中央環境審議会水環境部会 生活環境項目環境基準専門委員会(第2回)資料

平成 26 年 3 月 14 日(金) 千 葉 県

1 東京湾

(1) 近年の青潮発生状況と被害の概況

	19年度	2 0 年度	2 1 年度	2 2 年度	2 3 年度	2 4 年度	2 5 年度
青潮発生回数	3	3	2	3	6	3	4
漁業被害	0	1	0	2	0	1	0

- ・20年度は、8月22日~28日に千葉中央港から幕張沖、船橋港及び市川(三番瀬) にかけて長期の青潮が発生しており、アサリ資源の減少率59%の漁業被害が発生しました。その他10月9,10日(千葉港~市川沖:漁業被害なし)、11月13, 14日(新習志野沖~市川沖:漁業被害なし)の計3回の発生を確認しています。
- ・22年度は、9月9日~10日(市川~船橋沖、千葉中央港、新港) 平成22年9 月15日~21日(千葉港、幕張沖、船橋港、市川航路(三番瀬を含む))及び9月 24日~29日(千葉中央港内、幕張沖~茜浜沖、船橋航路(三番瀬含む) 船橋港) の3回の発生を確認しています。

漁業被害については、9月15日~21日、9月24日~29日に発生した青潮によりアサリが総計4,750トン(斃死率88%)死滅しました。

・24年度は、5月23日~5月25日(茜浜~幕張沖)にはじまり、9月23日~10月1日(市原港~浦安沖)まで3回の発生を確認しています。そのうち、9月23日に発生した青潮は、市原港沖から浦安沖にかけて一週間発生し、三番瀬においてアサリの漁業被害が発生しました。(台風により被害量不明)

(2)東京湾の漁業

千葉県漁業の状況【千葉県農林水産統計年報より】

(単位 トン)

	H 1 6	H 1 7	H 1 8	H 1 9	H 2 0	H 2 1	H 2 2	H 2 3
東京湾	36,054	34,420	28,476	8,727	8,139	21,097	20,876	7,016
内房	11,624	14,644	13,693	13,077	15,312	14,662	12,179	17,938
外房	31,841	33,420	32,559	27,886	28,540	32,488	23,814	32,103
銚子・九十九里	163,283	133,342	140,275	120,395	124,166	139,956	121,262	107,531

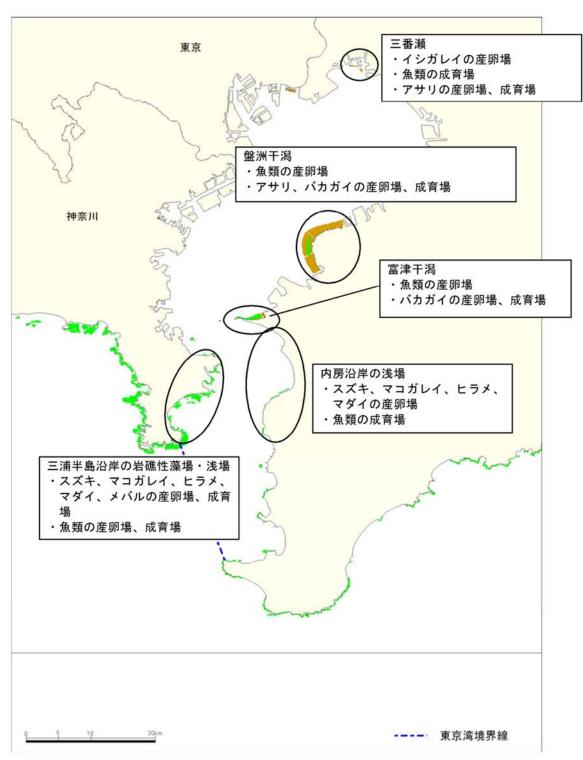
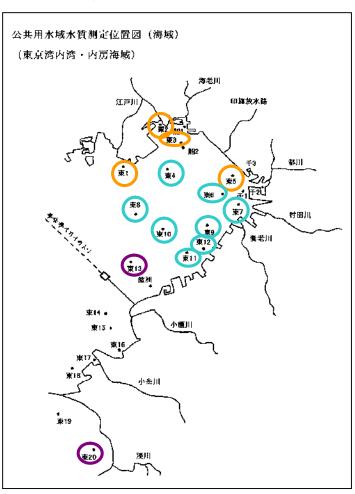


