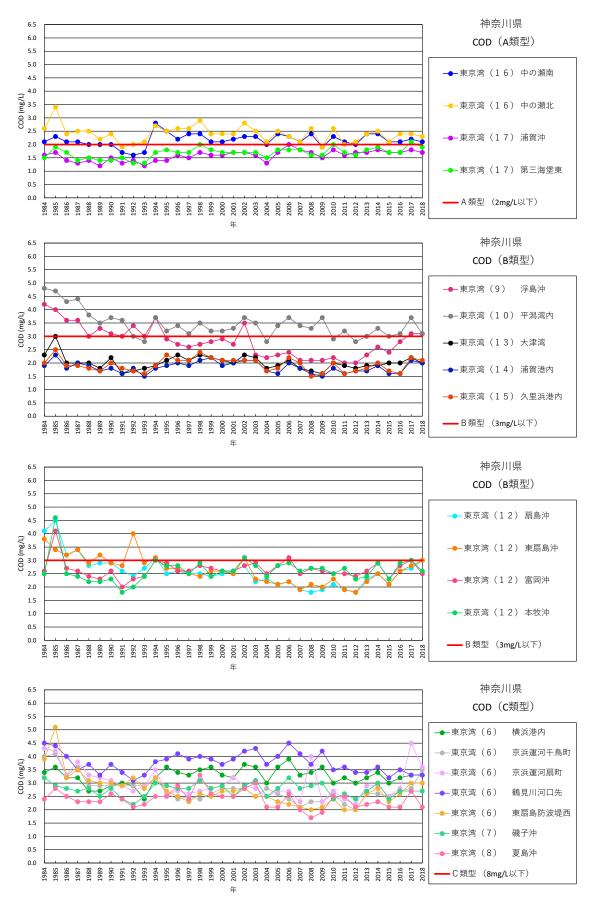

資料:「水環境総合情報サイト」(環境省)より作成

図 1.1.16 東京湾における公共用水域水質測定結果:東京都 (COD 75%値・全窒素・全燐)

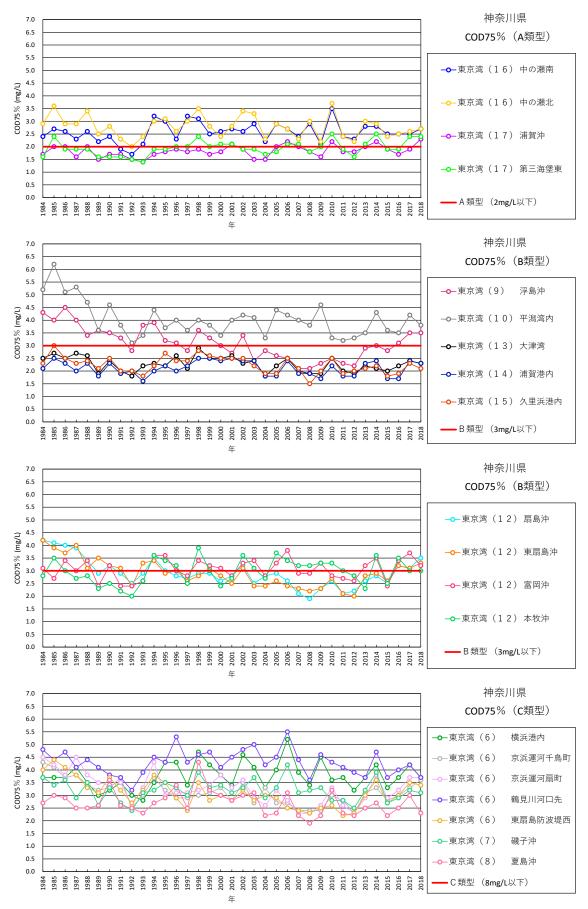

注) 浦賀沖では、底層溶存酸素量は水深 50m で測定されている。

図 1.1.17 東京湾における公共用水域水質測定地点:神奈川県

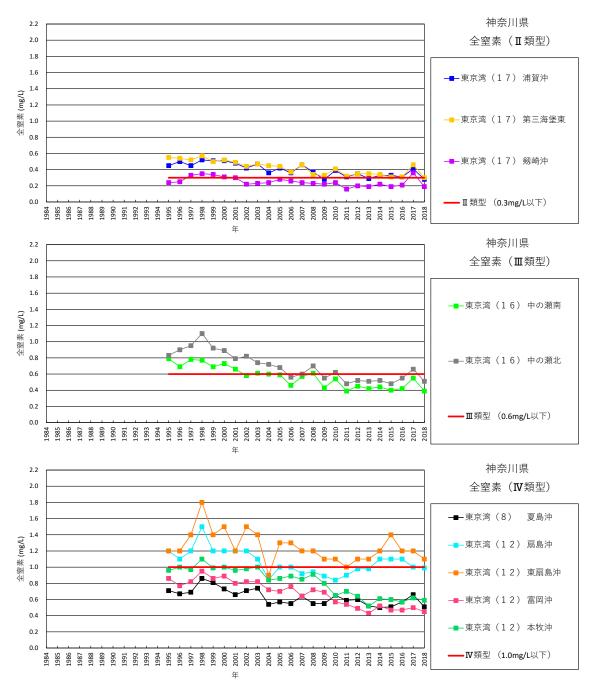

注)浦賀沖では、底層溶存酸素量は水深 50m で測定されている。

図 1.1.18 東京湾における公共用水域水質測定結果:神奈川県 (COD)

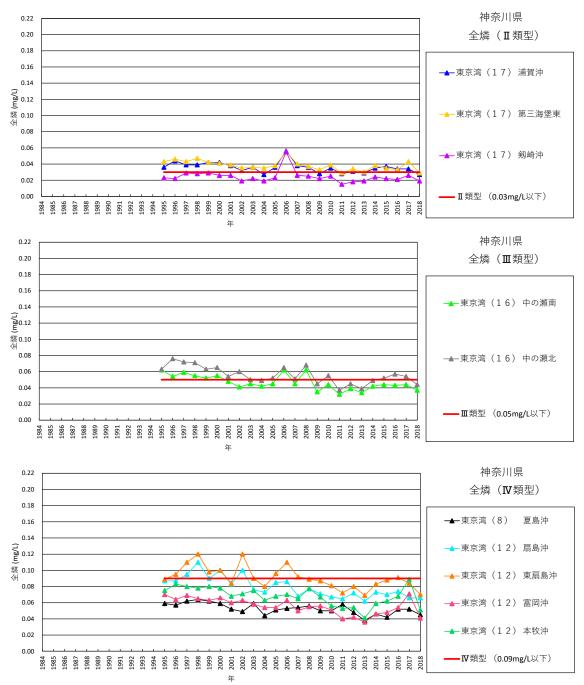

注)浦賀沖では、底層溶存酸素量は水深 50m で測定されている。

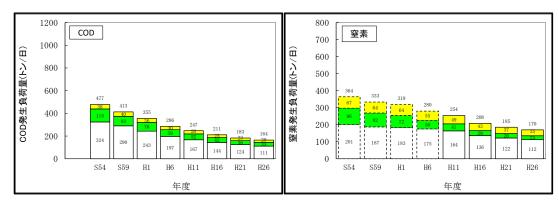
図 1.1.19 東京湾における公共用水域水質測定結果:神奈川県 (COD75%値)

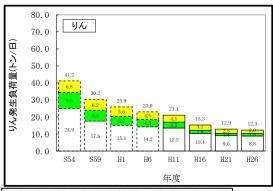
注)浦賀沖では、底層溶存酸素量は水深 50m で測定されている。

図 1.1.20 東京湾における公共用水域水質測定結果:神奈川県(全窒素)

注)浦賀沖では、底層溶存酸素量は水深 50m で測定されている。

図 1.1.21 東京湾における公共用水域水質測定結果:神奈川県(全燐)


(3) 流入汚濁負荷量


東京湾における流入汚濁負荷量の状況は図 1.1.22 に示すとおりである。

COD については、昭和 54 年度(1979 年度)は 477t/日であったのに対し、平成 26 年度(2014 年度)は 164t/日となり、昭和 54 年度(1979 年度)~平成 26 年度(2014 年度)の削減率は 66%となっている。

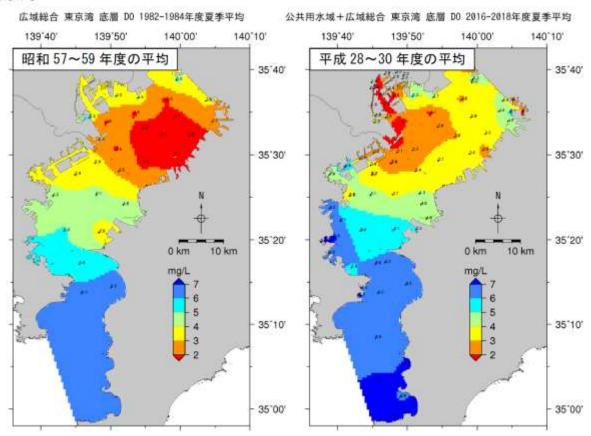
窒素については、平成 11 年度 (1999 年度) は 254t/日であったのに対し、平成 26 年度 (2014 年度) は 170t/日となり、この間の削減率は 33%となっている。

燐については、平成11年度(1999年度)は21.1t/日であったのに対し、平成26年度(2014年度)は12.3t/日となり、この間の削減率は42%となっている。

□生活系 □産業系 □その他系

注) 点線の棒グラフは、関係都府県による推計結果。

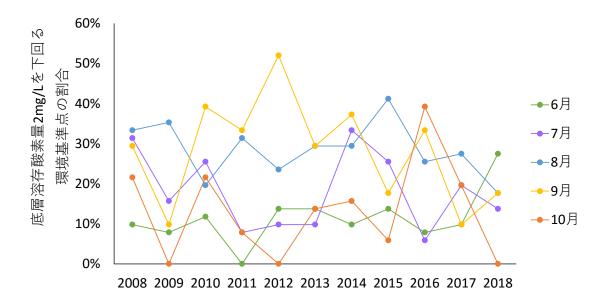
資料:「発生負荷量管理等調査」(環境省)及び関係都府県による推計結果


図 1.1.22 指定地域における汚濁負荷量(COD・窒素・燐)の推移

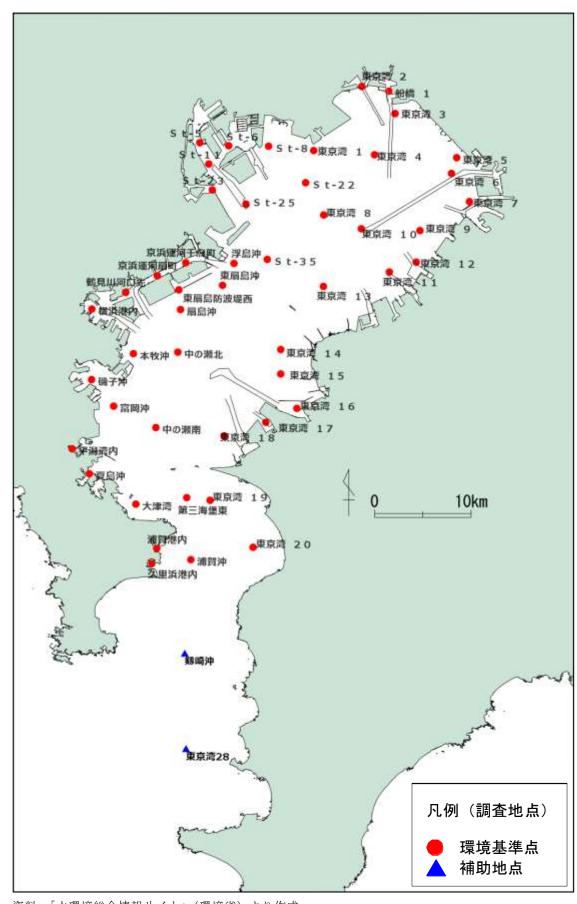
(4) 底層溶存酸素量の分布

1) 近年(昭和57年(1982年)以降)における底層溶存酸素量の分布

昭和57年度(1982年度)~昭和59年度(1984年度)と平成28年度(2016年度) ~平成30年度(2018年度)の夏季の底層溶存酸素量の水平分布図は、図 1.1.23に 示すとおりである。これらの図を比較すると、東京湾では、湾奥部の一部で底層溶存 酸素量の上昇した水域が見られるものの、湾奥部全体として底層溶存酸素量は低い。

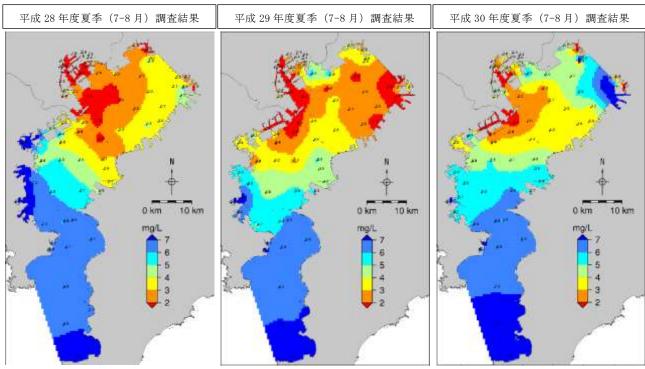

〈東京湾〉

注) 平成 28 年度 (2016 年度) ~平成 30 年度 (2018 年度) の分布図は、昭和 57 年度 (1982 年度) ~昭和 59 年度 (1984 年度) の分布図に比べて作成に用いた測定点数が多い。また、水質水平分図の作成における地点間補間については、地点間の内外を問わず、拡散方程式に従った空間補間の方法により行われている。資料:「指定水域における水環境の状況 (中央環境審議会 水環境部会 総量削減専門委員会 (9次) (第5回)参考資料 2)」(2015、中央環境審議会)


図 1.1.23 昭和 57 年 (1982 年) ~昭和 59 年 (1984 年) 頃と近年における夏季の底層 溶存酸素量の分布の比較

過去 10 年間の公共用水域水質測定地点における 6 月~10 月の底層溶存酸素量が 2mg/L を下回った地点の割合の推移は図 1.1.24 に示すとおりである。2mg/L を下回る地点は 7 月~9 月に比較的多く、年によっては半数以上の地点で 2mg/L を下回っている。このことから、一定規模の貧酸素水塊が毎年夏季に発生していることが分かる。

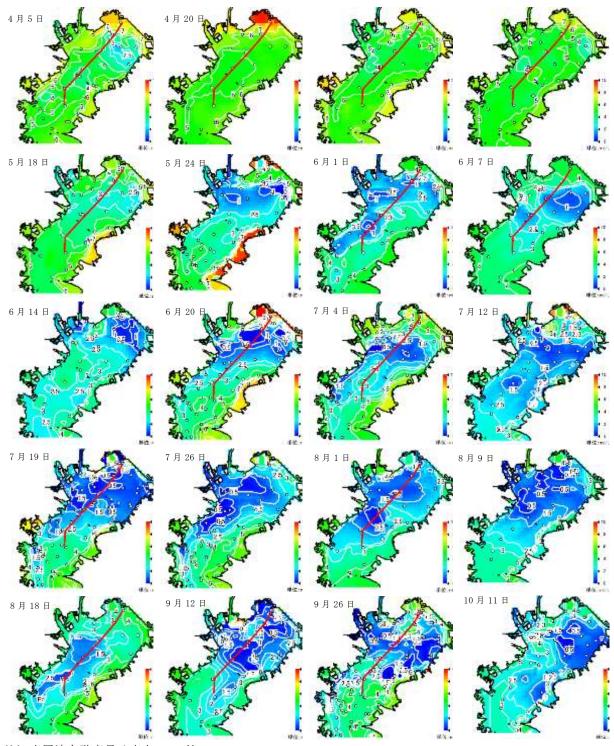
注)公共用水域水質測定地点のうち、図 1.1.25 に示す調査地点の結果を用いている。 資料:「水環境総合情報サイト」(環境省)より作成


図 1.1.24 底層溶存酸素量が 2mg/L を下回る地点の割合

資料:「水環境総合情報サイト」(環境省)より作成

図 1.1.25 底層溶存酸素量が 2mg/L を下回る地点の割合算出の対象地点 (公共用水域)

平成28年度(2016年度)~平成30年度(2018年度)の東京湾における夏季の底層溶存酸素量の水平分布では、湾奥部において貧酸素傾向が強く、いずれの年も湾奥部に底層溶存酸素量が2mg/Lを下回る海域が広く存在していることがわかる(図1.1.26)。また、東京湾の関係自治体による最近の調査結果においても、大規模な貧酸素水塊が数ヶ月にわたって存在していることが明らかになっている(図1.1.27~図1.1.31)。



- 注) 1. 図は、広域総合水質調査及び公共用水域水質調査で行われている調査のうち、一般的に底層溶存酸素量が低下する傾向にある夏季を対象として、各県において広域総合水質調査が実施された月の調査の結果を用いて作成した(平成28年(2016年):神奈川県7月、千葉県・東京都8月(対象観測地点数70地点)、平成29年(2017年):神奈川県7月、千葉県・東京都8月(対象観測地点数70地点)、平成30年(2018年):全て8月(対象観測地点数71地点))。
 - 2. 作成した年度は、平成 28 年度 (2016 年度) ~平成 30 年度 (2018 年度) をそれぞれ抽出した。
 - 3. 図中の数字は、近傍黒丸地点での測定された底層溶存酸素量を表し、分布は測定結果から内挿及び外挿を行うことにより作成した。
 - 4. 広域総合水質調査及び公共用水域水質調査の調査地点が重複した場合は、平均した値を用いて作成した。
 - 5. 気象状況から、作成に用いた観測期間中に大雨等の気象の変化は確認されなかった。

資料:「広域総合水質調査」(環境省)

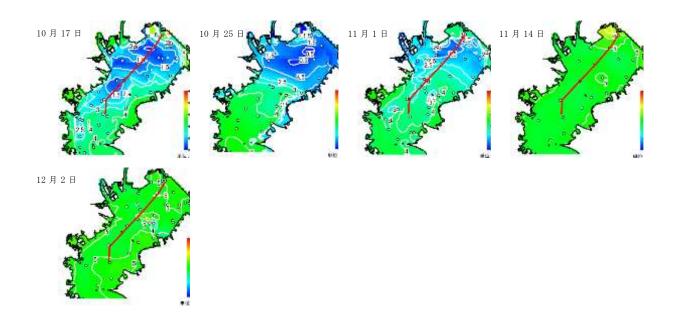

「公共用水域水質調査」(環境省)より作成

図 1.1.26 東京湾における夏季の底層溶存酸素量の分布 (平成 28 年度 (2016 年度) ~平成 30 年度 (2018 年度))

注) 底層溶存酸素量は底上 1m の値 資料:千葉県水産総合研究センター資料

図 1.1.27 (1) 東京湾における底層溶存酸素量の分布 (平成 28 年度 (2016 年度))

注) 底層溶存酸素量は底上 1m の値 資料:千葉県水産総合研究センター資料

図 1.1.27 (2) 東京湾における底層溶存酸素量の分布 (平成 28 年度 (2016 年度))

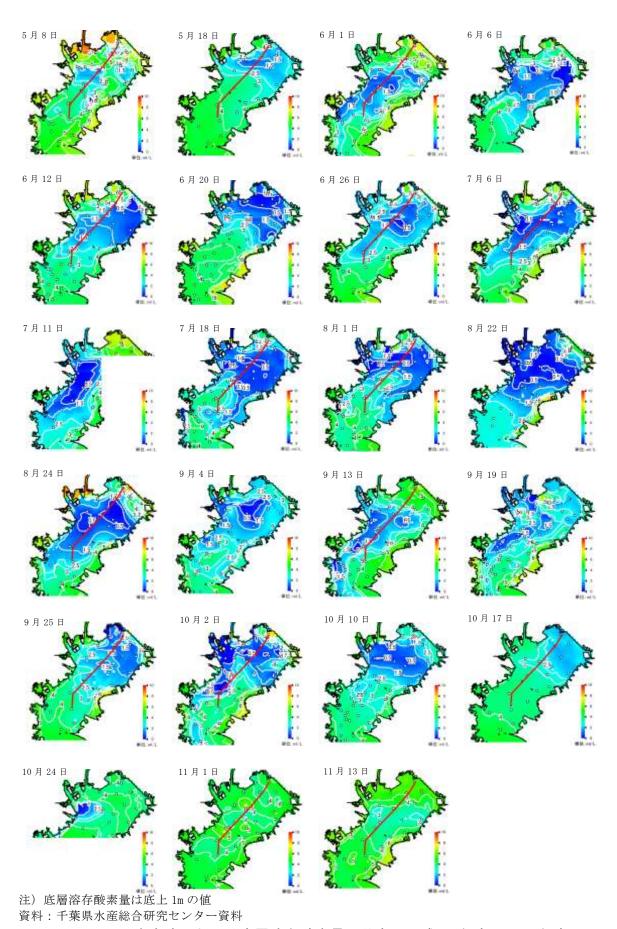
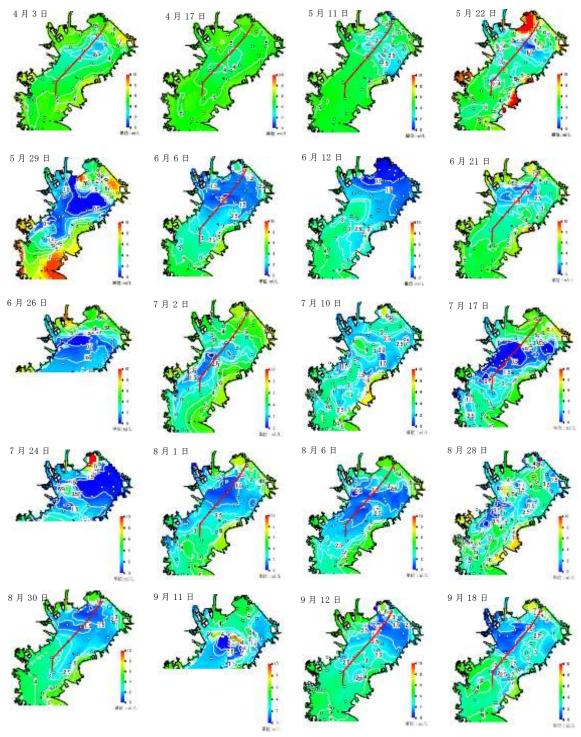
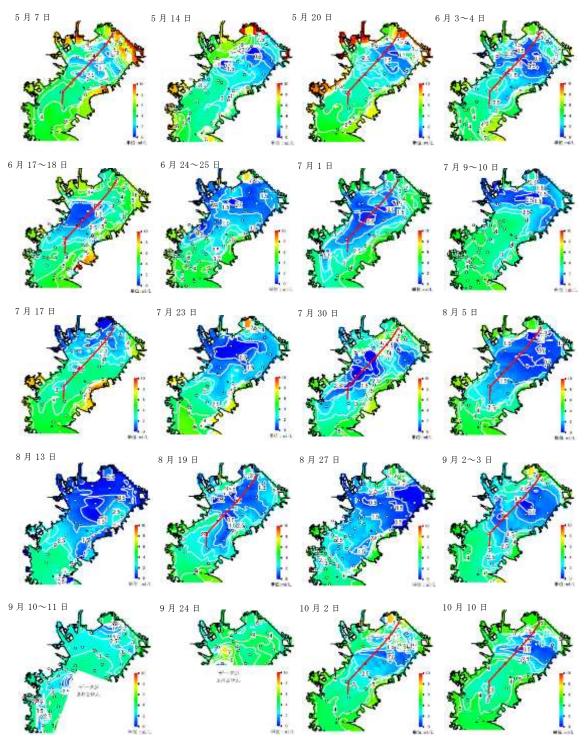
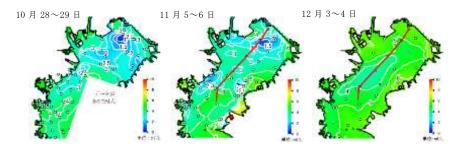



図 1.1.28 東京湾における底層溶存酸素量の分布 (平成 29 年度 (2017 年度))



注)底層溶存酸素量は底上1mの値 資料:千葉県水産総合研究センター資料

図 1.1.29 (1) 東京湾における底層溶存酸素量の分布 (平成30年度(2018年度))



資料:千葉県水産総合研究センター資料 図 1.1.29(2)東京湾における底層溶存酸素量の分布(平成30年度(2018年度))

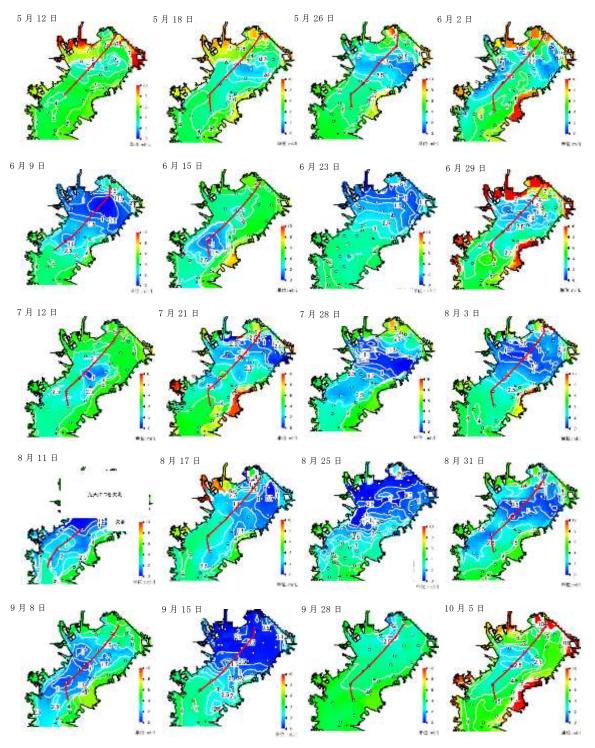

注)底層溶存酸素量は底上1mの値 資料:千葉県水産総合研究センター資料

図 1.1.30 (1) 東京湾における底層溶存酸素量の分布 (令和元年度 (2019年度))

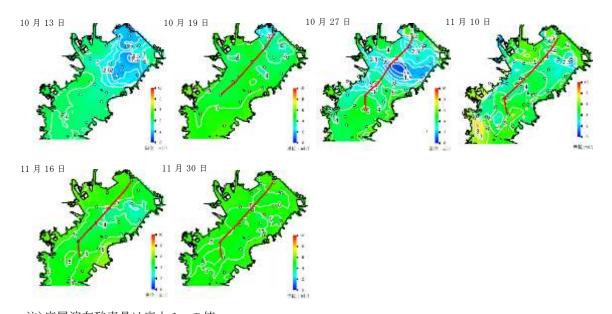
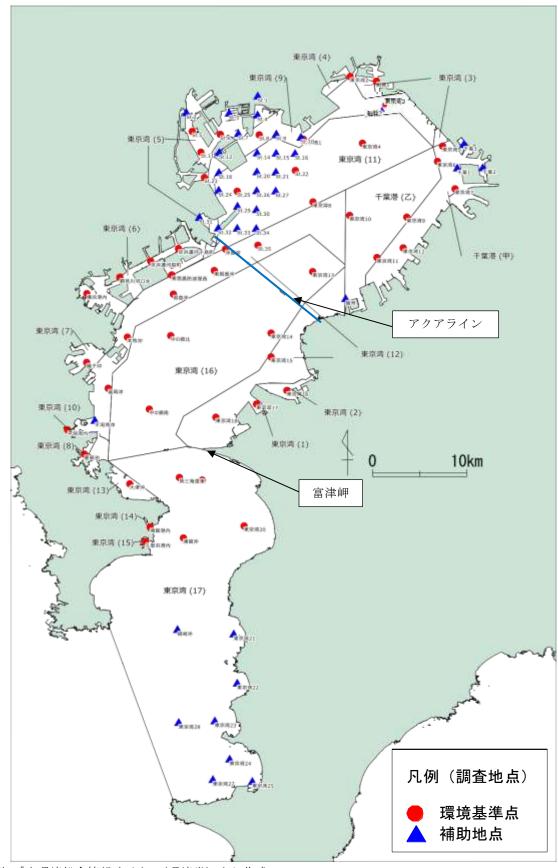

注)底層溶存酸素量は底上1mの値 資料:千葉県水産総合研究センター資料

図 1.1.30(2) 東京湾における底層溶存酸素量の分布(令和元年度(2019年度))

注)底層溶存酸素量は底上1mの値 資料:千葉県水産総合研究センター資料

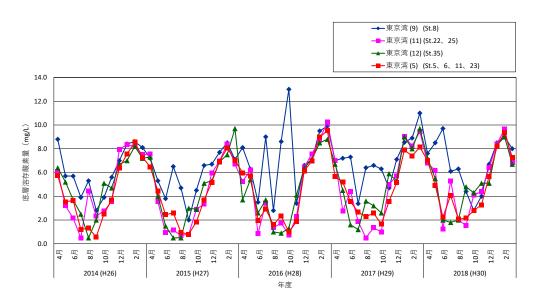
図 1.1.31 (1) 東京湾における底層溶存酸素量の分布 (令和2年度 (2020年度))

注)底層溶存酸素量は底上1mの値 資料:千葉県水産総合研究センター資料


図 1.1.31 (2) 東京湾における底層溶存酸素量の分布 (令和2年度 (2020年度))

東京湾における公共用水域水質測定地点は図 1.1.32 に示すとおりであり、東京都が測定した結果は図 1.1.33、千葉県が測定した結果は図 1.1.34、神奈川県が測定した結果は図 1.1.35 に示すとおりである。

東京都(図 1.1.33)では、東京湾の湾奥部の隅田川、荒川、中川及び旧江戸川河口付近とその沖合に調査地点を設けている。底層溶存酸素量については、春季から夏季にかけて低下する傾向が見られる。また、旧江戸川河口付近に位置する東京湾9においては、他の測定地点と比較して高い値を示している。


千葉県(図 1.1.34)では、湾奥部と内房一帯に調査地点を設けている。底層溶存酸素量については、富津岬以北に位置する湾奥側の測点では春季から夏季にかけて低下する傾向が見られ、特にアクアライン以北の地点では、夏季に低下しやすく、毎年2mg/Lを下回る地点が見られる。富津岬以南の湾口側の測点では、年間を通じて高い値を示している。

神奈川県(図 1.1.35)では、多摩川、鶴見川の河口付近から三浦半島を経て湾口に至る沿岸一帯に調査地点を設けている。底層溶存酸素量については、横浜港内、東扇島沖では春季から夏季にかけて低下する傾向が見られ、東扇島沖では夏季に 2mg/L を下回る低い値が見られる。浦賀沖では、年間を通じて比較的高い値を示している。

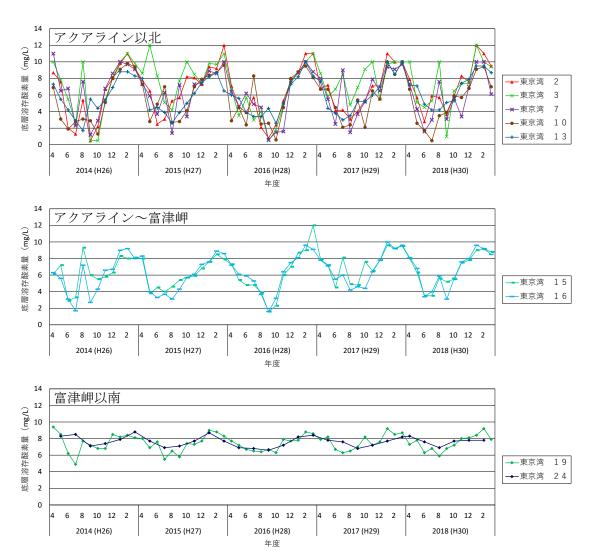
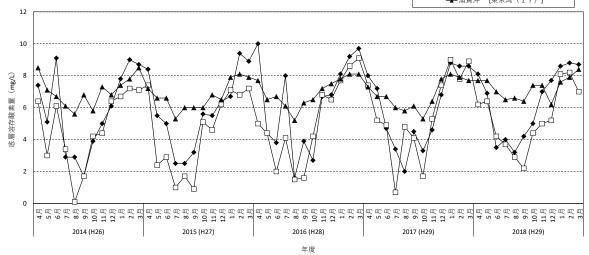

資料:「水環境総合情報サイト」(環境省)より作成

図 1.1.32 東京湾における公共用水域水質調査地点

資料:「水環境総合情報サイト」(環境省)より作成


図 1.1.33 東京湾における公共用水域水質測定結果 (底層溶存酸素量:東京都)

資料:「水環境総合情報サイト」(環境省)より作成

図 1.1.34 東京湾における公共用水域水質測定結果 (底層溶存酸素量:千葉県)

注)浦賀沖では、底層溶存酸素量は水深 50m で測定されている。

資料:「水環境総合情報サイト」(環境省)より作成

図 1.1.35 東京湾における公共用水域水質測定結果 (底層溶存酸素量:神奈川県)

- 2) 過去(昭和56年(1981年)以前)における底層溶存酸素量の分布
- ア) 東京都水産試験場の調査結果について

東京都水産試験場が実施した水質調査結果より、昭和 10 年代(1940 年前後) ~ 昭和 30 年代(1960 年前後) の 5 月~10 月の底層溶存酸素量の状況について下記の ①~⑥の資料を整理した。

整理の結果、東京湾内湾(品川湾)における底層溶存酸素量は、<u>昭和 10 年(1935年)、昭和 11 年(1936年)、昭和 27 年(1952年)、昭和 29 年(1954年)、昭和 30 年</u>(1955年)に、局所的な貧酸素(ここでは 2.0mg/L 未満)が確認されている。

また、昭和30年(1955年)以前の貧酸素が確認された地点は局所的であったものの、昭和31年以降は他の年と比べると広範囲に、頻度が多く貧酸素が確認されている。

- ①東京府內湾(品川湾)水産調査報告 第一次(昭和12年7月、東京府水産試験場)
 - :表 1.1.4、図 1.1.36 参照
- ②東京都内湾の海水調査報告(昭和29年3月、東京都)
 - :表 1.1.5、図 1.1.37 参照
- ③東京都內湾海洋調查(No. 99)(昭和32年3月、東京都水産試験場)
 - :表 1.1.6、図 1.1.38 参照
- ④江戸川・中川調査水域水産関係調査報告書(第1報)(昭和32年3月、水産庁漁 政部漁業調整第二課)
 - :表 1.1.7、図 1.1.39 参照
- ⑤内湾海洋調査報告書(昭和31年、東京都)
 - :表 1.1.8、図 1.1.40 参照
- ⑥東京都内湾水質調查報告書(No. 165)(昭和39年12月、東京都水産試験場)
 - :表 1.1.9、図 1.1.41 参照

以上の結果より、以下のことが考えられる。

- ・東京湾では、湾奥部を中心に水質汚濁が現在のように問題となっていないと考えられる昭和 30 年前半であっても底層溶存酸素量が 2.0mg/L 未満、3.0mg/L 未満の水域が存在していたことから、湾奥部 (水深 $10\sim20$ mの水域) は貧酸素化しやすい特性を持っていると考えられる (図 1.1.43 参照)。
- ・底層溶存酸素量の類型指定の設定において、上記のような貧酸素化しやすい特性を持つ水域は、底層溶存酸素量が 2.0mg/L 未満の水域は、生物 3 類型 (2mg/L 以上)相当、底層溶存酸素量が 3.0mg/L 未満の水域は生物 2 類型 (3mg/L 以上)相当と考えられる。

				10	1. 1. 7	XXXXIII P	3/E (HH)	小八号/ 八	注则且书		内且加入				
		5月		6月		7,	7月		月	9月		10	月		
調査年度	調査地点	1	2	1	2	1	2	1	2	1	2	1	2	最低値 (cc/l)	調査回数
昭和10年度	St. I	4.83	3.15	2.42	2.94	2.61	3.02	1.31	3.12	2.61	-	4.83	1.61	1.31	11
(1935年度)	St. II	3.78	4.83	3.89	4.2	2.61	3.12	1.01	2.92	2.61	-	3.12	1.32	1.01	11
(1935年度)	St.Ⅲ	3.78	3.57	5.15	4.62	2.41	2.92	0.71	5.44	2.61	-	3.82	1.61	0.71	11
四和11年帝	St. I	3.11	1	_	1	1	3.65	1	_	_	-	_	1	ı	2
昭和11年度 (1936年度)	St. II	2.58	-	-	ı	I	1.5	ı	-	0.6	6.24	3.07	2.69	0.6	6
(1930年度)	St.Ⅲ	1.93	1	_	1	1	1.93	1	_	_	-	_	1	1	2

表 1.1.4 東京府内湾(品川湾)水産調査報告水質調査結果

- 注) 1. 単位は、cc/L である。
 - 2. 赤い背景は、1.4cc/L (2mg/L) 未満の結果を示す。
 - 3. ①~②は、各月の測定回を示す。

資料:「東京府內湾(品川湾)水産調査報告 第一次」(昭和12年7月、東京府水産試験場)

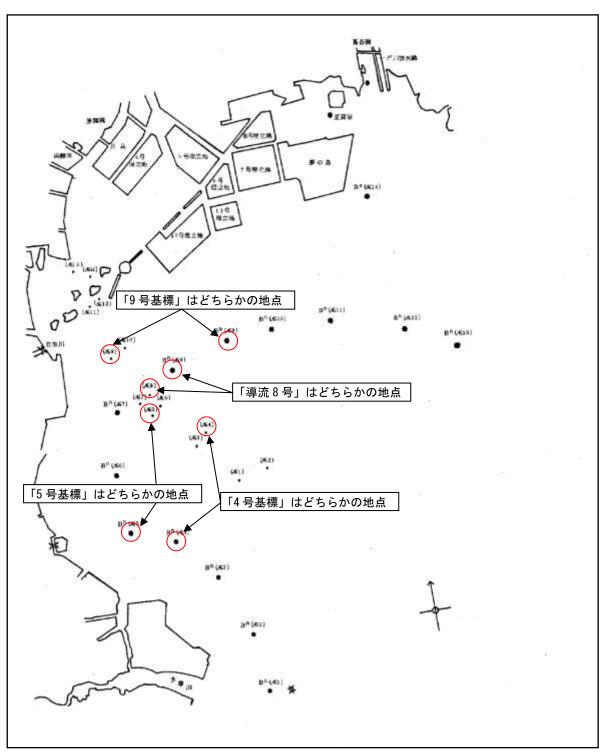

図 1.1.36 東京府内湾(品川湾)水産調査報告水質調査地点図

表 1.1.5 東京都内湾の海水調査報告水質調査結果

- 本左左 - 一本小上			5.	月			6月				7月			8月			9月			10月				1		
調査年度	調査地点	1	2	3	4	1	2	3	1	2	3	4	(5)	1	1	2	3	4	(5)	1	2	3	4	(5)	最低值 (cc/l)	調査回数
	導流8号	-	_	_	-	5.31	3.43	-	4.36	3.21	1.86	2.45	2.47	1.01	-	_	_	_	-	_	-	-	-	-	1.01	8
	11号埋立地曲がり角	-	-	_	-	5.44	3.29	_	3.76	3.13	-	2.6	3.86	2.98	-	-	-	_	-	-	-	-	-	-	2.6	7
	11号基標	_	-	_	_	4.79	2.89		5.13	4.9	3.07	3.03	3.96		2.2	4.29	2.47	-	4.32	5.22	5.64	2.99	-	-	2.2	15
	14号基標	_	_	_	_	5.89	3.75	_	2.49	3.31	2.97	3.76	3.24	3.5	_	_	_	_	-	_	-	-	_	-	2.49	8
	葛西橋	-	-	-	-	2.79	2.1	-	2.85	2.19	3.16	2.95	2.71	2.47	1.65	1.65	-	3.56	2.89	2.98	-	2.79	3.78	-	1.65	15
	豆腐岩	_	_	_	_	2.52	3.21	_	4.39	2.19	3.42	2.51	4.15	3.23	2.4	1.54	_	_	4.47	2.99	5.15	4.15	2.84	_	1.54	15
	8号橙浮標	-	-	_	-	-	-	4.52		_	-	_	_	-	_	_	_	_	-	_	_	-	_	_	4.52	1
	1号橙浮標	-	-	-	-	-	-	5.12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.12	1
(昭和27	12号橙浮標	-	-	_	-		-	5.72	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	5.72	1
年度)	9号基標	-	-	_	-	-	-	_	-	_	-	_	_	-	2.42	0.79	2.97	_	3.18	3.78	5.92	5.24	5.78	_	0.79	8
	10号基標	-	-	-	-	-	-	-	-	-	-	-	-	-	2.42	1.86	2.2		4.02	3.25	5.7		-	-	1.86	7
	12号基標	-	-	-	-	-	-	-	-	-	-	-	-	-	19.2	3.81	2.64	-	3.78	4.08	5.39	5.09	-	-	2.64	7
	1号基標		_	-	_	ll	-	_	5.05	3.64	_	_	_	-	3	_	_	-	-	5.63	_	-	_	_	3	4
	2号基標	-	-	-	-	-	-	_	-	_	-	_	_	-	2.06	_	-	-	-	_	_	-	-	_	2.06	1
	3号基標	-	-	-	-	-	-	-	3.18	3.75	-	-	-	5	3.91	-	-	-	-	-	-	-	-	-	3.18	4
	4号基標	_	-	_	-	-	-	-	-	-	_	-	-	_	1.33	-	-	_	_	-	_	_	-	-	1.33	1
	5号基標	-	-	-	-	-	-	-	2.61	4.48	-	-	_	4.05	0.92	-	-	_	-	-	-	-	-	-	0.92	4
			5.	月			6月				7月			8月			9月					10月			1	
調査年度	調査地点	1			Ø	(I)		<u> </u>	1	<u> </u>		A	(E)		1	②		a	•	1	<u> </u>		a	(E)		調査回数
調査年度		1	2	3	4	1	6月 ②	3	1	2	7月 ③	4	(5)	8月	1	2	9月	4	5	1	2	10月	4	(5)	最低值 (cc/l)	調査回数 (回)
調査年度	導流8号	1)			4	1		3	1	2		4	(5) -		1)	2		4	5	1)	2		4	5		
調査年度	導流8号 11号埋立地曲がり角	-	2 - -	3	4) - -	① - -		3 -	① - -	2		4) -	(5) - -		① - -	② - -		4) - -	(5) - -	1	2		4	(5) - -	(cc/l) 0 0	(回)
調査年度	導流8号 11号埋立地曲がり角 11号基標	① - - - 4.78			4 - - -	① - -		3 -	① - -	2) - - -		4 - - -	(5) - - -		① - -	② - - -		4 - - -	(5) - -	① - - -	2		4) - - -	(5) - -	(cc/l) 0	(回)
調査年度	導流8号 11号埋立地曲がり角 11号基標 14号基標	- - 4.78	② - - 4.04	3	4 - - - -	① - - -		3 - - - -	① - - - -	2) - - -		4 - - -	(5) - - -		① - - -	2) - - -		4 - - -	5 - - -	① - - -	2		4 - - -	⑤ - - -	(cc/l) 0 0 4.04 0	(回)
調査年度	導流8号 11号埋立地曲がり角 11号基標 14号基標 裏西橋	- - 4.78 - 2.95	② - - 4.04 - 3.47	3 - - 356 - 1.43	- - - -	①		3 - - - -	① - - - - -	2) - - - - -		4) - - - -	(5) - - - -		① - - - -	② - - - -		4) - - - -	(5) - - - -	① - - - -	2 - - - -		4) - - - -	(5) - - - -	(cc/l) 0 0 4.04	(回) 0 0 3
調査年度	導流8号 11号埋立地曲がり角 11号基標 14号基標 裏西橋 豆腐岩	- - 4.78	② - - 4.04 - 3.47	3 - - 356	- - - -	① - - - - - -		3	①	2 - - - -		4 - - - -	(5) - - - -		① - - - -	② - - - -		4 - - - -	(5) - - - -	① - - - -	2		④ - - - -	(5) - - - - -	(cc/l) 0 0 4.04 0	(回) 0 0 3
	導流8号 11号埋立地曲がり角 11号基標 14号基標 夏腐岩 夏腐岩 8号億浮標	- - 4.78 - 2.95	② - - 4.04 - 3.47	3 - - 356 - 1.43	- - - -	- - - - - -		3 - - - - - -	① - - - - - -	2		4) - - - - -	(5) - - - - -		① - - - - - -	2 - - - - -		(4) - - - - -	5 - - - - -	①	2		4 - - - - -	⑤ - - - - -	0 0 4.04 0 1.43	(回) 0 0 3
1953年度	導流8号 11号埋立地曲がり角 11号基標 14号基標 葛西橋 豆腐岩 8号程浮標 1号機浮標	- - 4.78 - 2.95	② - - 4.04 - 3.47	3 - - 356 - 1.43	- - - -			3 - - - - - - -	①	2		4) - - - - - -	(5) - - - - - -		①	2 - - - - -		(4) - - - - - -	(5) - - - - - -	①	2		4 - - - - - -	© - - - - - - -	(cc/l) 0 0 4.04 0 1.43 2.51 0	(回) 0 0 3
1953年度(昭和28	議流8号 11号埋立地曲がり角 11号基標 14号基標 夏度 夏度 8号線浮標 1号焓浮標 1号焓浮標 11号号	- - 4.78 - 2.95 3.73 - -	② - - 4.04 - 3.47	3 - - 356 - 1.43 2.51 - -	- - - - - - -	①		3 - - - - - - -	①	2		④	(5) - - - - - - -		①	2		④	(5) - - - - - - -	①	2		④	(5) - - - - - - -	(cc/l) 0 0 4.04 0 1.43 2.51 0 0	(回) 0 0 3 0 3 3 0
1953年度	 濃流8号 11号埋立地曲がり角 11号基標 14号基標 裏西橋 豆腐岩 8号億浮標 1号検浮標 12号検浮標 9号基標 	- - 4.78 - 2.95	② - - 4.04 - 3.47	3 - - 356 - 1.43	- - - - - - -			3	①	2		4	(5) - - - - - -		①	2 - - - - - - -		④	(5) - - - - - - -	①	2		4 - - - - - - - - -	(5) - - - - - - - -	(cc/l) 0 0 4.04 0 1.43 2.51 0	(国) 0 0 3 0 3 3 0 0
1953年度(昭和28	導流0号 11号埋立地曲がり角 11号基標 14号基標 豆腐岩 見物性浮標 1号程浮標 12号程浮標 9号基据 10号基標	- - 4.78 - 2.95 3.73 - -	2 - - 4.04 - 3.47 3.86	3 - - - 356 - 1.43 2.51 - - - 3.17 3.56	- - - - - - - - - - - - -			3		2 - - - - - - - -			(5) - - - - - - - -		①	2 - - - - - - - -		4 - - - - - - -	(5) - - - - - - -	①	2		4	(5) - - - - - - - -	(cc/l) 0 0 4.04 0 1.43 2.51 0 0	(国) 0 0 3 0 3 3 0 0 0 0
1953年度(昭和28	導流8号 11号埋立地曲が9角 11号基標 11号基標 基西橋 豆腐酱 8号槍浮標 1号槍浮標 9号基網 10号基標 10号基標 12号聲	- 4.78 - 2.95 3.73 4.51	② 4.04 - 3.47 3.86	3 - - 356 - 1.43 2.51 - - - 3.17		- - - - - - - - - - - - -		3 - - - - - - - - -		2 - - - - - - - -		@	(5) 		①	2		④	(5) 	①	2		(4) 	©	(cc/l) 0 0 4.04 0 1.43 2.51 0 0 0 3.17 3.56 5.43	(国) 0 0 3 0 3 3 0 0 0 0
1953年度(昭和28	導流2号 11号埋立地曲がり角 11号基標 14号基標 豆腐苗 5号橙浮標 12号程序標 12号基標 10号基標 12号基標 12号基標	- 4.78 - 2.95 3.73 4.51	② 4.04 - 3.47 3.86 4.7 4.68	3 - - - 356 - 1.43 2.51 - - - 3.17 3.56	- - - - - - - - - - - - -	- - - - - - - - - - - - -		3 	①	©		@	(\$)			@		@	(5) 	①	2 - - - - - - - - - - - -		@	©	(cc/l) 0 4.04 0 1.43 2.51 0 0 0 3.17 3.56	(国) 0 0 3 0 3 3 0 0 0 0
1953年度(昭和28	導流2号 11号建立地曲がり角 11号基標 14号基標 豆腐岩 見を発達機 12号を選携 12号を選携 12号基標 12号基標 12号基標 15基据 15基据	- 4.78 - 2.95 3.73 4.51	② 4.04 - 3.47 3.86 4.7 4.68	3 - - - 356 - 1.43 2.51 - - - 3.17 3.56				③ - - - - - - - - - - - - - - - - - - -		② - - - - - - - - - - - -			(S)			2 - - - - - - - - - - - - - - - - - - -		@	(S)		2 - - - - - - - - - - - -		@	©	(cc/l) 0 0 4.04 0 1.43 2.51 0 0 0 3.17 3.56 5.43 6.72	(国) 0 0 3 0 3 3 0 0 0 0
1953年度(昭和28	漂流8号 11号埋立地曲が9角 11号基標 11号基標 14号基標 夏廣道 1号检浮標 1号检浮標 19号基標 10号基標 12号基標 1号基標 1号基標 1号基標	- 4.78 - 2.95 3.73 4.51	② 4.04 - 3.47 3.86 4.7 4.68	3 - - - 356 - 1.43 2.51 - - - 3.17 3.56				3 - - - - - - - - - - - -		2 - - - - - - - - - - - - - - - - - - -		@	(S)			©		④	(5)	①	2			(S)	(cc/l) 0 0 4.04 0 1.43 2.51 0 0 0 3.17 3.56 5.43 6.72	(国) 0 0 3 0 3 0 0 0 0 0 0 3 3 2
1953年度(昭和28	導流2号 11号建立地曲がり角 11号基標 14号基標 豆腐岩 見を発達機 12号を選携 12号を選携 12号基標 12号基標 12号基標 15基据 15基据	- 4.78 - 2.95 3.73 4.51	② 4.04 - 3.47 3.86 4.7 4.68	3 - - - 356 - 1.43 2.51 - - - 3.17 3.56				③ - - - - - - - - - - - - - - - - - - -		②			(S)			②		@	5 - - - - - - - - - - - - - - - - - - -		2 - - - - - - - - - - - - - - - - - - -			(S) 	(cc/l) 0 0 4.04 0 1.43 2.51 0 0 0 3.17 3.56 5.43 6.72	(国) 0 0 3 0 3 0 0 0 0 0 0 3 3 2

- 注) 1. 単位は、cc/L である。
 - 2. 赤い背景は、1.4cc/L (2mg/L) 未満の結果を示す。
 - 3. ①~⑤は、各月の測定回を示す。

資料:「東京都内湾の海水調査報告」(昭和29年3月、東京都)

注)表 1.1.5 に示す「4 号基標」、「5 号基標」、「導流 8 号」、「9 号基標」について、当該資料の図面では同一番号の地点が 2 ヶ所あるため特定ができなかった。

資料:「東京都内湾の海水調査報告」(昭和29年3月、東京都)

図 1.1.37 東京都内湾の海水調査報告水質調査地点図

表 1.1.6 東京都内湾海洋調査水質調査結果

		5月	6)	Ħ	7,	Ħ	8月	9月	10月		
調査年度	調査地点		•	®	3	®		(1)	(1)	最低值	調査回数
		1	1	2	1	2	1	1	1	(cc/l)	(回)
	St.1	4.59	_	_	4.93	5.42	_	5.82	_	4.59	4
	St.2	5.39	_	_	5.32	6.55	_	3.75	_	3.75	4
	St.3	7.26	_	_	5.74	6.47	_	2.04	_	2.04	4
	St.4	5.93	_	_	6.24	3.94	_	1.06	_	1.06	4
1954年度	St.5	6.4	_	_	5.87	4.58	-	_	_	4.58	3
	St.6	6.14	_	_	5.57	4.76	_	_	_	4.76	3
(昭和29 年度)	St.7	7.53	_	_	7.02	6.04	_	_	_	6.04	3
平及)	St.8	6.57	_	_	3.48	4.95	-	_	_	3.48	3
	St.9	6.32	_	_	4.14	4.75	_	_	_	4.14	3
	St.10	6.83	_	_	4.01	4.69	_	_	_	4.01	3
	St.11	6.77	_	_	4.11	3.44	_	5.37	_	3.44	4
	St.12	_	_	_	_	_	-	_	_	0	0
		5月	6,	月	7,	月	8月	9月	10月		
調査年度										量准法	细水同类
训且十戊	調査地点	①	1	(a)	1	<u> </u>	1	1	1	最低値	調宜凹致
训 且十及	調査地点	1	1	2	1	2	1	1	1	取抵胆 (cc/l)	調査四数
讷 且干及	調査地点 St.1	① 6.6	① 2.69	2.8	3.69	② 5.37	① 7.83	① 6.1	1		
训旦干 及			_	_	_			_	① - -	(cc/l)	(回)
训且干 及	St.1	6.6	2.69	_	3.69	5.37	7.83	6.1	① - -	(cc/l) 2.69	(回) 7
训 且十尺	St.1 St.2	6.6 5.82	2.69 7.95	_	3.69 5.04	5.37 3.24	7.83 5.14	6.1 4.81		(cc/l) 2.69 3.24	(回) 7 6
	St.1 St.2 St.3	6.6 5.82 4.14	2.69 7.95	_	3.69 5.04 6.6	5.37 3.24 5.37	7.83 5.14 5.93	6.1 4.81 3.36		(cc/l) 2.69 3.24 3.36	(回) 7 6 6
1955年度	St.1 St.2 St.3 St.4	6.6 5.82 4.14 2.91	2.69 7.95	_	3.69 5.04 6.6 3.25	5.37 3.24 5.37 3.47	7.83 5.14 5.93 5.04	6.1 4.81 3.36 1.23		(cc/l) 2.69 3.24 3.36 1.23	(回) 7 6 6 5
1955年度 (昭和30	St.1 St.2 St.3 St.4 St.5	6.6 5.82 4.14 2.91 2.13	2.69 7.95	_	3.69 5.04 6.6 3.25 1.57	5.37 3.24 5.37 3.47 2.91	7.83 5.14 5.93 5.04 1.46	6.1 4.81 3.36 1.23 1.12		(cc/l) 2.69 3.24 3.36 1.23 1.12	(回) 7 6 6 5 5
1955年度	St.1 St.2 St.3 St.4 St.5 St.6	6.6 5.82 4.14 2.91 2.13 2.13	2.69 7.95	2.8	3.69 5.04 6.6 3.25 1.57 5.71	5.37 3.24 5.37 3.47 2.91 3.02	7.83 5.14 5.93 5.04 1.46 1.68	6.1 4.81 3.36 1.23 1.12 2.01		(cc/l) 2.69 3.24 3.36 1.23 1.12 1.68	(回) 7 6 6 5 5
1955年度 (昭和30	St.1 St.2 St.3 St.4 St.5 St.6 St.7	6.6 5.82 4.14 2.91 2.13 2.13 3.81	2.69 7.95	2.8 - - - - - - 5.6	3.69 5.04 6.6 3.25 1.57 5.71 3.81	5.37 3.24 5.37 3.47 2.91 3.02 3.81	7.83 5.14 5.93 5.04 1.46 1.68 3.81	6.1 4.81 3.36 1.23 1.12 2.01 4.81		(cc/l) 2.69 3.24 3.36 1.23 1.12 1.68 3.81	(回) 7 6 6 5 5 5
1955年度 (昭和30	St.1 St.2 St.3 St.4 St.5 St.6 St.7 St.8	6.6 5.82 4.14 2.91 2.13 2.13 3.81 4.25	2.69 7.95	2.8 - - - - - 5.6 3.36	3.69 5.04 6.6 3.25 1.57 5.71 3.81 2.46	5.37 3.24 5.37 3.47 2.91 3.02 3.81 5.71	7.83 5.14 5.93 5.04 1.46 1.68 3.81 4.03	6.1 4.81 3.36 1.23 1.12 2.01 4.81 4.7		(cc/l) 2.69 3.24 3.36 1.23 1.12 1.68 3.81 2.46	(回) 7 6 6 5 5 5 5 6
1955年度 (昭和30	St.1 St.2 St.3 St.4 St.5 St.6 St.7 St.8 St.9	6.6 5.82 4.14 2.91 2.13 2.13 3.81 4.25 2.57	2.69 7.95	2.8 - - - - - - 5.6 3.36 3.36	3.69 5.04 6.6 3.25 1.57 5.71 3.81 2.46 2.69	5.37 3.24 5.37 3.47 2.91 3.02 3.81 5.71 2.35	7.83 5.14 5.93 5.04 1.46 1.68 3.81 4.03 4.25	6.1 4.81 3.36 1.23 1.12 2.01 4.81 4.7		(cc/l) 2.69 3.24 3.36 1.23 1.12 1.68 3.81 2.46	7 6 6 5 5 5 6 6 6

- 注) 1. 単位は、cc/L である。
 - 2. 赤い背景は、1.4cc/L (2mg/L) 未満の結果を示す。
 - 3. ①~②は、各月の測定回を示す。

資料:「東京都內湾海洋調査 (No. 99)」(昭和 32年3月、東京都水産試験場)

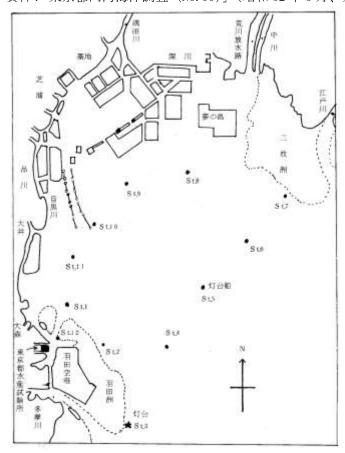


図 1.1.38 東京都内湾海洋調査水質調査 地点図

表 1.1.7 江戸川・中川調査水域水産関係調査報告書水質調査結果

		5月	6月	7月	8月	9月	10月]	
調査年度	調査地点	1)	1	1	1	1	1)	最低值 (cc/I)	調査回数
	St.1	_	_	_	3.06	_	_	3.06	1
	St.2	_	-	_	1.67	_	_	1.67	1
	St.3	_	-	_	2.01	_	_	2.01	1
	St.4	_	-	_	1.78	_	_	1.78	1
	St.5	_	-	_	1.95	_	_	1.95	1
	St.6	_	_	_	2.4	_	_	2.4	1
1956年度	St.7	_	_	_	2.34	_	_	2.34	1
(昭和31	St.8	_	_	_	2.17	_	-	2.17	1
年度)	St.9	_	-	_	2.73	-	_	2.73	1
	St.10	_	_	_	3.06	_	_	3.06	1
	St.11	_	_	_	_	_	_	0	0
	St.12	_	_	-	_	-	-	0	0
	St.13	-	-	-	-	-	-	0	0
	St.14	_	_	_	4.4	_	_	4.4	1
	St.15	_	_	_	4.73	_	_	4.73	1

- 注) 1. 単位は、cc/L である。
 - 2. 赤い背景は、1.4cc/L (2mg/L) 以下の結果を示す。
 - 3. ①は、各月の測定回を示す。

資料:「江戸川・中川調査水域水産関係調査報告書(第1報)」 (昭和32年3月、水産庁漁政部漁業調整第二課)

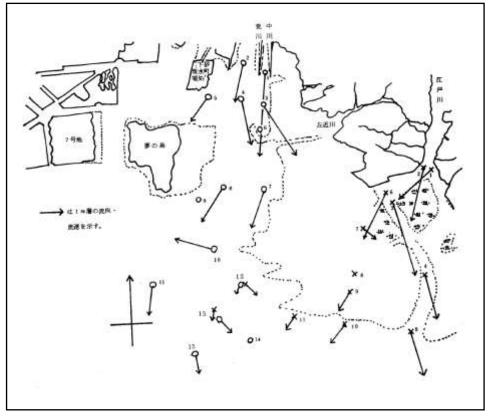
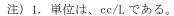



図 1.1.39 江戸川・中川調査水域水産関係調査報告書水質調査地点図

					•		C 10/3 - 11/14			
		5月	6月	7月	8月	9月	10	月		
調査年度	調査地点	1	1	1	1	1	1	2	最低值 (cc/l)	調査回数
	St.1	6.12	1.64	1.79	0.78	_	3.97	4.41	0.78	6
	St.2	3.75	7.42	2.45	4.81	_	5.35	5.83	2.45	6
	St.3	4.58	7.26	5.01	2.57	_	3.75	5.33	2.57	6
	St.4	2.32	6.66	4.12	3.19	_	2.65	5.11	2.32	6
	St.5	1.87	4.47	4.23	3.19	_	0.61	3.89	0.61	6
	St.6	3.31	7.09	3.01	6.99	_	1.76	3.7	1.76	6
	St.7	4.52	0.55	3.68	1.51	_	2.48	4.56	0.55	6
	St.8	3.45	0.72	2.45	1.12	_	1.38	4.19	0.72	6
	St.9	0.62	1.11	1.23	3.75	_	0.5	1.26	0.5	6
	St.10	1.43	0.44	0.56	0	_	1.49	1.24	0	6
	St.11	2.54	0.71	0	1.06	_	1.05	3.26	0	6
	St.12	0.77	2.84	0	0	_	0.66	3.51	0	6
1956年度	St.13	0	0	6.13	0	_	0.11	3.11	0	6
(昭和31	St.14	3.94	0.89	1	0.34	3.06	0.72	3.56	0.34	7
年度)	St.15	3.82	0.65	1.89	0.39	3.45	2.76	2.39	0.39	7
	St.16	2.34	2.33	3.34	5.37	4.4	1.16	2.33	1.16	7
	St.17	1.6	2.75	3.56	1.62	6.07	2.21	2.11	1.6	7
	St.18	3.2	1.39	3.68	2.91	4.18	3.75	2.39	1.39	7
	St.19	3.69	3.32	3.34	1.68	3.9	3.53	2.94	1.68	7
	St.20	5.54	3.38	2.9	2.01	4.34	3.64	3.5	2.01	7
	St.21	1.85	2.33	3.01	3.35	4.57	3.47	2.87	1.85	7
	St.22	3.94	2.55	4.01	4.81	5.79	3.36	4.44	2.55	7
	St.23	6.65	4.1	4.46	6.37	5.07	5.02	5.56	4.1	7
	St.24	3.57	5.37	4.23	4.7	4.12	3.75	3.11	3.11	7
	St 25	2 96	3.6	7 02	3 13	2 51	3 47	4 89	2.51	7

表 1.1.8 内湾海洋調査報告書水質調査結果

2. 赤い背景は、1.4cc/L (2mg/L) 未満の結果を示す。

2.83

2.04

2.12

3. なお、St. 9 において、昭和 31 年 (1956 年) 4 月 (0.39)、昭和 32 年 (1957 年) 3 月 (0.71) に 1.4cc/L を下回った。

3.68

2.94

4.44 1.05

6

4. ①~②は、各月の測定回を示す。

資料:「內湾海洋調査報告書」(昭和31年、東京都)

3.82

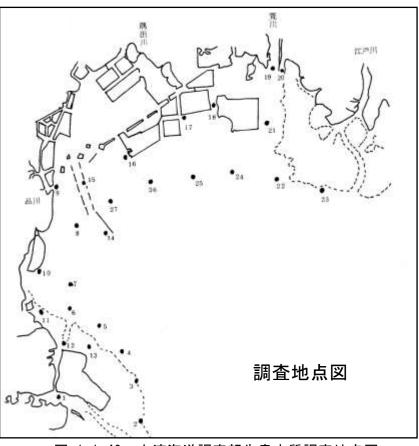


図 1.1.40 内湾海洋調査報告書水質調査地点図

表 1.1.9(1) 東京都内湾水質調査報告書水質調査結果

		5月	6月	7月	8月	9月	10月		
調査年度	調査地点	(1)	(1)	(1)	①	(1)	①	最低値	調査回数
		U	U				U	(ppm)	(回)
	St.1			0.47	2.76		0.64	0.47	3
	St.2	_	_	3.17	6.62	_	4.74	3.17	3
	St.3	_	_	7.12	3.66	_	6.36	3.66	3
	St.4	_	_	2.07	3.83	_	6.43	2.07	3
	St.5			6.83	4.16		8.27	4.16	3
	St.6	_	_	5.56	5.32	_	6.47	5.32	3
	St.7	_		3.66	4.16	_	6.47	3.66	3
	St.8	_	_	0.8	5.36	_	6	0.8	3
	St.9	_	_	3.82	7.93		6.87	3.82	3
	St.10	_		0.47	4.67	_	5.52	0.47	3
	St.11	_		1.74	3	_	6.46	1.74	3
	St.12	_	_	6.96	4.74	_	4.8	4.74	3
	St.13	_		2.1	1.1		1.49	1.1	3
	St.14	_		2.07	2.34	_	6	2.07	3
	St.15	_		2.7	0.84	_	6.14	0.84	3
	St.16	_	_	0.47	0.53	_	4.89	0.47	3
	St.17	_	_	4.13	1.91	_	6.5	1.91	3
	St.18	_	-	2.7	2.09	_	6.23	2.09	3
1960 年度	St.19	_		5.87	3.36	_	6.53	3.36	3
(昭和35	St.20	_	_	4.93	4.66	_	5.33	4.66	3
年度)	St.21	_	_	3.97	1.44	_	5.33	1.44	3
	St.22	_	_	3.82	4.07	_	7.56	3.82	3
	St.23	_	-	3.66	4.8		5.33	3.66	3
	St.24	_	_	2.86	6.24	_	7.57	2.86	3
	St.25	_	_	4.93	4.32	_	6.63	4.32	3
	St.26	_	_	4.44	6.09		4.87	4.44	3
	St.27	_	_	0.96	6.64	_	4.4	0.96	3
	St.28	_	_	4.44	2.24	_	6.4	2.24	3
	St.29	_	_	4.13	2.56	_	5.32	2.56	3
	St.30	_	_	3.17	3.67		2.56	2.56	3
	St.31	_	_	2.86	2.87	_	3.23	2.86	3
	St.32	_	_	3.66	5.27	_	5.14	3.66	3
	St.33	_	_	2.7	3.36	_	4	2.7	3
	St.34	_	_	2.23	2.56	_	3.84	2.23	3
	St.35	_	-	2.86	1.6	_	3.36	1.6	3
	St.36	_	_	5.72	2.56	_	3.84	2.56	3
	St.37	-	-	_	-	-	-	0	0
	St.38	-	-	-	-	-	-	0	0
	St.39	-	-	-	-		_	0	0

- 注) 1. 単位は、ppm である。
 - 2. 赤い背景は、2.0ppm 未満の結果を示す。
 - 3. なお、昭和35年(1960年)4月: St.30(1.63)、St.35(0.80)、St.36(0.80)、昭和36年(1961年)2月: St.1(1.21)、St.2(0.03)において2.0ppmを下回った。
 - 4. ①は、各月の測定回を示す。

資料:「東京都內湾水質調査報告書(No. 165)」(昭和39年12月、東京都水産試験場)

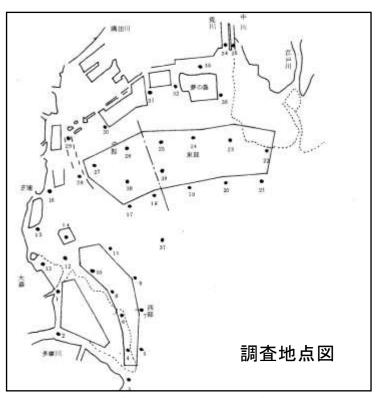


図 1.1.41 東京都内湾水質調査報告書水質調査地点図

表 1.1.9(2) 東京都内湾水質調査報告書水質調査結果

		5月	6月	7月	8月	9月	10月					5月	6月	7月	8月	9月	10月		
調査年度	調査地点	1	1	1	1	1	1	最低値 (ppm)	調査回数	調査年度	調査地点	1	1	1	1	1	1	最低値 (ppm)	調査回数
	St.1	_	3.93	_	0.72	_	_	0.72	2		St.1	_	_	1.91	_	_	3.12		2
	St.2	_	4.05	_	_	_		4.05	1		St.2	-	_	1.75	-	_	1.69	1.69	2
	St.3	_	4.58	_	6.09	_	_	4.58	2		St.3	_	_	1.11	_	_	8.94	1.11	2
	St.4	_	4.36	_	3.69	_	7.25		3		St.4	_	_	0.95		_	9.97	0.95	2
	St.5	_	3.43	_	3.83	_	5.31		3		St.5	_		10.96	_	_		10.96	1
	St.6	_	4.72	_	4.48	_	6.69		3		St.6	_	_	10.72	_	_	8.08	8.08	2
	St.7	_	2.53	_	0.44	_	_	0.44	2		St.7	_	_	12.23	_	_	2.13	2.13	2
	St.8	_	1.57	_	9.24	_	5.23		3		St.8	_	_	9.94		_	6.81	6.81	2
	St.9	_	3.05	_	0.76	_	4.69		3		St.9	_	_	2.86	_	_	1.66	1.66	2
	St.10	_	1.79	_	8.38	_	7.01	1.79	3		St.10	_	_	1.62	_	_	8.47	1.62	2
	St.11	_	2.63	_	6.03	_	5.71	2.63	3		St.11	-	_	1.91	_	_	3.49	1.91	2
	St.12	_	2.35	_	6.95	_	6.12		3		St.12	_	_	9.07	-	_	5.68	5.68	2
	St.13	_	2.5	_	1.77	_	_	1.77	2		St.13	_	_	0	_	_	1.87	0	2
	St.14	_	4.08	_	4.09	_	_	4.08	2		St.14	-	_	1.97	-	-	4.08	1.97	2
	St.15	_	0.99	_	10.4	-	_	0.99	2		St.15	-	_	0	_	-	0	0	2
	St.16	_	3.8	_	5.95	_	_	3.8	2		St.16	_	_	0	_	_	4.25	0	2
	St.17	-	2.9	-	4.89	_	7.82	2.9	3		St.17	_	_	6.11	_	_	3.46	3.46	2
1961 年度	St.18	_	3.27	_	6.29	_	_	3.27	2		St.18	_	_	1.03	_	_	3.52	1.03	2
(昭和 36	St.19	_	2.93	_	_	-	7.97	2.93	2	1962 度	St.19	_	_	3.65	_	_	_	3.65	1
年度)	St.20	_	2.73	_	_	_	5.31	2.73	2	(昭和 37	St.20	_	_	1.11	_	_	2.56	1.11	2
平茂)	St.21	_	1.67	_	_	-	5.96	1.67	2	年度)	St.21	_	_	3.33	_	_	7.05	3.33	2
	St.22	_	11.1	_	_	_	_	11.1	1		St.22	_	_	9.18	_	_	7.12	7.12	2
	St.23	_	4.79	_	_	-	6.72	4.79	2		St.23	_	_	4.32	_	_	4.25	4.25	2
	St.24	-	5.28	-	_	_	6.33	5.28	2		St.24	-	_	8.97	_	_	6.56	6.56	2
	St.25	_	4.75	_	_	_	5.31	4.75	2		St.25	-	_	5.24	_	_	5.65	5.24	2
	St.26	_	5.43	_	6.09	_	5.23	5.23	3		St.26	_	_	5.08	_	_	3.17	3.17	2
	St.27	_	2.53	_	5.99	_	_	2.53	2		St.27	_	_	4.83	_	_	_	4.83	1
	St.28	_	1.26	_	6.29	_	5.23	1.26	3		St.28	_	_	0.76	_	_	3.2	0.76	2
	St.29	_	3.23	_	2.89	_	_	2.89	2		St.29	_	_	0.76	_	_	4.08	0.76	2
	St.30	_	3.88	_	2.13	_	_	2.13	2		St.30	_	_	6.65	_	_	2.4	2.4	2
	St.31	_	3.09	_	_	_	_	3.09	1		St.31	_	_	4.76	_	_	_	4.76	1
	St.32	_	3.06	_	_	_	_	3.06	1		St.32	_	_	4.21	_	_	_	4.21	1
	St.33	-	0.5	_	-	_	_	0.5	1		St.33	-	_	2.54	_	-	1.69	1.69	2
	St.34	_	2.25	_	-	_	-	2.25	1		St.34	-	_	1.59		-	2.92	1.59	2
	St.35	_	2.37	_	_	_	_	2.37	1		St.35	_	_	2.03		-	2.25	2.03	2
	St.36	_	3.17	_	_	_	_	3.17	i		St.36	-	_	2.54		-	4.56	2.54	2
	St.37	_	2.73	_	1-	_	1-	2.73	1		St.37	-	<u> </u> -	0.87		_	1.92	0.87	2
	St.38	_	_	_	5.73	_	_	5.73	i		St.38	_	_	3.73		-	5.66	3.73	2
	St.39	_	_	_	-	_	_	0	0		St.39	_	_	5.16		_	3.3		2

