資料3

水域の生活環境動植物の被害防止に係る農薬登録基準 として環境大臣の定める基準の設定に関する資料 (案)

資 料 目 次

農薬名 新規/既登録 ページ

1 シペルメトリン 既登録 1

令和5年3月9日

環境省 水・大気環境局 水環境課 農薬環境管理室

評 価 農 薬 基 準 値 (案) 一 覧

農薬名	基準値 (μg/L)	設定根拠
1 シペルメトリン	0. 0027	甲殼類等

水域の生活環境動植物の被害防止に係る農薬登録基準として 環境大臣が定める基準の設定に関する資料

シペルメトリン

I. 評価対象農薬の概要

1. 物質概要

化学名	$(RS) - \alpha - \mathcal{V}$ アノー $3 - \mathcal{I}$ ェノキシベンジル= $(1RS, 3RS; 1RS, 3SR)$								
(IUPAC)	-3-(2, 2-3)	-3-(2,2-ジクロロビニル)-2,2-ジメチルシクロプロパンカルボキシラート							
分子式	C ₂₂ H ₁₉ C1 ₂ NO ₃ 分子量 416. 3 CAS 登録番号 (CAS RN®) 52315-07-8								
構造式		CI	NC.	>					

2. 作用機構等

シペルメトリンは、ピレスロイド系殺虫剤で、その作用機構は害虫の末梢及び中枢神経の軸索、シナプスに働き神経膜のイオン透過性を変化させ、その結果、害虫に反復興奮、けいれん、麻痺を引き起こし、死に至らしめると考えられている(IRAC: 3 \mathbf{A}^{*1})。

本邦での初回登録は1986年である。

製剤は水和剤及び乳剤があり、適用農作物等は麦、雑穀、果樹、野菜、いも、豆、飼料作物、花き等がある。

原体の国内生産量は、25.4t (平成 30 年度**²)、5.4t (令和元年度**²)、13.9t (令和 2 年度**²) であった。

※1 参照: https://www.jcpa.or.jp/labo/mechanism.html
https://irac-online.org/

※2 年度は農薬年度(前年10月~翌年9月)、出典:農薬要覧-2021-((一社)日本植物防疫協会)

3. 各種物性

外観・臭気	白色粉末固体、 わずかに特有の臭気	土壤吸着係数	測定不能				
融点	54. 2−57. 5°C	オクタノール /水分配係数	$\log Pow = 6.33 (25^{\circ}C)$				
沸点	約 250℃で分解のため 測定不能	生物濃縮性	BCFss = 520 (0.02 μ g/L) = 500 (0.1 μ g/L)				
蒸気圧	4. 41×10 ⁻⁹ Pa (20℃、外挿) 1. 67×10 ⁻⁸ Pa (25℃、外挿)	密度	0.89 g/cm³ (25℃)				
加水分解性	半減期 (cis・trans) 安定 (50℃、pH4) 733.9 目 (25℃、pH5) 71.3 日 (25℃、pH7) 4.1 目 (25℃、pH9) (cis) 111.8 目 (25℃、pH7) 106.6 時間 (50℃、pH7) 33.0 時間 (25℃、pH9) 1.15 時間 (50℃、pH9) (trans) 65.4 目 (25℃、pH7) 64.8 日 (25℃、pH7) 67.3 時間 (50℃、pH7) 20.6 時間 (25℃、pH9) 19.1 時間 (25℃、pH9) 0.77 時間 (50℃、pH9)						
水中光分解性	半減期 (cis、trans の順) 2.6、3.6日 (東京春季太陽光換算 1.5、2.0日) (滅菌蒸留水、pH6.5、2.3-11.8W/m²、300-400nm) 0.7、1.0日 (東京春季太陽光換算 0.4、0.6日) (滅菌自然水 (海水)、pH8.3、2.3-11.8W/m²、300-400nm) 0.6、1.0日 (東京春季太陽光換算 0.3、0.6日) (滅菌自然水 (河川水)、pH8.7、2.3-11.8W/m²、300-400nm) 2.3、3.4日 (東京春季太陽光換算 1.3、1.9日) (滅菌 1ppm 腐植酸水、2.3-11.8W/m²、300-400nm) 0.5日以下(cis・trans) (東京春季太陽光換算 0.3日以下(cis・trans)) (滅菌 2%アセトン水、2.3-11.8W/m²、300-400nm)						
рКа	水溶解度が極めて低いため実施せず						