図-4.1 魚介類の利用状況からみて重要な干潟・藻場・浅場

東京湾湾奥部の底層DOについて

公共用水域水質調査地点(東京湾内湾・内房)の東京湾1~東京湾13,および比較のための東京湾20の透明度および底層DO(溶存酸素量)について,S54年度からH21年度までの31年間の年平均値の経年変化を示した。

(1)透明度(図1)


東京湾20の透明度はほぼ一定であるが、それ以外の調査地点では全地点で透明度が上昇しており、30年間で東京湾水質改善しているといえる。

(2)底層DO(図2)

底層DOの指標として,年度最低値および夏季(7月~9月)の 平均値の経年変化を示した。

○で示した水深が概ね 10m 以深の地点では年度最低値が 0.5mg/L 未満,夏季3カ月平均 値も 2mg/L 未満の頻度が高い。

○で示した水深 7m以浅 (水温 躍層より浅い地点)では,年度最 低値が 0.5mg/L 未満になる頻度 がやや少なく,夏季 3 カ月平均 値は概ね 2mg/L を超えている。

このグループでは,調査水深が躍層水深と重なるため,少しの水深の違いでDO値が大きく異なる可能性がある。

○で示した湾口に近い地点のうち,東京湾13では年度最低値が0.5mg/L未満になる頻度は少なく,東京湾20では底層まで溶存酸素が十分に保たれていることがわかる。