- 注) 1. 単位は、ppm である。
 - 2. 赤い背景は、2.0ppm 未満の結果を示す。
 - 3. 昭和36年 (1961年) 4月: St.1 (0.99)、St.31 (1.17)、11月: St.1 (1.80)、昭和37年 (1962年) 3月: St.34 (1.93)、4月: St.1 (0.47)、St.13 (1.34)、St.15 (1.82)、St.31 (0.24) において 2.0ppmを下回った。
 - 4. ①は、各月の測定回を示す。

資料:「東京都內湾水質調査報告書(No. 165)」(昭和39年12月、東京都水産試験場)

イ) 昭和30年(1955年) ~昭和44年(1969年)の東京湾の底層溶存酸素量の状況千葉県水産総合研究センターから提供のあった昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況は図1.1.42に示すとおりである。

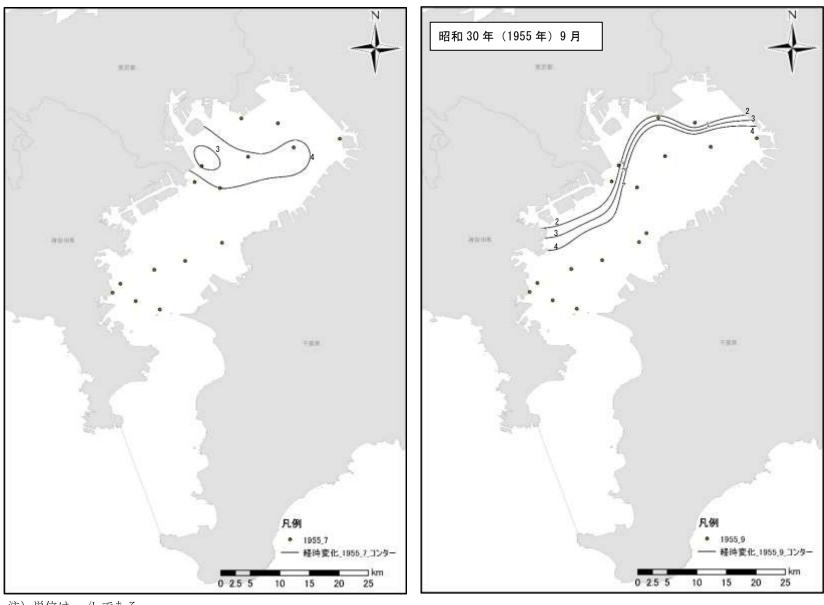


図 1.1.42(1) 昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況

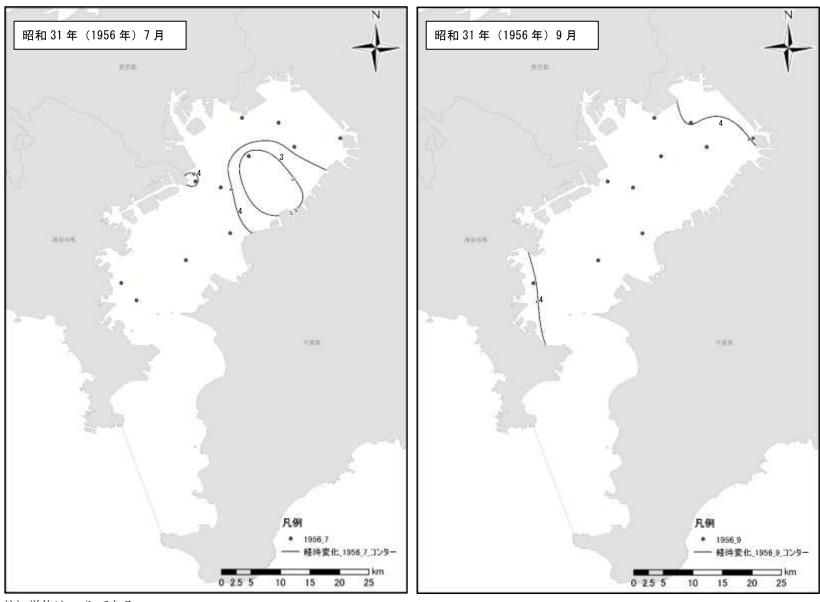


図 1.1.42(2) 昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況

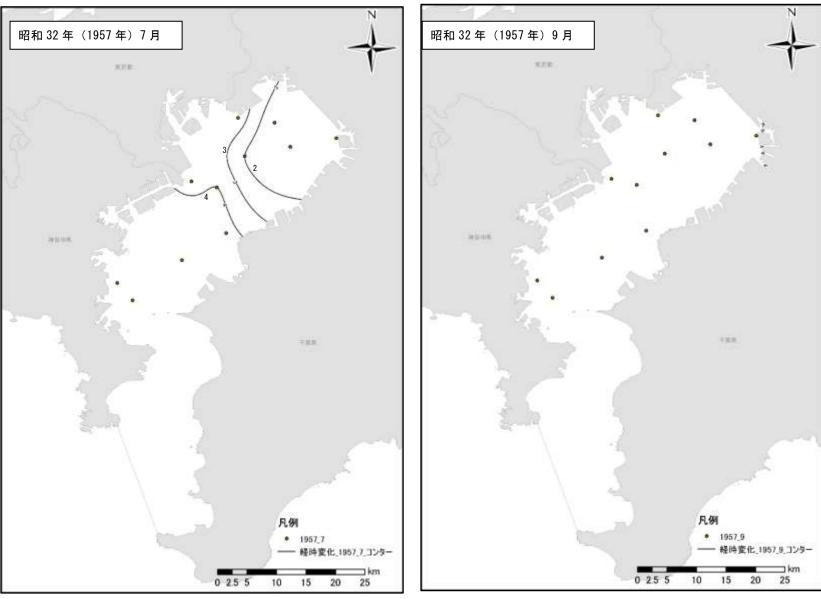


図 1.1.42(3) 昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況

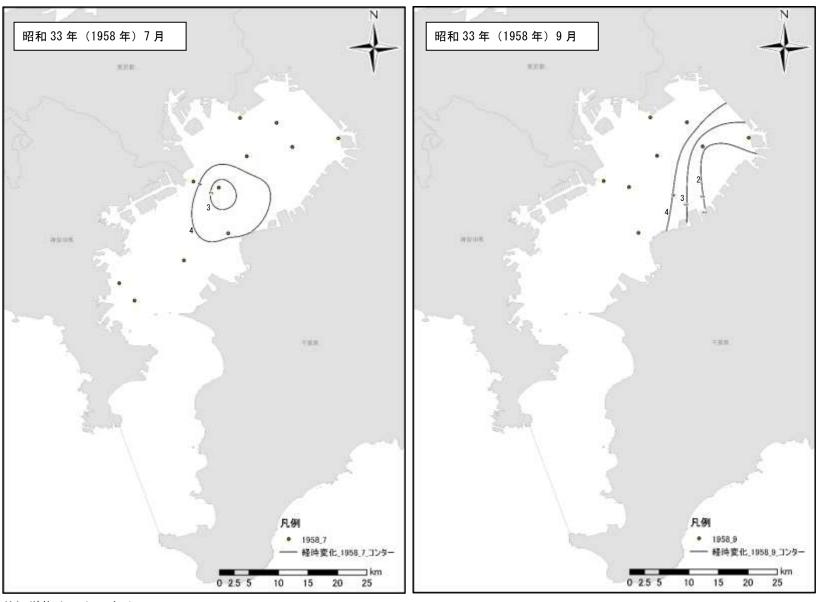


図 1.1.42(4) 昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況

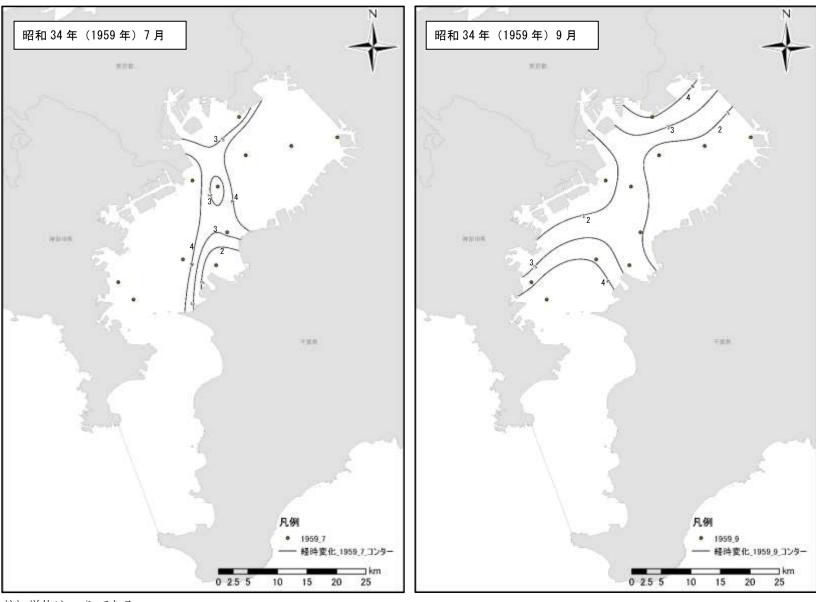


図 1.1.42(5) 昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況

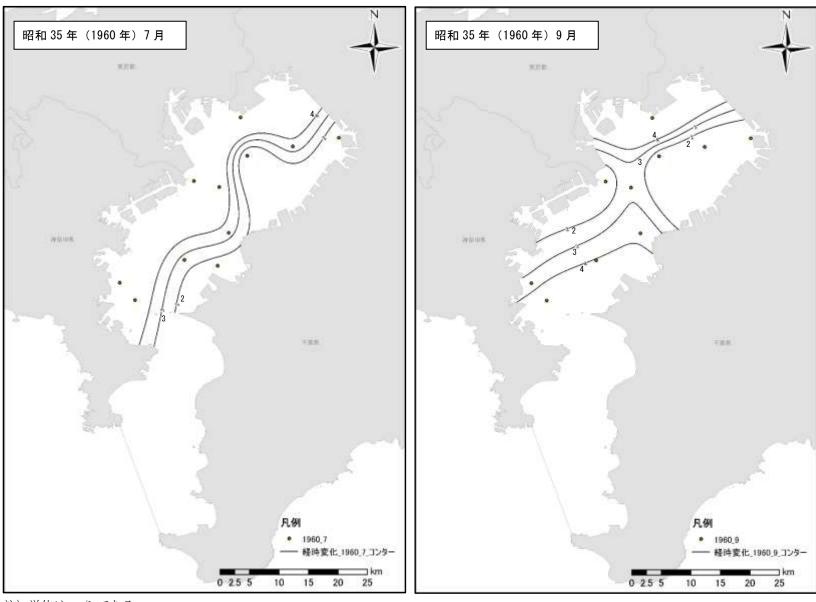


図 1.1.42(6) 昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況

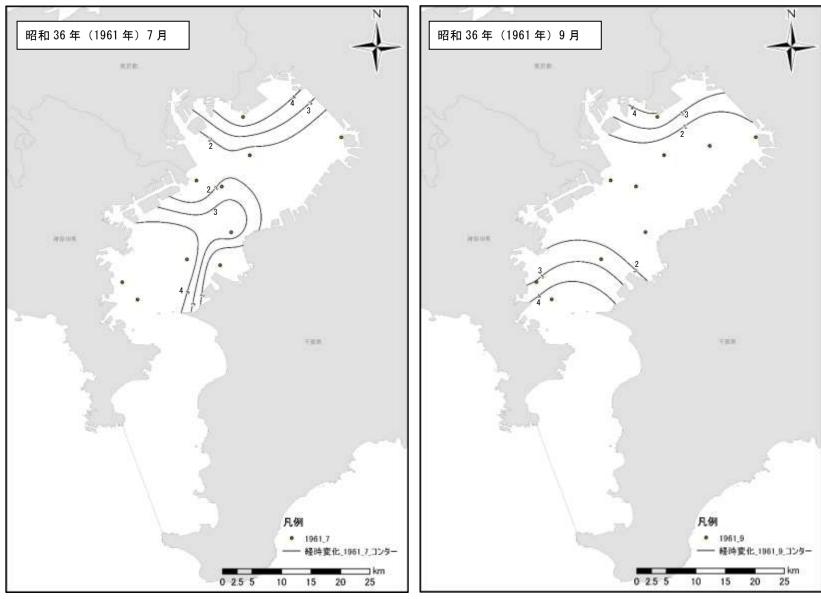


図 1.1.42(7) 昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況

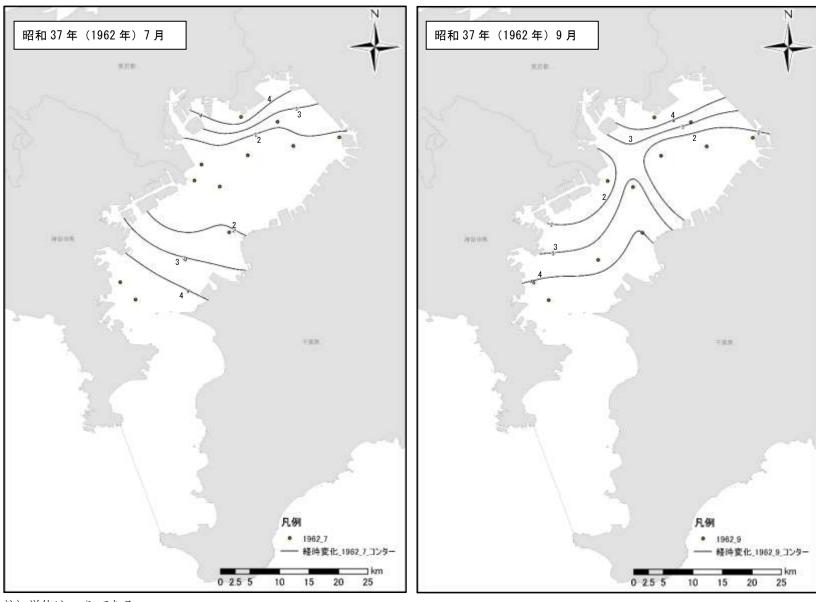


図 1.1.42(8) 昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況

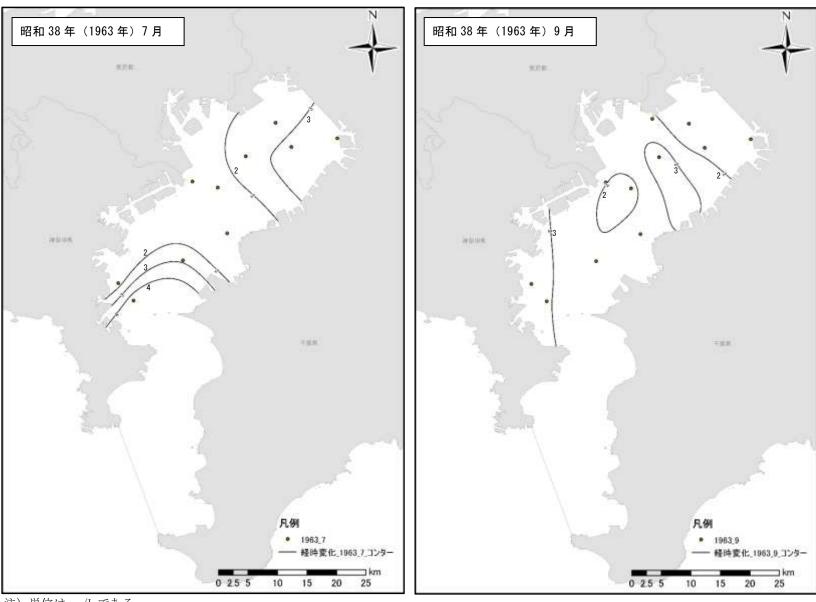


図 1.1.42(9) 昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況

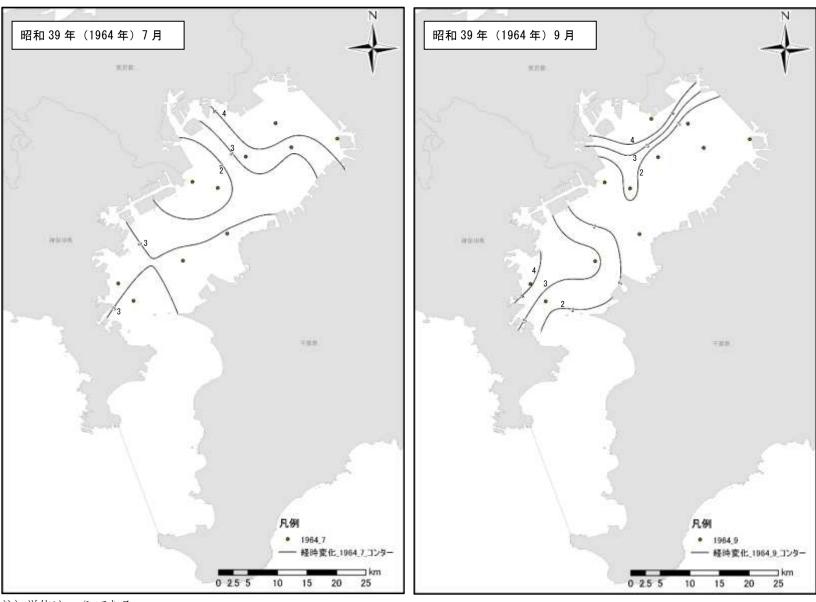


図 1.1.42(10) 昭和 30年(1955年)~昭和 44年(1969年)の東京湾の底層溶存酸素量の状況

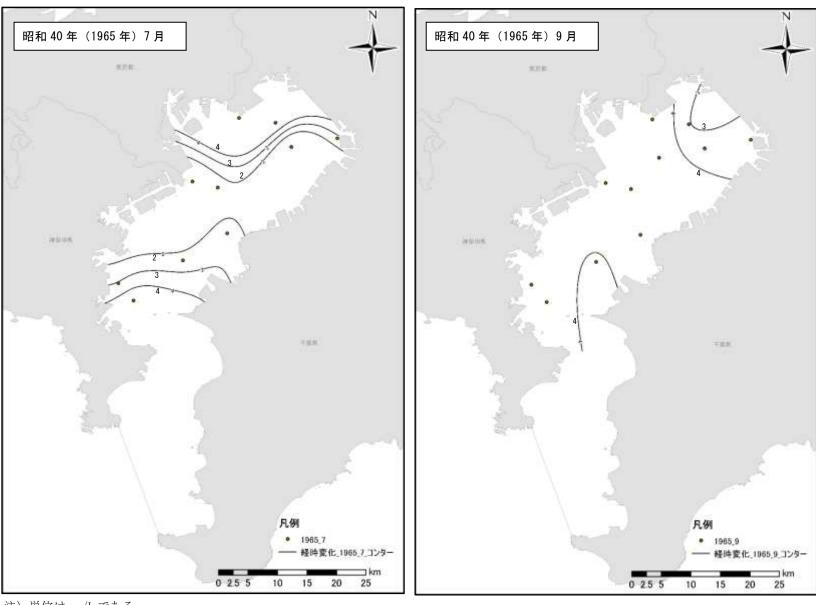


図 1.1.42(11) 昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況

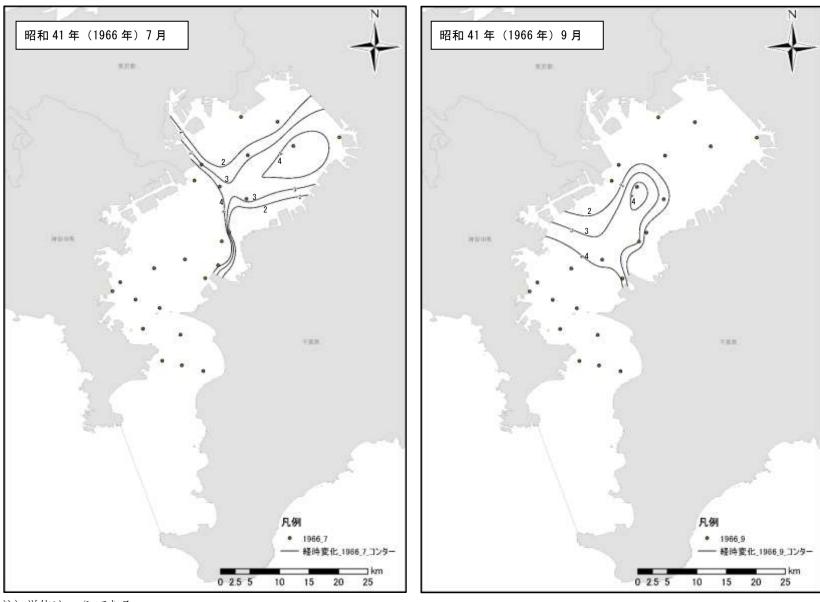


図 1.1.42(12) 昭和30年(1955年)~昭和44年(1969年)の東京湾の底層溶存酸素量の状況

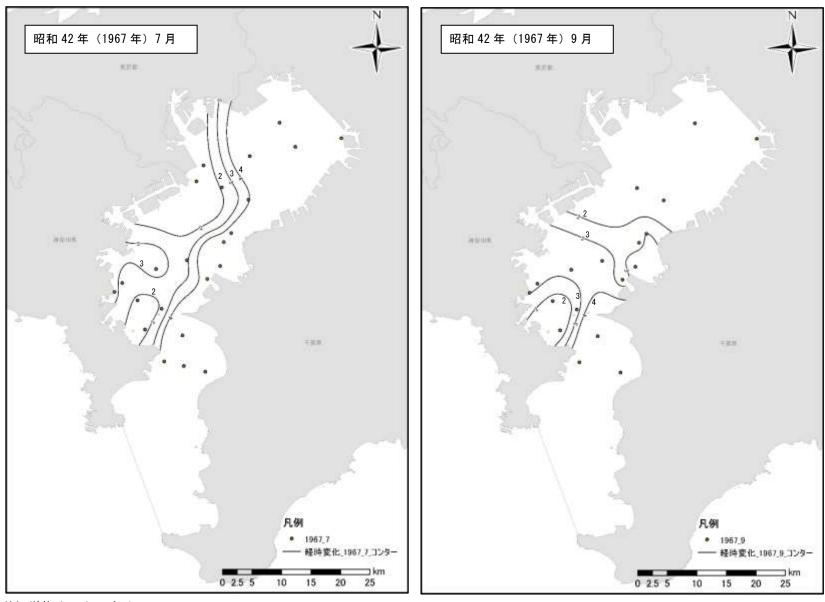


図 1.1.42(13) 昭和 30年(1955年)~昭和 44年(1969年)の東京湾の底層溶存酸素量の状況

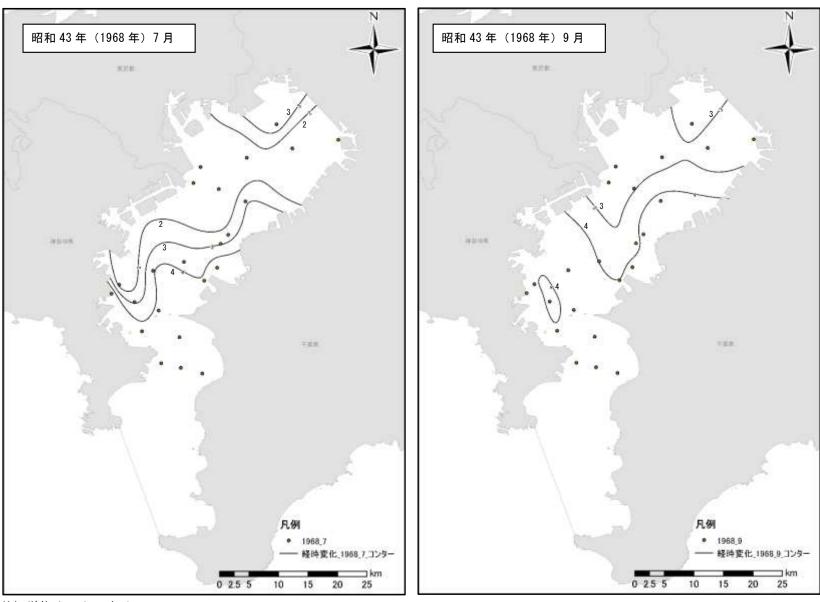
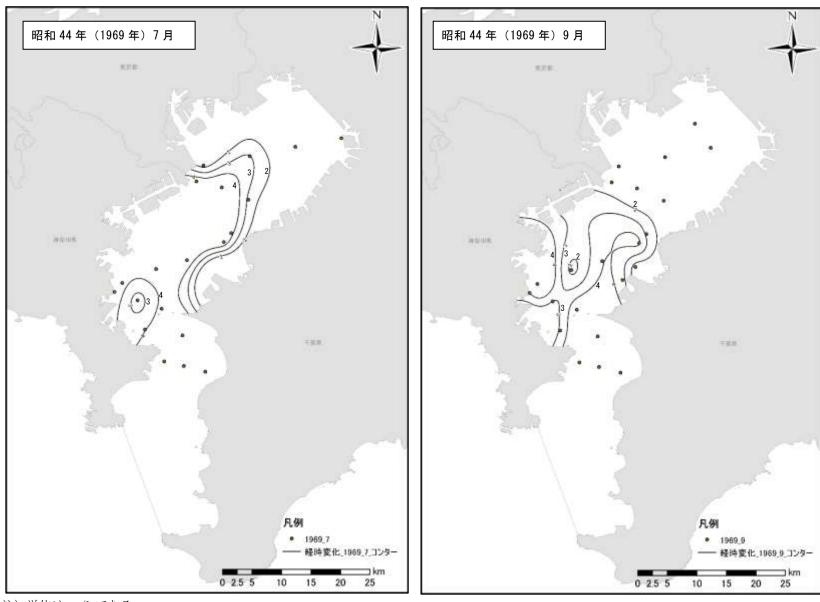
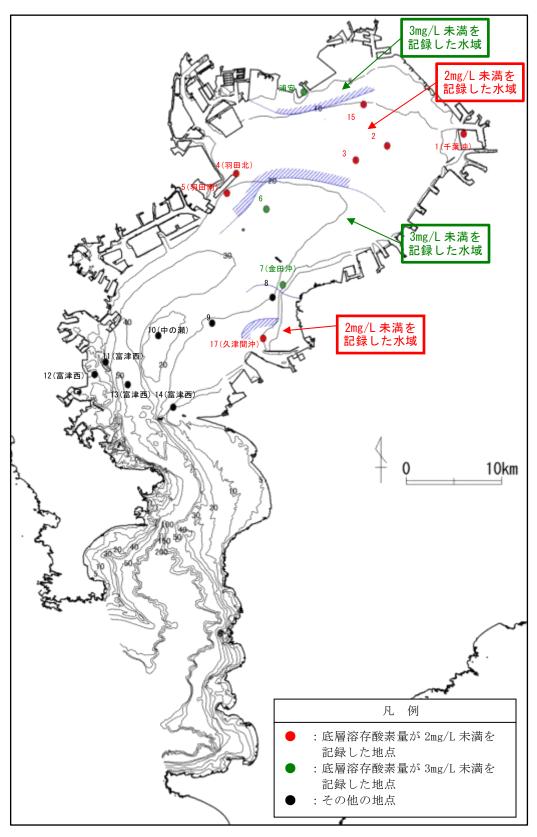



図 1.1.42(14) 昭和 30年(1955年)~昭和 44年(1969年)の東京湾の底層溶存酸素量の状況


注)単位は mg/L である。

資料:千葉県総合研究センター提供資料

図 1.1.42(15) 昭和 30年(1955年)~昭和 44年(1969年)の東京湾の底層溶存酸素量の状況

前段に示す昭和30年(1955年)~昭和44年(1969年)の7月及び9月の底層溶存酸素量の過去の状況(図 1.1.42)をみると、湾奥部において昭和30年(1955年)から昭和33年(1958年)は、2.0mg/L未満の水塊は小規模に発生し、出現しない月もあった。その後、昭和34年(1959年)に広範囲に2.0mg/L未満以下の水塊が広がるようになってきた。このことから、昭和30年代前半は貧酸素化が顕著になる前と考えられる。

この情報を踏まえ、東京湾内における昭和 30 年代前半 (1950 年代後半) の 7 月 及び9月の底層溶存酸素量の状況を図化した結果は図 1.1.43 に示すとおりである。 東京湾奥部では、水質汚濁が現在のように問題となっていないと考えられる昭和 30 年前半 (1950 年代後半) であっても底層溶存酸素量が 2.0mg/L 未満、3.0mg/L 未満 の水域が存在している。

注)対象期間は昭和 30 年(1955 年) ~昭和 34 年(1959 年)の 5 年間とし、各地点の濃度は千葉県水産総合研究センターのデータを変換した。

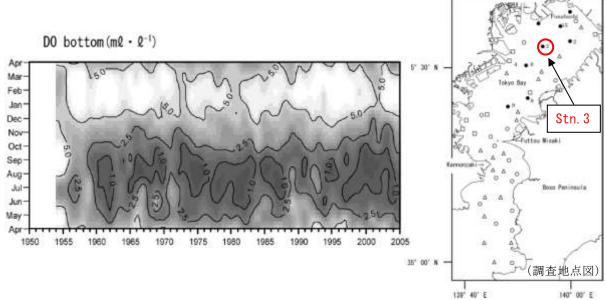
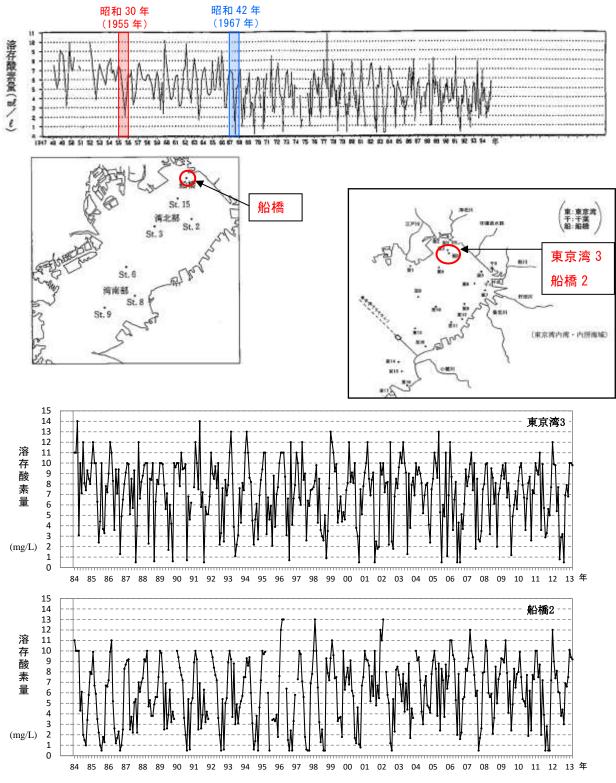

資料:千葉県水産総合研究センター提供資料より作成

図 1.1.43 東京湾内における昭和30年代前半(1950年代後半)の7月及び9月の 底層溶存酸素量

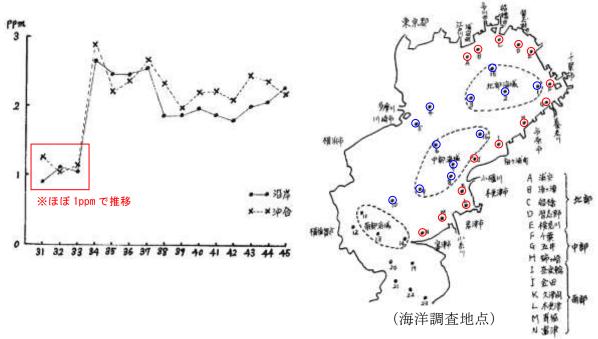
り) 東京湾湾奥部の調査結果について


昭和30年(1955年)~平成17年(2005年)の東京湾湾奥部の地点(Stn.3)に おける底層(海底上1m)の溶存酸素量をみると(図 1.1.44参照)、昭和30年(1955年)時点では夏季を中心に2.5ml/L(3.6mg/L)以上の状況が大部分を占めているが、 その後、1.0ml/L(1.4mg/L)以下となる期間が多くなっていることがうかがえる。

また、東京湾湾奥部の調査結果としては、昭和 23 年 (1948 年) ~平成 6 年 (1994 年) の底層溶存酸素量の推移を表したもの(図 1.1.45 の上図)と、それとほぼ同じ地点で、昭和 59 年 (1984 年) ~平成 25 年 (2013 年) の底層溶存酸素量の推移を表したもの(図 1.1.45 の下図)がある。これらの底層溶存酸素量の日間平均値の最低値をみると、昭和 30 年 (1955 年) までは、2.0 ml/L (2.9mg/L) 程度を示していることがわかり、昭和 30 年 (1955 年) から現在までをみると、昭和 42 年 (1967年)以降は 1.0ml/L (1.4mg/L) を下回る頻度が多くなっていることがうかがえる。

資料: 石井光廣. 長谷川健一. 柿野純(2008). 千葉県データセットから見た東京湾における水質の長期変動, 水 産海洋研究, 72(3), 189-199

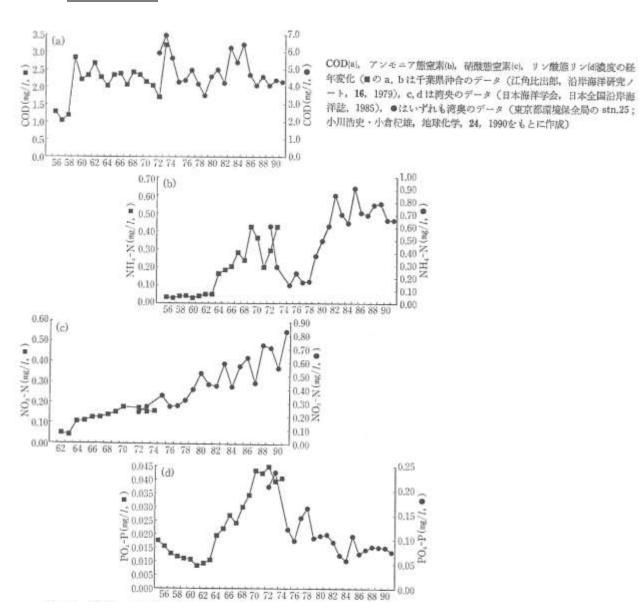
図 1.1.44 東京湾奥 (St.3) の底層溶存酸素量の推移


資料:(上図) 田辺伸,山口利夫(1995):東京湾の長期的水質変化について-I 水温・塩分・底層の溶存酸素量の変化,千葉水試研報, No. 53

(下図)「東京湾内湾海域-公共用水域水質測定結果」(千葉県)

図 1.1.45 東京湾奥(船橋付近)の底層溶存酸素量の推移

エ) 過去(高度経済成長前、水質汚濁が進行する前等)の COD 等の状況


海老原によると、図 1.1.46 に示す沿岸(千葉県の東京湾沿岸 14 点)の上下層年間平均値、沖合(内湾部 12 点)の表層年間平均値の経年変化より、昭和 33 年(1958年)までほぼ 1ppm であったが、昭和 34 年(1959年)から急激に増加して 2ppm~3ppm に増加している。

注) 海洋調査地点について、○が沿岸、○が沖合の対象調査地点である。 資料:海老原天生(1972).最近の東京内湾千葉県沿岸部における水質について,水産海洋研究会報,20、20-38 図 1.1.46 COD の経年変化

また、小倉によると、東京湾の汚濁が急激に進行し始めたのは、昭和 30 年代前半 (1950 年代後半) と考えられる。湾央の COD は昭和 33 年 (1958 年) まで 1 mg/L であったが、昭和 34 年 (1959 年) から急増し、昭和 40 年前後 (1960 年代)、昭和 50 年前後 (1970 年代) は $2 mg/L \sim 3 mg/L$ となった(上記結果と同様のデータである)。 栄養塩濃度の増加は COD よりも少し遅れて昭和 40 年頃 (1960 年代中頃) から始まった。 (図 1.1.47)。

これらの結果より、東京湾の汚濁は昭和 30 年代前半(1950 年代後半)から急激に進行したことから、東京湾は昭和 30 年(1955 年)頃までは清澄な海域であると推察される。

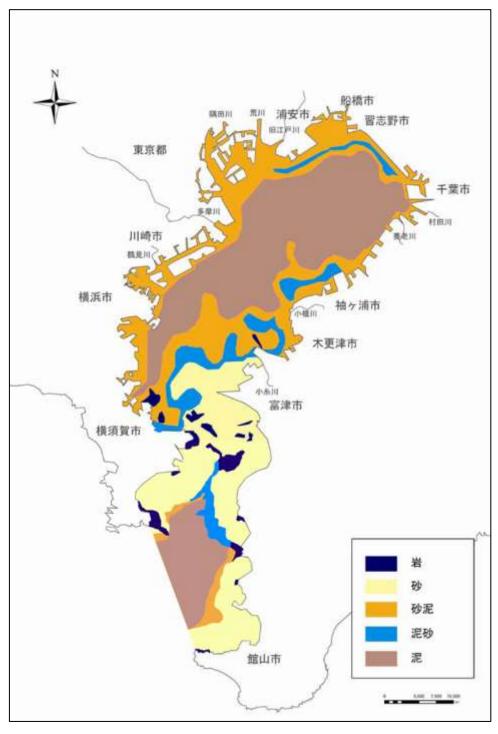

資料:小倉紀雄編(1993).東京湾-100年の環境変遷-,恒星社厚生閣

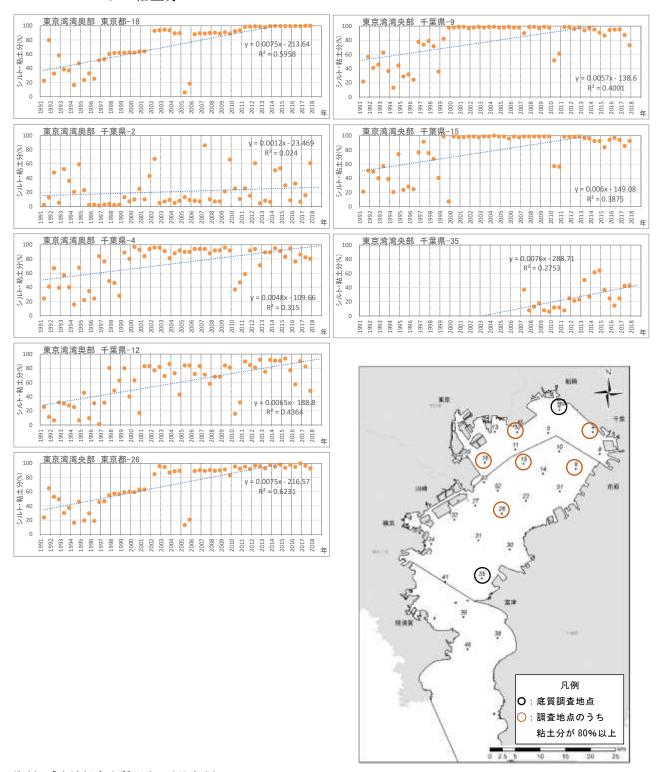
図 1.1.47 COD、アンモニア態窒素、硝酸対窒素、リン酸態リン濃度の経年変化

1.1.3 底質の状況

(1) 底質の分布状況

東京湾の底質の分布状況は図 1.1.48 に示すとおりである。東京湾の底質について、湾奥部から湾央部にかけて泥、砂泥、泥砂で占められており、湾口に向けて砂、岩が存在している。

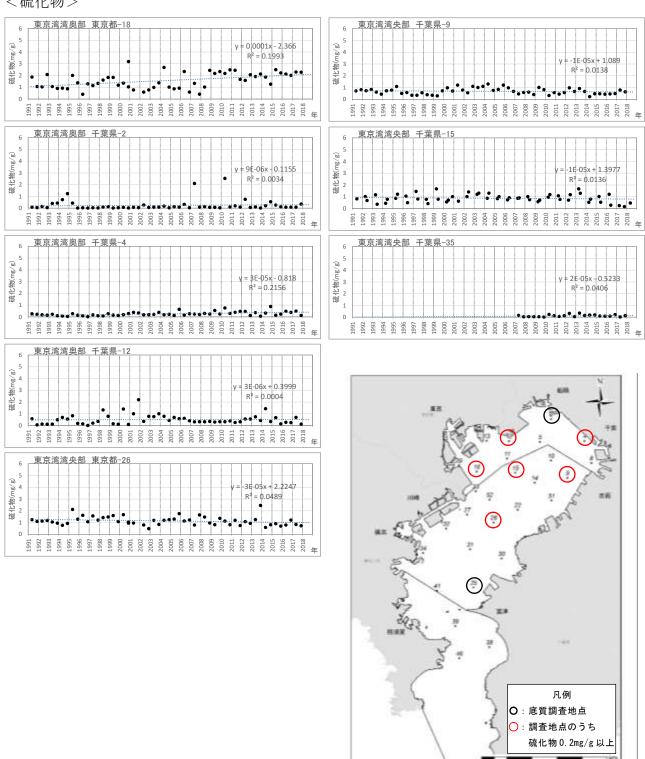
資料:「昭和56年度漁場改良復旧基礎調査報告書」(水産庁)


図 1.1.48 東京湾の底質の状況

(2) 底質の経年変化

底質のシルト・粘土分と生物の生息に影響する硫化物の経年変化は図 1.1.49、図 1.1.50 に示すとおりである。シルト・粘土分は、平成 3 年 (1991 年) 以降すべての地点で増加傾向であり、調査地点のうち三番瀬沖の地点 (千葉県-2) 及び富津地先の地点 (千葉県-35) 以外は、平成 12 年 (2000 年) 頃からシルト・粘土分が 80%を超えている。これらの底質分布は、図 1.1.51 の分布ともおおむね一致していた。

底質中の硫化物量は、平成3年(1991年)以降ほとんど横ばいか緩やかに増加しており、シルト・粘土分の割合が高い地点で硫化物量が多い傾向がみられた。


<シルト・粘土分>

資料:「広域総合水質調査」(環境省)

図 1.1.49 底質 (シルト・粘土分) の経年変化

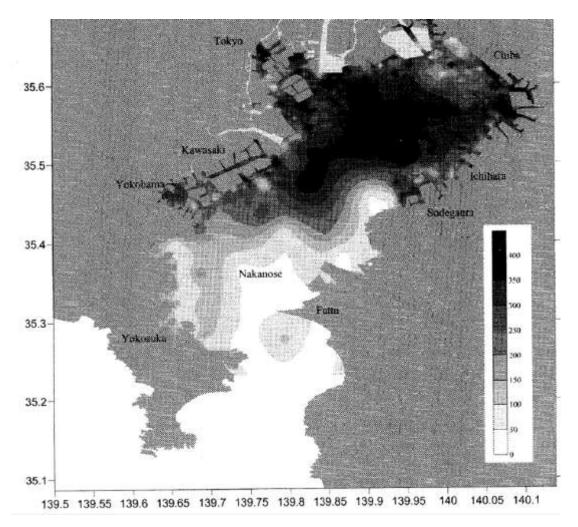
<硫化物>

注) 硫化物 0.2mg/g は水産用水基準で定められた水生生物保護のための望ましい値 資料:「広域総合水質調査」(環境省)

図 1.1.50 底質(硫化物)の経年変化

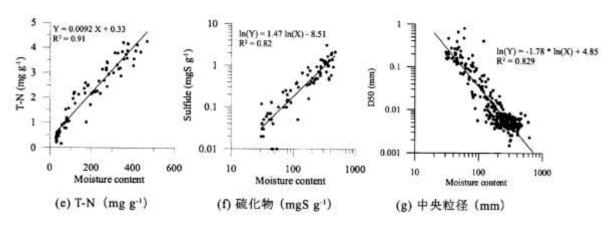
(3) 総量規制開始前の底質の状況

過去の資料によると、東京湾の底質分布の概略は図 1.1.51 に示すとおりである。 千葉県側の沿岸部には砂質や砂泥質域がみられ、港湾の前面や水深が深い部分、湾中央部は泥質となっている。



資料:「昭和56年度漁場改良復旧基礎調査報告書」(1982、水産庁)

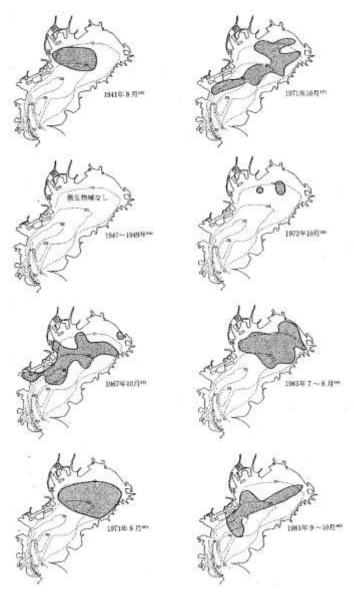
図 1.1.51 東京湾の底質


(4) 底質変化の要因や影響

岡田ら(2005)は、音響探査機の反射強度から底質の含水比を求め底質の分布図を作成している。含水比の値は、全窒素や硫化物の量、中央粒径などと相関関係があることが確認されており、含水比の値が高い地点ほど泥分が多いと考えられる(図1.1.52、図1.1.53)。

資料:岡田知也.古川圭太(2005)東京湾沿岸域における音響装置を用いた詳細な底質分布図の作成とベントス生息状況,海岸工学論文集,第52巻,1431-1425.

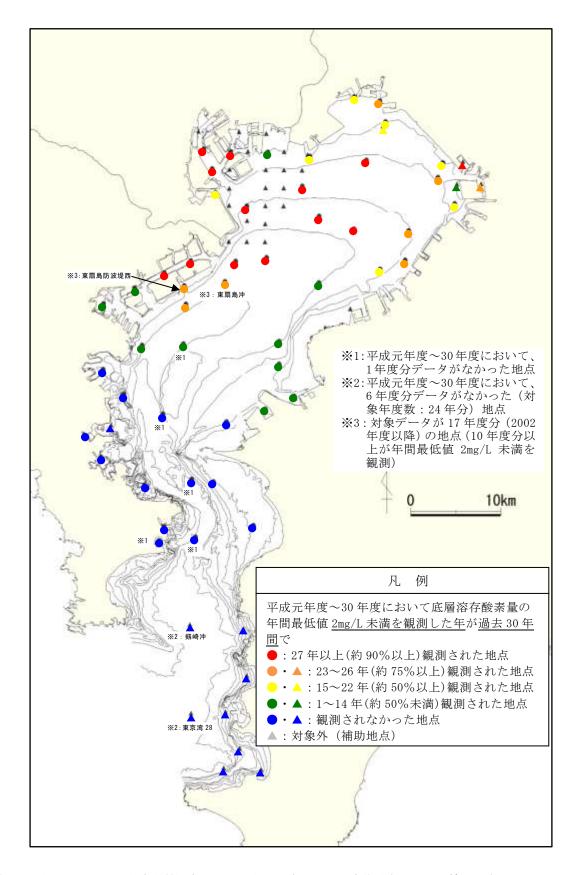
図 1.1.52 東京湾の含水比の分布



資料: 岡田知也. 古川圭太(2005)東京湾沿岸域における音響装置を用いた詳細な底質分布図の作成とベントス 生息状況,海岸工学論文集,第52巻,1431-1425.

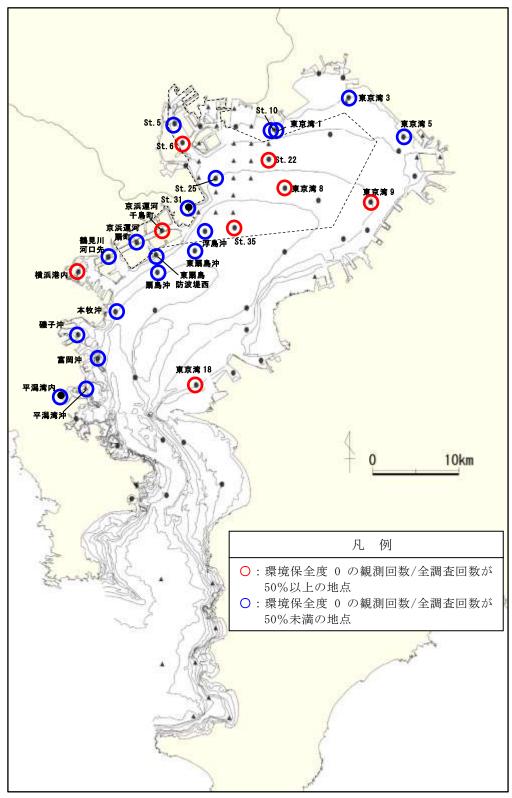
図 1.1.53 含水比と窒素、硫化物、中央粒径の相関関係

(5) 底生生物の状況


日本沿岸海洋誌によると、図 1.1.54に示すように『夏の無生物域は 1941 年の太平洋戦争直前に既に羽田沖に形成されているが、戦後の 1947~49 年では一時消失した。しかし、1967 年にすでに広い無生物域が復活し、近年では多摩川河ロ-姉ヶ崎以奥の広い範囲で 1941 年の約 3 倍の広さで形成されるようになった。また、成層がくずれ鉛直混合期になって海底に酸素が供給され始めた秋になっても無生物域は残るとともに、横浜-川崎沿岸に延び、千葉-横浜間の帯状になる傾向にある』と記載されている。

出典:日本海洋学会沿岸海洋研究部会「沿岸海洋誌」編集委員会編(1985)日本全国沿岸海洋誌,東海出版会,東京,373-388

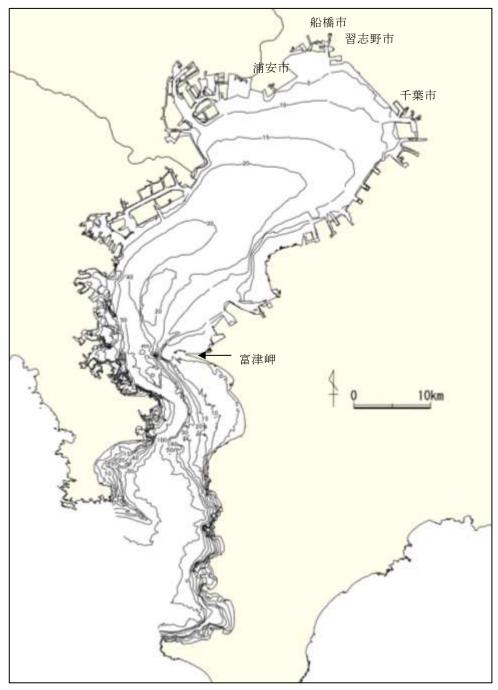
図 1.1.54 東京湾の無底生動物域とその変遷


底層溶存酸素量の年間最低値の分布の状況及び平成 13 年度~令和元年度の「東京湾の底質調査結果」(九都県市首脳会議 環境問題対策委員会水質改善専門部会)で整理されている底生生物による評価結果より、図 1.1.55 及び図 1.1.56 に示すとおり、底生生物による評価結果において『環境保全度 0』(溶存酸素はほとんどなく、生物は生息していない。底質は黒色でヘドロ状である。)とされた地点は、概ね底層溶存酸素量の年間最低値が 2mg/L 未満の頻度の高い水域内に点在しているものの、その範囲は一致しているとはいえない。

注) 1. 図中の●は公共用水域水質測定における生活環境項目の環境基準点を、▲は補助地点を表す。 2. 補助地点については年間 2 回の測定しか実施していないことから対象外としている。

資料:公共用水域水質測定結果(千葉県、東京都、神奈川県)より作成

図 1.1.55 東京湾における底層溶存酸素量の年間最低値が 2mg/L 未満となる地点の状況

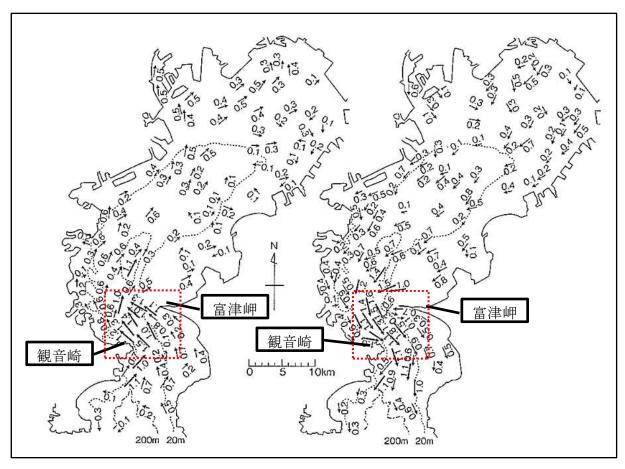


- 注)1. 図中の●は公共用水域水質測定における生活環境項目の環境基準点を、▲は補助地点を表す。 2. 破線の範囲は、平成元年度~30 年度にかけて年間最低値が 2mg/L 未満となった回数が 27 回以上の地 点を包括した水域である。
- 図 1.1.56 東京湾における底層溶存酸素量の年間最低値が 2mg/L 未満となる地点を包括 した水域と環境保全度 0 を観測した回数が全調査回数の 50%以上記録した地点

1.1.4 水域の地形及び流況等

(1) 海底の地形 (水深)

東京湾の海底地形図は図 1.1.57 に示すとおりである。東京湾の平均水深は 15m 程度であり、湾奥部から湾口部に向かって徐々に深くなる。浦安市から千葉市にかけての湾奥部では、海底勾配は約 1/1000 と緩やかであるが、富津岬沿岸では約 1/100 と急峻であり、水深は 50m 以上である。

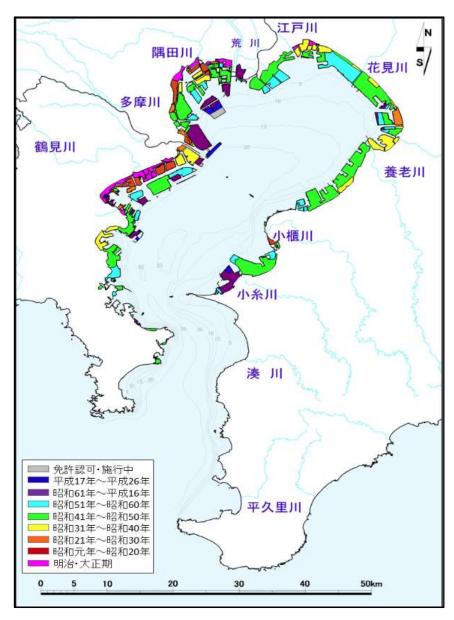


資料:「海底地形デジタルデータ M7000 シリーズ (関東南部)」(日本水路協会)

図 1.1.57 東京湾の海底地形図

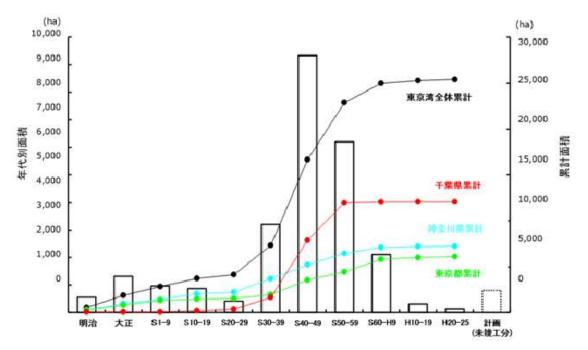
(2) 潮流

東京湾の潮流は図 1.1.58 に示すとおりである。上げ潮時及び下げ潮時の流れは、概ね湾の主軸方向を向き、幅が狭くなった狭義の東京湾口の観音崎・富津岬間で最も強く、1.5 ノット(1 ノット 0.5m/s)以上もあり、場所によっては 2 ノットに達することもある。



注)海上保安庁水路部の東京湾潮流図 (1972年刊) に基づいて作成。宇野木 (1993) による。 資料:「東京湾 人と自然とのかかわりの再生」(2011、東京湾海洋環境研究委員会)

図 1.1.58 東京湾の潮流 (湾口最強時、単位ノット) (左:上げ潮、右:下げ潮)


(3) 埋立ての変遷

東京湾における年代別埋立状況は図 1.1.59 に、埋立面積の変遷は図 1.1.60 に示すとおりである。東京湾における埋立ては、明治・大正期より現在の船橋市沿岸や隅田川流域などで進められ、昭和元年(1989年)からは現在の木更津市や千葉市などでも進められた。昭和30年(1955年)~昭和60年(1985年)にかけて南房総を除く東京湾沿岸において広範囲に埋立てが進められ、昭和40年代(1970年前後)~昭和50年代(1980年前後)にかけての大規模な埋立により、東京湾の水面面積の約2割に相当する約25,000haが埋立てられた。その後、昭和61年(1986年)以降、埋立面積は横ばいになっている。

資料:「国土交通省関東地方整備局資料」(東京湾環境情報センター)

図 1.1.59 東京湾の年代別埋立状況

注) 埋立て面積の数値は竣工ベースの数値で示す。

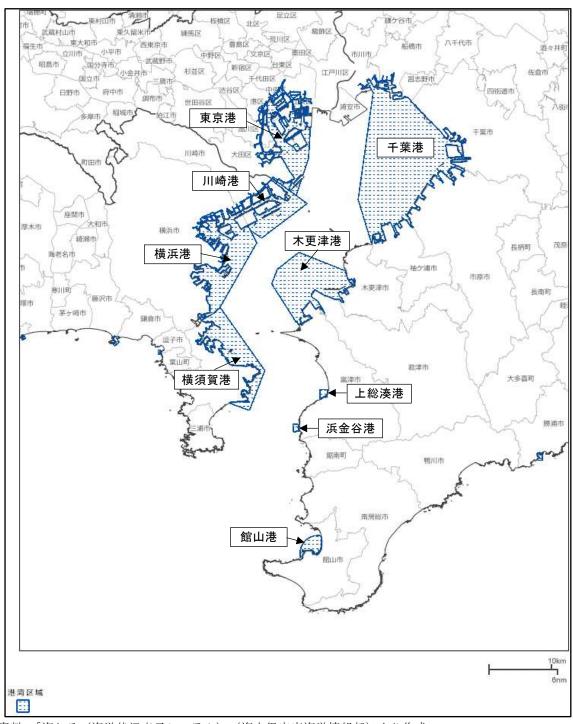
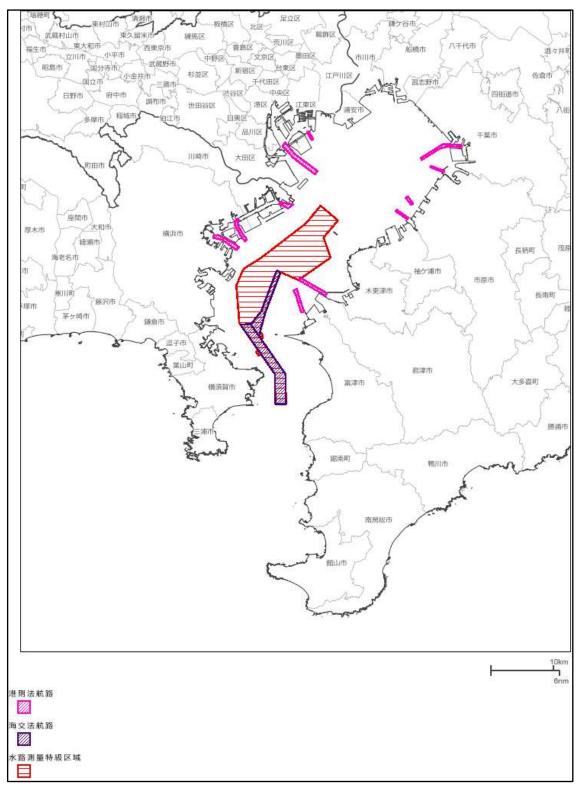

資料:「国土交通省関東地方整備局資料」(東京湾環境情報センター)

図 1.1.60 東京湾内における埋立面積の変遷

1.1.5 水域の利用状況

(1) 港湾

東京湾における港湾区域は図 1.1.61 に示すとおりである。東京湾には、国際拠点港湾として千葉港、東京港、川崎港及び横浜港、重要港湾として木更津港及び横須賀港、地方港湾として上総湊港、浜金谷港及び館山港がある。

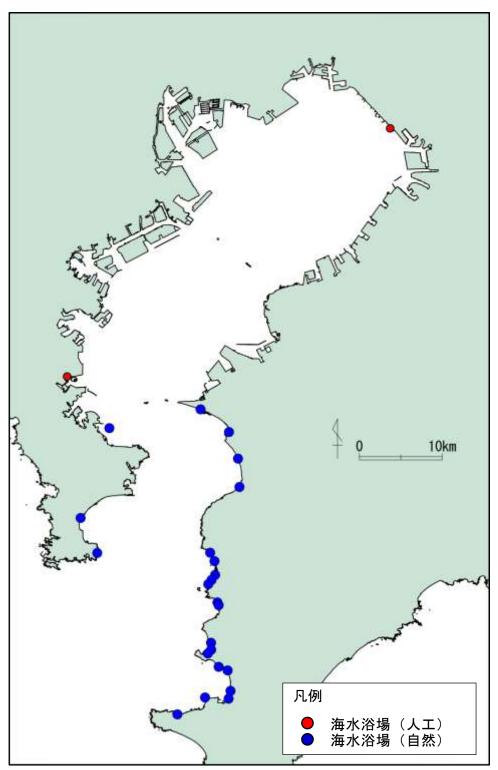


資料:「海しる(海洋状況表示システム)」(海上保安庁海洋情報部)より作成

図 1.1.61 東京湾における港湾

(2) 港湾区域・航路

東京湾における航路は図 1.1.62 に示すとおりである。

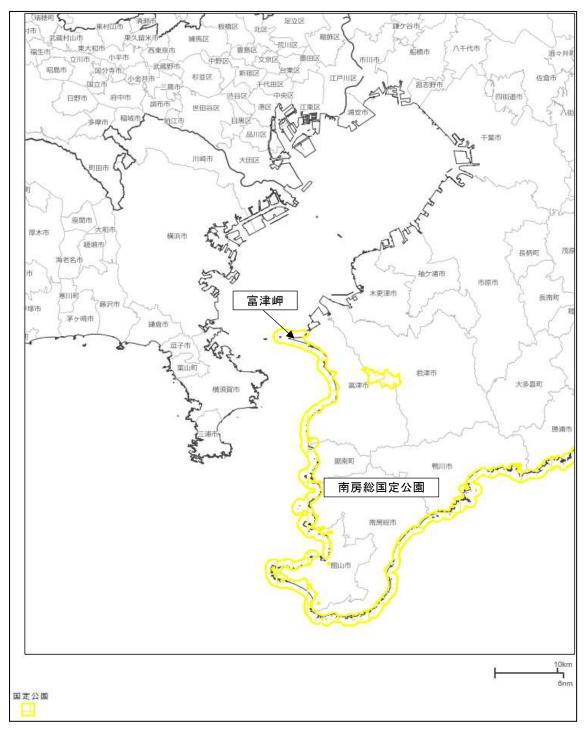


資料:「海しる(海洋状況表示システム)」(海上保安庁海洋情報部)より作成

図 1.1.62 東京湾における港湾区域及び航路

(3) 水浴場

東京湾における水浴場の分布は図 1.1.63 に示すとおりである。東京湾には、人工の水浴場が2箇所、自然の海水浴場が23箇所ある。



資料:自治体ホームページ(館山市、南房総市、鋸南市、富津市、千葉市、横浜市、横須賀市、三浦市)より 作成

図 1.1.63 東京湾における水浴場

(4) 国立公園・国定公園等

東京湾における国定公園は図 1.1.64 に示すとおりである。東京湾、富津岬から湾口、外房にかけて南房総国定公園がある。

資料:「海しる(海洋状況表示システム)」(海上保安庁海洋情報部)より作成

図 1.1.64 東京湾における国定公園

1.1.6 藻場・干潟の状況

東京湾における主要な干潟・藻場の分布は図 1.1.65 に示すとおりである。東京湾における干潟は富津岬以北に分布する。干潟は、三番瀬(千葉港地先干潟、船橋海浜公園地先)、千葉県の豊砂地先からいなげの浜、盤洲干潟(畔戸地先、木更津港北、中島高須、牛込高須)及び富津干潟(富津公園地先、富津港北)等が分布する。このうち、規模に注目すると、盤洲干潟(約1,400ha)、富津干潟(145.6ha)、谷津干潟(36.9ha)及び三番瀬(27.4ha)の面積が大きい。

また、東京湾では、砂浜性藻場として、アマモ場が分布する。アマモは干潟やその周辺の水域に生育する種である。東京湾のアマモ場は、内湾部を中心に複数存在するが、第5回自然環境保全基礎調査によれば、規模が大きいのは盤洲干潟(藻場面積104.1ha)及び富津干潟(藻場面積116.9ha)のアマモ場である¹⁾。また、東京湾アマモ場再生会議によると、野島海岸及び海の公園においてもアマモ場が存在している²⁾。

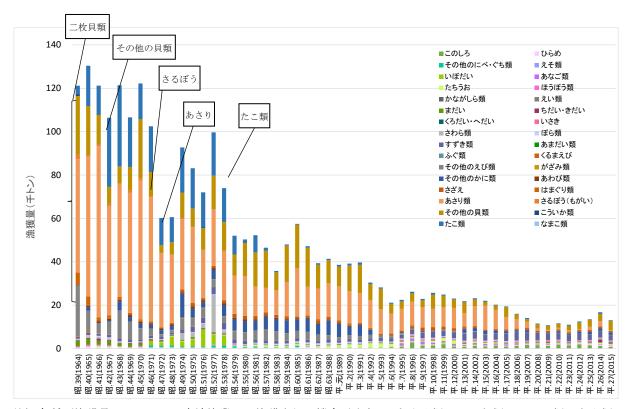
ガラモ場等の岩礁性藻場は、富津岬以南の沿岸部に分布し、三浦半島沿岸及び内 房沿岸にも藻場が点在する。このうち、藻場の規模に注目すると、三浦半島の間口 地先(藻場面積 261ha)及び野比地先(藻場面積 152ha)の藻場が大きい。

以上のように、東京湾には砂浜性藻場及び岩礁性藻場が分布するが、その規模からみて主要な藻場として盤洲干潟及び富津干潟のアマモ場、野比及び間口の岩礁性藻場が挙げられる。

1 - 93

¹⁾ 環境省. 第5回自然環境保全基礎調查 重要沿岸域生物調查報告書 1998~2001

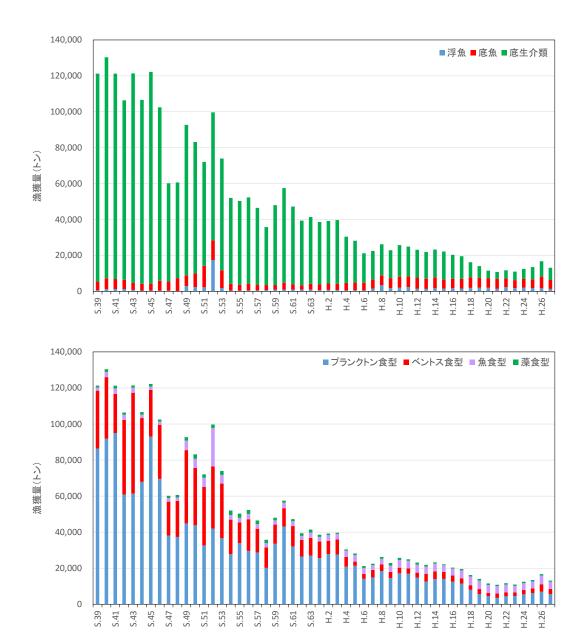
²⁾ 東京湾アマモ場再生会議. 横浜港におけるアマモ場再生活動と地域への展開 2015


資料:「中央環境審議会水生生物保全環境基準類型指定専門委員会資料 東京湾特別域の検討」(2008、環境省) 図 1.1.65 東京湾における主要な干潟・藻場の分布

1.1.7 水産等に関する情報

(1) 漁獲量の経年変化

東京湾における漁獲量は、漁業・養殖業生産統計年報から集計した。東京湾における漁獲量は、神奈川県、東京都、千葉県の県合計漁獲量から、内湾漁業では漁獲機会が少ない種を除き湾内で主に漁獲されている種を抽出し整理した(図 1.1.66)。また、魚種によって生活史や食性が異なり、東京湾の水環境との関係性も異なると考えられることから、生息層や食性を踏まえて魚種を分類し、それぞれの漁獲量の変化状況を整理した(図 1.1.67)。


東京湾における生息層・食性の分類は表 1.1.10に示すとおりである。

注) 魚種別漁獲量については、内湾漁業では漁獲される機会が少ない まぐろ類、かじき類、かつお類、さめ類、さけ・ます類、にしん、いわし類、あじ類、さば類、さんま、ぶり類、ひらめ・かれい類、たら類、ほっけ、めぬけ類、きちじ、はたはた、にぎす類、にべ・ぐち類、はも、しいら類、とびうお類、いかなご類、その他の魚類、いせえび、たらばがに、ずわいがに、べにずわいがに、おきあみ類、ほたてがい、うばがい(ほっき)、するめいか、あかいか、その他のいか、うに類、海産ほ乳類、その他の水産動物類、海藻類は除いた。資料:「漁業・養殖業生産統計年報 海面漁業魚種別漁獲量累年統計(都道府県別)」(政府統計の総合窓口(e-Stat))

図 1.1.66 東京湾内で漁獲される種の漁獲量の推移

より作成

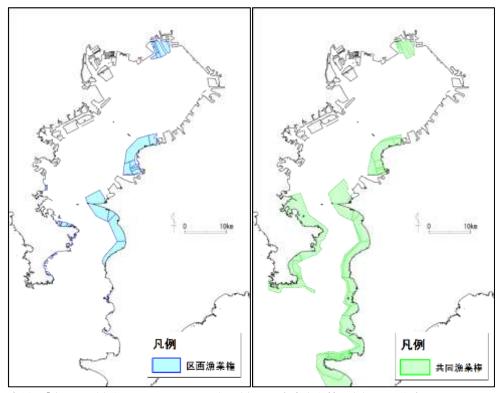
資料:「漁業・養殖業生産統計年報 海面漁業魚種別漁獲量累年統計(都道府県別)」(政府統計の総合窓口(e-Stat)) より作成

図 1.1.67 東京湾における漁獲量の生息層別、食性型別の推移

表 1.1.10 生息層・食性の類型区分

分類	魚種	生息層類型	食性類型
魚類	このしろ	浮魚	プランクトン食型
魚類	ひらめ	底魚	魚食型
魚類	その他のにべ・ぐち類	底魚	ベントス食型
魚類	えそ類	底魚	魚食型
魚類	いぼだい	底魚	ベントス食型
魚類	あなご類	底魚	ベントス食型
魚類	たちうお	底魚	魚食型
魚類	ほうぼう類	底魚	ベントス食型
魚類	かながしら類	底魚	ベントス食型
魚類	えい類	底魚	ベントス食型
魚類	まだい	底魚	ベントス食型
魚類	ちだい・きだい	底魚	ベントス食型
魚類	くろだい・へだい	底魚	ベントス食型
魚類	いさき	底魚	ベントス食型
魚類	さわら類	浮魚	魚食型
魚類	ぼら類	浮魚	プランクトン食型
魚類	すずき類	底魚	魚食型
魚類	あまだい類	底魚	ベントス食型
魚類	ふぐ類	底魚	ベントス食型
えび類	くるまえび	底生介類	ベントス食型
えび類	その他のえび類	底生介類	ベントス食型
かに類	がざみ類	底生介類	ベントス食型
かに類	その他のかに類	底生介類	ベントス食型
貝類	あわび類	底生介類	藻食型
貝類	さざえ	底生介類	藻食型
貝類	はまぐり類	底生介類	プランクトン食型
貝類	あさり類	底生介類	プランクトン食型
貝類	さるぼう (もがい)	底生介類	プランクトン食型
貝類	その他の貝類	底生介類	プランクトン食型
いか類	こういか類	底生介類	ベントス食型
たこ類	たこ類	底生介類	ベントス食型
なまこ類	なまこ類	底生介類	ベントス食型