Ⅱ. 水域の生活環境動植物への毒性

1. 魚類

(1) 魚類急性毒性試験 [i] (コイ)

コイを用いた魚類急性毒性試験が実施され、96hLC50 = 90 μ g/L であった。

表 1 魚類急性毒性試験結果

被験物質	原体						
供試生物	コイ (Cypr.	inus carpic) 10 尾/群				
暴露方法	半止水式						
暴露期間	96h						
設定濃度 (μg/L)	0	8. 5	19	41	91	200	
(有効成分換算値)							
実測濃度 (μg/L)	0	9.0	20	45	100	210	
(時間加重平均值、							
有効成分換算値)							
死亡数/供試生物数	0/10	0/10	0/10	0/10	6/10	10/10	
(96h後;尾)							
助剤	硬化ヒマシ油/DMF 0.1mL/L						
LC_{50} (μ g/L)	90(95%信	90(95%信頼限界 50-210)(実測濃度(有効成分換算値)に基づく)					

2. 甲殼類等

(1) ミジンコ類急性遊泳阻害試験 [i] (オオミジンコ) オオミジンコを用いたミジンコ類急性遊泳阻害試験が実施され、 $48hEC_{50}=1.4~\mu\,\mathrm{g/L}$ であった。

表2 ミジンコ類急性遊泳阻害試験結果

				-				
被験物質	原体	原体						
供試生物	オオミシ	シンコ (Da	phnia magn	na) 20頭	/群			
暴露方法	半止水豆	Ċ						
暴露期間	48h							
設定濃度(μg/L)	0	0.031	0.093	0. 28	0.83	2. 5	7. 5	
(有効成分換算値)								
実測濃度 (μg/L)	0	0.028	0.06	0. 27	0.66	2. 4	7. 9	
(時間加重平均値、								
有効成分換算値)								
遊泳阻害数/供試生	0/20	0/20	0/20	1/20	6/20	11/20	20/20	
物数 (48h 後;頭)								
助剤	DMF 0.1mL/L							
EC ₅₀ (μg/L)	1.4 (95)	1.4 (95%信頼限界 1.0-2.0) (実測濃度(有効成分換算値)に基づく)						

(2) ユスリカ幼虫急性遊泳阻害試験 [ii] (ユスリカ幼虫) ユスリカ幼虫を用いたユスリカ幼虫急性遊泳阻害試験が実施され、 $48hEC_{50}=0.027~\mu$ g/L であった。

表3 ユスリカ幼虫急性遊泳阻害試験結果

No No Manager Control of the Control								
被験物質	原体	原体						
供試生物	セスジユス	セスジユスリカ(<i>Chironomus yoshimatsui</i>) 20 頭/群						
暴露方法	半止水式							
暴露期間	48h							
設定濃度 (μg/L)	0	0.0023	0.0051	0.011	0.025	0.055	0.12	
(有効成分換算値)								
実測濃度 (μg/L)	0	0.0014	0.0033	0.0072	0.015	0.033	0.078	
(時間加重平均値、								
有効成分換算値)								
遊泳阻害数/供試生	1/20	0/20	0/20	7/20	7/20	10/20	15/20	
物数 (48hr 後;頭)								
助剤	DMF 0.1mL/L							
EC ₅₀ (μg/L)	0.027(95%信頼限界 0.018-0.045)(実測濃度(有効成分換算値)に基づく)							

3. 藻類

(1) 藻類生長阻害試験 [i] (ムレミカヅキモ)

ムレミカヅキモを用いた藻類生長阻害試験が実施され、72hEr $C_{50}>19,000~\mu$ g/L であった。

表 4 藻類生長阻害試験結果

被験物質	原体	原体					
供試生物	ムレミス	ムレミカヅキモ (Raphidocelis subcapitata)					
	初期生	上物量 1.0	$\times 10^4 \text{cell}$	ls/mL			
暴露方法	振とうち	涪養					
暴露期間	72h						
設定濃度 (μg/L)	0	390	850	1,900	4, 100	9, 200	20, 000
(有効成分換算値)							
実測濃度 (μg/L)	0	280	670	1,500	3, 100	8,000	19, 000
(算術平均値、							
有効成分換算値)							
72h 後生物量	149	137	145	126	131	135	119
$(\times 10^4 \text{cells/mL})$							
0-72h 生長阻害率		-9	1	5	1	-7	-3
(%)							
助剤	硬化ヒマシ油/DMF 0.1mL/L						
ErC ₅₀ (μg/L)	>19,000(実測濃度(有効成分換算値)に基づく)						

