有明海・八代海等の環境等変化(潮流・潮汐)

[潮位の変動]

(1)有明海について

ア)潮位の状況

潮汐は主に月と太陽の引力から生じる異なる周期を持つ分潮で構成され、 M_2 分潮(主太陰半日周潮)、 S_2 分潮(主太陽半日周潮)、 0_4 分潮(主太陰日周期)、 K_4 分潮(日月合成日周期)を主要 4 分潮と呼ぶ。月の引力による分潮は月の昇交点の黄経の周期変化(約 18.6 年周期)の影響を受けて振幅や位相が毎年変動する。有明海では湾口から湾奥に向かって潮位差は増大するが(表 1)、これは有明海の固有振動周期が半日周期に近く、半日周期の外洋潮汐と湾内水が共振現象を起こすためである。有明海の最も大きな成分は M_2 分潮であり、 S_2 分潮がこれに次ぐ(表 2)。湾奥の潮位差の増大には湾の固有振動による半日周潮(M_2 分潮 + S_2 分潮)の増幅が大きく関与する。なお、有明海の潮位変動の解析に際しては以下の点に留意する必要がある。

環境問題との関係をみるには、分潮振幅の変化だけではなく、実際の振幅変化(分潮振幅に 18.6 年周期の変化(係数 f)をかけたもの)を考える必要があること

実際の潮位には気象・海象等の要因が加わり、潮汐変動以外に特異な変動が含まれること

潮汐振幅の減少要因については、1)海水面積の減少、2)平均水位の上昇、3)外洋潮汐振幅の減少の3つの要因に整理されて議論されていること

表 1 有明海各地点の潮位差

地名		開差	平均潮差 cm	大潮差 cm	小潮差 cm
富		岡	192	278	106
	之	排	208	290	126
柳	ノ瀬	戸	238	338	138
=		角	250	354	146
島		原	294	406	182
大		浦	315	453	178
竹		崎	316	454	178
Ξ		池	318	456	180
若		津	322	458	186
住	1	江	344	494	194

表 2 主要分潮の潮汐調和定数(振幅)

	53	潮	M_2		S ₂		K,		O1	
地名			Hcm	K.	Hcm	K.	Ham	K.	Ham	K.
富		岡	96	230	43	252	27	208	20	190
	Z	津	104	254	41	290	28	216	21	192
柳ノ	瀬	戸	119	252	50	287	28	220	20	197
=		角	125	254	52	295	26	220	19	201
島		原	147	258	56	299	25	219	20	204
大		浦	158	266	69	302	29	222	22	201
竹		崎	158	259	69	299	29	220	22	203
==		池	159	259	69	299	.27	219	21	198
若		津	161	262	68	301	25	228	20	193
住.	1	T	172	267	75	306	27	221	22	206

出典:気象庁(1974)「有明海・八代海海象調査報告書」

イ)潮位差の比較

湾奥ほど潮位差の年平均値とその変動幅の経年変化が大きく、大浦の潮位差は 1979 年頃(潮位差約 345cm)頃と 1995 年頃(同 337cm)に極大、1988 年頃(同 325cm)に極小をもつ変動がみられる(図1)。

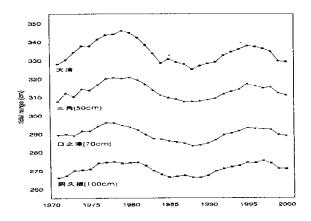


図1 有明海内外の観測点における年平均潮位差の経年変化

出典: 武岡英隆 (2003): 有明海における M₂ 潮汐の変化に関する論議へのコメント, 沿岸海洋研究,第 41 巻,第 1 号,pp.61-64 大浦における年平均潮位差の変動は、 M_2 分潮の f と振幅自体の変動でほぼ説明でき、1979年の極大と 1988年の極小の差(20cm 強)は、 M_2 分潮の振幅と係数f の変化(3.7%)から期待される変化とほぼ一致する。また、1979年の極大と 1995年の極大の差(9cm、 M_2 分潮の振幅の 2.9%に相当)は、大浦における M_2 分潮の振幅の減少率でほぼ説明できる。