注) 魚種別漁獲量については、内湾漁業では漁獲される機会が少ない まぐろ類、かじき類、かつお類、さめ類、さけ・ます類、にしん、いわし類、あじ類、さば類、さんま、ぶり類、ひらめ・かれい類、たら類、ほっけ、めぬけ類、きちじ、はたはた、にぎす類、にべ・ぐち類、はも、しいら類、とびうお類、いかなご類、その他の魚類、いせえび、たらばがに、ずわいがに、べにずわいがに、おきあみ類、ほたてがい、うばがい(ほっき)、するめいか、あかいか、その他のいか、うに類、海産ほ乳類、その他の水産動物類、海藻類は除いた。

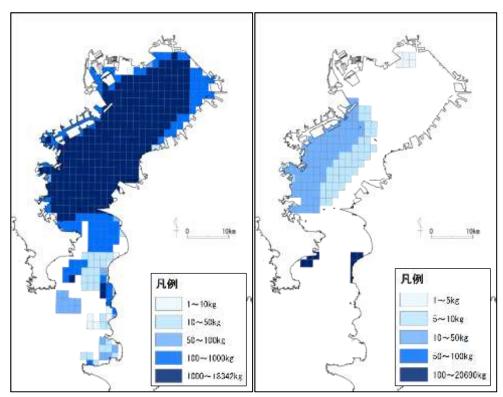

資料:「漁業・養殖業生産統計年報 海面漁業魚種別漁獲量累年統計(都道府県別)」(政府統計の総合窓口(e-Stat)) より作成

(2) 区画漁業権

東京湾における区画漁業権及び共同漁業権の設定状況は図 1.1.68 に示すとおりである。

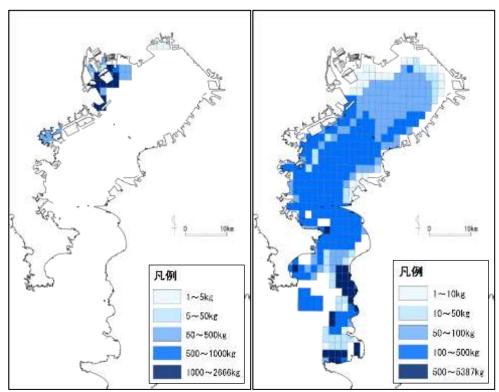
区画漁業権は、千葉県及び神奈川県において設定されており、ノリやワカメの養殖 等が営まれている。

また、共同漁業権は、千葉県及び神奈川県において設定されており、ワカメ、ひじき やサザエなどの漁業が概ね周年に渡り営まれている。



資料:「海しる(海洋状況表示システム)」(海上保安庁海洋情報部)より作成

図 1.1.68 漁業権の設定状況 (左図:区画漁業権、右図:共同漁業権)


(3) 主要水産物の漁場

東京湾における保全対象種のうち、既往知見により漁獲状況が確認される種の魚種 別漁獲量分布状況は図 1.1.69 に示すとおりである。

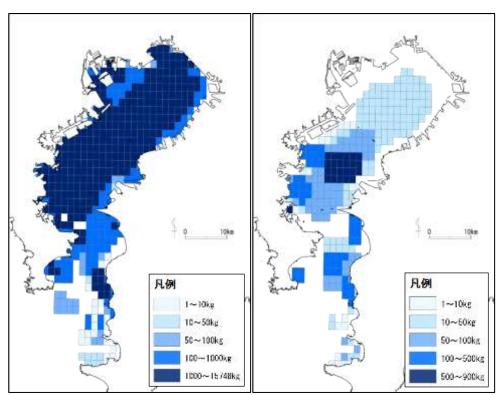

資料:「漁場環境評価メッシュ図」(平成 12 年 3 月、水産庁 社団法人日本水産資源保護協会)より作成

図 1.1.69(1) 魚種別漁獲量分布図(左図:マアナゴ、右図:シロギス)

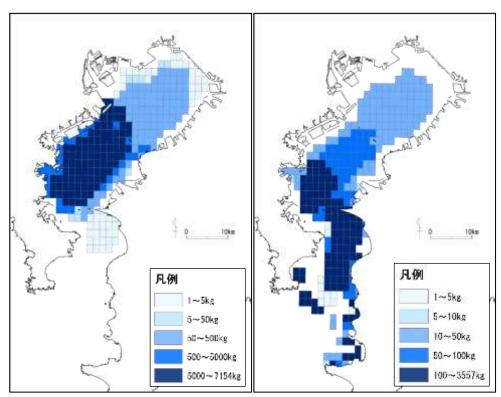

資料:「漁場環境評価メッシュ図」(平成 12 年 3 月、水産庁 社団法人日本水産資源保護協会)より作成

図 1.1.69(2) 魚種別漁獲量分布図 (左図:マハゼ、右図:ヒラメ)

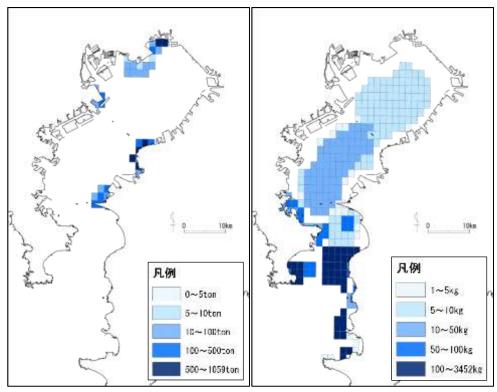

資料:「漁場環境評価メッシュ図」(平成 12 年 3 月、水産庁 社団法人日本水産資源保護協会)より作成

図 1.1.69(3) 魚種別漁獲量分布図(左図:マコガレイ、右図:クルマエビ)

資料:「漁場環境評価メッシュ図」(平成 12 年 3 月、水産庁 社団法人日本水産資源保護協会)より作成

図 1.1.69(4) 魚種別漁獲量分布図(左図:シャコ、右図:コウイカ)

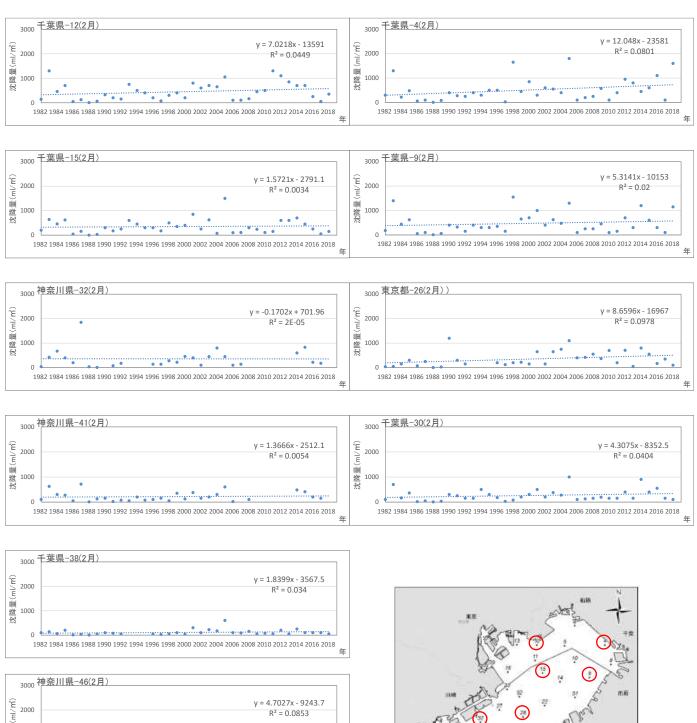
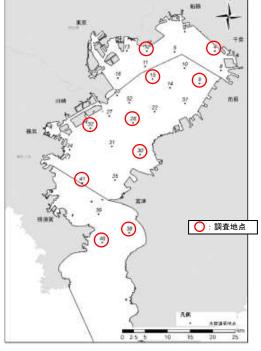

資料:「漁場環境評価メッシュ図」(平成 12 年 3 月、水産庁 社団法人日本水産資源保護協会)より作成

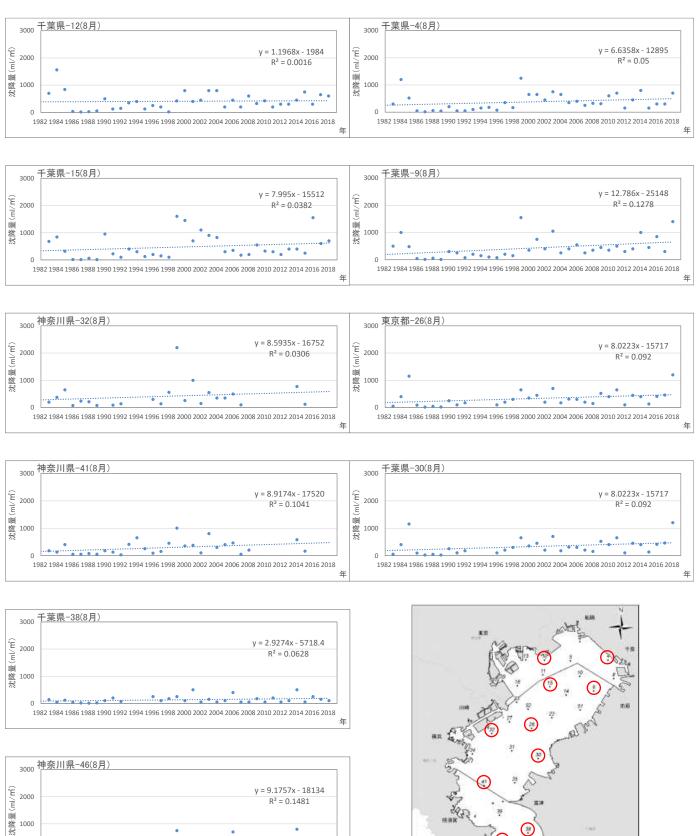
図 1.1.69(5) 魚種別漁獲量分布図(左図:アサリ、右図:マナマコ)

(4) プランクトン量

広域総合水質調査で実施されているプランクトン調査 (沈殿量) について、東京湾内の地点の2月 (冬季) と8月 (夏季) の推移は図 1.1.70、図 1.1.71 に示すとおりである。また、昭和55年前後 (1980年代) の8年間の平均値と平成20年代 (2010年代) の7年間の比較は表 1.1.11 及び図 1.1.72 に示すとおりである。なお、プランクトン沈殿量には、動物プランクトンと植物プランクトンの両方が含まれていることに留意が必要である。

昭和57年(1982年)~平成28年(2016年)のプランクトン沈殿量には一定の傾向はみられず、全体的にはやや増加していた。また、昭和55年前後(1980年代)、平成20年代(2010年代)ともに沈殿量が多いのは湾奥部の千葉県沿岸から神奈川県の京浜港前面であり、昭和55年前後(1980年代)のプランクトンが多かった地点は、平成20年代(2010年代)でも概ね多い傾向は変わっていなかった。一方、湾口寄りの千葉県側の地点は昭和55年前後(1980年代)と平成20年代(2010年代)のいずれも低い値であった。


資料:「広域総合水質調査」(環境省)


......

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

) ■数 1000

図 1.1.70 東京湾内のプランクトン沈殿量の推移 (2月・冬季)

資料:「広域総合水質調査」(環境省)

1000

図 1.1.71 東京湾内のプランクトン沈殿量の推移 (8月・夏季)

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

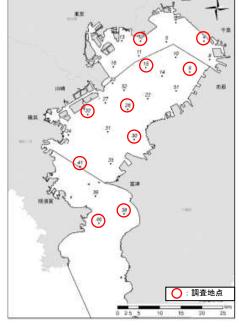


表 1.1.11 プランクトン沈殿量の昭和55年前後(1980年代)と平成20年代(2010年代)の比較

		2月(冬季)		
地点	一次回帰式の	決定係数	1980年代	2010年代
地点	傾き	(R^2)	平均(ml/m³)	平均(ml/㎡)
千葉県-4	12.0	0.08	318	678
千葉県-9	5.3	0.02	357	511
千葉県-12	7.0	0.04	355	644
千葉県-15	1.6	0.00	269	340
千葉県−30	4.3	0.04	177	328
千葉県−38	1.8	0.03	74	108
東京都-26	8.7	0.10	113	403
神奈川県-32	-0.2	0.00	455	458
神奈川県-41	1.4	0.01	275	310
神奈川県-46	4.7	0.09	145	320
		8月(夏季)		
	一次回帰式の	8月(夏季) 決定係数	1980年代	2010年代
地点	一次回帰式の 傾き		1980年代 平均(ml/ml)	2010年代 平均(ml/㎡)
地点		決定係数		
地点 千葉県-4	傾き	決定係数 (R ²)	平均(ml/m³)	平均(ml/m³)
地点 千葉県-4 千葉県-9	傾き 6.6	決定係数 (R ²) 0.05	平均(ml/m³) 312	平均(ml/m³) 461
	傾き 6.6 12.8	決定係数 (R ²) 0.05 0.13	平均(ml/m³) 312 300	平均(mℓ/㎡) 461 617
地点 千葉県-4 千葉県-9 千葉県-12	傾き 6.6 12.8 1.2	決定係数 (R ²) 0.05 0.13 0.00	平均(ml/m³) 312 300 461	平均(ml/㎡) 461 617 442
地点 千葉県-4 千葉県-9 千葉県-12 千葉県-15 千葉県-30	傾き 6.6 12.8 1.2 8.0	決定係数 (R ²) 0.05 0.13 0.00 0.04	平均(ml/ml) 312 300 461 277	平均(m2/m²) 461 617 442 525
地点 千葉県-4 千葉県-9 千葉県-12 千葉県-15	傾き 6.6 12.8 1.2 8.0 3.8	決定係数 (R ²) 0.05 0.13 0.00 0.04 0.03	平均(ml/ml) 312 300 461 277 159	平均(mℓ/m³) 461 617 442 525 317
地点 千葉県-4 千葉県-9 千葉県-12 千葉県-15 千葉県-30 千葉県-38	傾き 6.6 12.8 1.2 8.0 3.8 2.9	決定係数 (R ²) 0.05 0.13 0.00 0.04 0.03 0.06	平均(ml/m³) 312 300 461 277 159 55	平均(m2/m²) 461 617 442 525 317 161
地点 千葉県-4 千葉県-9 千葉県-12 千葉県-15 千葉県-30 千葉県-38 東京都-26	傾き 6.6 12.8 1.2 8.0 3.8 2.9 8.0	決定係数 (R ²) 0.05 0.13 0.00 0.04 0.03 0.06 0.09	平均(ml/m³) 312 300 461 277 159 55 254	平均(m2/m²) 461 617 442 525 317 161 467

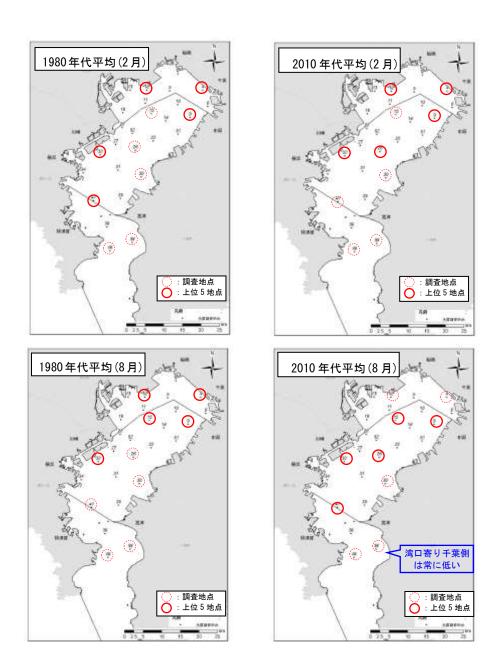


図 1.1.72 プランクトン沈殿量が多い地点

1.2 水生生物の生息状況等の把握

東京湾に生息する水生生物の抽出にあたっては、地域住民にとって身近な種であり、かつ溶存酸素量の基準値導出の際に参考とされた貧酸素耐性評価値の知見が主に魚類、甲殻類及び軟体動物(イカ・タコ類、貝類)並びに棘皮動物に係るものであることから、その対象を魚類、甲殻類、軟体動物(イカ・タコ類、貝類)、棘皮動物とした。具体的には表 1.2.1 に示す資料に基づきそのリストを作成した。

東京湾では、水産庁が平成15年度(2003年度)から実施した「豊かな東京湾を再生するための事業」によって、東京湾の漁業生産と資源の動向が分析されており、本事業を実施するために設置された「豊かな東京湾再生検討委員会」では平成17年(2005年)1月に「東京湾の漁業と資源 その今と昔」¹⁾を取りまとめている。また、平成17年(2005年)11月には「豊かな東京湾の再生に向けて提言」²⁾を発表し、東京湾の今後のあるべき姿の提言を行っている。これらの資料には、漁業統計資料では必ずしも把握できない種単位の情報が含まれており、また、豊かな東京湾再生検討委員会の検討を経たものであることから、東京湾に生息する魚介類の把握に用いた。また、上記に加え、「江戸前の復活!東京湾の再生をめざして」³⁾、「東京湾再生のための行動計画(第二期)」⁴⁾及び「東京湾再生のための行動計画(第二期)の新たな指標に関する提案解説書」⁵⁾、「平成26年度葛西沖魚介類生息環境調査報告書」⁶⁾、「平成26年度羽田沖浅場維持管理委託報告書」⁷⁾の4つを用いた。

「江戸前の復活!東京湾の再生をめざして」³⁾は、東京湾の魚介類について、生態 と資源の観点から詳細な検討を行い、今後の東京湾における保全対策のあり方について論じている。この資料には、東京湾の重要な魚介類について詳細な生態情報が 含まれているため、東京湾に生息する魚介類の把握に用いた。

「東京湾再生のための行動計画(第二期)」⁴⁾及び「東京湾再生のための行動計画(第二期)の新たな指標に関する提案解説書」⁵⁾は、江戸前の魚介類とは何かについて解説し、今後もそれらを利用していくための取り組み方法や課題を挙げている。この資料には東京湾の水産業と関わりの深い魚類に関する情報が含まれているため、東京湾に生息する魚介類の把握に用いた。

「平成 26 年度葛西沖魚介類生息環境調査報告書」⁶⁾、及び「平成 26 年度羽田沖 浅場維持管理委託報告書」⁷⁾は、中層魚、根付魚、底生生物についてより詳細な出現 種の情報が含まれているため、東京湾に生息する魚介類の把握に用いた。

次に、これらの文献に掲載のない漁獲対象種を抽出するため、千葉県、東京都及び神奈川県の農林水産統計年報. (8) 9) 10) のいずれかに掲載のある魚介類を追加した。 農林水産統計年報は、発行初年度から最新の平成 26 年 (2014 年) までに発行された全ての年報を収集した。

また、漁獲対象とはなっていないが、東京湾において特徴的であると考えられる種もリストアップするため、以上の作業によって得られたリストへ平成20年(2008年)6月~12月(閉鎖性海域中長期ビジョン策定)にかけて行った学識者へのヒア

表 1.2.1 東京湾に生息する魚介類の把握のために用いた情報

No.	資料名	発行者(発行年)	掲載情報
1	東京湾の漁業と資源 その今と昔 ¹⁾	社団法人 漁業情報サービスセンター (2005)	東京湾漁業史、漁業資源及び東 京湾の環境変遷
2	豊かな東京湾の再生に向けて 提言 ²⁾	社団法人 日本水産資源保護協 会 (2005)	水産統計等をもとに、東京湾の 主要魚介類を抽出
3	江戸前の復活!東京湾の再生 をめざして ³⁾	中央ブロック水産業関係研究開発推進会議、東京湾研究会 (2013)	東京湾の漁業と特に関連が深い 種を生態情報から抽出している
4	東京湾再生のための行動計画 (第二期) ⁴⁾ 及び東京湾再生の ための行動計画(第二期)の新 たな指標に関する提案解説書	東京湾再生推進会議(2013) 東京湾再生官民連携フォーラム (2014)	東京湾沿岸の市場が扱う主な魚 介類を集計している
(5)	平成 26 年度葛西沖魚介類生息 環境調査報告書 ⁶⁾	東京內湾漁業環境整備協会 (2015)	葛西沖でアナゴ笯、延縄、刺網、 貝桁で採集された魚類を掲載し ている
6	平成 26 年度羽田沖浅場維持管理委託報告書 ⁷⁾	東京內湾漁業環境整備協会 (2015)	羽田沖でアナゴ笯、延縄、刺網、 貝桁で採集された魚類及び底生 生物を掲載している
7	東京農林水産統計年報8)	関東農政局統計情報部編 (1956~2014)	稼働量調査、海面漁業漁獲統計 調査及び海面養殖業収獲統計調 査または内水面漁業漁獲統計調 査によって収集された統計情報
8	千葉農林水産統計年報9)	関東農政局千葉統計情報部編 (1952~2014)	から求められる以下の情報を用いた。 ・主要漁業種類 ・魚種別漁獲量年間1t以上の種
9	神奈川農林水産統計年報10)	関東農政局神奈川統計事務所編 (1951~2014)	(統計年報には生物の標準和 名ではなく、水産業上の銘柄 で記載されているため、これ を標準和名に変換した)
10	専門家追加	閉鎖性海域中長期ビジョン策定 (2008)	学識者へのヒアリングによる種 の追加

東京湾における保全対象種の設定を検討するため、生態特性及び貧酸素耐性等に関して情報整理したリストは表 1.2.2 に示すとおりである。

整理された水生生物は、<u>魚類 90 分類群、甲殻類 12 種、軟体動物のうちイカ・タ</u> コ類 7 種、貝類 26 種、棘皮動物 1 種の計 136 分類群であった。

表1.2.2(1) 東京湾における保全対象種設定のための情報整理結果(魚類・甲殻類・軟体動物(イカ・タコ類)

					*		文献				参考	データ		水域別の		生態特性					判断項目				H29年度第1	1回委員	0=1	目標値導出	比根拠		類型 mg/L(生物1)
					2	東京湾再	5 6		(8) (9) 		希拉	「水生	生物の 定着予	由来の外来種 防 総合対策		底層に依存した。 た	別の計画	(2)	貧酸素影響の	0受けやすさ	(5)	水産利用、地	地域の食文化、親水利	用でいるの事	. 会	- 1	貧酸素耐性 評価値	現場観測得られた	:値 て	の他 3.0n	mg/L(生物2)
No. 区分	科名	分類	学名	東京湾の 漁業と資	豊かな東京湾の再江	生のため の行動計 画(第二	平成26年 平成26 度葛西沖 度羽田	年沖		*===		境基準	係る環の類型侵	ス 緊 重 :	GE	生活史を持ち、底層溶存酸素	別の計画等	成魚・成体	ER OHHALL	貧酸素化が	資源減少の		****	おみましょ		-	(mg/L)	(mg/L	.)	2.0n	mg/L(生物3)
					生に向け渡	酒:果泉 圖(第二 の再生 期)及び新	魚介類生 浅場維	持東京都	千葉県 神奈川!	果只都 = RDB	·葉県 神奈J RDB RDB	RDB TJT	また 入東京湾 入	その他 繁急対策	帝 おいて 一 絶滅した	量の低下が	別の計画等 が で保全を 図るべき種と まされている	段階の	卵の性状か 沈性卵であ	者しい時期 (6-9月)に	要因が貧酸	主要な 治羅対象類	地域の食文 化からみて 重要 親水性が	から いる種又は 物質循環の		100 /= #=	生息 再生産 段階	生息	再生産 酸素	呼吸回数 生息	息 再生産
				今	そ 提言	目指して たな指標!! 関する提 案解説書	査報告書 報告書	•				に選え		他策策	種種	時期に生息 又は再生産を	されている	低い	ة ا	再生産を行 7	الالالالالالالالالالالالالالالالالالال	//////////////////////////////////////	重要	浄化)におい	H28年度 H	H29年度	段階段階	段階	^{再生性} 段階 消費量 の低下	の増加 段階	階 段階
1 魚類	ドチザメ科	ホシザメ ドチザメ	Mustelus manazo Triakis scyllium			条胜武士	•					l	る			行う ◎				•				て重要				2.4		生物	勿2
3	メジロザメ	メ科 ヨシキリ	✓ Prionace glauca				•		• •							0				•											
5	ネズミザメ ツノザメ科	メ科 ネズミザ. 4 アブラツ.	Lamna ditropis ザメ Squalus acanthias							+					+																
6	ガンギエィ トビエイ科	イ科 コモンカス	* Okamejei kenojei Myliobatis tobijei																												
8	アカエイ科		Dasyatis akajei				•	•	• •							0		•		•		•									
10	ウナギ科 アナゴ科	ウナギ(ニホン	+≠) Anguilla japonica	•	•	• •	•	•		VU		IB(EN)				0	•	•			•	•	• •		•		1.6 2.6*	3.0		生物	勿2
12	コイ科ニシン科	マルタ	Conger myriaster Tribolodon brandtii Etrumeus teres	Ť			, i			留意種	絶滅危惧	I 類				0	- V				Ŭ		•					0.0		1.10	7)L
14	-シン科	マルタ ウルメイ! ニシン マイワシ	Clupea pallasii	•																											
16		コノシロ	Konosirus punctatus			•	• •		• •																						
17 18	シラウオ和	科 シラウオ	フシ Engraulis japonica Salangichthys microdon			•	•	•	•		С					0			•		•	•	•								
19 20	アユ科 サヨリ科	アユ サヨリ サンマ	Plecoglossus altivelis altive Hyporhamphus sajori	elis		•			•																						
21 22	サンマ科 アイナメ科	4 アイナメ	Cololabis saira Hexagrammos otakii	•			•	•	•																						
23	スズキ科 テンジクダ	スズキ (イ科 テンジク/ シロギス	Lateolabrax japonicus '1* Apogon lineatus	•	•				•				•			0				•	•	•	• •				2.4 3.4*	2.4		生物	勿2 生物1 勿2
25 26	キス科	アオギス	Sillago japonica Sillago parvisquamis	•	•	•	• •		•		х	IA(CR)				0	•	•		•	•	•			•	•	2.6 3.6*			生物	勿2 生物1
27 28	ムツ科 アジ科	ムツ ブリ マアジ	Scombrops boops Seriola quinqueradiata	+					: :																						
29		シマアジ	Trachurus japonicus Pseudocaranx dentex	•	•		•	Š	• •						\Box																
31 32	サバ科	マサバ サワラ カツオ	Scomber japonicus Scomberomorus niphoniu	•	•		•	ě	• •					+++																	
33		カツオ	Katsuwonus pelamis Thunnus albacares					•		+			\dashv	+	\vdash	1															
35		メバチ	Thunnus obesus																												
37		ビンナガクロマグ	Thunnus alalunga Thunnus orientalis																												
38 39	イサキ科	イサキ	☐ Thunnus maccoyii Parapristipoma trilineatu	m	•			•	: :																						
40	タイ科	コショウタ チダイ	1 Plectorhinchus cinctus Evynnis tumifrons				•		• •							0						•									
42 43		マダイ	Pagrus major Rhabdosargus sarba	•				•								0							• •				2.6 3.6*			生物	勿2 生物1
44 45		クロダイ キダイ	Acanthopagrus schlegelii Dentex hypselosomus		•		•	•	• •							0				•		•	•								
46 47	ニベ科	シログチニベ	Pennahia argentata Nibea mitsukurii				:	•								0												3.0		生物	勿2
48	ボラ科 ネズッポ科	ボラ	Mugil cephalus cephalus	i •			• •	•	• •							0				•		•	• •					2.4		生物	勿2
50	ハゼ科	マハゼアカハゼ	Acanthogobius flavimanu.	5	•	• •	• •	•								0	•		•		•	•	• •		•	•	1.9 2.9*	2.4		生物	勿3 生物2 勿2
52		シロウオ	Leucopsarion petersii	ėe						DD	D 情報不	足 VU				0						•						2.4		10	202
																O		_													
54	カマス科	アカカマ	Sphyraena pinguis	•			•						-+	+++	-	1															
54 55 56	カマス科 タチウオ科 マカジキ科	アカカマン 科 タチウオ 科 バショウカ	Sphyraena pinguis Trichiurus japonicus ジキ Istiophorus platypterus		•	•	•																								
54 55 56 57 58	タチウオ科 マカジキ科	アカカマ: 科 タチウオ バショウカ マカジキ シロカジ	Sphyraena pinguis Trichiurus japonicus ジキ Istiophorus platypterus Kajikia audax Istiophorus indica		•	•	•	•	•																						
54 55 56 57 58 59 60	タチウオ科 マカジキ科 メカジキ科 ヒラメ科	アカカマ: 科 タチウオ 科 バショウガマカジキシロカジ メカジキ	Sphyraena pinguis Trichiurus japonicus Z‡ Istiophorus platypterus Kajikia audax Istiophorus indica Xiphias gladius Paralichthys olivaceus			•	•	•								0		•		•		•	•			•	2.1 3.1*				勿2 生物1
54 55 56 57 58 59 60 61 62	タチウオ科 マカジキ科 メカジキ科	アカカマ: 科 タチウオ バショウオ マカジキ シロカジ ナカジキ ヒラメ ホシガレ	Sphyraena pinguis Trichiurus japonicus Trichiurus japonicus Istiophorus platypterus Kajikia audax Listiophorus indica Xiphias gladius Paralichthys olivaceus Verasper variegatus Pleuronectes vokohamae	•	•	• •	•	•	•							©		•		•	•	•	• •	•		•	2.5 3.5*	2.4			物2 生物1 物2 生物1 物2 生物1 物2 生物1
54 55 56 57 58 59 60 61 62 63 64	タチウオ科 マカジキ科 メカジキ科 ヒラメ科 カレイ科	アカカマ: 科 タチウオ バショウオ マカジジ・ メカジキ ヒラメ ホンガレ マコガレ インガレ メイタガレ	Sphyraena pinguis Tichiurus japonicus Istiophorus platypterus Kajikia audax Istiophorus indica Xiphias gladius Paralichthys olivaceus Verasper variegatus Pleuronectes yokohamae Kareius bicoloratus Pleuronichtys lighti	•	•		•	•	•							© 0 0 0		•		•	•	•	• •		•	•	2.1 3.1* 2.5 3.5* 2.4 3.4*	2.4			<u> </u>
54 55 56 57 58 59 60 61 62 63 64 65 66	タチウオ科 マカジキ科 メカジキ科 ヒラメ科	アカカマ、 タチウオ 科 タチウオ マカジキ シロカジ・ メカジキ ヒラメ ホシガレ マコガレ・ メイタガエ カワハギ ウマヅラ	Sphvraena pinguis Trichiurus igaponicus Listiophorus platypterus Kajiku audox Istiophorus platypterus Kajiku audox Istiophorus indica Xiphias gladius Paralichitlys olivaceus Verasper variegatus Pleuronectes yokohamae Kareius bicoloratus 4 Pleuronichtlys lighti Sphanolepis cirritier Finamacoms modestus	•	•	• •		•	•							0 0 0 0 0		•			•	•	• •		•	•	2.1 3.1* 2.5 3.5* 2.4 3.4*	2.4		生物生物	<u> </u>
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	タチウオ科 マカジキ科 メカジキ科 カレイ科 カワハギ科 フグ科	アカカマ、 タチウオ 科 タチウオ マカジキ シロカジ・ メカジキ ヒラメ ホシガレ マコガレ・ メイタガエ カワハギ ウマヅラ	Sphvraena pinguis Trichiurus igaponicus Listiophorus platypterus Kajiku audox Istiophorus platypterus Kajiku audox Istiophorus indica Xiphias gladius Paralichitlys olivaceus Verasper variegatus Pleuronectes yokohamae Kareius bicoloratus 4 Pleuronichtlys lighti Sphanolepis cirritier Finamacoms modestus	9	0		•	•								0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	•			•	•	• •		•	•	2.1 3.1* 2.5 3.5* 2.4 3.4*	2.4		生物生物	物2 生物1 物2 生物1
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	タチウオ科 マカジキ科 メカジキ科 ヒラメ科 カレイ科	アカカマ、タチウオ メチウオ バショウカマンマカジキ ショカジキ メカジキ メカジキ メカガル マコガレーマンガル・メイタガイ 科 カワ・パギ ウマップ メバル属	Sphyraena pinguis Trichiurus i piomicus V2 Istiophorus platypierus Kajikia audax Istiophorus indica Xiphias gladius Paralichitys olivaceus Verasper variegatus Pleuronectes vokohumae Kareius bicoloratus Pleuronichtys lighti Siephanolopis cirrhifer Thamnacomus modestus 77 Tokifugu synderi Tokifugu niphobles Sebates sp.	•	0	• •	•									0 0 0 0 0 0	•	•			•	•			•	•	2.1 3.1* 2.5 3.5* 2.4 3.4* 3.3 4.3*	2.4		生物生物	<u> </u>
2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 22 23 24 25 26 27 28 29 30 31 32 23 33 34 35 36 37 38 39 40 41 42 43 44 44 45 46 47 48 49 50 51 55 56 67 58 69 70 70 70 71 72 72 72 72 73 74 75 76 76 76 77 78 78 78 78 78 78 78 78 78	タチウオ科 マカジキ科 メカジキ科 カレイ科 カワハギ科 フグ科 メバル科	アカカマ、 タチウオ イベショウカ マカジキシロカラションロカジキシロカラションロカジキションカジキションカジキ マコガレンメイタが、カワハギ ウマッラ ショウサイ クサフケ メバル属 ※移作サンダ	Sphyraena pinguis Trichiurus i piopnicus Histophorus platypierus Kajikia audax Istophorus platypierus Kajikia audax Istophorus indica Xiphias gladius Paralichitilys olivaceus Verasper variegatus Pleuronichitys olivaceus Kareius bicoloranus Heuronichitys lighti Stephanolopis cirrhifer Thamnacomus modestus 78 Tokifugu synderi Tokifugu niphobles Sebastes flammeus Sebastes flammeus Sebastes flammeus Sebastes flammeus	9	0												•	•	•	•	•	•			•	•	2.5 3.5* 2.4 3.4*	2.4	21	生物生物生物生物	勿2 生物1勿2 生物1勿2勿2勿3勿3生物1
	タチウオ科 マカジキ科 メカジキ科 カレイ科 カワハギ科 フグ科 メバル科	アカカマ、 タチウオ インショウカジャー ドラメーカジャー ドラメーカジャー ドラメーカジャー ドラメーカリン・ インガレー インガレー メイタガル オーカワハギー ウマソラー メバル風属 メタバサング フリフィー フリー フリー フリー フリー フリー フリー フリー フリ	Sphvraena pinguis Trichiurus iaponicus Trichiurus iaponicus Kajiku audax Istiophorus platypierus Kajiku audax Istiophorus midca Xiphas gladius Paralichitys olivaceus Verasper variegatus Pleuronectes yokohumae A reius bicoloratus Pleuronectes yokohumae Fleuronectes yokohumae A Pleuronichtys lighti Sephanolepis cirhifer Takijugu unvderi Takijugu unvderi Takijugu unvderi Takijugu unphobles Sebastes flammeus Sebastes flammeus Sebastes senatsubarae Sebastiscus marmoratus Sebastes schegelii	9	0		•	•								0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	•			•	•			•	•	2.5 3.5* 2.4 3.4*	24	2.1	生物生物生物生物	物2 生物1 物2 生物1
	タチウオ科 マカジキ科 メカジキ科 カレイ科 カワハギ科 フグ科 メバル科	アカカマ、 タチウオ パショウオ パショウオ マカジキ シーカウジ エーラン オンガンギー メカジキ エラカガシ マコガレー マコガレー インガルー オーカー ファッカー マカーファッカー マル・ファッカー マル・ファッカー マル・ファッカー マカーファッカー マカーファッカー マル・ファッカー マルジャン・ファッカー マル・ファッカー アル・ファッカー マル・ファッカー マル・ファッカー マル・ファッカー アル・ファッカー アル・ファッカー マル・ファッカー アル・ファッカー アル・ファー アル・ファッカー アル・ファー アル・フェー アル・ファー アル・ファー アル・ファー アル・フェー アル・ファー アル・ファー アル・ファー アル・ファー アル・フェー アル・ファー アル・ファー アル・ファー アル・フェー アル・フェー アル・フェー アル・ファー アル・ファー アル・フェー アル・ファー アル・ファー アル・ファー アル・ファー アル・ファー アル・ファー アル・フ	Sphvraena pinguis Trichiurus igaponicus Listiophorus platypterus Kajiku audoa: Istiophorus platypterus Kajiku audoa: Istiophorus midicu Xiphias gladius Perailichilys olivaceus Verasper variegatus Pleuronectes yokohamae Kareius bicoloratus 4 Pleuronictes yokohamae Kareius bicoloratus 4 Pleuronichilys lighti Sphanolepis cirrihier Flamingun smodestus 7/# Thamnacoms modestus 7/# Takifugu snyderi Takifugu snyderi Takifugu snyderi Takifugu snyderi Takifugu snyderi Sebastes Sp. Sebastes Jammeus Sebastiscus marmoratus Sebastiscus marmoratus Sebastolobus macrochir Hyperoglyphe japonicus	9	0			•								0 0 0 0 0 0 0 0	•		•		•	•			•	•	2.5 3.5* 2.4 3.4*	3.0	2.1	生教 生教 生教 生教 生教	生物1
	タチウオ科マカジキ科 マカジキ科 シカジキ科 トラメ科 カレイ科 フグ科 メバル科 フサカサニ イボダイ科	アカカマ: サラテウオ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・	Sphvraena pinguis Trichiurus igapanicus Trichiurus igapanicus Kajiku audax Istiophorus platypterus Kajiku audax Istiophorus nidica Xiphas gladius Paralichithys olivaceus Verasper variegatus Pleuronetes vokohamae Kareius bicoloratus I Pleuronetes vokohamae Kareius bicoloratus I Pleuronetes vokohamae Kareius bicoloratus I Pleuronetintys lighti Sephanolepis cirrhifer Takingu synderi Takingu synderi Takingu miphobles Sebates (Bammeus Sebates (Bammeus Sebates schegelii Sebatslobus macrochir Hyperoglyphe iqaonica Psenopsis anomala Psenopsis anomala	•	0			•											•	•	•	•			•	•	2.5 3.5* 2.4 3.4*	24 30 30 30	2.1	生教 生教 生教 生教 生教	勿2 生物1勿2 生物1勿2勿2勿3勿3生物1
	タテウオ科マカジキ科 マカジキ科 メカジキ科 トラン科 カワハギ科 フグ科 メバル科 フサカサコ イボダイ科 キンメダイ タラ科	アカカマ: サラテウオ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・ドラ・	Sphvraena pinguis Trichiurus igapanicus Trichiurus igapanicus Kajiku audax Istiophorus platypterus Kajiku audax Istiophorus nidica Xiphas gladius Paralichithys olivaceus Verasper variegatus Pleuronetes vokohamae Kareius bicoloratus I Pleuronetes vokohamae Kareius bicoloratus I Pleuronetes vokohamae Kareius bicoloratus I Pleuronetintys lighti Sephanolepis cirrhifer Takingu synderi Takingu synderi Takingu miphobles Sebates (Bammeus Sebates (Bammeus Sebates schegelii Sebatslobus macrochir Hyperoglyphe iqaonica Psenopsis anomala Psenopsis anomala	•	0			•										•	•		•	•	• •		•	•	2.5 3.5* 2.4 3.4*	3.0	2.1	生教 生教 生教 生教 生教	生物1
	タチウオ科 マカジキ科 メカジキ科 カワハギ科 カワハギ科 カワハギ科 カワハギ科 スパル科 フサカサニ イボダイ科 キンメダイ タラ科 タカペ科	アカカマ: サラテウオ (Sphvraena pinguis Trichiurus igaponicus Listiophorus platypterus Kajiba audox Listiophorus platypterus Kajiba audox Listiophorus platypterus Kajiba audox Listiophorus indica Xiphias gladius Verusper variegatus Paralichithys olivaceus Verusper variegatus Pleuronicetes yokohamae A presionatus Pleuronicetes yokohamae Pleuronicetes yokohamae Pleuronicetes yokohamae Pleuronicetes yokohamae Pleuronicethys lighti Thamacous modestus Takifugu smyderi Sebastes shelgedil Sebastolobus macrochit Hyperoglyphe iaponica Penopsis anomala Beryx splendens Grella punctata Grella punctata Labracolossa areentiven	• • • • • • • • • • • • • • • • • • •	0			•											•		•	•			•	•	2.5 3.5* 2.4 3.4*	3.0	2.1	生教 生教 生教 生教 生教	生物1
	タチウオ科 マカジキ科 メカジキ科 カワハギ科 カワハギ科 フグ科 メバル科 フサカサニ イボダイ科 キンメダイ タラ科 メウスイ料コ シマイサコ ラマイサコ	アカカマ、 サラテウオ・ サラテウオ・ サラテウオ・ ・ ベッコウオ・ ・ ベッコウオ・ ・ ベッコウオ・ ・ ベッカン・ ・ ・ ・ ベッカン・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Sphvraena pinguis Trichiurus igaponicus Listiophorus platypterus Kajika audox Listiophorus platypterus Kajika dudox Listiophorus platypterus Kajika dudox Listiophorus indica Xiphias gladius Verusper variegatus Peraricetivis violentivis variegatus Pleuronicetes yokohumae Kareius bicoloratus Pleuronicetes yokohumae Sebastes yokohumae Sebastes yo Sebastes yo Sebastes parinipholies Sebastes matsubarue Sebasticus marmoratus Sebastes sundipholies Sebastes seklegelii Sebastolobus macrochir Hyperoglyphe igaponica Prenopsis anomala Berrus splendens Girella punctata Girella punctata Lahrucoglosus argentiven Riynekopelates oxyriyne	• • • • • • • • • • • • • • • • • • •	0	• • •		•								0			•		•	•	• •		•	•	2.5 3.5* 2.4 3.4*	3.0	2.1	生教 生教 生教 生教 生教	生物1
	タチウオ科 マカジキ科 メカジキ科 カワハギ科 フグ科 メバル科 フサカサニ キシメダイ タラ科 メバル科 キシメダイ タカベ科 シマイサオ シマイサオ シイラギ科 シイライ シイライ	アカカマ アカカマ アカカマ アカカマ アカウオ アウオ アカカ	Sphvraena pinguis Trichiurus igaponicus Kajiba audox Kajiba gaduus Verusper variegatus Perarlichitys olivaceus Verusper variegatus Pleuronices vokohamae Kareius bicoloratus Pleuronicetes vokohamae Kareius bicoloratus Pleuronicetes vokohamae Kareius bicoloratus Pleuronichitys lighti Thamtacous modestus Takifugu sruderi Fakifugu kanta k	• • • • • • • • • • • • • • • • • • •	0	• • •		•								0			•		•	•	• •			•	2.5 3.5* 2.4 3.4*	3.0	2.1	生教 生教 生教 生教 生教	生物1
	タチウオキマカシキキ ビラメ科 カレイ科 カワハギギ フグ科 メバル科 フサカサニ イボダイ 科 キシメダイ タカイ 科 シマイナ ファイキ ファイキ アライ アライド アナー・ファイナー ア・ファイナー ア・ファイト ア・フィイト ア・ファイト ア・フィイト ア・ファイト ア	アカカマ アカカマ アカカマ アカカマ アカウオ アウオ アカカ	Sphvraena pinguis Trichiurus igaponicus Kajiba audox Kajiba gaduus Verusper variegatus Perarlichitys olivaceus Verusper variegatus Pleuronices vokohamae Kareius bicoloratus Pleuronicetes vokohamae Kareius bicoloratus Pleuronicetes vokohamae Kareius bicoloratus Pleuronichitys lighti Thamtacous modestus Takifugu sruderi Fakifugu kanta k	• • • • • • • • • • • • • • • • • • •	0	• • •										0			•		•	•	• •			•	2.5 3.5* 2.4 3.4*	3.0	2.1	生教 生教 生教 生教 生教	生物1
71 72 73 74 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89	タチウオキマカシキキングキャン・マケッキ・マカシキキング・マカシキキング・マケッキ・マケッキ・マケッキ・マケッキ・マケッキ・マケッキ・マケッキ・マケッキ	アカカマ アカカマ アカカマ アカカマ アカウド アカウド アカカド	Sphvraena pinguis Trichiurus igaponicus Histophorus platypterus Kajiku audoa: Istiophorus platypterus Kajiku audoa: Istiophorus mlaca Xiphus gladius Peraulichilitys olivaceus Verasper variegatus Pleuronectes yokohamoe Kareius bicoloratus Pleuronectes yokohamoe Sebastes yokohamoe Sebastes spanieus Sebastes spanieus Sebastes spanieus Sebastes spanieus Sebastes skiegelii Sebastolobus macrochit Hyperoglyphe japonica Prenopsis anomala Berxa spiendens Gadas macrocephalus Gadas macrocephalus Thereagrae cada-cogramma Girella punctata Labracoglossa argentiven Direma temminskii temmin Nacheguletae sayriyuc Direma temminskii temmin	• • • • • • • • • • • • • • • • • • •	0	• • •		•								0			•		•	•	• •			•	2.5 3.5* 2.4 3.4*	3.0	2.1	生教 生教 生教 生教 生教	生物1
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 90	タチウオキマカシキキングキャン・マケッキ・マカシキキング・マカシキキング・マケッキ・マケッキ・マケッキ・マケッキ・マケッキ・マケッキ・マケッキ・マケッキ	アカカマ、 サラテウオ・ サラテウオ・ サラテウオ・ ・ クェッカ・ ・ ショウサ・ ・ フェッカ・ ・ フィッカ・ ・ フィー ・ フ	Sphvraena pinquis Trichiurus igaonicus Trichiurus igaonicus Trichiurus igaonicus Trichiurus igaonicus Trichiurus igaonicus Trichiurus igaonicus Kajikia undex Latinophorus indica Kajikia undex Latinophorus indica Kajikia undex Paratichitiys olivuceus Verusper variegatus Peuronicets vokohamae Peuronicets vokohamae Peuronicets vokohamae Peuronicets vokohamae Peleuronicites vokohamae Peleuronicites vokohamae Peleuronicites vokohamae Trichiurus underites Trakitigus unvderi Tokitigus unvderi Sebastis esamamoratus Sebastes underusea Sebastis un maronical Beryas uplendens Godus macrocephalus Theoryas chalco opramae Girella punctata Latinopholosaa argentivet Riynchopelates asyrbync Diterma temninskii termin Nuchequula nuchalis Coryphaena hippurus Larimichithys polyactis Pristipomoides sieboldili Eleis corruscans	• • • • • • • • • • • • • • • • • • •	0	• • •										0	•	15	9		7	•	• •			•	2.5 3.5* 2.4 3.4*	3.0	2.1	生教 生教 生教 生教 生教	生物1
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	タチウオキ マカシキキ レラメ科 カワハギ科 フグ科 メバル科 フサカサニ マサカサニ イボダイキ マラ科 メジナラ科科 フィース マライラ科 マナース マナース マナース マナース マナース マナース マナース マナース	アカカマ オーカーア	Sphvraena pinquis Trichiums igonoicus Trichiums igonoicus Trichiums igonoicus Trichiums igonoicus Trichiums igonoicus Trichiums igonoicus Kipikia undec Istiophorus indica Xiphias gladius Partichilitys olivaceus Verusper variegatus Peruroiceles vokohamae Peluroniceles vokohamae Trichiigus unvderi Tokiigus imphobles Sebastis Rammeus Sebastis Rammeus Sebastis Rammeus Sebastis sun ammotati Sebastis olivatis marmotati Hyperoglyphe ignonica Berya siplendens Berya siplendens Grella punciatu Labracoglossa argentivel Physichopelateis oxyriyus Direma teminikii temin Nuchequala nuchalis Coryphaena hippurus Larinichthys polyacris Pristipomoides sieboldii Eleis coruscans Paracaesio caerulea Plarveephalus Sp.	• • • • • • • • • • • • • • • • • • •	•	• • • • • • • • • • • • • • • • • • • •										0	•	15	9			24					25 35* 24 34* 33 43*	3.0	2.1	生物	<u>物2</u> 生物1
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	タチウオキ マカシキキ レラメ科 カワハギ科 フグ科 メバル科 フサカサニ マサカサニ イボダイキ マラ科 メジナラ科科 フィース マライラ科 マナース マナース マナース マナース マナース マナース マナース マナース	アカカマ オーカーア	Sphvraena pinquis Trichiums igonoicus Trichiums igonoicus Trichiums igonoicus Trichiums igonoicus Trichiums igonoicus Trichiums igonoicus Kipikia undec Istiophorus indica Xiphias gladius Partichilitys olivaceus Verusper variegatus Peruroiceles vokohamae Peluroniceles vokohamae Trichiigus unvderi Tokiigus imphobles Sebastis Rammeus Sebastis Rammeus Sebastis Rammeus Sebastis sun ammotati Sebastis olivatis marmotati Hyperoglyphe ignonica Berya siplendens Berya siplendens Grella punciatu Labracoglossa argentivel Physichopelateis oxyriyus Direma teminikii temin Nuchequala nuchalis Coryphaena hippurus Larinichthys polyacris Pristipomoides sieboldii Eleis coruscans Paracaesio caerulea Plarveephalus Sp.	• • • • • • • • • • • • • • • • • • •	0	• • •										0	•		9		7	24					25 35* 24 34* 3.3 43* 3.1*	3.0	2.1	生物	物2 生物1 物2 生物1 ・ 生物1 ・ 生物1 ・ 生物1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	タチウオキ マカシキキ レラメ科 カワハギ科 フグ科 メバル科 フサカサニ マサカサニ イボダイキ マラ科 メジナラ科科 フィース マライラ科 マナース マナース マナース マナース マナース マナース マナース マナース	アカカマ: アカウマ アカウス	Sphvraena pinguis Trichiurus igaponicus Trichiurus igaponicus Kajikia audox Kajikia galaius Verusper variegatus Paralichitikys olivuceus Verusper variegatus Pleuronicetes yokohamae Kareius bicoloratus Pleuronicetus modestus Takiliagu snyderi Sebastes spansabarae Sebastes shelgedii Sebastiscus marmoratus Sebastes shelgedii Sebastolobus macrochit Hyperoglyphe japonica Peropsis anomala Berx sylendens Gersphaendens Griella punctata Girella punctata Girella punctata Labracoglossa argentiven Physicopolicus Corrybaen hippurus Larinichthys polyacis Prisipomoides sieboldii Elelis corniscums Paracaesio caeralea Plarvecphalus Sp. Pris Neomysis japonica Marsupenaeus ignonicus Metapenaeus ignonicus Metapenaeus curvirostr Metapenaeus curvirostr	e de la companya de l	9	• • •										0	8	15	9			24	• • • • • • • • • • • • • • • • • • •				25 35* 24 34* 33 43*	3.0	2.1	生物	<u>物2</u> 生物1 ・ 生物1 ・ 物2 ・ 性物1 ・ 生物1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	タチウオ科 マカジキ科 トラン科 カワハギ科 フグ科 メバル科 フザカサコ イボダイイ イテクラ科 メジナイ科 シマイサナラミタナゴ シマイナラ科 シマイナース シャイナース シマイナース シマイナース シマイナース シマイナース シマイナース シマイナース シマイナース シマイナース シャイナース シマイケース シマイナース シマイナース シマイナース シマイケース シマイケース シマイケース シマイケース シマイケース シマイケース シマイケース シマイケース シマイケース シマイケース シマイケース シマイケース シマイケース シマイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケース シャイケー シャイケー シャイケー シャイケー シャイケー シャイケー シャイケー シャイケー シャイケー シャイケー シャイケー シャー シャー シャー シャー シャー シャー シャー シャー シャー シャ	アカヤマ サーター アカマ サーター アカマ サーター アカマ サーター アカマ サーター アカッカン キャッカン マッカン アマカ アマッカン アマカ アマッカー アラッカー アファッカー アファー アファー アファー アファー アファー アファー アファー アファ	Sphvraena pinguis Trichiurus igaponicus Trichiurus igaponicus Trichiurus igaponicus Trichiurus igaponicus Kajikia audae Stiophorus indica Stiophorus indica Stiphaus gladius Verasper variegatus Verasper variegatus Peluronicetes yokohamae Pleuronicetes yokohamae Pleuronicetes yokohamae Pleuronicetes yokohamae Pleuronicetes yokohamae Pleuronicetes yokohamae Pleuronicetes yokohamae Takitigus suvderi Sebastes plammeus Sebastes sumamoratus Sebastes sumamoratus Sebastes sumamoratus Sebastes sumamoratus Sebastes sukapetiti Sebastolobus macrocchir Hyperoglyphe japonicus Penopasi automatia Berva sipandens Grala punctata Labracoglossa argentiver Rhynchopelates oxyrhync Ditema temninskii temnin Nachequata nuchatis Coryphaena hippurus Larinichitys polyacitis Pristipomoides sieboldii Eleis coruscans Larinichitys polyacitis Pristipomoides sieboldiii Eleis coruscans Larinichitys polyacitis Pristipomoides	e de la companya de l	9	• • •										0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	15	9	• • • • • • • • • • • • • • • • • • •		24	• • • • • • • • • • • • • • • • • • •				3.3 4.3* 3.1* 1.2 3.1 0.7 3.2	3.0	2.1	生物	<u>物2</u> 生物1 ・ 生物1 ・ 物2 ・ 性物1 ・ 生物1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 88 89 90 90 91 92 93 94 95 96 97 98	タチウオ科 マカジキ科 アカシキ科 アクタ アクタ アクタ アクタ アクタ アクタ アクタ アクタ アクタ アクタ	サカマ・オーター アカマ・オーター アカマ・オーター アカマ・オーター アカット オーター アカット オーター アカット アラッカ アマッカ アマッカー アラット アカーター アカー アカーター アカー アカーター アカー アカーター アカーター	Sphvraena pinguis Trichiurus igaponicus Trichiurus igaponicus Trichiurus igaponicus Trichiurus igaponicus Kajikia audac Stiophorus Indica Stiophorus Indica Stiphias gladius Verasper variegatus Verasper variegatus Peluronicies yokohamae Pleuronicies yokohamae Pleuronicies yokohamae Pleuronicies yokohamae Pleuronicies yokohamae Pleuronicies yokohamae Takiigus snvderi Sebastes sp. Sebastes plammeus Sebastes snammoralus Sebastes schlegelii Sebastolobus macrochir Hyperoglyphe japonicus Meryas palendens Gadus macrocephalus Gadus macrocephalus Gadus macrocephalus Gadus macrocephalus Gadus macrocephalus Gadus macrocephalus Gralpanelas Garinichilmys polyacits Pristipomoides sieboldii Eleis coruscans Larinichilmys polyacits Pristipomoides sieboldii Pristipomoides sieboldiii Pristipomoides siebol	e de la companya de l	9											© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	15	9	• • • • • • • • • • • • • • • • • • •		24	• • • • • • • • • • • • • • • • • • •				3.3 4.3* 3.1* 1.2 3.1 0.7 3.2	3.0	2.1	生物	<u>物2</u> 生物1 ・ 生物1 ・ 物2 ・ 性物1 ・ 生物1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
71 72 73 74 75 76 77 78 80 81 81 82 83 84 85 86 87 88 89 90 90 91 92 93 94 95 98 99 100	タチウオキマカシマキネアカシュキャラカルイ科 カワハギネアカルイ科 カワハギネアカリカーイボタイネー マク科 カワハギネアカリカー マクタオーカー マクタイナコをイディー アニター アミター アンイティー アンイティー アンイティー アンイティー アンイティー アンイティー アンイティー アントラー アントラー <t< td=""><td>サカウス (イナー) カリコード (相) マチウカー (イオーカー) カリコード (日本) カリコード (</td><td>Sphvraena pinquis Trichiurus igaponicus Trichiurus igaponicus Trichiurus igaponicus Trichiurus igaponicus Kajikia udaea Istiophorus indica Kipikia giadius Verusper variegatus Parailechilitys olivaceus Verusper variegatus Peluroniceles vokohamae 1 Pleuroniceles vokohamae 1 Pleuronicelus sunderity 1 Tahumaconus modestus 1 Takingus unvderi 1 Takingus imphobles 1 Sebastsel Rammeus 1 Sebastsel Rammeus 1 Sebastsel Rammeus 1 Sebastsel Rammeus 1 Sebastsel Salmameus 1 Sebastsel Salm</td><td>tris tus ckii</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>8</td><td>15</td><td>9</td><td>• • • • • • • • • • • • • • • • • • •</td><td>•</td><td>24</td><td>• • • • • • • • • • • • • • • • • • •</td><td></td><td></td><td></td><td>2.5 3.5* 2.4 3.4* 3.3 4.3* 3.1* 1.2 3.1 0.7 3.2 2.0</td><td>30 30 30 29 29</td><td></td><td>生物 生物 生物 生物 生物 生物 生物</td><td>カ2 生物1 東2 生物1 東2 生物1 東3 生物1 東3 生物1 東3 生物1 生物1</td></t<>	サカウス (イナー) カリコード (相) マチウカー (イオーカー) カリコード (日本) カリコード (Sphvraena pinquis Trichiurus igaponicus Trichiurus igaponicus Trichiurus igaponicus Trichiurus igaponicus Kajikia udaea Istiophorus indica Kipikia giadius Verusper variegatus Parailechilitys olivaceus Verusper variegatus Peluroniceles vokohamae 1 Pleuroniceles vokohamae 1 Pleuronicelus sunderity 1 Tahumaconus modestus 1 Takingus unvderi 1 Takingus imphobles 1 Sebastsel Rammeus 1 Sebastsel Rammeus 1 Sebastsel Rammeus 1 Sebastsel Rammeus 1 Sebastsel Salmameus 1 Sebastsel Salm	tris tus ckii	•											© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	15	9	• • • • • • • • • • • • • • • • • • •	•	24	• • • • • • • • • • • • • • • • • • •				2.5 3.5* 2.4 3.4* 3.3 4.3* 3.1* 1.2 3.1 0.7 3.2 2.0	30 30 30 29 29		生物 生物 生物 生物 生物 生物 生物	カ2 生物1 東2 生物1 東2 生物1 東3 生物1 東3 生物1 東3 生物1 生物1
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 92 93 94 95 96 97 98	タチウオ科 マカジキ科 トランド フクタ フクタ ファット フクタ ファット マカペ マカペ マカペ マカペ マカペ マカペ マカペ マカペ マカペ マカペ	アカカマ アカマック アカマック アカマック アカマック アカック ア	Sphvraena pinguis Trichiurus igaponicus Trichiurus igaponicus Trichiurus igaponicus Trichiurus igaponicus Kipikia udaes Lisiophorus indica Kipikia udaes Lisiophorus indica Kipikia giadius Parailehilitys olivuceus Verasper variegatus Perasper variegatus Pleuronicies vokohamae Takiigus usuderi Lisebastoelus macrochii Hyperaglyphe igaponica Bebastiseus mamoratus Sebastiseus mamoratus Seba	ttris tuus ekii is												© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	15		• • • • • • • • • • • • • • • • • • •	•	24	• • • • • • • • • • • • • • • • • • •	1			2.5 3.5* 2.4 3.4* 3.3 4.3* 3.1* 1.2 3.1 0.7 3.2 2.0	3.0		生物 生物 生物 生物 生物 生物 生物	カ2 生物1 物2 生物1 生物1 サカ1 生物1 サカ2 生物1 カ3 生物1 カ3 生物1
71 72 73 74 75 76 77 78 79 80 81 81 82 83 84 85 86 87 88 89 90 90 91 91 92 93 94 95 96 97 98	タチウオ科 マカジキ科 トランド フクタ フクタ ファット フクタ ファット マカペ マカペ マカペ マカペ マカペ マカペ マカペ マカペ マカペ マカペ	アカカマ オーター アカマ オーター アカマ オーター アカマ オーター アカマ オーター アカマ オーター アカッパ エーター アカッパル アラップ オーター アカッパル アラップ オーター アカッパル アラップ オーター アカッパル アラップ・アラー アカッパル アラップ・アラー アカー アカー アカー アカー アカー アカー アカー アカー アカー アカ	Sphvraena pinguis Trichiurus igaponicus Litiophorus platypterus Kajiba audox Litiophorus platypterus Kajiba audox Litiophorus platypterus Kajiba audox Litiophorus platypterus Litiophorus platypterus Litiophorus platypterus Litiophorus platypterus Litiophorus platypterus Paralichitys olivaceus Verusper variegatus Pleuronicetes yokohamae Sebastis yokohamae Sebastis yokohamae Sebastis yokohamae Sebastis yokohamae Sebastis platypterus Sebastis platypterus Litiophorus Sebastis platypterus Litiophorus Litiophor	tris tus ckii												© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	15		• • • • • • • • • • • • • • • • • • •	•	24	• • • • • • • • • • • • • • • • • • •	1			2.5 3.5* 2.4 3.4* 3.3 4.3* 3.1* 1.2 3.1 0.7 3.2 2.0	30 30 30 29 29		生物 生物 生物 生物 生物 生物 生物	カ2 生物1 物2 生物1 物2 生物1 物2 生物1 物2 生物1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1
71 72 73 74 75 76 77 78 79 80 81 81 82 83 84 85 86 87 88 89 90 90 91 91 92 93 94 95 96 97 98	タチウオ科 マカシキ科 フクタ科 フグ 科 フグ 科 フグ 科 フグ 科 フグ カレイ科 フグ カレイ科 フグ カレイ オイ マクラ科 メジナイラ 科 フェク ナラ マラ オー フェク ラフェク フェク フェク フェク フェク フェク フェク フェク フェク フェク	アカカマ オーター アカマ オーター アカマ オーター アカマ オーター アカマ オーター アカッドウェ アファ アファ アカッドウェ アカッド・アカッド・アカッド・アカッド・アカッド・アカッド・アカッド・アカッド・	Sphvraena pinguis Trichiurus japonicus Knjiku audox Istiophorus platrypterus Knjiku audox Istiophorus platrypterus Knjiku audox Istiophorus platrypterus Knjiku audox Istiophorus midca Xiphus gladius Verasper variegatus Peraricetikys olivaceus Verasper variegatus Pleuronectes yokohamoe Kareius bicoloratus 4 Pleuronichtys lighti Siephanolepis cirrhifer VA Thammacomus modestus Sebastes schegelii Sebastiscus marmoratus Gadus macrocephalus Theprophypie japonica Perenopsis anomala Bervas spiendens Gadus macrocephalus Girella punctatu Labirocephalus cayrivuc Ditrema temminckii temmin Nuchequidente cayrivuc Ditrema temminchii temmin Nuchequidente cayrivuc Ditrema tem	ttris tuus ekii is												© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	15		• • • • • • • • • • • • • • • • • • •	•	24	• • • • • • • • • • • • • • • • • • •	1			2.5 3.5* 2.4 3.4* 3.3 4.3* 3.1* 1.2 3.1 0.7 3.2 2.0	3.0		生物 生物 生物 生物 生物 生物 生物 生物 生物 生物 生物 生物 生物	カ2 生物1 物2 生物1 物2 生物1 物2 生物1 物2 生物1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1
71 72 73 74 75 76 77 78 79 80 81 81 82 83 84 85 86 87 88 89 90 90 91 91 91 92 93 94 95 96 97 98	タチウオ科 マカシキ科 フクタイト フクター フクター フクター フクター フサカサニ マクラ科 アウカマイナ マクライフェア シイクラ科 フェア・フェア・フェア・ファット フェア・フェア・ファット ファット・ファット ファット・ファット・ファット・ファット・ファット・ファット・ファット・ファット・	サカマ、オーター マック・マック・マック・マック・マック・マック・マック・マック・マック・マック・	Sphvraena pinguis Trichiurus igaponicus Trichiurus igaponicus Kajikia audox Asijikia audox Asijikia audox Asijikia audox Asijikia audox Istiophorus plarypterus Kajikia audox Istiophorus plarypterus Asijikia audox Verasper variegatus Perarlichitys olivuceus Verasper variegatus Pleuronicets yokohamae Kareius bicoloratus Pleuronicets yokohamae Kareius bicoloratus Pleuronicets yokohamae Kareius bicoloratus Pleuronicets yokohamae Takitigus snyderi Sebastes sp. Sebastes parsubarae Sebastes sp. Sebastes parsubarae Sebastes urisubarae Sebastes urisubarae Sebastes urisubarae Sebastes urisubarae Sebastes urisubarae Pespassi anomala Berx splendens Grangonala Berx splendens Grangonala Girella punctata Labracoglossa argentiven Phymchopelates oxyrhync Direma teminickii temini Nacheguuta muchalis Caryphaena hippurus Larimichitys polyacits Pristipomoides sieboldii Etelis cornscoms Paracaesio caerulea Plarvcephalas sp. Pristipomoides sieboldii Etelis cornscoms Paracaesio caerulea Plarvcephalas sp. Pristipomoides sieboldii Etelis cornscoms Paracaesio caerulea Plarvcephalas sp. Prarama rirubercutatus Metopenaeus joyneri Metapenaeus gionicus Metapenaeus sensisulcatus Crangon affinis Panulirus japonicus Portunas rirubercutatus Sepia esculenta Jib Loliops bleekeri Loligo bleekeri Sepioteuthis lessoniana	tris tris tris tris tris tris tris tris												© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	15		• • • • • • • • • • • • • • • • • • •	•	24	• • • • • • • • • • • • • • • • • • •	1			2.5 3.5* 2.4 3.4* 3.3 4.3* 3.1* 1.2 3.1 0.7 3.2 2.0	3.0		生物 生物 生物 生物 生物 生物 生物 生物 生物 生物 生物 生物 生物	カ2 生物1 物2 生物1 物2 生物1 物2 生物1 物2 生物1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1
71 72 73 74 75 76 77 78 79 80 81 81 82 83 84 85 86 87 88 89 90 91 91 92 93 93 94 95 96 97 98 99 100 101 102	タチウオ科 マカシキ科 フクタ科 フグ 科 フグ 科 フグ 科 フグ 科 フグ カレイ科 フグ カレイ科 フグ カレイ オイ マクラ科 メジナイラ 科 フェク ナラ マラ オー フェク ラフェク フェク フェク フェク フェク フェク フェク フェク フェク フェク	サカマ、オーター マック・マック・マック・マック・マック・マック・マック・マック・マック・マック・	Sphvraena pinguis Trichiurus japonicus Knjiku audox Istiophorus platrypterus Knjiku audox Istiophorus platrypterus Knjiku audox Istiophorus platrypterus Knjiku audox Istiophorus midca Xiphus gladius Verasper variegatus Peraricetikys olivaceus Verasper variegatus Pleuronectes yokohamoe Kareius bicoloratus 4 Pleuronichtys lighti Siephanolepis cirrhifer VA Thammacomus modestus Sebastes schegelii Sebastiscus marmoratus Gadus macrocephalus Theprophypie japonica Perenopsis anomala Bervas spiendens Gadus macrocephalus Girella punctatu Labirocephalus cayrivuc Ditrema temminckii temmin Nuchequidente cayrivuc Ditrema temminchii temmin Nuchequidente cayrivuc Ditrema tem	tris tris tris tris tris tris tris tris	9											© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	15		25	3	24	• • • • • • • • • • • • • • • • • • •	1			2.5 3.5* 2.4 3.4* 3.3 4.3* 3.1* 1.2 3.1 0.7 3.2 2.0	3.0		生物 生物 生物 生物 生物 生物 生物 生物 生物 生物 生物 生物 生物	カ2 生物1 物2 生物1 物2 生物1 物2 生物1 物2 生物1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1 を 1

注1 国外由来の外来種の個は生態系被害防止外来種リスト(http://www.envgo.jp/nature/intro/2outline/index.html)に掲載されている種を示す。星印★は特定外来生物を示す。 注2) 黄色網掛けは検討対象種(生態特性を満たしている種)を示す。 注3) 赤色網掛けは前回検討までの保全対象種を示す。 注4) 和名欄の*は、委員指摘により追加された種を示す。 注5) 貨酸素剤性評価値の再生度段階に付記した*は、生息段階の値に+1mg/Lした値であることを示す。 注5) 貨酸素剤性評価値の再生度段階に付記した*は、生息段階の値に+1mg/Lした値であることを示す。 注6) 参考情報の「資源減少の要因が貧酸素であるとされている」に付記した*は、「東京湾研究会、中央ブロック水産業関係研究開発推進会議(2013)、江戸前の復活・東京湾の再生をめざして、」に貧酸素水塊の影響で資源が増減しているという記述があることを示す。

表1.2.2(2) 東京湾における保全対象種設定のための情報整理結果(軟体動物(巻貝類・二枚貝類)・棘皮動物)

										文献							参考デ	ータ				域別の判断		生態特性					判断項目					1100 to 150	**[目標	票值導出根拠			類型
					1	2	3	4	(5)	6	7		9	(10)		希少	種				·来種 注1)			1)	2	3	4	(5)	6	7)	8	9	H29年度第	引回安貝	貧酸素耐性	現地	場観測から	7.	D //-	4.0mg/L(生物1)
												農林水產	奎統計							定着予	防 総合	合対策	1	底層に依存し	Di o al TT		公共主形部	0 E 11 14 44		-1. ** TI III		1. *B-1.T(m	その他の	\$ +- 0 /B	5 A 44 60 555	評価値		导られた値	その	加	3.0mg/L(生物2)
								東京湾理	ī	- 1									「水生生物の				1	<i>†</i> -	別の計画		貧酸素影響	の受けやする		水 座 利 用 、	、地域の食文化	比、親水利用	項	までの保	至对家裡	(mg/L)		(mg/L)	(mg	/L)	2.0mg/L(生物3)
								生のため		.	.								保全に係る環	:		_	東京湾	生活史を持ち、		-		_			1	_	<u> </u>	_		····	-		+	$\overline{}$	
No.	区分	科名	種名	学名	東京湾の漁業と資源をの昔と今	豊かな東	江戸前の	の行動計	平成26	年 平成26	年								境基準の類型	ġ , l	87	_ B	10	底層溶存酸素				1					地域関係	者					1 '	()	ı
No.	区万	件名	悝石	- f-fa	温業と貧	泉湾の再	復活!東京	画(第二	度曷四	冲 度羽田;	冲			専門領	家追 東京	都 F RDB	神奈川	環境省	指定につい	E 7	- 楽	黒 そ 煮	おいて	量の低下が	別の針画等	st 46. st /*	個の性性が	貧酸素化が	資源減少の 要因が貧酸 素とされている*				が必要とし	て					1 '	()	ı
					スの共し	土に向け	湾の再生	E 期)及び#	5 点理接	工 次場班:	村 東京	都 千葉	県 神奈川	県 加	RD	B RDB	RDB	RDB	て」で東京湾 の主要魚介数	\(\tilde{\sigma} \) σ	기준기	品 の 是	絶滅した	生じやすい	別の計画等 で保全を 図るべき種と されている	成無・成体	かかほかが	著しい時期	東田が谷跡	士亜か	地域の食文	細水性から	いる種又は	ま		生白 面生	在 生育	ョ 面生産	酸素	呼吸回数	生息 再生産
					てい _自 こ	提音	を目指し	てたな指標	- 本報生	朗 日理安建	at l								の主要魚介類	1 上 他	対策	<u>対</u> 他 ^均	種	時期に生息	団スペキ語と	・ 我酬能力が	ル圧卵でめ	(6-9月)に	- 安国が貝嵌	2. 女が 2. 本権が免益	化からみて	カケ雷亜) 物質循環(か H28年度 (*)	H29年度	生息 再生 段階 段階	生 工心	息 再生産 皆 段階	酸素 消費量 の低下	の増加	段階段階
					7	1,61		関する扱	E E+K-	- **	•	- 1			- 1		1		に選定されて	י לגון	東	束	1	時期に生息 又は再生産を 行う	されている	併し	*±3)	再生産を行	- XCC11 CU	/出2支入135人1主	重要	N CER	保全(水質	î		+XPE +XP	1 PXPB	J PXPE	の低下	073670	PXPE PXPE
								案解説書	F	- 1									いる				1	行う	C11 C1.0	150	/10/	う	, o, .					い					1 '	()	
										- 1													1					1					て重要						1 '	()	ı
110	軟体動物	ミミガイ科	トコブシ	Sulculus diversicolor aquatilis	5						•	•	•										1															\neg	+ - '	$\overline{}$	
111		1	クロアワビ	Haliotis discus discus		•					ě	Ť	ě		\neg			_					1			1		1					1	1				-	+ '	$\overline{}$	
112		ムシロガイ	(科 アラムシロ	Reticunassa festiva						•														0		•	•														
113		アッキガイ	/科 アカニシ	Rapana venosa						•														0		•	•														
114		サザエ科	サザエ	Turbo cornutus		•					•	•																										$\overline{}$	4.4	-	
115		キセワタガ	イ科 キセワタガイ	Phikine argenteta						•														0		•	•													$\overline{}$	
116	軟体動物	マテガイ科	マテガイ	Solen strictus						•														0		•	-	•					•							-	
117	(二枚貝類)	イタボガキ	4 マテガイ -科 マガキ	Crassostrea gigas						•	•	•	•											0		•	-	•		•			•							-	
118		フネガイ科		Scapharca broughtonii	•	•	•			•	•	•	•								\top			0		•	•	•	•	•	•		•	•	•					-	
119 120 121			サルボウガィ	Scapharca subcrenata			•			•	•		,								\neg			0		•	-	•		•	•		•							-	
120		イガイ科	ムラサキイガイ	Mytilus galloprovincialis																		•																	1	(J	
121				Musculista senhousia																				0		•	-	•					•						4		
122			イ科 タイラギ	Atrina pectinata	•		•				•		•			A		NT			\perp			0		•	-	•	•	•	•		•						4	-	
123		イタヤガイ	/科 アズマニシキガ・											_)																									لـــــا	
124			イタヤガイ	Pecten albicans									•								\perp																			\longrightarrow	
125		シジミ科	ヤマトシジミ	Corbicula japonica	•						•				留意	種 B		NT			\perp																			-	
122 123 124 125 126 127 128 129 130 131 132 133		ザルガイ科		Fulvia mutica	•	•	•			•	•	•	•											0		•	-	•	•	•	•		•						4		-
127	_	マルスダレガ		Mersenaria mersenaria			•			•											\perp	•								ļ	1						_	\rightarrow		-	
128			カガミガイ	Phacosoma japonicum				•												\perp	\perp				•	•	-						•					-	 '	-	\leftarrow
129			ハマグリ	Meretrix lusoria	•		•	•			•		•			X		VU		\perp	\perp	\perp		0	•	•		•	•	•	•	•	•		•				4		
130			アサリ ガイ ナミガイ 斗 バカガイ	Ruditapes philippinarum	•	•	•	•		•	•	•	•		_				•		\perp			0	•	•		•	•	•	•	•	•	•	•	3.1			4		生物1
131		キヌマトイ	ガイナミガイ	Panopea japonica	•															\perp	\perp			0		•	-			•	•		•						4	-	\leftarrow
132		バカガイ科	1 バカガイ	Mactra chinensis	•	•				•			•						•					0		•		•		•	•		•							لسے	
133			シオフキガイ	Mactra veneriformis			•	•			•	•		•						\perp	\perp			0	•	•		•		•			•							ر ا	
			チョノハナガイ	Raetellops pulchellus						•		_								\perp	\perp			0		•		•					•							-	-
135			ミルクイ	Tresus keenae	•											A		VU						0		•	•	•		•	•		•								
																									4	18	5	13	5	- 11	9	2	15								
136	棘皮動物	シカクナマ	コ科 マナマコ	Apostichopus japonicus							•													0		•	-	•	•	•	•		•	•	•	0.4					生物3
																									0	1 1	1 0	1 1	1 1	1 1	1 1	1 0	1 1			I					

