2019年度 モニタリング調査結果

1. 調査目的	129
2. 調査対象物質	· 129
3. 調査地点及び実施方法	143
(1) 試料採取機関	143
(2) 調査地点及び調査対象物質	144
(3) 試料の採取方法	144
(4) 分析法	144
(5) 調査対象生物種	144
表 1-1 2019 年度モニタリング調査地点一覧 (水質)	145
図 1-1 2019 年度モニタリング調査地点(水質) ····································	146 147
表 1-2 2019 年度 モニタリング調査地点 (水質) 計幅 表 1-2 2019 年度モニタリング調査地点一覧 (底質)	153
図 1-3 2019 年度モニタリング調査地点(底質)	156
図 1-4 2019 年度モニタリング調査地点(底質)詳細	157
表 1-3 2019 年度モニタリング調査地点・生物種一覧 (生物)	163
図 1-5 2019 年度モニタリング調査地点(生物)	164
図 1-6 2019 年度モニタリング調査地点(生物)詳細	165
表 1-4 2019 年度モニタリング調査地点一覧(大気)	167
図 1-7 2019 年度モニタリング調査地点(大気)	168
図 1-8 2019 年度モニタリング調査地点 (大気) 詳細	169
表 2 調査対象生物種の特性等	173
表 3-1 2019 年度モニタリング調査 (生物 貝類) 検体の概要	174
表 3-2 2019 年度モニタリング調査(生物 魚類)検体の概要 ····································	174
表 3-3 2019 年度モニタリング調査(生物 鳥類)検体の概要	175
4. モニタリング調査としての継続性に関する考察	176
(1)調査対象物質及び媒体の推移	176
(2) 調査地点の推移	179
(3) 定量(検出)下限値の推移	
(4) まとめ	182
表 4 モニタリング調査の年度別実施状況 ····································	183 189
表 5-2 モニタリング調査の年度別調査地点の一覧(底質)	190
表 5-3 モニタリング調査の年度別調査地点の一覧(生物)	190
表 5-4 モニタリング調査の年度別調査地点の一覧 (大気)	193
表 6-1 モニタリング調査における検出下限値の比較(水質)	194
表 6-2 モニタリング調査における検出下限値の比較(底質)	196
表 6-3 モニタリング調査における検出下限値の比較(生物)	198
表 6-4 モニタリング調査における検出下限値の比較 (大気)	200
表 7-1 モニタリング調査における定量下限値の比較(水質)	202
表 7-2 モニタリング調査における定量下限値の比較(底質)	204
表 7-3 モニタリング調査における定量下限値の比較(生物)	206
表 7-4 モニタリング調査における定量下限値の比較(大気)	208
5. 経年分析の方法	210
	212
四~ 『エーカ·バッ 1 『原及○カルI』/N (-/N) 7 る町 / M / A	414

6. 調査結果の概要	213
表 8-1 2019 年度モニタリング調査 検出状況一覧表(水質及び底質)	214
表 8-2 2019 年度モニタリング調査 検出状況一覧表 (生物及び大気)	
表 9 2019 年度モニタリング調査 定量 [検出] 下限値一覧表	218
表 10-1 2002 年度から 2019 年度における経年分析結果(水質)	220
表 10-2 2002 年度から 2019 年度における経年分析結果(底質)	222
表 10-3 2002 年度から 2019 年度における経年分析結果(生物)	·· 224
表 10-4 2002 年度から 2019 年度における経年分析結果(大気)	
表 11 2002 年度から 2019 年度における経年分析の水域分類	228
[1] 総 PCB ······	230
[2] HCB (ヘキサクロロベンゼン)	
[3] アルドリン (参考)	
[4] ディルドリン(参考)····································	
[5] エンドリン(参考)	
[6] DDT 類(参考) ····································	
[7] クロルデン類(参考) ····································	
[8] ヘプタクロル類(参考) ····································	
[9] トキサフェン類(参考) ····································	
[10] マイレックス(参考) ····································	
[11] HCH (ヘキサクロロシクロヘキサン) 類	
[12] クロルデコン (参考) ····································	
[13] ヘキサブロモビフェニル類(参考)	
[14] ポリブロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)	
[15] ペルフルオロオクタンスルホン酸 (PFOS) ····································	
[16] ペルフルオロオクタン酸 (PFOA)	
[17] ペンタクロロベンゼン	
[18] エンドスルファン類(参考) ····································	
[19] 1,2,3,6,9,10-ヘキサプロモングロトテガン類	
[20] 総ホリ塩化テフタレン ····································	
[22] ペンタクロロフェノール並びにその塩及びエステル類	
[23] 短鎖塩素化パラフィン類 ····································	
[24] ジコホル	
[25] ペルフルオロヘキサンスルホン酸 (PFHxS)	405
参考資料 1 継続的調査としての継続性に関する考察	
参考資料 2 経年分析の方法等に関する補足説明	
参考資料 3 カワウの卵の測定結果	
参考資料 4 大気中の POPs 残留状況の高頻度監視結果 · · · · · · · · · · · · · · · · · · ·	· 455

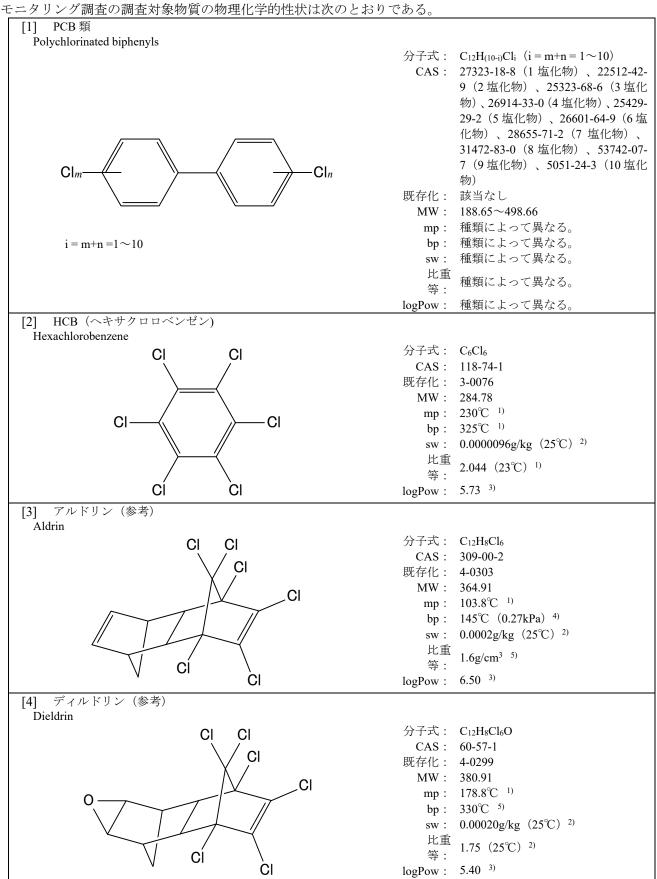
1. 調査目的

モニタリング調査は、「化学物質の審査及び製造等の規制に関する法律」(昭和48年法律第117号)(以下「化審法」という。)の特定化学物質等について、一般環境中の残留状況を監視することを目的とする。また、「残留性有機汚染物質に関するストックホルム条約」(以下「POPs条約」という。)に対応するため、条約対象物質等の一般環境中及び人体中における残留状況の経年変化を把握することを目的とする。

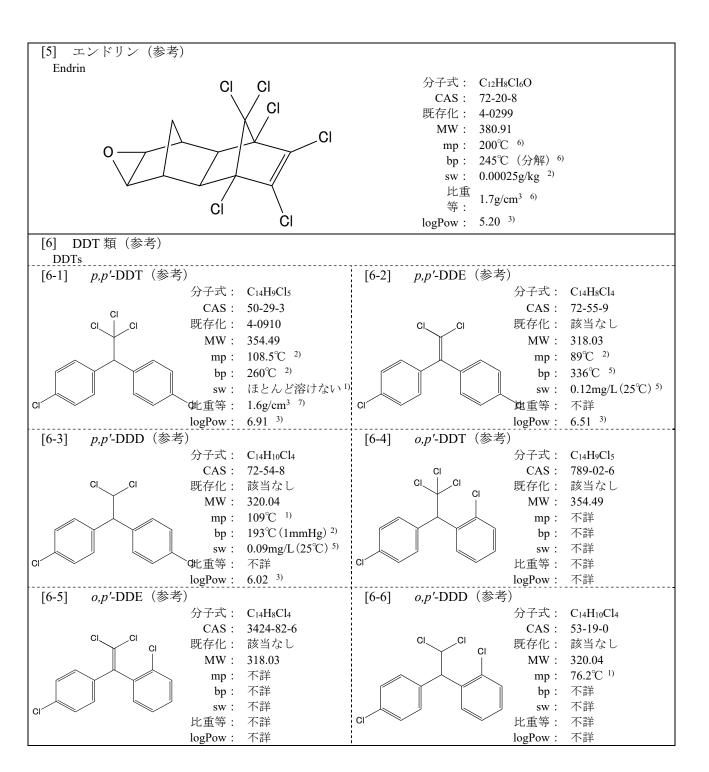
※ POPs (Persistent Organic Pollutants: 残留性有機汚染物質)

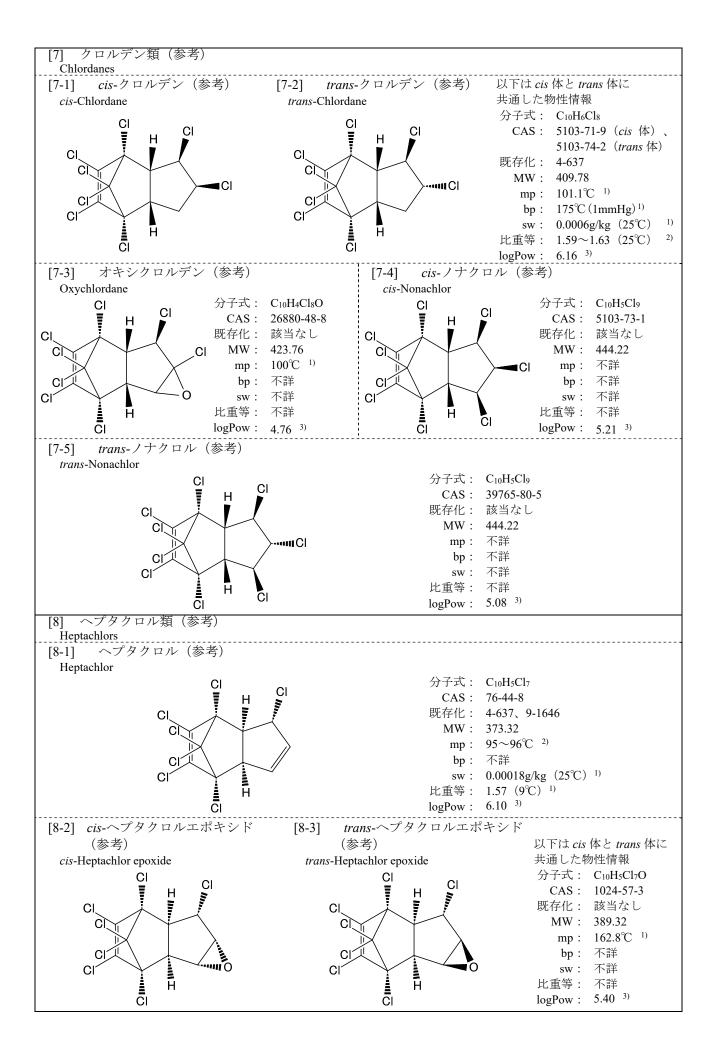
2. 調查対象物質

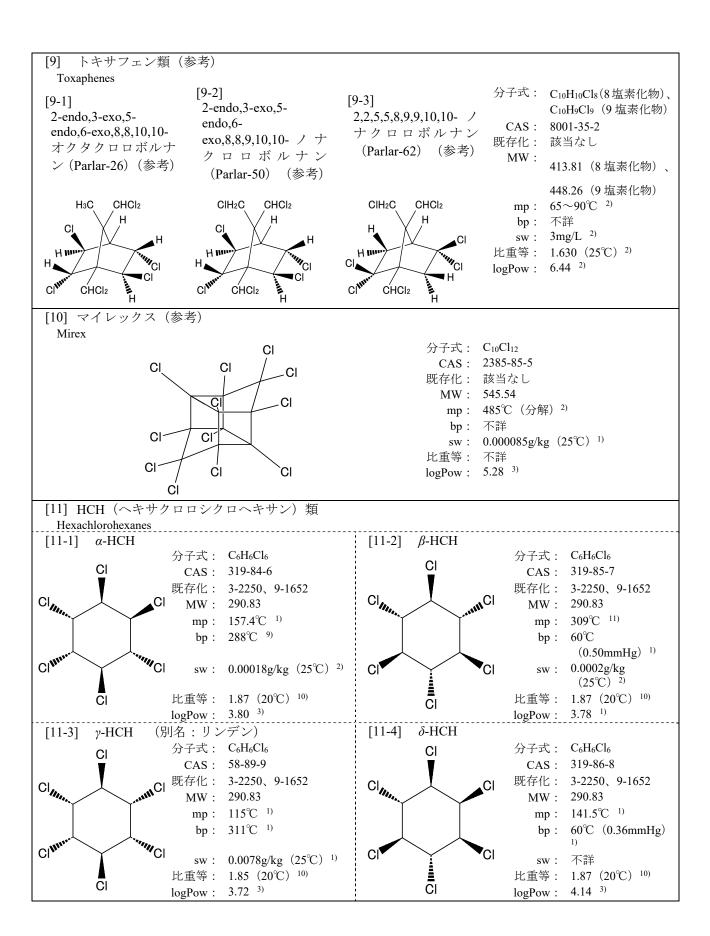
2019年度のモニタリング調査は、POPs 条約の発効当初から対象物質に指定されている10物質(群)^{注1)}のう ち PCB 類及び HCB (ヘキサクロロベンゼン) の2物質(群)、2009年5月に開催された同条約の第4回条約締 約国会議(以下「COP4」という。)等において POPs 条約対象物質として採択された HCH(ヘキサクロロシ クロヘキサン)類^{注2)}、ポリブロモジフェニルエーテル類^{注3)}、ペルフルオロオクタンスルホン酸 (PFOS) ^{注4)}及 びペンタクロロベンゼンの4物質(群)、2013年4月から5月に開催された同条約の第6回条約締約国会議(以 下「COP6」という。)において POPs 条約対象物質として採択された1.2.5.6,9.10-ヘキサブロモシクロドデカ ン類^{注5)}、2015年5月に開催された同条約の第7回条約締約国会議(以下「COP7」という。)において POPs 条 約対象物質として採択されたポリ塩化ナフタレン類^{注6)}、ヘキサクロロブタ-1,3-ジエン並びにペンタクロロフ ェノール並びにその塩及びエステル類^{注7)}の3物質(群)、2017年4月から5月に開催された同条約の第8回条約 締約国会議(以下「COP8」という。) において POPs 条約対象物質として採択された短鎖塩素化パラフィン 類^{注8)}、2019年4月から5月に開催された同条約の第9回条約締約国会議(以下「COP9」という。) において POPs 条約対象物質として採択されたジコホル及びペルフルオロオクタン酸(PFOA) ^{注9)}の2物質(群)並びに2019 年10月に開催された同条約の第15回残留性有機汚染物質検討委員会(以下「POPRC15」という。) において POPs 条約対象物質への追加を条約締約国会議に勧告することが決定されたペルフルオロヘキサンスルホン 酸(PFHxS)を加えた計14物質(群)を調査対象物質とした。調査対象物質と調査媒体との組合せは次のとお りである。


- (注1) 2009年度までは、POPs 条約の発効当初から対象物質に指定されている物質のうちポリ塩化ジベンゾーク・ジオキシン及びポリ塩化ジベンゾフランを除く10物質(群)及び HCH(ヘキサクロロシクロヘキサン)類について各物質とも毎年度の調査を行っていた。2010年度以降の調査においては、新たに条約の対象物質に追加された物質(群)等を追加する一方で、調査頻度を見直して一部の物質については数年おきの調査とすることとした。2019年度の調査では、POPs 条約対象物質のうち、アルドリン、ディルドリン、エンドリン、DDT 類注10)、クロルデン類注11)、ヘプタクロル類注12)、トキサフェン類注13)、マイレックス、クロルデコン、ヘキサブロモビフェニル類及びエンドスルファン類の11物質(群)の調査は行わなかった。なお、2019年度に調査を行わなかった11物質(群)についても最新年度までの調査結果を参考として本書に掲載している。
- (注2) POPs 条約では、 α -HCH、 β -HCH 及び γ -HCH(別名:リンデン)が COP4で POPs 条約対象物質とすることとされたが、本調査では δ -HCH も含めて HCH 類としている。
- (注3) POPs 条約では、テトラブロモジフェニルエーテル類、ペンタブロモジフェニルエーテル類、ヘキサブロモジフェニルエーテル類及びヘプタブロモジフェニルエーテル類が COP4で POPs 条約対象物質とすることとされ、デカブロモジフェニルエーテルが COP8で POPs 条約対象物質とすることとされ

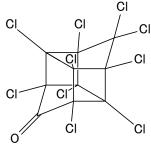
ているが、本調査ではそれらを含む臭素数が4から10のものについてポリブロモジフェニルエーテル類としている。


- (注4) POPs 条約では、ペルフルオロオクタンスルホン酸及びその塩並びにペルフルオロオクタンスルホニルフルオリドが COP4で POPs 条約対象物質とすることとされているが、本調査ではペルフルオロオクタン酸のうち直鎖のオクチル基を有するペルフルオロ(オクタン-1-スルホン酸)を分析対象としている。
- (注5) POPs 条約では、 α -1,2,5,6,9,10-ヘキサブロモシクロドデカン、 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び γ -1,2,5,6,9,10-ヘキサブロモシクロドデカンが COP6で POPs 条約対象物質とすることとされたが、本調査では δ -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び ϵ -1,2,5,6,9,10-ヘキサブロモシクロドデカンも含めて1,2,5,6,9,10-ヘキサブロモシクロドデカン類としている。ただし、2016年度以降は、 α -1,2,5,6,9,10-ヘキサブロモシクロドデカン、 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び γ -1,2,5,6,9,10-ヘキサブロモシクロドデカンを分析対象としている。
- (注6) POPs 条約では、塩素数が2から8までの塩化ナフタレンを含むものが COP7で POPs 条約対象物質と することとされており、本調査では塩素数が1のものを含めてポリ塩化ナフタレン類としている。
- (注7) POPs 条約では、ペンタクロロフェノール並びにその塩及びエステル類が COP7で POPs 条約対象物質とすることとされているが、本調査ではペンタクロロフェノール及びペンタクロロアニソールを分析対象としている。
- (注8) POPs 条約では、アルキル基の炭素数が10から13までの塩素化パラフィン類が COP8で POPs 条約対象物質とすることとされているが、本調査ではアルキル基の炭素数が10から13までの塩素化パラフィン類のうち、水質、底質及び生物については塩素数が5から9までのものを、大気については塩素数が4から7までのものをそれぞれ対象としている。
- (注9) 本調査ではペルフルオロオクタン酸のうち直鎖のヘプチル基を有するペルフルオロオクタン酸を分析 対象としている。
- (注10) POPs 条約では p,p'-DDT 及び o,p'-DDT が対象物質とされているが、本調査では環境中での分解産物である p,p'-DDE、o,p'-DDE、p,p'-DDD 及び o,p'-DDD を含めて DDT 類としている。
- (注11) POPs 条約ではヘプタクロルが対象物質とされているが、本調査ではその代謝物である cis-ヘプタクロルエポキシド及び trans-ヘプタクロルエポキシドを含めてヘプタクロル類としている。
- (注12) POPs 条約では cis-クロルデン及び trans-クロルデンが対象物質とされているが、本調査ではオキシ クロルデン、cis-ノナクロル及び trans-ノナクロルを含めてクロルデン類としている。
- (注13) POPs 条約では塩素化ボルナン及び塩素化カンフェンの工業混合物(約16,000の同族体又は異性体)が対象物質とされているが、本調査ではそのうち2-endo,3-exo,5-endo,6-exo,8,8,10,10-オクタクロロボルナン(Parlar-26)、2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-ノナクロロボルナン(Parlar-50)及び2,2,5,5,8,9,9,10,10-ノナクロロボルナン(Parlar-62)の3物質を分析対象としている。


物質			調査媒体				
調査番号	調査対象物質	水質	底質	生物	大気		
(11)	PCB 類 総 PCB は、以下の表中に示した PCB 類の同族体ごとの総量を意味している。以降の紙面において総量としての結果のみを示しているが、各同族体およびコプラナーPCB の測定値はホームページに一覧表として掲載してある。 [1-1] モノクロロビフェニル類 [1-2] ジクロロビフェニル類 [1-3] トリクロロビフェニル類 [1-4-1] 3,3',4,4'-テトラクロロビフェニル(#77) [1-4-2] 3,4,4',5-トラクロロビフェニル(#81) [1-5-1] 2,3,3',4,4'-ペンタクロロビフェニル(#105) [1-5-1] 2,3,3',4,4'-ペンタクロロビフェニル(#114) [1-5-3] 2,3',4,4',5-ペンタクロロビフェニル(#118) [1-5-4] 2',3,4,4',5-ペンタクロロビフェニル(#123) [1-5-5] 3,3',4,4',5-ペンタクロロビフェニル(#156) [1-6] ヘキサクロロビフェニル類 [1-6-1] 2,3,3',4,4',5-ペキサクロロビフェニル(#157) [1-6-3] 2,3',4,4',5,5'-ヘキサクロロビフェニル(#167) [1-6-4] 3,3',4,4',5,5'-ヘキサクロロビフェニル(#167) [1-7] ヘプタクロロビフェニル類 [1-7-1] 2,2',3,3',4,4',5,5'-ヘプタクロロビフェニル(#170) [1-7-2] 2,2',3,3',4,4',5,5'-ヘプタクロロビフェニル(#180) [1-7-3] 2,3',3',4,4',5,5'-ヘプタクロロビフェニル(#180) [1-7-3] 2,3',3',4,4',5,5'-ヘプタクロロビフェニル(#180) [1-7-3] 2,3',3',4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル				<u>х</u> (
	HCB (ヘキサクロロベンゼン)	0	0	0	0		
[3]	アルドリン (参考) ディルドリン (参考)						
[4] [5]	アイルトリン (参考) エンドリン (参考)						
	DDT 類(参考)						
[6]	[6-1] <i>p,p'</i> -DDT (参考) [6-2] <i>p,p'</i> -DDE (参考) [6-3] <i>p,p'</i> -DDD (参考) [6-4] <i>o,p'</i> -DDT (参考) [6-5] <i>o,p'</i> -DDE (参考) [6-6] <i>o,p'</i> -DDD (参考)						
[7]	クロルデン類 (参考) [7-1] cis-クロルデン (参考) [7-2] trans-クロルデン (参考) [7-3] オキシクロルデン (参考) [7-4] cis-ノナクロル (参考) [7-5] trans-ノナクロル (参考)						
[8]	ヘプタクロル類(参考) [8-1] ヘプタクロル(参考) [8-2] <i>cis</i> -ヘプタクロルエポキシド(参考) [8-3] <i>trans</i> -ヘプタクロルエポキシド(参考)						
[9]	トキサフェン類 (参考) [9-1] 2-endo,3-exo,5-endo,6-exo,8,8,10,10-オクタクロロボルナン (Parlar-26) (参考) [9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-ノナクロロボルナン (Parlar-50) (参考) [9-3] 2,2,5,5,8,9,9,10,10-ノナクロロボルナン (Parlar-62) (参考)						
[10]	マイレックス (参考)						


物質		調査媒体			
調査	調査対象物質	水質	底	生物	大気
番号		質	質	物	気
	HCH 類				
[11]	[11-1] α -HCH [11-2] β -HCH	0	0	0	0
[11]	[11-2] p-HCH (別名:リンデン)				
	[11-4] δ -HCH				
[12]	クロルデコン (参考)				
[13]	ヘキサブロモビフェニル類(参考)				
	ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)				
	[14-1] テトラブロモジフェニルエーテル類				
	[14-1-1] 2,2',4,4'-テトラブロモジフェニルエーテル(#47)				
	[14-2] ペンタブロモジフェニルエーテル類				
	[14-2-1] 2,2',4,4',5-ペンタブロモジフェニルエーテル (#99)				
	[14-3] ヘキサブロモジフェニルエーテル類				
[14]	[14-3-1] 2,2',4,4',5,5'-ヘキサブロモジフェニルエーテル (#153)	\circ	\circ	0	
[1.]	[14-3-2] 2,2',4,4',5,6'-ヘキサブロモジフェニルエーテル (#154)				
	[14-4] ヘプタブロモジフェニルエーテル類				
	[14-4-1] 2,2',3,3',4,5',6-ヘプタブロモジフェニルエーテル (#175)				
	[14-4-2] 2,2',3,4,4',5',6-ヘプタブロモジフェニルエーテル (#183)				
	[14-5] オクタブロモジフェニルエーテル類				
	[14-6] ノナブロモジフェニルエーテル類				
	[14-7] デカブロモジフェニルエーテル				
	ペルフルオロオクタンスルホン酸 (PFOS)	0	0	0	0
	ペルフルオロオクタン酸 (PFOA)	0	0	0	0
[17]	ペンタクロロベンゼン	0	0	0	0
F1 03	エンドスルファン類(参考)				
[18]	[18-1] α-エンドスルファン(参考)				
	[18-2] β-エンドスルファン (参考) 1,2,5,6,9,10-ヘキサブロモシクロドデカン類				
	1,2,5,6,9,10-ヘキサブロモングロトテルン領 [19-1] α -1,2,5,6,9,10-ヘキサブロモシクロドデカン				
	[19-1] α -1,2,5,6,9,10- γ + γ / γ 1 γ 1 γ 1 γ 2 γ 1 γ 2 γ 2 γ 2 γ 3 γ 4 γ 5 γ 5 γ 6 γ 7			\circ	\circ
[19]	[19-2] p -1,2,5,6,9,10- γ - γ				
	$[19-4]$ δ -1,2,5,6,9,10-ヘキサブロモシクロドデカン (参考)				
	[19-4] θ -1,2,3,6,9,10-ペイリンロモングロドブガン(参考) [19-5] ε -1,2,5,6,9,10-ヘキサブロモシクロドデカン(参考)				
	ポリ塩化ナフタレン類				
	※ポリセルナフカ」、パナープリセルナフカ」、海の日本はブレの※具も辛吐してい				l .
[20]	る。以降の紙面において総量としての結果のみを示しているが、各同族体の測定値はホ	0	0	0	0
	ームページに一覧表として掲載してある。				
[21]	ヘキサクロロブタ-1.3-ジエン				0
F J	ペンタクロロフェノール並びにその塩及びエステル類				
[22]	[22-1] ペンタクロロフェノール	0	0	0	0
,	[22-2] ペンタクロロアニソール		-	-	-
	短鎖塩素化パラフィン類				
	[23-1] 塩素化デカン類				
[23]	[23-2] 塩素化ウンデカン類	\circ	0	0	0
	[23-3] 塩素化ドデカン類				
	[23-4] 塩素化トリデカン類				
[24]	ジコホル	0	0	0	0
[25]	ペルフルオロヘキサンスルホン酸 (PFHxS)	\circ	\cap		

