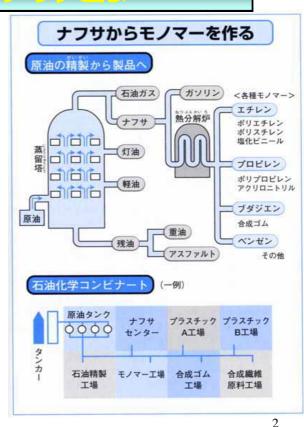
資料 4

コークス炉化学原料化法

- <報告内容>
- 1.プラスチックとは
- 2.コークス炉化学原料化法の開発経緯と社会背景
- 3.コークス炉化学原料化法の特徴
 - 1 事前処理工程
 - 2 熱分解処理工程
- 4.新日鐵の廃プラリサイクル事業
 - 1 実績と今後の事業展開
 - 2)プラスチックリサイクルの効果
- 5.まとめ

2007年2月26日

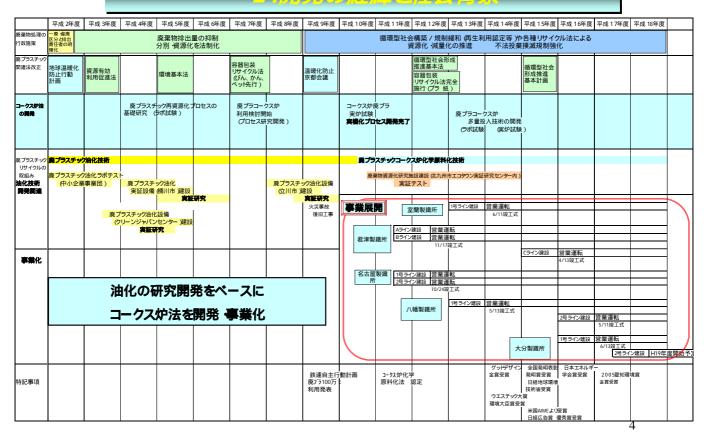

寧新日本製鐵株式會社

Copyright Nippon Steel Corporation All Rights Reserved

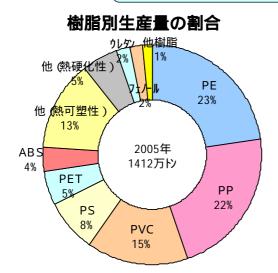
1.プラスチックとは

出展:佐藤功著 図解雑学プラスチック」(ナツメ社)

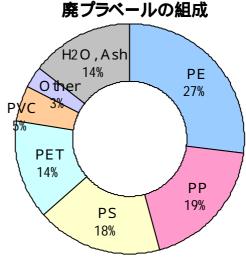
 ${\it Copyright} @ {\it Nippon} \ {\it Steel} \ {\it Corporation} \ {\it All} \ {\it Rights} \ {\it Reserved}$


プラスチックのナフサ循環

プラスチックは石油原料の化学製品ナフサ モノマー (重合) 高分子 (プラスチック)


プラスチックの熱分解高分子化合物 分解 ナフサ原料プラスチック等の化学製品

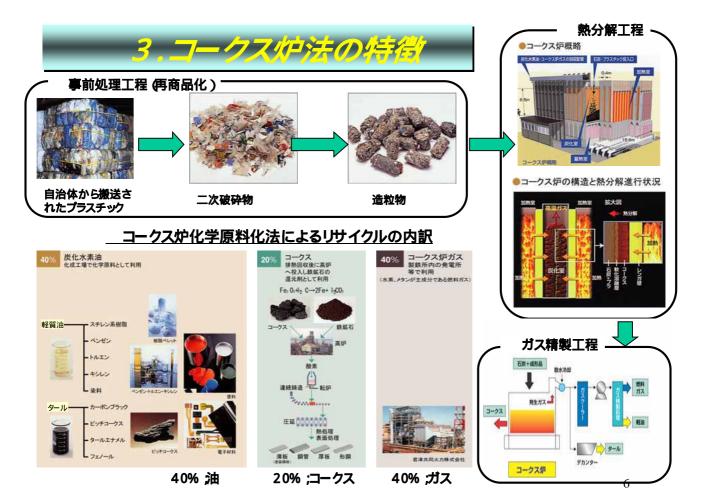
2 開発の経緯と社会背景



 ${\it Copyright} @ {\it Nippon} \ {\it Steel} \ {\it Corporation} \ {\it All} \ {\it Rights} \ {\it Reserved}$