注1) 国外由来の外来種の欄は生態系被害防止外来種リスト(http://www.env.go.jp/nature/intro/2outline/index.html)に掲載されている種を示す。星印★は特定外来生物を示す。
注2) 黄色網掛けは検討対象種(生態特性を満たしている種)を示す。
注3) 赤色網掛けは検討対を種(生態特性を満たしている種)を示す。
注4) 貝類の肌の性状について、情報がなべ得助なものについては「-」とした。
注5) 参考情報の「資源減少の原因が貧酸素であるとされている」に付記した*は、「東京湾研究会、中央ブロック水産業関係研究開発推進会議(2013)、江戸前の復活! 東京湾の再生をめざして、」に貧酸素水塊の影響で資源が増減しているという記述があることを示す。

1.3 生態特性を考慮した検討対象種の抽出(東京湾)

前述「1.2 水生生物の生息状況等」でリストアップされた種のうち、底層溶存酸素量の低下の影響を受ける可能性のある種として、<u>東京湾内の底層に依存した生活史を</u>持つ種を抽出し、これを検討対象種とした。

なお、岩礁域や河口部などの、湾奥部と比較して貧酸素化の影響が小さい場所を主な生息域とする種については、この生態特性に該当しないものとした。

この結果、<u>魚類 41 分類群、甲殻類 11 種、軟体動物(イカ・タコ類)5 種、軟体動</u>物(貝類) 17 種、棘皮動物 1 種が検討対象種となった。

東京湾における検討対象種の種数は表 1.3.1 に、検討対象種の一覧は表 1.3.2 に示すとおりである。

表 1.3.1 東京湾における検討対象種の種数

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
分類		検討対象種の 種数
魚類		41
甲殼類		11
軟体動物(イカ・タコ類)		5
軟体動物 (貝類)		17
棘皮動物		1
	計	75

(魚類、甲殻類、イカ・タコ類)

表 1.3.2(1) 東京湾における検討対象種 表 1.3.2(2) 東京湾における検討対象種 (巻貝類、二枚貝類、棘皮動物)

	TO STATE OF THE ST	分類群
1	魚類	ホシザメ
2		ドチザメ
3		アカエイ
4		マアナゴ
5		マルタ
6		シラウオ
7		スズキ
8		テンジクダイ
9		シロギス
10		アオギス
11		コショウダイ
12		チダイ
13		マダイ
14		ヘダイ
15		クロダイ
16		シログチ
17		ニベ
18		ボラ
19		ハタタテヌメリ
20		マハゼ
21		アカハゼ
22		シロウオ
23		コモチジャコ
24		ヒラメ
25		ホシガレイ
26		マコガレイ
27		イシガレイ
28		メイタガレイ
29	1	カワハギ
30	-	ウマヅラハギ
31		ショウサイフグ
32		クサフグ
33		メバル属
34		カサゴ
35		クロソイ
36	-	イボダイ
37	-	メジナ
38	=	シマイサキ
39		ウミタナゴ
40	-	ヒイラギ
		The state of the s
1	甲殼類	コチ属ニホンイサザアミ
2	TAXAR	クルマエビ
		シバエビ
3		Address and the Conference
4		ヨシエビ
5		サルエビ
6	-	クマエビ
7		エビジャコ
8		ガザミ
9		ケブカエンコウガニ
10	-	オサガニ
11	THE RESERVE	シャコ
1	軟体動物	コウイカ
2	(イカ・タコ類)	ジンドウイカ
3		ヤリイカ
4		アオリイカ
5	ì	マダコ

	Ť.	種
1	軟体動物	アラムシロ
2	(巻貝類)	アカニシ キセワタガイ
4	軟体動物	マテガイ
5 6	(二枚貝類)	マガキ アカガイ サルボウガイ
8	77 77	ホトトギスガイ タイラギ
10 11	77 77	トリガイハマグリ
12 13 14	-	アサリ ナミガイ バカガイ
15 16		シオフキガイ チョノハナガイ
17	5	ミルクイ
1	棘皮動物	マナマコ

1.4 保全対象種の設定

保全対象種として相応しいかどうかの判断に用いた判断項目(選定条件)は、以下のとおりである。この判断項目に基づき、地域関係者の様々な意見を取り入れ、保全対象種を設定した。

①当該海域に関する計画等で保全を図るべき種として掲げられている種

「東京湾再生のための行動計画(第二期)」(平成25年5月31日、東京湾再生推進会議)40において、全体目標では『快適に水遊びができ、「江戸前」をはじめ多くの生物が生息する、親しみやすく美しい「海」を取り戻し、首都圏にふさわしい「東京湾」を創出する。』が掲げられており、小目標として『多様な生物が生息し、豊富な「江戸前」の恵みが得られる海』、『「江戸前」の味や文化を世界に発信できる海』が掲げられている。また、本計画には『東京湾再生のための行動計画(第二期)の新たな指標に関する提案解説書』(平成26年11月17日、東京湾再生官民連携フォーラム))50が付帯されており、小目標の達成度の指標として、「江戸前の地魚・魚介類の販売箇所数」が掲げられている。

ここでは、本計画で挙げられているアピールポイント(特に重点的に再生を目指す海域として重点エリアを設けるとともに、重点エリア内で施策による改善の効果を市民が身近に体感・実感でき、施策の効果が端的に評価できる場所として設定し、各ポイントで特定の水生生物の確認等を目標としている。)の目標に記載されている種及び東京湾産の魚介類として水産物の状況が記載されている種に印を付けた。

②生活史を通じた底層依存度

また、卵の性状について、卵の性状が浮遊性よりも沈性の方が貧酸素水塊の影響を受けやすいと考えられるため、これに適合する種に印を付けた。なお、軟体動物 (貝類) については、卵の性状が不明であるものが多く含まれており、性状が明らかな種のみ印を付けた。

③貧酸素の影響を受けやすい種(資源減少の要因が貧酸素である可能性が指摘されている種)

東京湾で貧酸素化する 6-9 月に再生産を行う種について印を付けた。また、参考 文献のうち、「江戸前の復活!東京湾の再生をめざして」³⁾において、資源減少の要 因が貧酸素である可能性が高いとされている種について印を付けた。

なお、保全対象種の選定条件として、近年の漁獲量(現存量)が減少していると 推定される種については、貧酸素化が減少の要因(または要因のひとつ)と推定さ れる場合に限り、文献情報や専門家等の意見として追加した。

④主要な漁獲対象種

参考文献のうち、「東京湾の漁業と資源その今と昔」¹⁾及び「農林水産統計」⁸⁾⁹⁾¹⁰⁾で主要な漁獲対象種とされている種に印を付けた。

⑤地域の食文化からみて重要な種

参考文献をもとに、「郷土料理の材料となる」、「地域の名物として積極的にアピールされている」など、地域の食文化から見て重要であるとして種名が記載されている種に印を付けた。

⑥親水利用(釣り等)の観点からみて重要な種

参考文献をもとに、釣りや潮干狩り等の対象として種名が記載されている種に印を付けた。

⑦地域関係者が必要としている種又は物質循環の保全(水質浄化)において重要な 種

東京湾内の水質浄化において、濾過食性生物として特に重要であると考えられる 二枚貝類は、物質循環の保全(水質浄化)において重要と考えられることから、印 を付けた。また、貝類については、主な生息水深帯についても考慮した。

上記の判断項目及び地域関係者(検討会委員)の意見を踏まえ、東京湾における保全対象種は表 1.4.1 に示すとおりである。

表 1.4.1 東京湾における保全対象種

						判断項目						
		①計画等		②貧酸素影響	響の受けやすさ		③水産利	用、地域の食文化、	親水利用	④その他の事項	<u>ш,</u>	
分類群	保全対象種	計画等で保全を 図るべき種とさ れている	卵の性状が沈性 卵である	貧酸素化が著しい時期(6-9月) に再生産を行う	成魚・成体段階 の移動能力が低 い	資源減少の要因 が貧酸素とされ ている	主要な漁獲対象 種	地域の食文化か らみて重要	親水性の観点からみて重要	地域関係者が必要としている種 又は物質循環の 保全(水質浄化)に おいて重要	満たした判断項目の数	総合評価
	マアナゴ	•			•	•	•	•	•		6/9	多くの判断項目に適合し、江戸前の食文化を代表する重要な種であるため、保 全対象種に選定した。
	シロギス	•		•	•		•	•	•		6/9	多くの判断項目に適合し、古くから東京湾における釣りの対象魚であり、市民 にとって身近で親しみやすく、江戸前の魚としても重要な種であるため、保全 対象種に選定した。
魚類	マハゼ	•	•		•	•	•	•	•		7/9	多くの判断項目に適合し、江戸前の食文化を代表する種であるとともに、古く から東京湾における釣りの対象魚であることなどから、市民にとって身近で親 しみやすい種であるため、保全対象種に選定した。
	ヒラメ			•	•		•	•	•	•	6/9	東京湾では主要な漁獲対象種となっており、食文化の視点からも重要であることから、判断項目の適合数に囚われることなく、保全対象とすべきであるとの 地域関係者からの意見を反映し、保全対象種に選定した。
	マコガレイ	•	•	obmonomonomonomonomonomo	•	•	•	•	•		7/9	多くの判断項目に適合し、東京湾の主要な漁獲対象種であるため、保全対象種 に選定した。
甲殼類	クルマエビ	•		•	•	•	•	•			6/9	多くの判断項目に適合し、江戸前の食文化を代表する重要な種であるため、保 全対象種に選定した。
1 794.79	シャコ	•	•	•	•	•	•	•			7/9	多くの判断項目に適合し、主要な漁獲対象種であるとともに、最近では貧酸素 の影響とみられる漁獲量の減少が著しいことから、保全対象種とすべきである との地域関係者からの意見も反映し、保全対象種に選定した。
	コウイカ	•	•	•	•	•	•	•	•		8/9	多くの判断項目に適合し、東京湾では主要な漁獲対象種となっているととも に、主要な釣りの対象種でもあるため、保全対象種に選定した。
軟体動物 (イカ・タコ類・	アカガイ		•	•	•	•	•	•		•	7/9	多くの判断項目に適合し、東京湾では主要な漁獲対象種となっているととも に、本種は二枚貝の中でも特に深場に生息し、貧酸素水塊の影響を受けやすい と考えられることから、保全対象種とすべきであるとの地域関係者からの意見 も反映し、保全対象種に選定した。
貝類)	ハマグリ	•		•	•	•	•	•	•	•	8/9	多くの判断項目に適合し、江戸前の食文化を代表する種であるとともに、古く から東京湾における潮干狩りの対象種であり、市民にとって身近で親しみやす い種であるため、保全対象種に選定した。
	アサリ	•		•	•	•	•	•	•	•	8/9	多くの判断項目に適合し、江戸前の食文化を代表する種であるとともに、古く から東京湾における潮干狩りの対象種であり、市民にとって身近で親しみやす い種であるため、保全対象種に選定した。
棘皮動物	マナマコ		-	•	•	•	•	•		•	6/9	多くの判断項目に適合し、近年の需要の高まりによる乱獲の影響で漁獲量が減少していることから、保全対象種とすべきであるため、保全対象種に選定した。

注)「-」は、生態学的な情報の知見がないことを指す。

1.5 保全対象種における底層溶存酸素量の目標値の設定

保全対象種における底層溶存酸素量の目標値は、「水質汚濁に係る生活環境の保全に関する環境基準の見直しについて(答申)」(平成27年12月、中央環境審議会)(以下、答申という。)に記載されている生息段階、若しくは再生産段階の貧酸素耐性評価値に基づくことを基本とした。

なお、保全対象種によっては、貧酸素耐性評価値が得られていないものもあり、この場合は貧酸素耐性に関する水生生物の生理的な知見や、混獲データ・現場観測データ等の活用、地域関係者等の意見を参考にする等、可能な限り科学的知見に基づいて目標値を設定した。

保全対象種の目標値及び類型は表 1.5.1 に示すとおりであり、その設定根拠は以下に示すとおりである。

(1) マアナゴ

マアナゴについては、生息段階の貧酸素耐性評価値が得られていないが、閉鎖性海域中長期ビジョン参考資料「底層 DO 目標値について」(環境省, 2010) ⁷¹⁾によると、生息を確保するための底層溶存酸素量目標値の設定方法として、底曳き網による混獲データから耐性値を補完した値が掲載されている。これによると、マアナゴの生息目標値は 3mg/L であり、これを生息段階の目標値とした。なお、マアナゴは東京湾内で再生産を行わないことから、再生産の基準値は設定しない。

(2) シロギス

シロギスについては、生息段階の貧酸素耐性評価値(2.6 mg/L) $^{72)}$ が得られており、この小数点以下を切り上げた整数値(3 mg/L)を生息段階の目標値とする。また、生息段階の貧酸素耐性評価値に 1 mg/L を加え、小数点以下を切り上げた値(4 mg/L)を再生産段階の目標値とする。

(3) マハゼ

マハゼについては、生息段階の貧酸素耐性評価値 (1.9 mg/L) が得られており $(Yamochi 6, 1995)^{73}$ 、この小数点以下を切り上げた整数値 (2 mg/L) を生息段階の目標値とする。また、生息段階の貧酸素耐性評価値に 1 mg/L を加え、小数点以下を切り上げた値 (3 mg/L) を再生産段階の目標値とする。

(4) ヒラメ

ヒラメについては、生息段階の貧酸素耐性評価値(2.1 mg/L) 74 が得られており、この小数点以下を切り上げた整数値(3 mg/L)を生息段階の目標値とする。また、生息段階の貧酸素耐性評価値に 1 mg/L を加え、小数点以下を切り上げた値(4 mg/L)を再生産段階の目標値とする。

(5) マコガレイ

マコガレイについては、生息段階の貧酸素耐性評価値 (2.4mg/L) が得られており (矢持ら,1998) 75 、この小数点以下を切り上げた整数値 (3mg/L) を生息段階の目標値とする。また、生息段階の貧酸素耐性評価値に 1 mg/L を加え、小数点以下を切り上げた値 (4mg/L) を再生産段階の目標値とする。

(6) クルマエビ

クルマエビについては、生息段階の貧酸素耐性評価値 $(1.2 mg/L)^{74}$ が得られており、この小数点以下を切り上げた整数値 (2 mg/L) を生息段階の目標値とする。また、再生産段階の貧酸素耐性評価値 (3.1 mg/L) も得られており(山田ら,2014) 76 、この小数点以下を切り上げた整数値 (4 mg/L) を再生産段階の目標値とする。

(7) シャコ

シャコについては、生息段階の貧酸素耐性評価値が得られていないが、「水質汚濁に係る生活環境の保全に関する環境基準の見直しについて(答申)参考資料」(平成27年(2015年)12月、中央環境審議会)⁷⁷⁾によると、現場観測から導出したシャコ成体の底層溶存酸素量の分布境界は2.4mg/Lとされている(Kodamaら,2010)⁷⁸⁾。これを生息段階の貧酸素耐性評価値として、小数点以下を切り上げた整数値(3mg/L)を生息段階の目標値とする。また、同資料には現場観測による稚シャコの分布境界を現場で観測した知見があり(Kodamaら,2006)⁷⁹⁾、これによると稚シャコの分布境界は、溶存酸素が4.0mg/Lであるとされているため、これを再生産段階の貧酸素耐性評価値として、小数点以下を切り上げた整数値(4mg/L)を再生産段階の目標値とする。

(8) コウイカ

コウイカについては、生息段階の貧酸素耐性評価値が得られていないが、「水質汚濁に係る生活環境の保全に関する環境基準の見直しについて(答申)参考資料」(平成27年(2015年)12月、中央環境審議会)⁷⁷⁾によると、現場観測から導出したジンドウイカ成体の底層溶存酸素量の分布境界は2.4mg/Lとされている(Kodamaら,2010)⁷⁸⁾。コウイカとジンドウイカは別種であるが、他に活用できるデータが無いため、これを生息段階の貧酸素耐性評価値として、小数点以下を切り上げた整数値(3mg/L)を生息段階の目標値とする。また、イカ・タコ類に関しては再生産段階の貧酸素耐性評価値が得られておらず、貧酸素耐性評価値の設定方法が課題となっている。今回は、課題があることを踏まえた上で、魚類に適用される方法を流用し、生息段階の目標値に1mg/Lを加え、小数点以下を切り上げた値(4mg/L)を再生産段階の目標値とする。

(9) アサリ

アサリについては、生息段階の貧酸素耐性評価値が得られていない。ここで、閉鎖性海域中長期ビジョン参考資料「底層 D0 目標値について」(環境省,2010) 71)によると、「アサリ、サルボウガイ及びヤマトシジミの低 D0 耐性実験結果より、無酸素でも96 時間程度の短期間であれば生存可能であることが明らかとなった。このことから、二枚貝以外の分類群の生息が維持される D0 濃度レベル(2mg/L 以上)が維持されていれば、二枚貝類の生息も維持されると考えられる。」とされている(中村ら,1997) 80 (柿野ら,1982) 81 (荻田ら,1985) 82 。このため、アサリについては 2mg/L を生息段階の目標値とする。また、再生産段階の貧酸素耐性評価値(3.1mg/L)が得られており(蒲原ら,2013) 83 、この小数点以下を切り上げた値(4mg/L)をアサリの再生産段階の目標値とする。

(10) ハマグリ

ハマグリについては、生息段階の貧酸素耐性評価値が得られていない。しかし、平成22年度(2010年度)三番瀬自然環境調査報告書(2011)⁸⁴⁾によると、アサリとハマグリが夏季(8月)の東京湾で混獲されているデータがある。したがって、貧酸素に対してハマグリはアサリとほぼ同様な耐性を有するものと考えられる。このことから、ハマグリにおける生息段階の目標値は、アサリと同じ 2mg/L とする。また、再生産段階の貧酸素耐性評価値が得られていないが、アサリと生態が類似していることから、アサリの再生産段階の目標値と同じ 4mg/L を、ハマグリの再生産段階の目標値とする。

(11) アカガイ

アカガイについては、生息段階の貧酸素耐性評価値が得られていないが、高見ら (1980) $^{85)}$ によれば、平均殻長 40mm の満 1 年貝を使った実験により、「溶存酸素量が 0.7mg/L の実験区で 8 日目からへい死を開始、同じく 0.4mg/L で 7 日目からへい死を開始した」との報告がある。このことから、閉鎖性海域中長期ビジョン参考資料「底層 D0 目標値について」(環境省,2010) $^{71)}$ に記載のアサリの例と同様に、2mg/L が維持されていればアカガイの生息も維持されると考え、2mg/L をアカガイの生息段階の目標値とする。また、再生産段階の貧酸素耐性評価値が得られていないが、同じ二枚貝であるアサリの再生産段階の貧酸素耐性評価値(3.1mg/L)が得られており、この小数点以下を切り上げた値(4mg/L)をアカガイの再生産段階の目標値とする。

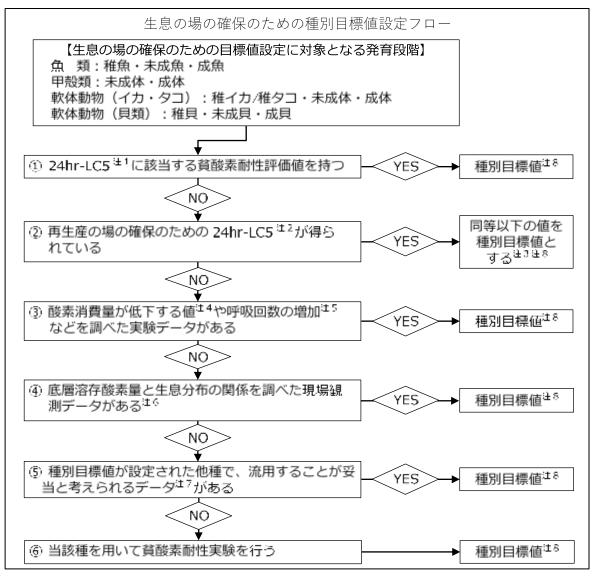
(12) マナマコ

マナマコについては、再生産段階の貧酸素耐性評価値 $(0.4 \text{mg/L})^{74}$ が得られており、最も低い目標値である 2 mg/L を再生産段階の目標値とする。

一方、生息段階の貧酸素耐性評価値が得られていないが、再生産の貧酸素耐性評価値が 0.4mg/L であり、生息の目標値はこれと同等、若しくはこれより低いことが想定される。再生産の目標値が 2mg/L となることから、生息段階の目標値も 2mg/L とする。

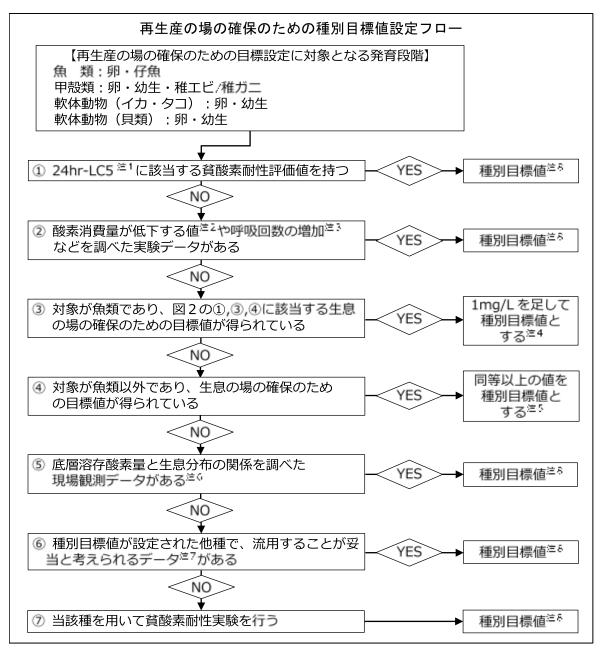
表 1.5.1(1) 保全対象種の目標値及び類型

	∀ ∨ ±<	目標値設定の根拠		フロー	月	目標値	と類型
種名	発育 段階	根拠	値 (mg/L)	プロー 階層 ^{注2}		目標値	·
マアナゴ	生息	混獲データ	_	5	環境省(2010)閉鎖性海域中長期ビジョン参考資 料「底層 DO 目標値について」 ⁷¹⁾	3mg/L	生物 2
	再生産			東京湾	で再生産を行わない	設定	しない
シロギス	生息	貧酸素耐性評価値 (24h-LC5) ^{注1}	2.6	1	環境省 (2013). 平成 25 年度下層 DO 基準化調査業務報告書, 平成 26 年 3 月 $^{72)}$	3mg/L	生物 2
V () .	再生産	生息段階の目標値に +1mg/L	4	3	-	4mg/L	生物
ふん	生息	貧酸素耐性評価値 (24h-LC5) ^{注1}	1.9	1	Yamochi, S., et al. (1995). Occurrence and Hypoxic Tolerance of the Juvenile <i>Metapenaeus ensis</i> at the Mouth of the Yodo River, Osaka, Fisheries Science, 61(3), 391-395. 73)		生物3
	再生産	生息段階の目標値に +1mg/L	3	3	_	3mg/L	生物 2
ヒラメ	生息	貧酸素耐性評価値 (24h-LC5) ^{注1}	2. 1	1	環境省 (2014). 魚介類に対する低溶存酸素濃度の急性影響試験結果報告書, 平成 26 年 3 月 ⁷⁴⁾	3mg/L	生物 2
L//	再生産	生息段階の目標値に +1mg/L	4	3	_	4mg/L	生物 1
マコガレイ	生息	貧酸素耐性評価値 (24h-LC5) ^{注1}	2. 4	1)	矢持進ほか(1998). 大阪湾湾奥沿岸域の環境修復: 堺泉北港干潟造成予定地周辺の水質・底質ならびに底生動物相とマコガレイの貧酸素に対する応答,海の研究,7(5),293-303 ⁷⁵⁾	.3mo / I	生物 2
	再生産	生息段階の目標値に +1mg/L	4	3	_	4mg/L	生物 1
	生息	貧酸素耐性評価値 (24h-LC5) ^{注1}	1. 2	1	環境省(2014). 魚介類に対する低溶存酸素濃度の急性影響試験結果報告書, 平成 26 年 3 月 ⁷⁴⁾	2mg/L	生物 3
クルマエビ	再生産	貧酸素耐性評価値 (24h-LC5) ^{注1}	3. 1	1	山田智ほか(2014).ガザミ(Portunus trituberculatus), クルマエビ (Marsupenaeus japonicus) およびヨシエビ (Metapenaeus ensis) の浮遊幼生に及ぼす貧酸素水の影響,水産海洋研究,78(1),45-53 ⁷⁶⁾	4mg/L	生物 1
I	生息	現場観測	2. 4	4	K.Kodama, et al. (2009). Impaired megabenthic community structure caused by summer hypoxia in a eutrophic coastal bay, Ecotoxicology, 19(3), 479-492. 78)	3mg/L	生物 2
シャコ	再生産	現場観測	4. 0	5	K. Kodama, et al. (2006). Effects of hypoxia on early life history of the stomatopod <i>Oratosquilla oratoria</i> in a coastal sea, Marine Ecology Progress Series, vol. 324. ⁷⁹⁾		生物 1
コウイカ	生息	現場観測	2. 4	5	K.Kodama, et al. (2009). Impaired megabenthic community structure caused by summer hypoxia in a eutrophic coastal bay, Ecotoxicology, 19(3), 479-492. 78)	3mg/L	生物 2
	再生産	生息段階の目標値に +1mg/L	4	6	※知見が無いことを前提として、魚類の場合と同様に、生息段階の目標値に 1mg/L を加える。	4 mg/L	生物 1
	生息	低溶存酸素量 耐性試験	2	5	環境省(2010)閉鎖性海域中長期ビジョン参考資料 「底層 DO 目標値について」 ⁷¹⁾	2mg/L	生物3
アサリ	再生産	24h-LC5	3. 1	1)	蒲原ほか(2013) 貧酸素水がアサリ浮遊幼生の遊泳 停止と沈降後のへい死に及ぼす影響_水産海洋研究 77(4), 282-289 ⁸³⁾	4mg/L	生物 1
12911	生息	混獲	2	5	平成 22 年度三番瀬自然環境合同調査報告書(2011) アサリとの混獲データ ⁸⁴⁾	2mg/L	生物 3
ハマグリ	再生産	同様な生活史、生態 特性を持つ種	3. 1	5	アサリと同様の生態を持つことから、アサリと同じ 再生産段階の目標値(4mg/L)とする。	4mg/L	生物 1
アカガイ	生息	低溶存酸素量 耐性試験	2	5	・高見東洋ほか、1980. アカガイの増殖に関する研究, 昭和 54 年度指定調査研究総合助成事業報告書, 山口県内海水産試験場 85) ・環境省(2010)閉鎖性海域中長期ビジョン参考資料「底層 DO 目標値について」71)	2mg/L	生物 3
	再生産	同様な生活史、生態 特性を持つ種	3. 1	(5)	アサリと同様の生態を持つことから、アサリと同じ 再生産段階の目標値(4mg/L)とする。	4mg/L	生物


注) 1. 24 時間の暴露時間における 95%の個体が生存可能な溶存酸素量。詳細は平成 27 年答申を参照。

^{2.} 後述図 1.5.1 及び図 1.5.2 に示す目標値設定フローのどの階層に準拠したのかを示す。

表 1.5.1(2) 保全対象種の目標値及び類型


44.6	発音	目標値設定の根拠	と値	フロー		目標値	と類型
種名	発育 段階	根拠	値 (mg/L)	階層注2	出典・理由等	目標値	類型
7773	生息	再生産段階の 目標値より設定	2	2	再生産の貧酸素耐性評価値のみ得られており、生息の基準値はこれと同等、若しくはこれより低いことが想定されることから、生息段階の目標値を2mg/Lとする。	2mg/L	生物3
4)44	再生産	24h-LC5	0. 4	1	環境省(2015)平成 26 年度下層 DO 及び透明度新規環境基準化検討業務. ⁸⁶⁾ 環境省(2014). 魚介類に対する低溶存酸素濃度の急性影響試験結果報告書, 平成 26 年 3 月 ⁷⁴⁾	2mg/L	生物3

- 注) 1. 24 時間の暴露時間における 95%の個体が生存可能な溶存酸素量。詳細は平成 27 年答申を参照。
 - 2. 後述図 1.5.1 及び図 1.5.2 に示す目標値設定フローのどの階層に準拠したのかを示す。

- 注) 1. 24 時間の暴露時間における 95%の個体が生存可能な溶存酸素量。詳細は H27 答申 7 頁を参照。
 - 2. 図 1.5.2 を参照。
 - 3. 設定した目標値の妥当性については、専門家の意見を参考にすること。
 - 4. 対象生物が貧酸素条件下に暴露されると、代謝を下げるための生理的な反応として酸素消費量が低下する。
 - 5. 溶存酸素が低下しても呼吸回数が増加しない種がみられることから、当該種の生態的特徴が十分に観察された実験データを用いること。
 - 6. 検討対象とした湖沼・海域において底層溶存酸素量が 4mg/L 以下のとなる時期及び場所での現場観測データであること。
 - 7. 妥当性について専門家の意見を参考にし、複数ある場合は妥当性の高いものを採用する。例としては、他種と同様な生活史、生態特性を持つ近縁の種に関するデータ等。
 - 8. 種別目標値は 2mg/L、3mg/L、4mg/L の 3 段階とし、 $2\sim 4mg/L$ の間の種別目標値は小数点以下を切り上げる。

図 1.5.1 生息の場の確保のための種別目標値設定フロー

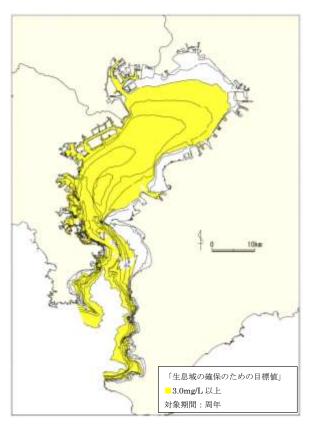
- 注) 1. 24 時間の暴露時間における 95%の個体が生存可能な溶存酸素量。詳細は平成 27 年答申 7 頁を参照。
 - 2. 対象生物が貧酸素条件下に暴露されると、代謝を下げるための生理的な反応として酸素消費量が低下する。
 - 3. 溶存酸素が低下しても呼吸回数が増加しない種がみられることから、当該種の生態的特徴が十分に観察された実験データを用いること。
 - 4. 本資料「【参考】再生産段階の貧酸素耐性評価値の推定」を参照。なお、生息の場の確保のための目標値と再生産の場の確保のための目標値が同じ値であっても差し支え無いと判断できる知見があれば、1mg/L を足さなくてもよい。
 - 5. 既往知見を参考にして適切に設定し、設定した目標値の妥当性について専門家に確認すること。
 - 6. 検討対象とした湖沼・海域において底層溶存酸素量が 4mg/L 以下のとなる時期及び場所での現場観測データであること。
 - 7. 妥当性について専門家の意見を参考にし、複数ある場合は妥当性の高いものを採用する。例としては、他種と同様な生活史、生態特性を持つ近縁の種に関するデータ等。
 - 8. 種別目標値は 2mg/L、3mg/L、4mg/L の 3 段階とし、 $2\sim 4mg/L$ の間の種別目標値は小数点以下を切り上げる。

図 1.5.2 再生産の場の確保のための種別目標値設定フロー

1.6 保全対象種の生息域及び再生産の場の設定

前述の東京湾の保全対象種の生息域及び再生産の場は、各保全対象種の生態特性(生息又は再生産に適した水深、底質(砂、泥、岩礁等))に係る知見、地域関係者からの指摘(情報)を踏まえて設定した。

保全対象種である 12 種の生態情報は表 1.6.1 に示すとおりであり、各保全対象種の生息域及び再生産の場は「(1) マアナゴ」 \sim 「(12) マナマコ」に示すとおりである。


表 1.6.1 東京湾における保全対象種の生態情報

	SD T/ OL				主 たな	*布状態		I	
東京湾 保全対象種	卵形態	水深	産卵場	90	仔魚期	稚魚期	未成魚·成魚	生息する底質環境	備考
マアナゴ	産卵期等 分離浮性卵	表層		91-	(幼生)	(稚エビ・稚貝等)	(未成体・成体)		
4771		表層下-10m	1						
	産卵期:6~9月 稚魚期:4~9月	11-20m 21-30m	-			底生生活		成魚は主に砂泥底に	
	12.36791	31-40m				(水深10-40m)	底生生活	生息し、稚魚は細砂 ~砂礫を好む	
		41 — 50 m		777 Mark at 127 / 1277 and 121	material of the second states		(水深10~100m)	~砂味を好む	
		51m~	外洋中層 (水深200m以浅程度の深海)	浮遊生活(水深200m以 浅程度の深海)	浮遊生活(水深200m以浅 程度の深海)				
シロギス	分離浮性卵	表層		/	浮遊生活(沿岸域)	底生生活(沿岸域)			
	産卵期:7~10月	表層下-10m	White war are an artist		(水深5m以浅)	(水深5m以浅)	底生生活		
	産卵期: 7~10月 稚魚期: 7~11月	11-20m 21-30m	沿岸域の水深10~20mの砂底				(水深30m以浅)	主に砂~砂泥域に生息する	稚魚は干潟を利用 する
		31-40m 41-50m]					,5.7 0	, ,
		51m~							
マハゼ	付着沈性卵	表層	沿岸域	W	/	ale at at 200 / 200 bis take			
		表層下-10m	沿岸域 (水深2~10mの砂泥)	巣穴に産まれた卵は 産卵室内で保護される	/	底生生活(沿岸域) (水深2~5m)	底生生活(沿岸域) (水深2~15m)		
	産卵期:1~5月	11-20m			1 /		(V)(V)(L)	主に泥〜砂泥域に 生息する	仔稚魚はアマモ場、 干潟を利用する
	稚魚期:3~5月	21 - 30m 31 - 40m	-					土瓜する	ו אפניתניז באותו
		41 — 50m]						
ヒラメ	分離浮性卵	51m~ 表層		浮遊生活 (沿岸域)	浮遊生活から底生生活へ 移行(仔魚期変態期以降)				
		表層下-10m	1	(沿岸域)	杪 打(竹黑州安思州以降)	底生生活			
	産卵期:2~6月	11-20m	沿岸域			(水深10m以浅の浅所)		主に砂~砂泥域に生	稚魚は干潟を利用
	稚魚期:春季~秋季	21-30m 31-40m	沿岸域 - (水深10~50mの砂泥・砂礫・岩 礁)				底生生活 (水深10~50m)	息する	する
		41 — 50 m	(Max.)						
マコガレイ	付着沈性卵	51m~ 表層							
, ,	1342701231	表層下-10m	1		浮遊生活 (変態期まで)				稚魚はアマモ場、干
	産卵期:11~2月	11-20m			(水深10m前後)	底生生活 (水深30m以浅)		主に砂泥域に生息	潟を利用する 千葉県稲毛沖から
	稚魚期:2月~秋季	21 — 30m	沿岸域(水深10~50mの	海底塊状粘着			底生生活 (水深100m以浅)	する	袖ヶ浦沖の陸域から
		31-40m 41-50m	砂泥・砂礫・岩礁帯)						2~3kmでは着底稚 魚の生息が確認
		51m~		25.04.44.37					
クルマエビ	分離浮性卵	表層		浮遊生活 (沿岸域)	浮遊生活 (幼生期)	rde st. st. NE / 2/1 bid t-b \			
	± ====================================	表層下-10m				底生生活(沿岸域) (干潟域、汽水域)			# - 1314-2
	産卵期:4~10月 稚エビ:8~11月	11-20m 21-30m					底生生活	主に砂域に生息する	稚エビはアマモ場、 干潟を利用する
		31 — 40 m	沖合域 (水深10m以深)				(水深5~100m)		
		41-50m 51m~							
シャコ	沈性卵 (円盤状卵塊(巣穴内	表層 表層下-10m							
	で雌親が保育))	11-20m	砂泥底 (水深7~40m)	巣穴の中で孵化まで雌 親個体により卵塊保育さ	浮遊生活 (表層~30m程度の底層)	底生生活 (水深1.5~30m程度)	底生生活	主に泥~砂泥域に	幼体、成体ともに干
	産卵期:4~8月 稚シャコ期:8~10月	21 - 30m 31 - 40m	-	れる			(水深7~40mの砂泥底)	生息する	潟を利用する
	1 - 77,7 - 77,7	41 — 50 m							
コウイカ	付着卵	51m~ 表層			/				
		表層下-10m	砂泥底 (水深2~10m)	海藻類.木の枝、環形動物の棲管等に産み付け	/	底生生活			
	産卵期:3~6月	11-20m	()K)#2**TOM)	ఠ	/	(水深20m以浅の砂泥底)	底生生活	主に砂泥域に生息	成体はアマモ場を利
	稚イカ期:7~10月	21-30m	1				(水深50m以浅の砂泥域)	する	用する
		31-40m 41-50m	1						
アカガイ	分離浮性卵	51m~ 表層		/	/				
7 7373 1	7) HE/T-11-91	表層下-10m							
	産卵期:5~10月	11-20m	泥底、砂泥底 (内湾の水深5~50m)		浮遊生活 (中層~底層付近を浮遊す	底生生活 (内漆の水深5~50mまで	底生生活 (内湾の水深5~50mまで	主に泥域〜砂泥域に	稚貝、成体共に干潟
		21-30m 31-40m	(11/1903)(1/10 0011)		ق) قال المارة	の泥底、砂泥底)	の泥底、砂泥底)	生息する	を利用する
		41 — 50 m							
ハマグリ	分離浮性卵	51m~ 表層		浮遊生活	浮遊生活				
	Sand 1 Interest	表層下-10m	内湾の干潟~6mまで	(沿岸域)	(幼生期)	底生生活	内湾の干潟~6mまで の砂泥底		
	産卵期:5~11月	11-20m	の砂泥底			(干潟)	の砂泥低	主に砂泥域に生息	稚貝、成体共に干潟
		21-30m 31-40m	-					する	を利用する
		41 — 50 m	1						
アサリ	分離浮性卵	51m~ 表層		浮遊生活	浮遊生活				
, , , ,	ノノ ドエナ エグド		内湾の潮間帯~10mまでの	(沿岸域)	(幼生期)	底生生活	底生生活		
	l	表層下-10m	砂泥底			(浮遊期間2~3週間後着 底)	(内湾の潮間帯~10mまで の砂泥底)		稚貝、成体共に干潟
	産卵期:3~7月 9~11月	11-20m 21-30m	-					する	を利用する
		31-40m	1						
	<u> </u>	41−50m 51m∼							
マナマコ	分離浮性卵	表層			1	底生生活			
	産卵期:4~7月	表層下-10m 11-20m	- 内湾の潮間帯~30mまでの 岩礁域、砂泥底			(潮間帯~5m以浅)	内湾の潮間帯~30mまで の岩礁域、砂泥底	+1-117#1+ *****	
	庄州初.寸~/月	21-30m	石 WE MY 化 化 化				シカッパ、19/ICIS	主に岩礁域〜砂泥域 に生息する	
		31-40m 41-50m	-						
		51m~	1	V	\bigvee				

資料:87)、88)、89)、90)、91)、92)、93)、94)、95)、96)、97)、98)、99)、100)、101)、102)、103)、104)、105)、106)、107)、108)、109)、110)、111) 112)

(1) マアナゴ

マアナゴの生息域及び目標値は図 1.6.1 に示すとおりである。また、マアナゴの生息及び再生産に関する整理結果は図 1.6.2 に示すとおりである。

注) マアナゴは湾内にて再生産を行わないため、ここでは再生産の場を図示しない。

図 1.6.1 マアナゴの生息域

区分	発育段階	生息水深帯	底質	水温
	郎	東シナ海南部あるいはさらに南方海域 深海	_	_
再生産の場	仔魚	黒潮流軸付近では、全長60mm未満では水深 100m以浅に分布し、全長60mmを超えると水 深100~300mの深い層に分布		黒潮流軸付近では、水温 25℃以上に分布 接岸時の沿岸水温は10~ 15℃
生息域	稚魚	2~10 m 10~40 m	細砂~砂礫 砂泥底	_
生心域	未成魚・成魚	20~300 m 10~100 m	_	水温10℃以下の低水温を避 ける

区分	発育段階						出現	時期						備考
四刀	元月秋阳	1	2	3	4	5	6	7	8	9	10	11	12	NH ~~
	函						•			•				
再生産の場	仔魚						•			•				出現時期は卵と同じとした
生息域	稚魚				•					•				
	1.44	4												
	未成魚・成魚													

(成長・分布の模式図)

140"

●Kurogi et al. (2012) によると、沖 ノ鳥島の南方 400km、九州パラオ海嶺 付近が産卵場であるとされている。

資料:87)、88)、89)、90)、91)

図 1.6.2 マアナゴの生息及び再生産に関する整理結果

(2) シロギス

シロギスの生息域及び再生産の場及びそれぞれの目標値は図 1.6.3 に示すとおりである。また、シロギスの生息及び再生産に関する整理結果は図 1.6.4 に示すとおりである。

シロギスの特徴として、稚魚期の生息水深帯は 5m 以浅で干潟を利用することがあげられる。

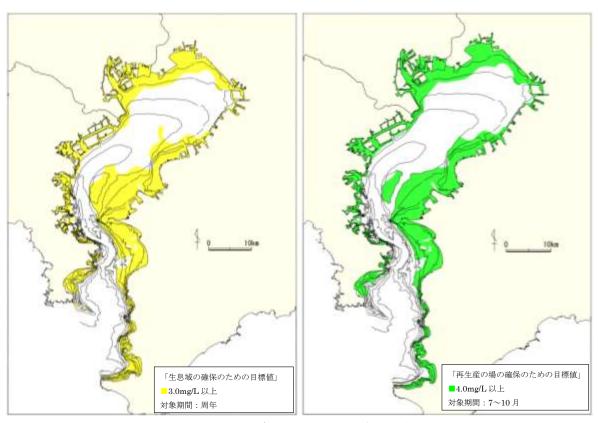
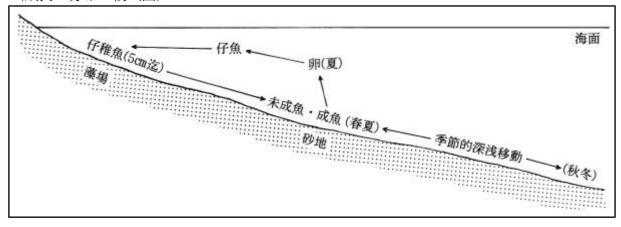



図 1.6.3 シロギスの生息域及び再生産の場

区分	発育段階	生息水深帯	底質	水温
再生産の場	卵	産卵場: 10~20m 沿岸の水深10~20m 卵は表~中層を浮遊	沿岸の砂域	20.1~30.5℃ 産卵盛期:26~29℃
	仔魚	水中照度の高い表層 表層付近	浮遊生活	紀伊水道14.8~28.9℃
	稚魚	5m以浅(干潟を利用)	砂泥域	九州西岸19~31℃
生息域	未成魚・成魚	30m以浅 夏は10m以浅 秋~冬季:10m以深 春~夏季:浅所 海底から30cm以上離れる個体は少ない。	未成魚は主に泥域に分 布、成魚は沖合の砂泥 域に分布 砂域	<未成魚> 日本海15~28℃ 瀬戸内海13~27℃

区分	発育段階						出現	時期						備考
区刀	光月权阳	1	2	3	4	5	6	7	8	9	10	11	12	川かっ
再生産の場	別							•			•			
円生生の場	仔魚							•			•			出現時期は卵と同じとした
北白屋	稚魚							4				9		
生息域	未成魚・成魚	•											•	

(成長・分布の模式図)

資料:87)、91)、93)、94)

図 1.6.4 シロギスの生息及び再生産に関する整理結果

(3) マハゼ

マハゼの生息域と再生産の場及びそれぞれの目標値は図 1.6.5 に示すとおりである。また、マハゼの生息及び再生産に関する整理結果は図 1.6.6 に示すとおりである。

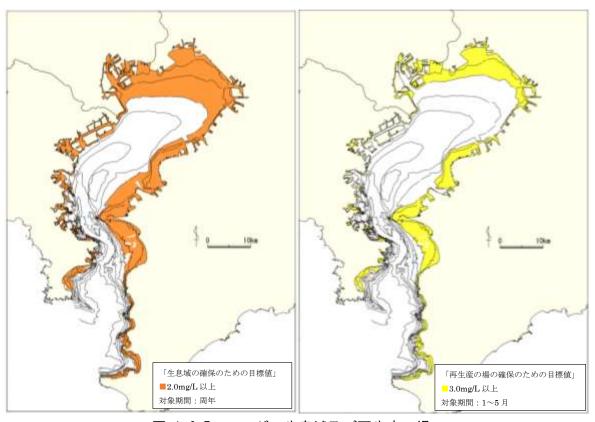
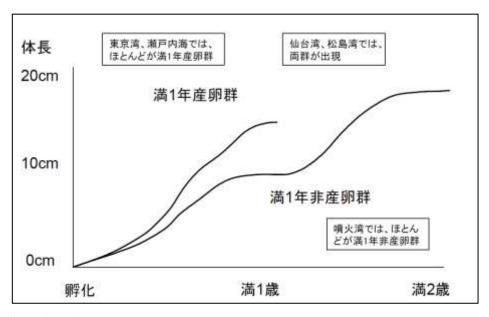



図 1.6.5 マハゼの生息域及び再生産の場

区分	発育段階	生息水深帯	底質	水温
再生産の場	印	産卵場:2~10m 卵は沈性付着卵	泥底・砂泥底 河口付近の砂泥底	-
丹王座の物	仔魚	仔魚は中~底層を浮遊	浮遊生活を経て底生生 活	-
	稚魚	5m以浅	着底場所は河口域が中 心	-
生息域	未成魚・成魚	2~15m 未成魚は潮干帯から水深10m位 産卵のため冬期 (12~3月) は深部へ移動	未成魚は砂泥または泥 質底	-

区分	発育段階						出現	時期						備考
区刀	光月权阳	1	2	3	4	5	6	7	8	9	10	11	12	畑ク
再生産の場	卵	•				•								仙台湾、松島湾は4月
円生性の場	仔魚	•				•								出現時期は卵と同じとした
生息域	稚魚			•		-								
生心域	未成魚・成魚	•											•	

(成長・分布の模式図)

資料:87)、94)、95)、96)

図 1.6.6 マハゼの生息及び再生産に関する整理結果

(4) ヒラメ

ヒラメの生息域と再生産の場及びそれぞれの目標値は図 1.6.7 に示すとおりである。 また、ヒラメの生息及び再生産に関する整理結果は図 1.6.8 に示すとおりである。

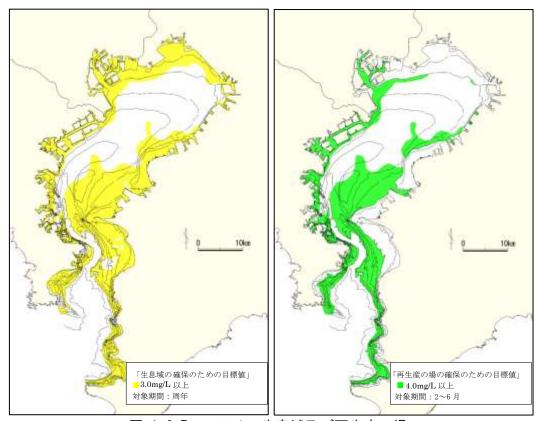
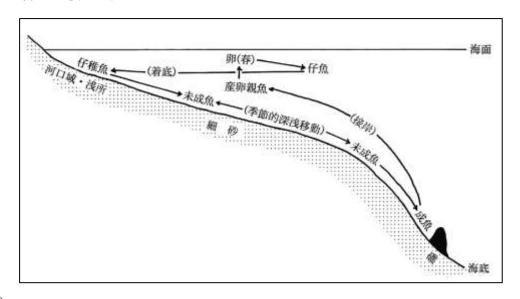


図 1.6.7 ヒラメの生息域及び再生産の場


区分	発育段階	生息水深帯	底質	水温
	到	産卵場:20~50m	砂泥・砂礫または岩礁の地帯	青森太平洋岸:16.9~ 18.1℃ 山田湾:13.3~20.9℃
再生産の場	仔魚	鳥取:20m以浅	浮遊生活	【出現水温】 山田湾:13.3~20.9℃ 茨城・鳥取:12.0~19.9℃ 青森太平洋岸:14.2~ 24.3℃ 若狭湾:12.1~18.6℃ 鳥取:12.1~18.6℃ 【生息水温】 25~30℃
	稚魚	10m以浅 山田湾:7~10m層 富山・千葉:20m以浅 若狭湾:10m以浅 鳥取:10m以浅 館山湾:3m以浅	山田湾:砂質(砂分84 〜92%)、有機物の少ない(I.L1.0〜1.3%) ところ 鳥取:細砂・中砂の砂 泥質 館山湾:細砂	館山湾:盛期21.1℃ 鳥取:前期15~20℃、後期 18~28℃ 茨城:18~28℃ 青森(小川原湖)15~25℃
生息域	未成魚・成魚	10~50m <若齡> 茨城:5~22m 千葉:50m以浅(5~7月)、60~90m(10~4月) 館山湾:10m以浅 若狭湾:河口10~50m <未成魚> 茨城:30~120m 茨城:150~160m(10~4月)、20~50m(5~7月) 青森日本海側:20m以浅 館山湾:10m以浅 鳥取:50m以浅 <成魚> 青森西津軽:20~200m 茨城:30~120m 東京湾:225m(冬)、30m(6月) 鳥取:100~200m	<若齢> 館山湾:中央粒径 0.17mmに多い <未成魚> 青森・部 接合部 <成魚> 新潟:魚礁性が強い	<未成魚> 青森日本海側:9.5~ 21.7℃ 成魚 【漁獲水温】 新潟:8~17.5℃ 千葉(10~50m、底層): 13~23℃ 【産卵期水温】 仙台湾:適長層水温17℃ 山形(底層):11~17℃ 鳥取:12~15℃ 【飼育水温】 14.2~21.7℃(適水温14~ 17℃)

区分	発育段階						出現	時期						備考
区刀	光月权陷	1	2	3	4	5	6	7	8	9	10	11	12	1/III ² -5
再生産の場	卵		•		·		•							
円生産の場	仔魚		•				•							出現時期は卵と同じとした
	稚魚			•						•				
生息域	未成魚・成魚													
	木成魚・成魚													

資料:87)、93)、97)

図 1.6.8(1) ヒラメの生息及び再生産に関する整理結果

(成長・分布の模式図)

資料:87)

図 1.6.8(2) ヒラメの生息及び再生産に関する整理結果

(5) マコガレイ

マコガレイの生息域及び再生産の場及びそれぞれの目標値は図 1.6.9 に示すとおりである。また、マコガレイの生息及び再生産に関する整理結果は図 1.6.10 に示すとおりである。

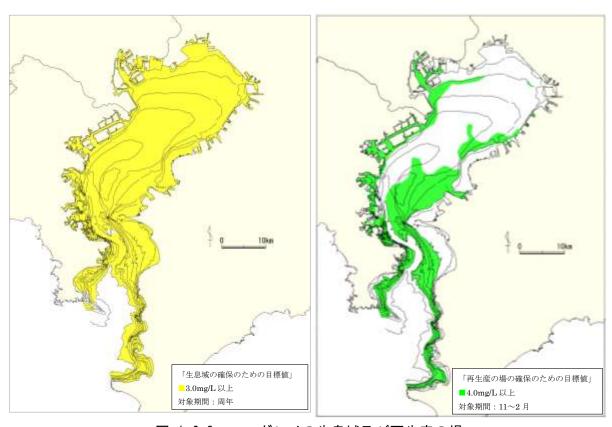
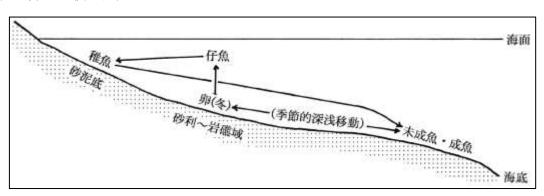



図 1.6.9 マコガレイの生息域及び再生産の場

区分	発育段階	生息水深帯	底質	水温
再生産の場	頃	10~50m 山田湾:10~40m 茨城沿岸:約50m付近一帯 大阪湾:10m以浅	礫、荒砂 山田湾:砂利場か岩場 大阪湾:転石か礫混じ	【孵化水温】 5~10℃、6~16℃(最適 9℃)、7~14℃ 【最適水温】6~15℃ 【孵化率低下】5℃以下、 18℃以上
	仔魚	表層下~10m位を浮遊 10m付近	浮遊生活	出現水温:14~18℃
	稚魚	30m以浅 陸奥湾:成長に伴い5m以浅に移動	陸奥湾:砂泥地あるい はアマモ場	耐性水温:20~25℃ (孵化 直後を除く30日未満の仔稚 魚)、25~30℃ (孵化直後 及び30日以降の仔稚魚)
生息域	未成魚・成魚	100m以浅 <未成魚> 陸奥湾:7月15m前後、8月55~80m、10月90 m 周防灘:夏季10m以浅、秋一旦接岸、冬10~ 15m <成魚> 陸奥湾:9~10月90~120m、12~2月40~70 m、2~5月20~60m、8月50~80m	<成魚> 山田湾:砂利場か岩 場、荒砂 仙台湾:シルト、微細	<未成魚> 陸奥湾:10.5~21℃ 東京湾:8~22℃ <成魚> 東京湾5~27℃ (適水温9~ 22℃) 東京湾:8.6~22.1℃

区分	発育段階						出現	時期						備考
区刀	光月权阳	1	2	3	4	5	6	7	8	9	10	11	12	/HI ^¬
再生産の場	別	•	?									J	9	
丹生生の場	仔魚	•	•									•	•	出現時期は卵と同じとした
生息域	稚魚		1								1			
生心吸	未成魚・成魚	╽											•	

(成長・分布の模式図)

資料:87)、93)、94)、97)

図 1.6.10 マコガレイの生息及び再生産に関する整理結果

(6) クルマエビ

クルマエビの生息域及び再生産の場及びそれぞれの目標値は図 1.6.11 に示すとおりである。また、クルマエビの生息及び再生産に関する整理結果は図 1.6.12 に示すとおりである。

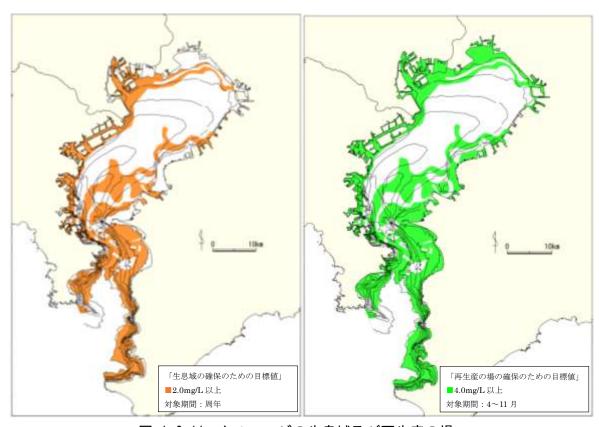
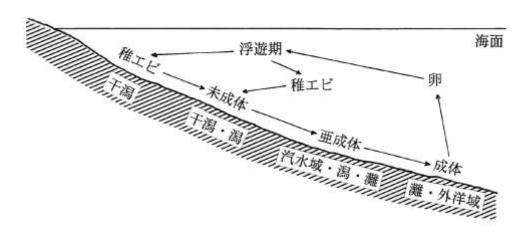



図 1.6.11 クルマエビの生息域及び再生産の場

区分	発育段階	生息水深帯	底質	水温
	即	10m以上	_	15~30℃ (適水温20~22℃)
	浮遊	_	_	_
再生産の場	稚エビ	0~25m(最適水深0~2m) 干潟~10m	干潟泥域 粒径0.1~1.7mm(最適 0.5~1.0mm) 泥分0~5%	10~38℃ (適水温15~ 35℃)
生息域	不	5~6m 5~100m	저 . 지하무	5℃以上(適水温12℃以 上)
土思域	成体	10~100 m 5~100 m	砂・砂泥	6~32℃ (適水温20℃以 上)

区分	発育段階						出現	時期						備考
区刀	元月权阳	1	2	3	4	5	6	7	8	9	10	11	12	VH 37
	卵				╏						J			
再生産の場	浮遊										1			出現時期は卵と同じとした
	稚エビ								╽		1			
生息域	未成体・成体												9	
主总域	未成件· 成件	•												

(成長・分布の模式図)

資料:87)、93)、98)

図 1.6.12 クルマエビの生息及び再生産に関する整理結果

(7) シャコ

シャコの生息域及び再生産の場及びそれぞれの目標値は図 1.6.13 に示すとおりである。また、シャコの生息及び再生産に関する整理結果は図 1.6.14 に示すとおりである。

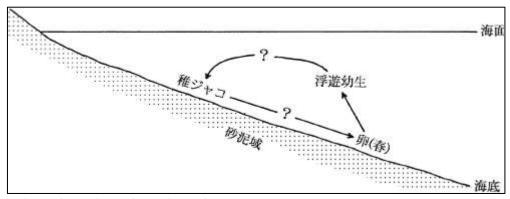


図 1.6.13 シャコの生息域及び再生産の場

区分	発育段階	生息水深帯	底質	水温
再生産の場	बें	$7\sim40\mathrm{m}$	内湾の泥底や沿岸の砂 泥域 (巣穴の中で孵化まで 雌親個体により卵塊保 育される)	産卵期:13℃前後
	浮遊	表層や中層にやや多い。日中は海底付近に分布(表層~30m程度の底層)	-	播磨灘:18~28℃ 石狩湾:19~23℃
	稚シャコ	水深1.5~30m程度	-	_
生息域	未成体・成体	7~40m 大阪湾:10~20m 石狩湾:15~30m 東京湾:15~20m	砂泥底 成体期:砂泥、軟泥	成体期:13℃前後

区分	発育段階	出現時期												備考
		1	2	3	4	5	6	7	8	9	10	11	12	En HIV
再生産の場	印				•				•					
	浮遊				•				•					出現時期は卵と同じとした
	稚シャコ								•		•			
生息域	未成体・成体	•											•	

(成長・分布の模式図)

資料:87)、99)、100)、101)、102)、104)、112)

図 1.6.14 シャコの生息及び再生産に関する整理結果

(8) コウイカ

コウイカの生息域及び再生産の場及びそれぞれの目標値は図 1.6.15 に示すとおりである。また、コウイカの生息及び再生産に関する整理結果は図 1.6.16 に示すとおりである。

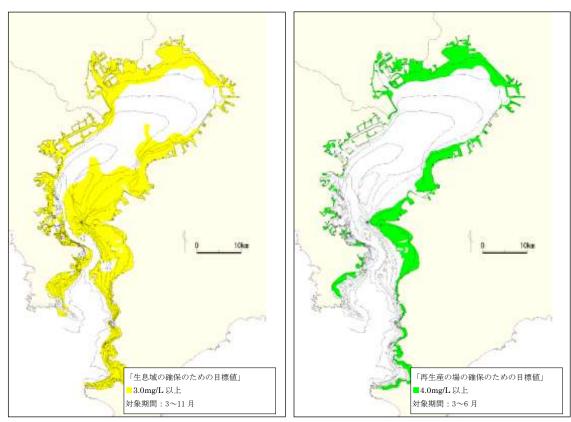


図 1.6.15 コウイカの生息域及び再生産の場

区分	発育段階		生息水深帯											底質	水温	L
再生産の場	 自	産卵												の枝、環形動 等に産み付け	東京湾 13.0~	-17.0°C
	稚イカ	20 m	0m以浅 砂泥域※									東京湾 22.0~	24.0°C			
生息域	未成体・成体		/L / / /// · = 1 · · · · ·									未成 泥域		**************************************	<未成体> 東京湾 19℃内 <成体> 三河湾 (漁獲水 24℃ 東京湾 (越冬)	:温) 10~
区分	発育段階						出現	時期						供	考	
区为	光月权陷	1	2	3	4	5	6	7	8	9	10	11	12	7/H:	15	
再生産の場	刚			•			-									
生息域	稚イカ							•				•		※稚イカの生息 成体・成体と同	息する底質は未 同じとした	
	未成体・成体	•											-			

資料:91)、97)、104)

図 1.6.16 コウイカの生息及び再生産に関する整理結果

(9) アサリ

アサリの生息域及び再生産の場及びそれぞれの目標値は図 1.6.17 に示すとおりである。また、アサリの生息及び再生産に関する整理結果は図 1.6.18 に示すとおりである。

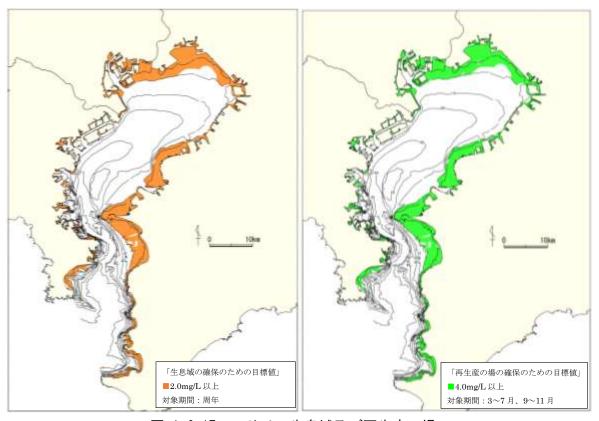
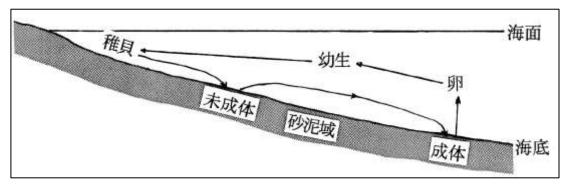



図 1.6.17 アサリの生息域及び再生産の場

区分	発育段階	生息水深帯	底質	水温
再生産の場	Яh	産卵場:干潟~10m	浮遊生活	産卵期水温: 12~24℃(東京~九州) 20~23℃(北海道) 15~17.5℃(東北)
	浮遊期	干潟~10m 水中照度の高い表層	浮遊生活	平均生存時間:
	稚貝	干潟~10m 干潟域 平均干出時間2時間以下程度の水深が最良	砂、砂泥	殼長0.20~23mm 2~8時間(37℃) 1~4時間(40℃)
生息域	未成貝・成貝	干潟~10m 殻長20mm程度で産卵	砂、砂泥: 粒径0.125~1.0m 泥分20~30% 濁り10ppm以下 浮遊土の堆積に弱い 砂が黒化した還元層: 殻が黒色、形がダルマ 型 細砂:形が長形	平均生存時間: 10.4時間 (37.5℃) 5.3時間 (40℃) 1.5時間 (42℃) 0.6時間 (44℃) 生息水温:0~28℃ 致死温度:-2℃以下

区分	発育段階						出現	時期						備考
四月	元月秋阳	1	2	3	4	5	6	7	8	9	10	11	12	mi J
再生産の場	別			•				•		1		4		
丹生生の場	浮遊期			•				•		٩		•		出現時期は卵と同じとした
4. 自 1.	稚貝	•											•	
生息域	未成貝・成貝	•											•	

(成長・分布の模式図)

資料:87)、93)、97)

図 1.6.18 アサリの生息及び再生産に関する整理結果

(10) ハマグリ

ハマグリの生息域及び再生産の場及びそれぞれの目標値は図 1.6.19 に示すとおりである。また、ハマグリの生息及び再生産に関する整理結果は図 1.6.20 に示すとおりである。

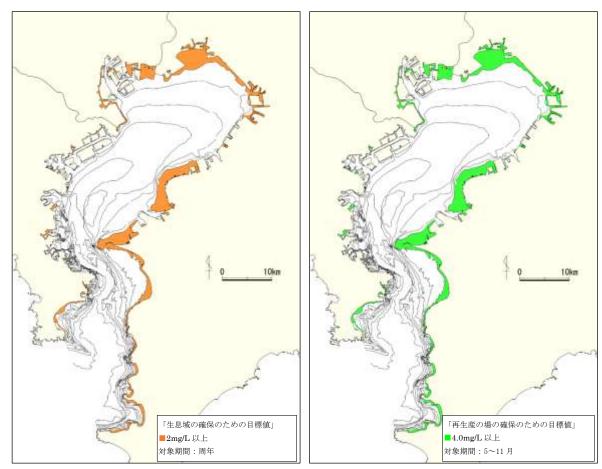


図 1.6.19 ハマグリの生息域及び再生産の場

区分	発育段階	生息水深帯	底質	水温
再生産の場	阳	産卵場:干潟~6m	浮遊生活	_
丹生性の場	浮遊期	干潟~6m	浮遊生活	_
	稚貝	干潟	-	-
生息域		干潟~6m 12m	-	-

区分 発育段階							出現	時期						備考
巨刀	元月权阳	1	2	3	4	5	6	7	8	9	10	11	12	VIEL 2→
更生辛の担 卵					4						•			
再生産の場	浮遊期					4						•		出現時期は卵と同じとした
生息域	稚貝	•											•	
生息吸	未成貝・成貝	•											•	

資料:93)、98)

図 1.6.20 ハマグリの生息及び再生産に関する整理結果

(11) アカガイ

アカガイの生息域及び再生産の場及びそれぞれの目標値は図 1.6.21 に示すとおりである。また、アカガイの生息及び再生産に関する整理結果は図 1.6.22 に示すとおりである。

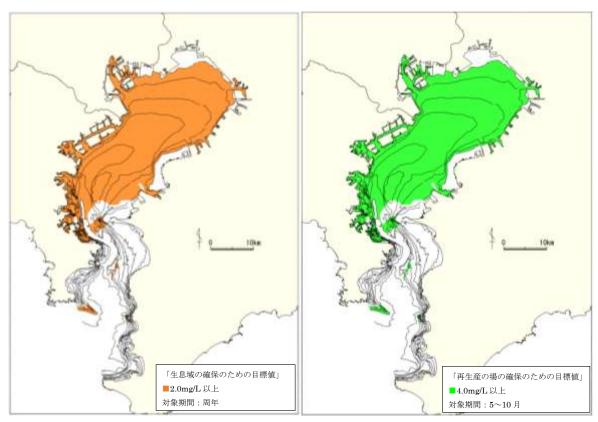
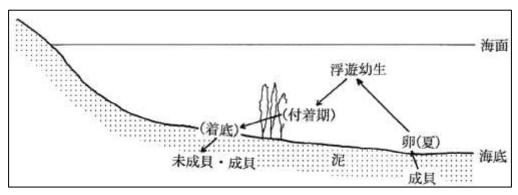



図 1.6.21 アカガイの生息域及び再生産の場

区分	発育段階	生息水深帯	底質	水温
	即	産卵場:3~50m	浮遊生活	15~18℃(仙台湾:8月中 旬~9月中旬の底層水温)
再生産の場	浮遊期	3~50m 中層~海底付近 (仙台湾)	浮遊生活	16~20℃ (仙台湾:8月下 旬~9月下旬の底層水温)
	稚貝	3~50m 90%以上が底層付近 (仙台湾)	-	<未成貝> 5~27℃
生息域	未成貝・成貝	3~50m 7m付近に濃密(東京湾) 《未成貝》 5~60mに生息、主要分布水深は10~30m 《成貝》 東京湾:5~10m	≪未成貝≫ 泥率90%以上の底質に 多く、なかでも生物豊 度の大きいシルト地区 域が適地	<未成貝> 5~27℃ 平均生存時間 (23℃に順応): 長期間 (25~28℃) 24時間 (30℃)

区分	発育段階						出現	時期						備考
四カ	元月权阳	1	2	3	4	5	6	7	8	9	10	11	12	畑々
再生産の場	卵					•					•			
丹生生の場	浮遊期					•					•			出現時期は卵と同じとした
生息域	推貝 4. 自 kt	•											•	
土心坝	未成貝・成貝	┢											•	

(成長・分布の模式図)

資料:87)、91)、104)、105)、106)、107)

図 1.6.22 アカガイの生息及び再生産に関する整理結果

(12) マナマコ

マナマコの生息域及び再生産の場及びそれぞれの目標値は図 1.6.23 に示すとおりである。また、マナマコの生息及び再生産に関する整理結果は図 1.6.24 に示すとおりである。