潮位差減少への諌早湾の潮受堤防の影響については、1970年~2001年の大浦の年平均潮位差、大潮差の経年変化から明らかな変化は読みとれなかったという報告(図 2)があるが、数値シミュレーションでは潮受堤防により潮位差は減少し、その影響は湾奥ほど大きく、最奥の住ノ江では約 2.5%の減少となった(図 3)。

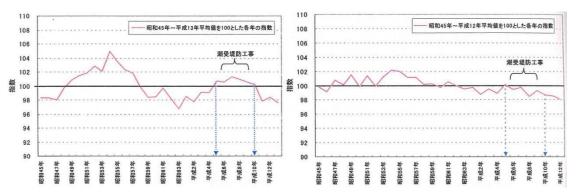
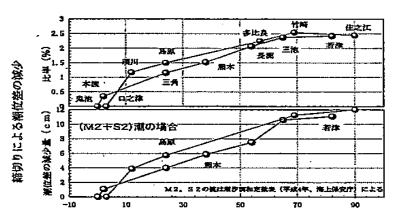
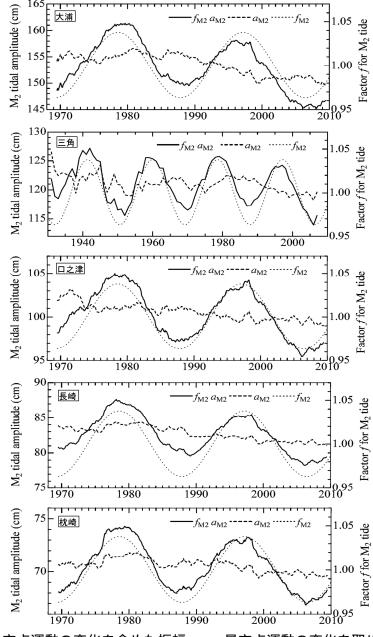


図 2 大浦検潮所における年平均潮位差と大潮差の推移

出典:農林水産省九州農政局(2003)「諫早湾干拓事業開門総合調査報告書」

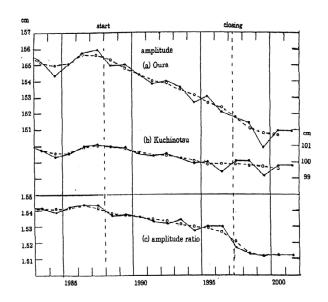



図3 諫早湾締め切りの潮位差への影響

出典:滝川清,田淵幹修 (2002): 有明海の潮汐変動特性と沿岸構造物の影響,海岸工学論文集,第49巻,pp.1061-1065

ウ) M₂分潮振幅の比較

データ解析から、大浦の M₂分潮振幅は 1980 年~99 年の間に約 4%減少しているが、この減少は口之津のほか外海でもみられる(図 4)。


諫早干拓事業開始から潮受堤防締切りまでの間に大浦から口之津に至る №分潮振幅の増幅率が約 1.54 から約 1.52 に減少しており、この減少は干拓事業に伴う地形変化が原因との報告(図 5)がある一方、口之津を 1 とした場合の大浦の № 分潮の振幅の増幅率に明らかな変化は読みとれなかったとの報告もある(図 6)。

fM2aM2:昇交点運動の変化を含めた振幅、aM2:昇交点運動の変化を取り除いた振幅

図 4 M₂分潮の調和定数(振幅)と f 値の経年変化

出典:田井明、斎田倫範、矢野真一郎、小松利光(2010):潮汐振幅の全球的な長期変化, ながれ,第29巻,pp.427-421

- 注)1.(a)は大浦、(b)は口之津の M2 分潮振幅を示し、(c)は振幅比、すなわち増幅率を示す。
 - 2.実線は観測値、破線は3年間の移動平均値 (短周期ノイズを消すために実施)である。
 - 3. 縦の破線は、諫早湾干拓事業の開始と潮受け堤防による締め切り。