「CAS」とは CAS 登録番号を、「既存化」とは既存化学物質名簿における番号を、「MW」とは分子量を、 「mp」とは融点を、「bp」とは沸点を、「sw」とは水への溶解度を、「比重等」とは比重(単位なし)又は密 度(単位あり)を、「logPow」とはn-オクタノール/水分配係数をそれぞれ指す。



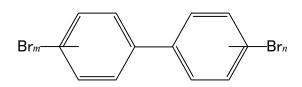
[12] クロルデコン (参考)

Chlordecone

分子式: C10Cl10O CAS: 143-50-0

既存化: 該当なし MW: 490.64

mp: 350℃ (分解) 2)


bp: 不詳

sw: 7.6mg/L (24°C) 5) 比重等: 1.61 (25℃) 1)

3.45 12) logPow:

[13] ヘキサブロモビフェニル類(参考)

Hexabromobiphenyls

分子式: C₁₂H₄Br₆ CAS: 36355-01-8 既存化: 該当なし MW: 627.58

logPow:

mp: 種類によって異なる。 種類によって異なる。 bp: 種類によって異なる。 sw: 種類によって異なる。 比重等: 種類によって異なる。

m+n=6

 Br_m

 $i = m+n = 4 \sim 10$

[14] ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)

Polybromodiphenyl ethers (Br₄ \sim Br₁₀)

分子式: $C_{12}H_{(10-i)}Br_iO$ ($i = m+n = 4\sim 10$)

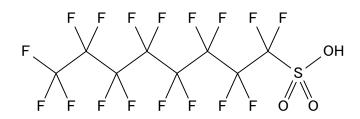
CAS: 40088-47-9 (4 臭素化物)、32534-81-9 (5 臭素化物) 、36483-60-0 (6 臭 素化物)、68928-80-3 (7 臭素化物)、 32536-52-0 (8 臭素化物)、63936-56-

1 (9 臭素化物) 、1163-19-5 (10 臭

素化物)

既存化: 3-61 (4 臭素化物) 、3-2845 (6 臭素

化物)


MW: 485.79~959.17

種類によって異なる。 mp: 種類によって異なる。 bp: sw: 種類によって異なる。

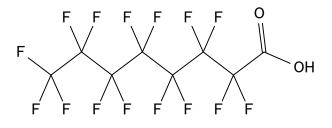
比重等: 種類によって異なる。 logPow: 種類によって異なる。

[15] ペルフルオロオクタンスルホン酸 (PFOS) Perfluorooctane sulfonic acid (PFOS)

分子式: C8HF17O3S CAS: 1763-23-1

既存化: 2-1595 MW: 500.13

> >400°C (カリウム塩) ¹³⁾ mp:


bp: 不詳

sw: 519mg/L (20°C、カリウム塩) ¹³⁾

不詳 比重等: logPow: 不詳

[16] ペルフルオロオクタン酸 (PFOA)

Perfluorooctanoic acid (PFOA)

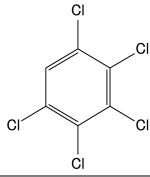
分子式: C8HF15O2

CAS: 335-67-1

既存化: 2-1182、2-2659

MW: 414.07 mp: 54.3°C¹) bp: $192^{\circ}C^{1)}$

sw: 9.5g/L (20°C) 14)


比重等: 1.79g/cm³ 15)

 6.3^{-15} logPow:

 Br_n

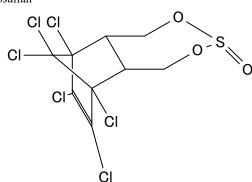
[17] ペンタクロロベンゼン

Pentachlorobenzene

分子式: C₆HCl₅ CAS: 608-93-5

既存化: 3-76 MW: 250.34 mp: 84.2℃ ¹⁾ bp: 279℃ ¹⁾

sw: 0.00050g/kg (25℃) ¹⁾ 比重等: 1.8342g/cm³ (16℃) ¹⁾


 $logPow : 5.17^{-3}$

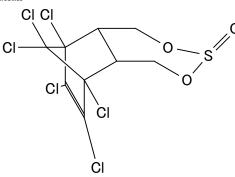
[18] エンドスルファン類 (参考)

Endosulfans

[18-1] α-エンドスルファン (参考)

α-Endosulfan

分子式: C₉H₆Cl₆O₃S


CAS: 959-98-8 既存化: 該当なし MW: 406.93 mp: 109.2℃ ¹⁶⁾ bp: 不詳

sw: 0.33mg/L (25°C) 16)

比重等: 不詳 logPow: 4.7 ¹⁶⁾

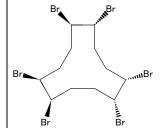
[18-2] β-エンドスルファン (参考)

 β -Endosulfan

分子式: C9H6Cl6O3S

CAS: 33213-65-9 既存化: 該当なし MW: 406.93 mp: 213.3℃ ¹⁶⁾ bp: 不詳

sw: 0.32mg/L (25°C) 16)


比重等: 不詳 logPow: 4.7 ¹⁶⁾

[19] 1,2,5,6,9,10-ヘキサブロモシクロドデカン類

1,2,5,6,9,10-Hexabromocyclododecanes

[19-1] α-1,2,5,6,9,10-ヘキサブロモシクロドデカン

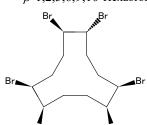
 α -1,2,5,6,9,10-Hexabromocyclododecane

分子式: C₁₂H₁₈Br₆

CAS: 134237-50-6

既存化: 3-2254 MW: 641.70

mp: 179∼181°C ¹⁷⁾


bp: 不詳

sw: 48.8μg/L ¹⁷⁾ 比重等: 不詳

logPow: 5.07 ¹⁷⁾

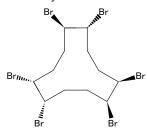
[19-2] β-1,2,5,6,9,10-ヘキサブロモシクロドデカン

 β -1,2,5,6,9,10-Hexabromocyclododecane

分子式: C₁₂H₁₈Br₆

CAS: 134237-51-7 既存化: 3-2254 MW: 641.70

mp: $170 \sim 172^{\circ}C^{-17}$


bp: 不詳

sw: 14.7μg/L ¹⁷⁾

比重等: 不詳 logPow: 5.12 ¹⁷⁾

[19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロドデカン

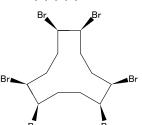
 γ -1,2,5,6,9,10-Hexabromocyclododecane

分子式: C₁₂H₁₈Br₆ CAS: 134237-52-8 既存化: 3-2254 MW: 641.70

mp: $207\sim209^{\circ}C^{-17}$ bp: 不詳 sw: $2.1\mu g/L^{-17}$

比重等: 不詳 logPow: 5.47 ¹⁷⁾

[19-4] δ-1,2,5,6,9,10-ヘキサブロモシクロドデカン

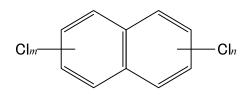

 δ -1,2,5,6,9,10-Hexabromocyclododecane

Brim...Br

分子式: C₁₂H₁₈Br₆ CAS: 不詳 既存化: 3-2254

MW: 641.70 mp: 不詳 bp: 不詳 sw: 不詳 比重等: 不詳 logPow: 不詳 [19-5] ε-1,2,5,6,9,10-ヘキサブロモシクロドデカン (参考)

 ε -1,2,5,6,9,10-Hexabromocyclododecane



分子式: C₁₂H₁₈Br₆ CAS: 不詳 既存化: 3-2254 MW: 641.70 mp: 不詳 bp: 不詳 sw: 不詳

比重等: 不詳 logPow: 不詳

[20] ポリ塩化ナフタレン類

Polychlorinated naphthalenes

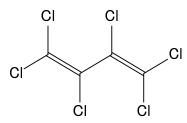
 $i = m + n = 1 \sim 8$

分子式: $C_{10}H_{(8-i)}Cl_i$ ($i=m+n=1\sim 8$)

CAS: 25586-43-0 (1 塩化物)、28699-88-9 (2 塩化物)、1321-65-9 (3 塩化物)、

(2塩化物)、1321-65-9(3塩化物)、 1335-88-2(4塩化物)、1321-64-8(5 塩化物)、1335-87-1(6塩化物)、 32241-08-0(7塩化物)、2234-13-1

(8 塩化物)


既存化: 該当なし MW: 162.6~403.7

mp:種類によって異なる。bp:種類によって異なる。sw:種類によって異なる。比重等:種類によって異なる。

種類によって異なる。

[21] ヘキサクロロブタ-1,3-ジエン

Hexachlorobuta-1,3-diene

分子式: C₄Cl₆

logPow:

CAS: 87-68-3 既存化: 2-121 MW: 260.76 mp: -21℃ ²⁾ bp: 215℃ ²⁾

sw: 0.0005% (20°C) ²⁾ 比重等: 1.682 (20/4°C) ²⁾

logPow : 4.90 18)

[22] ペンタクロロフェノール並びにその塩及びエステル類

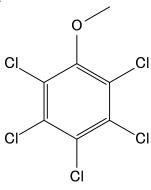
Pentachlorophenol and its salts and esters

[22-1] ペンタクロロフェノール

Pentachlorophenol

分子式: C₆HCl₅O CAS: 87-86-5 既存化: 3-2850 MW: 266.34

mp: 174℃ (一水和物)、191℃ (無水水


和物) 19)

bp: 309~310℃ (分解) ²⁾ sw: 14mg/L (26.7℃) ²⁰⁾ 比重等: 1.978 (22℃) ²⁾

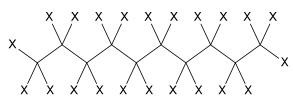
logPow: 5.12²¹⁾

[22-1] ペンタクロロアニソール

Pentachloroanisole

分子式: C₇H₃Cl₅O CAS: 1825-21-4 既存化: 該当なし MW: 280.36 mp: 233.9℃ ¹) bp: 不詳

sw: 1mg/L 未満 ²²⁾


比重等: 不詳 logPow: 5.45 ²²⁾

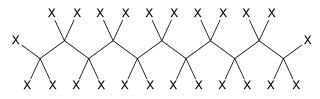
[23] 短鎖塩素化パラフィン類

Short-chain chlorinated paraffins

[23-1] 塩素化デカン類

Chlorinated decanes

XはH又はCIであることを意味する。


分子式: C₁₀H_(22-i)Cl_i (i = 1~22)

CAS: 不詳 既存化: 2-68

MW: 176.73~900.07 mp: 種類によって異なる。 bp: 種類によって異なる。 sw: 種類によって異なる。 比重等: 種類によって異なる。 logPow: 種類によって異なる。

[23-2] 塩素化ウンデカン類

Chlorinated undecanes

X は H 又は CI であることを意味する。

分子式: C₁₁H_(24-i)Cl_i (i = 1~24)

CAS: 不詳 既存化: 2-68

MW: 190.75~982.99 mp: 種類によって異なる。 bp: 種類によって異なる。 sw: 種類によって異なる。 比重等: 種類によって異なる。 logPow: 種類によって異なる。

塩素化ドデカン類 [23-3] Chlorinated dodecanes 分子式: $C_{12}H_{(26-i)}Cl_i$ ($i = 1 \sim 26$) CAS: 不詳 既存化: 2-68 204.78~1065.91 MW: 種類によって異なる。 mp: 種類によって異なる。 bp: 種類によって異なる。 sw: 比重等: 種類によって異なる。 XはH又はCIであることを意味する。 logPow: 種類によって異なる。 塩素化トリデカン類 [23-4] Chlorinated tridecanes 分子式: $C_{13}H_{(28-i)}Cl_i$ (i = 1~28) CAS: 不詳 既存化: 2-68 MW: $218.81 \sim 1.148.82$ 種類によって異なる。 mp: bp: 種類によって異なる。 種類によって異なる。 sw: 比重等: 種類によって異なる。 XはH又はCIであることを意味する。 種類によって異なる。 logPow: [24] ジコホル Dicofol 分子式: C14H9Cl5O CI CAS: 115-32-2 既存化: 4-226 MW: 370.49 CI CI $77.5 \sim 79.5$ °C ²³⁾ mp: $180\sim225^{\circ}C^{-23)}$ bp: CI $0.8 \sim 1.32 \text{mg/L} \ (25^{\circ}\text{C})^{-23)}$ CI sw: 比重等: 1.45g/cm³ 23) $3.8 \sim 6.06^{-23}$ logPow: OH ペルフルオロヘキサンスルホン酸 (PFHxS) Perfluorohexane sulfonic acid (PFHxS) 分子式: C₆HF₁₃O₃S CAS: 355-46-4 既存化: 該当なし MW: 400.11 OH 41°C ²⁴⁾ mp: 238~239°C ²⁴⁾ bp: 1.4g/L(20~25℃、カリウム塩)²⁴⁾ 2.3g/L (非解離) 24) 0 比重等: 1.841g/cm³ 25)

参考文献

- 1) John R. Rumble, CRC Handbook of Chemistry and Physics, 98th Edition, CRC Press LLC (2017)
- 2) O'Neil, The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals 15th Edition, Merck Co. Inc. (2013)

5.17 24)

logPow:

- 3) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 4) IPCS, International Chemical Safety Cards, Aldrin, ICSC0774 (1998)
- 5) Howard et al., Handbook of Physical Properties of Organic Chemicals, CRC Press Inc. (1996)
- 6) IPCS, International Chemical Safety Cards, Endrin, ICSC1023 (2000)
- 7) IPCS, International Chemical Safety Cards, DDT, ICSC0034 (2004)
- 8) Biggar et al., Apparent solubility of organochlorine insecticides in water at various temperatures, Hilgardia, 42, 383-391 (1974)
- 9) IPCS, International Chemical Safety Cards, alpha-Hexachlorocyclohexane, ICSC0795 (1998)
- 10) ATSDR, Toxicological Profile for alpha-, beta-, gamma- and delta-Hexachlorocyclohexane (2005)
- 11) IPCS, International Chemical Safety Cards, beta-Hexachlorocyclohexane, ICSC0796 (1998)
- 12) IPCS, International Chemical Safety Cards, Chlordecone ICSC1432 (2003)
- 13) United Nations Environment Programme (UNEP), Risk profile on perfluorooctane sulfonate, Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting (2006)
- 14) OECD, Perfluorooctanoic Acid & Ammonium Perfluorooctanoate, SIDS Initial Assessment Profile for 26th SIAM (2008)

- 15) IPCS, International Chemical Safety Cards, Perfkuorooctanoic acid, ICSC1613 (2005)
- 16) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on endosulfan, Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting (2009)
- 17) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on hexabromocyclododecane, Report of the Persistent Organic Pollutants Review Committee on the work of its sixth meeting (2010)
- 18) IPCS, International Chemical Safety Cards, Hexachlorobutadiene ICSC0896 (1997)
- 19) International Agency for Research on Cancer(IARC), IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man(1972)
- 20) Yalkowsky et al., Aquasol Database of Aqueous Solubility Version 5, College of Pharmacy, University of Arizona(1992)
- 21) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 22) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on pentachlorophenol and its salts and esters, Report of the Persistent Organic Pollutants Review Committee on the work of its ninth meeting (2013)
- 23) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on dicofol, Report of the Persistent Organic Pollutants Review Committee on the work of its twelfth meeting (2016)
- 24) UNEP, Stockholm Convention on Persistent Organic Pollutants, Persistent Organic Pollutants Review Committee, Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS related compounds, Draft risk management evaluation (2019)
- U.S. National Library of Medicine, Hazardous Substances Data Bank (HSDB) (https://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB)

3. 調査地点及び実施方法

モニタリング調査は、全国の都道府県及び政令指定都市に試料採取を委託し、民間分析機関において分析 を実施した。

(1) 試料採取機関

試料採取機関名		調査媒体			
		底質	生物	大気	
北海道環境生活部環境局環境推進課					
及び地方独立行政法人北海道立総合	0	\bigcirc	0	\circ	
研究機構環境・地質研究本部環境科)	
学研究センター					
札幌市衛生研究所				\circ	
岩手県環境保健研究センター	0	0	0	\circ	
宮城県保健環境センター	\circ	0	\circ	\circ	
仙台市衛生研究所		\circ			
秋田県健康環境センター	0	0			
山形県環境科学研究センター	0	0		0	
福島県環境創造センター	0	0			
茨城県霞ケ浦環境科学センター	0	0	0	0	
栃木県保健環境センター	0	0			
群馬県衛生環境研究所	0				
埼玉県環境科学国際センター	0				
千葉県環境研究センター		0		0	
千葉市環境保健研究所	0	0			
東京都環境局環境改善部及び公益財					
団法人東京都環境公社東京都環境科	0	0	0	\circ	
学研究所					
神奈川県環境科学センター				0	
横浜市環境創造局環境科学研究所	0	0	0	0	
川崎市環境局環境総合研究所	0	0	0		
新潟県保健環境科学研究所	0	0		0	
富山県生活環境文化部環境保全課及	0))	
び富山県環境科学センター	0	0		0	
石川県保健環境センター	0	0	0	0	
福井県衛生環境研究センター	0	0			
山梨県衛生環境研究所		0	0	0	
山梨県水産技術センター			0%		
長野県環境保全研究所	0	0		0	
岐阜県保健環境研究所				0	
静岡県環境衛生科学研究所	0	0			
愛知県環境調査センター	0	0			
名古屋市環境局地域環境対策部環境					
科学調査センター			0	0	
三重県保健環境研究所	0	0		0	
滋賀県琵琶湖環境科学研究センター	0	0	0		
京都府保健環境研究所	0	0			

コロスサイン コース・サイン コース・サイ					
		調査媒体 水質 底質 生物 大			
			生物	天気	
京都市衛生環境研究所	0	0			
大阪府環境農林水産部環境管理室環					
境保全課及び地方独立行政法人大阪	0	0	0	0	
府立環境農林水産総合研究所					
大阪市立環境科学研究センター	0	0			
兵庫県農政環境部環境管理局水大気					
課及び公益財団法人ひょうご環境創	0	0	0	0	
造協会兵庫県環境研究センター					
兵庫県農政環境部環境管理局水大気					
課及び伊丹市市民自治部環境政策室			0*		
みどり自然課					
神戸市環境局環境保全部自然環境共生	0	0		\circ	
課及び神戸市環境保健研究所))	
奈良県景観・環境総合センター		0		0	
和歌山県環境衛生研究センター	0	\circ			
鳥取県生活環境部衛生環境研究所			\circ		
島根県保健環境科学研究所及び島根)	
県隠岐保健所				0	
岡山県環境保健センター	0	0			
広島県立総合技術研究所保健環境セ	0	0			
ンター					
広島市衛生研究所			0	0	
山口県環境生活部環境政策課及び山	0	0		0	
口県環境保健センター					
徳島県立保健製薬環境センター	0	0		0	
香川県環境保健研究センター	0	0		0	
愛媛県立衛生環境研究所		0		0	
高知県環境研究センター	0	0	0		
福岡県保健環境研究所				0	
北九州市保健環境研究所	0	0			
福岡市環境局保健環境研究所		0			
佐賀県環境センター	0	0		0	
長崎県環境部地域環境課	0	0			
熊本県保健環境科学研究所	0			0	
大分県生活環境部環境保全課及び大					
分県衛生環境研究センター		0	0		
宮崎県衛生環境研究所	0	0		0	
鹿児島県環境保健センター	0	0	0	0	
沖縄県衛生環境研究所	0	Ō	0	0	

(注1) 名称は2019年度末のものである。

(注 2) ※: 山梨県水産技術センター並びに兵庫県農政環境部環境管理局水大気課及び伊丹市市民自治部環境政策室みどり自然課において採取された生物はカワウの卵で、諸外国の調査において調査を実施している例があることから、本調査においても実施しており、結果については参考値として扱った。

(2)調査地点及び調査対象物質

モニタリング調査における調査媒体別の調査対象物質(群)数及び調査地点数等は以下の表のとおりである。

それぞれ媒体ごとでの各調査地点における対象物質、調査地点の全国分布図及び詳細地点図は、水質について表1-1、図1-1及び図1-2に、底質について表1-2、図1-3及び図1-4に、生物について表1-3、図1-5及び図1-6、大気について表1-4、図1-7及び図1-8に示した。それぞれの調査地点で得られた試料については、各媒体において調査の対象とした全ての物質の測定を行っている。

なお、調査対象物質、媒体及び調査地点については、「4. モニタリング調査としての継続性に関する考察」の「(1)調査対象物質及び媒体の推移」、「(2)調査地点の推移」も併せて参照のこと。

調査媒体	地方公共団体数	調査対象物質(群)数	調査地点(・生物種)数	調査地点ごとの検体数
水質	43	12	48	1
底質	47	12	61	1**
生物(貝類)	3	12	3	1***
生物 (魚類)	15	12	16	1***
生物(鳥類)	3***	12	3***	1***
大気(温暖 期)	34	13	36	1 又は 3*****
全媒体	58	14	123***	

- (注1) ※: 底質については各調査地点とも3試料/地点の採取を行い、調査地点毎に3試料を等量ずつ混合して1検体/地点として測定した。
- (注2) ※※: 生物については原則として各調査地点とも3試料/地点の採取を行い、調査地点毎に3試料を等量ずつ混合して1検体/地点として測定した。
- (注3) ※※※: 生物(鳥類) のうち2地点で得られた試料はカワウの卵であり、卵黄と卵白とに分けて測定を行い、結果 は参考値として扱い、参考資料に示した。
- (注4) ※※※※: [21] ヘキサクロロブタ-1,3-ジエン以外の物質については1検体/地点の測定を行った。[21] ヘキサクロロブタ-1,3-ジエンについては3検体/地点の測定を行った。

(3) 試料の採取方法

試料の採取は、概ね秋期 (9 月~11 月) の天候が安定した時期に試料採取を行った。各調査地点における 試料採取日時は後述する (4) 調査対象物質及び調査地点の媒体別の調査地点一覧 (表 1-2 から表 1-5) を、 その他試料採取情報は、調査結果報告書詳細版 (環境省ホームページ) を参照のこと。試料の採取方法及び 検体の調製方法については、「化学物質環境実態調査実施の手引き (平成 27 年度版)」 (2016 年 3 月、環境 省環境保健部環境安全課)に従うこととした。

(4) 分析法

分析法の概要は、調査結果報告書詳細版(環境省ホームページ)の「モニタリング調査対象物質の分析法 概要」を参照のこと。

(5)調査対象生物種

生物媒体において調査対象とする種は、指標としての有意性、実用性のほか、国際的な比較の可能性も考慮し、ムラサキイガイ及びスズキを中心に貝類1種、魚類8種及び鳥類1種の計10種とした。

2019年度において調査対象となった生物種の特性等を表2に示す。また、表3-1から表3-3には、分析に供した検体の概要をまとめた。

表1-1 2019年度モニタリング調査地点一覧(水質)

地方公共団体	調査地点	採取日
北海道	石狩川河口石狩河口橋(石狩市)	2019年11月21日
岩手県	豊沢川豊沢橋 (花巻市)	2019年12月4日
宮城県	仙台湾(松島湾)	2019年10月15日
秋田県	八郎湖	2019年10月21日
山形県	最上川河口(酒田市)	2019年12月11日
福島県	小名浜港	2019年11月12日
茨城県	利根川河口かもめ大橋(神栖市)	2019年12月10日
栃木県	田川給分地区頭首工(宇都宮市)	2019年10月30日
群馬県	利根川利根大堰上流(千代田町)	2019年10月24日
埼玉県	荒川秋ヶ瀬取水堰 (志木市)	2019年11月27日
千葉市	花見川河口 (千葉市)	2019年11月7日
東京都	荒川河口 (江東区)	2019年12月18日
	隅田川河口 (港区)	2019年12月18日
横浜市	横浜港	2019年11月27日
川崎市	川崎港京浜運河※	2019年11月27日
新潟県	信濃川下流 (新潟市)	2019年12月4日
富山県	神通川河口萩浦橋(富山市)	2019年12月10日
石川県	犀川河口(金沢市)	2019年10月23日
福井県	笙の川三島橋 (敦賀市)	2019年10月23日
長野県	諏訪湖湖心	2019年12月3日
静岡県	天竜川掛塚橋 (磐田市)	2019年11月27日
愛知県	名古屋港	2019年12月11日
三重県	四日市港	2019年11月28日
滋賀県	琵琶湖唐崎沖中央	2019年11月19日
京都府	宮津港	2020年1月8日
京都市	桂川宮前橋 (京都市)	2019年11月28日
大阪府	大和川河口 (堺市)	2019年12月5日
大阪市	大阪港	2019年12月3日
兵庫県	姫路沖	2019年11月13日
神戸市	神戸港中央	2019年12月10日
和歌山県	紀の川河口紀の川大橋(和歌山市)	2019年10月31日
岡山県	水島沖	2019年10月23日
広島県	呉港	2019年11月13日
	広島湾	2019年11月13日
山口県	徳山湾	2019年11月12日
	宇部沖	2019年11月13日
	萩沖	2019年11月22日
徳島県	吉野川河口(徳島市)	2019年11月12日
香川県	高松港	2019年11月26日
高知県	四万十川河口(四万十市)	2019年10月15日
北九州市	洞海湾	2019年11月25日
佐賀県	伊万里湾	2019年11月29日
長崎県	大村湾	2019年10月29日
熊本県	緑川平木橋(宇土市)	2019年10月24日
宮崎県	大淀川河口 (宮崎市)	2019年10月15日
鹿児島県	天降川新川橋 (霧島市)	2019年11月13日
	五反田川五反田橋 (いちき串木野市)	2019年11月11日

⁽注) ※の地点について、モニタリング調査の「川崎港京浜運河」と詳細環境調査の「川崎港京浜 運河扇町地先」は同一地点である。

図1-1 2019年度モニタリング調査地点(水質)