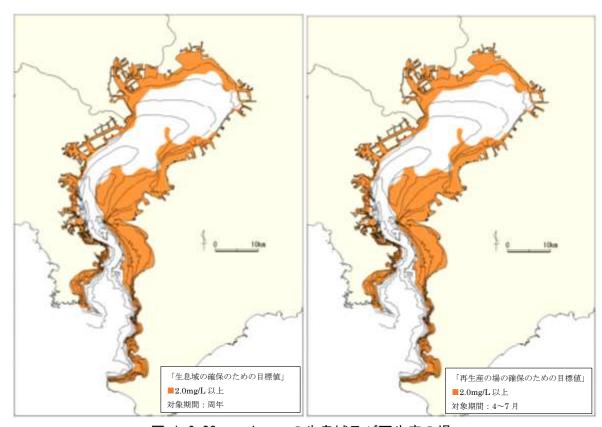
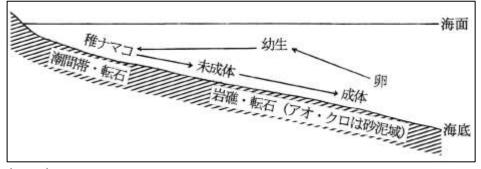



図 1.6.23 マナマコの生息域及び再生産の場

区分	発育段階	生息水深帯	底質	水温
	卵	産卵場:30m以浅	浮遊生活	産卵期水温:12~22℃ 16~22℃ (北海道) 12~16℃ (陸奥湾)
再生産の場	浮遊期	30m以浅 ペンタクチュラ期は水深1mを中心とした転 石域に付着	転石域	16~18℃ (島根) 16~18℃ (島根) 13~22℃ (愛知・三重) <浮遊期> 13~17日 (20~24℃)
	稚貝	5m以浅 潮間帯~5m	付着基盤に定着 付着基盤: 礫・貝殻・アマモ・ア オサ等	適水温20~25℃ 生息水温30℃以下
生息域	未成貝・成貝	30m以浅 3m以浅に多い 浅間帯から20~30m	岩礁地帯や砂泥底 アカナマコ: 岩礁・転石 アオナマコ・クロナマコ: 5m以浅の転石(小型個体) 砂泥域(大型個体)	適水温8~19℃ 成長が止まる(20℃以上) 夏眠(24℃以上)

区分	発育段階						出現	時期						備考
四月	元月秋阳	1	2	3	4	5	6	7	8	9	10	11	12	/m ^¬
再生産の場	邳				╽			•						
丹生生の場	浮遊期				•			•						出現時期は卵と同じとした
生息域	稚貝	•											•	
生息吸	未成貝・成貝	•											•	

(成長・分布の模式図)

資料:87)、93)、108)

図 1.6.24 マナマコの生息及び再生産に関する整理結果

1.7 保全対象範囲の重ね合わせ

保全対象種である 12 種の生息域及び再生産の場を重ね合わせた保全対象範囲は図 1.7.1 に示すとおりである。重ね合わせの結果、湾央部から湾口にかけて、水深 100m 以浅で生物 1 類型の水域に基準値の異なる範囲等(飛び地)が存在している。このような水域については、一体の水域として保全対象範囲の保全を図ることが適当と考えられるところを厳密に細分化して基準値を設定することは、実際の水環境管理に当たって混乱が生じる可能性があること、また、水域の保全の観点から、個別の水域としてそれぞれ保全を図るよりも、一体の水域として保全対象範囲の保全を図ることが適当と考えられる水環境管理に当たって混乱が生じる可能性があるため、まとめて高い側の目標値の類型(生物 1 類型)とすることが想定される。

※なお、「平成28年度漁場環境・生物多様性保全総合対策委託事業のうち赤潮・貧酸素水塊対策推進事業(東京湾における貧酸素水塊の影響解明)報告書(平成29年3月、国立研究開発法人水産研究・教育機構増養殖研究所、千葉県水産総合研究センター、神奈川県水産技術センター)」を確認した結果、マコガレイは千葉県稲毛沖から袖ヶ浦沖の陸域から2~3kmでは着底稚魚の生息が確認された。したがって、マコガレイの生息域として重要な水域と考えられることに留意する。

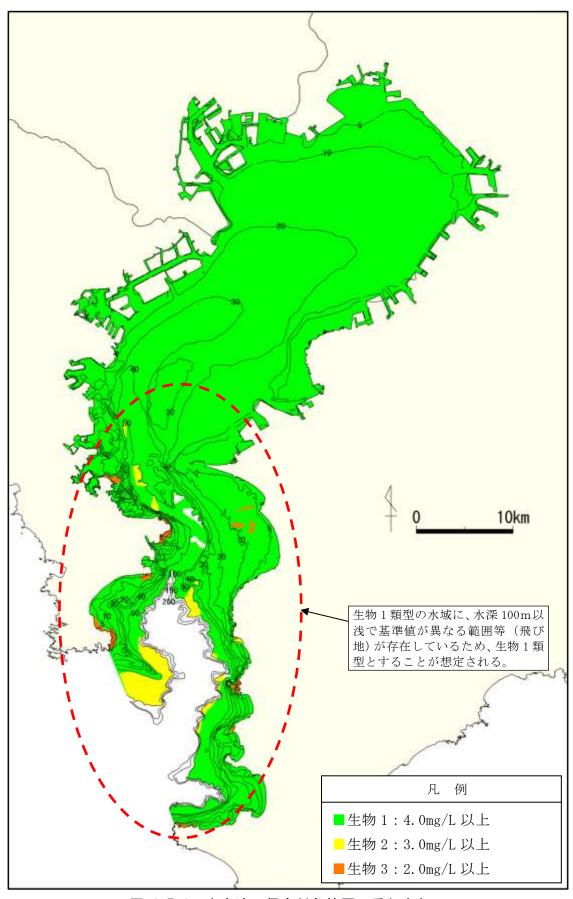


図 1.7.1 東京湾の保全対象範囲の重ね合わせ

1.8 水域の特徴に関する考慮事項

底層溶存酸素量の状況、底生生物の状況、地形により海水交換が悪い水域の状況等より、類型指定の検討は以下のとおり行った。

(1)過去の底層溶存酸素量の状況

東京湾では、湾奥部を中心に水質汚濁が現在のように問題となっていないと考えられる昭和 30 年前半であっても底層溶存酸素量が 2.0mg/L 未満、3.0mg/L 未満の水域が存在していたことから、湾奥部(水深 $10\sim20$ mの水域)は貧酸素化しやすい特性を持っていると考えられる(図 1.8.1 参照)。また、図 $1.8.2\sim$ 図 1.8.4 に示すように、現状においても貧酸素化しやすい海域となっている。

このため、底層溶存酸素量の類型指定の設定において、上記のような貧酸素化しやすい特性を持つ水域は、<u>底層溶存酸素量が 2.0mg/L 未満の水域は、生物 3 類型 (2mg/L以上) 相当、底層溶存酸素量が 3.0mg/L 未満の水域は生物 2 類型 (3mg/L以上) 相当と考えられる。</u>

(2) 近年の底層溶存酸素量の状況

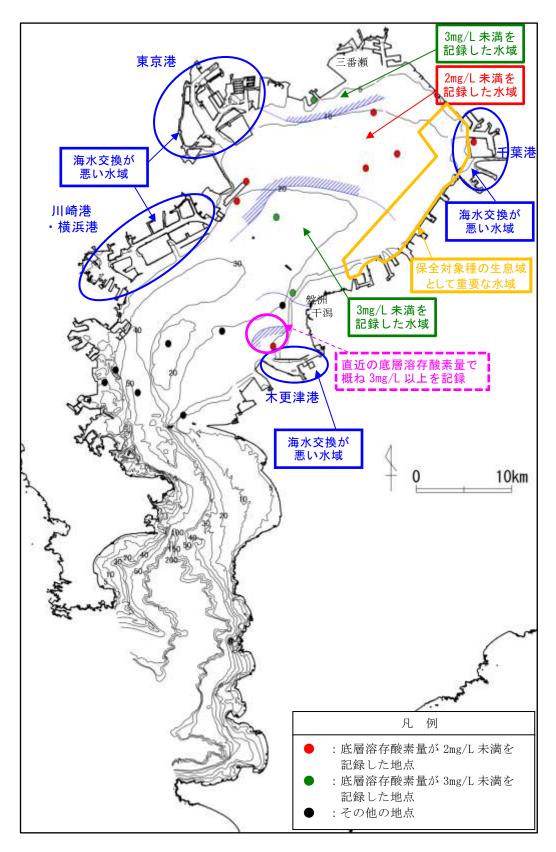
三番瀬、盤洲干潟等 (図 1.8.5の東京湾(イ)及び(ロ)参照)については、水生生物保全の環境基準が特 A 類型であり、夏季下層の溶存酸素量 3mg/L 以上が特別域の要件のひとつであるため、上記「(1)過去の底層溶存酸素量の状況」の結果に関わらず生物 2 類型 (3mg/L 以上)にすることが考えられる。

木更津港沖は、昭和 30 年代前半に底層溶存酸素量が 2mg/L 未満であった水域ではあるが、平成元年度(1989 年度)~30 年度(2018 年度)の公共用水域水質測定の結果より、木更津沖の東京湾 14、東京湾 15 の環境基準点では、底層溶存酸素量の年間最低値が 2mg/L 未満となる状況が 50% 未満となっており、湾奥部と比べると改善がみられる(図 1.8.4 参照)。また、東京湾 15 の直近 10 年間(平成 21 年度(2009 年度)~30 年度(2018 年度))の年間最低値は 1.6~4.5mg/L となっており、2mg/L 未満を記録したのは 2016 年度のみであり、3mg/L 以上記録したのは 5 か年度であり、3.5mg/L 以上であった。

このことから、木更津港沖は上記(1)過去の底層溶存酸素量の状況」の結果に 関わらず生物2類型(3mg/L以上)以上にすることが考えられる

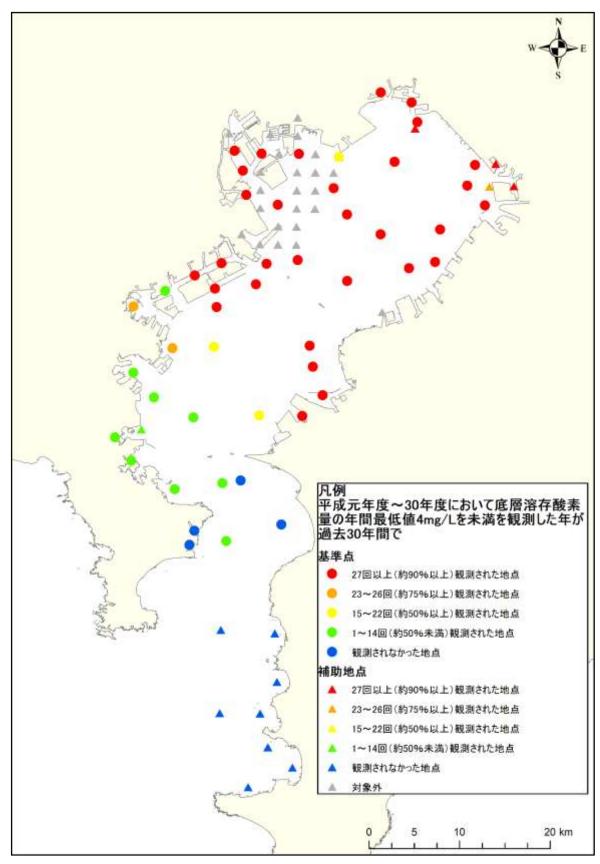
(3) 底生生物の状況(生物3類型のうち無生物域を解消する範囲について)

無生物域を解消する水域については生物3類型となることが考えられるが、東京 湾では長期に渡って特定の範囲に無生物域が存在したことがない。


(4) 埋立てや港湾施設の建設に伴う流動変化により海水交換が悪い水域

千葉港、東京港の港湾区域内のうち、<u>埋立てや港湾施設の建設に伴う流動変化により閉鎖的で海水交換が悪いと推測される水域は、生物3類型</u>相当と考えられる(図1.8.1 参照)。

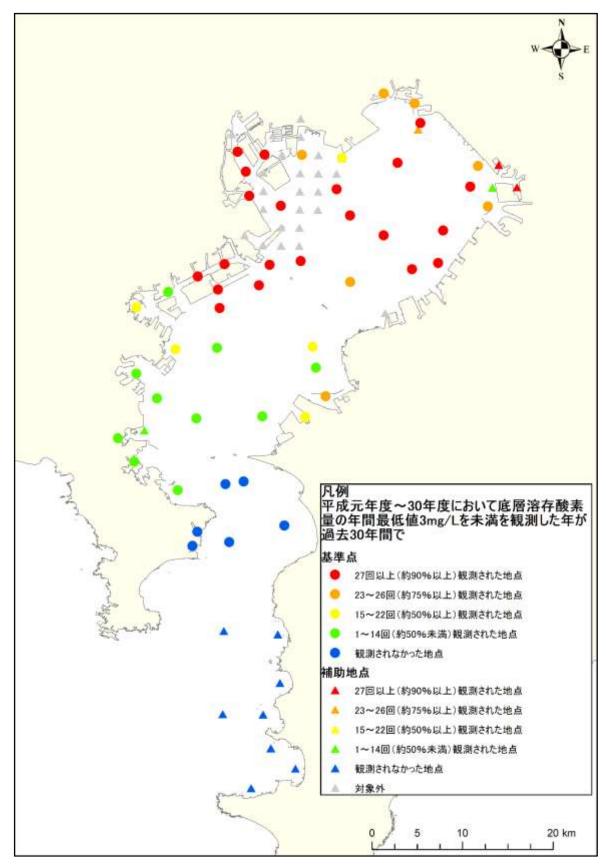
川崎港・横浜港については、マコガレイの生息場として保全することが望ましい という意見があり、根拠となる文献を整理した結果、川崎港・横浜港に位置する京 浜運河ではマコガレイの生息が確認されている。


以上のことから、川崎港・横浜港がマコガレイを含む水生生物の個体群の維持を 目指すという目標を設定するのであれば、生物 3 類型 (2mg/L 以上) より高い目標 である生物 2 類型 (3mg/L 以上) にすることが想定される。その際、川崎港及び横 浜港は一体とした水域として扱うことが合理的と考えられる。

湾口部の一部では水深が深く保全対象種の生息・再生産と関係が薄いため、水生生物が生息できる場の保全・再生を図る必要がないと判断した。

注)過去の底層溶存酸素量(凡例: ●、●、●)について、対象期間は昭和30年~34年(7月及び9月の観測結果)の5年間とし、各地点の濃度は千葉県水産総合研究センターのデータを変換した。 資料:千葉県水産総合研究センター提供資料より作成

図 1.8.1 東京湾における類型指定を検討する際に考慮すべき水域

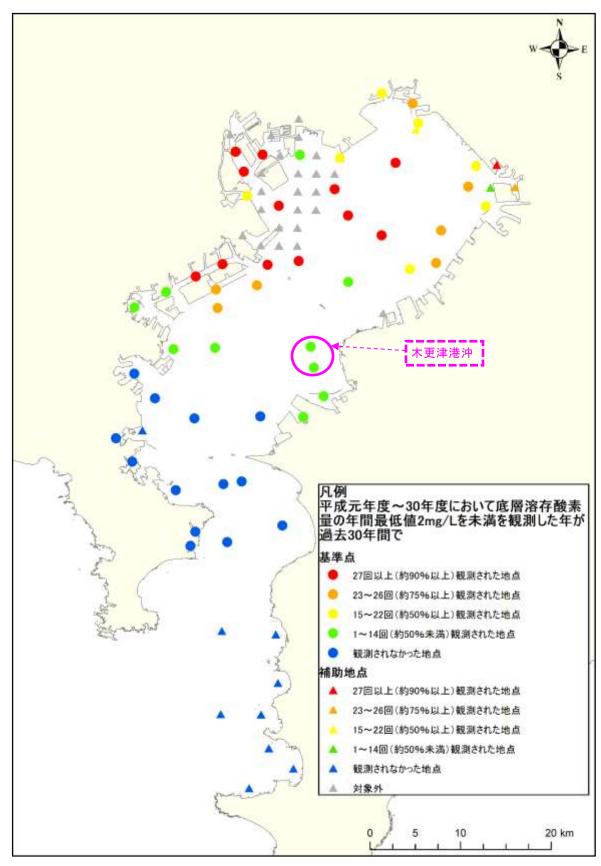


注) 1. 図中の●は公共用水域水質測定における生活環境項目の環境基準点を、▲は補助地点を表す。

2. 補助地点については年間2回の測定しか実施していないことから対象外としている。

資料:「公共用水域水質測定結果」(千葉県、東京都、神奈川県)より作成

図 1.8.2 東京湾における底層溶存酸素量の年間最低値が 4mg/L 未満となる地点の状況



注) 1. 図中の●は公共用水域水質測定における生活環境項目の環境基準点を、▲は補助地点を表す。

2. 補助地点については年間2回の測定しか実施していないことから対象外としている。

資料:「公共用水域水質測定結果」(千葉県、東京都、神奈川県)より作成

図 1.8.3 東京湾における底層溶存酸素量の年間最低値が 3mg/L 未満となる地点の状況

注) 1. 図中の●は公共用水域水質測定における生活環境項目の環境基準点を、▲は補助地点を表す。

2. 補助地点については年間2回の測定しか実施していないことから対象外としている。

資料:「公共用水域水質測定結果」(千葉県、東京都、神奈川県)より作成

図 1.8.4 東京湾における底層溶存酸素量の年間最低値が 2mg/L 未満となる地点の状況

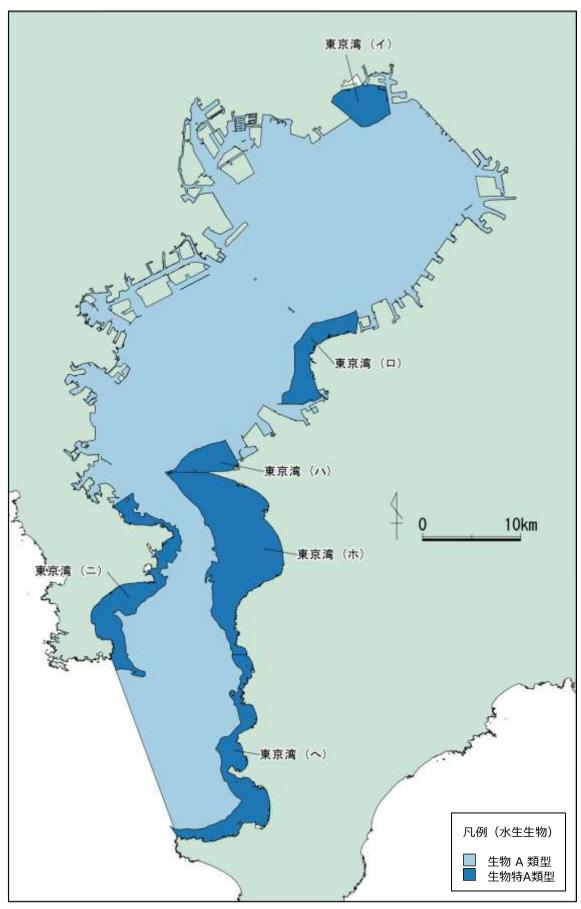


図 1.8.5 東京湾における水生生物環境基準の類型指定状況 (再掲)

2. 東京湾の類型指定の設定結果

2.1 東京湾の類型指定の設定結果

上記を踏まえ、東京湾の類型指定を検討した結果は図 2.1.1 に示すとおりである。また、水域区分についても検討を行い、その設定理由等は表 2.1.1 に示すとおりである。なお、図 1.7.1 の保全対象範囲の重ね合わせより、生物 1 類型の湾央部 (2) 及び湾口部(1)において、生物 1 類型に囲まれた生物 2 類型、生物 3 類型等の狭い水域については、水環境管理に当たって一体の水域として保全対象範囲の保全を図ることが適当と考えられるため、生物 1 類型としてまとめた。

マコガレイは千葉県稲毛沖から袖ヶ浦沖の陸域から 2~3km では着底稚魚の生息が確認され、マコガレイの生息域として重要な水域である。

曽根ら¹⁾によると、夏季の三河湾における貧酸素水塊のメガベントスへの影響を定量化するために、4分類群(カレイ類・ガザミ類・エビ類・シャコ)の出現分布と底層環境要因(溶存酸素濃度(DO)・水温・水深・粒度組成)との関係性を一般化線形モデル(GLM)により解析した。その結果、夏季の三河湾における主要なメガベントス群集の生息分布域は、貧酸素水塊によるへい死に逃避を含めた影響によって制限されていることが示唆され、また、その群集を保全するためには最低でも2.5mg/Lの底層溶存酸素量を確保する必要性が考えられた。

これらのことから、生物 2 類型 (3mg/L 以上)の湾奥部 (1) と湾央部 (1) を繋げることにより、生物 3 類型 (2mg/L 以上)による生息分布域の制限を受けることはなく、水生生物の生息域及び再生産の場として連続性が保たれることになると考えられる。

保全対象種の生息域として重要な水域を確認した中で、千葉県稲毛沖から袖ケ浦沖ではマコガレイの着底稚魚の生息が確認されており、マコガレイの生息域として重要と考えられる。過去の底層溶存酸素量のデータが不足しており、現状の底層溶存酸素量が低い水域であるが、シミュレーション結果では既存の浅場の規模を拡大する等の対策により底層溶存酸素量の改善効果が得られやすいという結果が得られている。以上を踏まえて、千葉県稲毛沖から袖ケ浦沖は生物2類型(3mg/L以上)として設定する。

1 - 157

¹⁾ 曽根亮太,蒲原聡,山田智,鈴木輝明;夏季の三河湾における底層溶存酸素濃度に対するメガロベントスの 出現確率の推定,水産海洋研究,78(4),268-276,2014

表 2.1.1(1) 各水域区分の設定理由等

1X	2.1.1(1) 各水域区分の設定理田等
水域区分 (類型等)	設定理由等
東京港 (生物3類型:2mg/L以上) (水域区分の主な設定 理由) ・埋立てや港湾施設の建 設に伴う流動変化によ り閉鎖的で海水交換が 悪いと推測される水域	 【保全対象種の観点】 ・保全対象種の重ね合わせの結果、全域が生物1類型(4.0mg/L以上)に相当する水域である。 【水域特性の観点】 ・埋立てや港湾施設の建設に伴う流動変化により閉鎖的で海水交換が悪いと推測される水域であり、地形的に他の水域と区分することが適当と考えられる水域である。 ●保全対象種の重ね合わせの結果において生物1類型(4.0mg/L以上)に相当するものの、海水交換が悪いと推測される地形から、底層溶存酸素量の向上が非常に困難と考えられる水域であるため、水域特性を考慮して生物3類型とする。 (環境基準の類型指定の状況) COD等: C類型全窒素及び全燐: IV類型
湾奥部(2) (生物3類型:2mg/L以上) (水域区分の主な設定 理由) ・過去の底層溶存酸素量 より、2mg/L未満の地 点を包括する水域	水生生物保全環境基準 (全亜鉛等): 生物 A 類型 【保全対象種の観点】 ・保全対象種の重ね合わせの結果、全域が生物 1 類型 (4.0mg/L以上)に相当する水域である。 【水域特性の観点】 ・対象水域では、昭和 30 年代前半に底層溶存酸素量 2mg/L 未満となる水域である。(現状においても底層溶存酸素量が 2mg/L 未満となる水域である。) ●保全対象種の重ね合わせの結果において、生物 1 類型 (4.0mg/L以上)に相当するものの、昭和 30 年代前半の底層溶存酸素量の状況から、底層溶存酸素量の向上が非常に困難と考えられる水域であるため、水域特性を考慮して生物 3 類型とする。(環境基準の類型指定の状況) COD 等: C 類型 全窒素及び全燐: Ⅲ類型、IV類型 水生生物保全環境基準(全亜鉛等): 生物 A 類型

表 2.1.1(2) 各水域区分の設定理由等

	表 2.1.1(2) 各水域区分の設定理由等
水域区分 (類型等)	設定理由
千葉港 (生物3類型:2mg/L以上) (水域区分の主な設定 理由) ・埋立てや港湾施設の建 設に伴う流動変化に より閉鎖的で海水交 換が悪いと推測され る水域	【保全対象種の観点】 ・保全対象範囲の重ね合わせの結果、全域が生物1類型(4.0mg/L以上)に相当する水域である。 【水域特性の観点】 ・埋立てや港湾施設の建設に伴う流動変化により閉鎖的で海水交換が悪いと推測される水域であり、地形的に他の水域と区分することが適当と考えられる水域である。 ●保全対象種の重ね合わせの結果において、生物1類型(4.0mg/L以上)に相当するものの、海水交換が悪いと推測される地形から、底層溶存酸素量の向上が非常に困難と考えられる水域であるため、水域特性を考慮して生物3類型とする。 (環境基準の類型指定の状況) COD等: C類型
	全窒素及び全燐: <u>IV類型</u> 水生生物保全環境基準(全亜鉛等): <u>生物 A 類型</u>
川崎港・横浜港 (生物2類型:3mg/L以上)	【保全対象種の観点】 ・保全対象範囲の重ね合わせの結果、全域が生物1類型(4.0mg/L以上)に相当する水域である。 【水域特性の観点】 ・埋立てや港湾施設の建設に伴う流動変化により閉鎖的で海水交換が悪いと推測される水域であり、地形的に他の水域と区分するこ
(水域区分の主な設定 理由) ・埋立てや港湾施設の建 設に伴う流動変化に より閉鎖的で海水交 換が悪いと推測され る水域 ・しかし、マコガレイを 含む水生生物の個体 群の維持を目指す	とが適当と考えられる水域である。 ・上記のような水域であるものの、マコガレイの生息が確認されており、マコガレイを含む水生生物の個体群の維持を目指すという目標を設定する。 ●保全対象種の重ね合わせの結果において、生物 1 類型 (4.0mg/L以上)に相当する。一方、海水交換が悪いと推測される地形から、底層溶存酸素量の向上が非常に困難と考えられる水域であるが、マコガレイを含む水生生物の個体群の意所を目指すという目標を設定することから、これらのことを考慮して生物 2 類型とする。(環境基準の類型指定の状況) COD 等: C 類型
	全窒素及び全燐: <u>IV類型</u> 水生生物保全環境基準(全亜鉛等): <u>生物 A 類型</u>

表 2.1.1(3) 各水域区分の設定理由等

	長 2.1.1(3) 各水域区分の設定理由等
水域区分 (類型等)	設定理由
木更津港 (生物3類型:2mg/L以上) (水域区分の主な設定 理由) ・埋立てや港湾施設の建 設に伴う流動変化に より閉鎖的で海水交 換が悪いと推測され る水域	 【保全対象種の観点】 ・保全対象範囲の重ね合わせの結果、全域が生物1類型(4.0mg/L以上)に相当する水域である。 【水域特性の観点】 ・埋立てや港湾施設の建設に伴う流動変化により閉鎖的で海水交換が悪いと推測される水域であり、地形的に他の水域と区分することが適当と考えられる水域である。 ●保全対象種の重ね合わせの結果において、生物1類型(4.0mg/L以上)に相当するものの、海水交換が悪いと推測される地形から、底層溶存酸素量の向上が非常に困難と考えられる水域であるため、水域特性を考慮して生物3類型とする。 (環境基準の類型指定の状況) COD等: C類型全窒素及び全燐: IV類型水生生物保全環境基準(全亜鉛等):生物A類型
湾奥部(1) (生物2類型:3mg/L以上) (水域区分の主な設定 理由) ・過去の底層溶存酸素量 より、3mg/L未満の地 点を含む水域である こと	【保全対象種の観点】 ・保全対象範囲の重ね合わせの結果、全域が生物1類型(4.0mg/L)に相当する水域である。 【水域特性の観点】 ・対象水域では、昭和30年代前半に底層溶存酸素量3mg/L未満となる水域であること ・一部(三番瀬、盤洲干潟等)では夏季下層の溶存酸素量(最小値)が3mg/L以上(水生生物保全環境基準の特A類型)であること ・一部(千葉県稲毛沖から袖ケ浦沖)では、保全対象種の生息域として重要な水域が確認されており、過去の底層溶存酸素量のデータが不足しているものの、既存の浅場の規模を拡大していくことで底層溶存酸素量の改善効果が得られやすいと考えられること ・また、生物2類型(3.0mg/L以上)の湾奥部(1)と湾奥部(1)を繋げることにより、生物3類型(2mg/L以上)による生息分布域の制限を受けることはなく、水生生物の生息域及び再生産の場として連続性が保たれること ●保全対象種の重ね合わせの結果において、生物1類型(4.0mg/L以上)に相当するものの、昭和30年代前半の底層溶存酸素量の状況、夏季下層の溶存酸素量(最小値)が3mg/L以上であること、保全対象種の生息が確認され、かつ底層溶存酸素量の改善効果が得られやすいと考えられることを考慮して生物2類型とする。(環境基準の類型指定の状況) COD等: <u>B類型、C類型</u> 全窒素及び全燐: <u>IV類型</u> 水生生物保全環境基準(全亜鉛等): 生物A類型、生物特A類型

表 2.1.1(4) 各水域区分の設定理由等

水域区分 (類型等)	設定理由
湾央部(1) (生物2類型:3mg/L以上) (水域区分の主な設定 理由) ・過去の底層溶存酸素量 より、3mg/L未満の地 点を含む水域である。	【保全対象種の観点】 ・保全対象範囲の重ね合わせの結果、全域が生物1類型(4.0mg/L以上)に相当する水域である。 【水域特性の観点】 ・対象水域は木更津周辺水域を除き、昭和30年代前半に底層溶存酸素量3mg/L未満となる水域である。なお、保全対象種の生息域として重要な水域と確認された千葉県稲毛沖から袖ケ浦沖については、過去の底層溶存酸素量のデータが不足している水域については、浅場の規模の拡大による底層溶存酸素量の改善効果が得られやすいことから3mg/L以上としうる可能性がある。 ・木更津港沖の一部が、直近10年間(2007~2016年度)の年間最低値で、2mg/L未満を記録したのは2016年度のみであり、4か年度において3mg/L以上を記録した。 ●保全対象種の重ね合わせの結果において、生物1類型(4.0mg/L以上)に相当するものの、昭和30年代前半の底層溶存酸素量の状況、直近の底層溶存酸素量の状況等を考慮して生物2類型とする。(環境基準の類型指定の状況) COD等:A類型、B類型、C類型全窒素及び全燐:Ⅲ類型、IV類型水生生物保全環境基準(全亜鉛等):生物A類型、生物特A類型
湾央部(2) (生物1類型:4mg/L以上) (水域区分の主な設定 理由) ・保全対象範囲の重ね合 わせを行った結果か ら、一体の水域として 保全する水域	 【保全対象種の観点】 ・対象水域は、保全対象範囲の重ね合わせの結果、おおむね生物 1 類型であり、その中に生物 2 類型、生物 3 類型等が点在している。 ●保全対象範囲の重ね合わせ結果においておおむね生物 1 類型であること、その中に生物 2 類型、生物 3 類型等が点在しているが一体の水域として保全を図ることが適当であることから、まとめて高い側の目標値の類型 (生物 1 類型) とする。 (環境基準の類型指定の状況) COD 等: A 類型、B 類型、C 類型全室素及び全燐: Ⅲ類型、IV類型水生生物保全環境基準(全亜鉛等): 生物 A 類型、生物特 A 類型

表 2.1.1(5) 各水域区分の設定理由等

水域区分 (類型等)	設定理由
湾口部 (生物1類型:4mg/L以上) (水域区分の主な設定理由) ・保全対象範囲の重ね合わせを行った結果から、一体の水域として保全する水域	 【保全対象種の観点】 ・対象水域は、保全対象範囲の重ね合わせの結果、<u>おおむね生物 1</u> 類型であり、その中に生物 2 類型、生物 3 類型等が点在している。 ●保全対象範囲の重ね合わせ結果においておおむね生物 1 類型であること、その中に生物 2 類型、生物 3 類型等が点在しているが一体の水域として保全を図ることが適当であることから、まとめて高い側の目標値の類型(生物 1 類型)とする。 (環境基準の類型指定の状況)COD等: A 類型 全窒素及び全燐: II 類型 水生生物保全環境基準(全亜鉛等): 生物 A 類型、生物特 A 類型
湾口部の水深 100m以深の 水域	・保全対象範囲の重ね合わせの結果、水深 100m 以上の水域は、保全 対象種の主な生息・再生産の場として利用されないと考えられる 水域であるため、類型設定はしない。

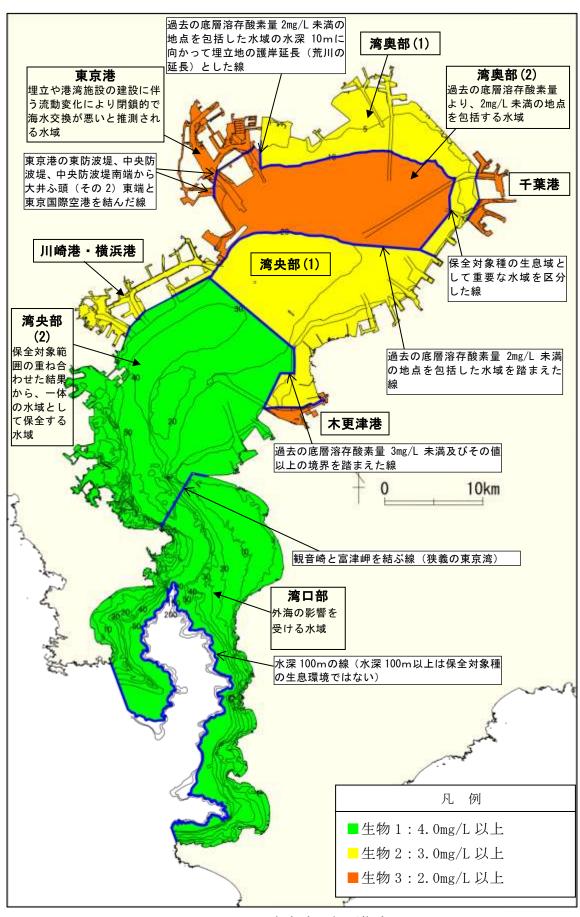


図 2.1.1 東京湾の類型指定

- 「1.2 水生生物の生息状況等の把握」
- 「1.5 保全対象種における底層溶存酸素量の目標値の設定」
- 「1.6 保全対象種の生息域及び再生産の場の設定」

引用文献一覧

1) 清水誠. (2000). 東京湾の漁業と資源 その今と昔,漁業情報サービスセンター.

- 2) 日本水産資源保護協会. (2005). 豊かな東京湾の再生に向けて 提言.
- 3) 東京湾研究会,中央ブロック水産業関係研究開発推進会議.(2013). 江戸前の復活!東京湾の再生をめざして.
- 4) 東京湾再生推進会議. (2013). 東京湾再生のための行動計画(第二期).
- 5) 東京湾再生官民フォーラム. (2014). 東京湾再生のための行動計画(第二期) の新たな指標に関する提案解説書.
- 6) 東京都内湾漁業環境整備協会. (2015). 平成 26 年度葛西沖魚介類生息環境調査報告書.
- 7) 東京都內湾漁業環境整備協会. (2015). 平成 26 年度羽田沖浅場維持管理委託報告書.
- 8) 農林水産省. (1956-2006). 東京都農林水産統計. 関東農政局千葉統計情報部編.
- 9) 農林水産省. (1952-2006). 千葉県農林水産統計. 関東農政局統計情報部編.
- 10) 農林水産省. (1951-2006). 神奈川県農林水産統計. 関東農政局神奈川統計事務所編.
- 11) 千葉県. (2012). 千葉県の保護上重要な野生生物-千葉県レッドデータブック-動物編 汽水・淡水産魚類. http://www.bdcchiba.jp/endangered/rdb-a/rdb-2011re/rdb-201106fish.pdf.
- 12) 荒山和則. (2011). 東京湾から消えたシラウオ, 東京湾 人と自然のかかわりの再生, 東京湾海 洋環境研究会.
- 13) 神奈川県. (2006). 神奈川県. 神奈川県レッドデータブック 2006 web 版. http://conservation.jp/tanzawa/rdb/.
- 14) 環境省. (2015). 環境省レッドリスト 2015 汽水・淡水魚類. http://www.env.go.jp/press/files/jp/28060.pdf.
- 15) 環境省. (2015). 環境省レッドリスト 2015 貝類.http://www.env.go.jp/press/files/jp/2806 4.pdf.
- 16) 環境省. (2015). 環境省レッドリスト 2015 その他無脊椎動物.http://www.env.go.jp/press/files/jp/28074.pdf.
- 17) 千葉県. (2012). 千葉県の保護上重要な野生生物-千葉県レッドデータブック-動物編 貝類. http://www.bdcchiba.jp/endangered/rdb-a/rdb-2011re/rdb-201113kai.pdf
- 18) 千葉県. (2012). 千葉県の保護上重要な野生生物-千葉県レッドデータブック-動物編 十脚甲殻類 .http://www.bdcchiba.jp/endangered/rdb-a/rdb-2011re/rdb-201110koukaku3.pdf.
- 19) 東京都. (2011). 東京都の保護上重要な野生生物種(本土部) 東京都レッドリスト 汽水・淡水 産魚類.
- 20) 村上興正, 鷲谷いづみ. 日本生態学会編 (2013). 外来種ハンドブック. 地人書館.
- 21) 阿井敏夫, 野中忠, 佐々木正. (1964). サザエの産卵と発生-I. 日本水産学会誌, 30(10), 828-830.
- 22) 池末彌 (1955). 有明海産シバエビの生活史について. 日本水産学会誌, 20(11), 969-978.
- 23) 石井光廣, 大畑聡, 児玉圭太. (2015). 東京湾におけるアカガイ科貝類およびタイラギの稚貝の出現状況 (平成 25 年度東京湾研究会ミニシンポジウム 東京湾再生ツールとしての二枚貝の再点検). 東京湾の漁業と環境= Fishery and oceanography in Tokyo Bay, (6), 13-15.
- 24) 大富潤,清水誠. (1988). 東京湾のシャコの産卵期について. 日本水産学会誌, 54(11), 1929-1933.
- 25) 海洋生物環境研究所 (1991). 沿岸至近域における海生生物の生態知見 貝類・甲殻類・ウニ類 編
- 26) 海洋生物環境研究所 (1991). 沿岸至近域における海生生物の生態知見 魚類・イカタコ類編.
- 27) 環境省. (2011). 第5次報告(案) 水生生物保全に係わる環境基準の類型指定について.
- 28) 岸岡正伸, 畑間俊弘, 松野進, 和西昭仁, 桃山和夫, 天社こずえ, ... & 繁永裕司. (2006). 山口県周防灘におけるナミガイ Panopea japonica A. Adams の成熟時期と切開法で採卵した幼

生の飼育.Bull. YamaguchiPref. Fish. Res. Ctr, 4, 128.

- 29) 清水詢道 (2002). 東京湾のシャコ資源について (1). 神奈川県水産総合研究所研究報告, (7), 1-10.
- 30) 土井啓行, 園山貴之, 今井千文, 酒井治己, & 石橋敏章. (2014). トラフグ属 5 種の初期発育. 水産大学校研究報告, 62(3), 109-116.
- 31) 日本水産資源保護協会. (1985). 水産生物の生活史と生態.
- 32) 日本水産資源保護協会. (1986). 水産生物の生活史と生態(続).
- 33) 藤田矢郎, 上野雅正. (1956). コチの卵発生と仔魚前期. 九州大学農学部学芸雑誌,15.4: 513-518
- 34) 藤田矢郎. (1988). 日本近海のフグ類.水産研究叢書, 39, 50-90.
- 35) 阿部宗明. (1963). 原色魚類検索図鑑. 北隆館.
- 36) 磯部雅彦. (2010). 東京湾の環境をよくするために行動する会. 江戸前の魚 喰いねぇ!―豊饒の海東京湾、東京新聞出版部.
- 37) 岩井保. (1988). 検索入門釣りの魚. 保育社.
- 38) 上田幸男. (1987). 紀伊水道産サルエビの産卵と成長.
- 39) エイムック. (2000). Fishing how to series (262). 江戸前釣りがわかる本―東京湾の船釣り 完全教本.
- 40) 岡村収, 尼岡邦夫. (2007). 山渓カラー名鑑 日本の海水魚. 初版, 山と渓谷社.
- 41) 奥谷喬司. (1980). 新・世界有用イカ類図鑑. 東海大学出版部.
- 42) 奥谷喬司. (2000). 日本近海産貝類図鑑. 東海大学出版, 東京.
- 43) 川那部浩哉, 水野信彦. (2001). 山渓カラー名鑑日本の淡水魚, 第3版, 山と渓谷社.
- 44) 河原辰夫,加藤信治郎. (1971). 津市沿岸におけるマテガイの生殖周期. 水産増殖, 19.1: 31-42.
- 45) 木地佐一. (2002). 幸田露伴江戸前釣りの世界. つり人社.
- 46) 倉持卓司. (2009). 相模湾におけるアラムシロガイ の生活史. 神奈川自然誌資料, 30: 33-35.
- 47) 河野博, 加納光樹, 横尾俊博. (2011). 東京湾の魚類. 平凡社.
- 48) 河野博. 東京海洋大学魚類学研究室編. (2006). 東京湾 魚の自然史, 平凡社.
- 49) 三遊亭金馬. (2013). 江戸前の釣り, 中央公論新社.
- 50) 島村信也, 安岡真司, 水野拓治, 佐々木恵一, & 根本芳春. (2007). ホシガレイに関する研究-Ⅱ 漁業実態と福島県沿岸における生活史.
- 51) 鈴木清, 木村清志. (1979). 伊勢湾における産卵期のコモチジャコ. 魚類学雑誌, 26(2), 203-208.
- 52) 千葉健治. (1977). ホトトギスガイの生態について. 海洋科学, 9, 13-17.
- 53) 千葉光雄, 村野正昭. (1997). 日本海洋産プランクトン検索図説. 東海大学出版会.
- 54) 長崎福三. (2000). 江戸前の味. 成山堂書店.
- 55) 中野善. (2013). 有明海とその周辺海域の砂質干潟における二枚貝・巻貝の個体群動態とその 保全生態. PhD Thesis. 長崎大学.
- 56) 西村三郎. (1992). 日本海岸動物図鑑 I. 保育社.
- 57) 西村三郎. (1995). 日本海岸動物図鑑 Ⅱ. 保育社.
- 58) 日本水産資源保護協会. (1980). 水生生物生態資料.
- 59) 日本水産資源保護協会. (1983). 水生生物生態資料(続).
- 60) 波部忠重, 奥谷喬司. (1981). 学研生物図鑑 貝 I.
- 61) 波部忠重, 奥谷喬司. (1983). 学研生物図鑑 貝 II.
- 62) 藤田矢郎. (1955). カワハギの卵発生と仔魚前期.九州大学農学部学芸雑誌, 15.2: 229-234.
- 63) 藤波裕樹, 田中彰. (2013). 伊豆半島下田周辺海域におけるドチザメの年齢・成長と繁殖について. 日本水産学会誌, 79.6: 968-976.
- 64) 細谷和海. (2015). 山渓ハンディ図鑑 15・日本の淡水魚. 山と渓谷社.
- 65) 益田一 編. (1988). 日本産魚類大図鑑. 東海大学出版会.
- 66) 三宅貞祥. (1982). 原色日本大型甲殼類図鑑 I. 保育社.
- 67) 三宅貞祥. (1983). 原色日本大型甲殼類図鑑 Ⅱ. 保育社.
- 68) 村野正昭. (1963). イサザアミ, Neomysis intermedia CZERNIAWSKY の漁業生物学的研究.水産増殖, 11.3: 159-165.
- 69) 山口敦子. (2005). 板さい類の資源生物学的研究. 日本水産学会誌, 71.4: 523-526.

- 70) 渡辺栄一. (1984). 江戸前の魚. 草思社.
- 71) 環境省. (2010). 閉鎖性海域中長期ビジョン参考資料「底層 D0 目標値について」.
- 72) 環境省. (2013). 平成 25 年度下層 DO 基準化調査業務報告書.
- 73) Yamochi, S., Ariyama, H., & Sano, M. (1995). Occurrence and hypoxic tolerance of the juvenile *Metapenaeus ensis* at the mouth of the Yodo River, Osaka. Fisheries science, 61(3), 391-395.
- 74) 環境省. (2014) 魚介類に対する低溶存酸素濃度の急性影響試験結果報告書.
- 75) 矢持進,有山啓之, & 佐野雅基. (1998). 大阪湾湾奥沿岸域の環境修復:境泉北港干潟造成 予定地周辺の水質・低質ならびに低生動物相とマコガレイの貧酸素に対する応答. 海の研究, 7(5), 293-303.
- 76) 山田智, 蒲原聡, & 曽根亮太 (2014). ガザミ (Portunus trituberculatus), クルマエビ (Marsupenaeus japonicus) およびヨシエビ (Metapenaeus ensis) の浮遊幼生に及ぼす貧酸素水の影響.水産海洋研究= Bulletin of the Japanese Society of Fisheries Oceanography, 78 (1), 45-53.
- 77) 中央環境審議会. (2015). 水質汚濁に係る生活環境の保全に関する環境基準の見直しについて (答申) 参考資料.
- 78) Kodama, K., Oyama, M., Kume, G., Serizawa, S., Shiraishi, H., Shibata, Y., & Horiguchi, T. (2010). Impaired megabenthic community structure caused by summer hypoxia in a eutrophic coastal bay, Ecotoxicology, 19(3), 479-492.
- 79) Kodama, K., Horiguchi, T., Kume, G., Nagayama, S., Shimizu, T., Shiraishi, H., ... & Shimizu, M. (2006). Effects of hypoxia on early life history of the stomatopod *Oratosquilla oratoria* in a coastal sea. Marine Ecology Progress Series, 324, 197-206.
- 80) 中村幹雄・品川明・戸田顕史・中尾繁. (1997). 宍道湖および中海産二枚貝 4 種の環境耐性, 水産増殖, 45(2), 179-185.
- 81) 柿野純. (1982). 青潮によるアサリへい死原因について 貧酸素水及び硫化物の影響, 千葉 県水産試験場研究報告, 40, 1-6.
- 82) 萩田健二. (1985). 貧酸素水と硫化水素水のアサリのへい死に与える影響. 水産増殖, 33(2), 67-71.
- 83) 蒲原聡, 山田智, 曽根亮太, 堀口敏宏, 鈴木輝明. (2013). 貧酸素水がアサリ浮遊幼生の遊泳 停止と沈降後のへい死に及ぼす影響. 水産海洋研究= Bulletin of the Japanese Society of Fisheries Oceanography, 77(4), 282-289.
- 84) 千葉県環境生活部自然保護課(2011). 平成22年度三番瀬自然環境合同調査報告書.
- 85) 高見東洋・吉岡貞範・岩本哲二・中村達夫・井上泰 (1980). アカガイの増殖に関する研究, 昭和54年度指定調査研究総合助成事業報告書,山口県内海水産試験場.
- 86) 環境省. (2015). 平成26年度下層DO及び透明度新規環境基準化検討業務.
- 87) 社団法人全国豊かな海づくり推進協会. (2006). 主要対象生物の発育段階の生態的知見の収集・整理(平成 18 年度水産基盤整備調査委託事業報告書).
- 88) Kurogi, H., Mochioka, N., Okazaki, M., Takahashi, M., Miller, M. J., Tsukamoto, K., Ambe D., Katayama, S. & Chow, S. (2012). Discovery of a spawning area of the common Japanese conger Conger myriaster along the Kyushu-Palau Ridge in the western North Pacific. Fisheries science, 78(3), 525-532.
- 89) 五利江重昭, 反田實. (2004). 播磨灘北東部におけるマアナゴ稚魚の成長と食性. 水産増殖, 52(2), 139-144.
- 90) Gorie, S., & Nagasawa, K. (2010). 瀬戸内海東部海域におけるマアナゴ稚魚の生息域と食性. 水産増殖, 58(2), 167-179.
- 91) 日本水産資源保護協会(1980) 水生生物生態資料
- 92) 日本水産資源保護協会(1983) 水生生物生態資料(続)
- 93) 環境省. (2011) 水生生物保全に係わる環境基準の類型指定について 第5次報告(案)
- 94) 河野博, 加納光樹, 横尾俊博. (2011) 東京湾の魚類, 平凡社
- 95) 河野博, 東京海洋大学魚類学研究室編(2006) 東京湾 魚の自然史, 平凡社
- 96) 道津喜衛,水戸敏(1955)マハゼの産卵習性および仔稚魚について,魚類学雑誌,4,4-6,

153-161

- 97) 海洋生物環境研究所(1991) 沿岸至近域における海生生物の生態知見 魚類・イカタコ類編
- 98) 海洋生物環境研究所 (1991) 沿岸至近域における海生生物の生態知見 貝類・甲殻類・ウニ 類編
- 99) 清水誠 (2005) 東京湾の漁業と資源 その今と昔,漁業情報サービスセンター
- 100) 清水詢道 (2002) 東京湾のシャコ資源について (1), 神奈川県水産総合研究所研究報告, 7, 1-10
- 101) 大富潤, 清水誠, VERGARA, JA Martinez (1988) 東京湾のシャコの産卵期について, 日本水産学会誌, 54, 11, 1929-1933
- 102) 中田尚宏(1986) 東京湾におけるシャコ幼生の分布について、神奈川水試研報、7,17-22
- 103) 中田尚宏 (1989) 東京湾におけるシャコの生物学的特性, 神水試研報 a, 10, 63-69
- 104) 日本水産資源保護協会(1985) 水産生物の生活史と生態.
- 105) 石井光廣, 大畑聡, 児玉圭太 (2015) 東京湾におけるアカガイ科貝類およびタイラギの稚貝の出現状況 (平成 25年度東京湾研究会ミニシンポジウム 東京湾再生ツールとしての二枚貝の再点検), 東京湾の漁業と環境, Fishery and oceanography in Tokyo Bay, 6, 13-15
- 106) 波部忠重, 奥谷喬司(1983) 学研生物図鑑貝 II
- 107) 森勝義(2005) 水産増養殖システム 貝類・甲殻類・ウニ類・藻類(3)
- 108) 西村三郎,鈴木克美(1971) 標準原色図鑑全集 16 海岸動物
- 109) 奥谷喬司(2000) 日本近海産貝類図鑑, 東海大学出版.
- 110) 原武史,塩谷照雄,丸山武紀,岩沢俊一,豊崎悦久(1963) 東京湾産シャコについて,東水試研要報(昭和 38 年度),1-22
- 111) 日比野学,太田太郎,木下泉,田中克 (2002) 有明海湾奥部の干潟汀線域に出現する仔稚 魚,魚類学雑誌,49(2),109-120
- 112) Tatsuo HAMANO, Shuhei MATSUURA (1984) Egg Laying and Egg Mass Nursing Behaviour in the Japanese Mantis Shrimp. 日本水産学会誌, 50, 12, 1969-1973

底層溶存酸素量に関する琵琶湖の類型指定検討結果

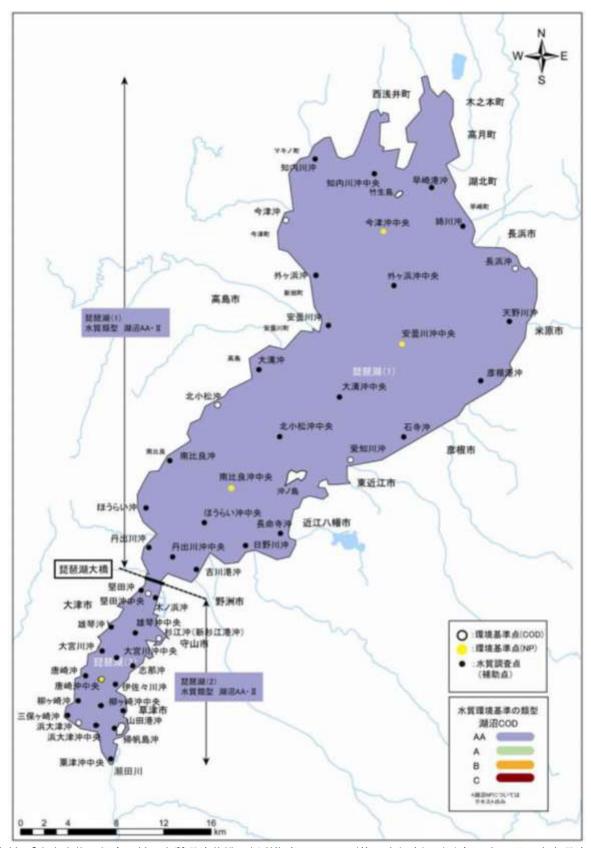
一 目 次 一

 保全対象和 	重の観点・水域の特徴の観点	2-1
1.1 水域特	性の情報整理	2-1
1.1.1 既	· 存の類型指定に関する情報	2-1
(1)	類型指定状況	2-1
(2)	環境基準点	2-1
(3)	類型指定時の設定根拠と利用目的	2-5
(4)	類型指定時から変化していると考えられる場合の現在の水域の利用目的	2-7
1.1.2 水	.質の状況	2-8
(1)	淡水赤潮、アオコ及び貧酸素水塊の発生状況	2-8
(2)	水質測定結果	2-9
(3)	流入汚濁負荷量	2-36
(4)	底層溶存酸素量の分布	2-37
1.1.3 底	質の状況	2-51
1.1.4 水	域の地形及び流況等	2-53
(1)	湖底の地形(水深)	2-53
(2)	琵琶湖内の水流	2-53
(3)	水面面積の変遷	2-54
1.1.5 水	域の利用状況	2-56
(1)	港湾・漁港・舟溜	2-56
(2)	水浴場	2-58
(3)	国立公園・国定公園等	2-59
1.1.6 沈	水植物群落の状況	2-60
1.1.7 水	産等に関する情報	2-63
(1)	漁獲量の経年変化及び放流量の経年変化	2-63
(2)	区画漁業権等	2-70
(3)	保護水面及び禁止区域の設定状況	2-72
(4)	主要水産物の漁場	2-74
(5)	プランクトン量	2-74
1.2 水生生	物の生息状況等の把握	2-75
1.3 生態特	性を考慮した検討対象種の抽出(琵琶湖)	2-81
1.4 保全対	象種の設定	2-83
1.5 保全対	象種における底層溶存酸素量の目標値の設定	2-86
(1)	コイ (在来型)	2-86
(9)	ーゴロブナ	2-86

(3)	ホンモロコ2-87
(4)	イサザ
(5)	イワトコナマズ2-87
(6)	ビワマス
(7)	スジエビ2-88
(8)	セタシジミ2-89
1.6 保全対	象種の生息域及び再生産の場の設定並びに保全対象範囲の重ね合わせ2-94
(1)	コイ (在来型)
(2)	ニゴロブナ2-97
(3)	ホンモロコ2-98
(4)	イサザ2-99
(5)	イワトコナマズ2-100
(6)	ゼワマス2-101
(7)	スジエビ2-102
(8)	セタシジミ2-103
1.7 保全対	象範囲の重ね合わせ2-104
1.8 水域の	特徴に関する考慮事項2-106
(1)	過去の底層溶存酸素量の状況2-106
(2)	近年の底層溶存酸素量の状況2-106
(3)	底生生物の状況(生物3類型のうち無生物域を解消する範囲について)2-107
(4)	水域の利用状況等2-107
2. 琵琶湖の類	頁型指定の設定結果2-108

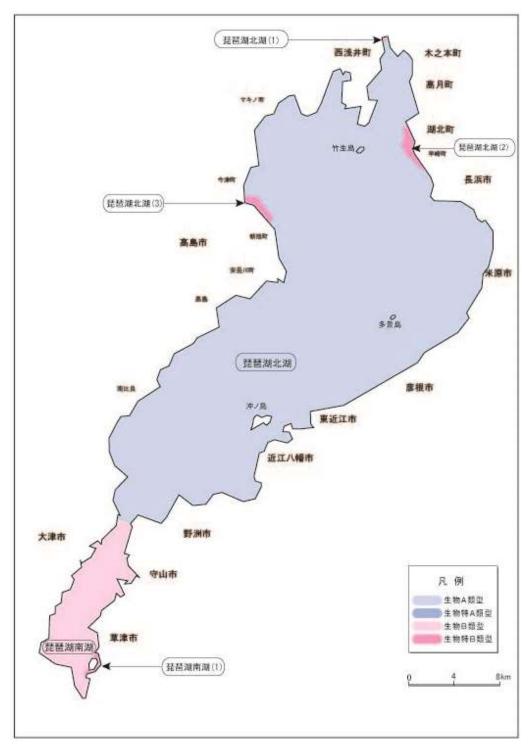
1. 保全対象種の観点・水域の特徴の観点

1.1 水域特性の情報整理


1.1.1 既存の類型指定に関する情報

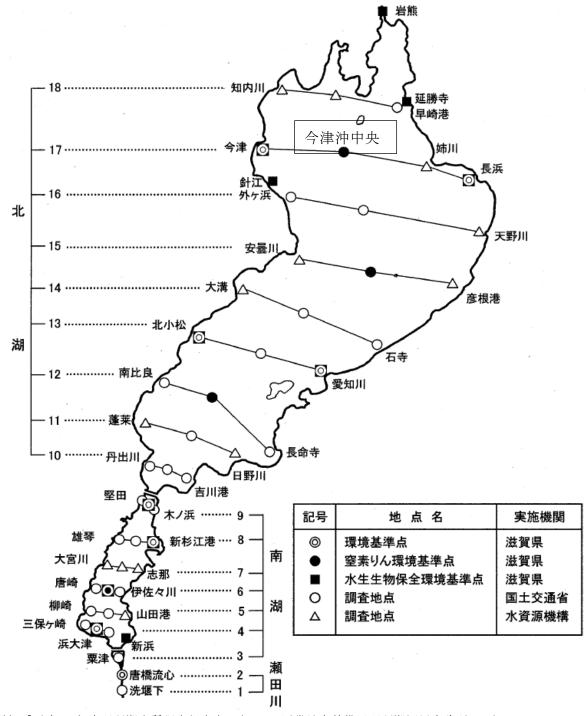
(1)類型指定状況

琵琶湖における COD 等の環境基準及び全窒素・全燐の類型指定分は図 1.1.1 に、水生生物保全環境基準項目の類型指定は図 1.1.2 に示すとおりである。


(2) 環境基準点

琵琶湖における COD 等及び全窒素・全燐の環境基準点は図 1.1.3 に示すとおりである。

資料:「水生生物の保全に係る水質環境基準の類型指定について(第3次報告)」(平成21年7月、中央環境審議会水環境部会 水生生物保全環境基準類型指定専門委員会)


図 1.1.1 水質汚濁に係る環境基準の類型指定状況

資料:環境省提供資料

図 1.1.2 水生生物の保全に係る水質環境基準の類型指定

2-3

資料:「平成26年度琵琶湖水質調査報告書」(2016、近畿地方整備局琵琶湖河川事務所ほか)

図 1.1.3 水質汚濁に係る環境基準点

(3) 類型指定時の設定根拠と利用目的

琵琶湖における COD 等の環境基準の類型別利用目的の適応性と設定根拠は表 1.1.1、全窒素・全燐の類型指定時の設定根拠と利用目的を表 1.1.2、水生生物保全環境基準項目の類型指定時の設定根拠と利用目的は表 1.1.3 に示すとおりである。

表 1.1.1 COD における環境基準の類型別利用目的の適応性と設定根拠

類型	利用目的の適応性	琵琶湖における類型設定根拠
AA	水道1級 水産1級 自然環境保全 及びA以下の欄に掲げるもの	環境基準設定の基本的考え方びわ湖の現状水質は、北湖が COD1.0ppm 以下、南湖が COD1.0ppm~1.5ppm となっている。汚濁負荷量は現在の条例による規制および下水道整備促進により昭和50年(1975年)には北湖では現状維持、南湖では約1割増となる。この状況により工場排水についてはより厳しい排出規制を実施することにより現状を良化させるような施策を講ずるとともに、昭和50年(1975年)以降についてはさらに強力な下水道整備の促進により、琵琶湖に排出される汚水を取込むとともに終末処理場では三次処理を実施することにより将来においては南湖もCOD1.0ppm 以下とする。したがって北湖及び南湖ともにAAとする。
A	水道 2、3級 水産 2級 水浴 及び B 以下の欄に掲げるもの	該当なし
В	水産3級 工業用水1級 農業用水 及びCの欄に掲げるもの	該当なし
С	工業用水2級環境保全	該当なし

- 注) COD 等の利用目的の適応性の内容は以下のとおりである。
 - 1. 自然環境保全:自然探勝等の環境保全
 - 2. 水道1級:ろ過等による簡易な浄水操作を行うもの

水道2、3級: 沈殿ろ過等による通常の浄水操作、又は、前処理等を伴う高度の浄水操作を行うもの

- 3. 水産1級:マダイ、ブリ、ワカメ等の水産生物用及び水産2級の水産生物用水産2級:ボラ、ノリ等の水産生物用
- 水産 2 級:ホノ、ノリ寺の水産主物用 4. 工業用水 1 級:沈殿等による通常の浄水操作を行うもの
 - 工業用水2級:薬品注入等による高度の浄水操作、又は、特殊な浄水操作を行うもの
- 5. 環境保全:国民の日常生活(沿岸の遊歩等を含む。)において不快感を生じない限度

資料:「琵琶湖水域の類型指定にあたっての基本的考え方」(昭和47年3月、環境庁水質保全局)より作成

表 1.1.2 全窒素・全燐における環境基準の類型別利用目的の適応性と設定根拠

類型	利用目的の適応性	琵琶湖における類型設定根拠
I	自然環境保全 及びⅡ以下の欄に掲げるもの	該当なし
П	水道 1、2、3級(特殊なものを除く。) 水産 1種 水浴 及びⅢ以下の欄に掲げるもの	琵琶湖は、湖盆形態、水理構造等の異なる北湖と南湖から成り立っていることから、琵琶湖(1)(北湖)と琵琶湖(2)(南湖)の2つの水域に区分する。北湖、南湖の現在及び将来における主たる水域利用は水道、水産、水浴等であること等から、全窒素及び全りんの環境基準は、北湖、南湖とも類型II(全窒素 0.2mg/L以下、全燐 0.01mg/L以下)が指定された。なお、北湖、南湖の現状の平均的な水質は、おおむね類型IIと類型IIの間にある。
Ш	水道 3 級 及びIVの欄に掲げるもの	該当なし
IV	水産 2 種 及び V の欄に掲げるもの	該当なし
V	水産 3 種 工業用水 農業用水 環境保全	該当なし

- 注) 全窒素及び全燐の利用目的の適応性の内容は以下のとおりである。
 - 1. 自然環境保全:自然探勝等の環境保全
 - 2. 水道1級:ろ過等による簡易な浄水操作を行うもの
 - 水道2級:沈殿ろ過等による通常の浄水操作を行うもの
 - 水道3級:前処理等を伴う高度の浄水操作を行うもの(「特殊なもの」とは、臭気物質の除去が可能な特殊な浄水操作を行うものをいう。)
 - 3. 水産1種:サケ科魚類及びアユ等の水産生物用並びに水産2種及び水産3種の水産生物用
 - 水産2種:ワカサギ等の水産生物用及び水産3種の水産生物用
 - 水産3種:コイ、フナ等の水産生物用
 - 4. 環境保全:国民の日常生活(沿岸の遊歩等を含む。)において不快感を生じない限度
- 資料:「琵琶湖における全窒素、全りんに係る水質環境基準の水域類型の指定案」(昭和 60 年 3 月、環境省資料)より作成

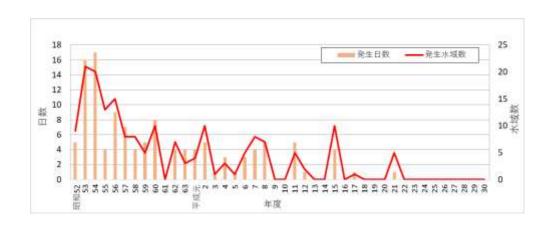
表 1.1.3 水生生物の保全に係る水質環境基準の類型指定の適応性と設定根拠

類型	水生生物の生息状況の 適応性	琵琶湖における類型設定根拠
生物 A	イワナ、サケマス等比較的低 温域を好む水生生物及びこ れらの餌生物が生息する水 域	【北湖】 水温分布や生息状況に係る当該区域に関する情報を踏まえると、生活環境項目の水域類型「琵琶湖(1)」と「琵琶湖(2)」の区分点である琵琶湖大橋より北側を冷水性の魚介類が生息する水域と考えられる。
生物特 A	生物 A の水域のうち、生物 A の欄に掲げる水生生物の産 卵場 (繁殖場) 又は幼稚仔の 生育場として特に保全が必要な水域	該当なし
生物 B	コイ、フナ等比較的高温域を 好む水生生物及びこれらの 餌生物が生息する水域	【南湖】 水温分布や生息状況に係る当該区域に関する情報を踏まえると、生活環境項目の水域類型「琵琶湖(1)」と「琵琶湖(2)」の区分点である琵琶湖大橋より南側を比較的高温性の魚介類が生息する水域と考えられる。
生物特 B	生物 A 又は生物 B の水域の うち、生物 B の欄に掲げる水 生生物の産卵場 (繁殖場) 又 は幼稚仔の生育場として特 に保全が必要な水域	【湖北町地先(ヨシ帯及びその周辺の同等の環境を有する水域(ヨシの最大分布水深と常時監視実施の可能性を考慮したおおむね 3m 以浅の水域とする。以下同じ。))、西浅井町岩熊地先(ヨシ帯及びその周辺の同等の環境を有する水域)、高島市新旭町針江地先(ヨシ帯及びその周辺の同等の環境を有する水域)、草津市新浜町地先(ヨシ帯及びその周辺の同等の環境を有する水域)】 (まず、田辺の同等の環境を有する水域)、東津市新浜町地先(ヨシ帯及びその周辺の同等の環境を有する水域)】

資料:「水生生物の保全に係る水質環境基準の類型指定について(第3次報告)」(平成21年7月、中央環境審議会水環境部会 水生生物保全環境基準類型指定専門委員会)より作成

(4) 類型指定時から変化していると考えられる場合の現在の水域の利用目的

琵琶湖における現在の水域の利用目的を調べた結果、類型指定時から変化していなかった。


1.1.2 水質の状況

(1) 淡水赤潮、アオコ及び貧酸素水塊の発生状況

淡水赤潮の発生状況は、図 1.1.4 に示すとおりであり、昭和 53 年度(1978 年度)、昭和 54 年度(1979 年度)をピーク(発生日数 17 日、発生水域 21 水域)に、平成9 年度(1997 年度)まで減少傾向が続き、以降、発生日数及び水域数が増加する年度も確認されるが、近年は発生日数0日~1日、発生水域0水域~5水域で横ばいとなっている。

アオコの発生状況は、図 1.1.5 に示すとおりであり、統計開始以降、年度によるばらつきが大きいもの発生が確認されている。近年では、平成 26 年度(2014 年度)が発生日数 0 日であったが、平成 28 年度(2016 年度)に最も高い発生日数(44 日)及び発生水域(13 水域)が確認されている。

なお、貧酸素水塊の発生状況については、「(4)2)北湖の底層溶存酸素量の状況」 (p40)及び「(4)3)南湖の底層溶存酸素量の状況」(p44)に示すとおりである。

注) 4月21日~6月11日の間の統計結果である。

資料:「滋賀の環境 2019 (令和元年版環境白書)-資料編-」(2020年3月、滋賀県)より作成

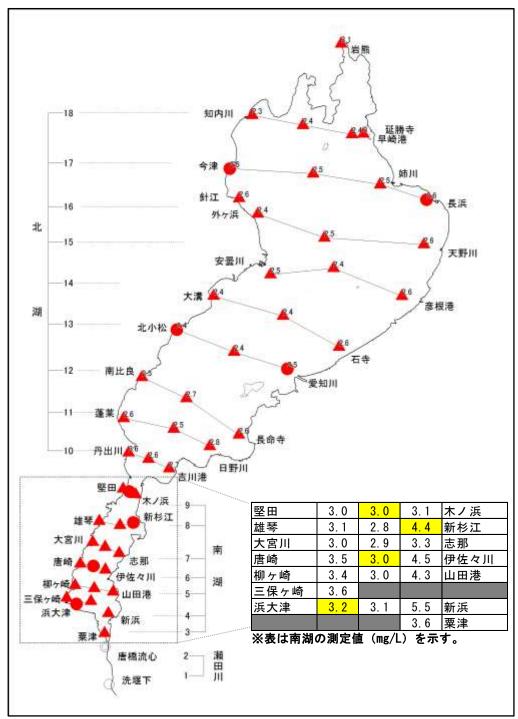
50 20 発生日数 ----発生水域数 45 18 40 16 35 14 12 点 30 ≅ ⊞25 10 援 20 8 6 15 4 10 5 2 0 62 60 538 年度

図 1.1.4 赤潮の発生状況

注)7月21日~11月19日の間の統計結果である。

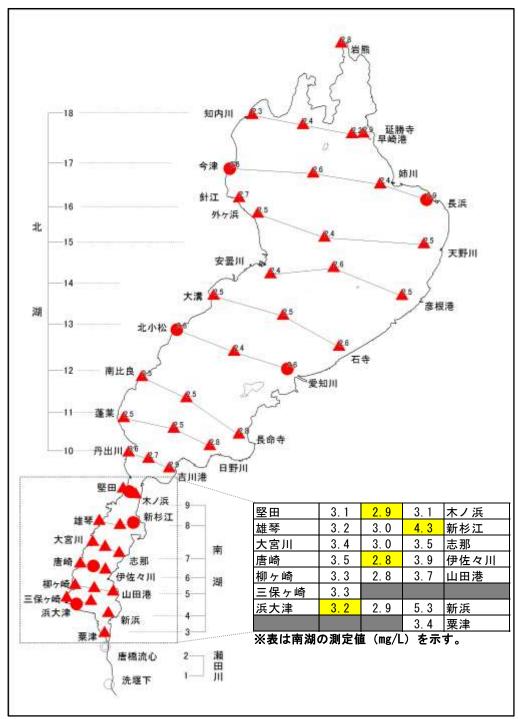
資料:「滋賀の環境 2019 (令和元年版環境白書)-資料編-」(2020 年3月、滋賀県)より作成

図 1.1.5 アオコの発生状況


(2) 水質測定結果

1) 環境基準の適合状況

琵琶湖における平成 25 年度 (2013 年度) ~平成 30 年度 (2018 年度) の COD、全 窒素、全燐の環境基準の適合状況は図 1.1.6~図 1.1.8、平成 30 年度 (2018 年度) の地点別 COD、BOD、全窒素及び全燐はそれぞれ図 1.1.9~図 1.1.12 に示すとおりである。


環境基準の適合状況について、COD (75%値) は平成 25 年度 (2013 年度) ~平成 30 年度 (2018 年度) の期間において北湖、南湖ともに全ての地点で非適合であった。全窒素は平成 25 年度 (2013 年度) ~平成 27 年度 (2015 年度) の期間において北湖、南湖ともに全ての地点で非適合であったが、平成 28 年度 (2016 年度) 以降は北湖で 10 地点以上が適合であった。南湖は平成 28 年度 (2016 年度) に 1 地点が適合であった。全燐は平成 25 年度 (2013 年度) ~平成 30 年度 (2018 年度) の期間において北湖では環境基準に適合している地点が多いが、南湖では平成 27 年度 (2015 年度) に 1 地点が適合したのみであった。

地点別の年間平均値でみた平成 30 年度(2018 年度)における COD(図 1.1.9)、BOD(図 1.1.10)、全窒素(図 1.1.11)及び全燐(図 1.1.12)については、南湖と北湖で比較すると、南湖の方がやや高い傾向であった。COD については、南湖では約 $2 mg/L \sim 4 mg/L$ の濃度であり、北湖では 3 mg/L 以下の濃度となっている。BOD については、南湖では北湖に近づくにつれて濃度が低くなり、北湖では 1.2 mg/L 以下の濃度となっている。全窒素については、南湖よりも北湖の濃度が低くなっている。南湖では 0.60 mg/L 以下の濃度であり、北湖では $0.15 mg/L \sim 0.30 mg/L$ の濃度となっている。北湖では 0.60 mg/L 以下の濃度となっている。北湖では 0.020 mg/L 以下の濃度となっている。