以上に示した東京湾内湾の31年間の経年変化から,透明度には明瞭な改善傾向が読み取れたが,底層のDOには改善傾向は読み取ることはできないと考えられた。

<水深7m以浅>

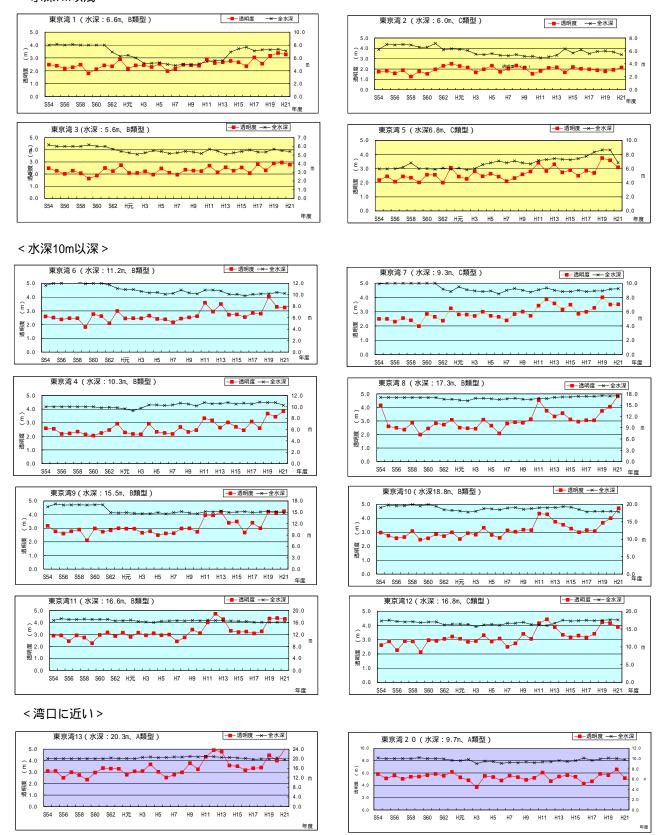


図1 東京湾内湾の透明度の経年変化

< 水深 7m 以浅 >

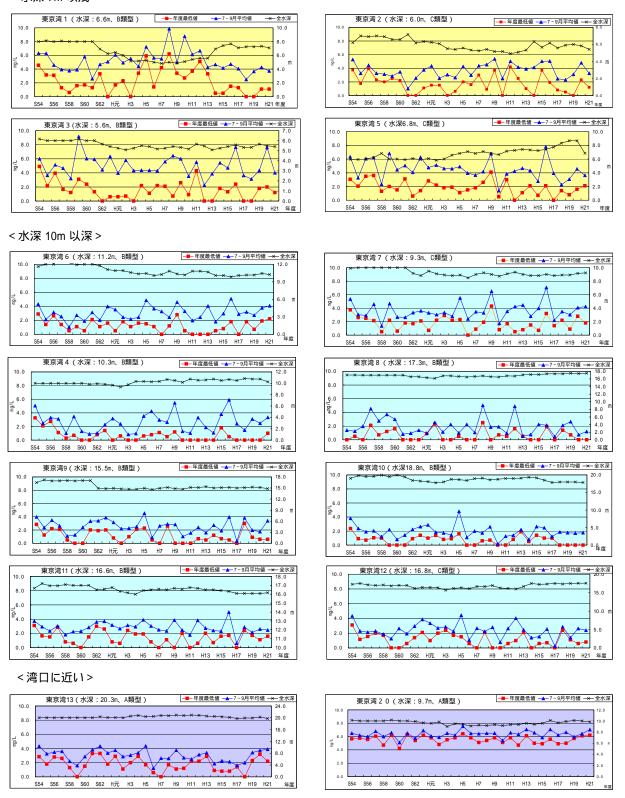
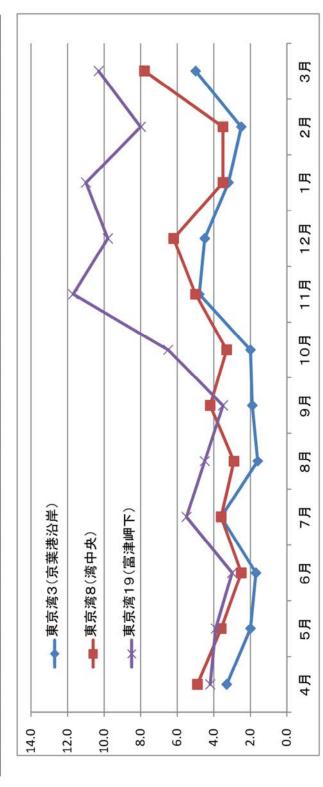



図2 東京湾内湾底層のDO経年変化(年度最低値,夏季(7~9月)平均値)

東京湾の透明度月別変化

季節変化(H24)									8		(単位:1	ш)
	4月	5月	6月	1月	8月	9月	10月	11月	12月	1月	2月	3月
[東京湾3(京葉港沿岸)	3.3	2.0	1.7	3.6	1.6	1.9	2.0	4.8	4.5	3.2	2.5	5.0
東京湾8(湾中央)	4.9	3.6	2.5	3.6	2.9	4.2	3.3	5.0	6.2	3.5	3.5	7.8
東京湾19(富津岬下)	4.2	3.9	3.0	5.5	4.5	3.5	6.5	11.7	8.6	11.0	8.0	10.3

