'Break even' carbon credit for potential Australian CO₂ source-sink projects (after Allinson et al)

There are CO₂ projects underway or proposed in many parts of the world

Estimates of total amounts of geologically stored CO₂ in existing and advanced proposed projects to 2015

PROJECT	COMMENCED	Anticipated amount injected by:			
		2006	2008	2010	2015
Sleipner	1996	9MT	11MT	13MT	18MT
Weyburn	2000	5MT	9MT	12MT	17MT
In Salah	2004	2MT	5MT	7MT	12MT
Snohvit	2007	0	1MT	2MT	5MT
Gorgon	2010	0	0	2MT	17MT
Peterhead/Miller	2009	0	0	1MT	8MT
California	2011	0	0	0	16MT
FutureGen	2012	0	0	0	2MT
Nagaoka	2002	10KT	10KT	10KT	10KT
Frio	2004	2KT	4KT	4KT	4KT
Ketzin	2007	0	50KT	50KT	50KT
Otway	2007	0	100KT	100KT	100KT
TOTALS		17MT	26MT	39MT	113MT

The CO2CRC Model for global application of CCS

In conclusion...

- A very major research and demonstration effort into CCS is needed over the next 10 years
- Progressive commercial deployment from 2015, starting with power generation and major industrial processes, then transport, with full zero emission by 2055
- Realistic international agreements needed for long term mitigation planning, probably including market signals
- Acceptance that global cost of mitigation will be high
 but the probability that the cost of doing nothing could be much higher
- Geosequestration can be a key part of the strategy for attaining an atmospheric CO₂ concentration of 550 ppm by 2100, but part of a portfolio including renewables, nuclear, energy efficiency

Battelle The Business of Innovation

Macro and Micro Views of the Role for Carbon Dioxide Capture and Geologic Storage in Addressing Climate Change

Jae Edmonds James J Dooley (dooleyj@battelle.org), Marshall Wise, Bob Dahowski, Casie Davidson Joint Global Change Research Institute

April 4, 2006

PNWD-SA-7305