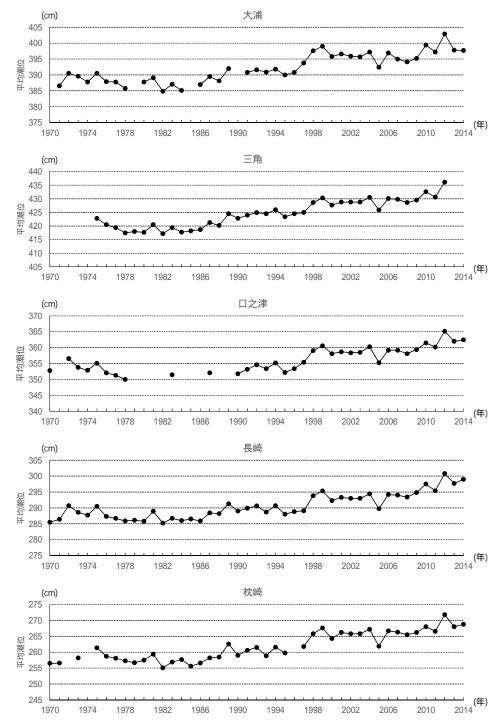
図 5 大浦と口之津の Mg分潮振幅の経年変化

出典: 宇野木早苗(2004): 有明海の潮汐・潮流の変化に関わる科学的問題と社会的問題, 沿岸海洋研究,第 42 巻,第 1 号, pp.85-94

図 6 口之津検潮所と大浦検潮所の Mg 分潮増幅率の経年変化

出典:農林水産省九州農政局(2003)「諫早湾干拓事業開門総合調査報告書」

M₂分潮振幅減少の要因としては、有明海内の海水面積の減少(内部効果)平均水位の上昇(外部効果)外洋潮汐振幅の減少(外部効果)などが挙げられているが、その影響度合いに関する見解は異なる(表3)。


表3 M₂分潮振幅減少に関する各要因の寄与率に関する見解

見解要因	見解 1	見解 2	見解 3	見解 4	見解 5
有明海内の海 水面積の減少	50%	40 ~ 50%	潮受堤防の締 切 10~20%	諫早堤防:24% 熊本新港:2%	-
平均水位の上 昇	10%	極めて 小さい	-	0%	-
外洋潮汐振幅の減少	40%	50 ~ 60%	-	76%	過去80年間では、 M ₂ 分潮振幅減少 の大部分は干拓 等の海岸線の変 化ではなく、外海 の M ₂ 分潮振幅の 減少である。

出典:

- 1) 宇野木早苗 (2003): 有明海の潮汐減少の原因に関する観測データの再解析結果,海の研究,第 12 巻,第 3 号、pp.307-312
- 2) 灘岡和夫、花田岳(2002): 有明海の潮汐振幅減少要因の解明と諫早堤防締切りの影響,海 岸工学論文集,第49巻,pp.401-405
- 3) 塚本秀史、柳哲雄 (2002): 有明海の潮汐・潮流,海と空,第 78 巻,第 1 号,pp.31-38
- 4) 藤原孝道,経塚雄策,濱田考治 (2004):有明海における潮汐・潮流減少の原因について, 海の研究,第13巻,第4号,pp.403-411
- 5) 田井明、斎田倫範、橋本彰博、矢野真一郎、多田彰秀、小松利光 (2010): 有明海および 八代海における半日周期潮汐の長期変化について、水工学論文集、第54巻、pp.1537-1542

工)有明海の潮位の上昇 平均潮位は有明海及び外洋の長崎や枕崎で近年上昇している(図7)。

本図は、有明海・八代海総合調査評価委員会・環境省「委員会報告」(平成 18 年 12 月)の図 3.5.7 に 海岸昇降検知センターHP:日本列島沿岸の年平均潮位(1894 年~)の 2001 年以降の値を追加して いる。

図7 年間の平均潮位の水位

(2) 八代海について

ア)潮位の変動

八代海の潮位観測点は数少ないが、1980年以降、有明海と同様に平均潮位の上昇と潮位差の減少傾向が観測されている(図8)、八代海の潮汐による潮位変動特性(湾振動)にかかる詳細な知見は少ないが、外洋からの入射波周期に対する八代海の各点での振動応答を2次元の数値計算より算定した結果によると、八代海の湾振動周期は約3時間であり、八代海の長軸方向の固有振動周期である。また、9時間以上の振動応答は、有明海の固有周期による影響であり、八代海と有明海の潮汐流動の調査に際しては相互の影響についても考慮する必要がある。(図9)