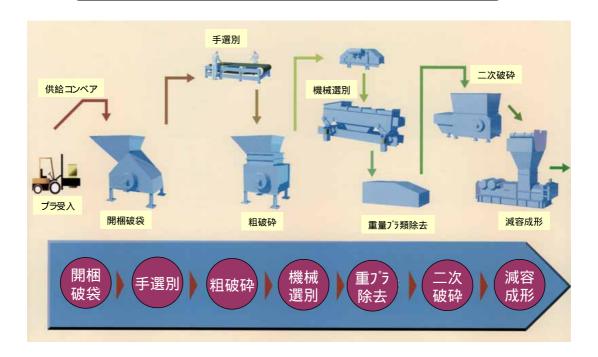
樹脂別生産量とプラスチックベールの組成

出展:プラスチックリサイクルの基礎知識2006」 (プラスチック処理促進協会)

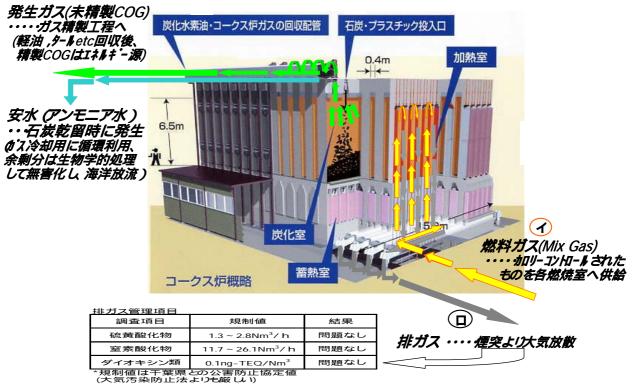


出展:4都市の平均データ (プラスチック処理促進協会)

雑多なプラスチック種類 適切なリサイクル手法の選択 要素 資源化率、経済性、環境負荷)

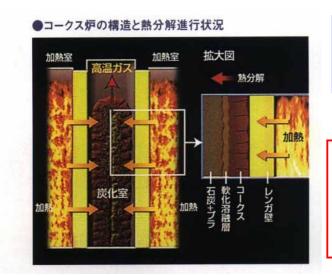

5

 ${\it Copyright} @ {\it Nippon} \ {\it Steel} \ {\it Corporation} \ {\it All} \ {\it Rights} \ {\it Reserved}$



 ${\it Copyright} @ {\it Nippon} \ {\it Steel} \ {\it Corporation} \ {\it All} \ {\it Rights} \ {\it Reserved}$

3-1) 事前処理工程(再商品化)



3-2) 熱分解処理工程 (コークス炉)

8

コークス炉での石炭の熱分解

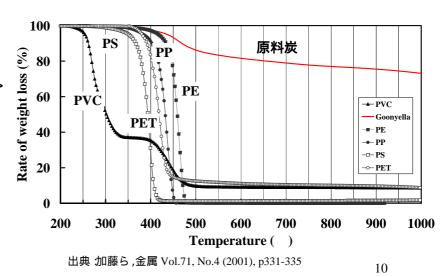
石炭の元素比率 (%)
(C; 87 / H; 5 / O; 6 / N: 2)

生成物

固体 / 気体 / 液体 / NH₃

C H₂, CH₄等 (油分、H₂O)

プラスチックの熱分解特性


ポリエチレン C/H ポリスチレン C/H/O 塩ピ C/H/C 1

熱分解

生成物

固体 / 気体 / 液体 / HCl C H₂, CH₄等 (油分、H₂O)

<各種プラの熱分解挙動> 石炭に比べて、低温度 で熱分解を完了する。

 ${\it Copyright} @ {\it Nippon} \ {\it Steel} \ {\it Corporation} \ {\it All} \ {\it Rights} \ {\it Reserved}$

塩素の無害化

塩素の無害化

*石炭由来のNH3による塩素の無害化

石炭由来のNH₃> HCl

(mol比で約25倍、1%添加時)