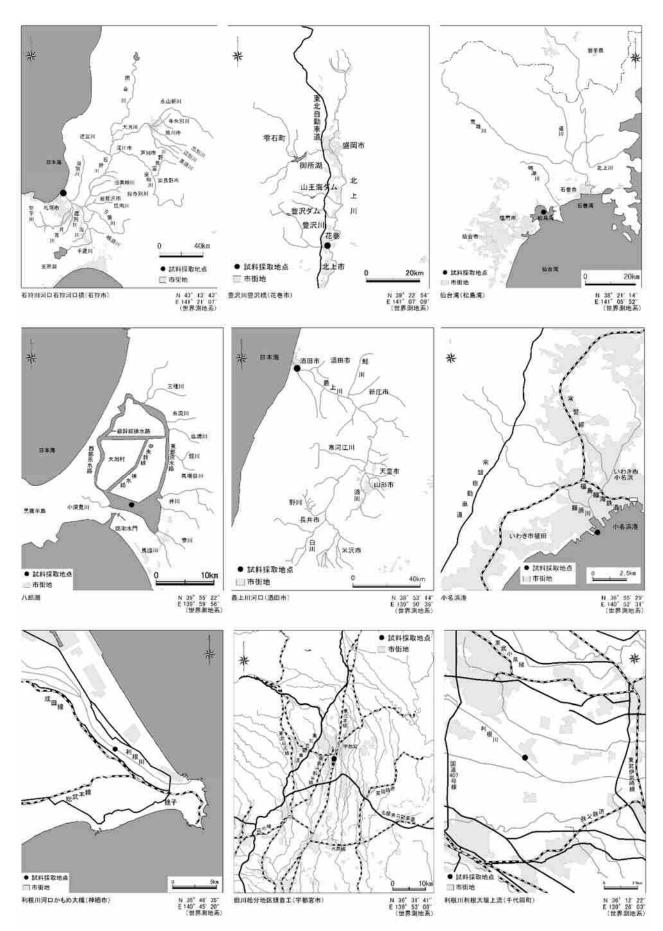


図 1-2 (1/6) 2019 年度モニタリング調査地点(水質) 詳細

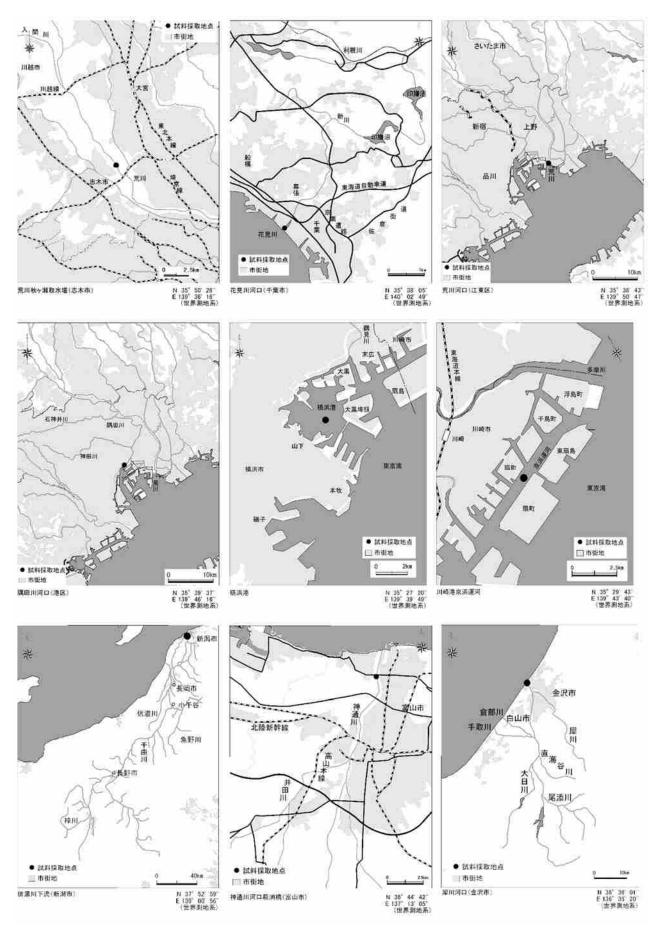


図 1-2 (2/6) 2019 年度モニタリング調査地点(水質) 詳細

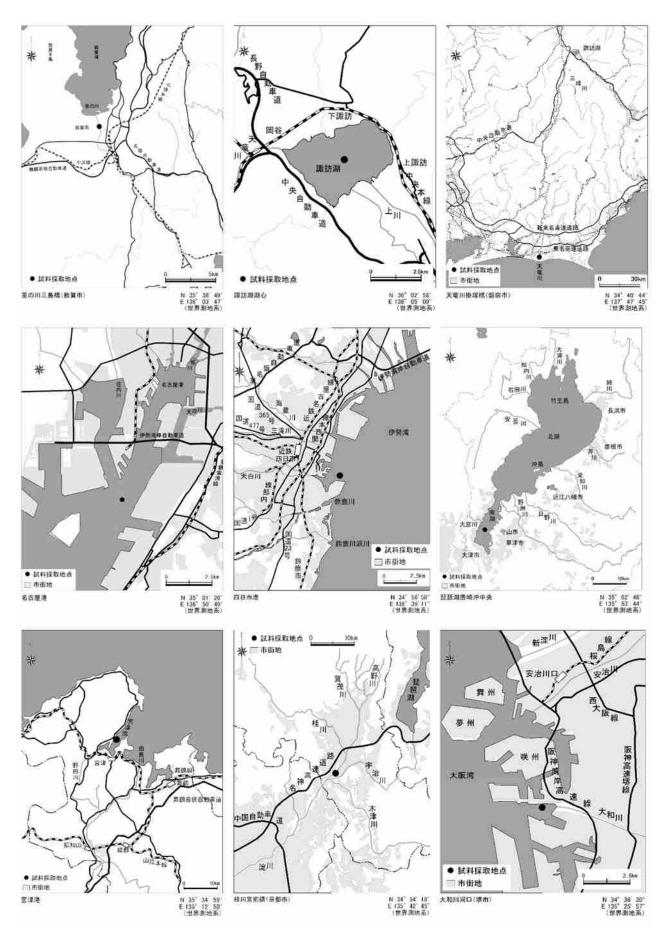


図 1-2 (3/6) 2019 年度モニタリング調査地点(水質) 詳細

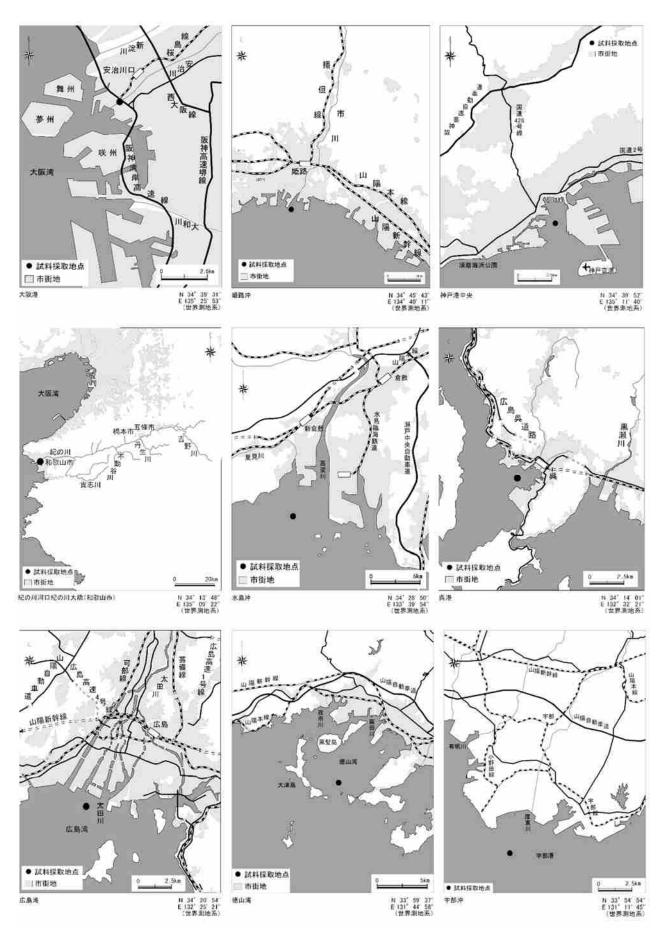


図 1-2 (4/6) 2019 年度モニタリング調査地点(水質) 詳細

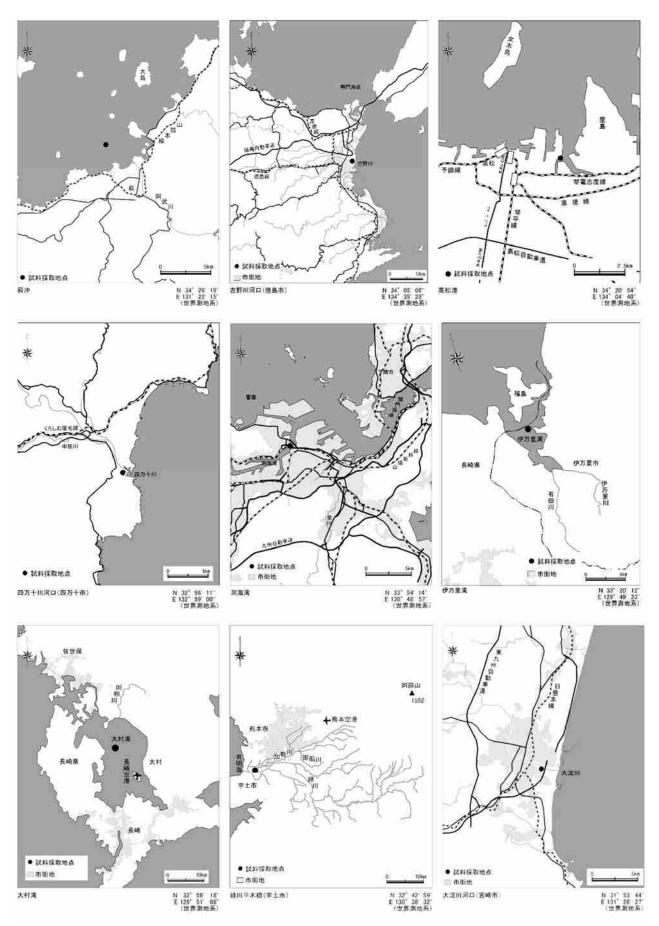


図 1-2 (5/6) 2019 年度モニタリング調査地点(水質) 詳細

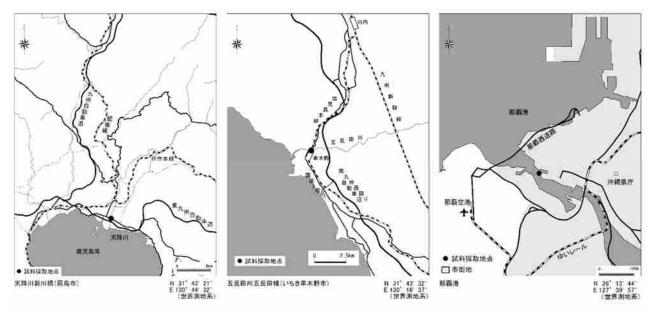


図 1-2 (6/6) 2019 年度モニタリング調査地点(水質) 詳細

表1-2 2019年度モニタリング調査地点一覧(底質)

	モニタリンク調査地点一覧(低質)	
地方公共団体	調査地点	採取日
北海道	石狩川河口石狩河口橋 (石狩市)	2019年11月21日
	苫小牧港	2019年9月12日
岩手県	豊沢川豊沢橋 (花巻市)	2019年12月4日
宮城県	仙台湾(松島湾)	2019年10月15日
仙台市	広瀬川広瀬大橋(仙台市)	2019年11月19日
秋田県	八郎湖	2019年10月21日
山形県	最上川河口(酒田市)	2019年12月11日
福島県	小名浜港	2019年11月12日
茨城県	利根川河口かもめ大橋(神栖市)	2019年12月10日
栃木県	田川給分地区頭首工(宇都宮市)	2019年10月30日
千葉県	市原・姉崎海岸	2019年11月27日
千葉市	花見川河口(千葉市)	2019年11月7日
東京都	荒川河口 (江東区)	2019年117月7日
水水 和	隅田川河口(港区)	2019年12月18日
横浜市	横浜港	2019年12月18日
	■ 横供色 ■ 多摩川河口(川崎市)	
川崎市		2019年11月27日
4c 7c1 1B	川崎港京浜運河※	2019年11月27日
新潟県	信濃川下流(新潟市)	2019年12月11日
富山県	神通川河口萩浦橋(富山市)	2019年11月13日
石川県	犀川河口(金沢市)	2019年10月23日
福井県	笙の川三島橋(敦賀市)	2019年10月23日
山梨県	荒川千秋橋(甲府市)	2019年11月1日
長野県	諏訪湖湖心	2019年12月3日
静岡県	清水港	2019年12月4日
	天竜川掛塚橋 (磐田市)	2019年11月27日
愛知県	衣浦港	2019年12月11日
	名古屋港	2019年12月11日
三重県	四日市港	2019年11月28日
	鳥羽港	2019年11月25日
滋賀県	琵琶湖南比良沖中央	2019年11月27日
	琵琶湖唐崎沖中央	2019年11月19日
京都府	宮津港	2020年1月8日
京都市	桂川宮前橋 (京都市)	2019年11月28日
大阪府	大和川河口 (堺市)	2019年12月5日
大阪市	大川毛馬橋 (大阪市)	2019年11月28日
2 41/24-11	淀川河口 (大阪市)	2019年12月3日
	大阪港	2019年12月3日
	大阪港外	2019年12月3日
兵庫県	姫路 沖	2019年11月13日
神戸市	神戸港中央	2019年12月10日
奈良県	大和川大正橋(王寺町)	2019年12月16日
和歌山県	紀の川河口紀の川大橋(和歌山市)	2019年10月31日
岡山県	水島沖	2019年10月31日
広島県	小岡行	2019年10月23日
四回乐	広島湾	2019年11月13日
 山口県		2019年11月13日
山口乐	宇部沖	2019年11月12日
(生白 旧	萩沖 大野川河口 (徳自士)	2019年11月22日
徳島県	吉野川河口(徳島市)	2019年11月12日
香川県	高松港	2019年11月26日
愛媛県	新居浜港	2019年10月28日
高知県	四万十川河口(四万十市)	2019年10月15日
北九州市	洞海湾	2019年11月25日
福岡市	博多湾	2019年12月5日
佐賀県	伊万里湾	2019年11月29日
長崎県	大村湾	2019年10月29日
大分県	大分川河口 (大分市)	2019年11月21日
宮崎県	大淀川河口 (宮崎市)	2019年10月15日
鹿児島県	天降川 (霧島市)	2019年11月13日
	五反田川 (いちき串木野市)	2019年11月11日
沖縄県	那覇港	2020年1月10日
(注) ※の地方に	へいて エータリング調本の「川崎洪青浜海	河」と詳細環接調木の「川陸洪吉浜

⁽注) ※の地点について、モニタリング調査の「川崎港京浜運河」と詳細環境調査の「川崎港京浜 運河扇町地先」は同一地点である。

図1-3 2019年度モニタリング調査地点(底質)

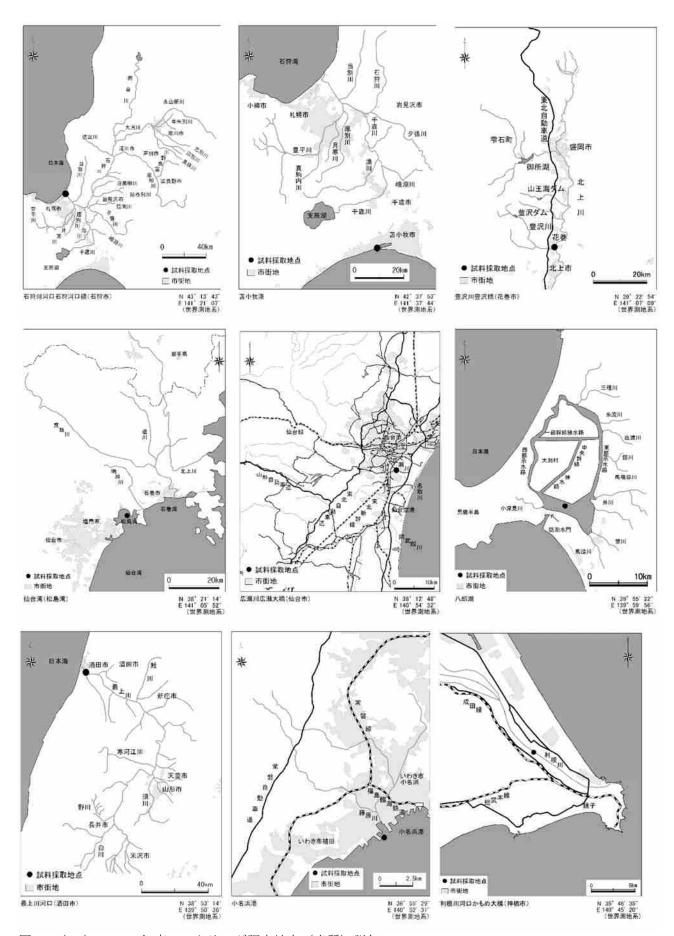


図 1-4 (1/7) 2019 年度モニタリング調査地点(底質) 詳細

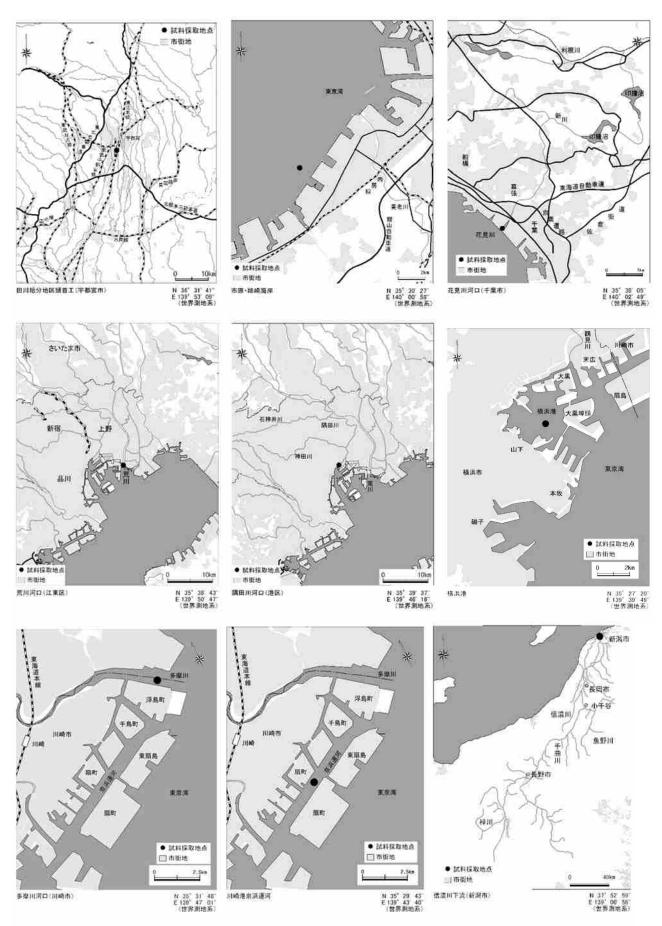


図 1-4 (2/7) 2019 年度モニタリング調査地点(底質)詳細

図 1-4 (3/7) 2019 年度モニタリング調査地点(底質) 詳細

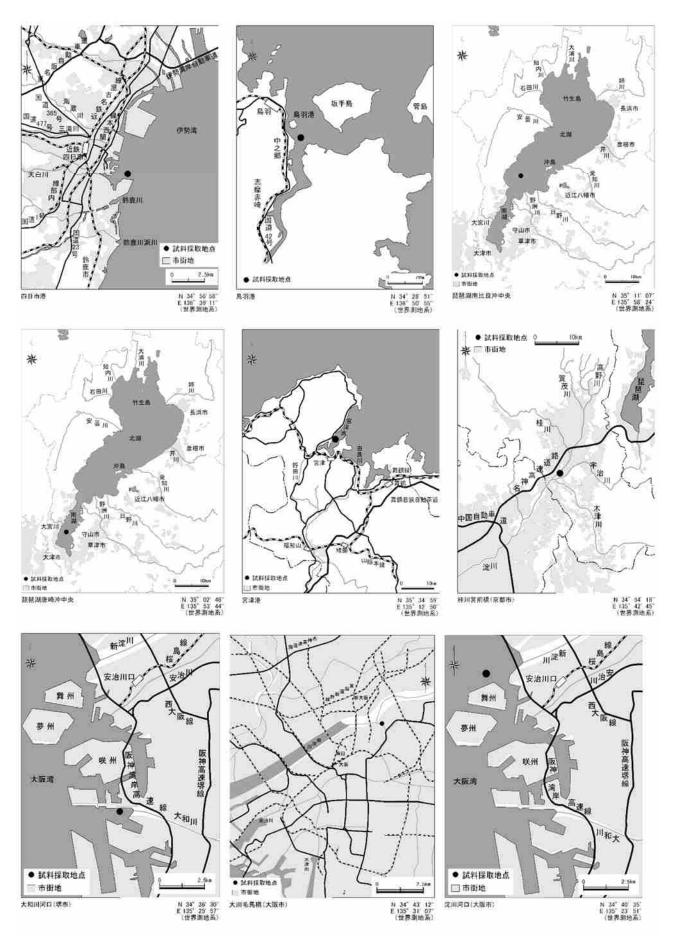


図 1-4 (4/7) 2019 年度モニタリング調査地点(底質)詳細

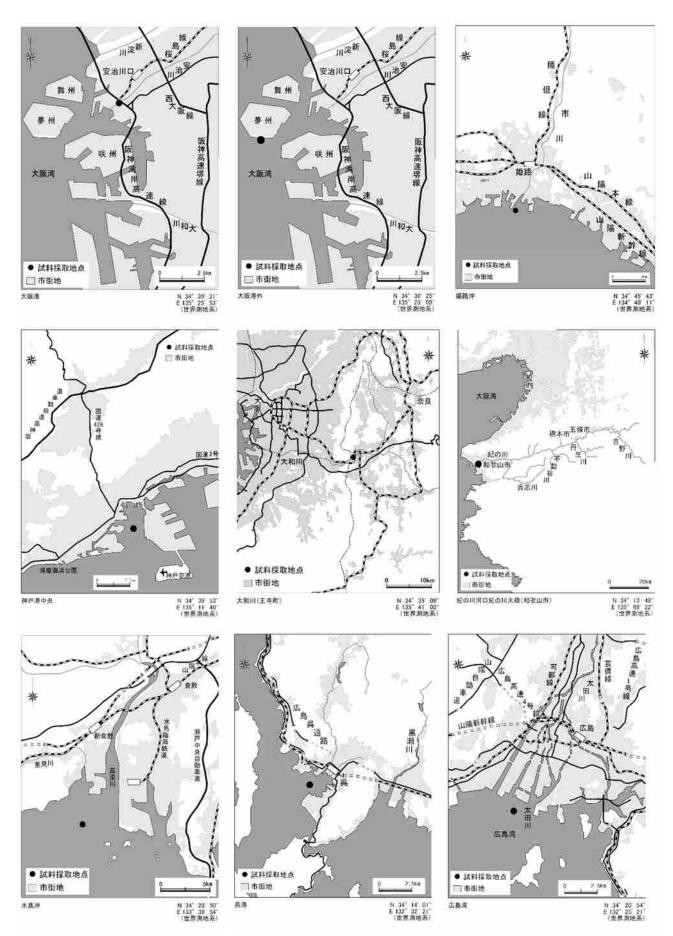


図 1-4 (5/7) 2019 年度モニタリング調査地点(底質) 詳細

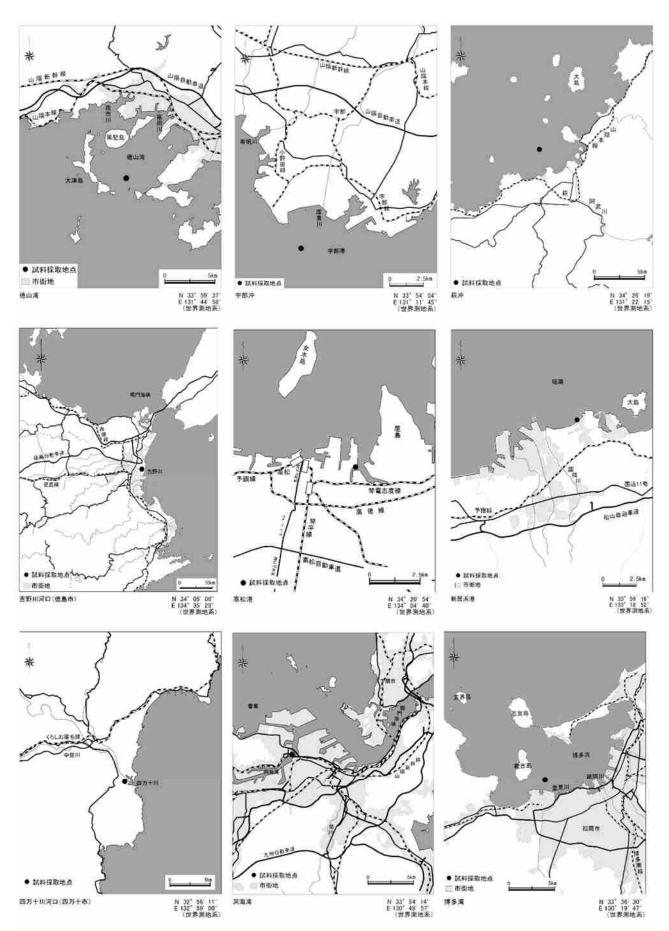


図 1-4 (6/7) 2019 年度モニタリング調査地点(底質) 詳細

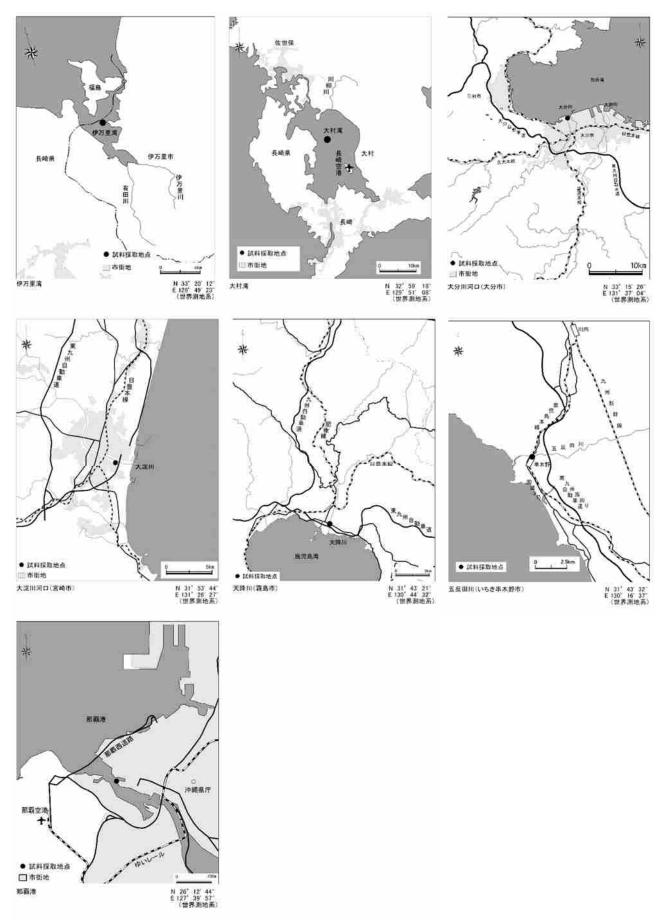


図 1-4 (7/7) 2019 年度モニタリング調査地点(底質)詳細

表1-3 2019年度モニタリング調査地点・生物種一覧(生物)