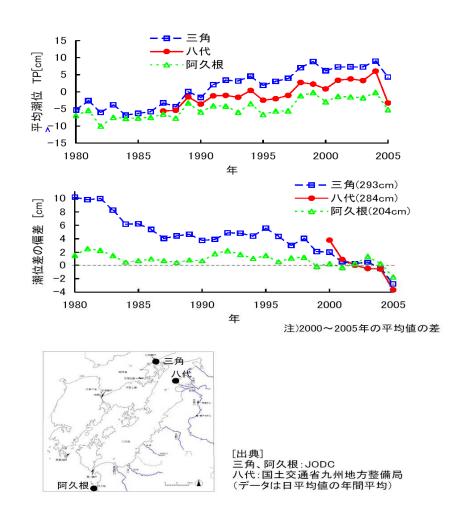


図8 八代海における平均潮位及び潮位差の年変動

出典:大和田紘一,本城凡夫[八代海検討グループ](2006)「第 23 回有明海・八代海総合調査評価委員会 資料-2-3 八代海に関する検討」

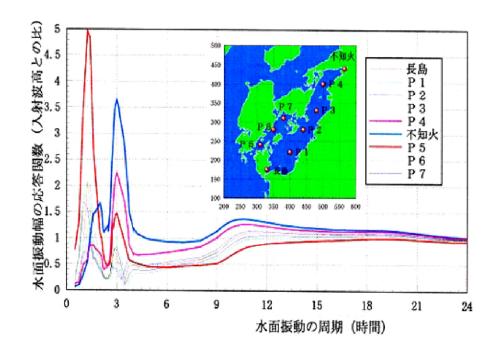


図9 八代海における水面振動幅の応答関数

出典:大和田紘一,本城凡夫[八代海検討グループ](2006)「第 23 回有明海・八代海総 合調査評価委員会 資料-2-3 八代海に関する検討」

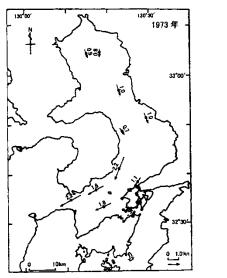
[潮流の変動]

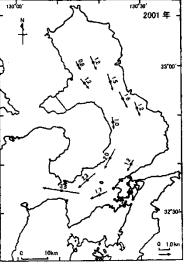
潮流は潮汐による海面昇降を起こす海水の水平方向の往復運動であり、潮汐と同様な周期成分で構成される。沿岸では周囲海水が同じ密度であるときには上層から下層まで同じ方向にほぼ同じ潮流となるが、密度成層が発達すると、流れに差が出ることがある。潮流により運ばれる水粒子は、一周期終わっても元の位置に戻らず、実際の湾ではややずれた位置にたどり着く。この流れを潮汐残差流と呼ぶ。長期の物質輸送には潮汐残差流などの一方向流が重要な役割を果たす。内湾での潮汐よりも長周期の流れには、河川流入水による流れ、風による流れ、上下層の密度差による流れ等も寄与し、恒流や平均流と呼ばれる。また、岸近くの干潟部などでは澪筋に沿った流出入が起きるなど地形の影響を強く受ける。

(1)有明海の潮流について

ア)潮流の状況

大潮平均流速分布は湾口部の早崎瀬戸で最大7ノットを超え、湾南部で2~3 ノット、湾中央部で1.5~2ノット、湾奥部と沿岸部でも1~1.5ノットに達する。湾奥部でも強い流速を有するのは潮汐と同様に湾の共振による振動増幅及び水深減少のためと考えられている。また、浅海部の観測によると、湾奥河口域では澪筋に速い流れが出現している。


有明海では河川流入水の変動が大きく、恒流については不明な点も多いが、海上保安庁が作成した夏の表層での恒流の分布図によると、湾内には、湾南部、湾中央部、湾奥部にそれぞれ独立した流れが形成されている。湾奥部では東部の三池沖に北向きの流れが存在し、湾奥になるにしたがって北西に向きが変わり、全体として反時計回りの環流がみられるとされている。湾中央部では島原市北方と長洲町沿岸には湾奥に向かって0.4 ノットの流入がみられる。一方、島原半島の沿岸で0.2~0.6 ノット程度の明瞭な南下流が形成されている。この強い南下流は、その後の観測でも見いだされている。湾南部では全般的に湾口に向かう流れとなっている。有明海の流動は大きな潮位差に引き起こされる卓越した潮流が特徴的である。恒流としては島原半島側の南下流が明瞭で、湾全体として反時計回りの恒流が推察される。