Ⅲ. 水域環境中予測濃度(水域 PEC)

1. 製剤の種類及び適用農作物等

農薬登録情報提供システム (https://pesticide.maff.go.jp/) によれば、本農薬は 製剤として水和剤及び乳剤があり、適用農作物等は麦、雑穀、果樹、野菜、いも、豆、 飼料作物、花き等がある。

2. 水域 PEC の算出

(1) 非水田使用時の PEC

非水田使用時において、PEC が最も高くなる使用方法(下表左欄)について、第2段階のPEC を算出する。算出に当たっては、農薬取締法テストガイドラインに準拠して下表右欄のパラメーターを用いた。

表5 PEC 算出に関する使用方法及びパラメーター (非水田使用第2段階:河川ドリフト)

PEC 算出に関す			
適用農作物等	果樹	I: 単回・単位面積当たりの有効成分量 (有効成分 g/ha) (左側の最大使用量に、有効成分濃度 を乗じた上で、単位を調整した値 (製剤の密度は 1g/mL として算出))	420
剤 型	6%乳剤	D _{river_measured} : ドリフト試験結果に基づく 河川ドリフト率 (%)	0. 9 ^{**1}
当該剤の単回・単位 面積当たりの最大 700mL/10a (1,000 倍に希釈		Z _{river} :1日河川ドリフト面積 (ha/day)	0. 12
 使用 冒	した薬剤を 10a 当たり 700L 散布)	N _{drift} :ドリフト寄与日数 (day)	4
地上防除/航空防除 の別 地上防除		R _{u_measured} : 地表流出試験結果に基づく 畑地からの農薬流出率 (%)	Ι
		Au:農薬散布面積 (ha)	_
		fu: 施用法による農薬流出係数 (-)	_
使用方法	茎葉散布	Koc: 土壤有機炭素吸着定数 (cm³/g)	10, 000 ^{**2}
		T _e :毒性試験期間 (day)	4
		加水分解	考慮せず
		水中光分解	考慮せず

※1:ドリフト試験結果に基づき、PEC 算定方法における支川河川までの距離 (18m) での最大ドリフト率。

※2:吸着が高い場合のデフォルトを採用。

令和5年3月9日 中央環境審議会水環境・土壌農薬部会農薬小委員会(第87回) 資料 これらのパラメーターより、非水田使用時のPECは以下のとおりとなる。

非水田 PEC _{Tier2} による算出結果	0. 00086 μg/L
----------------------------------	---------------

(2) 水域 PEC 算出結果

(1) より水域 PEC は $0.00086~\mu$ g/L となる。

IV. 総 合 評 価

1. 水域の生活環境動植物の被害防止に係る登録基準値 各生物種の LC₅₀、EC₅₀ は以下のとおりであった。

類「i] (コイ急性毒性) 96hLC₅₀ 魚 = 90 μ g/L 甲殼類等「i] (オオミジンコ急性遊泳阻害) $48hEC_{50} =$ 1.4 μ g/L 甲殼類等[ii] (ユスリカ幼虫急性遊泳阻害) $48hEC_{50} =$ 0.027 μ g/L 類「i] (ムレミカヅキモ生長阻害) $72hErC_{50} > 19,000 \mu g/L$ 藻

魚類急性影響濃度 (AECf) については、魚類 [i] の LC_{50} (90 μ g/L) を採用し、不確実係数 10 で除した 9.0 μ g/L とした。

甲殻類等急性影響濃度(AECd)については、甲殻類等 [ii] の LC_{50} (0.027 μ g/L) を採用し、不確実係数 10 で除した 0.0027 μ g/L とした。

藻類急性影響濃度 (AECa) については、藻類 [i] の ErC_{50} (> 19,000 μ g/L) を採用し、> 19,000 μ g/L とした。

これらのうち最小の AECd より、登録基準値は $0.0027~\mu$ g/L とする。

2. リスク評価

水域 PEC は 0.00086 $\,\mu$ g/L であり、登録基準値 0.0027 $\,\mu$ g/L を超えていないことを確認した。

<検討経緯>

平成30年6月20日 平成30年度水產動植物登録基準設定検討会(第2回)

令和3年3月2日 令和2年度水域の生活環境動植物登録基準設定検討会(第5回)

令和5年1月23日 令和4年度水域の生活環境動植物登録基準設定検討会(第4回)