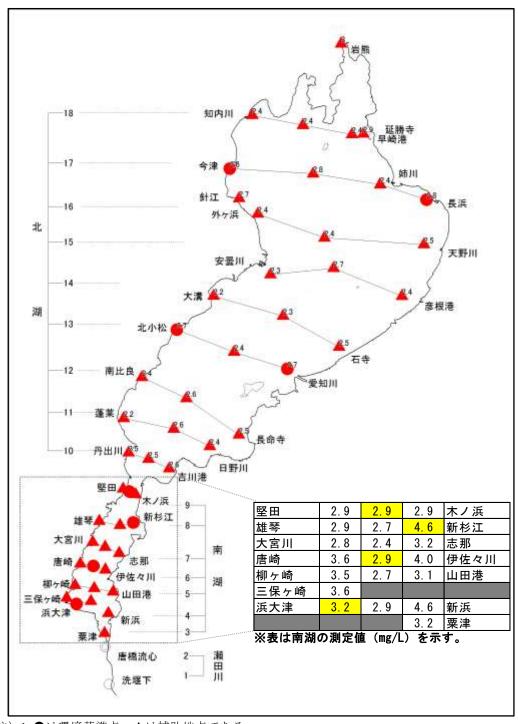
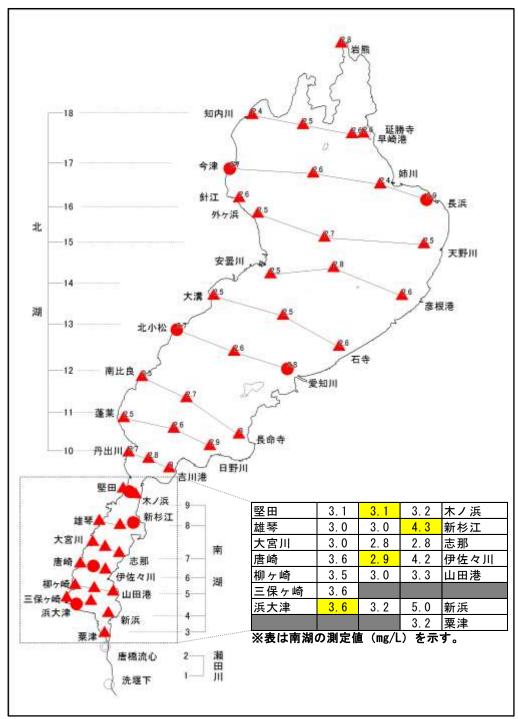

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.6(1) 琵琶湖における環境基準 (COD75%値) の適合状況 (平成 25 年度 (2013 年度))

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。


図 1.1.6(2) 琵琶湖における環境基準 (COD75%値) の適合状況 (平成 26 年度 (2014 年度))

注) 1. ●は環境基準点、▲は補助地点である。

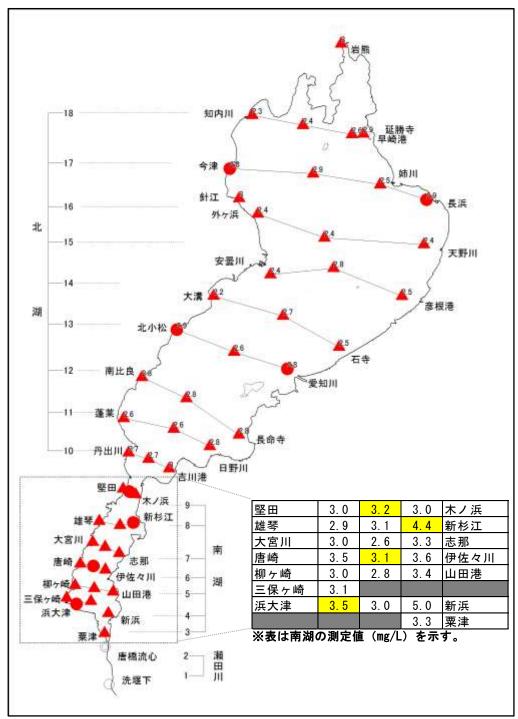

- 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
- 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
- 4. 図中及び表の数値の単位は mg/L である。

図 1.1.6(3) 琵琶湖における環境基準 (COD75%値) の適合状況 (平成 27 年度 (2015 年度))

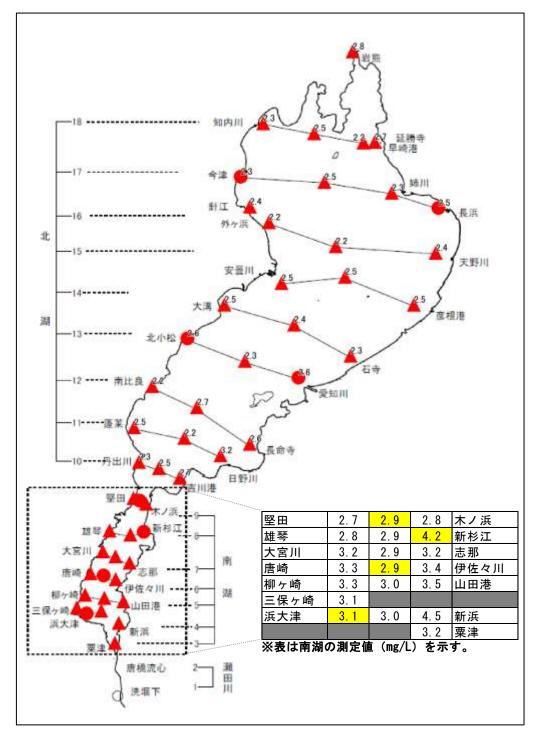

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.6(4) 琵琶湖における環境基準 (COD75%値) の適合状況 (平成 28 年度 (2016 年度))

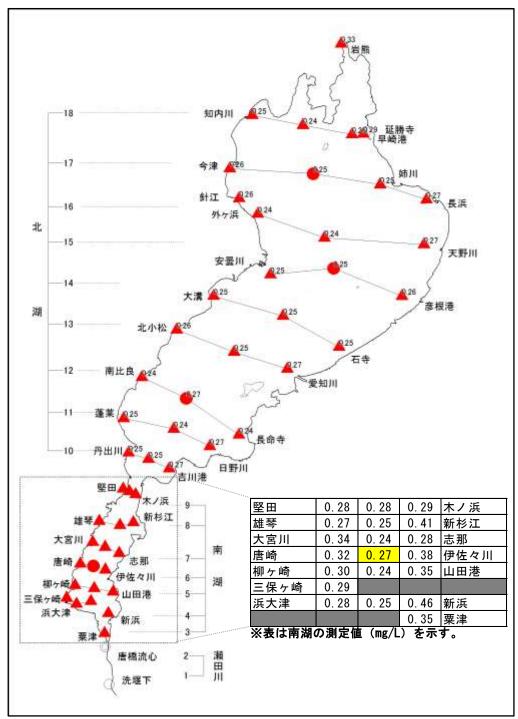

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.6(5) 琵琶湖における環境基準 (COD75%値) の適合状況 (平成 29 年度 (2017 年度))

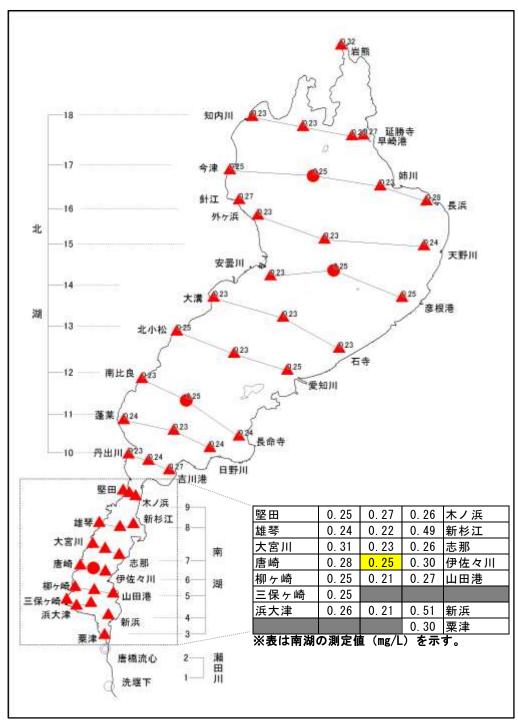

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.6(6) 琵琶湖における環境基準 (COD75%値) の適合状況 (平成 30 年度 (2018 年度))

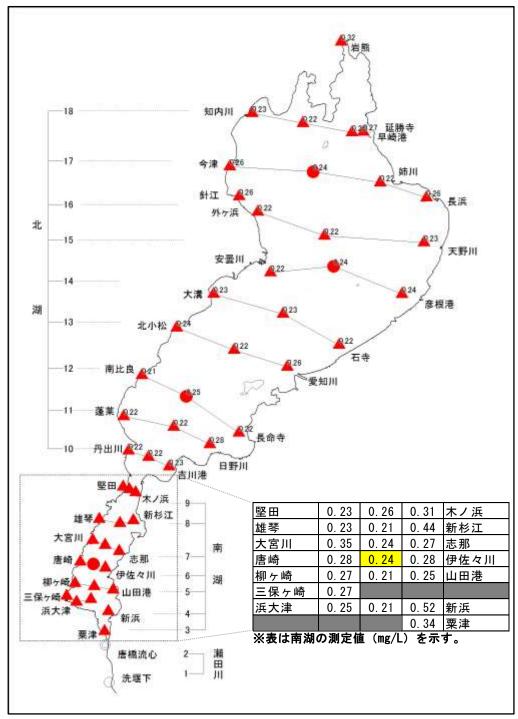

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.7(1) 琵琶湖における環境基準(全窒素年平均値)の適合状況 (平成 25 年度(2013 年度))

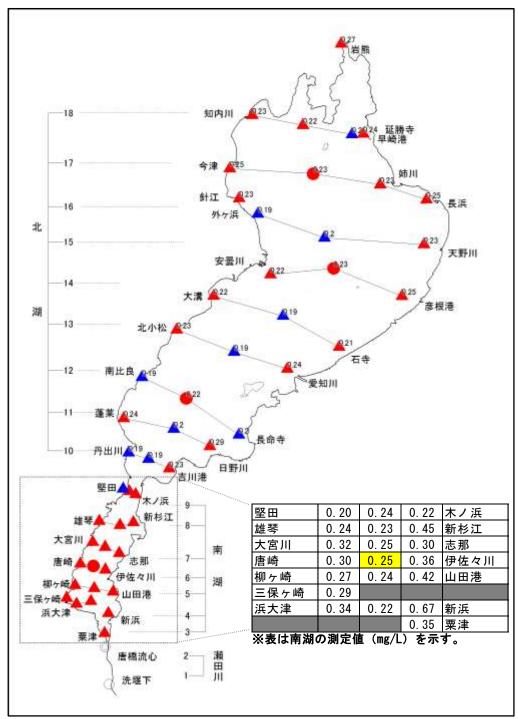

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.7(2) 琵琶湖における環境基準(全窒素年平均値)の適合状況 (平成 26 年度(2014 年度))

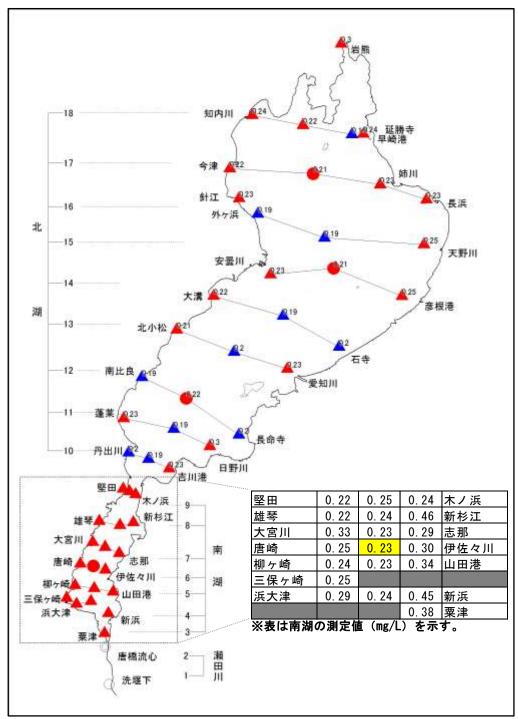

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.7(3) 琵琶湖における環境基準(全窒素年平均値)の適合状況 (平成 27 年度(2015 年度))

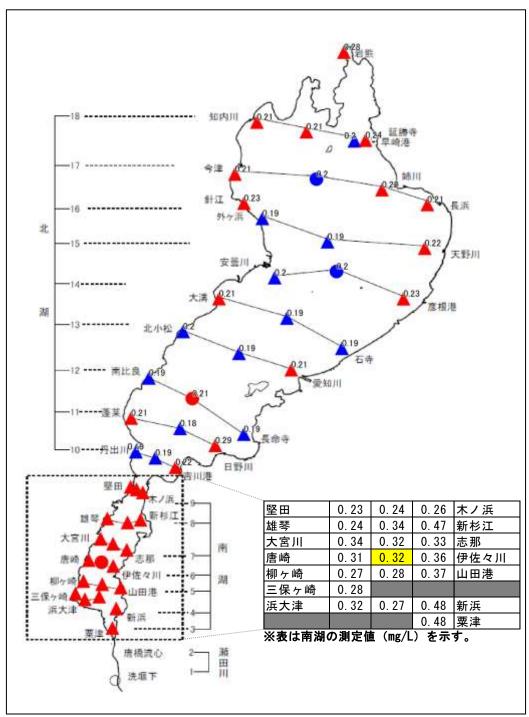

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.7(4) 琵琶湖における環境基準(全窒素年平均値)の適合状況 (平成 28 年度(2016 年度))

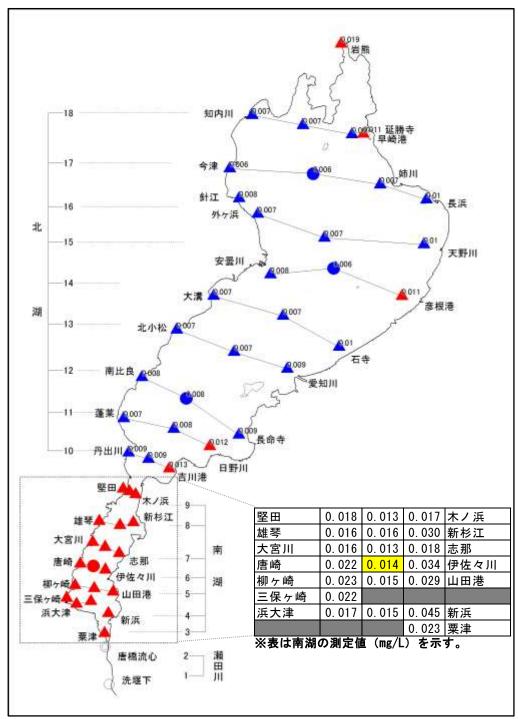

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.7(5) 琵琶湖における環境基準(全窒素年平均値)の適合状況 (平成 29 年度(2017 年度))

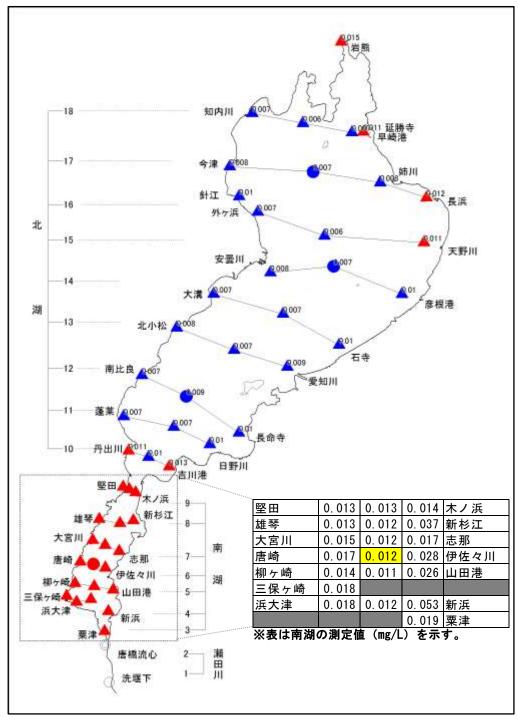

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.7(6) 琵琶湖における環境基準(全窒素年平均値)の適合状況 (平成 30 年度(2018 年度))

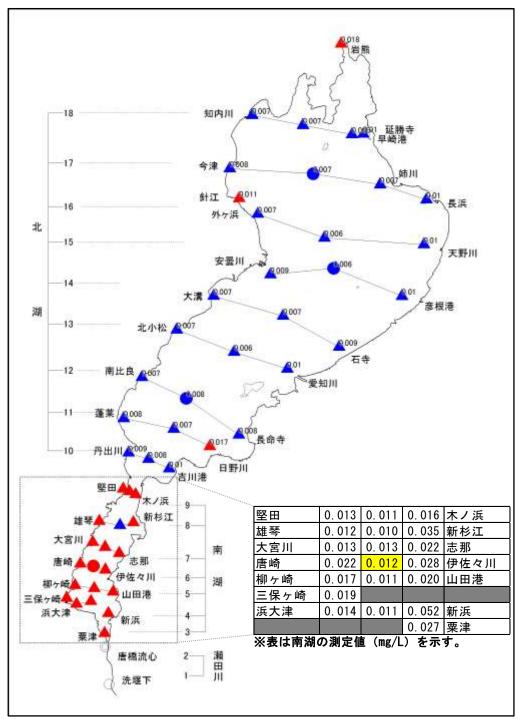

- 注)1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.8(1) 琵琶湖における環境基準(全燐年平均値)の適合状況 (平成 25 年度(2013 年度))

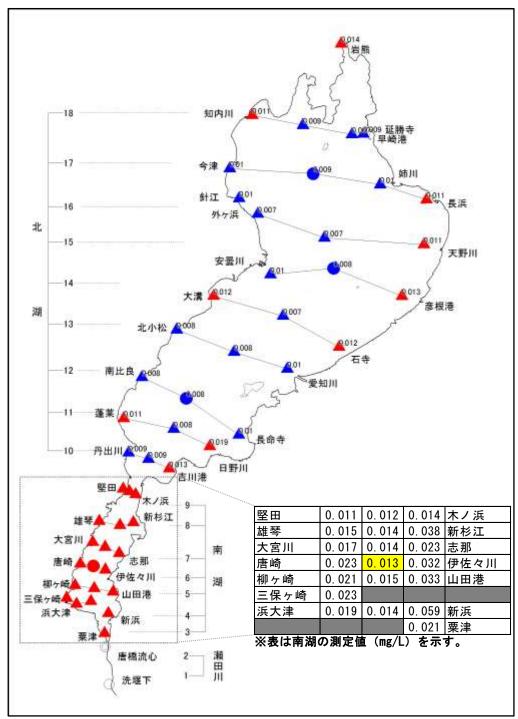

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.8(2) 琵琶湖における環境基準(全燐年平均値)の適合状況 (平成 26 年度(2014 年度))

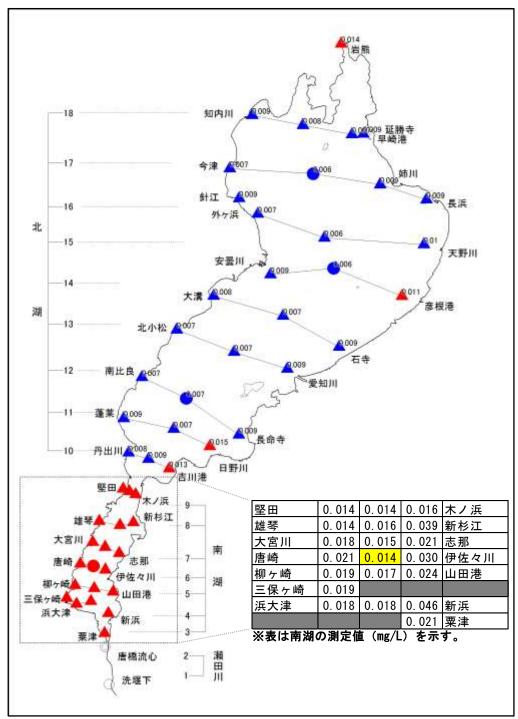

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.8(3) 琵琶湖における環境基準(全燐年平均値)の適合状況 (平成 27 年度(2015 年度))

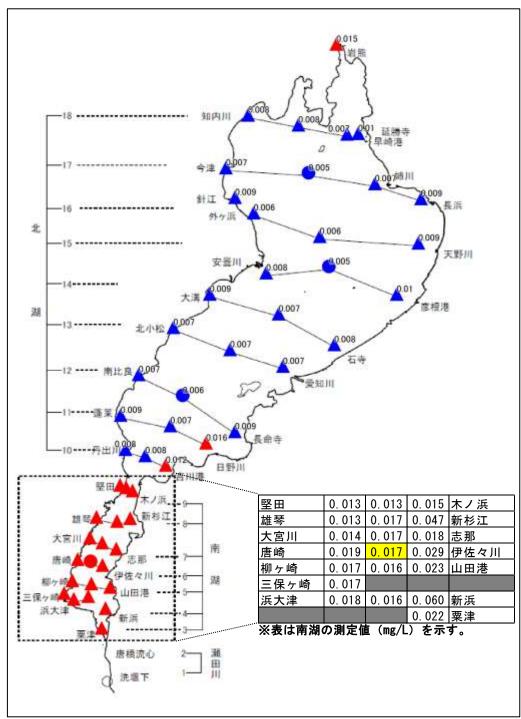

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.8(4) 琵琶湖における環境基準(全燐年平均値)の適合状況 (平成 28 年度(2016 年度))

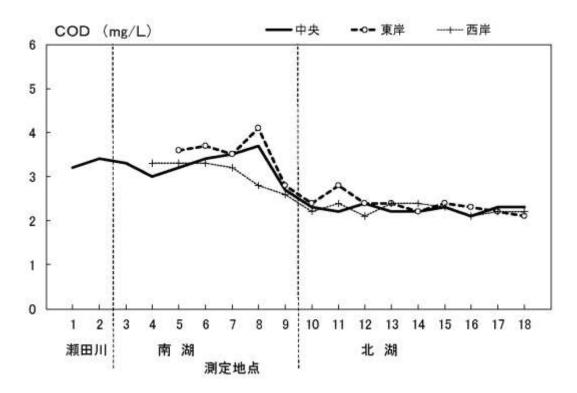

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.8(5) 琵琶湖における環境基準(全燐年平均値)の適合状況 (平成 29 年度(2017 年度))

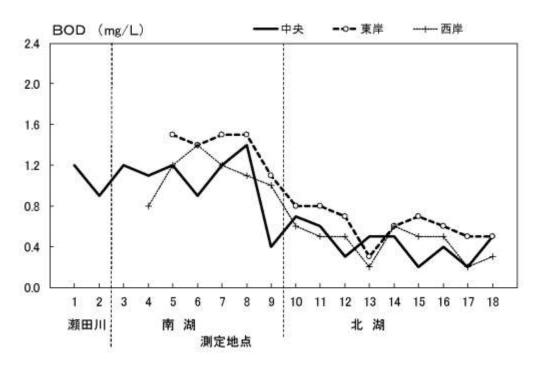

- 注) 1. ●は環境基準点、▲は補助地点である。
 - 2. ●及び▲は環境基準の非適合地点であり、●及び▲は環境基準の適合地点である。
 - 3. 図中の表は、南湖の測定地点の結果であり、黄色のハッチングは環境基準点である。
 - 4. 図中及び表の数値の単位は mg/L である。

図 1.1.8(6) 琵琶湖における環境基準(全燐年平均値)の適合状況 (平成 30 年度(2018 年度))

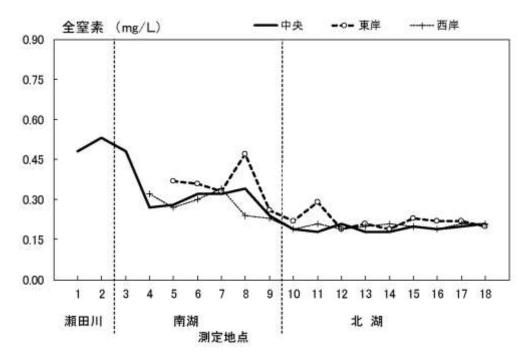

注)横軸は図 1.1.3 に示す瀬田川から北湖、南湖の横断方向の測線番号 (1~18) を表す。 資料:「滋賀県の環境 2019 資料編」(滋賀県琵琶湖環境科学センター)より作成

図 1.1.9 琵琶湖における地点別の COD 濃度 (平成 30 年度 (2018 年度) 平均値)

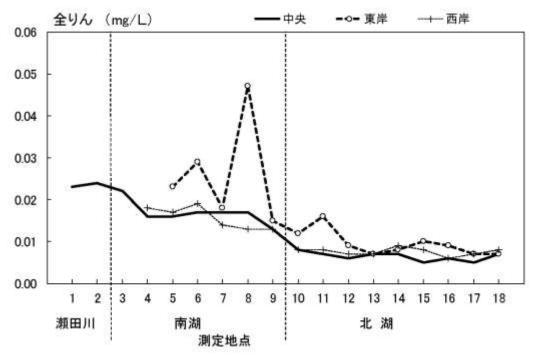

注)横軸は図 1.1.3 に示す瀬田川から北湖、南湖の横断方向の測線番号 (1~18) を表す。 資料:「滋賀県の環境 2019 資料編」(滋賀県琵琶湖環境科学センター)より作成

図 1.1.10 琵琶湖における地点別の BOD 濃度 (平成 30 年度 (2018 年度) 平均値)

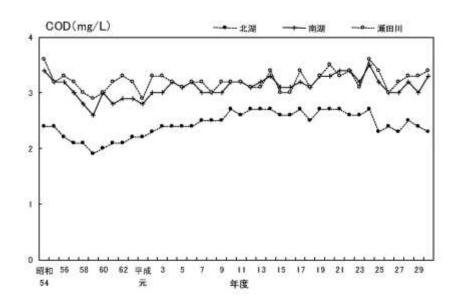
注)横軸は図 1.1.3 に示す瀬田川から北湖、南湖の横断方向の測線番号 (1~18) を表す。 資料:「滋賀県の環境 2019 資料編」(滋賀県琵琶湖環境科学センター)より作成

図 1.1.11 琵琶湖における地点別の全窒素濃度(平成30年度(2018年度)平均値)

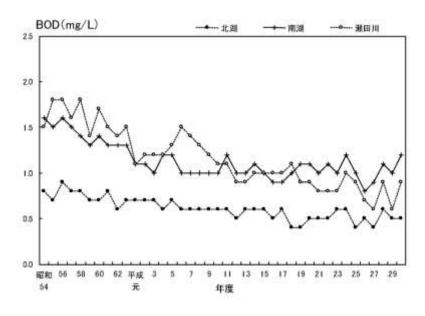
注)横軸は図 1.1.3 に示す瀬田川から北湖、南湖の横断方向の測線番号 (1~18) を表す。 資料:「滋賀県の環境 2019 資料編」(滋賀県琵琶湖環境科学センター)より作成

図 1.1.12 琵琶湖における地点別の全燐濃度(平成30年度(2018年度)平均値)

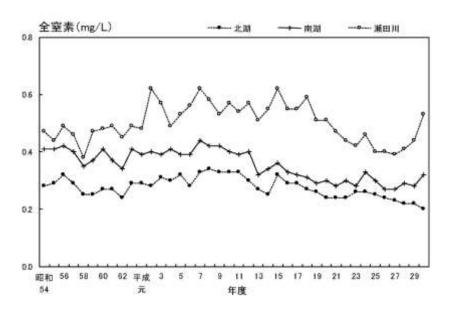
2) 経年変化

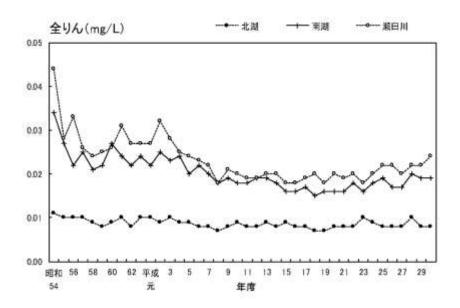

琵琶湖における COD、BOD、全窒素及び全燐の経年変化はそれぞれ図 1.1.13~図 1.1.16 に示すとおりである。

琵琶湖における COD の経年変化 (図 1.1.13) をみると、昭和 59 年度 (1984 年度) ~平成 10 年度 (1998 年度) にかけて緩やかに増加傾向にあり、平成 11 年度 (1999 年度) から平成 24 年度 (2012 年度) まで、上下変動しながらほぼ横ばいの状態が続き、平成 24 年度 (2012 年度) から平成 27 年度 (2015 年度) までは減少傾向にあったが、平成 28 年度 (2016 年度) 以降、南湖で増加傾向であり、北湖は減少傾向である。


BOD (図 1.1.14) については、昭和54年度(1979年度)~平成4年度(1992年度)にかけて減少傾向にあり、以降、近年まで横ばいの状態が平成24年度(2012年度)まで続き、平成27年度(2015年度)までは減少傾向にあったが、平成28年度(2016年度)以降は増加傾向している。

全窒素(図 1.1.15) については、昭和54年度(1979年度)~平成11年度(1999年度)にかけて横ばいであったが、平成12年度(2000年度)から近年にかけて緩やかな減少傾向にあったが、平成27年度(2015年度)以降、南湖で増加傾向であり、北湖では減少傾向である。


全燐(図 1.1.16) については、南湖では昭和54年度(1979年度)~平成7年度(1995年度)にかけて減少傾向にあったが、平成8年度(1996年度)以降、近年までほぼ横ばいの状態が続いていたが、平成23年度(2011年度)以降増加傾向である。北湖では昭和54年度(1979年度)から近年に至るまで、概ね横ばいの状態である。


資料:「滋賀県の環境 2019 資料編」(滋賀県琵琶湖環境科学センター)より作成図 1.1.13 琵琶湖における COD 濃度の経年変化(昭和54年度(1979年度)~平成30年度(2018年度)平均値)

資料:「滋賀県の環境 2019 資料編」(滋賀県琵琶湖環境科学センター)より作成図 1.1.14 琵琶湖における BOD 濃度の経年変化(昭和 54 年度 (1979 年度) ~平成 30 年度 (2018 年度) 平均値)

資料:「滋賀県の環境 2019 資料編」(滋賀県琵琶湖環境科学センター)より作成図 1.1.15 琵琶湖における全窒素濃度の経年変化(昭和54年度(1979年度)~平成30年度(2018年度)平均値)

資料:「滋賀県の環境 2019 資料編」(滋賀県琵琶湖環境科学センター)より作成図 1.1.16 琵琶湖における全燐濃度の経年変化(昭和 54 年度 (1979 年度) ~平成 30 年度 (2018 年度) 平均値)

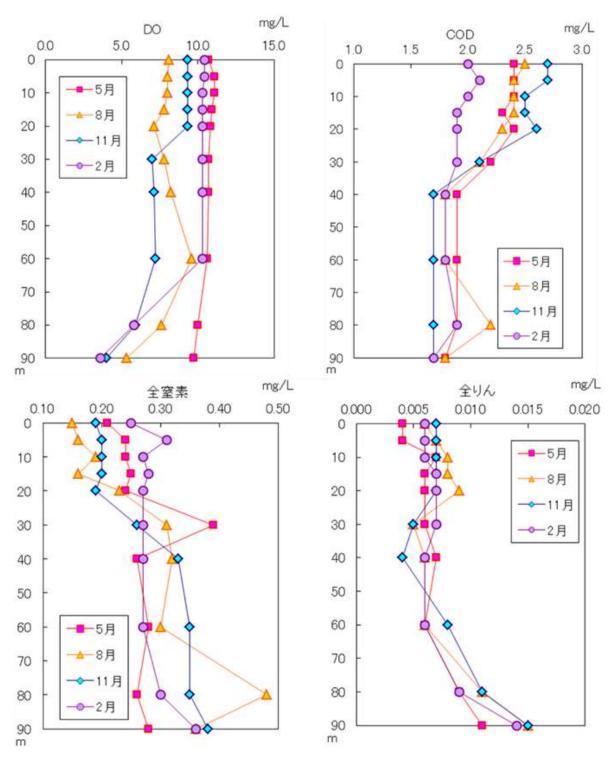
3) 今津沖中央における鉛直分布及び水深別の経年変化

図 1.1.3 に示す今津沖中央における平成 30 年度 (2018 年度) の水質鉛直分布は 図 1.1.17 に示すとおりである。

今津沖中央における平成30年度(2018年度)の水質鉛直分布(図1.1.17)をみると、溶存酸素量については8月及び11月に底層において低下するが貧酸素化(溶存酸素量2mg/L以下)は確認されていない。

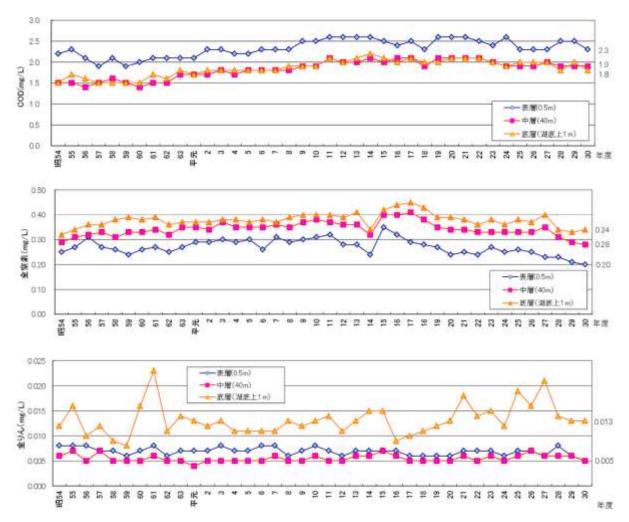
COD については、水深 40m 以浅から濃度が高くなっている。

全窒素については、表層から水深 20m 付近までの濃度が低くなっている。


全燐については、水深 60m 以深から濃度が高くなっている。

水深別にみた水質の経年変動については、図 1.1.18に示すとおりである。

COD については、昭和 60 年度(1985 年度)~平成 9 年度(1997 年度)までは増加傾向がみられ、平成 10 年度(1998 年度)以降は横ばいの傾向がみられる。


全窒素については、表層で平成 15 年度 (2003 年度) 以降、中層及び底層 (湖底 直上 1m) で平成 17 年度 (2005 年度) 以降に減少傾向がみられる。

全燐については、表層と中層において横ばい傾向で推移しており、底層(湖底直上 1m)では変動が大きいが、平成 16 年度(2004 年度)以降はやや増加傾向がみられる。

資料:「滋賀県の環境 2019 資料編」(滋賀県琵琶湖環境科学センター)より作成 図 1.1.17 今津沖中央における水質の鉛直分布

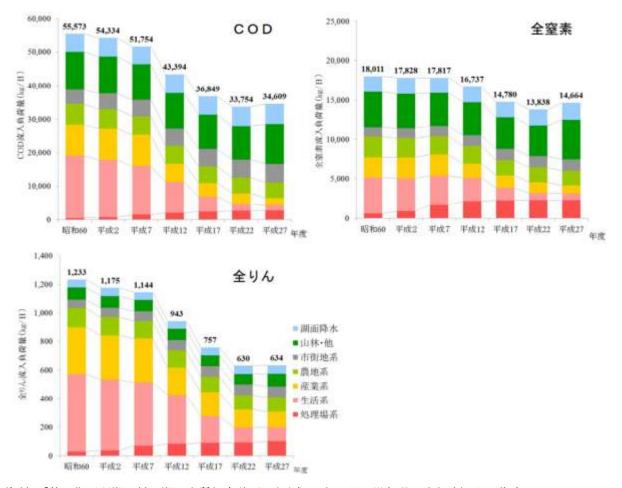
(D0 (溶存酸素量) · COD · T-N · T-P: 平成 30 年度 (2018 年度))

資料:「滋賀県の環境 2019 資料編」(滋賀県琵琶湖環境科学センター)より作成

図 1.1.18 水深別にみた水質の経年変動

(COD・全窒素・全燐: 昭和 54 年度 (1979 年度) ~平成 30 年度 (2018 年度) 平均値)

(3) 流入汚濁負荷量


琵琶湖における流入汚濁負荷量の状況は図 1.1.19に示すとおりである。

COD については、昭和 60 年度(1985 年度)は 55,573kg/日であったのに対し、平成 27 年度(2015 年度)は 34,609kg/日となり、昭和 60 年度(1985 年度)~平成 27 年度(2015 年度)までの削減率は 37.7%となっている。

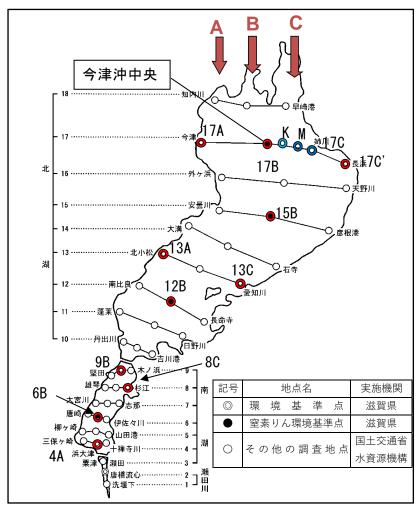
全窒素については、昭和 60 年度(1985 年度)は 18,011kg/日であったのに対し、平成 27 年度(2015 年度)は 14,664kg/日となり、この間の削減率は 18.6%となっている。

全燐については、昭和 60 年度 (1985 年度) は 1,233kg/日であったのに対し、平成 27 年度 (2015 年度) は 634kg/日となり、この間の削減率は 48.6%となっている。

なお、平成22年度(2010年度)~平成27年度(2015年度)にかけて汚濁負荷量の微増の主な要因は、山林・他の負荷量の増加によるものと示されている。

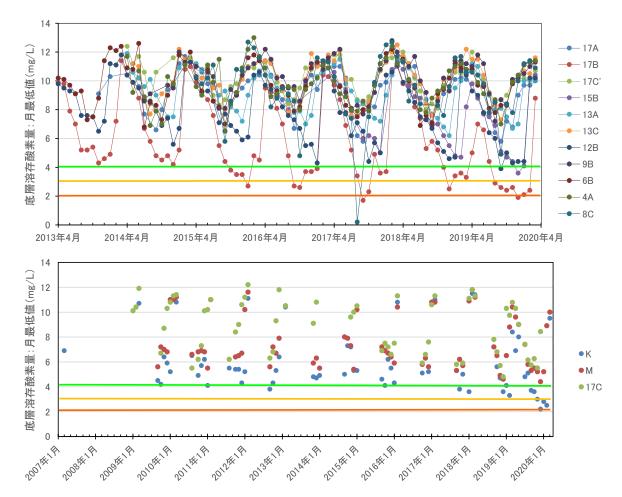
資料:「第7期琵琶湖に係る湖沼水質保全計画」(平成29年3月、滋賀県・京都府)より作成 図 1.1.19 琵琶湖におけるCOD及び全窒素流入負荷量

(4) 底層溶存酸素量の分布


1) 公共用水域水質測定計画に基づく水質調査

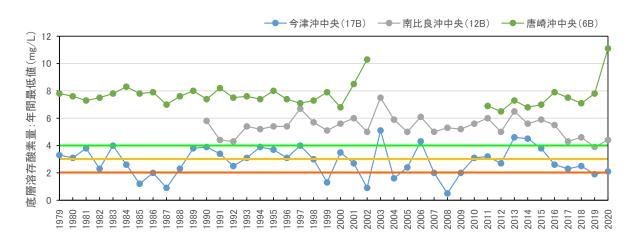
琵琶湖では、公共用水域水質測定計画に基づき、図 1.1.20 に示す環境基準点を中心とした地点(17A、17B、17C'、15B、13A、13C、12B、9B、8C、6B、4A 及び K、M、17C)で水質調査が行われている。

滋賀県琵琶湖環境科学研究センターによると、北湖で底層溶存酸素量が最も低下するのは、今津沖第一湖盆の水深 90m の水域内である。ここに位置する水質観測点 17B (今津沖中央)では、底層溶存酸素量の測定を公共用水域水質測定計画として月に2回実施している他に、計画外の測定を月に0~4回追加で実施している。本項では公共用水域水質測定計画に基づく水質調査の結果を整理しているため、17B (今津沖中央)の測定値は公共用水域水質測定計画としての測定値のみを整理している。水質測定計画外の結果を含めたデータの整理は次項で行っている。


公共用水域水質測定の結果は図 1.1.21 に示すとおりである。17B (今津沖中央)では平成27年度(2015年度)以降は毎年4mg/Lを下回る結果であり、平成29年度(2017年度)及び平成31年度(2019年度)には2mg/Lを下回った。また、17B(今津沖中央)以外の地点では、平成29年度(2017年度)に8C(新杉江港沖)で2mg/Lを下回り、平成31年度(2019年度)に12B(南比良沖中央)及び15B(安曇川沖中央)で4mg/Lを下回った。なお、図 1.1.21に示している17Bの測定値は、公共用水域水質測定計画としての測定値のみを整理したものである。

また、環境基準点である 17B、12B 及び 6B における日平均値の年間最低値の経年変化は図 1.1.22 に示すとおりである。北湖の第一湖盆における測定地点である 17B は 2mg/L を下回ることがあったが、平成 21 年度(2009 年度)以降は概ね 2mg/L 以上を示している(2019 年度のみ 1.9mg/L)。 12B は昭和 54 年度(1979 年度)以降概ね 4mg/L 以上を示している(2019 年度のみ 3.9mg/L)。南湖の測定地点である 6B では昭和 54 年度(1979 年度)から一度も 4mg/L を下回っていない。なお、図 1.1.22 に示している 17B の測定値は、公共用水域水質測定計画としての測定値のみを整理したものである。

資料:滋賀県琵琶湖環境科学センター資料より作成


図 1.1.20 公共用水域水質測定計画に基づく琵琶湖の水質調査地点

資料:滋賀県琵琶湖環境科学センター資料より作成

注:17B(今津沖中央)のデータは公共用水域水質測定計画としての測定値である。

図 1.1.21 底層溶存酸素量の公共用水域水質測定結果の経年変化(月間最低値)

資料:滋賀県琵琶湖環境科学センター資料より作成

注:17B(今津沖中央)のデータは公共用水域水質測定計画としての測定値である。

図 1.1.22 溶存酸素量の公共用水域水質測定結果の経年変化(年間最低値)

2) 北湖の底層溶存酸素量の状況

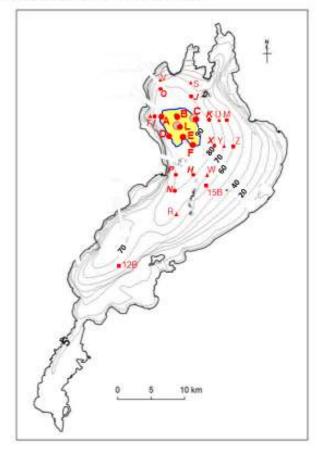
滋賀県琵琶湖環境科学研究センターによると、底層溶存酸素量の低下が顕在化し、さらに全層循環が大幅に遅れた平成19年(2007年)10月以降、今津沖中央の観測点の周縁に追加観測点として6地点を設け、計7地点において測定頻度を増加し、底層溶存酸素量の観測を行っている。また、令和2年度(2020年度)は水深80mの水域まで無酸素状態が拡大したため、令和2年(2020年)11月以降、水深60m~80mの範囲で新たに17地点を追加している。

令和2年(2020年)11月以降の底層溶存酸素量の調査地点は図1.1.23に示すとおりである。平成19年度(2007年度)~令和2年度(2020年度)の7地点における底層溶存酸素量の日平均の年間最低値は図1.1.24に示すとおりである。平成27年度(2015年度)~令和2年度(2020年度)の7地点における底層溶存酸素量の観測結果は図1.1.25に示すとおりである。

年間最低値において、平成 19 年度 (2007 年度) ~平成 22 年度 (2010 年度) までは、毎年いくつかの地点が環境基準の生物 3 類型である 2mg/L を下回っていたが、 平成 25 年度 (2013 年度) 以降は 2mg/L を下回らない年が増えた。

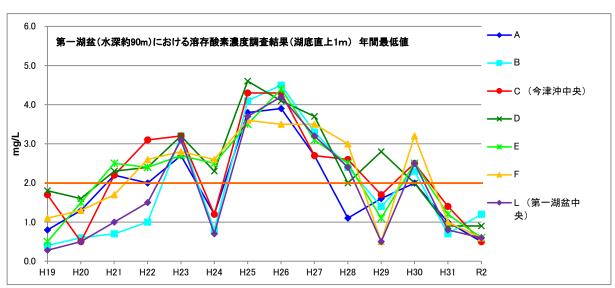
平成 27 年度(2015 年度)は、10 月に A 地点、1 月に C 地点で環境基準の生物 2 類型の 3mg/L を下回る濃度(年間最低濃度)がみられるほか、全ての地点で 10 月~1 月にかけて環境基準の生物 1 類型である 4mg/L を下回る濃度がみられている。

平成 28 年度 (2016 年度) は、10 月に 2mg/L を下回る濃度 (年間最低濃度) がみられるほか、全ての地点で 9 月~1 月にかけて 4mg/L を下回る濃度がみられている。


平成 29 年度 (2017 年度) は、9 月に F 地点と L 地点で 1 mg/L を下回る濃度 (年間最低濃度) がみられるほか、D 地点以外の 6 地点で 9 月~10 月にかけて 2 mg/L を下回る濃度がみられている。

平成30年度(2018年度)は全ての地点で2mg/Lを上回った。

平成 31 年度 (2019 年度) は、10 月に E 地点と L 地点で 0.5mg/L 以下の濃度 (年間最低濃度) がみられるほか、全地点で 9 月~2 月にかけて 2mg/L 付近の濃度がみられている。


令和 2 年度 (2020 年度) は 9 月から 12 月にかけて複数の地点で報告下限値である 0.5mg/L 未満を記録している。

北湖水深50m以深底層DO測定地点図

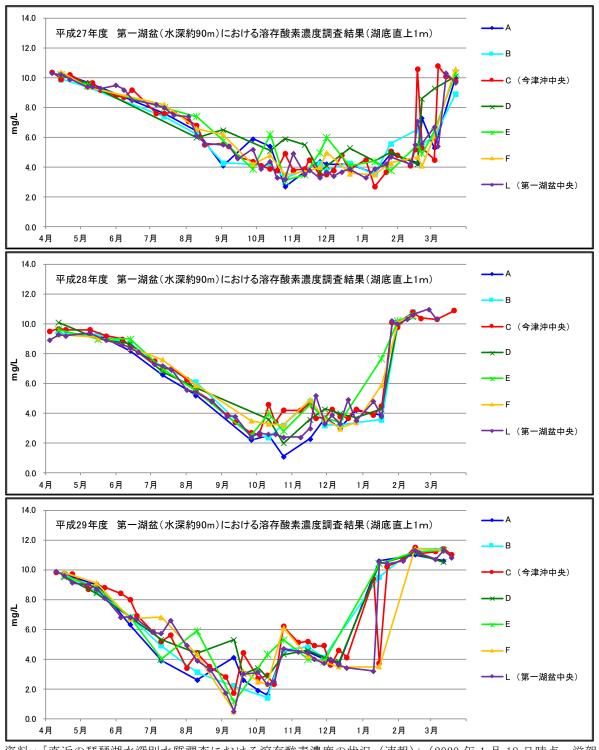

資料:滋賀県琵琶湖環境科学センター資料

図 1.1.23 平成 19年(2007年) 10月以降に追加された底層溶存酸素量調査地点

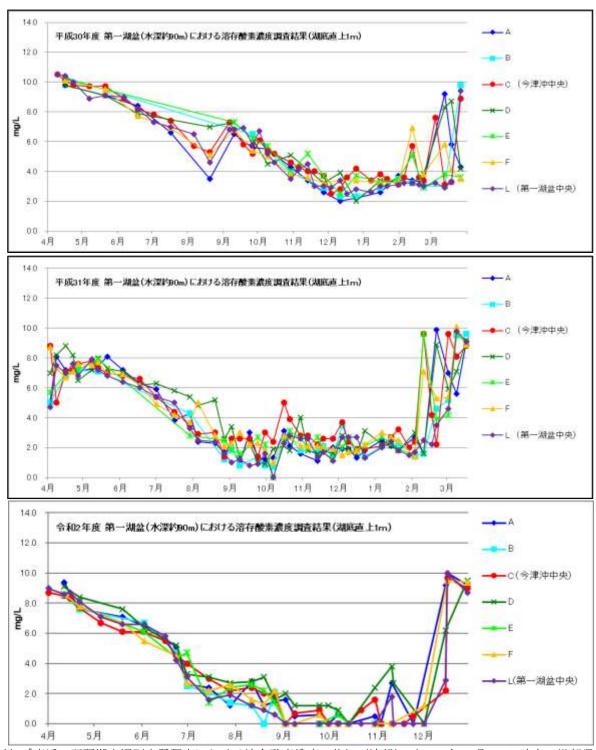
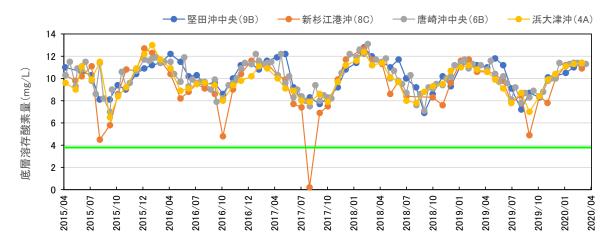

資料:「直近の琵琶湖水深別水質調査における溶存酸素濃度の状況(速報)」(2020年1月18日時点、滋賀 県琵琶湖環境科学センター)より作成

図 1.1.24 第一湖盆 (水深約 90m) における溶存酸素濃度調査結果 (湖底直上 1m) (年間最低値)

資料:「直近の琵琶湖水深別水質調査における溶存酸素濃度の状況(速報)」(2020年1月18日時点、滋賀県 琵琶湖環境科学センター)より作成

図 1.1.25(1) 第一湖盆 (水深約 90m) における溶存酸素濃度調査結果 (湖底直上 1m) (平成 27 年度 (2015 年度) ~平成 29 年度 (2017 年度))

資料:「直近の琵琶湖水深別水質調査における溶存酸素濃度の状況 (速報)」(2020年1月18日時点、滋賀県 琵琶湖環境科学センター)より作成


図 1.1.25(2) 第一湖盆(水深約 90m) における溶存酸素濃度調査結果(湖底直上 1m) (平成 30 年度(2018 年度)~令和 2 年度(2020 年度))

3) 南湖の底層溶存酸素量の状況

平成 27 年度 (2015 年度) ~平成 31 年度 (2019 年度) における南湖の底層溶存酸素量は図 1.1.26 に示すとおりである。また、令和 2 年 (2020 年) の夏季に国立環境研究所地域環境研究センター (琵琶湖分室) が唐崎沖中央 (6B) で連続観測を実施した。その結果は図 1.1.27 に示すとおりである。

平成 27 年度(2015 年度)~平成 31 年度(2019 年度)における南湖の底層溶存酸素量の経年変化より、4mg/L を下回ったのは 2017 年 8 月の新杉江港沖(8C)のみであった。

唐崎沖中央(6B)の連続観測の結果から、10月14日を除く全ての測定期間で4mg/Lを上回っていた。

資料:滋賀県琵琶湖環境科学研究センター資料より作成

図 1.1.26 南湖における底層溶存酸素量の経年変化(2015-2019年度)

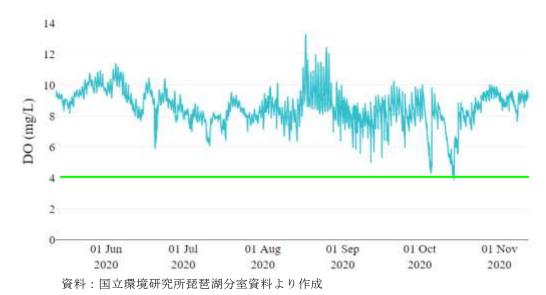
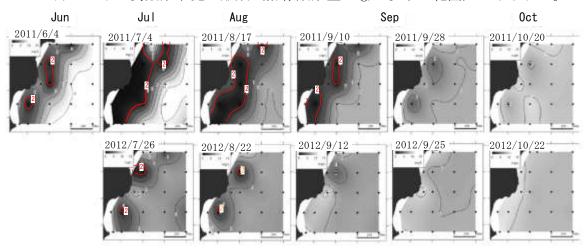
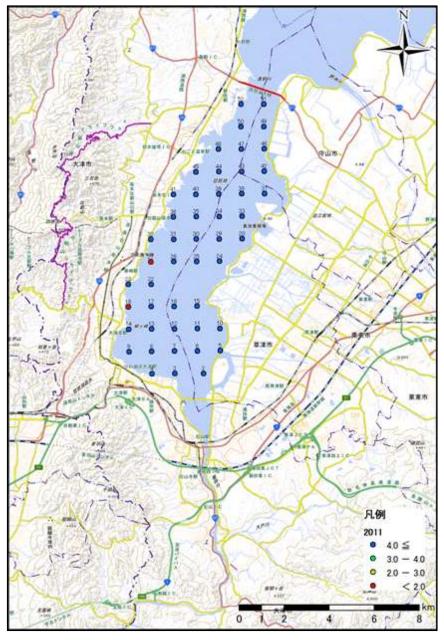



図 1.1.27 唐崎沖中央 (6B) における底層溶存酸素量の令和 2 年度 (2020 年度) 夏季

「琵琶湖環境科学研究センター研究報告書別冊(平成23~25年度) 南湖生態系の順応的管理に関するサイエンスレポート」によると、際川沖22地点における湖底直上30cmの溶存酸素濃度の変化(図1.1.28参照)より、平成23年(2011年)は水草繁茂で除去船が沿岸に入れず、湾奥部と沖合の除去になったため、6月4日~9月10日まで沿岸に大規模な貧酸素水塊の形成(溶存酸素量2mg/L以下の範囲)がみられた。その後、9月の下旬から回復がみられた。平成24年(2012年)は7月から8月にかけて貧酸素水塊の形成(溶存酸素量2mg/L以下の範囲)がみられた。

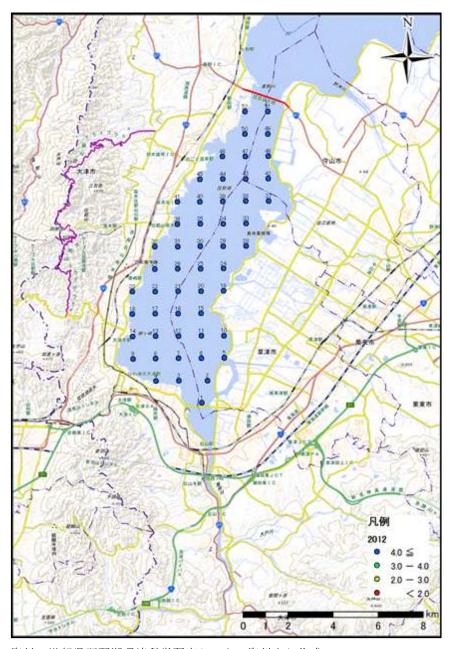
注) 上記図の赤のラインは溶存酸素量が 2mg/L 未 満を指す。

資料:「3-6 水草の大量繁茂による水の停滞と湖底 の貧酸素水塊、そして水草除去による回復 琵琶湖環境科学研究センター研究報告書別 冊(平成23~25年度) 南湖生態系の順応 的管理に関するサイエンスレポート」 (2015、石川可奈子, 芳賀裕樹、56-63)を 改変


図 1.1.28 際川沖溶存酸素分布の変化 (上段:平成 23 年 (2011 年)、

下段:平成26年(2014年))

また、滋賀県琵琶湖環境科学研究センターにより、南湖 52 地点にて平成 23 年 (2011 年)、平成 24 年 (2012 年)、平成 26 年 (2014 年)、平成 29 年 (2017 年)及 び令和元年 (2019 年)に底層溶存酸素量の調査が実施されている。その結果は図 1.1.29 に示すとおりである。


底層溶存酸素量が 2mg/L 未満の地点は、平成 23 年 (2011 年) 9 月に 2 地点、平成 26 年 (2014 年) に 4 地点が確認されている。

平成24年(2012年)及び平成29年(2017年)では全て4mg/L以上を示していたが、令和元年(2019年)は4地点が3mg/L以上4mg/L未満となった。

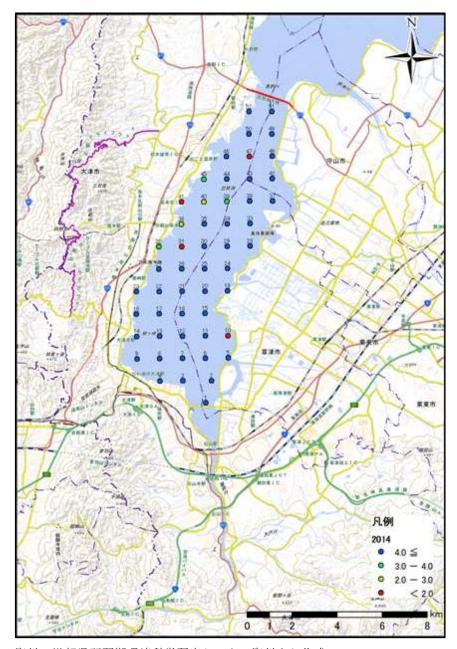
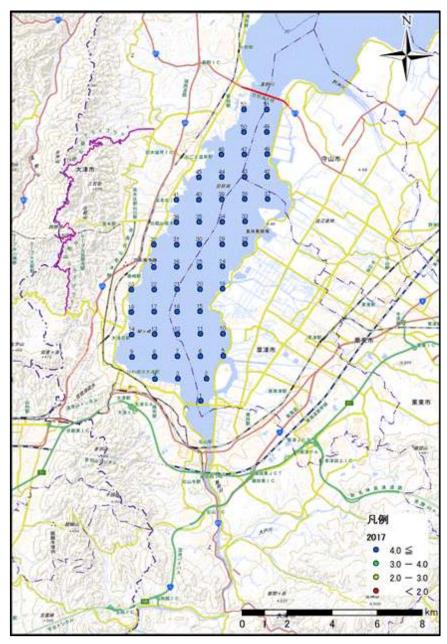
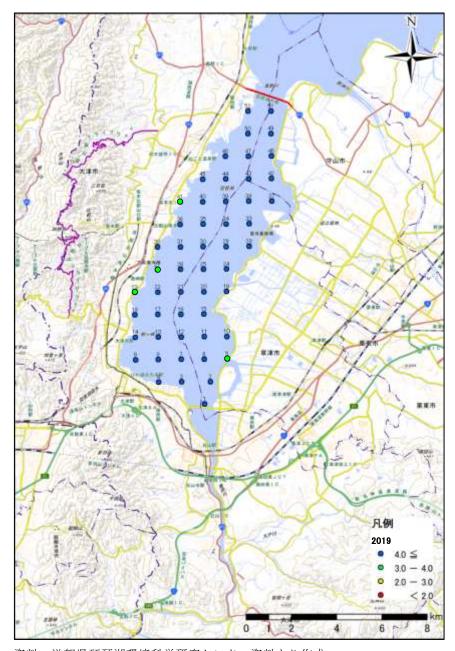

資料:滋賀県琵琶湖環境科学研究センター資料より作成

図 1.1.29(1) 南湖 52 地点における底層溶存酸素量の調査地点 (平成 23 年 (2011 年) 9 月)

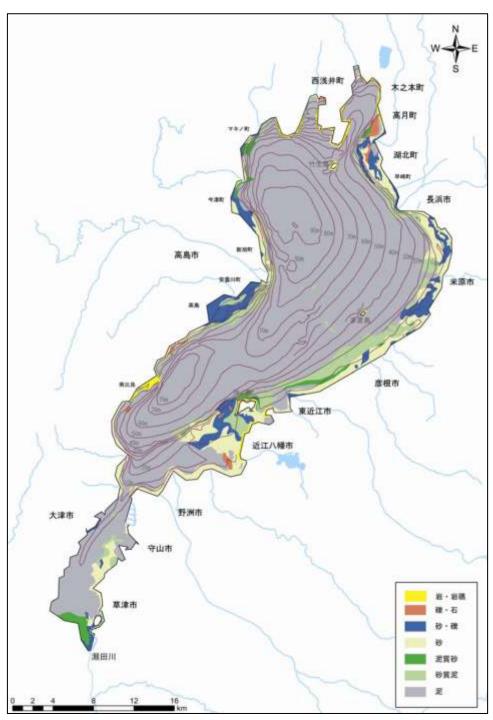

資料:滋賀県琵琶湖環境科学研究センター資料より作成 図 1.1.29(2) 南湖 52 地点における底層溶存酸素量の調査地点

(平成 24 年 (2012 年) 9 月)


資料:滋賀県琵琶湖環境科学研究センター資料より作成 図 1.1.29(3) 南湖 52 地点における底層溶存酸素量の調査地点

(平成 26 年 (2014 年) 9月)

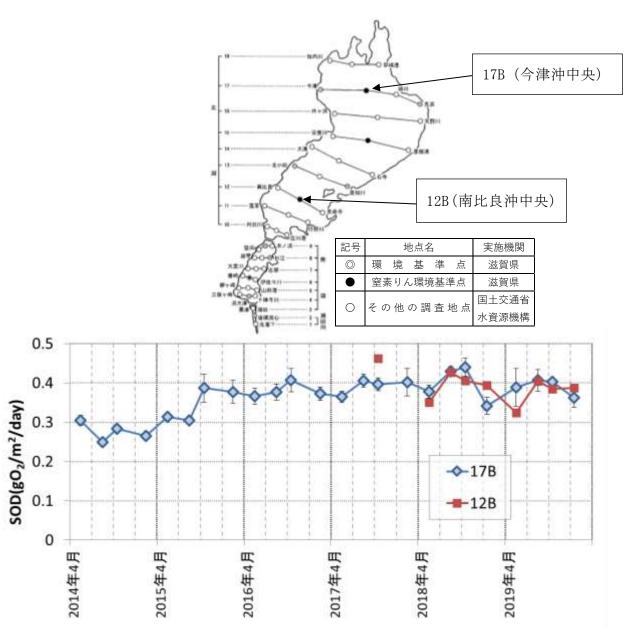
資料:滋賀県琵琶湖環境科学研究センター資料より作成 図 1.1.29(4) 南湖 52 地点における底層溶存酸素量の調査地点


(平成 29 年 (2017 年) 9 月)

資料:滋賀県琵琶湖環境科学研究センター資料より作成 図 1.1.29(5) 南湖 52 地点における底層溶存酸素量の調査地点 (令和元年(2019年)9月)

1.1.3 底質の状況

琵琶湖の底質の分布状況は図 1.1.30 に示すとおりである。北湖では概ね水深 10m 以浅の湖岸に砂、礫、石、岩等が分布し、水深 10m~30m の範囲は泥が主体で、水深 30m 以深の湖心部は泥が主体に広がっている。南湖では、泥が多く、東岸に砂地が分布している。



資料:「資料2-2 水生生物の保全に係る水質環境基準の類型指定について(第3次報告)」(平成21年7月、中央環境審議会水環境部会(第20回))

図 1.1.30 琵琶湖の底質の状況

琵琶湖の第一湖盆及び第二湖盆における酸素消費速度(以降、SODと示す。)は図1.1.31に示すとおりである。

第一湖盆の代表地点として、水深 88.6m の 17B (今津沖中央)、第二湖盆の代表地点として、水深 89.3m の 12B (南比良沖中央) にて SOD の比較をした。比較した結果、両地点に大きな違いは見られなかった。

資料:滋賀県琵琶湖環境科学研究センター提供資料

図 1.1.31 琵琶湖の第一湖盆及び第二湖盆における SOD の状況

1.1.4 水域の地形及び流況等

(1) 湖底の地形(水深)

湖底の地形(水深)については、「1.1.3 底質の状況」の図 1.1.30 (p51) に示す とおりである。

(2) 琵琶湖内の水流

琵琶湖における水流を含む水理現象の概要は図 1.1.32 に示すとおりである。北湖では面積が広く水深が深いことから、風や地形・地球の自転の影響によって引き起こされる「環流」や「静振」などのほか、表層と下層の温度差が原因となるさまざまな水理現象を見ることができ、南湖では水深が浅いことから、強風や瀬田川洗堰からの放流水よる水理現象が確認されている。

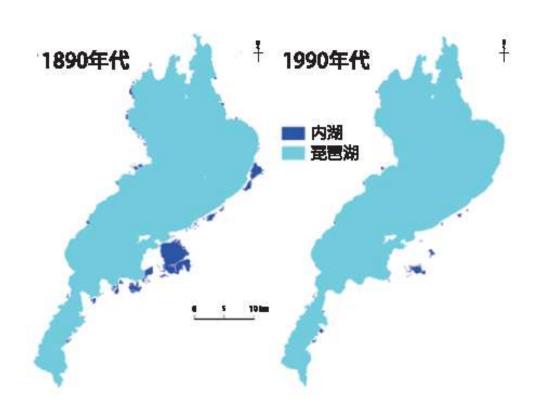
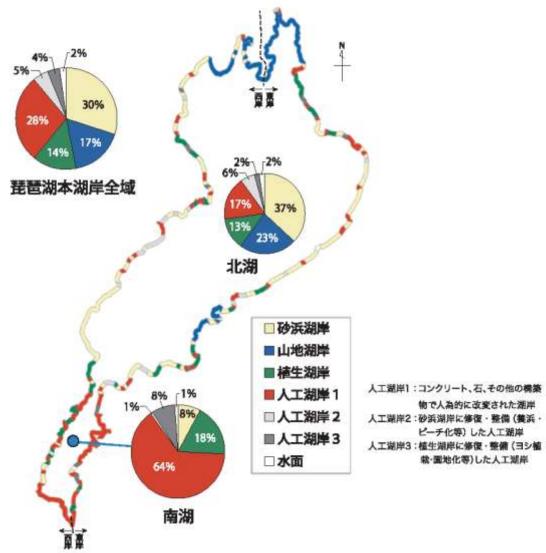

資料:「アクア琵琶」(水のめぐみ館ホームページ)

図 1.1.32 琵琶湖における水理現象


(3) 水面面積の変遷

琵琶湖における干拓の状況は、明治時代(1890年代)から現在までの琵琶湖の面積変化より、北湖(本湖)では近年までに約9.9km²減少し、図1.1.33に示すように、北湖周辺の内湖面積の減少は30.9km²と、北湖(本湖)の減少量の3倍以上であった。一方、南湖(本湖)では約9.5km²減少し、北湖(本湖)の減少量にほぼ匹敵している。

また、平成 19 年 (2007 年) に実施された湖岸形態の調査結果 (辰巳、2008) による湖岸類型の分布は、図 1.1.34 に示すとおりであり、琵琶湖湖岸全体では、自然湖岸が 61% (内訳は砂浜湖岸:30%、山地湖岸:17%、植生湖岸:14%)、人工湖岸が 37%、その他が 2%であり、南湖だけでみると人工湖岸の割合が 73%にもなり、北湖に比べて南湖の人工湖岸の割合が著しく大きくなっている。

資料:「琵琶湖ハンドブック三訂版」(平成30年3月、滋賀県琵琶湖環境部 琵琶湖保全再生課) 図 1.1.33 明治時代(1890年代)と平成初期(1990年代)における琵琶湖と内湖の分布

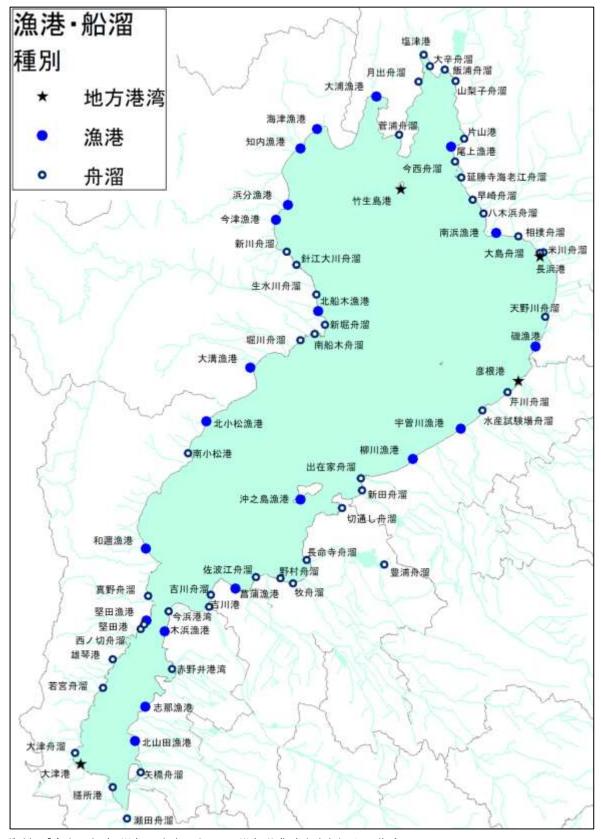
資料:「琵琶湖ハンドブック三訂版」(平成30年3月、滋賀県琵琶湖環境部 琵琶湖保全再生課) 図 1.1.34 湖岸類型の分布(平成19年(2007年))

2 - 55

1.1.5 水域の利用状況

(1) 港湾・漁港・舟溜

滋賀県内の港湾・漁港・舟溜は表 1.1.4 及び図 1.1.35 に示すとおりである。滋賀県内の港湾、漁港及び舟溜は合計 69 存在し、うち地方港湾は 4、第 1 種漁港は 20 である。


表 1.1.4 滋賀県内の港湾・漁港・舟溜

市名	港名
	真野舟溜
	○堅田漁港
	堅田港
	西ノ切舟溜
	雄琴港
	若宮舟溜
大津市	大津舟溜
	★大津港
	膳所港
	瀬田舟溜
	○北小松漁港
	南小松港
	○和邇漁港
	矢橋舟溜
草津市	○北山田漁港
	○志那漁港
	赤野井港湾
守山市	○木浜漁港
	今浜港湾
	吉川港
野洲市	吉川舟溜
	○菖蒲漁港
	佐波江舟溜
	野村舟溜
	牧舟溜
近江八幡市	長命寺舟溜
	切通し舟溜
	○沖之島漁港
	豊浦舟溜
東近江市	新田舟溜
来赶在III	出在家舟溜
	○柳川漁港
	○宇曽川漁港
彦根市	水産試験場舟溜
	芹川舟溜
	★彦根港
米原市	○磯漁港
小 房川	天野川舟溜

市名	港名
長浜市	★ ○ ★ ○ ★ ○ ★ ○ ★ ○ ★ ○ ★ ○ ★ ○ ★ ○ ★ ○
高島市	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
計	69 うち 地方港湾 4 第1種漁港 20

★地方港湾 ○第1種漁港

資料:「令和2年度 滋賀の水産」(2020、滋賀県農政水産部)より作成

資料:「令和2年度 滋賀の水産」(2020、滋賀県農政水産部)より作成

図 1.1.35 琵琶湖における港湾施設・舟溜

(2) 水浴場

琵琶湖における水浴場の分布は図 1.1.36 に示すとおりであり、琵琶湖には 8 水 浴場がある。

資料:「令和2年度水浴場水質調査結果(開設前)について」(2020、滋賀県琵琶湖環境部)