イ)潮流の調査

海上保安庁による 1973 年と 2001 年の 2 回の観測結果に明確な変化傾向は見られなかったが(図 10、図 11) 島原半島を南下する沿岸流の流速¹⁾は約 1/3 となるとともに、各測点の潮流鉛直分布も特徴的な変化²⁾が現れており、これは淡水流入条件による密度流の違いによる可能性が大きいこと等が報告されている。この 2 回の観測結果は、河川流入量や水温などの相違により密度流の効果が異なっていたおそれがあること等から、地形変化のみの効果を取り出して評価するまでに至っていないと考えられる。

平均流の変動については、坪野ら(2009)によると、2007 年の観測結果では、 諫早湾口周辺海域では、夏季は海陸風に駆動される流動が卓越し、冬季は K1 分潮流が卓越すると報告しており、夏季の平均流の変動には海陸風の影響が小 さくないことが示されている。

西海区水産研究所が実施した 2001 年 2 月の観測によると、25 年前の同時期の推定値と比較して、有明海全体(熊本県大矢野島諏訪原と島原半島有家町石田を結ぶ線以北)の流速は約 12%低い値を示したことが報告されているが(図 12)上述の海上保安庁調査と測定方法等が異なるので単純に比較はできない。

注)各地点の潮流は平均流を含まず、平均大潮に換算されている。

図 10 1973 年と 2001 年の平均大潮時の海面下 3mにおける下げ潮流の比較 出典: 小田巻実, 大庭幸広, 柴田宣昭(2003): 有明海の潮流新旧比較観測結果について, 海 洋情報部研究報告, 第 39 号, pp.33-61

¹⁾流速は15日間の平均流速(恒流)である。

²⁾測点 7(島原沖)の 10m層の潮流は顕著な変化はないものの、3m層では流速が増加するなど、明らかな変化がみられた。測点 4(三池沖)の潮流では、昭和 48 年では下層ほど増大するのに対し、平成 13 年では下層ほど減少していた。

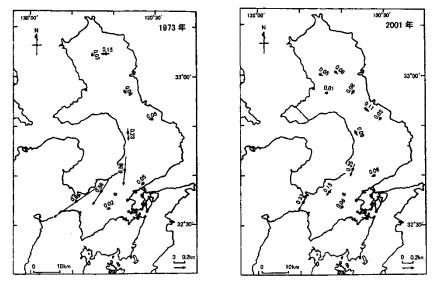


図 11 1973 年と 2001 年の 15 昼夜観測の平均流の比較

出典:小田巻実,大庭幸広,柴田宣昭(2003):有明海の潮流新旧比較観測結果について,海 洋情報部研究報告,第 39 号,pp.33-61

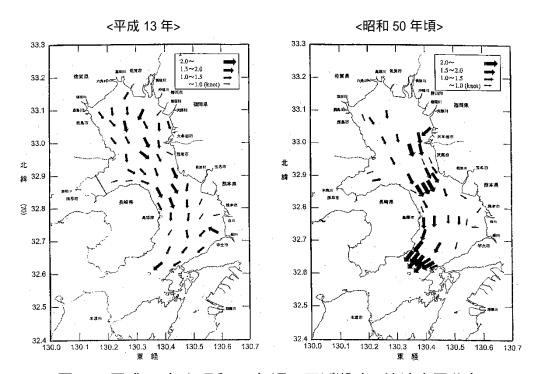


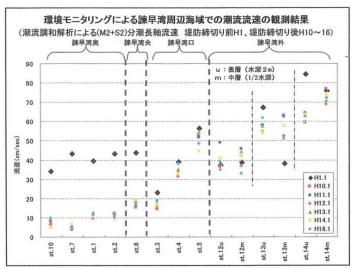
図 12 平成 13年と昭和 50年頃の下げ潮時の流速水平分布

出典:独立行政法人水産総合研究センター 西海区水産研究所(2004)「第9回有明海・八代海 総合調査評価委員会 資料-2 行政特別研究 有明海の海洋環境の変化が生物生産に及 ぼす影響の解明について」ほか