2 印旛沼・手賀沼

(1) 沼の諸元

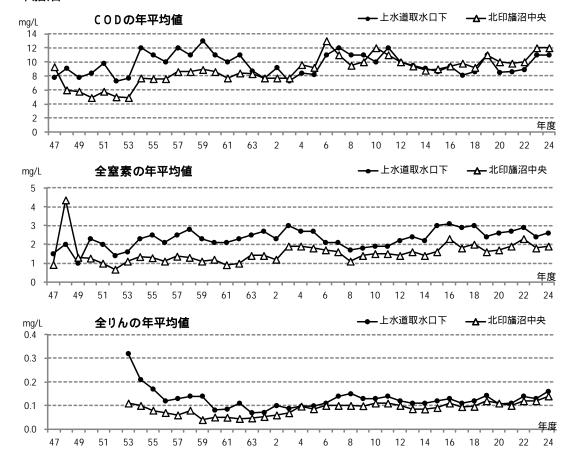
ア 印旛沼

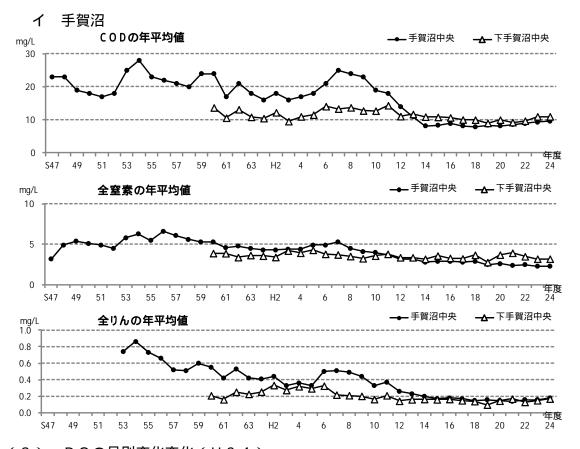
平成24年4月1日現在

面積	水深((m)	容量	流域面積	流域人口		
(km ²)	平均	最大	(千m³)	(km ²)	(千人)		
11.55	1.7	2.5	19,700	493.9	768.5		

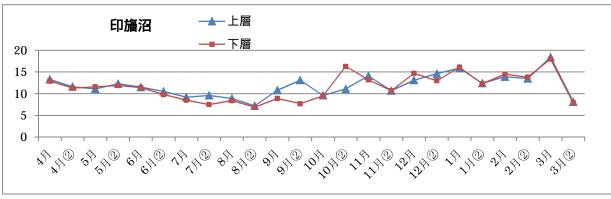
指定地域内

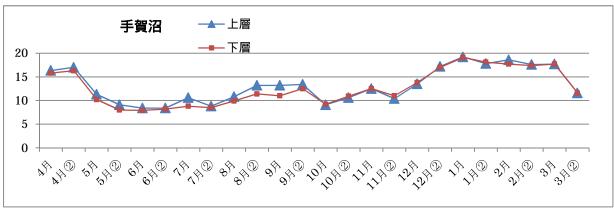
イ 手賀沼


平成24年4月1日現在


面積	水深((m)	容量	流域面積	流域人口
(km ²)	平均	最大	(千m³)	(km ²)	(千人)
6.5	0.86	3.8	5,600	144.0	503.4

指定地域内


(2) 水質


ア 印旛沼

(3) DOの月別変化変化(H24)