地方公共団体	調査地点	生物種	採取日
北海道	釧路沖	ウサギアイナメ	2019年11月23日
岩手県	山田湾	ムラサキイガイ	2019年10月23日
	山田湾	アイナメ	2019年10月23日
宮城県	仙台湾(松島湾)	アイナメ	2019年12月18日
茨城県	常磐沖	マサバ	2020年2月3日
東京都	東京湾	スズキ	2019年9月18日
横浜市	横浜港	ムラサキイガイ	2019年11月25日
川崎市	川崎港扇島沖	スズキ	2019年9月17日
石川県	能登半島沿岸	ムラサキイガイ	2019年7月30日
名古屋市	名古屋港	ボラ	2019年9月24日
滋賀県	琵琶湖安曇川 (高島市)	ウグイ	2019年4月2日
大阪府	大阪湾	スズキ	2019年10月23日
兵庫県	姫路沖	スズキ	2019年12月16日
鳥取県	天神川(倉吉市)	カワウ	2019年5月8日
	中海	スズキ	2019年10月29日
広島市	広島湾	スズキ	2019年11月17日
高知県	四万十川河口(四万十市)	スズキ	2019年9月~11月※
大分県	大分川河口 (大分市)	スズキ	2020年1月31日
鹿児島県	薩摩半島西岸	スズキ	2019年11月11日、18日
沖縄県	中城湾	ミナミクロダイ	2020年2月3日

⁽注) ※は採取日の詳細が不明である。

図1-5 2019年度モニタリング調査地点(生物)

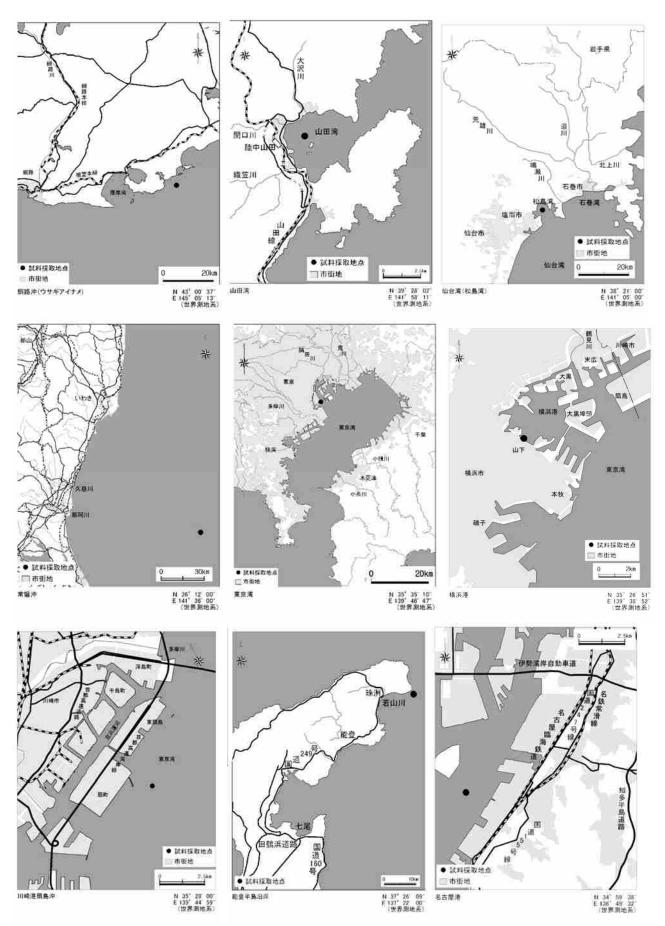


図 1-6 (1/3) 2019 年度モニタリング調査地点(生物)詳細

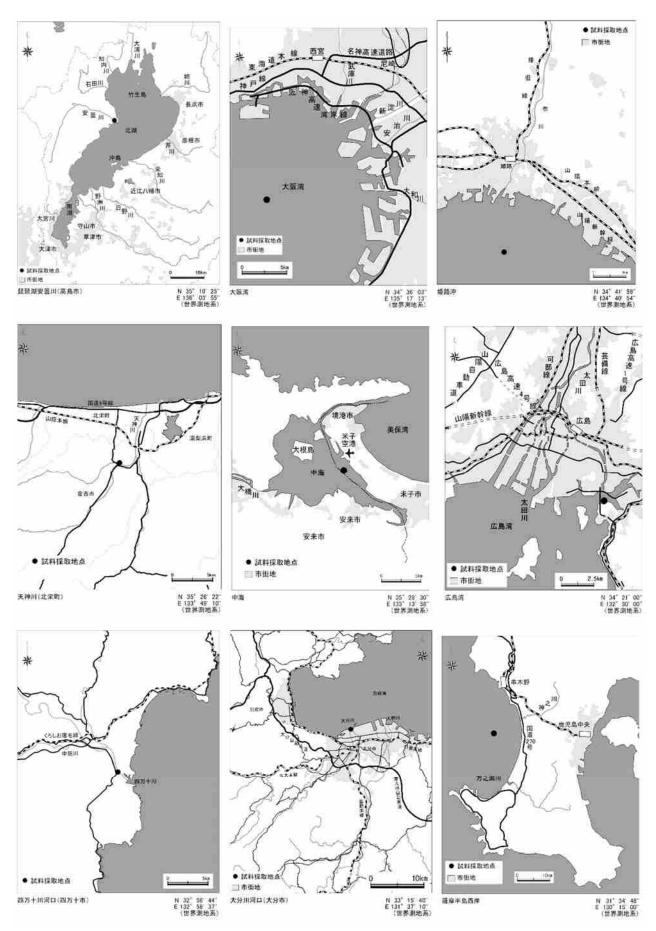


図 1-6 (2/3) 2019 年度モニタリング調査地点(生物)詳細

図 1-6 (3/3) 2019 年度モニタリング調査地点(生物)詳細

表1-4 2019年度モニタリング調査地点一覧 (大気)

地方	年度モニタリンク調査地点一覧(大気) 	
公共団体	調査地点	採取年月日(温暖期)
北海道	北海道上川総合振興局(旭川市)	2019年10月11日~18日※※、又は2019年10月15
		日~18 日※
札幌市	札幌芸術の森(札幌市)	2019年10月7日~10日
岩手県	巣子一般環境大気測定局 (滝沢市)	2019年9月30日~10月3日
宮城県	宮城県保健環境センター (仙台市)	2019年10月4日~11日※※、又は2019年10月7日~10日※
山形県	山形県環境科学研究センター (村山市)	2019年9月24日~10月1日※※、又は2019年9月24日~27日※
茨城県	茨城県霞ケ浦環境科学センター (土浦市)	2019年10月25日~11月1日※※、又は2019年10月29日~11月1日※
千葉県	市原松崎一般環境大気測定局(市原市)	2019年10月29日~11月5日※※、又は2019年10月30日~11月2日※
東京都	東京都環境科学研究所(江東区)	2019年10月25日~11月1日※※、又は2019年10月28日~31日※
	小笠原父島 (小笠原村)	2019年10月3日~9日※※、又は2019年10月3日~6日※
神奈川県	神奈川県環境科学センター(平塚市)	2019年9月24日~27日
横浜市	横浜市環境科学研究所(横浜市)	2019年10月29日~11月5日※※、又は2019年10月29日~11月1日※
新潟県	大山一般環境大気測定局(新潟市)	2019年10月7日~10日
富山県	一個	2019年10月15日~18日
石川県	石川県保健環境センター(金沢市)	2019年10月15日18日
山梨県	山梨県衛生環境研究所(甲府市)	2019年10月13日18日
長野県	長野県環境保全研究所(長野市)	2019年10月28日 31日※※、又は2019年10月28
及月州	区对 未來先 体 主朝 九/万(区 5 市)	日~31 日※
岐阜県	岐阜県保健環境研究所(各務原市)	2019年10月28日~31日
名古屋市	千種区平和公園 (名古屋市)	2019年9月24日~10月1日※※、又は2019年9月24日~27日※
三重県	三重県保健環境研究所(四日市市)	2019年9月30日~10月3日
大阪府	大阪合同庁舎2号館別館(大阪市)	2019年10月15日~18日
兵庫県	兵庫県環境研究センター(神戸市)	2019年10月15日~18日
神戸市	神戸市環境保健研究所(神戸市)	2019年10月7日~10日
奈良県	天理一般環境大気測定局 (天理市)	2019年11月5日~8日
島根県	国設隠岐酸性雨測定所(隠岐の島町)	2019年10月28日~31日
広島市	広島市立国泰寺中学校(広島市)	2019年10月28日~31日
山口県	山口県環境保健センター (山口市)	2019年9月24日~10月1日※※、又は2019年9月24日~27日※
	萩健康福祉センター (萩市)	2019年9月24日~10月1日※※、又は2019年9月24日~27日※
徳島県	徳島県立保健製薬環境センター(徳島市)	2019年9月30日~10月3日
香川県	香川県立総合水泳プール(高松市)	2019年10月25日~11月1日※※、又は2019年10月25日~28日※
愛媛県	愛媛県南予地方局(宇和島市)	2019年10月7日~10日
福岡県	大牟田市役所 (大牟田市)	2019年9月24日~27日
佐賀県	佐賀県環境センター(佐賀市)	2019年9月24日~10月1日※※、又は2019年9月 24日~29日※
熊本県	熊本県保健環境科学研究所(宇土市)	2019年9月24日~27日
宮崎県	宮崎県衛生環境研究所(宮崎市)	2019年11月5日~12日※※、又は2019年11月5日~8日※
鹿児島県	鹿児島県環境保健センター(鹿児島市)	2019年10月28日~31日
沖縄県	辺戸岬(国頭村)	2019年10月26日 31日 2019年9月24日~27日
117/0电/不	(2) 四八日野八丁	2017 T 7 /1 27 H 2/ H

⁽注) ※は [21] ヘキサクロロブタ-1,3-ジエンを採取したことを、※※は [21] ヘキサクロロブタ-1,3-ジエン以外の物質を、記載がないものについては全ての物質を採取したことをそれぞれ意味する。

図1-7 2019年度モニタリング調査地点(大気)

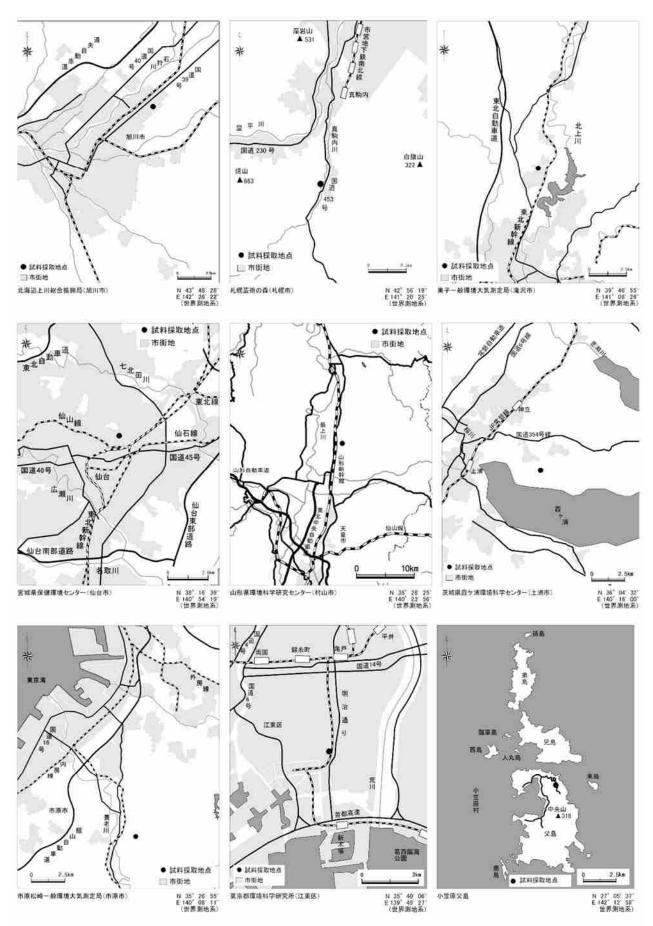


図 1-8 (1/4) 2019 年度モニタリング調査地点 (大気) 詳細

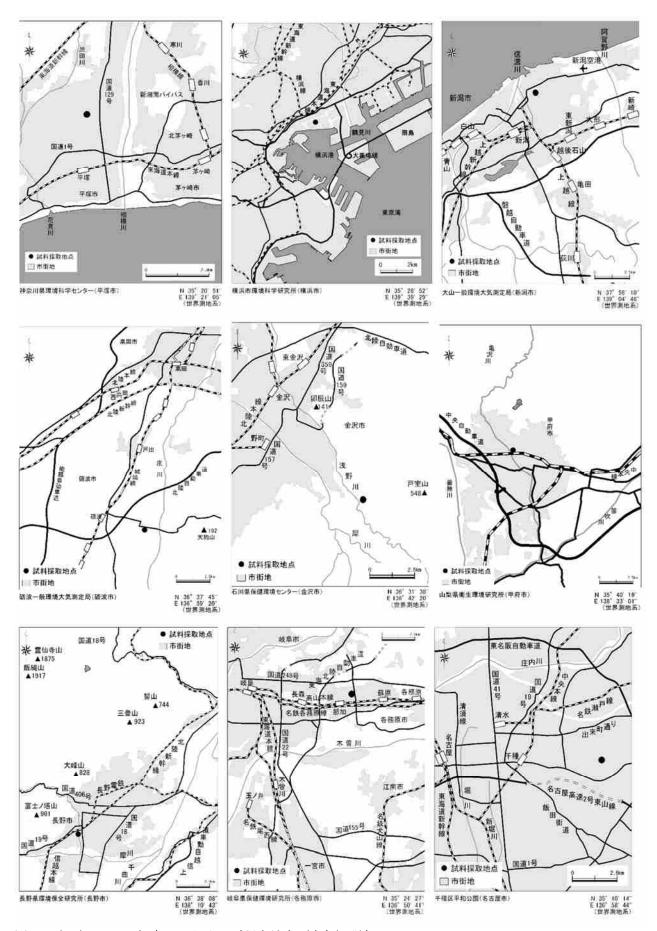


図 1-8 (2/4) 2019 年度モニタリング調査地点(大気) 詳細

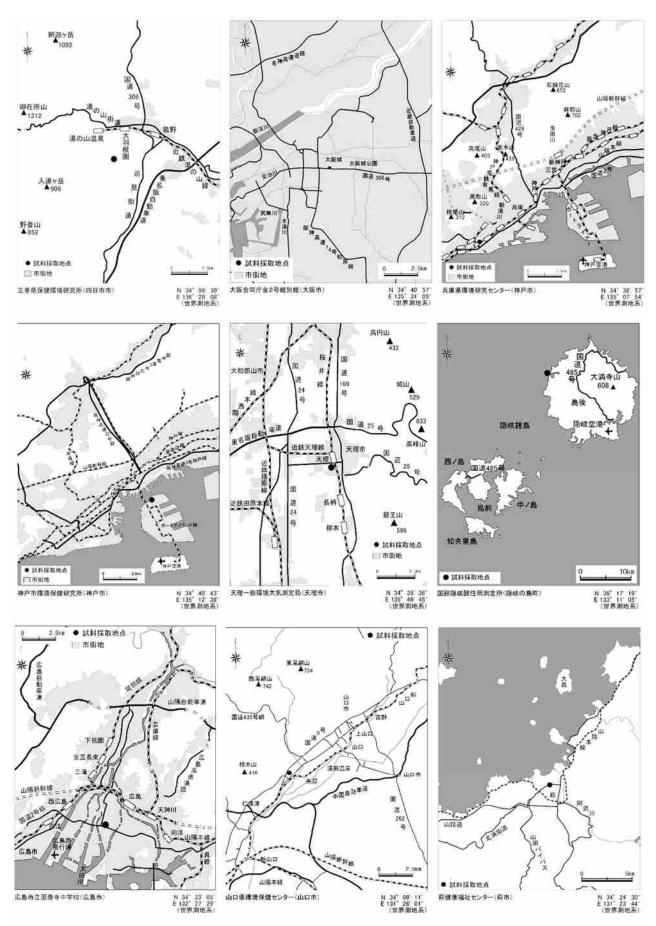


図 1-8 (3/4) 2019 年度モニタリング調査地点 (大気) 詳細

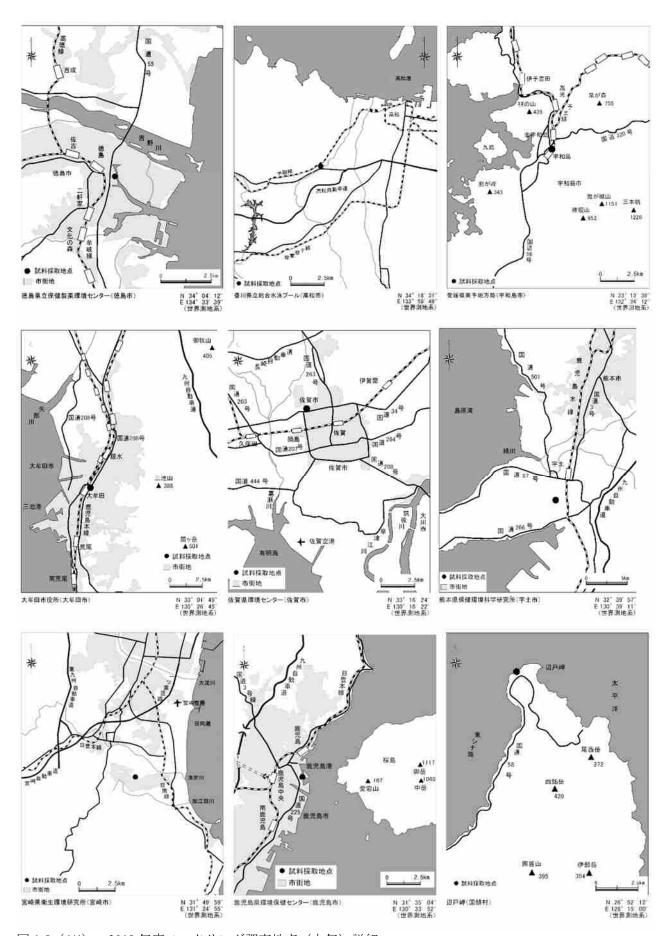


図 1-8 (4/4) 2019 年度モニタリング調査地点 (大気) 詳細

表2 調査対象生物種の特性等

	生物種	生物種の特性等	調査地点	調査目的	備考
	ムラサキイガイ	①熱帯を除き、世界的に分布する。	山田湾		残留レベル
貝	(Mytilus galloprovincialis)	②内湾岩礁、橋脚等に付着する。	横浜港	の残留実	の異なる 3
松二	, , ,		能登半島沿岸	態の把握	地点で調査
類					を実施
	アイナメ	①北海道から南日本、朝鮮半島、中国に分	日本海沖(岩内沖)	特定地域	
	(Hexagrammos otakii)	布する。	山田湾	の残留実	
		②5~50m の浅海域に生息する。	仙台湾(松島湾)	態の把握	
	ウサギアイナメ	①北海道、日高以東の寒流域に生息する。	釧路沖	特定地域	
	(Hexagrammos	②アイナメより大きく、生息海底にて、口		の残留実	
	lagocephalus)	に入る大きさの魚を食べる。		態の把握	
	マサバ	①全世界の亜熱帯・温帯に広く分布す	常磐沖	特定地域	
	(Scomber japonicus)	る。		の残留実	
		②春に北上・秋に南下という季節的な回遊		態の把握	
		を行う。			
	スズキ	①日本各地、朝鮮半島、中国の沿岸部に分	東京湾		残留レベル
	(Lateolabrax japonicus)	布する。	川崎港扇島沖		の異なる 9
		②成長の過程で、淡水域、汽水域に来遊す	大阪湾	態の把握	地点で調査
		ることがある。	姫路沖		を実施
魚		③化学物質濃縮性は高位といわれている。	中海		
view.			広島湾		
類			四万十川河口(四万		
			十市)		
			大分川河口(大分		
			市)		
	.12		薩摩半島西岸	4-11-4	
	ボラ	①ほぼ全世界の熱帯・温帯に広く分布す	名古屋港	特定地域	
	(Mugil cephalus)	る。 ②成長の過程で、淡水域、汽水域に来遊す		の残留実 態の把握	
		②成長の適性で、例が域、代が域に来避り ることがある。		態の推権	
	ミナミクロダイ	①南西諸島に分布する。	 中城湾	特定地域	
	(Acanthopagrus sivicolus)	②サンゴ礁海域及び河川水の流入する湾	1.74/1.4	の残留実	
	(12011110pusius stricotus)	内に生息する。		態の把握	
	ウグイ	①日本各地の淡水域に広く分布する。	琵琶湖安曇川(高島		
	(Tribolodon hakonensis)	②主として昆虫類を捕食する。	市)	の残留実	
	()		. ,	態の把握	
	カワウ(亜成鳥)※	①日本各地に広く分布する。	天神川(倉吉市)	高次捕食	
鳥	(Phalacrocorax carbo)	②魚類を主食とする。		動物の残	
松二	(③化学物質濃縮性は高位といわれている。		留実態の	
類				把握	

[※]諸外国の調査において、カワウの卵を対象とした調査実施している例があることから、本調査においても他の2地点で 卵を採取し、結果については参考値として扱い、参考資料に示した。

表3-1 2019年度モニタリング調査(生物 貝類)検体の概要

2017 2017 20 - 1		19.3	\	· • • · · · · · ·	A) D(I) -	170						
生物種(調査地点)	採取年月	検体 番号	性別	個体数	体長	₹ (cm)		体	重 (g)		水分 (%)	脂質分 (%)
山田湾	2019年	1	不明	100	6.4∼	11.1 (9.5)	49.7 ~	103.7 (73.3)	84	1.8
(ムラサキイガイ)	10 月	2	不明	176	$7.6 \sim$	8.6 (8.1)	$26.9 \sim$	65.1 (43.4)	84	1.7
		3	不明	310	$6.3 \sim$	7.6 (7.2)	$20.1 \sim$	45.5 (31.5)	84	1.7
横浜港	2019年	1	混合	121	2.8~	5.5 (3.8)	2.3~	14.9 (6.5)	87	0.4
(ムラサキイガイ)	11月	2	混合	90	$3.5 \sim$	5.00 (4.2)	$4.9 \sim$	12.1 (8.3)	87	0.4
		3	混合	131	$3.3 \sim$	4.9 (3.7)	$2.7 \sim$	12.9 (5.9)	91	0.4
能登半島沿岸	2019年	1	不明	42	11.8~	15.4 (13.2)	125∼	210 (154)	78	1.8
(ムラサキイガイ)	7月	2	不明	67	$10.8 \sim$	13.6 (11.7)	$106 \sim$	151 (126)	77	2.1
		3	不明	86	$8.0 \sim$	10.5 (9.3)	57.5 ∼	97.3 (73.8)	76	2.0

表 3-2 (1/2) 2019 年度モニタリング調査 (生物 魚類) 検体の概要

表 3-2 (1/2) 2019年	- 度モニ		/ グ 前	宜(生	物 魚類	ノ快件の	り概要					1
生物種(調査地点)	採取 年月	検体 番号	性別	個体数	体長	₹ (cm)		俎	z重 (g)		水分 (%)	脂質分 (%)
釧路沖	2019年	1	混合	5	40.5 ∼	45.5 (42.7)	950∼	1,280 (1,070)	79	0.79
(ウサギアイナメ)	11月	2	混合	4	$42.0 \sim$	44.0 (43.0)	980∼	1,260 (1,110)	79	0.99
		3	混合	4	$43.5 \sim$	48.5 (45.5)	1,080~	1,650 (1,273)	79	1.8
山田湾	2019年	1	不明	4	45.0 ~	48.5 (46.8)	1,286~	1,893 (1,496)	76	6.3
(アイナメ)	10月	2	不明	6	$35.5 \sim$	44.0 (39.9)	810∼	1,102 (959)	79	3.0
		3	不明	8	$33.0 \sim$	40.2 (37.2)	399 ∼	824 (701)	77	5.0
仙台湾(松島湾)	2019年	1	混合	15	14.3 ∼	23.4 (17.6)	53.0 ∼	229.52 (103)	74	0.67
(アイナメ)	12 月	2	混合	4	$24.2 \sim$	28.2 (26.7)	241 ∼	417 (371)	76	0.60
		3	混合	3	$31.3 \sim$	34.1 (33.0)	597 <i>∼</i>	782 (675)	76	0.05
常磐沖	2020年	1	混合	12	25~	30 (28)	214~	315 (270)	37	8.3
(マサバ)	2 月	2	混合	11	$28 \sim$	30 (30)	321 ∼	372 (353)	31	15
		3	混合	10	$30 \sim$	32 (31)	377 ∼	470 (413)	39	5.0
東京湾 (スズキ)	2019年	1	混合	3	$462 \sim$	529 (496)	1,370 ∼	2,050 (1,710)	77	1.8
	9月	2	混合	4	$433 \sim$	472 (455)	1,150~	1,370 (1,261)	78	1.2
		3	混合	4	410 ~	438 (425)	925∼	1,100 (1,029)	77	1.4
川崎港扇島沖	2019年	1	雄	14	$25.1 \sim$	38.3 (29.1)	$257 \sim$	473 (343)	52	0.9
(スズキ)	9月	2	雌	17	$25.1 \sim$	28.7 (27.1)	$254 \sim$	381 (321)	54	
		3	雌	17	28.9 ∼	32.9 (30.6)	325 ∼	540 (421)	49	0.7
名古屋港	2019年	1	不明	6	$289 \sim$	380 (315)	423 ~	967 (584)	-	-
(ボラ)	9月	2	不明	7	$282 \sim$	302 (291)		479 (432)	-	-
		3	不明	7	$273 \sim$	286 (279)	350∼	427 (384)	-	-
琵琶湖安曇川(高島市)	2019年	1	雌	24	$22.5 \sim$	29.5 (24.7)	142 ∼	349 (195)	76	
(ウグイ)	4 月	2	雄	26	$22.1 \sim$	27.8 (24.1)	121∼	291 (183)	75	3.3
		3	雌	25	22.4~	25.7 (23.6)	134∼	236 (166)	76	
大阪湾	2019年	1	不明	10	$43.0 \sim$	46.7 (45.1)	686∼	941 (835)	75	2.4
(スズキ)	10月	2	不明	10	$30.8 \sim$	46.3 (42.7)		984 (790)	76	
		3	不明	10	33.5 ∼	46.4 (43.2)	357 ∼	886 (774)	77	2.8
姫路沖	2019年	1	雄	1		59			1,400		84	0.42
(スズキ)	12月	2	雄	1		63			2,000		79	1.2
		3	雌	1		67			3,100		78	3.8
中海	2019年	1	混合	10	36.5 ∼	41.8 (38.8)	510 ∼	885 (646)	80	0.85
(スズキ)	10月	2	混合	10	33.9 ∼	40.2 (36.6)		601 (486)	79	0.82
L. d. M.		3	混合	12	30.1 ∼	34.4 (32.4)		438 (376)	78	0.83
広島湾	2019年	1	雄	3	42.5 ∼	46.5 (44.7)		1,717 (1,264)	74	
(スズキ)	11月	2	雄	4	40.0 ~	46.0 (41.6)		1,456 (1,075)	74	
		3	混合	4	41.0~	48.0 (44.3)		1,758 (1,366)	76	
四万十川河口(四万十	2019年	1	不明	16	13.0 ~	31.0 (20.8)		492 (212)	73	0.81
市)	9月~	2	不明	16	14.5 ~	29.0 (20.9)		440 (207)	72	0.73
(スズキ)	11月	3	不明	17	14.5 ~	28.0 (20.2)		415 (197)	73	0.94
大分川河口 (大分市)	2020年	1	混合	2	50.5 ∼	63.0 (56.8)		2,800 (2,060)	82	0.73
(スズキ)	1月	2	雄	2	53.0 ∼	58.5 (55.8)		1,840 (1,830)	81	0.64
		3	混合	2	52.5 ∼	61.5 (57.0)	1,640 ∼	2,360 (2,000)	79	1.1