ウ)潮流流速の変化要因とその影響

潮流流速の変化要因

有明海の潮流に全体的な影響を及ぼす要因としては、1)干拓・埋立等による海面の減少、2)東シナ海全体の平均水位の上昇に伴う有明海湾内の平均水位の上昇、3)外海の潮汐振幅の減少があげられる。近年の有明海では、干拓、埋立等による有明海の海表面積の減少、有明海湾内の潮汐振幅(潮位差)の減少等から、流体力学の基本原理である連続条件(体積保存則)を満足するため、平均的にみれば潮流流速は減少する。諫早湾は締切により海面積が約 33%減少するので、諫早湾の湾口断面において入退潮量が 1 潮汐で 33%程度減少することになる(平均流速として約6.3cm/sの減少)。有明 - 長洲ラインより奥部の面積減少率を約4.9%とすると、入退潮量の変化による潮流流速の減少は、潮汐振幅の増加を考慮して断面平均で5.0%程度(平均流速として約2.4 cm/s の減少)の減少と概算される。


潮受堤防による潮流流速への影響

諫早湾内における環境モニタリング結果から、諫早湾の湾奥部と湾央部では 堤防締切り後に流速が低下し、湾口部でも湾奥部や湾央部ほど顕著ではないも のの、流速が低下する傾向がみられたが、諫早湾外では観測年によるデータの ばらつきが大きく、変化の傾向も異なった(図 13)。また、シミュレーション によると、下げ潮時の流速は潮受堤防設置により諫早湾口北側の一部海域で増 加、湾内から島原半島に沿った広い領域では減少するとの結果が得られている (図 14)。

島原半島沿岸部の観測結果 (1993年と2003年)から、潮流流速は大きく減少 (約21~27%)し、この減少率は締切で減少した面積(約3,667ha)が北部有明海 (有明-長洲ライン以北、約75,435ha)に占める割合(約5%)と比して大きく、 諫早湾への水塊の流出入が島原半島沿岸で集中的に生じることが示唆されるとの報告がある(図15)。

他方、シミュレーションによると、潮受堤防による最大潮流速度の変化は、堤防前面で $0.3 \sim 0.4$ m/s の減少、諫早湾外北側の地点で僅かに増速 $(0.0 \sim 0.1$ m/s) する部分がある以外は、有明海全体で最大潮流速度の変化は非常に小さい $(0.0 \sim 0.1$ m/s の減速) とされている (図 16)。

また、矢野ら(2015)は、3次元シミュレーションによる解析によって、諫早 干潟締切堤建設による鉛直混合能の変化が塩淡成層の発達に対して与えた影響 は、大潮期では堤防の影響が顕著であるが小潮期では小さいこと、また、その 影響は諫早湾内と島原半島沿岸で強く、北部有明海ではほとんど無いことを報 告している。