図 1.1.36 琵琶湖における水浴場

(3) 国立公園・国定公園等

琵琶湖における国定公園は図 1.1.37 に示すとおりである。琵琶湖全域及び周辺が国定公園に指定されている。

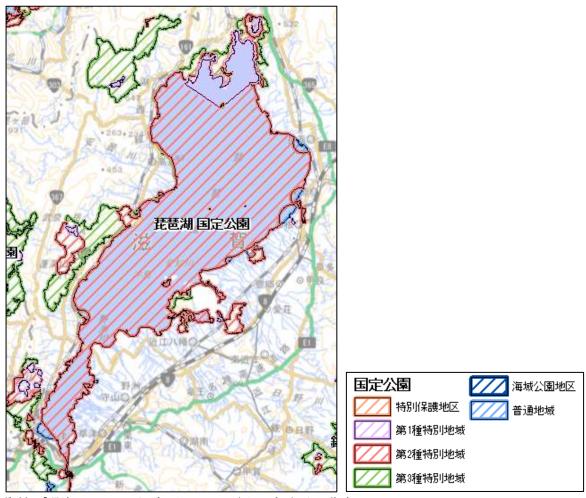
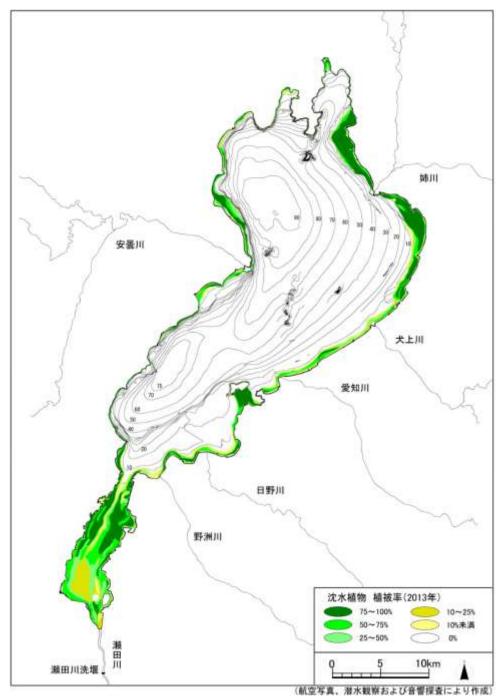
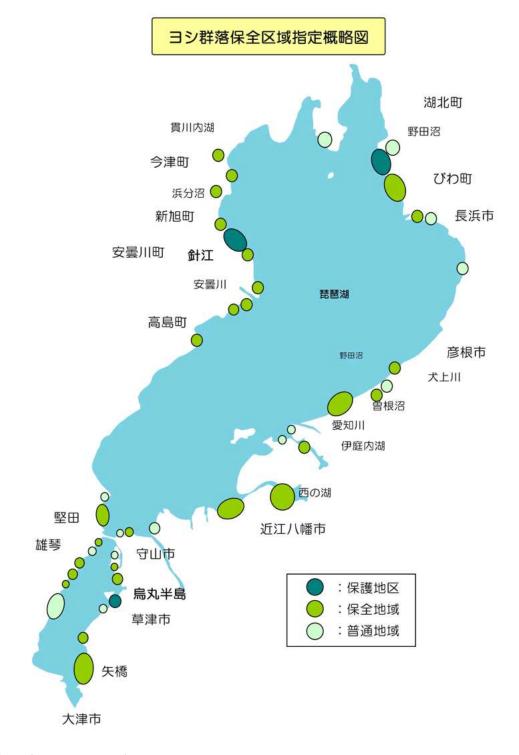



図 1.1.37 琵琶湖における国定公園

1.1.6 沈水植物群落の状況


琵琶湖の湖岸一帯には、沈水植物が分布している。分布面積は北湖全体で3,362ha、南湖全体で2,624haとなっている(平成25年(2013年)現在)。水深別の状況は、主に0m~7.5m層に分布しており、北湖では北端内湾部(西浅井町塩津湾・大浦湾を含む)、北東部から南部湖岸(長浜市・米原市・彦根市・東近江市・近江八幡市・野洲市・大津市)、西部湖岸(高島市マキノ町から高島)、南湖では湖岸(草津市沖合を除く)に広く分布している。琵琶湖における沈水性植物群落の水辺分布は図1.1.38に示すとおりである。

また、琵琶湖の湖岸にはヨシ等の抽水植物が分布している。「琵琶湖ヨシ群落の保全に関する条例」により、ヨシ群落保全区域等が指定されており、北湖全体で150ha、南湖全体で97haが指定されている(平成29年(2017年)3月31日現在)。ヨシは概ね水深2m以浅に分布している。北湖では北端内湾部(西浅井町大浦湾)、北東部から南部湖岸(長浜市・米原市・彦根市・東近江市・近江八幡市・野洲市・大津市)、西部湖岸(高島市マキノ町から高島)、南湖では湖岸(守山市・草津市・大津市(大津市南部を除く))に分布する。滋賀県ヨシ群落保全区域は図1.1.39に示すとおりである。

資料:「琵琶湖沈水植物図説 第4版」(平成30年3月、独立行政法人水資源機構 琵琶湖開発総合管理所)

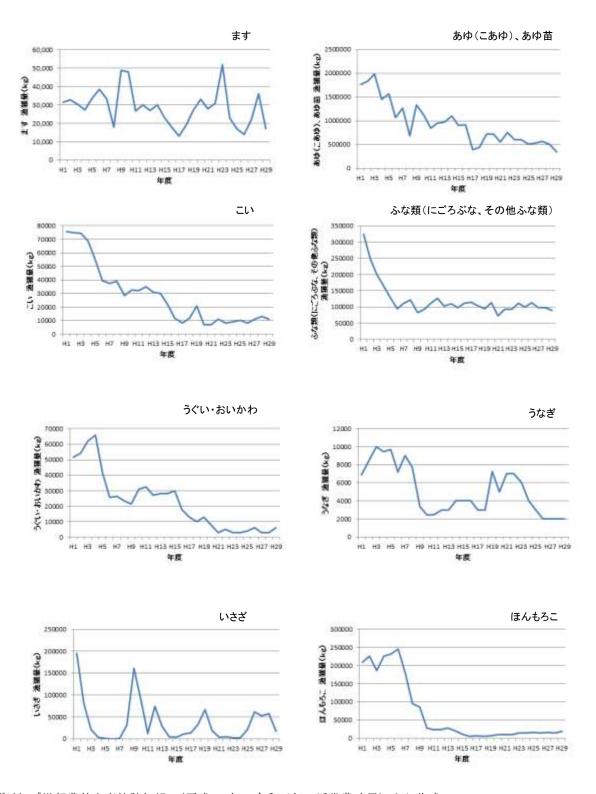
図 1.1.38 琵琶湖における沈水性植物群落の水辺分布

資料:滋賀県ホームページ

図 1.1.39 滋賀県ヨシ群落保全区域

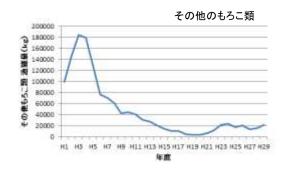
1.1.7 水産等に関する情報

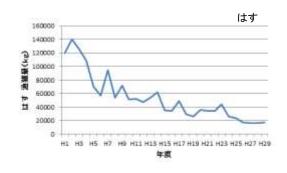
(1) 漁獲量の経年変化及び放流量の経年変化

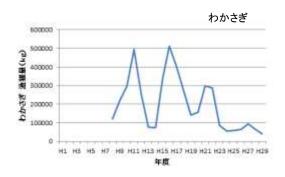

滋賀における農林水産統計年報に基づき、魚種別の近年(平成元年(1989年)~平成29年(2017年)まで)の漁獲量を整理した結果は図 1.1.40に示すとおりである。 湖沼で生息あるいは再生産を行い、かつ、生活史の一時期を底層に依存する種に

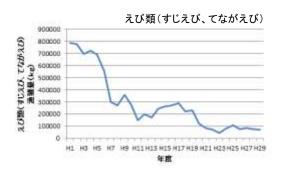
注目すると、全ての魚種の漁獲量が減少傾向にある。

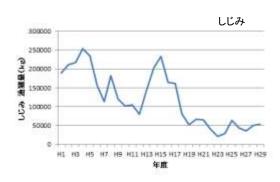
また、滋賀県では、アユ、ニゴロブナ、ホンモロコ、ビワマス、コイ、ウナギ、セタシジミ、ワタカ、ゲンゴロウブナといった魚介類の放流を滋賀県漁連や水産振興協会が主体となって行っている。放流量の実績は表 1.1.5 に示すとおりである。


<統計対象の魚種>


・ます(ビワマス等)、あゆ(コアユ)、こい(コイ)、ふな類(ニゴロブナ、ギンブナ、キンブナ等)、うぐい・おいかわ(ウグイ、オイカワ)、うなぎ(ウナギ)、いさざ(イサザ)、ほんもろこ(ホンモロコ)、その他のもろこ類(スゴモロコ、タモロコ等)、はす(ハス)、わかさぎ(ワカサギ)、えび類(スジエビ、テナガエビ等)、しじみ(セタシジミ、マシジミ)




資料:「滋賀農林水産統計年報」(平成30年~令和元年、近畿農政局)より作成 図 1.1.40 (1) 琵琶湖における魚種別漁獲量の変遷


2 - 64

資料:「滋賀農林水産統計年報」(平成30年~令和元年、近畿農政局)より作成

図 1.1.40(2) 琵琶湖における魚種別漁獲量の変遷

表 1.1.5 (1) 漁獲対象種の放流実績

年		ニゴロブ	+	ゲンコ	ゴロウブナ	ワタ	カ		ホンモロ	3	1	ピワマン	Z.		ウナ	ギ	セタシジミ		≅ ⊐1			親	親アユ	
度		サイズ	放流量	サイ	ズー放流量	サイズ	放流量		サイズ	放流量	1	サイズ	放流量		サイズ	放流量		放流量		サイズ	放流量		放流量	
\$58	稚魚 幼魚		589千尾 972kg	-				ふ化仔魚 稚魚		1,160千月 25,300尾	稚魚		323千月	稚魚		3, 789kg	親貝	4, 980kg	稚魚		1, 000kg	人工河川 天然河川	16, 018k 6, 000k	
59	稚魚 幼魚		65千尾 2,125kg	-				ふ化仔魚		1,040千足	稚魚		1,231千月	稚魚		2, 558kg	親貝	2, 000kg	稚魚		1,001kg	人工河川 天然河川		
60	稚魚 幼魚		108千尾 2,020kg					ふ化仔魚 稚魚		2, 265千尾 235千尾			692千月	推魚		2, 761kg	親貝	4, 000kg	稚魚		1, 370kg	人工河川天然河川		
61	ふ化仔魚 稚魚 幼魚		14,900千尾 165千尾 2,567kg					卵 ふ化仔魚 稚魚		30,600千粒 4,000千尾 220千尾			837千月	稚魚		2, 705kg	親貝	2, 0 <mark>3</mark> 5kg	稚魚		1, 500kg	人工河川天然河川	24, 859k 7, 500k	
62	ふ化仔魚 幼魚		10,600千尾 4,000kg	-				卵 ふ化仔魚 稚魚		30,600千粒 4,000千足 220千足			1,070千月	稚魚		2, 073kg	親貝	1, 600kg	稚魚		1, 220kg	人工河川 天然河川	16, 728k 7, 500k	
63	ふ化仔魚 稚魚 幼魚	10mm 4. 5g	1,800千尾 365千尾 4,056kg	***************************************				卵 ふ化仔魚 稚魚	1 Omm	30,600千粒 1,570千尾 169千尾		0. 24g	940千月	稚魚	18. 0g	2, 050kg	親貝	1, 321kg	稚魚	35. 7g	1, 000kg	人工河川 天然河川	12 0	
H元	ふ化仔魚 稚魚 幼魚	10mm 4. 5g	10,900千尾 290千尾 4,022kg	-				卵 ふ化仔魚 稚魚	1 0 mm	22,550千粒 12,200千尾 140千尾	稚魚	0. 34g	500千粒 461千月	-	13, 0g	1, 466kg	親貝	2, 040kg	推魚	32. 5g	1,000kg	人工河川 天然河川	23, 244k 7, 500k	
2	ふ化仔魚 稚魚 幼魚	10~70mm 4. 3g	16,000千尾 1,365千尾 318kg	-				卵 ふ化仔魚 稚魚	4. 5mm 9~20mm	10,920千粒 10,000千足 205千足	稚魚	0. 25~0. 9 g	110千粒 416千貨		20.1g	1, 026kg	親貝	2, 768kg	稚魚	27. 8g	1, 000kg	人工河川 天然河川	10 10 10 10	
3	ふ化仔魚 稚魚 幼魚	10~70mm 3. 7g	55,000千尾 4,000千尾 1,078千尾	-				ふ化仔魚 稚魚 稚魚	4. 5mm 10~20mm 0. 16~0. 33g		稚魚	0, 22g	250千粒 416千月	11	19. 9g	1, 041kg	親貝	2, 000kg	稚魚	28. 3g	1, 020kg	人工河川 天然河川	A METERS	
4	ふ化仔魚 稚魚 幼魚	10~30mm 3.8g	57,922千尾 5,206千尾 1,057千尾	-				ふ化仔魚 稚魚	0. 12g	6, 237千尾 141千尾	100000000000000000000000000000000000000	1, 27g	650千粒 262千月	C-07.00 (c)	13. 9g	812kg	親貝	1, 960kg	稚魚	34. 5g	1, 000kg	人工河川 天 <mark>然河</mark> 川		
5	ふ化仔魚 稚魚 幼魚		23,574千尾 3,169千尾 1,520千尾	-				ふ化仔魚 稚魚	0.14g	4, 287千尾 86千尾		2, 62g	820千粒 129千員	0.7	10. 9g	836kg	親貝	1, 950kg	稚魚	70g	1, 000kg	人工河川 天然河川	16, 710k 7, 500k	

表 1.1.5 (2) 漁獲対象種の放流実績

滋賀県漁業協同組合連合会が実施 ※ セタシジミの放流について、平成10年度~平成14年度は母貝生産組合がD型仔貝の生産を行った。 (公財) 滋賀県水産振興協会が実施

年		ニゴロブ	+	ゲンゴ	「ロウブナ	ワタカ			ホンモロコ			ピワマス			ウナ	ギ	セタ	シジミ		コイ		親刀	' ユ
度		サイズ	放流量	サイ	ズ 放流量	サイズ 放	流量		サイズ	放流量		サイズ	放流量		サイズ	放流量		放流量		サイズ	放流量		放流量
	稚魚	23mm	6,740千尾	-				ふ化仔魚		2,533千尾	稚魚	2.51g	174千月	稚魚	15. 3g	299kg	親貝	1, 950kr	稚魚	33. 3g	400kg	人工河川	7, 500kg
6	幼魚	2.7g	1,567千尾					稚魚	10~12mm	537千尾				e moesti.	gasati ente			14041242424	One Control		A A SECTION AS		
1-5	-				1				- 150 A-60 (MA)								1						
	稚魚	27mm	4,075千尾				- 9	ふ化仔魚		2,796千尾	発眼卵		750千粒	稚魚	14.8g	996kg	親貝	1, 950kg	稚魚	44. 8g	1,000kg	人工河川	17, 378kg
7	幼魚	8.7g	323千尾					稚魚	13mm	438千尾	稚魚	2. 48g	127千尾				DUNGSOLY S	(A)	300000000000000000000000000000000000000			天然河川	4, 250kg
100		-			1				0.04														NACH HARRES
10	稚魚	23mm	6,583千尾		1			ふ化仔魚		8,556千尾	発眼卵		750千粒	稚魚	15.5g	1,044kg	親貝	1, 880kg	稚魚	74. 6g	1,000kg	人工河川	21, 873kg
8	幼魚	53~107mm	514千尾	9				稚魚	40mm	235千尾	稚魚	2. 51g	149千尾									天然河川	7, 500kg
			2.00								10000												
	稚魚	26mm	6,468千尾					ふ化仔魚		5, 595千尾	発眼卵		100千粒	稚魚	13.8g	1,576kg	親貝	1, 400kg	稚魚	24g	1,500kg	人工河川	9, 700kg
9	幼魚	50~103mm	841千尾								稚魚	2. 33g	250千月									天然河川	7, 500kg
	稚魚	28mm	6,531千尾		1			ふ化仔魚		8,098千尾	稚魚	2. 38g	313千月	稚魚	15, 5g	1,543kg	D型仔貝	23億個	稚魚	20. 9g	1,500kg	人工河川	11,600kg
10	幼魚	51~106mm	1,756千尾					稚魚	20mm	229千尾									A			天然河川	7, 500kg
	稚魚	5mm	150千尾																				
	稚魚	24mm	4,327千尾		1			ふ化仔魚		5, 187千尾	稚魚	2. 19g	273千月	稚魚	18.7g	1,041kg	D型仔貝	23億個	稚魚	18. 1g	1,000kg	人工河川	8, 845kg
11	幼魚	57~110mm	924千尾		1			稚魚	20mm	1,420千尾				11110		300000000000000000000000000000000000000			1 10 10 10			天然河川	7,500kg
	幼魚	5mm	150千尾																				
	稚魚	25mm	4,993千尾		1		- 1	稚魚	20mm	970千尾	稚魚	2. 47g	369千月	稚魚	13.9g	1,036kg	D型仔貝	23億個	稚魚	28. 3g	1,500kg	人工河川	13, 500kg
12	幼魚	50~78mm	629千尾																			天然河川	7,500kg
741.62		105mm	681千尾	-																			
10	稚魚	25mm	5,126千尾		1			稚魚	20mm	2,550千尾	稚魚	1, 85g	351千月	稚魚	26.7g	2, 265kg	D型仔貝	27億個	稚魚	40. 3g	1,500kg	人工河川	14, 972kg
13	幼魚	95mm	766千尾	-																		天然河川	7, 500kg
15	幼魚		Contract of the Contract of th		1																		0.0000000000000000000000000000000000000
	稚魚	22mm	5,097千尾					稚魚	21 mm	4,126千尾	稚魚	1. 93g	459千月	稚魚	15. 9g	2, 665kg	D型仔貝	30億億	稚魚	15. 2g	1,500kg	人工河川	20,000kg
1.4	幼魚	50mm	747千尾		1																		
	幼魚	90mm	1,342千尾		1																		
	稚魚	23mm	3,115千尾					稚魚	19mm	5,564千尾	稚魚	2. 21g	972千月	稚魚	15. 0g	2, 510kg	D型仔貝	30億個	推魚	20g	1,500kg	人工河川	15, 100kg
	水田齊用	27mm	2,459千尾	-																			
15	稚魚 幼魚	49mm	635千尾	-																			
	幼魚	100mm	AND REAL PROPERTY.														1						
	稚魚	25mm		催魚 20m	m: 517千尾		- 1	稚魚	21 mm	3.004千足	稚魚	2.10g	649 T B	雅魚	15. 0g	5, 740kg	D型仔貝	31億億				人工河川	7. 900kg
	水田育用								2.1111					100.000						KHVの			
16	稚魚																			発生に			
	幼魚	58mm	256千尾									and the same								より休止			
S	幼魚	103~109mm	1,304千尾		15		- 8														- 4		

表 1.1.5 (3) 漁獲対象種の放流実績

滋賀県漁業協同組合連合会が実施 (公財)滋賀県水産振興協会が実施

年		ニゴロブ	<i>t</i>	1	ゲンゴロ	ウブナ		ワタ	カ		ホンモロ:	1		ピワマス	,		ウナキ	F	セタ	レジミ	コイ		親	アユ
度		サイズ	放流量	27111	サイズ	放流量		サイズ	放流量		サイズ	放流量		サイズ	放流量		サイズ	放流量		放流量	サイズ	放流量		放流量
17	稚魚 水田育成 稚魚 幼魚	7.000000	944千尾 9,252千尾 1,657千尾		20mm	518千足				雅魚 水田育成 雅魚		6,776千足 196千足		1, 95g	889千見	7500	37. 4g	2, 017kg 956kg		25億個	KHVの 発生に より休止		人工河川	26, 212kg
18	雅魚 水田育成 雅魚 幼魚	20mm 20mm	2,126千尾 8,370千尾 2,429千尾	稚魚		585千尾	5			稚魚 水田育成 稚魚		4,326千尾 131千尾	No.	2. 06g	877千尾	稚魚			D型仔貝	12.5億個	KHVの 発生に より休止	8	人工河川	10, 000kg
19	稚魚 水田育成 稚魚 幼魚	28mm	2,570千尾 6,300千尾 1,260千尾		20mm	1,519千足	Į.			稚魚	21mm	3,540千月	推魚	2. 37g	894千月	北湖 3	9. 0g	2, 185kg 1, 012kg		30億個	KHVの 発生に より休止	83	人工河川	13, 510kg
	稚魚 水田育成 稚魚 幼魚	26mm	1,144千尾 11,370千尾 947千尾							ふ化仔魚		55,600千單 (一部集放流)	稚魚	2. 24g	721千厘	北湖 3	7. 6g	195kg 58kg	5. =(.25.M)	5.3億個	KHVの 発生に より休止		人工河川	13, 449kg
21	稚魚 水田育成 稚魚 幼魚	25mm	1,217千尾 10,327千尾 1,024千尾							ふ化仔魚 稚魚 稚魚	1 2mm	1.12億足 2,548千尾 1,002千尾		2. 00g	690千月	北湖 6	2. 5g	345kg 365kg		10.1億個	ふ化仔魚	191千尾	人工河川	23, 139kg
22	稚魚 水田育成 稚魚 幼魚	28mm	1,413千尾 8,414千尾 807千尾				稚魚	44mm	392千尾	ふ化仔魚 稚魚 稚魚	1 7mm	1.21億足 2,688千足 1,417千足		2.13g	794千 厘	北湖 6	0. 3g	137kg 134kg		11.1億個			人工河川	11, 659kg
23	稚魚 水田育成 稚魚 幼魚	25mm	921千尾 11,906千尾 854千尾		, 20mm	113千足	稚魚	46mm	323千尾	ふ化仔魚 稚魚 稚魚	1 4mm	1.26億月 3,045千月 1,281千月		2. 24g	751千星	8	3	287kg		11.1億個			人工河川	11, 632kg
24	稚魚 水田育成 稚魚 幼魚	20mm 27mm 106mm	11,946千尾		20mm	262千崖	100000		326千尾 130千尾	水田育成	23mm	10,592千月	推魚	1.51g	539千月	北湖 2	4. 0g	617kg 203kg		2.9億個 600万個			人工河川	20, 774kg
25	稚魚 水田育成 稚魚 幼魚	25mm	524千尾 12,040千尾 1,011千尾		, 20mm	197千足	the second	Sugaring	144千尾 84千尾		20mm	9,109千足	稚魚	0.78g	262千足	北湖 2		466kg 179kg		946万個			人工河川	23, 500kg
	稚魚 水田育成 稚魚 幼魚		670千尾 11,399千尾 930千尾		20mm	110千尾	1000		134千尾 84千尾		20mm	8,460千角	稚魚	1.71g	592千尾	推魚北湖	51. g		O. 3mm	1180万個			人工河川	9, 960kg
27	雅魚 水田育成 雅魚 幼魚	20mm	597千尾 9,780千尾	稚魚	. 20mm	32千尾	357/1900		268千尾 104千尾		20mm	8,470千月	推魚	1. 62g	731千見	稚魚	9. 4g	750kg	O. 3mm	1190万個			人工河川	9, 960kg

表 1.1.5 (4) 漁獲対象種の放流実績

邀賀県漁業協同組合連合会が実施

(公財)滋賀県水産振興協会が実施

年		ニゴロブ	<i>†</i>	7	プンゴロ	ウブナ		ワタ	カ		ホンモロニ	1		ピワマス	Samuel Control	ウナギ		セタ	シジミ	コイ	親アユ
度		サイズ	放流量	3	サイズ	放流量			放流量	8	サイズ	放流量		サイズ	放流量	サイズ	放流量	-	放流量	サイズ 放流	放流量
	稚魚	20mm	874千尾	稚魚	20mm	228千尾	稚魚	50mm	77千尾	水田育成 唯魚	20mm	6,335千尾	稚魚	1. 39g	475千尾	稚魚		0. 3mm	1,234万儒		人工河川 13,712kg
28	水田育成 程魚	25mm	9,222千尾				稚魚	50mm	201千尾							北湖 49.5g	968kg				
	幼魚	111mm	870千届	/ 3	1		1						1	1 1		南湖 49.5g	323kg				
	稚魚	20mm	232千尾				稚魚	50mm	11千尾	水田育成 雅魚	20mm	10,436千尾	稚魚	1. 29g	242千尾	稚魚		0. 3mm	242万個		人工河川 18, 190kg
29	水田育成 稚魚	25mm	8,296千尾				稚魚	50mm	223千尾	-						北湖 23.9g 1	. 020kg				
	幼魚	105mm	951千尾											i i		南湖 23.9g	330kg				
	稚魚	20mm	515千尾				稚魚	50mm	17千尾	水田育成 稚魚	20mm	6,208千尾	稚魚	0.9g	530千尾	稚魚		0. 3mm	1,283万個		人工河川 18,133kg
30	水田育成 稚魚	25mm	10,176千尾				稚魚	50mm	200千尾	-						北湖 48.6g	756kg				
	幼魚	105mm	1,143千尾						0.11					1		南湖 48.6g	252kg				
	稚魚	20mm	724千尾	稚魚	BOmm	620千尾	稚魚	50mm	25千尾	水田育成 稚魚	20mm	9,303千尾	稚魚	1.51g	490千尾	推魚		0. 3mm	1,254万個	-	人工河川 13,147kg
31	水田育成 稚魚	25mm	9,237千尾				稚魚	50mm	100千尾	0.000						北湖 30.6g	638kg				
	幼魚	105mm	991千尾	1 2									. 3			南湖 30.6g	212kg				

(2) 区画漁業権等

琵琶湖における水産の概要図は図 1.1.42 に示すとおりである。

琵琶湖では、第1種区画漁業、共同漁業(第1種、第2種、第5種)が設定されている。参考までに、滋賀県の漁業制度の概要は図 1.1.41 に示すとおりである。

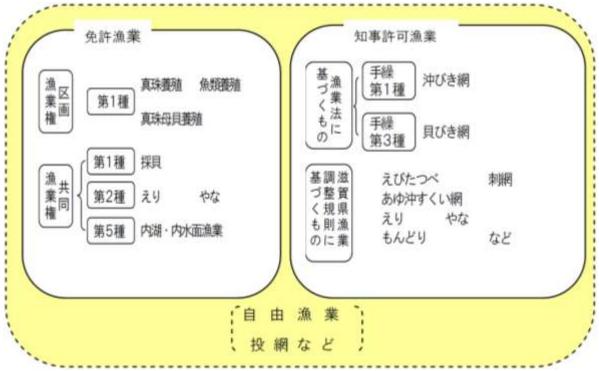


図 1.1.41 滋賀県の漁業制度概要

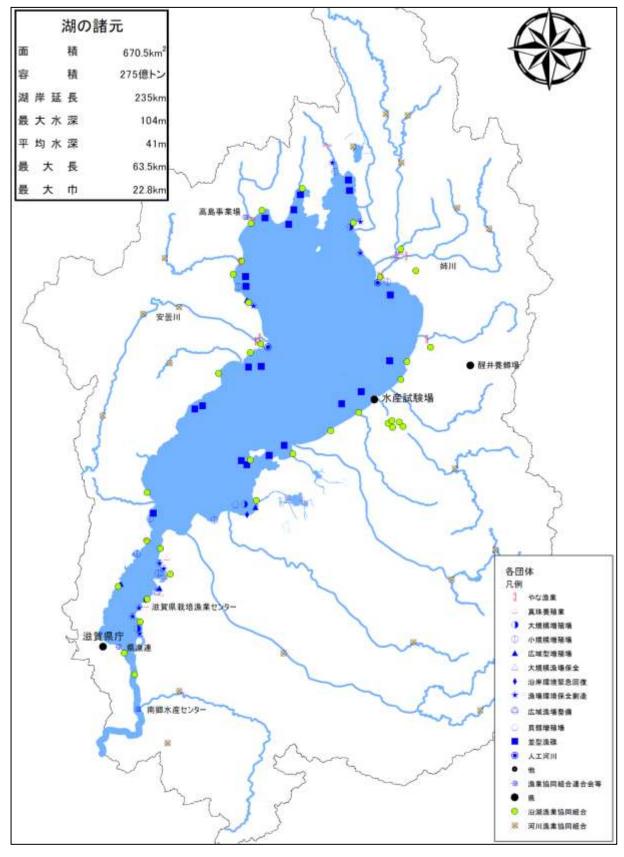
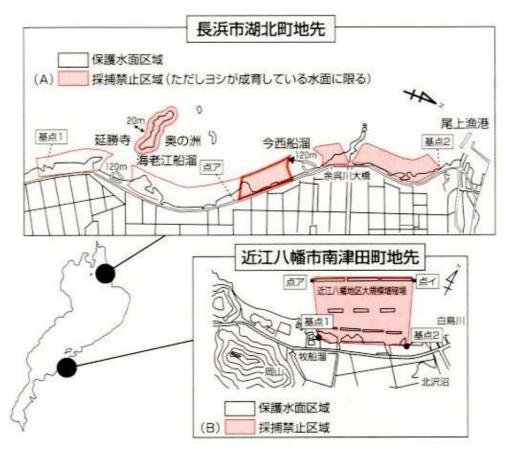
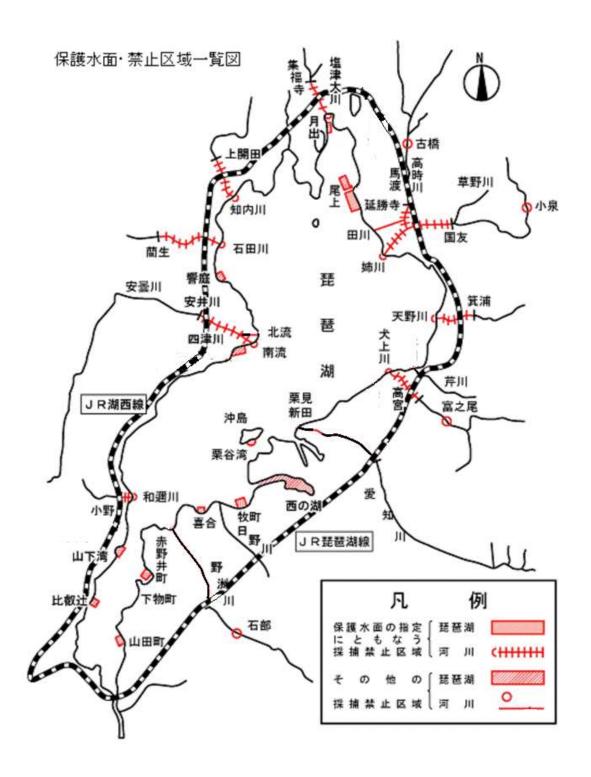



図 1.1.42 琵琶湖における水産概要図

(3) 保護水面及び禁止区域の設定状況

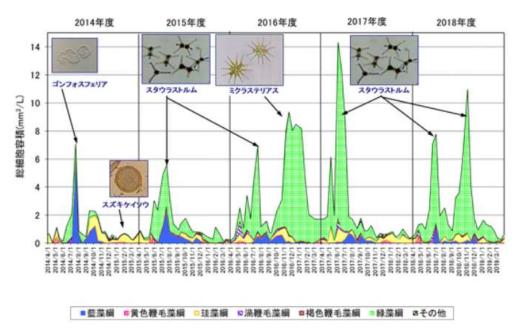

水産資源保護法に基づく保護水面が、フナ、モロコを対象として長浜市湖北町地 先、近江八幡市南津田町地先に設定されている。また、滋賀県漁業調整規則に基づ く水産資源保護培養を目的とした禁止区域が、フナ、モロコを対象として、長浜市 湖北町尾上地先、草津町山田地先、草津市喜合地先、長浜市西浅井町月出地先、大 津市衣川一丁目地先、守山市赤野井町地先、高島市新旭町饗庭地先、大津市小野地 先、大津市比叡辻地先及び近江八幡市南津田町地先に、水産動植物を対象として、 近江八幡市沖島町地先、高島市安曇川町四津川金丸橋から堀川橋地先に、貝類を対 象として、近江八幡市地先、西の湖及び同湖から琵琶湖に通ずる水路ならびに同湖 周辺の水路に設定されている。

琵琶湖における保護水面設定状況を図 1.1.43 に、琵琶湖における保護水面・禁止区域の設定状況は図 1.1.44 に示すとおりである。

資料:滋賀県農政水産部水産課ホームページ

図 1.1.43 琵琶湖における水産資源保護法の保護水面設定状況

資料:滋賀県農政水産部水産課ホームページ


図 1.1.44 琵琶湖における水産資源保護法の保護水面・禁止区域

(4) 主要水産物の漁場

琵琶湖における主要水産物の漁場は、「(2)区画漁業権等」(p70)に示すとおりである。

(5) プランクトン量

今津沖中央における平成 26 年度 (2014 年度) ~平成 30 年度 (2018 年度) の植物プランクトンの総細胞容積の経月変動は図 1.1.45 に示すとおりである。例年、冬季の循環期に向かって主に珪藻が増加し、循環期が終わる春以降、増加した珪藻が底層に沈降する。しかし、平成 28 年 (2016 年) 3 月は、珪藻を含む植物プランクトが過去 4 年と比較し少なかった。これは、平成 27 年 (2015 年) 末からの記録的な暖冬により全層循環が遅れ、下層から表層への栄養塩の供給が少なく、冬季の植物プランクトンの増殖量が少なかったことが要因の一つであると指摘されている。

資料:「琵琶湖環境科学研究センター試験研究報告書第15号」(2019、滋賀県琵琶湖環境科学研究センター) 図 1.1.45 今津沖中央における植物プランクトンの総細胞容積の経月変動

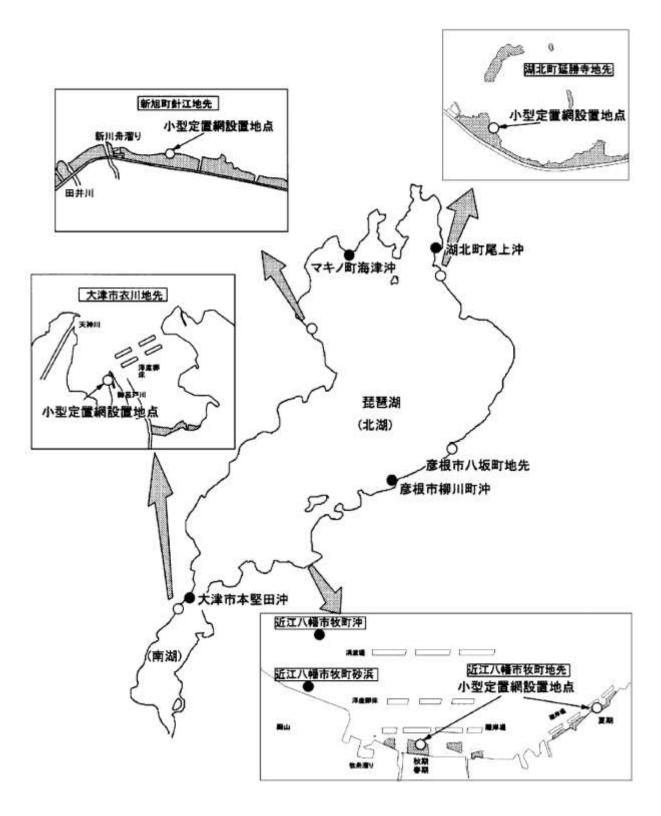
1.2 水生生物の生息状況等の把握

琵琶湖に生息する水生生物の抽出にあたっては、地域住民にとって身近な種であり、かつ溶存酸素量の基準値導出の際に参考とされた貧酸素耐性値の知見が主に魚類、甲殻類に係るものであることから、その対象を魚類、甲殻類及び軟体動物(貝類)とした。具体的には表 1.2.1 に示す資料に基づきリストを作成した。

琵琶湖では、滋賀県水産試験場が実施した琵琶湖沿岸帯における魚類及び底生動物等の生息状況調査の結果が、報告書にまとめられている(平成 14~15 年度琵琶湖沿岸帯調査報告書)²⁾。本資料には、琵琶湖の沿岸一帯から沖合まで細かく調査地点を設定し、様々な採集方法によって魚類及び底生動物を捕獲した結果が整理されていることから、琵琶湖に生息する魚介類の把握に用いた。

また、滋賀県農政水産部では、滋賀県の水産業及びそれを取り巻く現状と県の取り組みについて、「滋賀の水産」³⁾にまとめている。この中の水産基本情報として、滋賀県に生息する魚介類が整理されており、これを用いた。

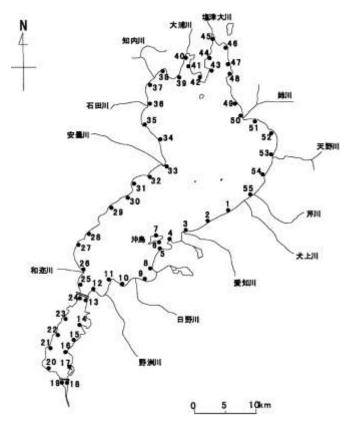
さらに、滋賀県琵琶湖環境部では、琵琶湖を健全な姿で次世代に引き継ぐための指針として、平成62年(2050年)頃の琵琶湖のあるべき姿を念頭に、琵琶湖総合保全整備計画(マザーレイク21計画)を平成12年(2000年)3月に策定した4)。本計画には、琵琶湖水系に生息する固有種が整理されており、これを用いた。また、学識者等にヒアリングを行い、上記資料から把握できなかった重要な生物を追加した。


なお、把握した魚介類については、貴重種の分類、琵琶湖固有種及び外来種にそれ ぞれ該当するか確認を行った。

琵琶湖における保全対象種の設定を検討するため、生態特性及び貧酸素耐性等に関して情報整理したリストは表 1.2.2 に示すとおりである。

整理された水生生物は、<u>魚類 81 分類群、甲殻類 10 種、軟体動物のうち、巻貝類が 43 種、二枚貝類が 23 種の計 157 分類群</u>であった。

	衣 1.2.1 定色	例に土心り る思川類の	プに控り/にめバー用い/こ月和
	資料名	発行者	掲載情報
1)	平成 14-15 琵琶湖および河 川の魚類等の生息状況調査 報告書 ¹⁾	滋賀県水産試験場	平成 14 年 (2002 年) 6 月 ~ 平成 15 年 (2003 年) 10 月において、5 地域に区分した琵琶湖沿岸の地点(計 18 地点)での魚類及び甲殻類(エビ類・カニ類)の出現状況をまとめている。調査地点図は図 1.2.1、図 1.2.2に示すとおりである。
2	平成 14-15 琵琶湖沿岸帯調 查報告書 ²⁾	滋賀県水産試験場	平成 14 年 (2002 年) 9/25~11/20、平成 15年 (2003 年) 7/23~8/25 の計 25 日間において、琵琶湖沿岸線に沿って 4km 間隔に設定した 55 基点における水深別の貝類及び貝類以外の底生生物の出現状況をまとめている。調査地点図は図 1.2.3 に示すとおりである。
3	平成 27 年度 滋賀の水産3)	滋賀県農政水産部	水産基本情報として、滋賀県にすむ魚介類 一覧をまとめている。
4	琵琶湖総合保全整備計画 (マザーレイク 21 計画) ⁴⁾	滋賀県 (琵琶湖環境部)	琵琶湖水系に生息する固有種についてまとめている。


表 1.2.1 琵琶湖に生息する魚介類の把握のために用いた情報

資料:「琵琶湖および河川の魚類等の生息状況調査報告書 平成 14-15 年度」(2005、滋賀県水産試験場) 図 1.2.1 琵琶湖沿岸調査地点(〇小型定置網設置点 ●小型沖曳網曳網地点)

資料:「琵琶湖および河川の魚類等の生息状況調査報告書 平成 14-15 年度」(2005、滋賀県水産試験場) 図 1.2.2 エリ (定置網)による漁獲標本採集地点

資料:「琵琶湖沿岸帯調査報告書 平成14-15年度」(2005、滋賀県水産試験場)

図 1.2.3 貝類及び貝類以外の底生動物調査地点

表1.2.2(1) 琵琶湖における保全対象種設定のための情報整理結果(魚類・甲殻類)

					Т	文献			参	き者データ					水域別の	判断		生態特性	l			判断項目					1		目標値導出根拠		相当する	る目標値及び類型
					1	3	4		希少種					日来の外来	種 注1)			底層に依存	1	2	3	4	(5)	6	7	H29年度第1回委員		素耐性	現場観測から	その他	4mg	g/L(生物1)
											水生生物の		生態系被害					した生活史を	別の計画	貧酸素影響	の受けやすさ	水産利用	月、地域の食文化、	親水利用	その他の事項	までの保全対象		画値	得られた値 (mg/L)	(mg/L)		g/L(生物2)
l l		71.5	A 2778								保全に係わる 環境基準の類	7	定着予防	総合対策		国内	琵琶湖に	持ち、 底層溶存	2234	XIIXAW E	1	-7-22-177	1	1			(mg	g/L)	(mg/L)	-	2mr	g/L(生物3)
No.	区分	科名	分類群	学名	H14-15 琵琶 湖及び河川の	H27年度	琵琶湖総合	# 0/2 ± ±	環境省	滋賀県	型指定につい	琵琶湖	- R - R - R - R - R - R - R - R - R - R	图 审 .	業 業	その外来	琵琶湖に おいて 絶滅した種	酸素量の低下		琵琶湖内に	辞録物にむい		地域の食文化		地域関係者が 必要としている					酸素呼吸	<i>5</i>	
					魚類などの	滋賀の水産	保全整備計画 (マザーレイク21)	種の保存法	RDB	RDB	て」 における	四行往	入 を 急	点点	を 管	1世 種	絶滅した種	が生じやすい	別の計画等で 保全を図るべき	EE湖内に おいて、貧酸素 化が美しい時期	て、貧酸素の影響を受けている	主要な	ムこって手事	親水性から	種又は物質循	H28年度 H29年	生息	冉生 産	生息 再生 産 段階	相質 回数	生息の 生息の	再生産の
					生息状況調査	:		l 1			選定種 注7)	- 1	予他知	村村村	也 理	Z 101		又は再生産を	種とされている	(6-12月)に	響を受けている	漁獲対象種	(琵琶湖八珍)	みて重要	環の保全(水質 浄化)において	1120-132 1120-	段階	段階	段階段階	の低加	場の確保	場の確保
											/±1/	- 1	W 7	R #	11			行う		再生産する	(±9)		(±0)		重要					下		
1 1	魚類	ヤツメウナギ科	スナヤツメ北方種 スナヤツメ南方種	Lethenteron spp.		•			VU i	絶滅危機増大																						
2		ウナギ科	スナヤツメ南方種ニホンウナギ	Lethenteron spp. Anguilla japonica	•				VU i	絶滅危機増大 要注目								0				•		•			1.6			_	2/1 (#1	物3) 3mg/L* ₂ (生物2
4		コイ科	コイ(在来型) 注10	Cyprinus carpio			+		LP LP	希少	•			+	+			0		•			•	•		•	2.1			-		物3) 3mg/L* ₂ (生物2 物2) 4mg/L* ₂ (生物1
5		- 1111	コイ(ヤマトゴイ)	Cyprinus carpio	·	•				1,50	•				+			0		i		•	·	•		•	2.1				3mg/L (生物	
6			コイ(ヤマトゴイ) ゲンゴロウブナ ニゴロブナ	Carassius cuvieri	•	•	•		IB (EN)	希少	•	•																		4.3		
7			ギンブナ	Carassius buergeri grandoculis Carassius sp.	•		-		IB (EN)	希少 要注目	•	•		_	++			0	•	•	•	•	•	•		• •	1.2	1.4		1.3	2mg/L (生物	物3) 2mg/L (生物3 物3) 3mg/L* ₂ (生物2
9			ヤリタナゴ	Tanakia lanceolata					NT #	要在日 絶滅危機増大			$\overline{}$	++	+			0		-		_	_	-			1.4			-		物3) 3mg/L* ₂ (生物2
10			アブラボテ	Tanakia limbata	<u> </u>	•			NT á	絶滅危機増大					+			0		i				•							2g 2 (11)	30) Sing/ 2 · 2 (2)32
11			アブラボテ カネヒラ イチモンジタナゴ	Acheilognathus rhombeus	•	•			11 (22)	絶滅危機増大								0		•				•								
12			シロヒレタビラ	Acheilognathus cyanostigma Acheilognathus tabira tabira	+	+ :	+		IA (CR) IB (EN)	・ ・ ・ ・ ・ が が に に に に に に に に に に に に に		-	+	+	+	_		0		-:-			_	- :						-	+	_
14			<u>シロヒレタビラ</u> タイリクバラタナゴ	Rhodeus ocellatus ocellatus		•			ID (EII)	TOWN/C DC				•																		
15			ハクレン	Hypophthalmichthys molitrix		•			(==)	40 -4 F 10				(- n (d)	than a culture
16			ワタカ カワバタモロコ	Ischikauia steenackeri Hemigrammocypris rashorella		•	•		IA (CR) IB (EN)			•		+				0	•	•		●* ₁					2.0				2mg/L (生物	物3) 3mg/L* ₂ (生物2
18			ハス	Hemigrammocypris rasborella Opsariichthys uncirostris uncirostris	•				NO IR (EN)	に を を を を を を の に の に の に の に の に の に の の に の に の に の に の に の の の の の の の の の の の の の								0				•	•	•								
19			オイカワ	Opsariichthys platypus	ě	•												0		•		ě	•	•			3.2				4mg/L (生物	物1) 4mg/L* ₂ (生物1
20			カワムツ	Candidia temminckii	•	•												0		•				•						2.8		物2) 4mg/L* ₂ (生物1
21			スマムツ ソウギョ	Candidia sieboldii Ctananhan mgadan idallus		•				分布上重要					•			0		•											4	
22			アオウオ	Ctenopharyngodon idellus Mylopharyngodon piceus	†	1	1		-			$\overline{}$	+		} 			†		†			1		+					-	+	+
24			アブラハヤ	Phoxinus lagowskii steindachneri		•				要注目								0		•				•								
25			タカハヤ ウグイ	Phoxinus oxycephalus jouyi						要注目								0		•			•								4	
26 27			モツゴ	Tribolodon hakonensis Pseudorasbora parva						希少								0		•		•*1					1.2				2mg/L (生)	物3) 3mg/L* ₂ (生物2
28			アブラヒガイ	Sarcocheilichthys biwaensis		•	•		IA(CR)	絶滅危惧		•						0	•													
29			アブラヒガイ ビワヒガイ ムギツク	Sarcocheilichthys variegatus microocus	ω	•	•			希少		•						0	•	•											4	
31			タモロコ	Pungtungia herzi Gnathopogon elongatus elongatus			+			布少			-	++				0									2.0			-	2mg/1 (#1	物2) 4mg/L* ₂ (生物1
			ホンモロコ	Gnathopogon caerulescens	•		•		IA(CR)	絶滅危機増大	•	•						0	•		•	•	•	•		• •	1.3	2.3				物3) 3mg/L (生物2
32 33			ゼゼラ	Biwia zezera	•	•			VU	希少								0		•		●*:								3.0	3mg/L (生物	物2) 4mg/L* ₂ (生物1
34			ヨドゼゼラ	Biwia yodoensis		•	•		IB(EN)	要注目		•						0	•	•											4	
35			カマツカ	Pseudogobio esocinus esocinus	•	•			10 (511)				\rightarrow	+				0		•							2.0				2mg/L (生物	物3) 3mg/L* ₂ (生物1
36			ツチフキ ズナガニゴイ	Abbottina rivularis Hemibarbus longirostris		+ :			IB (EN)	絶滅危機増大				+++	+++			0												-	+	_
38			コウライニゴイ ニゴイ	Hemibarbus labeo		ě				絶滅危機増大 要注目								Ö		ě		●* ₁										
39				Hemibarbus barbus	•	•				絶滅危機増大			\perp	\perp	\perp			0		•		*1										
41			イトモロコ デメモロコ	Squalidus gracilis gracilis Squalidus japonicus japonicus	•	+ :-	+		VU	把			+	+				0		-										=	_	_
42			スゴモロコ	Squalidus chankaensis biwae	ě	ě	•			希少 希少	•	•						Ö	•	ě		ě	•									
43		ドジョウ科	アユモドキ	Parabotia curtus		•		保護増殖事業		絶滅危惧			\rightarrow	+				0		•										-	- 0 (0)	(t-a) 0 (t - (t-t-t-
44			ドジョウ	Misgurnus anguillicaudatus Niwaella delicata		•			DD VU	要注目 希少								0		•			•				1.2				2mg/L (生彩	物3) 3mg/L* ₂ (生物2
46			アジメドジョウ シマドジョウ属	Cobitis sp.		•				I					+															-	+	_
47			ビワコガタスジシマドジョウ	Cobitis minamorii oumiensis		•	•		IB (EN)	絶滅危惧 絶滅危惧		•						0	•	•												
48			オオガタスジシマドジョウホトケドジョウ	Cobitis magnostriata Lefua echigonia			•		IB (EN)	純滅危惧 絶滅危機増大		•			_			0	•	•										-	+	
49 50			ホトケドジョウ ナガレホトケドジョウ	Lefua sp.1		ě			IB (EN)	希少																						
51		ギギ科	ギギ	Tachysurus nudiceps		•				絶滅危惧								0		•			•							1.7	2mg/L (生物	物3) 3mg/L* ₂ (生物2
52 53		ナマズ科	イワトコナマズ ビワコオオナマズ	Silurus lithophilus Silurus biwaensis		-	-		NT #	絶滅危機增大 ※小		•	_	++	_			0	•	•		●* ₁	•	•		• •					_	
54			ナマズ	Silurus asotus	•		_			希少 要注目					\pm			0		— i		●* ₁	•	•								
55		アカザ科	アカザ	Liobagrus reinii		•			VU	希少						•																
57		キュウリウオ科 アユ科	ワカサギ アユ	Hypomesus nipponensis Plecoglossus altivelis altivelis	 	+ :	+			分布上重要			+														_			-+	+	-
58		サケ科	ニジマス	Oncorhynchus mykiss		•									•															二二		
59			イワナ属 アマゴ(河川型)・サツキマス(降)	Salvelinus sp.	1	•	-		NT I	絶滅危機増大 要注目 分布上重要			-		+ +		-	1					-						\vdash	-+	+	
61			ヤマメ(河川型)・サクラマス(降湘	毎 Oncorhynchus masou masou 再型 Oncorhynchus masou ishikawae	1		1		NT	分布上重要		+	+	+	++			1												-	+	+
62		4.2%4.20	ビワマス	Oncorhynchus sp.	•	•	•		NT	要注目		•						0	•			•	•	•	•	•					4	
63 64		カジカ科	カジカウツセミカジカ	Cottus pollux Cottus reinii	•		•		NT IB(EN)			•						0	•												_	
65		カダヤシ科	カダヤシ	Gambusia affinis		•								*																		
66 67		メダカ科	ミナミメダカ	Oryzias latipes		•			VU I	絶滅危機增大								0		•											4	
68		トゲウオ科 ケツギョ科	ミナミメダカ ハリヨ オヤニラミ ジルティラピア	Gasterosteus aculeatus subsp.2 Coreoperca kawamebari	†	 	1		IB (EN)	祀 似 但 1 共		-+	+	+	+	-	+	 		-	-		1		+		1	\vdash		+	+	+
68 69		カワスズメ科	ジルティラピア	Coptodon zillii		ě								1	•															ightharpoons		
70 71		ドンコ科 ハゼ科	ドンコ ウキゴリ	Odontobutis obscura						その他の重要								0		•											4	
72			イサザ	Gymnogobius urotaenia Gymnogobius isaza			•		IA(CR)	絶滅危惧	•	•						0	•		•	•	•			• •				1.7	2mg/L (牛炸	物3) 3mg/L* ₂ (生物2
73			ヨシノボリ属	Rhinogobius sp.	i						·							0														5 - 2 (=1)
74 75			カワヨシノボリ	Rhinogobius flumineus		•			DD	要注目	•			\perp				0		•											4	
76			ビワヨシノボリ オウミヨシノボリ	Rhinogobius sp.BW Rhinogobius sp.OM					UU	分布上重要		•						0				•*1									1	
77			ヌマチチブ	Tridentiger brevispinis	•	•												Ö		•												
78 79		タイワンドジョウ科 サンフィッシュ科	料 カムルチー	Channa argus	-	•	_	├								•		-			-				\vdash		-	\vdash	\vdash	-+	+	+
80		フレフィックユ科	コクチバス	Micropterus salmoides Micropterus dolomieu dolomieu		-	1					-+	- 1 7	k	+					<u> </u>			+		+					-	+	+
81			ブルーギル	Lepomis macrochirus macrochirus	•	•							*	k k																		
1	田熱粨	ヌマエビ科	ヌマエド	Paratya compressa	•					差小 [6	15	45	3	23	17	19	1						_	
2	一从戏		ミナミヌマエビ*	Paratya compressa Neocaridina denticulata						希少 絶滅危惧								0														
3		テナガエビ科	テナガエビ スジエビ	Macrobrachium nipponense	•													0		•		•	•								0 (1	(40)
5		アメリカザリガニョ	スジエビ 科 アメリカザリガニ	Palaemon paucidens Procambarus clarkii														0		•	•	•	•			•	1.3				2mg/L (生物	//3/
6		イワガニ科	モクズガニ*	Eriocheir japonica						希少								0		•												
7		サワガニ科	サワガニ*	Geothelphusa dehaani						要注目								0		•											4	
9		コロフィウム科 キタヨコエビ科	ビワカマカ ナリタヨコエビ	Kamaka biwae Jesogammarus naritai					NT	希少 希少		•						0														
10			ナリタヨコエビ アナンデールヨコエビ	Jesogammarus annandalei			i		NT	希少		ě						0	•	•												
L	±1) 🗊	以中本 の 以 本種 の	の埋け環情名の生能玄奘宝味には	来種リスト(http://www.env.go.jp/natur	re/intro/2ou+li	e /index html\I-	「児載されている	踊を示す カルコ	チーについてい	ナ 理情尖の H	李廷 リフトへ の	提載(+年)	∖서 비교+	三二夕學	沙計馬口	木の沙水布	2004 11177	《生长,少取厚本	3 編 山上渓公針 ち	9 			人事生物を示す	0	0							
λ	エリ 国常	/r田木いタト木俚(り懶は環境省の生態糸依古防止外: +象種(生能特性を満たしている種):	★1至ノヘド (ricup://www.env.go.jp/natur	e/ ITILI O/ ZOUTIINE	c/ (riuex.ntmi) [- 151数でんている	1主で小り。 ハムル	ノーについくは	ぁ、 環児自の外	小性ソ人トへの	戸取る悪し	いい、山沃刀	ノー右延	水町取口	かい 沢小黒	2004. 川那首	5.2000、小玉児	·──、出こ夫仕任.?	アッセー国が出来	vy7F木性C刊断	した。★は符疋ク	r 木工物で不り。									

表1.2.2(2) 琵琶湖における保全対象種設定のための情報整理結果(軟体動物)

	1		1		1	文献			参考デー	_6			7/2	域別の判断		生態特	in .			判断項目				ı —				目標値導出	±8 ±5n		担当する日間	票値及び類型
								希生		í 	1	1	外由来のタ		1	工态行		1 @	1 .					H29年度第	1回委員							
					2	3	4	40.3	が住	4					4	底層に依	1	2	3	4	5	6	7	会			素耐性	現場観測		その他	4mg/L	
										「水生生物の		生態系被	害防止外来	種リスト		した生活		会職を影響	響の受けやすさ	水产利田	、地域の食文化、	組水利田	その他の事項	までの保全	全対象種		西値	得られた		(mg/L)	3mg/L	(生物2)
			分類群				1 1			保全に係わる 環境基準の類		定着予防	総合対策	E	*****	持ち、	227471111111111111111111111111111111111	美田文本の	100×17 (- 7 C	八生刊	I VEWORATE.	ADDITION OF	(0)(0)49			(mg	g/L)	(mg/L)	'		2mg/L	(生物3)
No.	区分	科名	(亜種などを含む)	学名	H14-15		琵琶湖総合			型指定につい	琵琶湖			金 その	琵琶湖	に 底層溶液 酸素量の	ACT.						地域関係者が									1
			(五性などを占む)		琵琶湖	H27年度	保全整備計画	環境省	滋賀県	て」 における	固有種	侵入予防	緊重し	産 農 他文	7 45.00.		d1) Diasi-m-	琵琶湖内に	+ 琵琶湖におい		地域の食文化		必要としている							TA +		1
					沿岸帯調査	滋賀の水産	(マザーレイク21)	RDB	RDB	における		元 た :	急点を	を 業 心献	#C#ACT	陸期1-4	りい 別の計画等で E良 別の計画等で	・ おいて、貧酸乳	れて、貧酸素の影響を受けている	主要な	からみて雷亜	親水性から	種又は物質循	H28年度	1100年中	生息	再生産	生息 再	* 土 性 I 、	酸素 呼吸回数	生息の	再生産の
										選定種 注4)		予 (4) (7)	対 対 4	4 連		又は再生		- 16か者しい時ま	響を受けている	漁獲対象種	(琵琶湖八珍)	みて重要	環の保全(水質	H28年及	H29年及	段階	再生産 段階	段階	段階	^{消貨里} の増加 の低下	場の確保	場の確保
												防 12 13	策 策 "			行う	111111111111111111111111111111111111111	再生産する	注5)		注6)		浄化)において						Ι,	07 25		1
												$\perp \perp \perp$		\perp				.,=, 0					重要									
1	型 軟体動物	<u>リンコカイ科</u> タニシ科	スクミリンゴガイ	Pomacea canaliculata	1	•	-	1/11	45. /ls	1	-	-	- •	-	_		_				-			\vdash			<u> </u>					
2	(を見規)	ターン付	マルタニシ	Cipangopaludina chinensis laeta				VU	希少 要注目 希少							0																
4			オオタニシナガタニシ	Cipangopaludina japonica Heterogen longispira			•	NT	希少		•		$\overline{}$			0	•								_							
5			ヒメタニシ	Sinotaia quadrata histrica		ě										0	Ť	ě			ě											
6		カワニナ科	ヌノメカワニナ	Melanoides tuberculatus		•		NT																								į
7			ホソマキカワニナ	Semisulcospira arenicola		•	•	NT	希少 分布上重要 絶滅危惧		•	-	\rightarrow			0	•	•														
- 8			タテヒダカワニナフトマキカワニナ	Semisulcospira decipiens				NI	分布上重要		•	-	\rightarrow			0	<u> </u>	<u> </u>							_							
10			ナンゴウカワニナ	Semisulcospira dilatata Semisulcospira fluvialis				DD	能减危機增大							0	_	_														
11			クロカワニナ	Semisulcospira fuscata		ě	ě	VU	絶滅危機增大		ě					0	•	•														
12			ハベカワニナ	Semisulcospira habei		•	•		分布上重要		•					0	•	•														
13			モリカワニナ イボカワニナ	Semisulcospira morii		•	•	NT	希少		•					0	•	•														
14			イボカワニナ	Semisulcospira multigranosa		•	•	NT IA(CR+EN)	希少		•					0	•	•														
15	_		ナカセコカワニナヤマトカワニナ	Semisulcospira nakasekoae				IA (UR+EN)	総滅危機増大 分布上重要		•	\vdash	+																			
17			オオウラカワニナ	Semisulcospira niponica Semisulcospira ourense				DD	<u> </u>							0																
2 3 4 4 5 5 6 7 8 8 9 10 10 11 12 2 13 13 14 15 16 17 7 18 19 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3			マイトがフーナ オオウラカワニナ カゴメカワニナ タテジワカワニナ シライシカワニナ シライシカワニナ クロダカワニナ	Semisulcospira reticulata		•	i	NT	分布上重要		i					0	i	i														
19			タテジワカワニナ	Semisulcospira rugosa		•	•	DD	分布上重要 絶滅危惧		•					0	•	•														
20			シライシカワニナ	Semisulcospira shiraishiensis		•	•	NT	希少 希少		•		\rightarrow			0	•	•														
21	_		タケシマカワニナ	Semisulcospira takeshimaensis			•	NT NT	希少		•		\rightarrow	-		0	•	<u> </u>						\vdash								
22			カワニナ	Semisulcospira kurodai				NI	希少				_		_	0		_														
24			チリメンカワニナ	Semisulcospira libertina Semisulcospira reiniana												0		•														
25		ミズツボ科	チリメンカワニナ サガノミジンツボ	Akiyoshia kishiiana		•		DD	要注目							Ť																
26			コバヤシミジンツボ コモチカワツボ	Akiyoshia kobayashii		•		VU	絶滅危機増大		•																					
27			コモチカワツボ	Potamopyrgus jenkinsi	J	•								•																		
28	_	エソマメタニシャ	科マメタニシ ビワコミズシタダミ 科スジイリカワコザラガイ カワコザラガイ ヒメモノアラガイ	Parafossarulus manchouricus japoni Biwakovalvata biwaensis	icus	-		VU	要注目 分布上重要 要注目			-	\rightarrow		_	0		_														
30	-	カワコザラガイ	科 スジイリカワコザラガイ	Laevapex japonica	_			DD	万	-	_		\rightarrow		+	0											 					
31		33 7 7 7 3 3 1 1	カワコザラガイ	Laevapex nipponica	•	-		- 55	X/L1			 	-			ő		_														
32		モノアラガイ科	ヒメモノアラガイ	Austropeplea ollula		•										0		•														
33			コシダカヒメモノアラガイ ハブタエモノアラガイ	Fossaria truncatula		•		DD																								i
34			ハブタエモノアラガイ	Pseudosuccinea columella		•		N.T.				$\overline{}$		•																		
36	_		モノアラガイ オウミガイ	Radix auricularia japonica Radix onychia	- :			VU	分布上重要			-	\rightarrow	-	_	0	_	_	_						-							
37		サカマキガイ科	サカマキガイ	Physa acuta			_	٧٥	刀印工里安					•		0																
38 39 40 41 42 43			カワネジガイ	Camptoceras hirasei	Ĭ	ě		IA(CR)	絶滅危惧					Ĭ		0																
39			カドヒラマキガイ	Choanompholodes perstriatulus		•	•	NT	分布上重要		•					0	•															
40			ヒロクチヒラマキガイ	Gyraulus amplificatus		•	•	14 (OD EN)	要注目		•	-	\rightarrow	+		0	•															1
41			ヒダリマキモノアラガイ ヒラマキミズマイマイ	Culmenella rezvoji				IA (CR+EN) DD				-	\rightarrow			0											-					
43			ヒラマキガイモドキ	Gyraulus chinensis spirillus Polypylis hemisphaerula				NT	要注目 要注目 要注目				$\overline{}$			0																
- 10	•			. , , ,													18	21	0	0	3	0	0									
1	軟体動物		カワヒバリガイ	Limnoperna fortunei		•							*																			
2	(二枚貝類	イシガイ科	マルドブガイ	Anodonta calipygos	•	•	•	VU NT	希少		•	\Box	\perp			0	•	•			•		•									
3			カラスガイ メンカラスガイ	Cristaria plicata plicata	•	•		NI	希少 希少			\vdash	\perp			0		-			-											
5			トレイケチョウガイ	Cristaria plicata Hyriopsis cumingii		•	-		τη 'У					•		9																
6			ヒレイケチョウガイ イケチョウガイ オバエボシガイ オトコタテボシガイ	Hyriopsis schlegeli		•	•	IA(CR+EN)	絶滅危惧		•					0	•				•		•									
7			オバエボシガイ	Inversidens brandti		•		VU	絶滅危機増大							0		•					•									
8			オトコタテボシガイ	Inversiunio reinianus reinianus		•	•	VU	絶滅危機増大		•					0	•						•									
9			ニセマツカサガイ ササノハガイ	Inversiunio reinianus yanagawensis		•		VU	絶滅危惧 分布上重要				\rightarrow			0	•															
11	_		トンガリササノハガイ	Lanceolaria oxyrhyncha Lanceolaria grayana	•		•	NT	分布上里安		•					0																
12			カタハガイ	Pseudodon omiensis		•			絶滅危惧			1				•																
13			オグラヌマガイ	Oguranodonta ogurae		Ŏ	•	IA(CR+FN)	絶滅 危惧		•					0	•						•									
14			マツカサガイ タテボシガイ	Inversidens japanensis	•	•		NT	絶滅危機增大 分布上重要							0		•					•									
15				Unio douglasiae biwae	•	•	•		分布上重要		•			-		0	•	_					•									
16	_	シジミ科	イシガイ	Unio douglasiae nipponensis				VU	絶滅危機増大			\vdash				0				_		_			-							
18		J J <1+	ヤタシジミ	Corbicula leana Corbicula sandai			•		純減危機增大	•	•					0	•		•					•	•							
19			セタシジミ ミズウミマメシジミ	Pisidium cinereum lacustre		•			要注日							0							Ŏ									
2 3 4 5 6 6 7 8 9 10 11 12 2 13 14 15 16 17 18 19 20 20 21 22 22 23			マメシジミ	Pisidium japonicum		•			要注目																							
21			カワムラマメシジミ	Pisidium kawamurai	•	•	•		分布上重要		•					0	•						•									
22	_	ドブシジミ科	ビワコドブシジミ ドブシジミ	Sphaerium biwaense					分布上重要 要注目							0																
23			トノンンミ	Sphaerium japonicum					安注日							0	q	8	1	2	7	2	18									
																	ı y	. 0			. ,		1 10									

注1) 国外由来の外来種の欄は環境省の生態系被害防止外来種リスト(http://www.env.go.jp/nature/intro/2outline/index.html)に掲載されている種を示す。カムルチーについては、環境省の外来種リストへの掲載は無いが、山渓カラー名鑑 改訂版日本の淡水魚 2004. 川那部浩哉・水野信彦編、山と渓谷社を参考に国外由来の外来種と判断した。★は特定外来生物を示す。注2) 黄色網掛けは検討対象種(生態特性を満たしている種)を示す。注3) 赤色網掛けは検討対象種(生態特性を満たしている種)を示す。注4) 「水生生物の保全対象種を示す。注4) 「水生生物の保全は像種を示す。注4) 「水生生物の保全に係わる環境基準の類型指定について(第三次報告)」(環境省、2009)において、琵琶湖の主要種として選定されている種を示す。注1) 「琵琶湖八珍」とは、平成30年末、東立安土城考古博物館が未場者への湖魚料理人気アンケートを基に供給量など考慮して選定されている種を示す。注1) 「参考情報の「琵琶湖において、貧酸素の影響を受けている」とは、文献中に死亡、減少、生息域の縮小等の原因が貧酸素であると記述されている種を示す。

参考文献(巻末のリストを参照):2),3),4),5),8),9),12),13),14),18),19),23),26),27),29),30).