表 3-2 (2/2) 2019 年度モニタリング調査 (生物 魚類) 検体の概要

生物種(調査地点)	採取 年月	検体 番号	性別	個体数	体長	₹ (cm)		体	重 (g)		水分 (%)	脂質分 (%)
薩摩半島西岸	2019年	1	混合	9	24.0 ~	34.5 (26.7)	247 ~	749 (359)	78	0.6
(スズキ)	11月	2	混合	10	$23.5 \sim$	33.3 (26.5)	$220 \sim$	734 (333)	78	0.6
		3	混合	9	$24.0 \sim$	33.0 (27.1)	$243 \sim$	771 (393)	80	1.4
中城湾	2020年	1	雌	3	31.5 ∼	35.0 (32.8)	1,017~	1,241 (1,131)	73	1.9
(ミナミクロダイ)	2月	2	雄	4	$27.5 \sim$	32.5 (29.8)	$683 \sim$	1,074 (820)	73	1.5
		3	雌	2	27.5 ~	28.5 (28.0)	$787 \sim$	815 (801)	70	1.3

表 3-3 2019 年度モニタリング調査(生物 鳥類)検体の概要

生物種(調査地点)	採取 年月	検体 番号	性別	個体数	体县	€ (cm)		体	z重 (g)		水分 (%)	脂質分 (%)
天神川 (倉吉市)	2019年	1	雄	2	90.0 ∼	97.5 (93.8)	1,560~	2,360 (1,960)	70	3.5
(カワウ)	5 月	2	雄	1		88.0			2,700		-	-
		3	雄	1		99.0			2,200		-	-

⁽注) カワウ (亜成鳥) は駆除した個体を検体とした。

4. モニタリング調査としての継続性に関する考察

2002年度より実施している「モニタリング調査」は、2001年度以前に実施していた「生物モニタリング」、「水質・底質モニタリング」、「指定化学物質等検討調査」、「非意図的生成化学物質汚染実態追跡調査」及び「指定化学物質等検討調査」等の調査を包括した新たな体系として調査を実施している。

ここでは2002年度以降に実施しているモニタリング調査について記述する。

(1)調査対象物質及び媒体の推移

参考として示した物質(群)を含めて本書に掲載しているモニタリング調査対象物質の年度別実施状況は表4のとおりである。

2002年度に、PCB類、HCB(ヘキサクロロベンゼン)、アルドリン、ディルドリン、エンドリン、DDT類、クロルデン類及びヘプタクロルについて全媒体で、 α -HCH及び β -HCHについて水質、底質及び生物でそれぞれ調査対象物質として調査を開始した。2003年度からは、cis-ヘプタクロルエポキシド、trans-ヘプタクロルエポキシド、trans-ヘプタクロルエポキシド、trans-ヘプタクロルエポキシド、trans-ヘプタクロルエポキシド、trans-ヘプタクロル エポキシド、トキサフェン類、マイレックス、 γ -HCH(別名:リンデン)及び δ -HCHについて全媒体で、 α -HCH 及び β -HCHについて大気でそれぞれ調査対象物質に追加し、2009年度までこれらの物質について全媒体での調査を継続した。

2004年度には、表3には示していないその他の調査対象物質としてHBB(全媒体)及びジオクチルスズ化合 物(水質、底質及び生物)について調査を実施した。2005年度には、表4には示していないその他の調査対象 物質としてBHT(底質、生物及び大気)並びにジベンゾチオフェン及び有機スズ化合物(水質、底質及び生 物)について調査を実施した。2006年度は、ポリ塩化ナフタレン類(生物)並びに表4には示していないその 他の調査対象物質として2,4,6-トリ-tert-ブチルフェノール(生物及び大気)、2-クロロ-4-エチルアミノ-6-イソ プロピルアミノ-1,3,5-トリアジン(別名:アトラジン)、2,2,2-トリクロロ-1,1-ビス(4-クロロフェニル)エタノ ール (別名:ケルセン又はジコホル)、フタル酸ジ-n-ブチル、ジオクチルスズ化合物及びりん酸トリ-n-ブチ ル(生物)について調査を実施した。2007年度には、ペンタクロロベンゼン(全媒体)及びヘキサクロロブ タ-1,3-ジエン(水質、底質及び生物)並びに表4には示していないその他の調査対象物質としてアクリルアミ ド、テトラブロモビスフェノールA及びヘキサブロモベンゼン(水質、底質及び生物)並びにトリクロロベ ンゼン類及びテトラクロロベンゼン類(大気)について調査を実施した。2008年度には、クロルデコン(水 質、底質及び生物)、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)(生物)及びポリ塩 化ナフタレン類(全媒体)並びに表4には示していないその他の物質としてジオクチルスズ化合物、ジベンゾ チオフェン、2,2,2-トリクロロ-1,1-ビス(4-クロロフェニル)エタノール(別名:ケルセン又はジコホル)、フ タル酸ジ-n-ブチル及びりん酸トリ-n-ブチル(水質、底質及び生物)、2-クロロ-4-エチルアミノ-6-イソプロピ ルアミノ-1,3,5-トリアジン(別名:アトラジン)(水質及び底質)、N,N'-ジフェニル-p-フェニレンジアミン 類(水質)、2,6-ジ-tert-ブチル-4-メチルフェノール(別名:BHT)及び2,4,6-トリ-tert-ブチルフェノール(全 媒体)について調査を実施した。2009年度には、ヘキサブロモビフェニル類、ペルフルオロオクタンスルホ ン酸(PFOS)及びペルフルオロオクタン酸(PFOA)(水質、底質及び生物)、ポリブロモジフェニルエー テル類(臭素数が4から10までのもの)(水質、底質及び大気)並びにペンタクロロベンゼン(大気)並びに 表4には示していないその他の物質としてテトラクロロベンゼン類(大気)について調査を実施した。

このような中、2009年5月にCOP4が開催され、HCH類、クロルデコン、ヘキサブロモビフェニル類、ポリ

ブロモジフェニルエーテル類、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼンが新規にPOPs条約対象物質として採択された。これを受けて調査頻度の見直しを行い、それらPOPs条約対象物質については毎年度の調査とすることとした一方で、2002年度又は2003年度から毎年度の調査が行われていた従前のPOPs条約対象物質であるPCB類、HCB(ヘキサクロロベンゼン)、アルドリン、ディルドリン、エンドリン、DDT類、クロルデン類、ヘプタクロル類、トキサフェン類及びマイレックスのうち、アルドリン、ディルドリン、エンドリン、DDT類、トキサフェン類及びマイレックスについては、数年おきの調査とすることとした。

2010年度は、POPs条約の発効当初から指定される物質のうちPCB類、HCB(ヘキサクロロベンゼン)、DDT類、クロルデン類及びヘプタクロル類の5物質(群)並びに新規にPOPs条約対象物質として採択されたHCH類、クロルデコン、ヘキサブロモビフェニル類、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼンの6物質(群)について全媒体の調査を実施したほか、ペルフルオロオクタン酸(PFOA)(全媒体)並びに表4には示していないその他の物質としてトリブチルスズ化合物、トリフェニルスズ化合物(水質、底質及び生物)及びN,N'-ジフェニル-p-フェニレンジアミン類(大気)について調査を実施した。

2011年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、ディルドリン、エンドリン、クロルデン類、ヘプタクロル類、マイレックスの7物質(群)、HCH類、クロルデコン、ヘキサブロモビフェニル類、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼン並びに2011年4月に開催されたCOP5で新規にPOPs条約対象物質として採択されたエンドスルファン類について全媒体の調査を実施したほか、ペルフルオロオクタン酸(PFOA)(全媒体)及び1,2,5,6,9,10-ヘキサブロモシクロドデカン類(水質、底質及び生物)並びに表4には示していないその他の物質としてN,N-ジメチルホルムアミド(水質、底質及び大気)について調査を実施した。

2012年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、クロルデン類、HCH類、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)、ペンタクロロベンゼン及びエンドスルファン類について全媒体で、ヘプタクロル類について生物及び大気で、1,2,5,6,9,10-ヘキサブロモシクロドデカン類について底質、生物及び大気で調査を実施したほか、ペルフルオロオクタン酸(PFOA)(全媒体)及び表3には示していないその他の物質として2-(2H-1,2,3-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ブチルフェノール(水質、底質及び生物)について調査を実施した。

2013年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、クロルデン類、HCH類及 びペンタクロロベンゼンについて全媒体で、DDT類及びヘプタクロル類について生物及び大気で、ペルフルオロオクタンスルホン酸 (PFOS) について大気で調査を実施したほか、ペルフルオロオクタン酸 (PFOA) (大気)及びヘキサクロロブタ-1,3-ジエン (水質、底質及び生物)について調査を実施した。

2014年度は、従前のPOPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、HCH類、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼンについて全媒体で、アルドリン及びエンドスルファン類について生物及び大気で、ディルドリン、エンドリンについて水質、生物及び大気で、DDT類及びヘプタクロル類について水質及び底質で、COP6で新規にPOPs条約対象物質として採択された1,2,5,6,9,10-ヘキサブロモシクロドデカン類について水質、生物及び大気で調査を実施したほか、ペルフルオロオクタン酸(PFOA)(全媒体)及びポリ塩化ナフ

タレン類 (大気) について調査を実施した。

2015年度は、従前のPOPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、HCH類、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼンについて全媒体で、DDT類について大気で、ヘプタクロル類及びエンドスルファン類について生物及び大気で、トキサフェン類について生物で、ヘキサブロモビフェニル類及び1,2,5,6,9,10-ヘキサブロモシクロドデカン類について底質、生物及び大気で、COP7で新規にPOPs条約対象物質として採択されたポリ塩化ナフタレン類について生物で、ヘキサクロロブタ-1,3-ジエンについて大気で、ペンタクロロフェノールについて水質で調査を実施したほか、POPs条約対象物質とする必要性について検討されているペルフルオロオクタン酸(PFOA)について全媒体で調査を実施した。

2016年度は、従前のPOPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、HCH類、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)及びペルフルオロオクタンスルホン酸(PFOS)について全媒体で、クロルデン類、ヘプタクロル類及びペンタクロロフェノール並びにその塩及びエステル類について生物及び大気で、ペンタクロロベンゼン、1,2,5,6,9,10-ヘキサブロモシクロドデカン類(α-1,2,5,6,9,10-ヘキサブロモシクロドデカン)及びポリ塩化ナフタレン類について底質、生物及び大気で、エンドスルファン類及びヘキサクロドデカン)及びポリ塩化ナフタレン類について底質、生物及び大気で、エンドスルファン類及びヘキサクロロブタ-1,3-ジエンについて大気で、COP8で新規にPOPs条約対象物質として採択された短鎖塩素化パラフィン類について生物及び大気で調査を実施したほか、POPs条約対象物質とする必要性について検討されているペルフルオロオクタン酸(PFOA)について全媒体で、ジコホルについて大気で調査を実施した。

2017年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、HCH類、ポリブロモジフ ェニルエーテル類(臭素数が4から10までのもの)、ペンタクロロベンゼン、ペンタクロロフェノール並びに その塩及びエステル類及び短鎖塩素化パラフィン類について全媒体で、クロルデン類及びヘプタクロル類に ついて水質及び底質で、ペルフルオロオクタンスルホン酸(PFOS)及び1.2.5,6.9.10-ヘキサブロモシクロドデ カン類 $(\alpha-1,2,5,6,9,10$ -ヘキサブロモシクロドデカン、 $\beta-1,2,5,6,9,10$ -ヘキサブロモシクロドデカン及び v-1.2.5,6.9,10-ヘキサブロモシクロドデカン) について生物及び大気で、ポリ塩化ナフタレン類について底質、 生物及び大気で、ヘキサクロロブタ-1,3-ジエンについて大気で調査を実施したほか、POPs条約対象物質とす る必要性について検討されているペルフルオロオクタン酸(PFOA)について生物及び大気で調査を実施した。 2018年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、トキサフェン類、マイレ ックス、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペンタクロロベンゼン、ポリ塩 化ナフタレン類、ペンタクロロフェノールとその塩及びエステル類並びに短鎖塩素化パラフィン類について 全媒体で、アルドリン、ディルドリン及びエンドリンについて底質で、DDT類について生物及び大気で、ペ ルフルオロオクタンスルホン酸 (PFOS)、ペルフルオロオクタン酸 (PFOA)及びエンドスルファンについ て水質及び底質で、1,2,5,6,9,10-ヘキサブロモシクロドデカン類 $(\alpha$ -1,2,5,6,9,10-ヘキサブロモシクロドデカン、 *B*-1,2,5,6,9,10-ヘキサブロモシクロドデカン及びy-1,2,5,6,9,10-ヘキサブロモシクロドデカン)及びジコホルに ついて生物で、ヘキサクロロブタ-1,3-ジエンについて大気で調査を実施したほか、POPs条約対象物質とする 必要性について検討されているペルフルオロヘキサンスルホン酸 (PFHxS) について水質及び底質で調査を 実施した。

2019年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、HCH類、ポリブロモジフ

ェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)、ペルフルオロオクタン酸(PFOA)、ポリ塩化ナフタレン類、ペンタクロロベンゼン、ペンタクロロフェノールとその塩及びエステル類、短鎖塩素化パラフィン類並びにジコホルについて全媒体で、1,2,5,6,9,10-ヘキサブロモシクロドデカン類(α -1,2,5,6,9,10-ヘキサブロモシクロドデカン、 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び γ -1,2,5,6,9,10-ヘキサブロモシクロドデカン)について生物及び大気で、ヘキサクロロブタ-1,3-ジエンについて大気で調査を実施したほか、POPRC15においてPOPs条約対象物質への追加を条約締約国会議に勧告することが決定されたペルフルオロヘキサンスルホン酸(PFHxS)について水質及び底質で調査を実施した。

なお、HCH類の大気については、2003年度から2008年度に用いた大気試料採取装置の一部からHCH類が検 出され、HCH類の測定に影響を及ぼすことが判明したが、個別のデータについて影響の有無を遡って判断す ることが困難であるため、この期間の全てのデータについて欠測扱いとすることとした。

(2)調査地点の推移

モニタリング調査の年度別調査地点の状況は表5-1から表5-4のとおりである。

1) 水質

2002年度及び2003年度は38地点、2004年度は40地点、2005年度は47地点、2006年度から2008年度は48地点、2009年度から2011年度は49地点、2012年度から2016年度は48地点、2017年度及び2018年度は47地点においての調査であった。

2019年度は、利根川利根大堰上流(千代田町)が追加され、48地点において調査を実施した。

2) 底質

2002年度は63地点、2003年度は62地点、2004年度及び17年度は63地点、2006年度から2011年度は64地点、2012年度から2014年度は63地点、2015年度から2017年度は62地点、2018年度は61地点においての調査であった。

2019年度は、2018年度と同一の61地点において調査を実施した。

3) 生物

2002年度は23地点(うち1地点は2生物種を調査)、2003年度は三浦半島のムラサキイガイ及び萩市見島のムラサキインコガイの2地点が外れ21地点、2004年度には高松港のムラサキイガイが新規追加され、洞海湾のムラサキイガイがムラサキインコガイに変更され22地点、2005年度は釧路沖のシロサケ及び姫路沖のスズキが新規追加され、高松港のムラサキイガイがイガイに、洞海湾のムラサキインコガイがムラサキイガイがムラサキイガイがイガイに、洞海湾のムラサキインコガイがムラサキイガイに変更され23地点(うち2地点は2生物種を調査)、2006年度及び2007年度も2005年度と同一の23地点、2008年度は大分川河口(大分市)のスズキが新規追加され24地点(うち2地点は2生物種を調査)、2009年度は、名古屋港のボラが新規追加され、洞海湾のムラサキイガイがムラサキインコガイに変更され25地点(うち2地点は2生物種を調査)、2010年度は、能登半島沿岸のムラサキイガイが外れ、横浜港のムラサキイガイがミドリイガイに、洞海湾のムラサキインコガイがムラサキイガイに変更され24地点(うち2地点は2生物種を調査)においての調査であった。2011年度は、能登半島沿岸のムラサキイガイが再追加され、蕪島のウミネコ、山田湾のムラサキイガイ及びアイナメ並びに鳴門のイガイが外れ、サンマが常磐沖から三陸沖に変更され、仙台湾(松島湾)のスズキがアイナメに、横浜港のミドリイガイがムラサキイガイに、高松港のムラサキイガイがボラに変更され22地点(うち1地点は2生物種を調査)、2012年度は、蕪島のウ

ミネコ並びに山田湾のムラサキイガイ及びアイナメが再追加され、サンマが三陸沖から常磐沖に再変更され24地点(うち2地点は2生物種を調査)において調査を実施した。2013年度は、蕪島のウミネコ並びに盛岡市郊外のムクドリの調査が廃止され、琵琶湖北湖竹生島及び天神川(倉吉市)のカワウが追加され、24地点(うち2地点は2生物種を調査)において調査を実施した。2014年度は、サンマが常磐沖から三陸沖に再変更され、島根半島沿岸七類湾並びに洞海湾のムラサキイガイの調査が廃止され、22地点(うち2地点は2生物種を調査)において調査を実施した。2015年度は、サンマが三陸沖から小名浜沖に再変更され、琵琶湖北湖竹生島沖のカワウの調査が外れ、21地点(うち2地点は2生物種を調査)において調査を実施した。2016年度は、サンマが小名浜沖から常磐沖に再変更され、琵琶湖北湖竹生島沖のカワウが再追加され、22地点(うち2地点は2生物種を調査)において調査を実施した。2017年度は、2016年度と同一の22地点(うち2地点は2生物種を調査)において調査を実施した。2018年度は、日本海沖のアイナメが外れ、21地点(うち2地点は2生物種を調査)において調査を実施した。2018年度は、日本海沖のアイナメが外れ、21地点(うち2地点は2生物種を調査)において調査を実施した。2018年度は、日本海沖のアイナメが外れ、21地点(うち2地点は2生物種を調査)において調査を実施した。

2019年度は、常磐沖のサンマがマサバに変更され、釧路沖のシロサケ、高松港のボラ及び琵琶湖竹生島のカワウが外れ、19地点(うち1地点は2生物種を調査)において調査を実施した。

なお、参考として笛吹川下曽根橋(甲府市)のカワウの卵についても2013年度から2017年度に調査を実施しており、2017年度には昆陽池(伊丹市)が追加され、2地点においてカワウの卵の調査を実施した。2018年度及び2019年度も、2017年度と同一の2地点においてカワウの卵の調査を実施した。

4) 大気

2002年度は34地点、2003年度は小笠原父島が追加され、釧路市立春採中学校(釧路市)が北海道渡島支 庁庁舎(函館市)に変更され35地点、2004年度は兵庫県環境研究センター(神戸市)及び鹿児島県環境保 健センター(鹿児島市)が追加され、北海道渡島支庁庁舎(函館市)が上川保健福祉事務所(名寄市)に 変更され37地点、2005年度は上川保健福祉事務所(名寄市)が釧路市立春採中学校(釧路市)に変更され 37地点、2006年度には釧路市立春採中学校(釧路市)が北海道渡島支庁庁舎(函館市)に変更され37地点、 2007年度は北海道渡島支庁庁舎(函館市)が上川保健福祉事務所(名寄市)、茨城県環境監視センター(水 戸市)が茨城県霞ケ浦環境科学センター(土浦市)に変更され、天理一般環境大気測定局(天理市)が廃 止され36地点、2008年度は上川保健福祉事務所(名寄市)が北海道釧路支庁(釧路市)に変更され、天理 一般環境大気測定局(天理市)が再度追加され37地点においての調査であった。2009年度は北海道釧路支 庁(釧路市)が北海道渡島支庁庁舎(函館市)に変更され37地点においての調査であった。2010年度は、 北海道渡島支庁庁舎(函館市)が北海道上川合同庁舎(旭川市)に、富士吉田合同庁舎(富士吉田市)が 山梨県衛生環境研究所(甲府市)に変更され37地点においての調査であった。2011年度は、北海道上川総 合振興局(旭川市)が北海道釧路総合振興局(釧路市)に、萩市役所見島支所(萩市)が萩市見島ふれあ い交流センター(萩市)に、徳島県保健環境センター(徳島市)が徳島県立保健製薬環境センター(徳島 市)に変更され、37地点において調査が実施された。2012年度は、北海道釧路総合振興局(釧路市)が北 海道渡島総合振興局(函館市)に、宮城県保健環境センター(仙台市)が宮城県消防学校(仙台市)に、 葺合一般環境大気測定局(神戸市)が神戸市役所(神戸市)に変更され、京都府立城陽高等学校(城陽市) が外れ36地点において調査が実施された。2013年度は、北海道渡島総合振興局(函館市)が北海道上川総 合振興局(旭川市)に変更され36地点において調査が実施された。2014年度は、北海道上川総合振興局(旭

川市)が北海道釧路総合振興局(釧路市)に、宮城県消防学校(仙台市)が宮城県仙台土木事務所(仙台市)に変更され36地点において調査が実施された。2015年度は、北海道釧路総合振興局(釧路市)が北海道渡島総合振興局(函館市)に、宮城県仙台土木事務所(仙台市)が宮城県消防学校(仙台市)に、香川県高松合同庁舎(高松市)が香川県立総合水泳プール(高松市)に変更され、横浜市環境科学研究所(横浜市)が移転に伴い横浜市磯子区から横浜市神奈川区に位置が変更され、群馬県衛生環境研究所(前橋市)が廃止され、35地点において調査が実施された。2016年度は、北海道渡島総合振興局(函館市)が北海道上川総合振興局(旭川市)に、網張スキー場(雫石市)が巣子一般環境大気測定局(滝沢市)に、宮城県消防学校(仙台市)が宮城県保健環境センター(仙台市)に、地方独立行政法人大阪府立環境農林水産総合研究所(大阪市)が大阪合同庁舎2号館別館(大阪市)に、萩市見島ふれあい交流センター(萩市)が萩健康福祉センター(萩市)に変更され、山形県環境科学研究センター(村山市)が追加され、京都府立城陽高等学校(城陽市)が再追加され、37地点において調査が実施された。2017年度は、北海道上川総合振興局(旭川市)が北海道釧路総合振興局(釧路市)に、萩健康福祉センター(萩市)が山口県立萩美術館・浦上記念館(萩市)に変更され、37地点において調査が実施された。2018年度は、北海道釧路総合振興局(釧路市)が北海道渡島総合振興局(函館市)に、山口県立萩美術館・浦上記念館(萩市)が萩健康福祉センター(萩市)が京健康福祉・センター(萩市)が京健康福祉・大公名の第二、100円の第

2019年度は、北海道渡島総合振興局(函館市)が北海道上川総合振興局(旭川市)に再変更され、神戸市役所(神戸市)が神戸市環境保健研究所(神戸市)に変更され、京都府立城陽高等学校(城陽市)が廃止され、36地点において調査が実施された。

(3) 定量(検出)下限値の推移

モニタリング調査における検出下限値を表6-1から表6-4に、定量下限値を表7-1から表7-4に示す。2002年度の水質及び底質は装置検出下限値(IDL)を、2003年度以降の水質及び底質並びに2002年度以降の生物及び大気は分析方法の検出下限値(MDL)をそれぞれ検出下限値として扱っている。

表6-1から表6-4にあるとおり、検出下限値については年度によって変動はあるものの、分析機関が媒体ごとに一機関になっていることに加え、高感度のGC/HRMS等を用いた分析を実施しており、継続的に高感度かつほぼ同等の検出下限値及び定量下限値で測定がされている。

モニタリング調査では測定値の推移を定量的に評価できることが重要であるため、2002年度調査結果から は原則として次のとおり定量下限値を示すことで数値の信頼性を確保することとした。

- ・検出下限値の約3倍を定量下限値とする。
- ・検出頻度(検出数/検体数等)は検出下限値により判定する。
- ・幾何平均値の算出においては、検出下限値以上の測定値はそのまま用い、検出下限値未満の測定値は検 出下限値の1/2を用いる。
- ・幾何平均値、中央値等の表記に当たっては、その数値が検出下限値以上定量下限値未満の場合において はトレース値とし、検出下限値未満であった場合においては不検出とする。

(4) まとめ

(1)~(3)の検討結果より、調査結果の評価を行うに当たっては以下の点を考慮する必要がある。

PCB類及びHCBについては全媒体で2002年度から2019年度調査まで継続的に実施している。その他の物質についても数年おきに実施し、現在まで継続的な調査を行っている。

また、調査地点のうち水質、底質及び大気並びに生物の貝類及び魚類に係る地点については、一部の地 点では地点が入れ替わってはいるものの、概ね継続的に調査を実施している。他方、鳥類に係る調査地点 については、2012年度まで鳥類でウミネコ及びムクドリを調査対象生物としていたものをカワウに入れ替 えている。これに伴い、従来調査を実施していた地点を変更して調査を実施しており2012年度までとの継 続性がない。

このため、鳥類について化学物質の残留状況を経年的に評価する場合には、2013年度以降とそれ以前と に継続性がないことに留意する必要がある。

PCB類及びHCBの大気では、2007年度の温暖期及び寒冷期並びに2008年度の温暖期に用いた大気試料採取装置の一部からPCB類及びHCHが検出され、PCB類及びHCHの測定に影響を及ぼすことが判明したため、それぞれ3分の1程度の地点で欠測としており、大気についてこれらの化学物質の残留状況を経年的に評価する場合には、この点に留意する必要がある。

定量(検出)下限値については、水質、底質、生物及び大気ともに2002年度から2019年度調査までの値はほぼ同等であり、高感度で測定が行われている。

以上より、モニタリング調査の対象物質については一部において留意が必要な点があるものの、概ね経 年的な評価が可能であると判断される。

表4 モニタリング調査の年度別実施状況

物質 調査	調査	年度																	
神 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
F4.3	貝類																		
[1]	魚類																		
	鳥類																		
	大気																		

物質 調査	16.3	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
F01	貝類																		
[2]	魚類																		
	鳥類																		
	大気																		