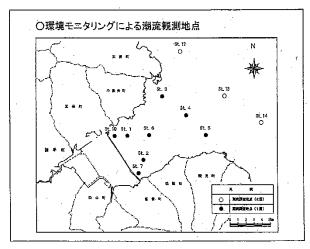


図 13 環境モニタリングによる諫早湾周辺海域での潮流流速の観測結果

出典:農林水産省農村振興局(2004)「第8回有明海・八代海総合調査評価委員会 資料-3 諌早湾干 拓事業 開門総合調査に係る補足説明」

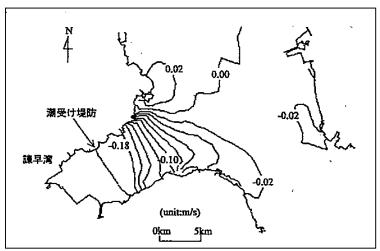
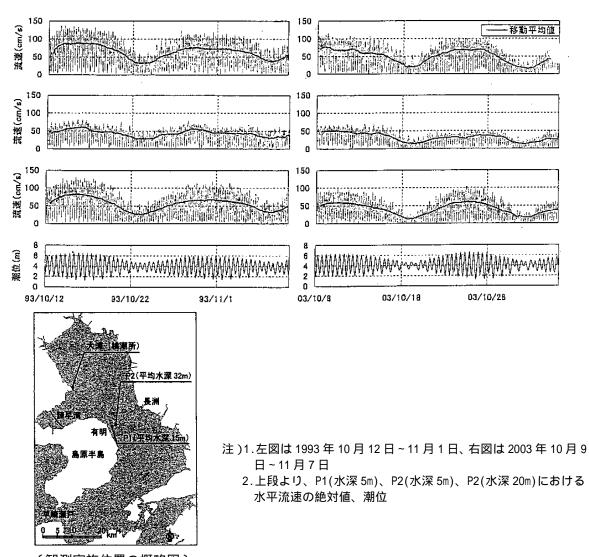



図 14 下げ潮時の流速強度に関する締切り前後の差

出典: 灘岡和夫,花田岳(2002)「有明海の潮汐振幅減少要因の解明と諫早堤防締め切りの影響,海岸工学論文集,第49巻,pp.401-405」

[観測実施位置の概略図] 図 15 観測結果の時系列

出典:西ノ首英之,小松利光,矢野真一郎,斎田倫範 (2004)「諌早湾干拓事業が有明海の流動構造へ及ぼす影響の評価,海岸工学論文集,第51巻,第1号,pp.336-340」

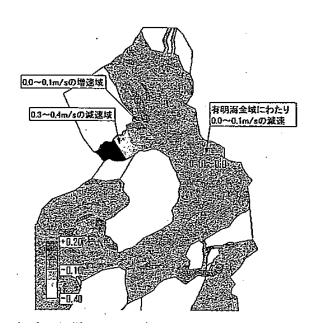


図 16 最大潮流速度の偏差分布(潮受堤防の影響)

出典:千葉賢,武本行正(2002)「諫早湾潮受け堤防の影響評価のための潮位観測値の分析と流 況数値解析,四日市大学環境情報論文,第5巻,第1・2号合併号,pp39-70」

ノリ養殖施設

ノリ養殖施設の影響については、シミュレーションの結果、湾中央から湾奥にかけての海水の流動が小さくなる傾向にあること(図17) 最大潮流速度はノリ網設置地域で0.3~0.5m/sの減少、湾奥中央部で0~0.1m/sの増加が報告されている。また、有明海湾奥部における潮流と浮泥輸送に関する数値実験結果から、ノリ養殖域やその沖側前面部分ではノリ養殖施設の流体抵抗によって、潮流流速や浮泥濃度が低減、抵抗が小さい船通し部分で上昇し、ノリ養殖施設が潮流や浮泥輸送の空間構造に影響している可能性が示されている。なお、ノリ網の柵数については1970年以降は減少傾向にある。

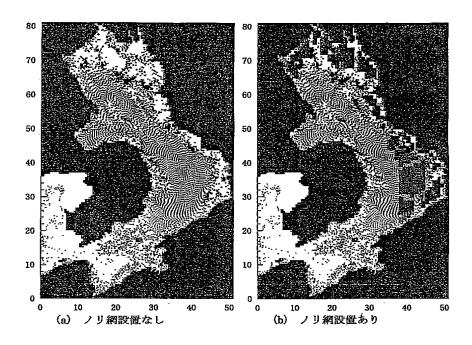


図 17 ノリ網設置の有無による流況変化(粒子追跡開始3潮汐後)

出典: 滝川清,田淵幹修(2002): 有明海の潮汐変動特性と沿岸構造物の影響,海岸工学論文集,第49巻,pp.1061-1065

近年、ノリ養殖施設の影響について、山口ら(2009)は、1985年から 1998年の観測データによる解析で有明海奥部における潮流の変化はノリ養殖の影響が大きく、観測地点において養殖期には平均で流速が約23%弱まると報告している。

港湾

熊本港建設による影響については、数値シミュレーションの結果、港の周辺で20~30cm/s の流速変化があり、潮位差への影響は港の周辺で±2cm 程度との報告がある。