1.3 生態特性を考慮した検討対象種の抽出 (琵琶湖)

前述の表 1.2.2 でリストアップされた種のうち、底層溶存酸素量の低下の影響を受ける可能性のある種として、<u>琵琶湖内の底層に依存した生活史を持つ種</u>を抽出し、これを検討対象種とした。

なお、琵琶湖周辺の流入河川を主な生息域とする種については、この生態特性に該 当しないものとした。

この結果、<u>魚類 54 分類群、甲殻類 9 種、軟体動物(貝類)49 種</u>が検討対象種となった。

琵琶湖における検討対象種の種数は表 1.3.1 に、検討対象種の一覧は表 1.3.2 に 示すとおりである。

表 1.3.1 琵琶湖における検討対象種の種数

分類	検討対象種の 種数
魚類	54
甲殼類	9
軟体動物 (貝類)	49
計	112

(魚類、甲殻類)

表 1.3.2(1) 琵琶湖における検討対象種 表 1.3.2(2) 琵琶湖における検討対象種 (貝類)

No. 区分 分類群 1 ニホンウナギ 2 コイ (在来型) 3 コイ (ヤマトゴイ) 4 ニゴロブナ 5 ギンブナ 6 ヤリタナゴ 7 アブラボテ 8 カネヒラ 9 イチモンジタナゴ シロヒレタビラ	101000000000000000000000000000000000000
2 コイ (在来型) 3 コイ (ヤマトゴイ) 4 ニゴロブナ 5 ギンブナ 6 ヤリタナゴ 7 アブラボテ 8 カネヒラ 9 イチモンジタナゴ	
3 コイ (ヤマトゴイ) 4 ニゴロブナ 5 ギンブナ 6 ヤリタナゴ 7 アブラボテ 8 カネヒラ 9 イチモンジタナゴ	
4 ニゴロブナ 5 ギンブナ 6 ヤリタナゴ 7 アブラボテ 8 カネヒラ 9 イチモンジタナゴ	
5 ギンブナ 6 ヤリタナゴ 7 アブラボテ 8 カネヒラ 9 イチモンジタナゴ	
6 ヤリタナゴ 7 アブラボテ 8 カネヒラ 9 イチモンジタナゴ	
7 8 カネヒラ 9 イチモンジタナゴ	
8 カネヒラ 9 イチモンジタナゴ	
9 イチモンジタナゴ	
10 イナモンシタナコ シロトレタドラ	
10	***************************************
<u>11</u> ワタカ	
カワバタモロコ	
13 ハス	
14 オイカワ	
カワムツ	
マムツ スマムツ	
77ラハヤ	
タカハヤ	
19 ウグイ	
21 アブラヒガイ	
22 ビワヒガイ	
23 ムギツク	
24 <u>9</u> EDD	***************************************
25 ホンモロコ	
26 ゼゼラ	
27 ヨドゼゼラ	***************************************
28 29 カマツカ ツチフキ	
31 コウライニゴイ	
32 = ゴイ (1) =	
33 イトモロコ	
デメモロコ	
35 スゴモロコ	
36 アユモドキ	
37 ドジョウ	
38 ビワコガタスジシマドジ:	ョウ
39 オオガタスジシマドジョ!	<u> </u>
40 ギギ	
41 イワトコナマズ	
42 ビワコオオナマズ	
43 ナマズ	
ウツセミカジカ	
45 ビワマス	
46 ミナミメダカ	
47 ドンコ	
48 ウキゴリ	
19 イサザ	
50 ヨシノボリ属	
50 カワヨシノボリ	
51	
52 オウミヨシノボリ	
1 甲殻類 ヌマエビ	
2 ミナミヌマエビ	
2 ミナミヌマエビ 3 テナガエビ	
2 ミナミヌマエビ 3 テナガエビ 4 スジエビ	
2 ミナミヌマエビ 3 テナガエビ 4 スジエビ 5 モクズガニ	
2 ミナミヌマエビ 3 テナガエビ 4 スジエビ 5 モクズガニ 6 サワガニ	
2 ミナミヌマエビ 3 テナガエビ 4 スジエビ 5 モクズガニ 6 サワガニ 7 ビワカマカ	
2 ミナミヌマエビ 3 テナガエビ 4 スジエビ 5 モクズガニ 6 サワガニ	

No.	区分	分類群
1	軟体動物	オオタニシ
2	(巻貝類)	ナガタニシ
3		ヒメタニシ
4		ホソマキカワニナ
5		タテヒダカワニナ
6		フトマキカワニナ
7		クロカワニナ
8		ハベカワニナ
9		モリカワニナ
10		イボカワニナ
11		ヤマトカワニナ
12		オオウラカワニナ
13		カゴメカワニナ
14		タテジワカワニナ
15		シライシカワニナ
16		タケシマカワニナ
17		クロダカワニナ
18		チリメンカワニナ
19		マメタニシ
20		ビワコミズシタダミ
21		スジイリカワコザラガイ
22		カワコザラガイ
23		カワコザラガイ ヒメモノアラガイ
24		モノアラガイ
25		オウミガイ
26		カワネジガイ
27		カドヒラマキガイ
28		ヒロクチヒラマキガイ
29		ヒダリマキモノアラガイ
30		ヒラマキミズマイマイ
31		ヒラマキガイモドキ
1	(二枚貝類)	マルドブガイ
2	(- 1/2//2//	カラスガイ
3		メンカラスガイ
4		イケチョウガイ
5		オバエボシガイ
6		オトコタテボシガイ
7		ササノハガイ
8		トンガリササノハガイ
9		オグラヌマガイ
10		マツカサガイ
11		タテボシガイ
12		イシガイ
13		マシジミ
14		セタシジミ
15		ミズウミマメシジミ
16		カワムラマメシジミ
17		ビワコドブシジミ
18		ドブシジミ

1.4 保全対象種の設定

保全対象種として相応しいかどうかの判断に用いた判断項目(選定条件)は、以下の とおりである。この判断項目に基づき、地域関係者の様々な意見を取り入れ、保全対象 種を設定した。

①当該水域に関する計画等で保全を図るべき種として掲げられている種

平成 12 年 (2000 年) 3 月に策定された琵琶湖総合保全整備計画 (マザーレイク 21 計画) 4)において、固有種を含む在来種の再生産の回復と漁獲量の増加が計画目標として掲げられている。このため、上記計画で具体的な種名が記載されている種に印を付けた。

②琵琶湖において貧酸素化する時期(6-12月)に再生産を行う種

琵琶湖で貧酸素化する6-12月に再生産を行う種について印を付けた。

③琵琶湖において貧酸素の影響を受けているという知見が存在する種

死亡、減少、生息域の縮小等の原因が、琵琶湖の貧酸素によるものであるとの文献情報が入手できた種について、印を付けた。

また、生活史を通じた底層依存度(貧酸素の影響を受けやすいこと(成魚・成体 段階での移動能力が低いこと)が高いセタシジミ、マシジミなどの底生動物につい ては、移動能力に乏しく、底層への依存度は極めて高いことから、保全の優先度が 高い種として印を付けた。

④主要な漁獲対象種

参考文献のうち、水産業に関する統計情報を収録した滋賀農林水産統計における、 海面漁業生産統計調査に種名が記載されている種を踏まえ、保全対象種は主要な漁 獲対象種の中から選定されることが望ましく、「水産利用や地域の食文化、親水利用 において重要であること(主要な漁獲対象種であること)」に該当する種について印 をつけた。

⑤地域の食文化からみて重要な種

参考文献をもとに、「郷土料理の原料となる」、「地域の名物として積極的にアピールされている」(琵琶湖八珍)など、地域の食文化から見て重要であるとして種名が記載されている種に印を付けた。また、近年需要が高まっている種についても検討した。

⑥親水利用(釣り等)の観点からみて重要な種

参考文献をもとに、釣り等の対象として種名が記載されている種に印を付けた。

⑦地域関係者が必要としている種又は物質循環の保全(水質浄化)において重要な種

琵琶湖内の水質浄化において、濾過食性生物として特に重要であると考えられる 二枚貝類は、物質循環の保全(水質浄化)において重要と考えられることから、印 を付けた。

上記の判断項目及び地域関係者(検討会委員)の意見を踏まえ、琵琶湖における保全対象種は表 1.4.1 に示すとおりである。

1.5 保全対象種における底層溶存酸素量の目標値の設定

保全対象種における底層溶存酸素量の目標値は、「水質汚濁に係る生活環境の保全に関する環境基準の見直しについて(答申)」(平成27年12月、中央環境審議会)(以下、答申という。)に記載されている生息段階、若しくは再生産段階の貧酸素耐性評価値に基づくことを基本とした。

なお、保全対象種によっては、貧酸素耐性評価値が得られていないものもあり、この場合は貧酸素耐性に関する水生生物の生理的な知見や、混獲データ・現場観測データ等の活用、地域関係者等の意見を参考にする等、可能な限り科学的知見に基づいて目標値を設定した。

保全対象種の目標値及び類型は表 1.5.3 に示すとおりであり、その設定根拠は以下に示すとおりである。

(1) コイ (在来型)

コイについては、生息段階の貧酸素耐性評価値(2.1 mg/L)が得られており(山元ら,1988) $^{46)}$ 、この小数点以下を切り上げた整数値(3 mg/L)を生息段階の目標値とする。また、再生産段階の貧酸素耐性評価値に係る知見はないが、貧酸素化するとされるヨシ帯内部にコイの仔魚が出現するという知見が得られた(鈴木、2005) 31 ため、コイの仔魚も成魚と同等の貧酸素耐性を有すると考え、再生産段階の目標値も生息段階の目標値と同様に 3 mg/L とする。なお、コイ(在来型)についても同等の目標値とした。

(2) ニゴロブナ

ニゴロブナについては、生息段階の貧酸素耐性値が得られていないが、酸素消費量が低下する溶存酸素濃度に関する知見が得られている(Yamanaka et al.,2007) $^{32)}$ 。これによると、酸素消費量が低下する値は $1.3 \,\mathrm{mg/L}$ とされている(川本,1970.) $^{33)}$ ことから、魚類における酸素消費量が低下するレベルは、生存可能範囲の下限を上回っているため(表 1.5.1)、ニゴロブナの酸素消費量が低下する $1.3 \,\mathrm{mg/L}$ は、生息が可能な溶存酸素量と考えられる。したがって、この小数点以下を切り上げた整数値($2 \,\mathrm{mg/L}$)を生息段階の目標値とする。また、再生産段階の貧酸素耐性評価値に係る知見として、 $1 \,\mathrm{h-Lc50}$ の値($0.55 \,\mathrm{mg/L}$)が得られている(藤原ら、2011) $^{34)}$ 。これを答申に記載の推計方法基づき、 $24 \,\mathrm{h-Lc5}$ の値に換算すると $1.4 \,\mathrm{mg/L}$ となる。したがって、この小数点以下を切り上げた $2 \,\mathrm{mg/L}$ を再生産段階の目標値とする。

溶存 カテゴリー 酸素量 A 呼吸振幅臨界値:呼吸振幅が増大し始める限界の環境水酸素量 高 G 呼吸頻度臨界値:心臓拍動頻度が増大し始める限界の環境水酸素量 動脈血酸素臨界値:動脈血の酸素含量が低下し始める限界の環境水酸素量 水産学上 初期限界値:活動代謝量が低下し始める限界の環境水酸素量 生存可 最も 能範囲 D 健全臨界値: 摂餌、成長などが正常で健全な生活をするのに必要最小限の環境水酸素 大切な値 酸素 H 心拍数臨界値:心臓拍動頻度が低下し始める限界の環境水酸素量 消費 J 末期限界値:標準代謝量が低下し始める限界の環境水酸素量 量が 短期間 L 鼻上げ臨界値:鼻上げと通称される呼吸困難症状を呈し始める限界の環境水酸素量 低下 M 平衡維持臨界値:体の平衡調整ができなくなって横臥あるいは仰臥の姿勢をとり始 しか生 する 存でき める限界の環境水酸素量 N 窒息酸素量:いろいろな程度の低酸素の流水中に長時間魚をおいた時、魚が窒息死す ない 低 範囲 る限界の環境水酸素量

表 1.5.1 魚類における溶存酸素量と行動及び生理的変化との関係 33)

資料:「魚類生理. 恒星社厚生閣」(1970、川本信之)³³⁾より作成

(3) ホンモロコ

ホンモロコについては、生息段階の貧酸素耐性評価値($1.3\,\mathrm{mg/L}$) $^{35)}$ が得られており、この小数点以下を切り上げた整数値 ($2\,\mathrm{mg/L}$)を生息段階の目標値とする。また、再生産段階の貧酸素耐性評価値に係る知見として、 $1\mathrm{h-Lc50}$ の値 ($0.55\,\mathrm{mg/L}$)が得られている(藤原ら、2011) $^{34)}$ 。これを答申に記載の推計方法に基づき、 $24\mathrm{h-Lc5}$ の値に換算すると、 $2.3\,\mathrm{mg/L}$ となる。したがって、この小数点以下を切り上げた $3\,\mathrm{mg/L}$ を再生産段階の目標値とする。

(4) イサザ

イサザについては、生息段階の貧酸素耐性値が得られていないが、呼吸活動を下げ、活動に強く制限がかかる溶存酸素濃度(1.72 mg/L:Pc 値)に関する知見が得られている(熊谷・石川、2010)) 36)。この Pc 値は、表 1.5.1 における「酸素消費量が低下する濃度(=C 初期限界値:活動代謝量が低下し始める限界の環境水酸素量)」と同レベルと考えられるため、ニゴロブナと同様に、生息が可能な溶存酸素濃度と考えられる。したがって、この 1.72 mg/L を切り上げた整数値(2 mg/L)をイサザの生息段階の目標値として適用する。また、再生産段階の貧酸素耐性評価値に係る知見がないため、生息段階の目標値に 1 mg/L を加えた 3 mg/L を再生産段階の目標値とする。

(5) イワトコナマズ

イワトコナマズについては、生息段階の貧酸素耐性値が得られていない。ここで、イワトコナマズと同じ分類群(ナマズ目)のギギについては、酸素消費量が低下し始める溶存酸素濃度、すなわち 1.7mg/L が得られている(山元ら,1988) 37 。これより、

ギギとイワトコナマズはほぼ同じ貧酸素耐性値を持つものと考え、この 1.7mg/L を切り上げた整数値(2mg/L)をイワトコナマズの生息段階の目標値として適用する。また、再生産段階の貧酸素耐性評価値に係る知見がないため、生息段階の目標値に 1mg/L を加えた 3mg/L を再生産段階の目標値とする。

(6) ビワマス

ビワマスについては、生息段階の貧酸素耐性値が得られていない。ここで、ビワマスと同じサケ科に属する大西洋サケ($Salmo\ salar$)の貧酸素耐性試験の値を参考とする。Remen et al(2013) $^{38)}$ は、大西洋サケの低酸素耐性実験を行い、体内に十分な酸素を取り込めなくなる溶存酸素量(初期限界値)は 18 $^{\circ}$ $^{\circ}$ で、4.3mg/L であるとしている。

Barnas et al $(2011)^{39}$ は同じく大西洋サケの低酸素耐性実験を行い、体内に十分な酸素を取り込めなくなる溶存酸素量(初期限界値)は、水温 22 \mathbb{C} で 4.6 mg/L、水温 18 \mathbb{C} で 3.3 9 mg/L (n=4) であり、平衡感覚を喪失する溶存酸素量は 22 \mathbb{C} で 2.4 mg/L (論文中のデータを平均: n=5)、18 \mathbb{C} で 2.0 mg/L (論文中のデータを平均: n=4) である。

これら 2 つの実験値のうち、初期限界値は死に至る段階ではないため、より致死段階に近い 22° の平衡感覚喪失 2. 4mg/L を切り上げて 3mg/L を生息段階の目標値とする。

なお、ビワマスの産卵は河川で行われるため、再生産の目標値は設定しない。

(7) スジエビ

スジエビについては、生息段階の貧酸素耐性評価値 $(1.3 \text{mg/L})^{40}$ が得られており、この小数点以下を切り上げた整数値 (2 mg/L) を生息段階の目標値とする。次に、スジエビの再生産段階の貧酸素耐性評価値は得られていない。ここで、琵琶湖産の個体を用いた貧酸素耐性試験(焦 et al.,2011) 41 の知見を参照すると、琵琶湖産スジエビ成体の Pc 値(呼吸活動を下げ、活動に強く制限がかかる溶存酸素濃度)は 1.2 mg/L とされている。しかし、この値は生息段階の貧酸素耐性評価値を下回っており、スジエビの再生産段階を保全できない可能性が高いものと考えられる。ここで、スジエビと同じ甲殻類であるクルマエビ及びヨシエビの生息段階と再生産段階の貧酸素耐性評価値を比較してみると(表 1.5.2 参照)、その差は概ね 2 mg/L である。これに従い、スジエビの再生産段階の貧酸素耐性評価値は、生息段階の貧酸素耐性評価値(1.3 mg/L)に 2 mg/L を加え、小数点以下を切り上げた整数値(4 mg/L)を再生産段階の目標値とする。

表 1.5.2 クルマエビ及びヨシエビの貧酸素耐性評価値、目標値及び類型

種名	発育段階	貧酸素耐性 評価値	出典	目標値	と類型
		(mg/L)		目標値	類型
	生息	1.2 (24h-LC5)*	環境省 (2014) H25 年度 貧酸素耐性実験結果	2mg/L	生物3
クルマエビ	再生産	3.1 (24h-LC5)*	山田智・蒲原聡・曽根亮太・堀口敏弘・鈴木輝明 (2014) ガザミ (Portunus trituberculatus),クルマエビ (Marsupenaeus japonicus) およびヨシエビ (Metapenaeus ensis) の浮遊幼生に及ぼす貧酸素水の影響,水産海洋研究,78(1)42)	4mg/L	生物 1
	生息	0.7 (24h-LC5)*	環境省 (2014) H25 年度 貧酸素耐性実験結果	2mg/L	生物3
ヨシエビ	再生産	3.2 (24h-LC5)*	山田智・蒲原聡・曽根亮太・堀口敏弘・鈴木輝明 (2014) ガザミ (Portunus trituberculatus),クルマエビ (Marsupenaeus japonicus) およびヨシエビ (Metapenaeus ensis) の浮遊幼生に及ぼす貧酸素水の影響,水産海洋研究,78(1)42)	4mg/L	生物 1

注)「*」は 24 時間の暴露時間における 95%の個体が生存可能な溶存酸素量。詳細は平成 27 年 (2015 年) 答申を参照。

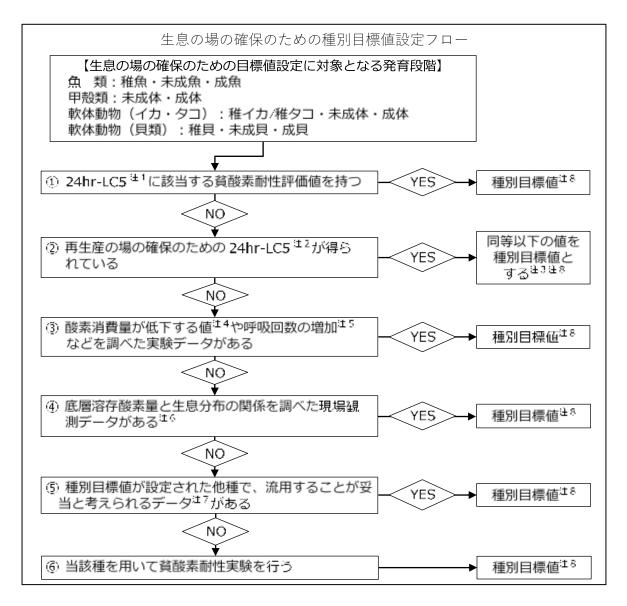
(8) セタシジミ

セタシジミについては、生息段階の貧酸素耐性評価値が得られていない。ここで、閉鎖性海域中長期ビジョン参考資料「底層 D0 目標値について」(環境省、2010) 43 によると、「アサリ、サルボウガイ及びヤマトシジミの低 D0 耐性実験結果より、無酸素でも 96 時間程度の短期間であれば生存可能であることが明らかとなった。このことから、二枚貝以外の分類群の生息が維持される溶存酸素量濃度レベル (2mg/L 以上) が維持されていれば、二枚貝類の生息も維持されると考えられる。」とされている。但し、上記はアサリ、サルボウガイ、ヤマトシジミの実験結果であり、セタシジミについての知見ではないが、「ヤマトシジミ、セタシジミ及びマシジミの酸素消費量は 3 種とも $0.03mg/g/h\sim0.06mg/g/h$ の範囲にあって差はなく、低酸素環境に対する耐性にも差がないと考えられる(薄井ら、1984) 44 」という知見や、同科のヤマトシジミは「溶存酸素量 1.5mg/L で 24 時間以上生息可能である(中村ら、1997) 45 」との知見がある。したがって、2mg/L 以上の溶存酸素量が確保されればセタシジミの生息も確保できると考えられることから、セタシジミの生息段階の目標値を2mg/L とする。

また、セタシジミは再生産段階の貧酸素耐性評価値も得られていないが、同じ二枚貝であるアサリの幼生における貧酸素耐性評価値(3.1mg/L)が得られている。この小数点以下を切り上げた値(4mg/L)をセタシジミの再生産段階の目標値とする。

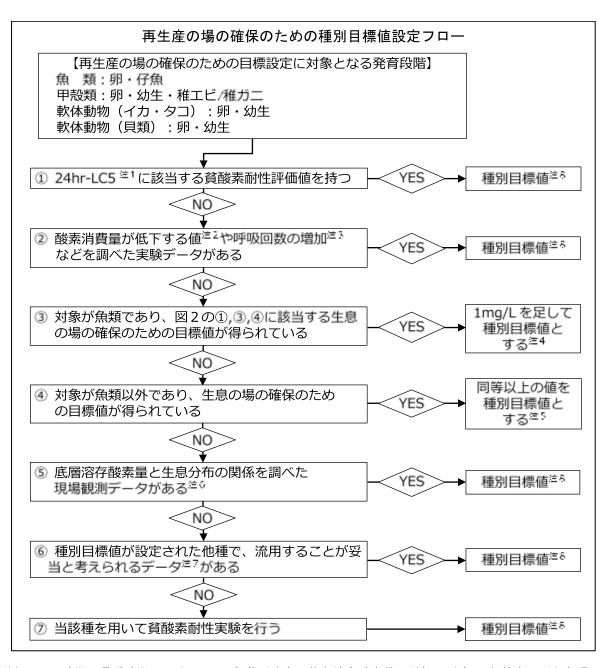
表 1.5.3(1) 保全対象種の目標値及び類型

	発育	目標値設定の根拠。	と値	フロー		目標値	と類型
種名	段階	根拠	値 (mg/L)	階層*2	出典・理由等	目標値	類型
/	生息	貧酸素耐性評価値 (24h-LC5)*1	2. 1	1)	山元憲一,平野修,原洋一,三代健造. (1988). 淡水産魚類 11 種の低酸素下における鼻上げお よび窒息死.水産増殖,36(1),49-52. ⁴⁶⁾	3mg/L	生物 2
コイ (在来型)	再生産	成魚と同等の貧酸素 耐性を持つという 知見による	3	3	鈴木誉士,永野元,小林徹,上野紘一. (2005). RAPD 分析による琵琶湖産フナ属魚類の種・亜種 判別およびヨシ帯に出現するフナ仔稚魚の季 節変化.日本水産学会誌,71(1),10-15.31)	3mg/L	生物 2
ニゴロブナ	生息	酸素消費量低下	1. 3	3	Hiroki Yamanaka, Yukihiro Kohmatsu, and Masahide Yuma (2007) Difference in the hypoxia tolerance of the round crucian carp and largemouth bass: implications for physiological refugia in the macrophyte zone., Ichthyol Res, Vol. 54, No. 3. 32)	Zmg/L	生物 3
	再生産	貧酸素耐性評価値 (24h-LC5)*1	1. 4	1	藤原公一, 臼杵崇広, 根本守仁, & 北田修一. (2011). 琵琶湖沿岸のヨシ帯におけるニゴロブナ Carassius auratus grandoculis の初期生態とその環境への適応. 日本水産学会誌, 77(3), 387-401.34	2mg/L	生物 3
	生息	貧酸素耐性評価値 (24h-LC5)*1	1. 3	1)	環境省(2013) 魚類に対する低溶存酸素濃度急性影響試験の実施,平成24年度 下層DO・透明度設定検討及び魚介類調査検討業務報告書,pp128-155.35)	2mg/L	生物 3
ホンモロコ	再生産	貧酸素耐性評価値 (24h-LC5)*1	2. 3	1)	藤原公一, 臼杵崇広, 根本守仁, & 北田修一. (2011). 琵琶湖沿岸のヨシ帯におけるニゴロブナ Carassius auratus grandoculis の初期生態とその環境への適応. 日本水産学会誌, 77(3), 387-401.34	3mg/L	生物 2
イサザ	生息	Pc値 (呼吸活動を下げ、 活動に強く制限がか かる溶存酸素濃度)	1. 72	(5)	熊谷道夫・石川俊之(2010)温暖化が大型淡水湖の循環と生態系に及ぼす影響評価に関する研究_環境省環境研究総合推進費報告書.36)	2mg/L	生物 3
	再生産	生息段階の目標値に +1mg/L	3	3	_	3mg/L	生物 2
イワトコナマズ	生息	酸素消費量低下 (ギギのデータ)	1. 7	5	山元憲一, 平野修, 橋本公浩, & 高橋正行. (1988). 低酸素下におけるムギツク, ズナガニゴイ, ゼゼラ, ワタカ, ギギ, ブルーギルの酸素消費量の変化. 水 産増殖, 36(2), 127-130. ³⁷⁾	2mg/L	生物3
	再生産	生息段階の目標値に +1mg/L	3	3	_	3mg/L	生物 2
ビワマス	生息	太平洋サケの 平衡感覚喪失	2. 4	5	Barnes, R. K., King, H., & Carter, C. G. (2011). Hypoxia tolerance and oxygen regulation in Atlantic salmon, <i>Salmo salar</i> from a Tasmanian population. Aquaculture, 318(3), 397-401. 399		生物 2
	再生産	_	_	_	湖内で再生産を行わないため、目標値を設定しない	_	_
	生息	貧酸素耐性評価値 (24h-LC5)*1	1. 3	1)	環境省(2014)魚介類に対する低溶存酸素濃度 の急性影響試験結果報告書,平成 26 年 3 月.40)	2mg/L	生物3
スジエビ	再生産	クルマエビ及びヨシ エビにおける生息段 階と再生産段階の貧 酸素耐性評価値の差 より導出	4	6	 環境省(2014) H25 年度 貧酸素耐性実験結果.40 ・山田智・蒲原聡・曽根亮太・堀口敏弘・鈴木輝明(2014)ガザミ(Portunus trituberculatus), クルマエビ(Marsupenaeus japonicus) およびヨシエビ(Metapenaeus ensis) の浮遊幼生に及ぼす貧酸素水の影響,水産海洋研究, 78(1).42 	4mg/L	生物 1


注) 1. 24 時間の暴露時間における 95%の個体が生存可能な溶存酸素量。詳細は答申を参照。

^{2.} 後述図 1.5.1 及び図 1.5.2 に示す目標値設定フローの、どの階層に準拠したのかを示す。

表 1.5.3 (2) 保全対象種の目標値及び類型


任力	発育	目標値設定の根拠。	と値	フロー	11 th 778 th 165	目標値	と類型
種名	段階	根拠	値 (mg/L)	階層*2	出典・理由等	目標値	類型
セタシジミ	生息	ヤマトシジミの貧酸素 耐性や、ヤマトシジミ 及びセタシジミの酸素 消費量より推測	9	\$	 ・環境省(2010)閉鎖性海域中長期ビジョン参考資料「底層 D0 目標値について」.⁴³⁾ ・薄井孝彦・山本長(1984)諏訪湖におけるシジミの移植効果について,長野県水産試験場研究報告,第1号.⁴⁴⁾ ・中村幹雄・品川明・戸田顕史・中尾繁(1997)ヤマトシジミの貧酸素耐性,水産増殖,45(1).⁴⁵⁾ 	2mg/L	生物 3
	再生産	セタシジミが生息 する底質から 貧酸素耐性を推測	4		蒲原ほか(2013)貧酸素水がアサリ浮遊幼生の 遊泳停止と沈降後のへい死に及ぼす影響_水産 海洋研究77(4) ⁴⁷⁾		生物 1

- 注) 1. 24 時間の暴露時間における 95%の個体が生存可能な溶存酸素量。詳細は答申を参照。
 - 2. 後述図 1.5.1 及び図 1.5.2 に示す目標値設定フローのどの階層に準拠したのかを示す。

- 注) 1. 24 時間の暴露時間における 95%の個体が生存可能な溶存酸素量。詳細は H27 答申 7 頁を参照。
 - 2. 図 1.5.2 を参照。
 - 3. 設定した目標値の妥当性については、専門家の意見を参考にすること。
 - 4. 対象生物が貧酸素条件下に暴露されると、代謝を下げるための生理的な反応として酸素消費量が低下する。
 - 5. 溶存酸素が低下しても呼吸回数が増加しない種がみられることから、当該種の生態的特徴が十分に観察された実験データを用いること。
 - 6. 検討対象とした湖沼・海域において底層溶存酸素量が 4mg/L 以下のとなる時期及び場所での現場観測 データであること。
 - 7. 妥当性について専門家の意見を参考にし、複数ある場合は妥当性の高いものを採用する。例としては、 他種と同様な生活史、生態特性を持つ近縁の種に関するデータ等。
 - 8. 種別目標値は 2mg/L、3mg/L、4mg/L の 3 段階とし、 $2\sim 4mg/L$ の間の種別目標値は小数点以下を切り上げる。

図 1.5.1 生息の場の確保のための種別目標値設定フロー

- 注) 1. 24 時間の暴露時間における 95%の個体が生存可能な溶存酸素量。詳細は平成 27 年答申 7 頁を参照。
 - 2. 対象生物が貧酸素条件下に暴露されると、代謝を下げるための生理的な反応として酸素消費量が低下する。
 - 3. 溶存酸素が低下しても呼吸回数が増加しない種がみられることから、当該種の生態的特徴が十分に観察された実験データを用いること。
 - 4. 本資料「【参考】再生産段階の貧酸素耐性評価値の推定」を参照。なお、生息の場の確保のための目標値と再生産の場の確保のための目標値が同じ値であっても差し支え無いと判断できる知見があれば、 1mg/L を足さなくてもよい。
 - 5. 既往知見を参考にして適切に設定し、設定した目標値の妥当性について専門家に確認すること。
 - 6. 検討対象とした湖沼・海域において底層溶存酸素量が 4mg/L 以下のとなる時期及び場所での現場観測 データであること。
 - 7. 妥当性について専門家の意見を参考にし、複数ある場合は妥当性の高いものを採用する。例としては、他種と同様な生活史、生態特性を持つ近縁の種に関するデータ等。
 - 8. 種別目標値は 2mg/L、3mg/L、4mg/L の 3 段階とし、 $2\sim 4mg/L$ の間の種別目標値は小数点以下を切り上げる。

図 1.5.2 再生産の場の確保のための種別目標値設定フロー

1.6 保全対象種の生息域及び再生産の場の設定並びに保全対象範囲の重ね合わせ

前述の琵琶湖の保全対象種の生息域及び再生産の場は、各保全対象種の生態特性(生息又は再生産に適した水深、底質(砂、泥、岩礁等))に係る知見、地域関係者からの指摘(情報)を踏まえて設定した。

保全対象種である 8 種の生態情報は表 1.6.1 に示すとおりであり、保全対象種の生息域及び再生産の場は「(1) コイ (在来型)」~「(8) セタシジミ」に示すとおりである。

表 1.6.1 琵琶湖における保全対象種の生態情報

琵琶湖	卵形態				主な分布	状態	,		
保全対象種	産卵期等	水深	産卵場	例	仔魚期 (幼生)	稚魚期 (稚エビ・稚貝等)	未成魚·成魚 (未成体·成体)	生息する底質環境	備考
コイ	付着沈性卵	表層							
(在来型)	1178 % 129-	表層下-10m	主に水草に産卵する (水深10m以浅)	主に水草に付着する (水深10m以浅)	底生生活 (主にヨシ帯や浅瀬に生息 する 水深10m以浅)	底生生活 (主にヨシ帯や浅瀬に生息す る 水深10m以浅)	底生生活 (砂泥底、沖合い広く生 息、水深20m以深に主に		
	産卵期:4~7月	11-20m					生息、水深75mにおいて 採捕された記録有り)	主に砂泥域に生息する	卵~稚魚は抽水植
	稚魚期:8~4月	21-30m					休用で4いに記録(中ツ)		物帯を利用する
		31-40m 41-50m	-						
		51m~	1						
ニゴロブナ	付着沈性卵	表層							
		表層下-10m	主に水草に産卵する (水深10m以浅)	主に水草に付着する (水深10m以浅)	底生生活 (主にヨシ帯や浅瀬に生息 する 水深10m以浅)	底生生活 (主にヨシ帯や浅瀬に生息す る 水深10m以浅)			
	産卵期:4~6月	11-20m					底生生活	主に泥~砂泥域に生息	卵~稚魚は抽水植
	稚魚期:4~8月	21-30m]				(砂泥底、沖合いまで広く 生息、水深90m以浅)	する	物帯を利用する
		31-40m							
		41-50m 51m~	1						
ホンモロコ	付着沈性卵	表層							
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	门相从江朔		主に水草の水面近くや浮遊物	主に水草の水面近くや浮遊物な	底生生活	底生生活			
	産卵期:3~7月	表層下-10m	などに産卵する (水深 5m以浅)	どに付着する (水深 5m以浅)	(主にヨシ帯や浅瀬に生息 する 水深5m以浅)	(主にヨシ帯や浅瀬に生息する 水深5m以浅)	底生生活 (沖合いを中心に生息	主に砂泥域に生息	卵~稚魚は抽水植
	稚魚期:5~8月	21-30m	i				砂泥底、90m 以浅)	する	物帯を利用する
		31-40m							
		41-50m							
イサザ	付着沈性卵	51m~	<u> </u>		浮遊生活(沿岸域)				
177	打有沉性卵	表層 表層下-10m	主に石の下などに座卵する (9m以浅)	石の下などで親に保護される (9m以浅)	浮遊生活(沿岸域)				
	産卵期:4~5月	11-20m				底生生活	底生生活	主に砂泥域に生息	
	稚魚期:4~7月	21-30m]			(砂泥底 20~90m 沖合い	(砂泥底 30~90m 沖	する	
		31-40m				に広く生息)	合いに広く生息)		
		41-50m	-						
イワトコナマズ	沈性卵	51m~ 表層	 			/			
17177	が江が		産卵は浅場を中心に砂礫底で	砂礫の上や隙間に産み付ける					
		表層下-10m	行われる (4m以達)	(4m以浅)			底生生活		
	産卵期:5~7月	11-20m	(411122/22)				(25m以浅 岩礁帯)	主に岩礁域に生息	
		21-30m]					する	
		31-40m]						
		41-50m							
ビワマス	沈性卵	51m~ 主屈			/	/			
E-747	ルユニタロ	表層		河川の石礫底に産卵床に産み					24 加田 東東東 24 T四 44
		表層下-10m	河川を遡上し、産卵する	付けられる	産卵床の砂礫内に留まる	遊泳生活	遊泳生活		滋賀県琵琶湖環境 部琵琶湖政策課の
	稚魚期:4~7月	11-20m 21-30m	1			(体長5~7cmの時に河川から	(0~70m 水温15度付 近を好んで生息する 沿	-	情報により、ビワマス
	作品别:4~/月	31 — 30m	1			湖に流下し、湖中生活に入 る。この際、水深30~70mに	岸~沖合いに広く生息)		が水深87m付近で生
		41 — 50m	1			速やかに移動する。)	(水深87m付近で生息を 確認)		息が確認された。
		51m~							
スジエビ	分離浮性卵	表層		卵は親の腹肢に抱かれ、ノープ	浮遊生活(沿岸域)	底生生活(5m以浅)			
		表層下-10m	親エビは産出した卵を 腹肢に抱く(5m以浅)	明は駅の腰胶に抱かれ、ノーノ リウス幼生として孵化する(5m以 浅)		底生生活(Sm以及) (主に水生植物の陰などに生 良)		A-1-17 T-1-1-1	S0 74 - 1 * 1 1 1 1 1 1 1
	産卵期:4~10月	11-20m					底生生活 (100m以浅 沿岸~沖合	主に泥~砂域に	卵~稚エビは抽水植物帯を利用する
	稚エビ期:4~10月	21-30m 31-40m	1				(100m以浅 沿岸~冲台 いに広く生息)	生息する	物帯を利用する
1		31 — 40m 41 — 50m	ł						
		51m~	1						
セタシジミ	分離浮性卵	表層							
		表層下-10m	主に20m以浅の砂泥底	主に20m以浅の砂泥底	主に20m以浅の砂泥底	底生生活	底生生活 (主に20m以浅の砂泥		
	産卵期:6~10月	11-20m		(底層付近を浮遊する)	(底層付近を浮遊する)	(主に20m以浅の砂泥底)	(主L20m以及の砂泥 底)	主に砂域に生息	
	稚貝期:周年	21-30m	1					する	
		31-40m 41-50m	1						
		51m~	1						
7/ 57 1/01 0	5) (0) (0) =0)		.) = () ==)	50) 55)	50) 50)	20) 21)	20) 20)	24) 25)

資料:35)、48)、49)、50)、51)、52)、53)、54)、55)、56)、57)、58)、59)、60)、61)、62)、63)、64)、65)、66)、67)、68)、69)、70)、71)、72)

(1) コイ (在来型)

コイ (在来型) の生息域及び再生産の場及びそれぞれの目標値は図 1.6.1 に示すとおりである。また、コイ (在来型) の生息及び再生産に関する整理結果は図 1.6.2 に示すとおりである。

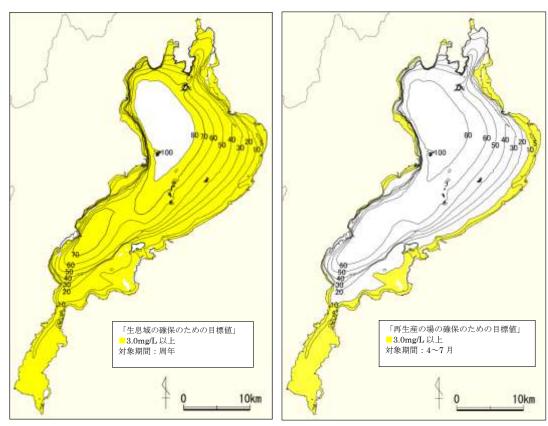


図 1.6.1 コイ (在来型) の生息域及び再生産の場

区分	発育段階				生息	息水深	帯						底質			水温
再生産の場	J P	10m以	人浅							Ŋ	下は水	草に産	Eみ付	けらね	rl. A	産卵は18~22℃程度で行わ れる
	仔魚					-				7.	k草の	多く生	Eえた	止水坑	8TZ	卵は水温20℃で4~5日で孵 化する
	稚魚	10m以	人浅													
生息域	未成魚・成魚	琵琶注 群がき	0m以浅 琵琶湖の水深20m以深に純度の高い野生個体 羊が現存 中合25~75mの沖曳網で採捕された記録有								まに砂泥底に生自 最も良く餌を1					水槽飼育では、20~28℃で 最も良く餌を食べる 水温が7℃以下になると活 動しなくなる
豆八	▼ 去 印 №	k	出現時期													/# 北
区分	発育段階	Ĭ	1	2	3	4	5	6	7	8	9	10	11	12	1	備考
まとさの担	卵								•							
再生産の場 行 付 生息域	仔魚					•			•						出現時	期は卵と同じとした
	稚魚		ſ			•								-		
	未成魚・成	成魚 ●														

注)コイ (在来型) を含むコイとして整理した。 資料:48)、50)、51)、52)、70)、71)、72)

図 1.6.2 コイ (在来型) の生息及び再生産に関する整理結果

(2) ニゴロブナ

ニゴロブナの生息域及び再生産の場及びそれぞれの目標値は図 1.6.3 に示すとおりである。また、ニゴロブナの生息及び再生産に関する整理結果は図 1.6.4 に示すとおりである。

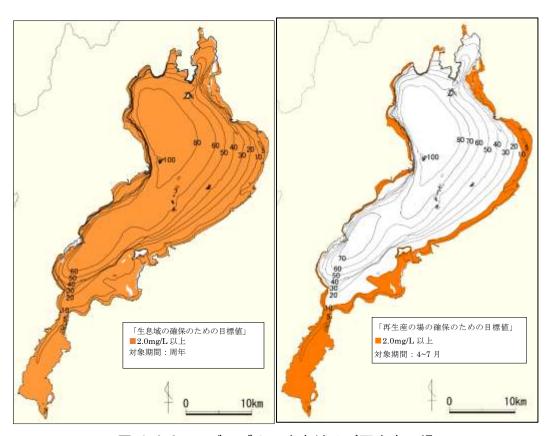


図 1.6.3 ニゴロブナの生息域及び再生産の場

区分	発育段階	生息水深帯	底質	水温
再生産の場	印	10m以浅	水草や浮遊物に産卵する 夏の産卵期には、流れのある 沿岸にの砂泥底に生える沈水 植物の根もとに産卵する	-
	仔魚	ヨシ帯の内部の表層~中層に生息	-	受精後、水温16℃で約8日 で孵化する
	稚魚	10m以浅		-
生息域	た息域 未成魚・成魚	90m以浅 夏は10m以浅、冬は10~20mの水深に多い	砂底~砂泥底	-

区分	発育段階						出現	時期						備考
四月	元月权阳	1	2	3	4	5	6	7	8	9	10	11	12	VIII 77
再生産の場	戼							1						
丹生生の場	仔魚							J						出現時期は卵と同じとした
生息域	稚魚				1				J					
生心域	未成魚・成魚												•	

資料:48)、50)、52)、53)

図 1.6.4 ニゴロブナの生息及び再生産に関する整理結果

(3) ホンモロコ

ホンモロコの生息域及び再生産の場及びそれぞれの目標値は図 1.6.5 に示すとおりである。また、ホンモロコの生息及び再生産に関する整理結果は図 1.6.6 に示すとおりである。

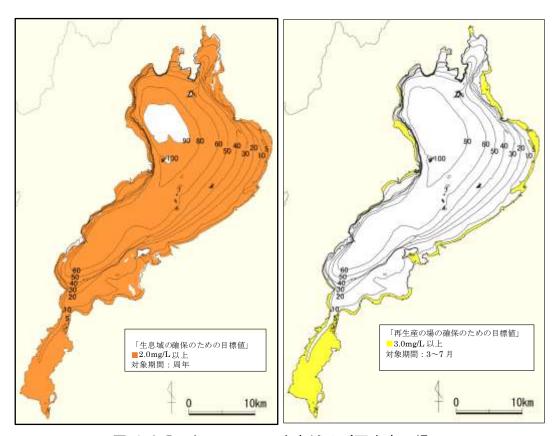


図 1.6.5 ホンモロコの生息域及び再生産の場

区分	発育段階	生息水深帯	底質	水温
	酌	卵は浮遊物、水草に付着される	-	12~25℃ 最盛期は20℃程度
再生産の場	仔魚	-	-	水温23~25℃で5~6日、水 温15℃で12日前後で孵化す る
	稚魚	_	-	-
生息域	未成魚・成魚	未成魚期以降に浅所を去る 産卵期以外:5~90m 産卵期:沿岸域	砂泥底	-

区分	発育段階						出現	時期						備考	
四月 光月段陌		1	2	3	4	5	6	7	8	9	10	11	12	VHI →	
エルオの旧	卵							1							
再生産の場	仔魚			•				-						出現時期は卵と同じとした	
生息域	稚魚														
生心吸	未成魚・成魚												1		

資料:48)、50)、53)、54)

図 1.6.6 ホンモロコの生息及び再生産に関する整理結果

(4) イサザ

イサザの生息域及び再生産の場及びそれぞれの目標値は図 1.6.7 に示すとおりである。また、イサザの生息及び再生産に関する整理結果は図 1.6.8 に示すとおりである。

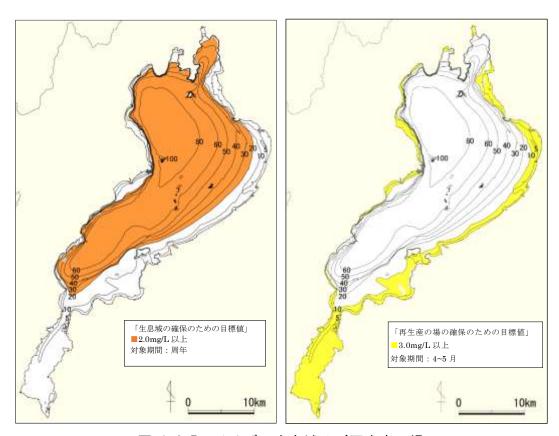


図 1.6.7 イサザの生息域及び再生産の場

区分	発育段階		生息水深帯										底質			水温	
	砂	9m以	浅								明岸の ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	石のあ	る地	帯		約13°C	
再生産の場	仔魚	浮遊	生活	(沖合	`)								-			水温30℃で受精後20時間、 水温20℃で受精後54時間程 度で孵化する	
	稚魚	20m填	戓													_	
生息域		~90m 周鉛直移動を行う									泥底				10℃以下~25℃前後		
区分	発育段隊	tk:						出現	時期							備考	
四月	元日秋日	Н	1	2	3	4	5	6	7	8	9	10	11	12		PHI ~ HIV	
再生産の場	到						-										
一円生性の場	仔魚					•	•								出現時	芽期は卵と同じとした	
4. 白. 4.	稚魚								•								
生息域	未成魚・成													-			
次率 . 10)	40) 50)	E0)															

資料:48)、49)、50)、52)

図 1.6.8 イサザの生息域及び再生産の場

(5) イワトコナマズ

イワトコナマズの生息域及び再生産の場及びそれぞれの目標値は図 1.6.9 に示すとおりである。また、イワトコナマズの生息及び再生産に関する整理結果は図 1.6.10 に示すとおりである。

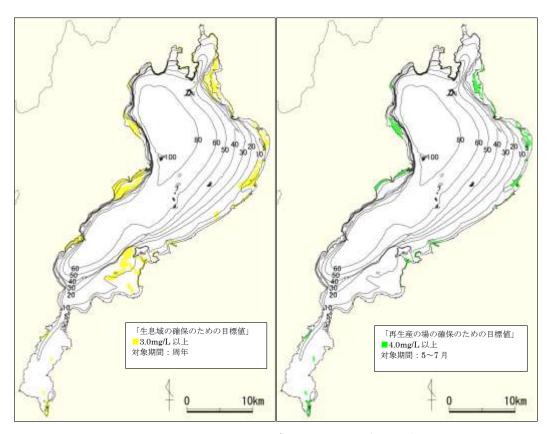
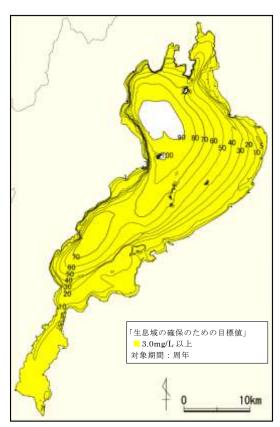


図 1.6.9 イワトコナマズの生息域及び再生産の場

区分	発育段階	生息水深带	底質	水温
再生産の場	БЫ	50~70cm 4m程度	石礫ないし砂礫底 卵は石の間や上に産み付けら れる	-
	仔魚	-		水温22℃の元では55~60時 間で孵化する
生息域	稚魚	-	1	-
工心以	未成魚・成魚	25m以浅	岩礁帯	-


区分	発育段階						出現	時期						備考	
区刀	光月权陷	1	2	3	4	5	6	7	8	9	10	11	12	VIII 79	
再生産の場	別					•					·				
円生生の場	仔魚					•		-						出現時期は卵と同じとした	
生息域	稚魚	 											Î	出現時期は成魚と同じとした	
生心場	未成魚・成魚												•		

資料:48)、50)、55)、56)

図 1.6.10 イワトコナマズの生息及び再生産に関する整理結果

(6) ビワマス

ビワマスの生息域の目標値は図 1.6.11 に示すとおりである。また、ビワマスの 生息及び再生産に関する整理結果は図 1.6.12 に示すとおりである。

注) ビワマスは湖内にて再生産を行わないため、ここでは再生産の場を図示しない。

図 1.6.11 ビワマスの生息域

区分	発育段階				生息	水深	帯						底質			水温
再生産の場	IJN		石礫底 一 河川に遡上し、雌が産卵床 掘って産卵する										IN l未 か	水温15℃以上で孵化率が低 下する		
	仔魚					_							-			-
	稚魚	30~	90m										-			-
生息域	未成魚・成魚		水深1 沿岸の			帯にも	生息	する					-			夏:遊泳層の水温は15℃付近。捕食時にのみ20-25℃ の表層に出現する
区分	発育段階	:Ł	出現時期													備考
四万	光月段階	白	1	2	3	4	5	6	7	8	9	10	11	12		7/用 45
まとさの担	卵										1		—			
再生産の場	サ生産の場 仔魚												-		出現時	#期は卵と同じとした
上白	稚魚					•			-							
生息域	^思 域 未成魚・成魚	魚												7		

資料:49)、57)、58)、59)、60)

図 1.6.12 ビワマスの生息及び再生産に関する整理結果

(7) スジエビ

スジエビの生息域及び再生産の場及びそれぞれの目標値は図 1.6.13 に示すとおりである。また、スジエビの生息及び再生産に関する整理結果は図 1.6.14 に示すとおりである。

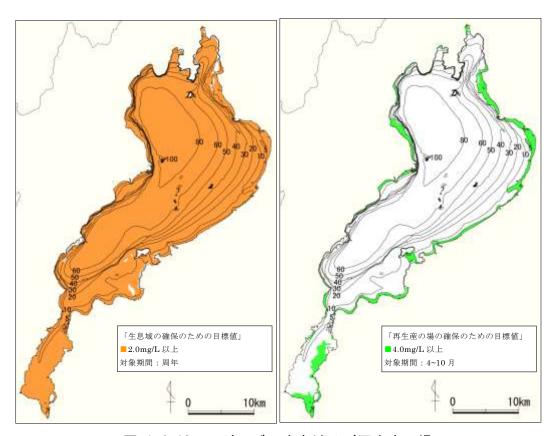


図 1.6.13 スジエビの生息域及び再生産の場

区分	発育段階	生息水深带	底質	水温
	珂	5m以浅		成熟を開始する臨界水温は 17℃から20℃の間に存在す る
再生産の場	浮遊	-	-	-
	稚エビ		水棲植物が繁茂している場所 を隠れ家とする	-
	未成体	_	_	-
生息域	成体		泥〜砂底 琵琶湖では全域に生息する*	-

*は検討委員会において学識者意見により追加された知見を示す

区分						出現	時期						備考		
区刀	発育段階	1	2	3	4	5	6	7	8	9	10	11	12	PH ~5	
	卵										1				
再生産の場	浮遊				•						1			出現時期は卵と同じとした	
·	稚エビ										1			出現時期は卵と同じとした	
生息域	未成体・成体												1		

資料: 53)、61)、62)、69)

図 1.6.14 スジエビの生息及び再生産に関する整理結果

(8) セタシジミ

セタシジミの生息域及び再生産の場及びそれぞれの目標値は図 1.6.15 に示すとおりである。また、セタシジミの生息及び再生産に関する整理結果は図 1.6.16 に示すとおりである。

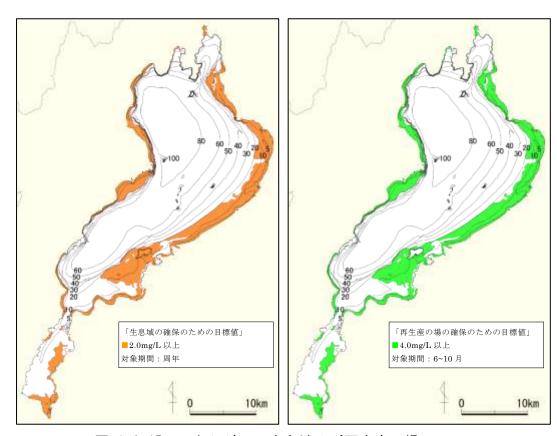
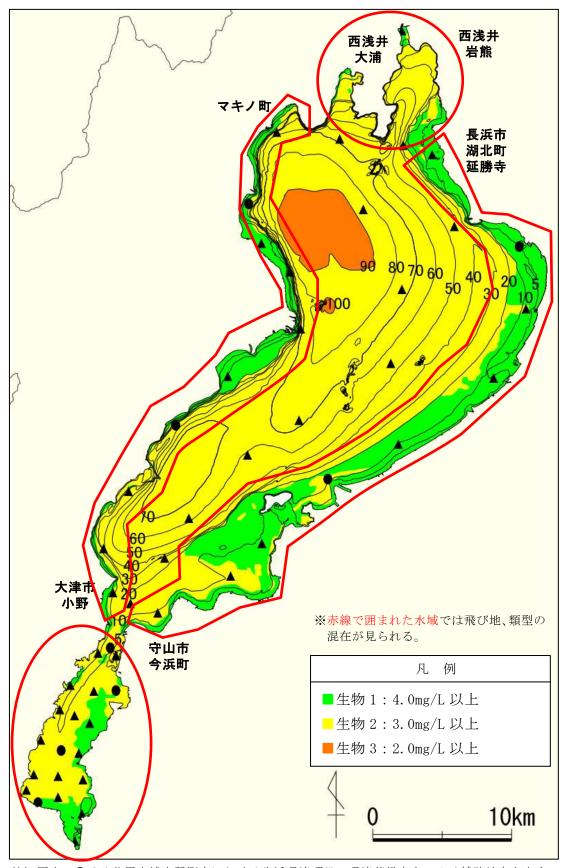


図 1.6.15 セタシジミの生息域及び再生産の場

区分	発育段階	生息水深带	底質	水温
	即	-		卵 は水温20~25℃ では約 90時 間で殻頂を膨出する
再生産の場	浮遊	1	-	_
	稚貝	-	-	-
	未成体	Ŧ		-
生息域		水深20m位までに多く,特に10m以浅に多い。 40mをこえるとほとんど発見されない		水温15℃以上になると酸素 消費量が急激に増大する

区分	発育段階						出現	時期						備考	
四刀	四月 光月段階		2	3	4	5	6	7	8	9	10	11	12	Er mu	
	卵										Î				
再生産の場	浮遊					(1			出現時期は卵と同じとした	
	稚貝										1			出現時期は卵と同じとした	
生息域	未成体・成体												1		

資料: 63)、64)、65)、66)


図 1.6.16 セタシジミの生息及び再生産に関する整理結果

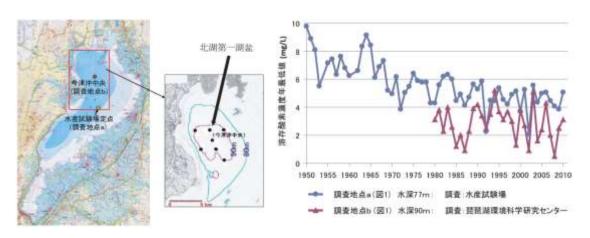
1.7 保全対象範囲の重ね合わせ

保全対象種である 8 種の生息域及び再生産の場を重ね合わせた保全対象範囲は図 1.7.1 に示すとおりである。

重ね合わせの結果、北湖の西浅井岩熊地先及び西浅井大浦地先及びマキノ町地先から大津市小野地先では生物2類型の水域の中に生物1類型の飛び地が存在すること、長浜市湖北町延勝寺地先から守山市今浜町地先では生物1類型の水域の中に生物2類型の飛び地が存在すること、南湖では生物1類型と生物2類型が混在している。

このような水域については、一体の水域として保全対象範囲の保全を図ることが適当と考えられるところを厳密に細分化して基準値を設定することは、実際の水環境管理に当たって混乱が生じる可能性があること、また、水域の保全の観点から、個別の水域としてそれぞれ保全を図るよりも、一体の水域として保全対象範囲の保全を図ることが適当と考えられる水環境管理に当たって混乱が生じる可能性があるため、まとめて高い側の目標値の類型(生物 1 類型)とすることが想定される。

注) 図中の●は公共用水域水質測定における生活環境項目の環境基準点を、▲は補助地点を表す。 図 1.7.1 琵琶湖の保全対象範囲の重ね合わせ


1.8 水域の特徴に関する考慮事項

底層溶存酸素量の状況、底生生物の状況、水域利用状況等の状況等より、類型指定の検討は以下のとおり行った。

(1)過去の底層溶存酸素量の状況

琵琶湖では、継続して貧酸素化(底層溶存酸素量 2mg/L 未満)が顕著になっている水域はみられない。また、過去(「水質汚濁に係る環境基準」(昭和 46 年(1971 年)環境庁告示第 59 号)以前)の底層溶存酸素量の水平分布等の知見がないことから、近年の底層溶存酸素量の状況から琵琶湖における貧酸素の発生状況を確認することとした。

過去の底層溶存酸素量の状況について、滋賀県水産試験場及び琵琶湖環境科学研究センターにおける琵琶湖の水深 77m 地点及び 90m 地点における 1950 年以降の観測結果を図 1.8.1 に示す。琵琶湖北湖湖底の溶存酸素濃度は 1950 年代より低下しており、その傾向は水深 77m 地点で特に顕著である¹⁾。水深 90m 地点では、溶存酸素量が減少傾向にあるとは言えないが、低酸素化の発生頻度は高まっている。琵琶湖湖底における溶存酸素量の低下は、1980 年代までは富栄養化が主原因であり、1980 年代以降は気候変動による鉛直循環の遅れが主原因であるとされている²⁾。

出典) 滋賀県琵琶湖環境科学研究センター (2012) びわ湖みらい センターニュース No.8

図 1.8.1 琵琶湖調査地点及び溶存酸素量年間最低値の推移

(2) 近年の底層溶存酸素量の状況

北湖において、保全対象種の観点で設定した保全対象範囲の重ね合わせ(図 1.7.1

¹⁾ 滋賀県琵琶湖環境科学研究センター (2012) びわ湖みらいセンターニュース No.18

²⁾ Kumagai, M., Vincent, W. F., Ishikawa, K., & Aota, Y. (2003). Chapter 1, Lessons from Lake Biwa and other Asian lakes: global and local perspectives. Freshwater management, Global versus local perspectives.

参照)では、公共用水域水質測定地点である今津沖中央(17B)が位置する水域は生物2類型となる。この今津沖中央(17B)では、底層溶存酸素量が3mg/L未満になる年があるが(「4.1.2琵琶湖(2)水質・底質の状況に関する情報4)底層溶存酸素量の分布」参照)、他の地点では3mg/L以上となっている。

次に、保全対象種の観点で設定した保全対象範囲の重ね合わせ(図 1.7.1 参照)において、第一湖盆(水深約 90m 以深) は生物 3 類型となる。「1.1.2 (4) 底層溶存酸素量の分布」に示すように、第一湖盆内における底層溶存酸素量は 2mg/L 未満となる年度があるものの、全ての年度で測定されている訳ではない。

(3) 底生生物の状況(生物3類型のうち無生物域を解消する範囲について)

北湖において、底層溶存酸素量が 2mg/L 未満を記録したことがある今津沖中央付近では、<u>過去、継続的に貧酸素水塊が発生したことがない</u>ため、底生生物が生息していると考えられることから、無生物域を解消する範囲は設定しない。

南湖において、水草の過繁茂の影響により、平成 19 年(2007 年)以降、底層溶存酸素量が 2.0mg/L 未満の水域が存在するようになったが、そのような水域が継続的に発生するものとは限らないこと、底生生物への影響が局所的及び限定的であると考えられることから、無生物域を解消する範囲は設定しない。

(4) 水域の利用状況等

琵琶湖において埋立てや漁港等の施設により閉鎖的で水交換が悪いと推測される 水域は局所的に存在する。しかし、既存の環境基準の類型指定では局所的に類型指 定している水域は設定されていないことから、底層溶存酸素量においても局所的な 類型指定の設定はしない。

なお、琵琶湖では、底層が構造上貧酸素化しやすくなっている範囲であって、その利水等の目的で、水生生物が生息できる場の保全・再生を図る必要がないと判断される範囲は存在していないと考え、この観点からの設定除外範囲は設定されない。

2. 琵琶湖の類型指定の設定結果

上記を踏まえ、琵琶湖の類型指定を検討した結果は図 1.8.1 に示すとおりである。 類型指定は保全対象範囲の重ね合わせの結果を基にした。

また、水域区分についても検討を行い、その設定理由等は表 1.8.1 に示すとおりである。

なお、図 1.7.1 の保全対象範囲の重ね合わせより、以下の水域については、水環境管理に当たって一体の水域として保全対象範囲の保全を図ることが適当と考えられるため類型をまとめた。また、類型指定名称は、北湖を琵琶湖北湖、南湖を琵琶湖南湖とする。

- ・北湖の西浅井岩熊地先及び西浅井大浦地先では水深 50m までの水域を沖合と同じ生物 1 類型としてまとめた。
- ・北湖のマキノ町地先から大津市小野地先においても、沿岸部に生物 1 類型等の 飛び地があることから、それらを包括できるように水深 30m~60m までの水域 を生物 1 類型としてまとめた。
- ・北湖の長浜市湖北町延勝寺地先から守山市今浜町地先において、沿岸部に生物 2 類型の飛び地があること、水深 20m 前後で底質の性状に依存した複雑な類型 が存在しており、公共用水域の常時監視の運用が複雑になり、管理に支障が生じる場合も考えられることから、それらを包括できるように、水深 20m 以浅の 水域を生物 1 類型としてまとめた。
- ・北湖には第一湖盆の南側に飛び地となっている生物3類型が存在している。<u>この水域に関しても生物2類型の水域内に存在していることから、包括できるように生物2類型としてまとめることとする(図 1.8.1 参照)。</u>
- ・南湖において、生物 1 類型と生物 2 類型が混在していることから生物 1 類型と する。

表 1.8.1 各水域区分の設定理由等

	表 1.8.1 各水域区分の設定理由等
水域区分 (類型等)	設定理由
	【保全対象種の観点】
琵琶湖北湖 I	・対象水域は、保全対象範囲の重ね合わせの結果、おおむね生物 1
(生物 1 類型: 4mg/L 以上)	類型であり、その中に生物 2 類型が存在している。
	●保全対象範囲の重ね合わせ結果においておおむね生物 1 類型であ
	ること、その中に生物 2 類型が存在しているが一体の水域として
(水域区分の主な設定	保全を図ることが適当であることから、まとめて高い側の目標値
項目)	の類型(<u>生物1類型</u>)とする。
・保全対象範囲の重ね合	(環境基準の類型指定の状況)
わせ	COD 等: <u>AA 類型</u>
┃ ・一体の水域として保全 ┃	全窒素及び全燐: <u>Ⅱ類型</u>
	水生生物保全環境基準(全亜鉛等): 生物 A 類型、生物特 B 類型
琵琶湖北湖Ⅱ	【保全対象種の観点】
	・対象水域は、保全対象範囲の重ね合わせの結果、生物2類型であ
(生物 2 類型:3mg/L 以上)	る。
	●保全対象範囲の重ね合わせ結果において生物2類型であることか
(水域区分の主な設定	ら、目標値の類型(<u>生物 2 類型</u>)とする。
項目)	(環境基準の類型指定の状況)
・保全対象範囲の重ね合	COD 等: <u>AA 類型</u>
わせ	全窒素及び全燐: <u>Ⅱ類型</u>
٧, ٥	水生生物保全環境基準(全亜鉛等): <u>生物 A 類型</u>
 琵琶湖北湖 Ⅲ	【保全対象種の観点】
	・対象水域は、保全対象範囲の重ね合わせの結果、生物3類型であ
(生物 3 類型: 2mg/L 以上)	る。
	●保全対象範囲の重ね合わせ結果において生物3類型であることか
(水域区分の主な設定	ら、目標値の類型(<u>生物3類型</u>)とする。
「小城区方の主な設定 項目)	(環境基準の類型指定の状況)
・保全対象範囲の重ね合	COD 等: <u>AA 類型</u>
わせ	全窒素及び全燐: <u>Ⅱ類型</u>
42 6	水生生物保全環境基準(全亜鉛等): <u>生物 A 類型</u>
	【保全対象種の観点】
琵琶湖南湖	・対象水域は、保全対象範囲の重ね合わせの結果、生物1類型と生
(生物 1 類型:4mg/L 以上)	<u>物 2 類型が混在</u> している。
	●保全対象範囲の重ね合わせ結果において、生物 1 類型と生物 2 類
	型が混在していること、一体の水域として保全を図ることが適当
(水域区分の主な設定	であることから、まとめて高い側の目標値の類型(<u>生物 1 類型</u>)
項目)	とする。
・保全対象範囲の重ね合	(環境基準の類型指定の状況)
わせ	COD 等: <u>AA 類型</u>
・一体の水域として保全	全窒素及び全燐: <u>Ⅱ類型</u>
	水生生物保全環境基準(全亜鉛等): <u>生物 B 類型、生物特 B 類型</u>

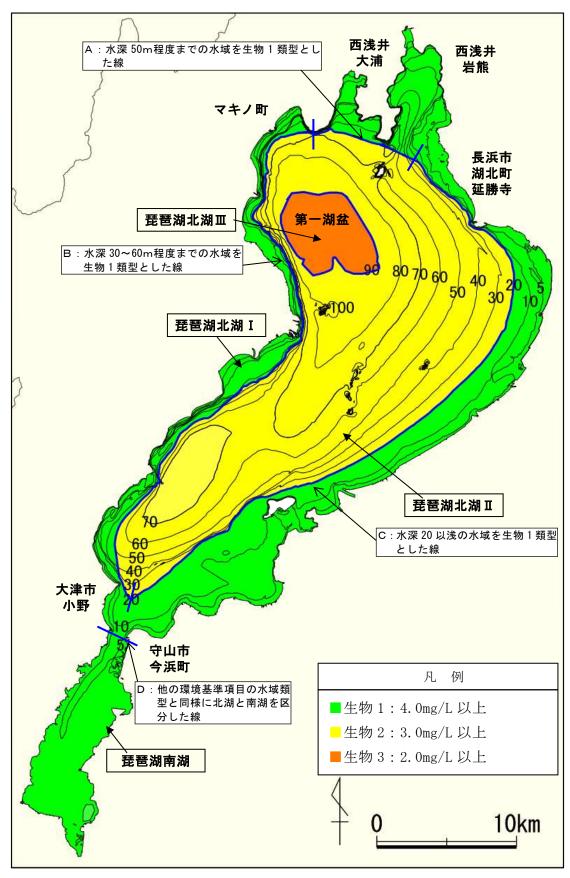


図 1.8.1 琵琶湖の類型指定

- 「1.2 水生生物の生息状況等の把握」
- 「1.5 保全対象種における底層溶存酸素量の目標値の設定」
- 「1.6 保全対象種の生息域及び再生産の場の設定並びに保全対象範囲の重ね合わせ」 引用文献一覧
- 1) 滋賀県水産試験場(2005). 琵琶湖および河川の魚類等の生息状況調査報告書 平成14-15年度.
- 2) 滋賀県水産試験場(2005). 琵琶湖沿岸帯調査報告書 平成14-15年度.
- 3) 滋賀県農政水産部水産課(2016). 滋賀の水産 平成27年度.
- 4) 滋賀県 (2011). マザーレイク 21 計画 (琵琶湖総合保全整備計画) 第 2 期改定版.
- 5) 農林水産省(1989~2014). 滋賀農林水産統計.
- 6) 赤井裕, 秋山信彦, 鈴木伸洋, & 増田修. (2004). タナゴのすべて. マリン企画.
- 7) 岩井保 (1988). 検索入門釣りの魚. 保育社.
- 8) 奥田重俊, 柴田敏隆, 島谷幸宏, 水野信彦, 矢島稔, & 山岸哲. (1996). 川の生物図典. 財) リバーフロント整備センター.
- 9) 大沼芳幸(2017). 琵琶湖八珍 湖魚の宴 絶品メニュー.海青社.
- 10) 川那部浩哉, 水野信彦編(2004). 山渓カラー名鑑 日本の淡水魚. 山と渓谷社.
- 11) 環境省 (2015). 環境省レッドリスト2015 汽水・淡水魚類. http://www.env.go.jp/press/files/jp/28060.pdf.
- 12) 滋賀県 (2015). 滋賀県で大切にすべき野生生物 -滋賀県レッドデータブック2015年版-. サンライズ出版.
- 13) 滋賀の食事文化研究会 (2003). 湖魚と近江の暮らし. 淡海文庫.
- 14) 滋賀県ミュージアム活性化推進委員会 (2015). おいしい琵琶湖八珍: 文化としての湖魚食. サンライズ出版.
- 15) 鈴木 魚心 (1962). へらぶな釣り百科. 岩崎書店.
- 16) 谷口順彦,池田実(2009).アユ学:アユの遺伝的多様性の利用と保全.築地書館.
- 17) 寺島 昌代, 萩生田 憲昭 (2014). 世界のナマズ食文化とその歴史. 日本食生活学会誌, 25. 3: 211-220.
- 18) 東京水産振興会 (2015). 琵琶湖の魚食文化・その魅力を探る 琵琶湖八珍を生かした地域づくりをめざして. 第29回「食」と「漁」を考える地域シンポジウム要旨.
- 19) 早川史子. (2001). 近江の食文化. 日本食生活学会誌, 11(4), 324-330.
- 20) 細谷和海. (2015), 山渓ハンディ図鑑15・日本の淡水魚. 山と渓谷社.
- 21) 益田一 編. (1988). 日本産魚類大図鑑. 東海大学出版会.
- 22) 宮地伝三郎, 川那部浩哉, & 水野信彥. (1976). 原色日本淡水魚類図鑑. 保育社.
- 23) 村上興正, 鷲谷いづみ. 日本生態学会編. (2013). 外来種ハンドブック. 地人書館.
- 24) 川井唯史, 中田和義. (2011). エビ・カニ・ザリガニ 淡水甲殻類の保全と生物学.
- 25) 環境省 (2015). 環境省レッドリスト2015 その他無脊椎動物. http://www.env.go.jp/press/files/jp/28074.pdf.
- 26) 紀平肇, 松田征也, & 内山りゅう. (2003). 日本産淡水貝類図鑑 ① 琵琶湖・淀川産の淡水貝類. ピーシーズ.
- 27) 環境省 (2015). 環境省レッドリスト2015 貝類. http://www.env.go.jp/press/files/jp/280 64.pdf.
- 28) 藤岡康弘. (2013). 琵琶湖固有 (亜) 種ホンモロコおよびニゴロブナ・ゲンゴロウブナ激減の 現状と回復への課題. 魚類学雑誌, 60(1), 57-63.
- 29) 熊谷道夫, & 石川俊之. (2009). 自律型潜水ロボット淡探 (たんたん) による湖底調査. 日本ロボット学会誌, 27(3), 278-281.
- 30) 山室真澄, 石飛裕, 中田喜三郎, 中村由行. (2013). 貧酸素水塊 現状と対策. 生物研究 社.
- 31) 鈴木誉士, 永野元, 小林徹, 上野紘一. (2005). RAPD 分析による琵琶湖産フナ属魚類の種・亜種 判別およびョシ帯に出現するフナ仔稚魚の季節変化. 日本水産学会誌, 71(1), 10-15.
- 32) Hiroki Yamanaka, Yukihiro Kohmatsu, and Masahide Yuma. (2007). Difference in the hypoxia tolerance of the round crucian carp and largemouth bass: implications for physiological refugia in the macrophyte zone., Ichthyol Res, Vol. 54, No. 3

- 33) 川本信之. (1970). 魚類生理. 恒星社厚生閣.
- 34) 藤原公一, 臼杵崇広, 根本守仁, & 北田修一. (2011). 琵琶湖沿岸のヨシ帯におけるニゴロブナ Carassius auratus grandoculis の初期生態とその環境への適応. 日本水産学会誌, 77(3), 387-401.
- 35) 環境省 (2013). 平成 24 年度 下層 DO・透明度設定検討及び魚介類調査検討業務.
- 36) 熊谷道夫, 石川俊之 (2010). 温暖化が大型淡水湖の循環と生態系に及ぼす影響評価に関する 研究_環境省環境研究総合推進費報告書
 - (https://www.env.go.jp/policy/kenkyu/suishin/kadai/syuryo_report/pdf/D0804-4.pdf) .
- 37) 山元憲一, 平野修, 橋本公浩, & 高橋正行. (1988). 低酸素下におけるムギツク, ズナガニゴイ, ゼゼラ, ワタカ, ギギ, ブルーギルの酸素消費量の変化. 水産増殖, 36(2), -130.
- 38) Remen, M., Oppedal, F., Imsland, A. K., Olsen, R. E., & Torgersen, T. (2013). Hypoxia tolerance thresholds for post-smolt Atlantic salmon: dependency of temperature and hypoxia acclimation. Aquaculture, 416, 41-47.
- 39) Barnes, R. K., King, H., & Carter, C. G. (2011). Hypoxia tolerance and oxygen regulation in Atlantic salmon, *Salmo salar* from a Tasmanian population. Aquaculture, 318(3), 397-401.
- 40) 環境省(2014). 魚介類に対する低溶存酸素濃度の急性影響試験結果報告書.
- 41) 焦春萌,青木眞一,奥村陽子,南真紀,矢田稔,石川可奈子,...&辻村茂男.(2011). 琵琶湖の低酸素化の実態把握および北湖生態系に与える影響の把握に関する解析モニタリング琵琶湖の低酸素化の実態およびその生態系に与える影響.
- 42) 山田智・蒲原聡・曽根亮太・堀口敏弘・鈴木輝明. (2014). ガザミ (Portunus trituberculatus), クルマエビ (Marsupenaeus japonicus) およびヨシエビ (Metapenaeus ensis) の浮遊幼生に及ぼす貧酸素水の影響,水産海洋研究,78(1)
- 43) 環境省(2010). 閉鎖性海域中長期ビジョン参考資料「底層 D0 目標値について」.
- 44) 薄井孝彦, 山本長 (1984). 諏訪湖におけるシジミの移植効果について, 長野県水産試験場研 究報告, 第1号.
- 45) 中村幹雄・品川明・戸田顕史・中尾繁 (1997). ヤマトシジミの貧酸素耐性, 水産増殖, 45 (1).
- 46) 山元憲一, 平野修, 原洋一, & 三代健造. (1988). 淡水産魚類 11 種の低酸素下における鼻上 げおよび窒息死. 水産増殖, 36(1), 49-52.
- 47) 蒲原聡, 山田智, 曽根亮太, 堀口敏宏, 鈴木輝明. (2013). 貧酸素水がアサリ浮遊幼生の遊泳停止と沈降後のへい死に及ぼす影響. 水産海洋研究= Bulletin of the Japanese Society of Fisheries Oceanography, 77.4: 282-289.
- 48) 宮地伝三郎,川那部浩哉, & 水野信彦. (1963). 原色日本淡水魚類図鑑 改訂版. 保育社.
- 49) 宮地伝三郎,川那部浩哉, & 水野信彦. (1976). 原色日本淡水魚類図鑑 全改訂新版. 保育社.
- 50) 川那部浩哉, 水野信彦編 (1995). 山渓カラー名鑑 日本の淡水魚. 山と渓谷社.
- 51) 細谷和海編. (2015), 山渓ハンディ図鑑 15・日本の淡水魚. 山と渓谷社.
- 52) 環境省(2009). 水生生物の保全に係わる水質環境基準の類型指定について(第3次報告).
- 53) 奥田重俊, 柴田敏隆, 島谷幸宏, 水野信彦, 矢島稔, & 山岸哲. (1996). 川の生物図典. 財) リバーフロント整備センター.
- 54) 中村守純. (1949). 琵琶湖産ホンモロコの生活史. 日本水産学会誌, 15(2), 88-96.
- 55) Maehata, M. (2001). Mating behavior of the rock catfish, Silurus lithophilus. Ichthyological Research, 48(3), 283-287.
- 56) Maehata, M. (2002). Features of the reproductive ecology of the rock catfish Silurus lithophilus. Ichthyological Research, 49(2), 109-113.
- 57) 加藤文男. (1978). 琵琶湖水系に生息するアマゴとビワマスについて. 魚類学雑誌, 25.3: 197-20.
- 58) 藤岡康弘. (1990). ビワマス-湖に生きるサケ. 魚と卵, 159, 25-38.
- 59) 藤岡康弘. (2009). 川と湖の回遊魚ビワマスの謎を探る. サンライズ出版.
- 60) 藤岡康弘. (2016). さけます情報 サケ科魚類のプロファイル-14 ビワマス. SALMON 情報. 10: 49-52.
- 61) 上田常一(1970). 日本淡水エビ類の研究(改訂増補版). 園山書店.
- 62) 大貫貴清, 田中彰, 鈴木伸洋, & 秋山信彦. (2008). 静岡県三保半島におけるスジエビ雌の 生殖周期. 水産増殖, 56(1), 57-66.

- 63) 林一正. (1956). セタシジミ生殖巣の組織学的研究.
- 64) 林一正. (1972). 琵琶湖産有用貝類の生態について (前編). 貝類学雑誌 Venus: the Japanese journal of malacology, 31(1), 9-34.
- 65) 古川優, 水本三朗. (1953). セタシジミの生態学的研究-II. 日本水産学会誌, 19(2), 91-94
- 66) 東怜. (1965). 琵琶湖産主要貝類の呼吸について. 貝類学雑誌 Venus: the Japanese journal of malacology, 23(4), 229-237.
- 67) 亀甲武志, 岡本晴夫, 氏家宗二, 石崎大介, 臼杵崇広, 根本守仁, 三枝仁, 藤岡康弘. (2014). 琵琶湖内湖の流入河川におけるホンモロコの産卵生態. 魚類学雑誌, 61(1), 1-8.
- 68) 池末弥, 志垣誠一. (1976). マシジミの生態に関する研究. 水産増殖, 24(2), 68-74.
- 69) 近畿地方建設局. (1966). びわ湖生物資源調査団一般調査中間報告書.
- 70) 馬渕浩司, 瀬能宏, 武島弘彦, 中井克樹, & 西田睦. (2010). 琵琶湖におけるコイの日本在来 mtDNA ハプロタイプの分布. 魚類学雑誌, 57(1), 1-12.
- 71) 細谷和海 編. (2019). 山渓ハンディ図鑑 15 増補改訂 日本の淡水魚. 山と渓谷社.
- 72) 中坊徹次 編. (2018). 小学館の図鑑 Z 日本魚類館. 小学館.