物質 調査	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[2]	貝類																		
[3]	魚類																		
	鳥類																		
	大気																		

物質 調査	調査	年度																	
新 至	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
F 43	貝類																		
[4]	魚類																		
	鳥類																		
	大気												•						

物質調査番号	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[5]	貝類																		
[5]	魚類																		
	鳥類																		
	大気																		

物質 調査	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
[6 1]	水質																		
[6-1] [6-2]	底質																		
[6-3]	貝類																		
[6-4]	魚類																		
[6-5]	鳥類																		
[6-6]	大気																		

(注) ■:モニタリング調査において実施したことを意味する(以下同じ。)。

[1] PCB 類、[2] HCB、[3] アルドリン、[4] ディルドリン、[5] エンドリン、[6-1] p,p'-DDT、[6-2] p,p'-DDE、[6-3] p,p'-DDD、[6-4] o,p'-DDT、[6-5] o,p'-DDE、[6-6] o,p'-DDD

物質 調査 番号	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
[7-1]	底質																		
[7-2]	貝類																		
[7-3] [7-4]	魚類																		
[7-4]	鳥類																		
	大気																		

物質 調査	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
FO 13	貝類																		
[8-1]	魚類																		
	鳥類																		
	大気																		
	水質																		
	底質																		
[8-2]	貝類																		
[8-3]	魚類																		
	鳥類																		
	大気																		

物質 調査 番号	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[9-1]	貝類																		
[9-2] [9-3]	魚類																		
[7-3]	鳥類																		
	大気																		

物質 調査	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
F1.01	貝類																		
[10]	魚類																		
	鳥類																		
	大気																		

物質	調査	年度																	
調査 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[11-1]	貝類																		
[11-2]	魚類																		
	鳥類																		
	大気																		
	水質																		
	底質																		
[11-3]	貝類																		
[11-4]	魚類																		
	鳥類																		
	大気																		

(注) □: HCH 類の大気については、2003 年度から 2008 年度に用いた大気試料採取装置の一部から HCH 類が検出され、HCH 類の測定に影響を及ぼすことが判明したが、個別のデータについて影響の有無を遡って判断することが困難であるため、この期間の全てのデータについて欠測扱いとすることとした。

[7-1] cis-クロルデン(参考)、[7-2] trans-クロルデン(参考)、[7-3] オキシクロルデン(参考)、[7-4] cis-ノナクロル(参考)、[7-5] trans-ノナクロル(参考)、[8-1]へプタクロル(参考)、[8-2] cis-ヘプタクロルエポキシド(参考)、[8-3] trans-ヘプタクロルエポキシド(参考)、[9-1] Parlar-26、[9-2] Parlar-50、[9-3] Parlar-62、[10] マイレックス、[11-1] α -HCH、[11-2] β -HCH、[11-3] γ -HCH(別名:リンデン)、[11-4] δ -HCH

物質 調査 番号	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[12]	貝類																		
[12]	魚類																		
	鳥類																		
	大気		Δ																

物質 調査 番号	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質		Δ																
	底質		Δ																
F1 23	貝類																		
[13]	魚類																		
	鳥類																		
	大気			Δ															

新号 2002 2003 2004 2009 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018 2019	物質 調査	調査	年度																	
上	新 至	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
14-1 具類		水質				Δ														
14-4 無類		底質																		
14-4 魚類	Г14-11	貝類																		
大気		魚類																		
大気																				
A					Δ															
正数						Δ														
14-2					Δ															
[14-2] 無類																				
鳥類 大気 △ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	[14-2]																			
大気																				
本質					Δ															
E質						Δ														
14-3 月類				Δ					<u></u>											
[14-5] 無類																				
	[14-3]								ļ			ļ	å							
大気																				
水質					Δ															
E				Δ																
[14-5] 具類 □ <																				
[14-5] 無類 △ ■ <																				
鳥類 大気 日本 日本	[14-5]			Δ																
大気 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●																				
水質 △ ■<																				
底質 貝類 魚類 日本 鳥類 日本 大気 日本 本質 本 自類 日本 日本						Δ														
[14-6] 貝類 ■ <																				
[14-6] 無類 ■ <																				
鳥類 大気 日	[14-6]																			
大気																				
水質 △ △ ■<																				
底質 △ □<			Δ			Δ														
[14-7] 貝類 日 <				Δ																
L14-7] 無類 A A B <												<u> </u>								
鳥類	[14-7]			\wedge									·							
													-							
		大気																		

(注) △:継続的調査以外の調査において実施したことを意味する(以下同じ。)。

[12] クロルデコン(参考)、[13] ヘキサブロモビフェニル類(参考)、[14-1] テトラブロモジフェニルエーテル類、[14-2] ペンタブロモジフェニルエーテル類、[14-3] ヘキサブロモジフェニルエーテル類、[14-4] ヘプタブロモジフェニルエーテル類、[14-5] オクタブロモジフェニルエーテル類、[14-6] ノナブロモジフェニルエーテル類、[14-7] デカブロモジフェニルエーテル

物質 調査 番号	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質	Δ			Δ														
	底質		Δ		Δ														
[15]	貝類				Δ														
[15]	魚類		Δ		Δ														
	鳥類																		
	大気			Δ															

物質 調査	調査	年度																	
新 至 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質	Δ			Δ														
	底質		Δ		Δ														
[1.6]	貝類				Δ														
[16]	魚類		Δ		Δ														
	鳥類																		
	大気			Δ															

物質 調査 番号	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
F1.77	貝類																		
[17]	魚類																		
	鳥類																		
	大気																		

物質 調査 番号	197.3	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[18-1]	貝類																		
[18-2]	魚類																		
	鳥類																		
	大気																		

物質	調査	年度																	
調査 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質		Δ																
	底質		Δ																
[19-1]	貝類																		
[19-2] [19-3]	魚類			Δ	•														
[19-3]	鳥類																		
	大気																		
	水質		Δ																
	底質		Δ																
[19-4]	貝類																		
[19-5]	魚類			Δ															
	鳥類																		
	大気																		

(注) 2003 年度及び 2004 年度は総 1,2,5,6,9,10-ヘキサブロモシクロドデカン類

[15] ペルフルオロオクタンスルホン酸(PFOS)、[16] ペルフルオロオクタン酸(PFOA)、[17] ペンタクロロベンゼン、[18-1] α -エンドスルファン、[18-2] β -エンドスルファン、[19-1] α -1,2,5,6,9,10-ヘキサブロモシクロドデカン、[19-2] β -1,2,5,6,9,10-ヘキサブロモシクロドデカン、[19-3] γ -1,2,5,6,9,10-ヘキサブロモシクロドデカン、[19-4] δ -1,2,5,6,9,10-ヘキサブロモシクロドデカン(参考)、[19-5] ε -1,2,5,6,9,10-ヘキサブロモシクロドデカン(参考)

物質 調査 番号	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[20]	貝類																		
[20]	魚類	Δ																	
	鳥類																		
	大気	Δ																	

物質 調査 番号	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
[21]	底質																		
[21]	貝類																		
	魚類																		
	鳥類																		
	大気																		

物質	調査	年度																	
調査番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質				Δ														
	底質																		
F22 11	貝類																		
[22-1]	魚類																		
	鳥類																		
	大気																		
	水質																		
	底質																		
122 21	貝類																		
[22-2]	魚類																		
	鳥類																		
	大気																		

調査	年度																	
媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
水質			Δ	Δ														
底質			Δ	Δ														
貝類				Δ														
魚類			Δ	Δ														
鳥類																		
大気																		
	媒 水質 貝類 類 鳥類	媒体 2002 水質 底質 貝類 魚類 鳥類	媒体 2002 2003 水質 底質 貝類 魚類	媒体 2002 2003 2004 水質	媒体 2002 2003 2004 2005 水質	媒体 2002 2003 2004 2005 2006 水質	媒体 2002 2003 2004 2005 2006 2007 水質	媒体 2002 2003 2004 2005 2006 2007 2008 水質	媒体 2002 2003 2004 2005 2006 2007 2008 2009 水質	媒体 2002 2003 2004 2005 2006 2007 2008 2009 2010 水質	媒体 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 水質	媒体 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 水質	媒体 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 水質	媒体 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 水質	媒体 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 水質	媒体 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 水質	媒体 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 水質	媒体 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 水質

(注) 2005年度の水質及び底質では[23-1] 塩素化デカン類は塩素数が5のもの、[23-2] 塩素化ウンデカン類、[23-3] 塩素化ドデカン類及び[23-1] 塩素化トリデカン類は塩素数が6のものを、貝類及び魚類では[23-1] 塩素化デカン類は塩素数が4から6までのもの、[23-2] 塩素化ウンデカン類、[23-3] 塩素化ドデカン類及び[23-4] 塩素化トリデカン類は塩素数が5から7までのものをそれぞれ対象とした。2016年度以降の水質、底質並びに貝類、魚類及び鳥類では、塩素数が5から9までのものを対象とした

大気では、2016年度の[23-1] 塩素化デカン類は塩素数が4から6までのもの、[23-2] 塩素化ウンデカン類、[23-3] 塩素化ドデカン類 及び[23-4] 塩素化トリデカン類は塩素数が4から7までのものを対象とし、2017年度以降はいずれの物質についても塩素数が4から7までのものを対象とした。

物質 調査 番号	調査	年度																	
新 至 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		-
	底質			Δ															
F2.41	貝類																		
[24]	魚類																		
	鳥類																		
	大気																		

[20] ポリ塩化ナフタレン類、[21] ヘキサクロロブタ-1,3-ジエン、[22-1] ペンタクロロフェノール、[22-2] ペンタクロロアニソール、[23-1] 塩素化デカン類、[23-2] 塩素化ウンデカン類、[23-3] 塩素化ドデカン類、[23-4] 塩素化トリデカン類、[24] ジコホル

物質 調査 番号	調査	年度																	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
50.51	貝類																		
[25]	魚類																		
	鳥類																		
	大気																		

[25] ペルフルオロヘキサンスルホン酸 (PFHxS)

表5-1 モニタリング調査の年度別調査地点の一覧(水質)

	に一クソンク 明直の十尺 川 明直		ノー見	(小)貝	.)									
地方 公共団体	調査地点	年度 '02	·03 ·04	60 '05'	6 '07 '	08 '09	'10 '	11 '12	'13	'14 '	15 '16	-17	'18 '1	_ 分 9 析
北海道	十勝川すずらん大橋(帯広市)	02	03 04	03 0		08 09	10	11 12	13		13 10	17	10 1	9 101
701年20	石狩川河口石狩河口橋(石狩市)													
青森県	十三湖													Ť
岩手県	豊沢川豊沢橋 (花巻市)													■ ♦
宮城県	仙台湾(松島湾)													-
秋田県	八郎湖													
山形県	最上川河口(酒田市)													
福島県	小名浜港													
茨城県	利根川河口かもめ大橋(神栖市)													_
	利根川河口利根川大橋(波崎町)													
栃木県	田川給分地区頭首工(宇都宮市)													1
群馬県	利根川利根大堰上流 (千代田町)													1
埼玉県	荒川秋ヶ瀬取水堰(志木市)													1
千葉市	花見川河口 (千葉市)													
東京都	荒川河口 (江東区)													1
	隅田川河口 (港区)													
横浜市	横浜港													
川崎市	川崎港京浜運河				I 🔳 🛚 I									
新潟県	信濃川下流 (新潟市)				I I I									1
富山県	神通川河口萩浦橋(富山市)													
石川県	犀川河口 (金沢市)				I 🔳 🛮 I									
福井県	笙の川三島橋(敦賀市)				I 🔳 I									1
長野県	諏訪湖湖心													
静岡県	天竜川掛塚橋 (磐田市)													
愛知県	名古屋港													
三重県	四日市港													
滋賀県	琵琶湖唐崎沖中央								•			•		
京都府	宮津港								•			•		
京都市	桂川宮前橋(京都市)													
大阪府_	大和川河口 (堺市)								•					
大阪市	大阪港													
兵庫県_	姫路沖								•			•		
神戸市	神戸港中央													
和歌山県	紀の川河口紀の川大橋(和歌山市)													
岡山県	水島沖													
広島県	呉港				1 = 1									
	広島湾													
山口県	徳山湾				+=+									
	宇部沖													
/士 白 旧	萩沖													
徳島県	吉野川河口 (徳島市)													
香川県	高松港									_				+ -
高知県	四万十川河口(四万十市)													
北九州市	洞海湾													
佐賀県	伊万里湾				+=+									+ ·
長崎県	大村湾 (京上本)													
熊本県	緑川平木橋(宇土市)													Ť
宮崎県	大淀川河口(宮崎市)													Ť
鹿児島県	天降川 (霧島市) 五反田川五反田橋 (いちき串木野市)						t <u> </u>							_
 沖縄県	五尺田川五尺田橋(いらざ年不野巾) 那覇港				+=+					_				
冲縄県 (治 1) -			<i>→</i>											

⁽注1) ■:モニタリング調査において実施したことを意味する。

⁽注 2) 「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試料採取を実施した地方公共団体の名称を示した。

⁽注3) 「分析」の列に◇を付した調査地点は、統計学的な手法を用いた経年分析を実施した地点であることを意味する。また、分析 対象とする地点とは、2018 年度に調査が実施されている地点であり、かつ、それぞれの調査対象物質の調査を開始してから 2018 年度までの期間内において 2 か年以上測定されていない地点を除いたものを分析対象地点とした。

表5-2 モニタリング調査の年度別調査地点の一覧(底質)

表5-2	モニタリング調査の年度別調査は		覧	(压	(質)															
地方 公共団体	調査地点	年度 '02	 ' 04	'05	'06	'07	'08	' 09	'10	'11	112	'13	1'14	1 1	5 '16	5 '1	17 '	'18 '	 19	分 析
北海道	天塩川恩根内大橋(美深町) 天塩川恩根内大橋上流カヌー乗り場 (美深町)																	<u>.</u>		
	十勝川すずらん大橋(帯広市)																1		T	
	石狩川河口石狩河口橋(石狩市)																		- 1	\Diamond
	苫小牧港																			\Diamond
青森県	十三湖																		Ī	
岩手県	豊沢川豊沢橋 (花巻市)																			\Diamond
宮城県	仙台湾(松島湾)																			\Diamond
仙台市	広瀬川広瀬大橋 (仙台市)														▮■					\Diamond
秋田県	八郎湖																			\Diamond
山形県	最上川河口(酒田市)																			\Diamond
福島県	小名浜港													•			•			\Diamond
茨城県	利根川河口かもめ大橋(神栖市)			•		•													•	\Diamond
	利根川河口利根川大橋(波崎町)		 _		_		_	_		<u> </u>	<u> </u>	<u> </u>	<u> </u>				_		_ ↓	
栃木県	田川給分地区頭首工(宇都宮市)		-																	\Diamond
千葉県 千葉市	市原・姉崎海岸	_	-					-	-	=									┇┤	\Diamond
東京都	花見川河口(千葉市) 荒川河口(江東区)		-					-					=				-	_		\Diamond
米 尔 仰			-																	$\stackrel{\vee}{\diamond}$
横浜市	横浜港														-				┇╫	$\stackrel{\vee}{\Diamond}$
川崎市	多摩川河口 (川崎市)		=							=		1	H				= +		= +	$\stackrel{\checkmark}{\Diamond}$
) , [MH] 1]3	川崎港京浜運河		-	=		_			_	1	F	1						_	= +	$\stackrel{\checkmark}{\Diamond}$
新潟県	信濃川下流 (新潟市)												ī						_	\Diamond
富山県	神通川河口萩浦橋(富山市)																		•	$\overline{\Diamond}$
石川県	犀川河口(金沢市)																			\Diamond
福井県	笙の川三島橋 (敦賀市)																			\Diamond
山梨県	荒川千秋橋 (甲府市)																		•	\Diamond
長野県	諏訪湖湖心																			\Diamond
静岡県	清水港																			\Diamond
	天竜川掛塚橋 (磐田市)																			\Diamond
愛知県	衣浦港			•		•	•			▮▮		•								\Diamond
	名古屋港		-					_									-	_	-	\Diamond
三重県	四日市港 鳥羽港		-					-									-	_		\Diamond
滋賀県	局初後													-		-			-	
四貝木	琵琶湖南比良沖中央												┢							\Diamond
	琵琶湖唐崎沖中央		=	_		_		-		=		=						_	= +	$\stackrel{\checkmark}{\Diamond}$
京都府	宮津港		=			_			_	1			Ħ					= + :		$\stackrel{}{\Diamond}$
京都市	桂川宮前橋(京都市)																			\Diamond
大阪府	大和川河口 (堺市)																			\Diamond
大阪市	大阪港																			\Diamond
	大阪港外																			\Diamond
	淀川河口 (大阪市)												▮■				•	_		\Diamond
	淀川 (大阪市)															_		_		\Diamond
兵庫県	姫路沖															-		_	-	\Diamond
神戸市	神戸港中央		_									Ŀ	Ŀ			-	-			\Diamond
奈良県	大和川(王寺町) 紀の川河口紀の川大橋(和歌山市)	_	-										₽	-		+	-	= +		\Diamond
和歌山県 岡山県	水島沖									=						-	-	_		\Diamond
広島県	呉港		-				-	=	=				H	-		-	-			$\stackrel{\vee}{\diamond}$
ДШЛ	広島湾		=	=		_	1	=	_	1	ī		Ħ	1		-	-			$\stackrel{\checkmark}{\Diamond}$
山口県	徳山湾											ī			_	_		_		\Diamond
	宇部沖														-		- +	_		$\stackrel{\circ}{\Diamond}$
	萩沖															ı				\Diamond
徳島県	吉野川河口(徳島市)																		•	\Diamond
香川県	高松港																			\Diamond
愛媛県	新居浜港																			\Diamond
高知県	四万十川河口(四万十市)													•					•	\Diamond
	洞海湾																			\Diamond
北九州市			 	·····	-					-	+	+	+-		+	-				
北九州市 福岡市 佐賀県	博多湾 伊万里湾															ı				\Diamond

地方 公共団体	調査地点	年度 '02	-	'04	'05	'06	' 07	'08	' 09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19	分析
長崎県	大村湾																			
大分県	大分川河口 (大分市)																			\Diamond
宮崎県	大淀川河口 (宮崎市)																			\Diamond
鹿児島県	天降川 (霧島市)																			\Diamond
	五反田川五反田橋(いちき串木野市)																			\Diamond
沖縄県	那覇港																			\Diamond

- (注1) ■:モニタリング調査において実施したことを意味する。
- (注 2) 「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試料採取を実施した地方公共団体の名称を示した。
- (注3) 「分析」の列に◇を付した調査地点は、統計学的な手法を用いた経年分析を実施した地点であることを意味する。また、分析 対象とする地点とは、2019 年度に調査が実施されている地点であり、かつ、それぞれの調査対象物質の調査を開始してから 2019 年度までの期間内において 2 か年以上測定されていない地点を除いたものを分析対象地点とした。

表5-3 モニタリング調査の年度別調査地点の一覧(生物)

地方	調査地点	生物種	年度			,							.,			,					分
公共団体			'02	03	'04	'05	'06	'07	'08	'09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19	析
		(貝類)																<u></u>		ļ	
岩手県	山田湾	ムラサキイガイ		•																	\Diamond
神奈川県	三浦半島	ムラサキイガイ																ļ			
横浜市	横浜港	ムラサキイガイ																			
		ミドリイガイ																			Ĺ
石川県	能登半島沿岸	ムラサキイガイ																			\Diamond
島根県	島根半島沿岸七類湾	ムラサキイガイ																		<u></u>	
山口県	見島	ムラサキインコガイ											<u> </u>								-301000000
徳島県	鳴門	イガイ											ļ							ļ	-301000000
香川県	高松港	ムラサキイガイ											<u> </u>					<u></u>			
		イガイ											<u> </u>								-301000000
北九州市	洞海湾	ムラサキイガイ																			
		ムラサキインコガイ																			
		(魚 類)																<u> </u>			
北海道	釧路沖	ウサギアイナメ		•																	\Diamond
		シロサケ																			
	日本海沖(岩内沖)	アイナメ																			
岩手県	山田湾	アイナメ																			\Diamond
宮城県	仙台湾(松島湾)	スズキ																			
		アイナメ																			
茨城県	常磐沖	サンマ																			_
		マサバ											<u> </u>					<u> </u>			_
	三陸沖	サンマ											<u> </u>					<u> </u>			
	小名浜沖	サンマ																			_
東京都	東京湾	スズキ																			\Diamond
	川崎港扇島沖	スズキ																			\Diamond
	名古屋港	ボラ																			
	琵琶湖安曇川(高島市)	ウグイ																			\Diamond
大阪府	大阪湾	スズキ																			\Diamond
兵庫県	姫路沖	スズキ																			
鳥取県	中海	スズキ								-											\Diamond
広島市	広島湾	スズキ																			\Diamond
香川県	高松港	ボラ																			
高知県	四万十川河口(四万十市)	スズキ																			\Diamond
大分県	大分川河口	スズキ																			-
鹿児島県	薩摩半島西岸	スズキ																			\Diamond
沖縄県	中城湾	ミナミクロダイ																			\Diamond
		(鳥類)											ļ					<u></u>		<u> </u>	ļ
青森県	蕪島 (八戸市)	ウミネコ																<u> </u>			ļ
岩手県	盛岡市郊外	ムクドリ							•												<u> </u>
	琵琶湖北湖竹生島	カワウ																			ļ
鳥取県	天神川(倉吉市/北栄町)	カワウ																			

⁽注1) ■:モニタリング調査において実施したことを意味する。

⁽注2) 「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試料採取を実施した地方公共団体の名称を示した。

⁽注3) 「分析」の列に◇を付した調査地点は、統計学的な手法を用いた経年分析を実施した地点であることを意味する。また、分析 対象とする地点とは、2019 年度に調査が実施されている地点であり、かつ、それぞれの調査対象物質の調査を開始してから 2019 年度までの期間内において 2 か年以上測定されていない地点を除いたものを分析対象地点とした。

表5-4 モニタリング調査の年度別調査地点の一覧(大気)

表5-4	モニタリング調査の年度別調査地点の-	一見	レフ	JXJ)													
地方 公共団体	調査地点	年度		04	05 9	06/07	7 '08	,09 ,	10 11	1.12	·13	'14	1.15	' 16	'17	¹ 18	·19	分 析
北海道	上川保健福祉事務所(名寄市)	02	_		00	,0 0,	-	07	10 11	1	10		-10	10		10		
10177	到路市立春採中学校(釧路市)			-+			-										t	
	北海道釧路総合振興局(釧路市)			-	_													
	北海道渡島総合振興局(函館市)			-	1		-					_			_			
	北海道上川総合振興局(旭川市)		-	-			-						_					
+1 #8 -+-		_	_	_	_		-	-		-		_	_	-			_	
札幌市	札幌芸術の森(札幌市)						₽					_	_					\Diamond
岩手県	網張スキー場(雫石町)			_	- '									_			<u>-</u> +	
	巣子一般環境大気測定局(滝沢市)			_	_	_	<u> </u>			<u> </u>								
宮城県	宮城県保健環境センター(仙台市)																	
	国設仙台測定局(仙台市)																	
	宮城県消防学校(仙台市)																	
	宮城県仙台土木事務所(仙台市)																	
山形県	山形県環境科学研究センター (村山市)																	
茨城県	茨城県環境監視センター (水戸市)																	
	茨城県霞ケ浦環境科学センター (土浦市)	········		T						Ì								***************************************
群馬県	群馬県衛生環境研究所(前橋市)																-	
千葉県	市原松崎一般環境大気測定局(市原市)						▐					_						\Diamond
東京都	東京都環境科学研究所(江東区)		_	_	-							_				 	▔	$\stackrel{\times}{\Diamond}$
7K-7K-10P	東京都立衛生研究所(調査当時)(新宿区)			-	-		_					-	_	-	-		-	
	小笠原父島(小笠原村)	_																\Diamond
₩ 大 川旧		_					₽										_	
-	神奈川県環境科学センター(平塚市)											_		_	-			\Diamond
横浜市	旧横浜市環境科学研究所(横浜市)						▝				_	-	_	_				
f., a to a	横浜市環境科学研究所 (横浜市)			_	_		 		_	ļļ								
新潟県	大山一般環境大気測定局(新潟市)																	\Diamond
富山県	砺波一般環境大気測定局(砺波市)																	\Diamond
石川県	石川県保健環境センター (金沢市)																	\Diamond
山梨県	富士吉田合同庁舎(富士吉田市)																	
	山梨県衛生環境研究所(甲府市)																	
長野県	長野県環境保全研究所(長野市)																	\Diamond
岐阜県	岐阜県保健環境研究所(各務原市)																	\Diamond
名古屋市	千種区平和公園 (名古屋市)																	\Diamond
三重県	三重県保健環境研究所(四日市市)																	\Diamond
京都府	京都府立城陽高等学校(城陽市)									-		_					- †	×
大阪府	地方独立行政法人大阪府立環境農林水産総合			_	_					1				_	_		— -	
八的人们	研究所(大阪市)																	
	大阪合同庁舎2号館別館(大阪市)			-			-	-	_	1							_	
5. 中旧				_	_		_					_			-	·		
兵庫県			_ +	_				-				-		_	_			
神戸市	葺合一般環境大気測定局(神戸市)						▝					_	_			<u></u> -		
	神戸市役所(神戸市)			_	-			\vdash	_								↓	
	神戸市環境保健研究所(神戸市)			_ļ	ļ_		<u> </u>	<u> </u>	ļ	ļļ						<u> </u>		
奈良県_	天理一般環境大気測定局(天理市)																	\Diamond
島根県	国設隠岐酸性雨測定所(隠岐の島町)																	\Diamond
広島市	広島市立国泰寺中学校(広島市)																	\Diamond
山口県	山口県環境保健センター(山口市)																	\Diamond
	萩市役所見島支所 (萩市)																	
	萩市見島ふれあい交流センター(萩市)																	
	萩健康福祉センター (萩市)					Ī	·		1	<u>-</u>	······							
	山口県立萩美術館・浦上記念館(萩市)		İΤ	寸		<u>-</u>	<u> </u>	İΤ	_	i i	i		i				_	
徳島県	徳島県保健環境センター(徳島市)									-					-			
心田不	徳島県立保健製薬環境センター(徳島市)	_	_	-													▄╫	
													-	-			- +	
香川県	香川県高松合同庁舎(高松市)		-	-								_		_	_		<u>-</u> ⊦	
亚加田	香川県立総合水泳プール(高松市)											-						
	愛媛県南予地方局(宇和島市)										_				_		<u> </u>	\Diamond
福岡県	大牟田市役所(大牟田市)						▝				_							\Diamond
	佐賀県環境センター(佐賀市)				- !		┸	 	▋▏▋							! <u> </u> -		\Diamond
	熊本県保健環境科学研究所(宇土市)			=	= !				▋┃█									\Diamond
宮崎県	宮崎県衛生環境研究所(宮崎市)																	\Diamond
	鹿児島県環境保健センター(鹿児島市)																	
沖縄県	辺戸岬(国頭村)				= [\Diamond
	:モニタリング調査において実施したことを意	味ま	· Z															