(2)八代海の潮流について

八代海は九州本土と天草諸島・長島に囲まれ、本渡瀬戸・三角瀬戸・満越瀬戸を通じて有明海と繋がり、長島瀬戸や黒之瀬戸を通じて東シナ海と繋がっている。外洋水は長島瀬戸と黒之瀬戸から流入し、流入量は黒之瀬戸に比べて長島瀬戸は4倍である。有明海と通じる三角瀬戸、満越瀬戸、本渡瀬戸では海水の交流は少ない。干満差は湾奥で4m以上となり、このため長島瀬戸での潮汐流速は、大潮時には約8ノットにもなる。

東流及び西流時に長島瀬戸等の湾口部で流速が早く、北部海域ではその数分の1程度の流速である。平均的な夏季(2001~2006年の各8月の平均)の平均流では、表層では八代海湾央部の東岸から湾奥部での流量が小さく、潮汐流動に伴う海水流動が停溜する傾向にあり、長島海峡からの流出が大きく、黒之瀬戸からは流入している(図18)。

また、これらの流況は、河川流入水によっても変動し、河川流量がある場合、満越瀬戸や長島瀬戸を通じて流出するような残差流となる。

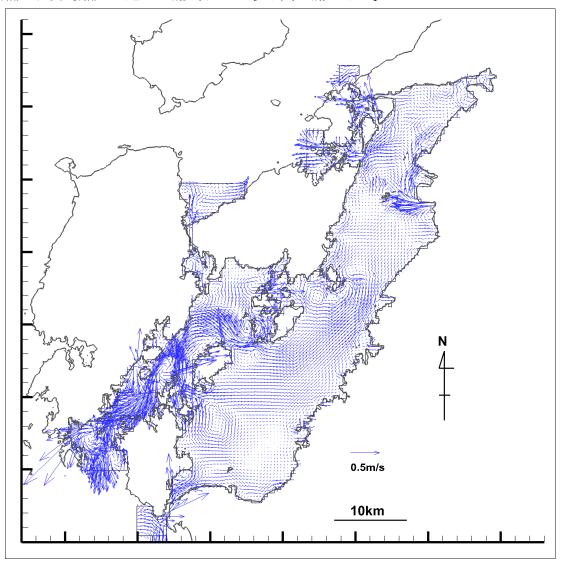


図 18 八代海における表層の平均流(平均的な夏季 1ヵ月間:8月)

出典:いであ(株)・熊本大学「平成27年度八代海における環境管理方策の検討業務報告書」

(3)橘湾の流況について

湾奥部には上げ潮時、下げ潮時ともに左回りの環流が形成され、主に 30m 水深の 1 昼夜の測流結果に基づく恒流は全体に小さい。また、早崎瀬戸から西方へ流出する有明海水は、深みに沿って北側に向かう(図 19)。

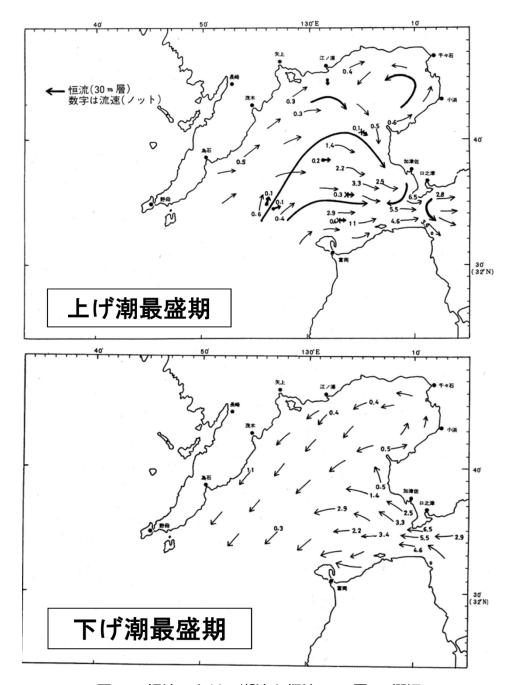


図 19 橘湾における潮流と恒流(30m 層)の概況 出典:第30回有明海・八代海総合調査評価委員会 資料3(中田)