	H24	0.4	0.5	0.2	H24	19.3	26.0	8.5		H24	0.4	8.0	0.3	H24	19.5	27.0	12.0
	H23	0.5	6.0	0.3	H23	23.4	>30.0	17.0		H23	0.5	0.9	0.3	H23	19.9	>30.0	15.0
	H22	9.0	1.0	0.3	H22	22.5	>30.0	16.0		H22	0.5	0.7	0.3	H22	19.8	25.5	14.0
	H21	0.5	0.8	0.3	H21	23.8	>30.0	13.0		H21	0.4	0.7	0.3	H21	20.3	>30.0	13.5
	H20	0.5	0.8	0.4	H20	25.2	>30.0	19.0		H20	0.4	9.0	0.3	H20	20.1	27.0	16.0
	H19	0.4	0.7	0.3	H19	22.3	>30.0	15.0		H19	0.4	0.5	0.2	H19	19.1	29.0	12.0
	H18	0.5	6.0	0.2	H18	22.8	>30.0	12.5		H18	0.5	1.0	0.3	H18	20.9	>30.0	12.0
	H17	0.5	1.0	0.3	H17 H18	21.8	>30.0	12.0		H17 H18	0.4	0.7	0.2	H17 H18	20.4	>30.0	12.0
	H16	0.5	6.0	0.2	H16	22.8	>30.0	11.0		H16	0.4	9.0	0.2	H16	19.3	>30.0	11.0
	H15	0.5	0.7	0.5	H15	22.9	>30.0	12.0		H15	0.4	1.0	0.3	H15	19.4	>30.0	13.0
	H14	0.5	0.0	0.3	H14	23.6	>30.0	14.5		H14 H15	0.5	6.0	0.3	H14	21.6	>30.0	11.0
	H13	0.5	0.8	0.3	H13	24.0	>30.0	15.0		H13	0.5	1.1	0.5	H13	19.6	>30.0	10.0
	H12	0.4	0.7	0.3	H12	20.7	>30.0	14.0		H12	0.3	0.5	0.2	H12	15.7	23.0	10.0
11	H11	0.4	0.5	0.2	H	16.4	24.5	9.5	V)	H10 H11	0.3	9.0	0.2	H11	14.9	25.5	7.0
度の経年変化	H10	0.5	1.0	0.5	H10	21.1	>30.0	10.0	度の経年変化	H10	0.3	9.0	0.2	H10	15.2	26.5	8.0
児度の約	H9	1	-		6H	19.8	>30.0	8.5		6H		HUMBER	1	6Н	12.5	16.5	9.0
及び透れ	H8	I	-	-	8 1	17.3	>30.0	8.5	及び透れ	8 1		-		H8	11.6	17.5	6.5
透明度	H7	I	-		H7	17.9	>30.0	9.0	透明度,	H7	1	Automotions		H7	13.3	22.0	8.0
印旛沼における透明度及び透視	透明度(m)	平均	最高	最低	透視度(cm)	平均	瞬高	最低	手賀沼における透明度及び透視	(透明度(m)	平均	最高	最低	透視度(cm)	平均	最高	最低

3 水生生物の状況(手賀沼)

◇ 水生植物の推移

昭和30年代の手賀沼には、図1に示すような抽水植物*15、浮葉植物*16、沈水

植物*17等が繁茂しており、多様で豊かな生態系の重要な基盤となっていたほか、モク採り*18 等により農地の肥料としても利用されていました。

現在の手賀沼は、図2 に示すように浮葉植物、 沈水植物等は消失し、湖 辺にマコモ、ヒメガマ、 ヨシといった抽水植物 のみが残っています。

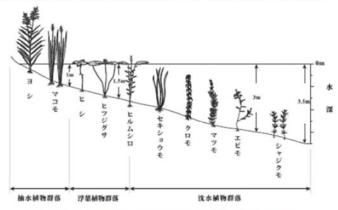
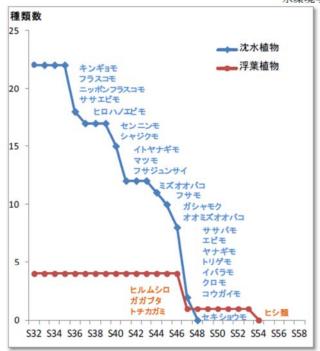



図 1 淡水水生植物群落の帯状分布模式図 (浮遊植物を除く) 山室真澄、淺枝隆:湖沼環境保全における水生植物の役割、 水環境学会誌, v. 30, n. 4, pp. 181-184, 2007.

沼岸のヨシ・マコモ (抽水植物)

※左図中の種名は、その年以降に手 賀沼で確認できなかった水生植物を 示しました。

図 2 沈水植物・浮葉植物の推移

出典:「手賀沼の生態学」浅間 茂

ヒシ (浮葉植物)

ガシャモク (沈水植物)

ササバモ (沈水植物)