- (注1) ■:モニタリング調査において実施したことを意味する。
- (注 2) 「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試料採取を実施した地方公共団体の名称を示した。
- (注3) 「分析」の列に◇を付した調査地点は、統計学的な手法を用いた経年分析を実施した地点であることを意味する。また、分析 対象とする地点とは、2019 年度に調査が実施されている地点であり、かつ、それぞれの調査対象物質の調査を開始してから 2019 年度までの期間内において 2 か年以上測定されていない地点を除いたものを分析対象地点とした。

表6-1 モニタリング調査における検出下限値の比較(水質)

衣0-	Ⅰ モータリンク調宜に	. <i>(</i> 104)	公伊	!Щ Г	即汉间	いりた	1年又 (、小負	.)										-
物質	300 - 1-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1								7.	火質(pg/L)								
調査	調査対象物質	'02	'03	'04	'05	'06	'07	'08	.09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
番号	(0) = > • (
[1]	総PCB※	2.5	2.5	5.0	3.2	3	2.9	3.0	4	24	1.7	15	8	2.9	7.3	2.8	5.5	5	4.7
[2]	HCB	0.2	2	8	5	5	3	1	0.2	4	2	0.7	2	0.4	0.6	0.3	0.8	0.6	3
[3]	アルドリン (参考)	0.2	0.2	0.4	0.3	0.6	0.3	0.6	0.3										
[4]	ディルドリン (参考)	0.6	0.3	0.5	0.3	1	0.7	0.6	0.2		0.6			0.2					
[5]	エンドリン (参考)	2	0.3	0.5	0.4	0.4	0.6	1	0.3		0.6			0.2					
	DDT類(参考)																		
	[6-1] p,p'-DDT(参考)	0.2	0.9	2	1	0.6	0.5	0.5	0.06	0.8				0.1					
	[6-2] p,p'-DDE(参考)	0.2	2	3	2	2	0.4	0.4	0.4	0.8				0.2					
[6]	[6-3] p,p'-DDD(参考)	0.08	0.5	0.8	0.6	0.5	0.2	0.2	0.2	0.08				0.4					
	[6-4] o,p'-DDT(参考)	0.4	0.7	2	1	0.8	0.5	0.5	0.06	0.5				0.2					
	[6-5] o,p'-DDE(参考)	0.3	0.3	0.5	0.4	0.9	0.3	0.3	0.09	0.09				0.1					
	[6-6] o,p'-DDD(参考)	0.20	0.3	0.5	0.4	0.3	0.3	0.3	0.09	0.2				0.08					
	クロルデン類 (参考)	0.20	0.5	0.5	0.1	0.5	0.5	0.5	0.07	0.2				0.00					
	[7-1] cis-クロルデン (参考)	0.3	0.9	2	1	2	2	0.6	0.4	4	0.6	0.6	0.9				1		
	[7-1] trans-クロルデン (参	0.5	0.9	-	1	-		0.0	0.4	4	0.0	0.0	0.9				. 1		
	[7-2] trans-テロルテン(参	0.5	2	2	1	2	0.8	1	0.3	4	0.4	0.8	1				1		
[7]	* /					•		•											
[7]	[7-3] オキシクロルデン(参	0.4	0.5	0.5	0.4	0.9	2	0.7	0.4	0.3	0.5	0.4	0.4				2		
	考)	0.6	0.1	0.5		0.0	0.0	0.0	0.1	0.4		0.0	0.0				0.5		
	[7-4] cis-ノナクロル (参考)	0.6	0.1	0.5	0.2	0.3	0.8	0.3	0.1	0.4	0.2	0.3	0.3				0.6		
	[7-5] trans-ノナクロル (参	0.4	0.5	2	0.8	1.0	2	0.6	0.4	3	0.5	0.6	0.6				1		
	考)																		
	ヘプタクロル類(参考)																		
	[8-1] ヘプタクロル (参考)	0.5	0.5	2	1	2	0.8	0.8	0.3	0.7	0.5			0.2			1		
[8]	[8-2] cis-ヘプタクロルエポ		0.2	0.4	0.2	0.7	0.4	0.2	0.2	0.2	0.3			0.2			0.6		
	キシド(参考)																		
	[8-3] trans-ヘプタクロルエ		0.4	0.3	0.2	0.6	0.7	0.7	0.3	0.5	0.3			0.3			0.9		
	ポキシド (参考)																		
	トキサフェン類(参考)																		
[9]	[9-1] Parlar-26(参考)		20	3	4	5	5	3	2									2	
[-]	[9-2] Parlar-50(参考)		30	7	5	5	3	3	3									2	
	[9-3] Parlar-62(参考)		90	30	30	20	30	20	20									20	
[10]	マイレックス		0.09	0.2	0.1	0.5	0.4	0.2	0.2		02							0.3	
	HCH類																		
	[11-1] α-HCH	0.3	0.9	2	1	1	0.6	2	0.4	1	3	0.5	2	1.5	0.4	0.4	0.4		2
[11]	[11-2] β-HCH	0.3	0.7	2	0.9	0.6	0.9	0.4	0.2	0.7	0.8	0.5	2	0.4	0.4	0.4	0.7		1
	[11-3] γ-HCH 別名:リンデン)		2	7	5	6	0.7	1	0.2	2	1	0.4	0.8	0.4	0.3	0.3	0.5		2
	[11-4] δ-HCH		0.5	0.7	0.5	0.8	0.4	0.9	0.4	0.3	0.2	0.4	0.4	0.2	0.1	0.3	0.4		0.4
[12]	クロルデコン (参考)							0.05		0.04	0.05								
[13]	ヘキサブロモビフェニル類								0.19 ~	1	0.9								
[13]	(参考)								0.78	1	0.9								
	ポリブロモジフェニルエー																		
	テル類(臭素数が4から10																		
	までのもの)																		
	[14-1] テトラブロモジフェ							•	_	_	_		•			_	_	_	,
	ニルエーテル類								3	3	2	1		3	1.2	2	3	5	4
	[14-2] ペンタブロモジフェ					•		•										_	
	ニルエーテル類								4	1	1	1		2	2.1	0.9	1	3	2
	[14-3] ヘキサブロモジフェ																		
[141	ニルエーテル類								0.6	2	1	1		1	0.6	0.8	3	1	1
[1.]	[14-4] ヘプタブロモジフェ																		
	ニルエーテル類								2	1	2	1		3	0.8	3	5	3	2
	[14-5] オクタブロモジフェ																		
	ニルエーテル類								0.6	1	1	2		0.6	0.6	0.3	1	1	1
1	/ /* //X																		
	[14-6] ノナブロチジフェニ								30	7	4	13		2	2	1	3	2	3
	[14-6] ノナブロモジフェニ ルエーテル類																		
	ルエーテル類																		
	ルエーテル類 [14-7] デカブロモジフェニ								200	100	20	220		9	7	6	8	4	3
	ルエーテル類 [14-7] デカブロモジフェニ ルエーテル								200	100	20	220		9	7	6	8	4	3
[15]	ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル								200 14	100	20	220 12		9 20	7 11	6 20	8	30	3 30
[15]	ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル ホン酸 (PFOS)																		
[15] [16]	ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル ホン酸 (PFOS) ペルフルオロオクタン酸																		
	ルエーテル類 [14-7] デカプロモジフェニ ルエーテル ペルフルオロオクタンスル ホン酸 (PFOS) ペルフルオロオクタン酸 (PFOA)								14	20	20	12		20	11	20		30	30

物質	5m-4 1.1 ft 41 55	水質(pg/L)																	
調査 番号	調査対象物質	'02	'03	'04	'05	'06	'07	'08	, 09	'10	' 11	'12	'13	'14	'15	'16	'17	'18	'19
	エンドスルファン類(参考)																		
[18]	[18-1] α-エンドスルファン (参考)										50	10						40	
	[18-2] β-エンドスルファン (参考)										9	9						10	
	1,2,5,6,9,10-ヘキサブロモ																		
	シクロドデカン類(参考)																		
	[19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										600			600					
54.03	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										500			200					
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										500			300					
	[19-4] δ-1,2,5,6,9,10-ヘキサブロモシクロドデカン(参考)										300			200					
	[19-5] ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										300			200					
[20]	総ポリ塩化ナフタレン※							30											7.5
[21]	ヘキサクロロブタ-1,3-ジエ ン(参考)						340						37						
	ペンタクロロフェノール並																		
	びにその塩及びエステル類																		
[22]	[22-1] ペンタクロロフェノ ール														85		10	9	20
	[22-2] ペンタクロロアニソ ール																5	6	10
	短鎖塩素化パラフィン類																		
	[23-1] 塩素化デカン類																1,100	400	200
[23]	[23-2] 塩素化ウンデカン類																500	800	500
	[23-3] 塩素化ドデカン類																1,100	1,000	400
	[23-4] 塩素化トリデカン類																1,200	1,500	500
[24]	ジコホル							10											8
[25]	ペルフルオロヘキサンスル ホン酸 (PFHxS)																	50	30
<u> </u>	「」以此地上各名主文字	Ļ														•			L

⁽注 1) 「---」は比較対象なしを意味する。 (注 2) ※: 検出下限値は、同族体ごとの検出下限値の合計とした。

表6-2 モニタリング調査における検出下限値の比較(底質)

接換性	衣0-2	2 モータリング調査に	. 431)	公伊	.ш г	即汉阳	・シント	4人	、 上	.)										
1	物質									底	質(pg	g/g-dry	y)							
		調査対象物質	/02	T	(0.4	(0. -		/n=	(00	[T	// 1		T				/40
HB HB 13 7 7 7 7 7 7 7 7 7	番号		. 02	.03	. 04	.05	.06	.07	.08	.09	.10	,11	'12	.13	14	.12	.16	17	.18	.19
15 万 次ドリン (参方)	[1]	総PCB※	3.5	3.2	2.6	2.1	1	1.5	1.2	2.1	220	4.5	18	13	21	22	18	5.0	55	3.3
3	[2]	HCB	0.3	2	3	1	1.0	2	0.8	0.7	1	3	1	1.8	2	1	1	1	0.5	0.4
1		アルドリン (参考)	2.	0.6	0.6	0.5	0.6	0.6	1	0.2									0.6	
5 エンドリン(参考)			1									2								
Ponting (参名)																_				
1	[5]		2	2	0.9	0.9	1		0.7	0.6		0.4							0.9	
15 15 15 15 15 15 15 15																				
10 16 13 16 17 17 17 17 17 18 18 18		11.1	2	0.4	0.5	0.3	0.5	0.5	0.5	0.4	0.9				0.2					
10 16 13 16 17 17 17 17 17 18 18 18		[6-2] p,p'-DDE(参考)	0.9	0.3	0.8	0.9	0.3	0.4	0.7	0.3	2				0.6					
Fellow-DDT(参考)	[6]		0.8	0.3	0.7	0.6	0.2	0.4	0.4	0.2	0.5				14					
Follow Follow	[0]			, ,					1.									i		
Paragram		•	_	1																
フェルデン(集)等)		•	_																	
F1-1 F1-2		1	2	0.5	0.5	0.3	0.2	0.4	0.1	0.2	0.4				0.5					
1		クロルデン類(参考)																		
1		[7-1] cis-クロルデン (参考)	0.3	2	2	0.6	0.8	2	0.9	0.3	2	0.4	1.0	0.8				1.6		
17				1							4							1		
************************************	[7]		0.0	-	0.5	0.0	0.4	0.0	0.0	0.,	7	0.5	1.5	0.7				1		
[7-4] cis- ノナクロル (参考) 0.7 0.9 0.6 0.6 0.6 0.8 0.4 0.6 0.2 0.4 0.3 0.4 1 0.3 0.4 0.5 0.5 0.4 0.6 0.7 1 0.8 0.7 0.9 0.8 0.6 0.7 0.7 0.9 0.8 0.8 0.8 0.3 0.8 0.4 0.5 0.4 0.5 0.8 0.3 0.8 0.4 0.5 0.8 0.5 0.8 0.8 0.4 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	[/]		0.5	0.4	0.8	0.7	1.0	0.9	1	1	0.4	0.9	0.7	0.5				1		
17-5] mans		* *																		
ペラクタロル類(参考)		L. 1			0.6			0.6	0.2	0.4	0.3	0.4	1	0.3						
8-1] ハブタクロル(参考) 0.6 1.0 0.9 0.8 0.6 0.7 1 0.4 0.4 0.7 0.5 0.3 0.5 0.5			0.5	0.6	0.6	0.5	0.4	0.6	0.8	0.3	2	0.3	0.8	0.4				2		
B 18-2 cis - ベブタクロルエボ		ヘプタクロル類(参考)																		
B 18-2 cis - ベブタクロルエボ		[8-1] ヘプタクロル (参考)	0.6	1.0	0.9	0.8	0.6	0.7	1	0.4	0.4	0.7			0.5			0.3		
Solid キシド (参考) 1 2 2 1.0 1 1 1 1 1 1 1 1 1		[8-2] cis-ヘプタクロルエポ																		
[8-3] Irans-ヘブタクロルエ	[8]			1	2	2	1.0	1	1	0.3	0.3	0.2			0.2			0.5		
ボキンド(参考)))					
Pi-1] Parlar-26(参考)				3	2	2	2	4	0.7	0.6	1	0.9			0.3			0.8		
[9] [9-1] Parlar-26(参考)																				
9 19-2 Parlar-50 (参考)		トキサフェン類(参考)																		
19-3 Parlar-So (参考)	FO1	[9-1] Parlar-26(参考)		30	20	30	4	3	5	4									3	
19-3] Parlar-62(参考)	[9]	[9-2] Parlar-50 (参考)		50	40	40	7	10	6	5									3	
10 マイレックス (参考)				2 000	400	700	60	70	40	30									20	
HCH類	[10]				_					_		0.4								
[11-1] a-HCH 0.4 0.5 0.6 0.6 2 0.6 0.6 0.4 0.8 0.6 0.5 0.5 0.5 0.8 0.3 0.3 0.2 0.4 [11-2] β-HCH (円円円円円円円円円円円円円円円円円円円円円円円円円円円円円円円円円円円	[10]			0.4	0.5	0.5	0.2	0.5	0.5	0.4		0.4							0.5	
[11] [11-2] β-HCH (別名: リンデン) ローグ (11-3) γ-HCH (別名: リンデン) ローグ (11-3) ロ					0.5	0.5	_	0.5												
[11-3] y-HCH 例名: リンデン 0.4 0.5 0.7 0.7 0.7 0.4 0.4 0.2 0.7 1 0.4 0.2 0.9 0.2 0.3 0.4 0.4 0.2 0.9 0.2 0.3 0.4 0.4 0.2 0.9 0.2	54.43										•		•	•		•	•			
[11-4] SHCH	[11]	,											•					:		
To プロルデコン (参考)		,							1		1						į.	1		1
Till ペキサプロモビフェニル類 一		. ,		0.7	0.5	0.3	0.6	2	1	0.5	0.5	0.5	0.3	0.1	0.1	0.2	0.2	0.2		0.2
13 (参考)	[12]	クロルデコン (参考)							0.16		0.2	0.20								
(参考)		ヘキサブロモビフェニル類								: :										
ポリプロモジフェニルエー テル類(臭素数が4から10 までのもの) [14-1] テトラプロモジフェ ニルエーテル類 [14-2] ペンタプロモジフェ ニルエーテル類 [14-3] ヘキサプロモジフェ ニルエーテル類 [14-4] ヘブタプロモジフェ ニルエーテル類 [14-5] オクタプロモジフェ ニルエーテル類 [14-5] オクタプロモジフェ ニルエーテル類 [14-6] ノナプロモジフェ ニルエーテル類 [14-6] ノナプロモジフェ ルエーテル類 [14-7] デカプロモジフェ ルエーテル類 [14-7] デカプロモジフェニ ルエーテル類 [14-7] デカプロモジフェニ ルエーテル類 [14-7] デカプロモジフェニ ルエーテル類 [14-7] デカプロモジフェニ ルエーテル類 [14-7] ボカブロモジフェニ ルエーテル (14-7] ボカブロモジフェニ ルエーテル (14-7) ボカブロエ ルエーテル ルエーテル ルエーテル ルエーテル ル	[13]										0.6	1.4				0.3				
デル類 (臭素数が4から10までのもの) 114-1] テトラブロモジフェニルエーテル類		12 11								0.14										
までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘブタブロモジフェニルエーテル類 [14-5] オクタブロモジフェニルエーテル類 [14-5] オクタブロモジフェニルエーテル類 [14-6] ノナブロモジフェニルエーテル類 [14-7] デカブロモジフェニルエーテル類 [14-7] デカブロモジフェニルエーテル類 [14-7] デカブロモジフェニルエーテル類 [14-7] デカブロモジフェニルエーテル類 [14-7] デカブロモジフェニルエーテル類 [14-7] デカブロモジフェニルエーテル類 [14-7] デカブロモジフェニルエーテル類 [14-7] ボカブロモジフェニルエーテル類 [14-7] ボカブロモジフェニルエーテル類 [14-7] ボカブロモジフェニルエーテル類 [14-7] ボカブロモジフェニルエーテル類 [15] ペルフルオロオクタンスルルストルエーテル コート・ロー・コート・ロー・コート・コート・コート・コート・コート・コート・コート・コート・コート・コー																				
[14-1] テトラブロモジフェ 23 2 10 1 9 7 11 4 6 2 1 1 14-2] ペンタブロモジフェ 8 2 2 2 0.9 2 6 4 4 2 1 1 1 4 2 1 1 1 1 1 1 1 1 1 1 1 1																				
こルエーテル類		までのもの)											ļ			į		į	į.	
14-2] ペンタブロモジフェ		[14-1] テトラブロモジフェ								22	2	10	1		_	7	11	1	_	2
Eルエーテル類		ニルエーテル類								23	2	10	1		7	/	11	4	O	2
Eルエーテル類		15.1																		
[144] [14-3] ヘキサブロモジフェニルエーテル類		. ,								8	2	2	0.9		2	6	4	4	2	1
[14] ニルエーテル類 ニルエーテル類 ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニ		15.1																		
14 ニルエーテル類 [14-4] ヘプタブロモジフェ	F4 /3									2	2	3	1		2	1	3	2	1	2
これエーテル類	[14]																			
コルエーテル類		. ,								4	2	3	2		6	1	2	6	5	3
これエーテル類		ニルエーテル類								7		,			U	1		U	,	ر
こルエーアル類 [14-6] ノナブロモジフェニ 4 9 9 11 20 8 9 5 2 2 14-7] デカブロモジフェニ 20 80 20 89 80 20 41 10 14 3 15 16 ペルフルオロオクタンスル 3.7 2 2 4 2 1 2 3 4 16 ペルフルオロオクタン酸 3.3 5 2 2 5 1 4 4 2 16 ペルフルオロオクタン酸 -		[14-5] オクタブロモジフェ																		
[14-6] ノナプロモジフェニ 4 9 9 11 20 8 9 5 2 2 14-7] デカプロモジフェニ 20 80 20 89 80 20 41 10 14 3 3 15 2 2 4 2 1 2 3 4 16 ペルフルオロオクタンスル 3.3 5 2 2 5 1 4 4 2 16 ペルフルオロオクタン酸 3.3 5 2 2 5 1 4 4 2 1 2 4 2		. ,								0.5	4	4	6		4	16	2	2	0.5	1
ルエーテル類		15.							•				•							
[14-7] デカプロモジフェニ										4	9	9	11		20	8	9	5	2	2
15 ペルフルオロオクタンスル 3.7 2 2 4 2 1 2 3 4 16													•				•			
ルエーテル [15] ペルフルオロオクタンスル 3.7 2 2 4 2 1 2 3 4 [16] ペルフルオロオクタン酸 3.3 5 2 2 5 1 4 4 2										20	80	20	89		80	20	41	10	14	3
[15] ホン酸 (PFOS) 3.7 2 2 4 2 1 2 3 4 [16] ペルフルオロオクタン酸 (PFOA) 3.3 5 2 2 2 5 1 4 4 2		ルエーテル								20	- 50	20	0,		- 50	20	71	10		
T ン酸 (PFOS)	[1.63	ペルフルオロオクタンスル								2.7			4			1			2	4
[16] ペルフルオロオクタン酸 3.3 5 2 2 5 1 4 4 2	[15]	ホン酸 (PFOS)								3.7	2	2	4		2	1	2		3	4
[16] (PFOA) 3.3 5 2 2 5 1 4 4 2																				
	[16]									3.3	5	2	2		5	1	4		4	2
[17] 「マククロロハンセン 35 0.3 2 0.8 0.7 0.8 0.5 0.6 0.5 0.3 0.4	[17]							22			0.2	2	0.0	0.7	0.0	0.7	0.0	0.7	0.2	0.4
	[1/]	ハングクロロヘンセン						55			0.3	2	0.8	U./	0.8	0.5	0.6	0.5	0.3	∪.4

物質		底質(pg/g-dry)																	
調査 番号	調査対象物質	'02	'03	'04	'05	'06	'07	,08	·09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
	エンドスルファン類(参考)																		
[18]	[18-1] α-エンドスルファン (参考)										10	5						2	
	[18-2] β-エンドスルファン (参考)										4	5						2	
	1,2,5,6,9,10-ヘキサブロモ																		
	シクロドデカン類(参考)																		
	[19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										280	70			60	60			
F1.01	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										170	60			60	50			
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										260	60			42	60			
	[19-4] δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										250	100			70				
	[19-5] ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										210	60			51				
[20]	総ポリ塩化ナフタレン※							30								20	9.1	3.2	2.7
[21]	ヘキサクロロブタ-1,3-ジエン(参考)						8.5						3.8						
	ペンタクロロフェノール並																		
	びにその塩及びエステル類																		
[22]	[22-1] ペンタクロロフェノ ール																2	6	2
	[22-2] ペンタクロロアニソ ール																2	9	0.8
	短鎖塩素化パラフィン類																		
	[23-1] 塩素化デカン類																4,000	2,000	1,000
[23]	[23-2] 塩素化ウンデカン類																4,000	5,000	1,000
	[23-3] 塩素化ドデカン類																4,000	2,000	1,000
	[23-4] 塩素化トリデカン類																5,000	3,000	1,000
[24]	ジコホル							63											2
[25]	ペルフルオロヘキサンスル ホン酸 (PFHxS)																	5	5

⁽注 1) 「---」は比較対象なしを意味する。 (注 2) ※: 検出下限値は、同族体ごとの検出下限値の合計とした。

表6-3 モニタリング調査における検出下限値の比較(生物)

物質	3 セータリンク調査に	431)	公15	tШI	即刈	LVJIL	4年又 (、生物		l-fra (,	.)							
調査	調査対象物質		·				1		生4	物(pg	g/g-we	:t)	1		<u> </u>		1	<u> </u>	
番号	阿	'02	'03	'04	'05	'06	'07	'08	'09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
[1]	総 PCB※	8.4	17	29	23	14	18	17	11	20	74	11	14	31	17	20	23	21	11
[2]	НСВ	0.06	7.5	4.6	3.8	1	3	3	2	2	1	2.8	10	3	6.5	2.7	1.3	1.1	1
[3]	アルドリン (参考)	1.4	0.84	1.3	1.2	2	2	2	0.8					0.7					
[4]	ディルドリン (参考)	4	1.6	10	3	3	3	3	2		1			1					
[5]	エンドリン (参考)	6	1.6	4.2	5.5	4	3	3	3		2			1					
	DDT 類(参考)																		
	[6-1] p,p'-DDT(参考)	1.4	3.5	1.1	1.7	2	2	2	1	1			1.1					1	
	[6-2] p,p'-DDE(参考)	0.8	1.9	2.7	2.8	0.7	1	1	1	1			1.4					1	
[6]	[6-3] p,p'-DDD(参考)	1.8	3.3	0.70	0.97	0.9	1	1	0.9	0.5			0.7					0.6	
	[6-4] o,p'-DDT(参考)	4	0.97	0.61	0.86	1	1	1	0.8	1			1					0.9	
	[6-5] o,p'-DDE(参考)	1.2	1.2	0.69	1.1	1	0.9	1	1	0.6			1					1	
	[6-6] o,p'-DDD(参考)	4	2.0	1.9	1.1	1	1	2	1	0.2			0.7					0.9	
	クロルデン類 (参考)																		
	[7-1] cis-クロルデン (参考)	0.8	1.3	5.8	3.9	1	2	2	2	2	1	2	4			1			
	[7-2] trans-クロルデン(参	0.8	2.4	16	3.5	2	2	3	1	1	1	2	5.2			2			
	考)	0.0	2.4	10	3.3		-	J	1	1	1								
[7]	[7-3]オキシクロルデン(参	1.2	2.8	3.1	3.1	3	2	2	1	3	1	1	1			1			
	考)																		
	[7-4] cis-ノナクロル (参考)	0.4	1.6	1.1	1.5	1	1	1	1	1	0.7	1	0.7			0.6			
	[7-5] trans-ノナクロル (参	0.8	1.2	4.2	2.1	1	3	2	1	2	1	1	3.4			1			
	考) ヘプタクロル類 (参考)																		
	721 12 47	1.4	2.2	1.4	2.0	_	_		2				1		1	0.0			
	[8-1] ヘプタクロル(参考) [8-2] <i>cis-</i> ヘプタクロルエポ	1.4	2.2	1.4	2.0	2	2	2	2	1	1	1	1		1	0.9			
[8]	[8-2] <i>cis</i> -ヘノダクロルエホ キシド (参考)	1.4	2.2	1.4	2.0	2	2	2	2	1	1	1	1		0.8	0.7			
	イント (参与) [8-3] <i>trans-</i> ヘプタクロルエ																		
	ぱキシド (参考)		4.4	4.0	7.5	5	5	4	3	1	3	3	3		3	3			
	トキサフェン類(参考)																		
	[9-1] Parlar-26 (参考)		15	14	16	7	4	3	3						9			8	
[9]	[9-2] Parlar-50(参考)		11	15	18	5	3	4	3						10			6	
	[9-3] Parlar-62(参考)		40	33	34	30	30	30	20						60			40	
[10]	マイレックス (参考)		0.81	0.82	0.99	1	1	1	0.8		0.8							0.5	
	HCH 類																		
	[11-1] α-HCH	1.4	0.61	4.3	3.6	1	2	2	2	1	1	1.2	1	1	1.0	1	1		2
[11]	[11-2] β-HCH	4	3.3	2	0.75	1	3	2	2	1	1	0.8	0.8	0.9	1.0	1	1		1
	[11-3] γ-HCH 別名:リンデン)		1.1	10	2.8	2	3	3	3	1	1	0.9	0.9	0.8	1.6	1	1		1
	[11-4] δ-HCH		1.3	1.5	1.7	1	2	2	2	1	1	1	1	1	0.8	1	0.9		2
[12]	クロルデコン (参考)							2.2		2.3	0.2								
[13]	ヘキサブロモビフェニル類								0.087 ~0.13		1				5				
	(参考) ポリブロモジフェニルエー								~0.13	\sim 3									
	デル類(臭素数が4から10																		
	ナル類 (吴糸数か4から10までのもの)																		
	[14-1] テトラブロモジフェ														j				
	ニルエーテル類							2.2		16	6	7		6	6	5	6	5	7
	[14-2] ペンタブロモジフェ						•			_			•	_	_		_		
	ニルエーテル類							5.9		6	6	6		5	5	4	5	4	4
	[14-3] ヘキサブロモジフェ							- 0		_	4	4	9		_		-		
[14]	ニルエーテル類							5.0		3	4	4		4	5	8	7	8	8
	[14-4] ヘプタブロモジフェ							6.7		10	4	5		5	5	5	8	6	9
	ニルエーテル類							υ./		10	4	J		J	٥	٥	٥	O	9
	[14-5] オクタブロモジフェ							3.6		4	3	3		4	5	6	8	6	7
	ニルエーテル類							ں.ں		+	ر	ر		, -	,	·		U	<i>'</i>
	[14-6] ノナブロモジフェニ							13		10	9	9		10	9	14	20	20	20
	ルエーテル類			_		_	_	ر د	-	10				10		1-7	20	20	20
	[14-7] デカブロモジフェニ							74		97	80	50		60	70	100	80	80	70
	ルエーテル							, '		- '					,,	- 50			,,
[15]	ペルフルオロオクタンスル								7.4	9.6	4	3		2	2	3	4		2
	ホン酸 (PFOS)																		
[16]	ペルフルオロオクタン酸								9.9	9.9	14	13		3	3.4	2	4		2
[17]	(PFOA) ペンタクロロベンゼン						61			0.7	1	2.7	26	3.1	4.0	5.1	1	5	1
[17]	ハングソロロハンビン						61			U./	1	2.1	26	3.1	4.0	3.1	1	ر	1

物質	那木牡布粉质								生华	勿(pg	g/g-we	t)							
調査 番号	調査対象物質	'02	'03	'04	'05	'06	'07	'08	'09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
[18]	エンドスルファン類(参考) [18-1] a-エンドスルファン (参考) [18-2] β-エンドスルファン (参考)										20 4	24		20 6	38 11				
	1,2,5,6,9,10-ヘキサブロモシクロドデカン類 [19-1] α-1,2,5,6,9,10-ヘキサブロモシクロドデカン [19-2] β-1,2,5,6,9,10-ヘキサブ										70	20		10	10	9	9	9	9
[19]	ロモシクロドデカン [19-3] _{y-1,2,5,6,9,10} -ヘキサブ ロモシクロドデカン										40 80	10		10	10	8 9	9	8	9
	[19-4] δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考) [19-5] ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										60 60	20 20		10 10	10 10				
[20]	総ポリ塩化ナフタレン※						11	10							18	19	12	12	15
[21]	ヘキサクロロブタ-1,3-ジエ ン(参考)						12						3.7						
[22]	ペンタクロロフェノール並 びにその塩及びエステル類 [22-1] ペンタクロロフェノ ール [22-2] ペンタクロロアニソ ール															21	12 1	10	4
[23]	短鎖塩素化パラフィン類 [23-1] 塩素化デカン類 [23-2] 塩素化ウンデカン類 [23-3] 塩素化ドデカン類 [23-4] 塩素化トリデカン類		 				 	 	 	 						500 1,000 700 400	200 300 300 200	400 700 600 500	300 200 500 200
[24]	ジコホル ペルフルオロヘキサンスル ホン酸 (PFHxS) (参考)					36		48										10	10

⁽注 1) 「---」は比較対象なしを意味する。 (注 2) ※:検出下限値は、同族体ごとの検出下限値の合計とした。

表6-4 モニタリング調査における検出下限値の比較(大気)

衣0-4	4 モータリンク調宜に	. 401)	る疾	.ШІ	即刈	.V)) L	142		1)										
物質	377-1-11 67 17 55								大	気(pg/m³)								
調査	調査対象物質	'02	'03	'04	' 05	'06	'07	'08	'09	'10	'11	'12	'13	' 14	'15	'16	'17	'18	'19
番号						00	07	00	09		\perp	12	13	14	13	10	17	10	19
[1]	総 PCB※	33	2.2	0.98		0.3	0.13	0.3	0.26	2.5	5.9	8.5	6.5	1.4	2.0	2.7	2.3	0.8	0.8
[2]	HCB	0.3	0.78	0.37	0.03	0.07	0.03	0.08	0.2	0.7	0.75	1.4	1.3	0.5	0.2	0.3	0.2	0.2	0.06
[3]	アルドリン (参考)	0.020	0.0077	0.05	0.03	0.05	0.02	0.02	0.02					4					
[4]	ディルドリン (参考)	0.20	0.70	0.11	0.20	0.1	0.07	0.09	0.02		0.14			0.11					
[5]	エンドリン (参考)	0.03	0.014	0.048	0.20	0.10	0.04	0.04	0.04		0.04			0.07					
[0]	DDT 類(参考)	0.00	0.01	01010	0.20	0110	0.0.	0.0.	0.0.		0.0.			0.07					
		0.00	0.046	0.074	0.05	0.06	0.02	0.02	0.02	0.02			0.04		0.05			0.01	
	[6-1] p,p'-DDT(参考)												0.04		0.05			0.01	
	[6-2] p,p'-DDE(参考)		0.13										0.03		0.04			0.01	
[6]	[6-3] p,p'-DDD(参考)	0.006	0.018	0.018	0.05	0.04	0.004	0.009	0.01	0.01			0.007		0.11			0.03	
	[6-4] o,p'-DDT(参考)	0.05	0.04	0.031	0.03	0.03	0.01	0.01	0.008	0.05			0.018		0.04			0.01	
	[6-5] o,p'-DDE(参考)	0.01	0.0068	0.012	0.02	0.03	0.007	0.009	0.006	0.01			0.009		0.06			0.02	
	[6-6] o,p'-DDD(参考)	0.007	0.014	0.048	0.03	0.03	0.02	0.01	0.01	0.01			0.02		0.07			0.03	
	クロルデン類 (参考)	0.007	0.01	0.0.0	0.00	0.00	0.02	0.01	0.01	0.01			0.02		0.07			0.00	
	[7-1] cis-クロルデン (参考)	0.20	0.17	0.10	0.05	0.04	0.04	0.05	0.06	0.2	0.42	0.51	0.2			0.2			
											0.42		0.2			0.3			
	[7-2] trans-クロルデン(参考)	0.20	0.29	0.23	0.1	0.06	0.05	0.06	0.05	0.4	0.53	0.7	0.3			0.3			
[7]	[7-3]オキシクロルデン(参	0.008	0.015	0.042	0.05	0.08	0.02	0.01	0.02	0.01	0.03	0.03	0.01			0.06			
	考)	3.000	0.013	J.U-72	0.03	0.00	0.02	0.01	0.02	0.01	0.03	0.03	0.01	-	-	0.00	_	_	_
	[7-4] <i>cis</i> -ノナクロル(参考)	0.010	0.0088	0.024	0.03	0.05	0.01	0.01	0.02	0.04	0.051	0.05	0.02			0.05			
	[7-5] trans-ノナクロル(参考)		0.12								0.35		0.2			0.2			
	ヘプタクロル類 (参考)			-															
	[8-1] ヘプタクロル (参考)	0.04	0.085	0.079	0.05	0.04	0.03	0.02	0.01	0.04	വ വരവ	0.14	0.05		0.06	0.08			
	L- 1	0.04	0.065	0.076	0.03	0.04	0.03	0.02	0.01	0.04	0.099	0.14	0.05		0.00	0.00			
[8]	[8-2] <i>cis</i> -ヘプタクロルエポ		0.0048	0.017	0.04	0.04	0.01	0.008	0.01	0.01	0.01	0.02	0.01		0.2	0.05			
	キシド (参考)												b						
	[8-3] <i>trans</i> -ヘプタクロルエ		0.033	0.2	0.05	0.1	0.06	0.06	0.05	0.06	0.05	0.05	0.05		0.01	0.1			
	ポキシド (参考)		0.033	0.2	0.03	0.1	0.00	0.00	0.03	0.00	0.03	0.03	0.03		0.01	0.1			
	トキサフェン類(参考)																		
	[9-1] Parlar-26(参考)		0.066	0.066	0.1	0.6	0.2	0.08	0.09									0.2	
[9]	[9-2] Parlar-50(参考)		0.27	0.4	0.2	0.5	0.1	0.09	0.1									0.2	
	[9-3] Parlar-62(参考)			0.81		3	0.6	0.6	0.6									0.2	
F101								_			_							_	
[10]	マイレックス (参考)		0.0028	0.017	0.03	0.04	0.01	0.01	0.006		0.01							0.01	
	HCH 類										,								
	[11-1] α-HCH									•	0.83				0.06				0.05
[11]	[11-2] <i>β</i> -HCH										0.13						0.04		0.02
	[11-3] γ-HCH 別名:リンデン)								0.02	0.12	0.52	0.32	0.7	0.06	0.06	0.07	0.04		0.05
	[11-4] δ-HCH								0.02	0.02	0.021	0.03	0.03	0.06	0.05	0.08	0.03		0.02
[12]	クロルデコン (参考)									0.02	0.02								
	ヘキサブロモビフェニル類																		
[13]	(参考)									0.1	0.1				0.02				
	ポリブロモジフェニルエー																		
	テル類 (臭素数が 4 から 10																		
	までのもの)						ļ					l		ļ ,		<u> </u>	ļ		ļ
	[14-1] テトラブロモジフェ								0.04	0.05	0.47	0.1		0.09	0.1	0.2	0.05	0.02	0.01
	ニルエーテル類		I	-				-	0.04	0.03	U.T/	0.1		0.07	0.1	0.2	0.03	0.02	0.01
	一/ / / / / / / /																	0.00	
1	[14-2] ペンタブロモジフェ								0.00	0.05	0.00	0.00		0.00	0.2	0.3	0.04		
									0.06	0.05	0.06	0.06		0.09	0.2	0.2	0.04	0.08	0.05
	[14-2] ペンタブロモジフェ ニルエーテル類																		
[1/1]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ										0.06			0.09	0.2	0.2	0.04	0.08	
[14]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類																		
[14]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ																		0.05
[14]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類								0.09	0.06	0.05	0.1		0.1	0.4	0.2	0.1	0.06	0.05
[14]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ								0.09	0.06 0.1	0.05	0.1		0.1	0.4	0.2	0.1	0.06	0.05
[14]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類								0.09	0.06 0.1	0.05	0.1		0.1	0.4	0.2	0.1	0.06	0.05
[14]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ								0.09 0.1 0.1	0.06 0.1 0.06	0.05 0.1 0.08	0.1 0.2 0.1		0.1 0.2 0.1	0.4 0.4 0.4	0.2 0.4 0.2	0.1 0.2 0.07	0.06 0.08 0.04	0.05 0.1 0.1
[14]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類								0.09	0.06 0.1	0.05	0.1		0.1	0.4	0.2	0.1	0.06	0.05
[14]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類								0.09 0.1 0.1 0.6	0.06 0.1 0.06 1.2	0.05 0.1 0.08 0.4	0.1 0.2 0.1 0.4		0.1 0.2 0.1	0.4 0.4 0.4 1.1	0.2 0.4 0.2 0.5	0.1 0.2 0.07 0.2	0.06 0.08 0.04 0.2	0.05 0.1 0.1 0.1
[14]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ								0.09 0.1 0.1	0.06 0.1 0.06	0.05 0.1 0.08	0.1 0.2 0.1		0.1 0.2 0.1	0.4 0.4 0.4	0.2 0.4 0.2	0.1 0.2 0.07	0.06 0.08 0.04	0.05 0.1 0.1
[14]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカプロモジフェニ ルエーテル								0.09 0.1 0.1 0.6	0.06 0.1 0.06 1.2	0.05 0.1 0.08 0.4	0.1 0.2 0.1 0.4		0.1 0.2 0.1	0.4 0.4 0.4 1.1	0.2 0.4 0.2 0.5	0.1 0.2 0.07 0.2	0.06 0.08 0.04 0.2	0.05 0.1 0.1 0.1
[14]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル								0.09 0.1 0.1 0.6	0.06 0.1 0.06 1.2	0.05 0.1 0.08 0.4	0.1 0.2 0.1 0.4		0.1 0.2 0.1 1 3	0.4 0.4 0.4 1.1	0.2 0.4 0.2 0.5	0.1 0.2 0.07 0.2	0.06 0.08 0.04 0.2	0.05 0.1 0.1 0.1
	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル ホン酸 (PFOS)				 	 			0.09 0.1 0.1 0.6 5	0.06 0.1 0.06 1.2 9.1	0.05 0.1 0.08 0.4 4.0	0.1 0.2 0.1 0.4 5		0.1 0.2 0.1 1 3	0.4 0.4 0.4 1.1 0.7	0.2 0.4 0.2 0.5	0.1 0.2 0.07 0.2 0.8	0.06 0.08 0.04 0.2 0.8	0.05 0.1 0.1 0.1 0.1
[15]	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル ホン酸 (PFOS)					 			0.09 0.1 0.1 0.6 5	0.06 0.1 0.06 1.2 9.1 0.1	0.05 0.1 0.08 0.4 4.0 0.2	0.1 0.2 0.1 0.4 5		0.1 0.2 0.1 1 3 0.06	0.4 0.4 0.4 1.1 0.7 0.06	0.2 0.4 0.2 0.5 1 0.2	0.1 0.2 0.07 0.2 0.8	0.06 0.08 0.04 0.2 0.8	0.05 0.1 0.1 0.1 0.1 0.3
	[14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル ホン酸 (PFOS)	 			 	 			0.09 0.1 0.1 0.6 5	0.06 0.1 0.06 1.2 9.1	0.05 0.1 0.08 0.4 4.0	0.1 0.2 0.1 0.4 5		0.1 0.2 0.1 1 3	0.4 0.4 0.4 1.1 0.7	0.2 0.4 0.2 0.5	0.1 0.2 0.07 0.2 0.8	0.06 0.08 0.04 0.2 0.8	0.05 0.1 0.1 0.1 0.1
[15]	[14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類 [14-5] オクタブロモジフェニルエーテル類 [14-6] ノナブロモジフェニルエーテル類 [14-7] デカブロモジフェニルエーテル ペルフルオロオクタンスルホン酸 (PFOS) ペルフルオロオクタン酸 (PFOA)	 				 			0.09 0.1 0.1 0.6 5	0.06 0.1 0.06 1.2 9.1 0.1	0.05 0.1 0.08 0.4 4.0 0.2	0.1 0.2 0.1 0.4 5 0.2		0.1 0.2 0.1 1 3 0.06	0.4 0.4 0.4 1.1 0.7 0.06	0.2 0.4 0.2 0.5 1 0.2	0.1 0.2 0.07 0.2 0.8 0.1	0.06 0.08 0.04 0.2 0.8	0.05 0.1 0.1 0.1 0.1 0.3

物質	细木牡布胁所								大	c気(j	og/m³)								
調査 番号	調査対象物質	'02	'03	'04	'05	'06	'07	'08	, 09	'10	' 11	'12	'13	'14	' 15	'16	'17	'18	'19
[18]	エンドスルファン類(参考) [18-1] α-エンドスルファン (参考)										4.0	5.3		0.3	0.3	0.3			
	[18-2] β-エンドスルファン (参考)										0.39	0.4		0.4	0.2	0.3			
	1,2,5,6,9,10-ヘキサブロモ シクロドデカン類																		
	[19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.2		0.4	0.3	0.1	0.1		0.1
[19]	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.1		0.3	0.3	0.1	0.1		0.08
,	[19-3] γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.1		0.4	0.3	0.1	0.1		0.2
	[19-4] δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)											0.2		0.6	0.6				
	[19-5] ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)											0.2		0.3	0.3				
[20]	総ポリ塩化ナフタレン※							1.3						1.0		0.28	0.24	0.2	0.2
[21]	ヘキサクロロブタ-1,3-ジエ ン														11	20	20	10	20
	ペンタクロロフェノール並 びにその塩及びエステル類																		
[22]	[22-1] ペンタクロロフェノ ール															0.2	0.2	0.2	0.2
	[22-2] ペンタクロロアニソ ール															0.4	0.5	0.4	0.1
	短鎖塩素化パラフィン類																		
	[23-1] 塩素化デカン類															110	50	60	100
[23]																240	60	40	100
	[23-3] 塩素化ドデカン類															170	30	40	90
50.45	[23-4] 塩素化トリデカン類															120	40	70	80
[24]	ジコホル															0.2			0.2
[25]	ペルフルオロヘキサンスル ホン酸 (PFHxS) (参考)																		

⁽注 1) 「---」は比較対象なしを意味する。 (注 2) ※:検出下限値は、同族体ごとの検出下限値の合計とした。

表 7-1 モニタリング調査における定量下限値の比較(水質)

表 7-	1 モニタリング調査に	-D1,	しつか	三里	1124	1000	上較	(水質	<i>!)</i>										
物質	error to the first of the								7.	火質(pg/L)								
調査	調査対象物質	·02	'03	'04	'05	'06	'07	'08	.09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
番号	WA DODAY																		
[1]	総 PCB※	7.4	9.4	9.4	10	9	7.6	7.8	10	73	4.5	44	25	8.2	21	8.4	16	14	12
[2]	HCB マルドルン(会类)	0.6	5	30	15	16	8	3	0.5	13	5	2.2	7	0.9	1.8	0.9	2.1	1.5	8
[3]	アルドリン (参考)	0.6	0.6	2	0.9	1.7	1.0	1.4	0.7										
[4]	ディルドリン (参考)	1.8	0.7	2	1.0	3	2.1	1.5	0.6		1.6			0.5					
[5]	エンドリン (参考)	6.0	0.7	2	1.1	1.3	1.9	3	0.7		1.6			0.5					
	DDT 類(参考)		_	_															
	[6-1] p,p'-DDT(参考)	0.6	3	6	4	1.9	1.7	1.2	0.15	2.4				0.4					
	[6-2] p,p'-DDE(参考)	0.6	4	8	6	7	4	1.1	1.1	2.3				0.5					
[6]	[6-3] p,p'-DDD (参考)	0.24	2	3	1.9	1.6	1.7	0.6	0.4	0.20		,		1.0					
	[6-4] o,p'-DDT(参考)	1.2	3	5	3	2.3	2.5	1.4	0.16	1.5				0.4					
	[6-5] o,p'-DDE(参考)	0.9	0.8	2	1.2	2.6	2.3	0.7	0.22	0.24				0.3					
	[6-6] o,p'-DDD(参考)	0.60	0.8	2	1.2	0.8	0.8	0.8	0.22	0.6				0.20					
	クロルデン類 (参考)																		
	[7-1] cis-クロルデン (参考)	0.9	3	6	4	5	4	1.6	1.1	11	1.4	1.6	2.7				2		
	[7-2] trans-クロルデン(参	1.5	5	5	4	7	2.4	3	0.8	13	1.0	2.5	3				3		
	考)	1.5	J	,	4	,	2.4	3	0.0	13	1.0	2.3	3				3		
[7]	[7-3] オキシクロルデン(参	1.2	2	2	1.1	2.8	6	1.9	1.1	0.7	1.3	0.9	0.9				4		
	考)	1.2			1.1	2.0	·	1.9	1.1	0.7	1.5	0.9	0.9				7		
	[7-4] <i>cis</i> -ノナクロル (参考)	1.8	0.3	0.6	0.5	0.8	2.4	0.9	0.3	1.3	0.6	0.8	0.8				1.5		
	[7-5] trans-ノナクロル(参	1.2	2	4	2.5	3.0	5	1.6	1.0	8	1.3	1.5	1.5				3		
	考)	1.2	2	4	2.3	3.0	٥	1.0	1.0	٥	1.3	1.3	1.3				3		
	ヘプタクロル類 (参考)																		
	[8-1] ヘプタクロル (参考)	1.5	2	5	3	5	2.4	2.1	0.8	2.2	1.3			0.5			3		
101	[8-2] cis-ヘプタクロルエポ		0.7	_	0.7	2.0	1.0	0.6	0.5	0.4	0.7			0.5			1.0		
[8]	キシド (参考)		0.7	2	0.7	2.0	1.3	0.6	0.5	0.4	0.7			0.5			1.6		
	[8-3] <i>trans</i> -ヘプタクロルエ		2	0.0	0.7	1.0	20	1.0	0.7	1.2	0.0			0.0			22		
	ポキシド (参考)		2	0.9	0.7	1.8	2.0	1.9	0.7	1.3	0.8			0.8			2.3		
	トキサフェン類 (参考)																		
101	[9-1] Parlar-26(参考)		40	9	10	16	20	8	5									4	
[9]	[9-2] Parlar-50(参考)		70	20	20	16	9	7	7									6	
	[9-3] Parlar-62(参考)		300	90	70	60	70	40	40									40	
[10]	マイレックス (参考)		0.3	0.4	0.4	1.6	1.1	0.6	0.4		0.5							0.7	
	HCH 類																		
	[11-1] α-HCH	0.9	3	6	4	3	1.9	4	1.2	4	7	1.4	7	4.5	1.2	1.1	0.9		4
[11]	[11-2] β-HCH	0.9	3	4	2.6	1.7	2.7	1.0	0.6	2.0	2.0	1.4	7	1.0	1.2	1.2	1.8		3
	[11-3] γ-HCH 別名: リンデン)		7	20	14	18	2.1	3	0.6	6	3	1.3	2.7	1.2	0.9	0.8	1.4		4
	[11-4] δ-HCH		2	2	1.5	2.0	1.2	2.3	0.9	0.8	0.4	1.1	1.1	0.4	0.3	0.8	1.0		1.0
[12]	クロルデコン (参考)							0.14		0.09	0.20								
[12]	ヘキサブロモビフェニル類								0.51	3	2.2								
[13]	(参考)								~2.1	J	۷.۷								
	ポリブロモジフェニルエー																		
	テル類 (臭素数が4から10																		
	までのもの)											į			į.				
	[14-1] テトラブロモジフェ								8	9	4	4		8	3.6	5	9	13	11
	ニルエーテル類		-	-	-	_		_	U	,	7	_	_	Ü	5.0	,		ر د	11
	[14-2] ペンタブロモジフェ								11	3	3	2		4	6.3	2.4	3	9	6
	ニルエーテル類				-				11	J	,	-		, T	0.5	2.7	,	,	9
	[14-3] ヘキサブロモジフェ								1.4	4	3	3		4	1.5	2.1	7	3	2
[14]	ニルエーテル類								1.7	-T				T	1.5	2.1	,	ی	_
	[14-4] ヘプタブロモジフェ								4	3	6	4		8	2.0	7	14	8	4
	ニルエーテル類		-	-	-	_		-	_	٠		7			2.0	. '	1-7	U	. 7
	[14-5] オクタブロモジフェ								1.4	3	2	4		1.6	1.5	0.8	2	3	3
	ニルエーテル類								1.7	J	-	7		1.0	1.5	0.0	-	ر	٥
	[14-6] ノナブロモジフェニ								91	21	10	40		6	6	4	7	6	8
	ルエーテル類)								71	۷1	10			J	U		,	U	٥
	[14-7] デカブロモジフェニ								600	300	60	660		22	18	14	24	11	14
	ルエーテル								000	200	00	000		- 44	10	14	24	11	14
[15]	ペルフルオロオクタンスル								37	50	50	31		50	29	50		70	80
[15]	ホン酸 (PFOS)								3/	30	30	31		30	29	30		/U	<i>8</i> 0
[16]	ペルフルオロオクタン酸								59	60	50	170		50	56	50		70	90
[10]	(PFOA)								Jy	00	50	1/0		20	20	50		/0	<i>5</i> U
[17]	ペンタクロロベンゼン						3,300			4	2.4	3	4	0.8	1.5		1.4	1.3	6

物質	部本业在船后								7.	k質 ((pg/L)								
調査番号	調査対象物質	'02	'03	'04	'05	'06	'07	'08	·09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
	エンドスルファン類(参考)																		
[18]	[18-1] α-エンドスルファン (参考)										120	27						120	
	[18-2] β-エンドスルファン																		
	(参考)										22	24						30	
	1,2,5,6,9,10-ヘキサブロモ																		
	シクロドデカン類(参考)																		
	[19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										1,500			1,500					
	[19-2] β-1,2,5,6,9,10-ヘキサブ										1,300			500					
[19]	ロモシクロドデカン (参考)										1,300			500					
[17]	[19-3] γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										1,200			700					
	[19-4] δ-1,2,5,6,9,10-ヘキサブ																		
	ロモシクロドデカン (参考)										790			600					
	[19-5] ε-1,2,5,6,9,10-ヘキサブ										740			400					
	ロモシクロドデカン (参考)										, 10			100					
[20]	総ポリ塩化ナフタレン※							85											24
[21]	ヘキサクロロブタ-1,3-ジエン (参考)						870						94						
	ペンタクロロフェノール並																		
	びにその塩及びエステル類																		
[22]	[22-1] ペンタクロロフェノ														260		30	24	60
[22]	ール														200		50	- '	00
	[22-2] ペンタクロロアニソ																14	16	30
	短鎖塩素化パラフィン類																		
	[23-1] 塩素化デカン類																3,300	1,000	600
[23]																	1,500	2,000	1,400
	[23-3] 塩素化ドデカン類																3,300	3,000	1,000
	[23-4] 塩素化トリデカン類																3,600	4,500	1,300
[24]	ジコホル							25											13
[25]	ペルフルオロヘキサンスル ホン酸 (PFHxS)																	120	60
()	2002 年度の定量下限値は ID		, / a						B	7 (-10) 7		1							

⁽注 1) 2002 年度の定量下限値は IDL の 3 倍、2003 年度から 2005 年度の定量下限値は MDL の 3 倍、2006 年度以降の定量下限値は MDL 測定時に得られた標準偏差の 10 倍である。 (注 2 「---」は比較対象なしを意味する。 (注 3) ※: 定量下限値は、同族体ごとの検出下限値の合計とした。

表 7-2 モニタリング調査における定量下限値の比較(底質)

表 7-	-2 モニタリング調査に	おり	プログ	三重	` 限個	100日	匕蚁	(低貨	(j)										
物質	-male 11 de d1 PP								底	質(pg	g/g-dry	y)							
調査	調査対象物質	'02	'03	'04	'05	·06	'07	'08	,09	'10	' 11	'12	'13	'14	'15	'16	'17	'18	'19
番号	(0) = >																		
[1]	総 PCB※	10	10	7.9	6.3	4	4.7	3.3	5.1	660	12	51	44	61	62	53	14	170	8.5
[2]	HCB アルドリン(参考)	0.9	4	7	3	2.9	5	2.0	1.8	3	7	3	5.3	6	3	3	3	1.3	0.9
[3]		6	2	2	1.4	1.9	1.8	3	0.5									1.6	
[4]	ディルドリン (参考)	3	4	3	3	2.9	2.7	1.2	0.8		5							1.6	
[5]	エンドリン (参考)	6	5	3	2.6	4	5	1.9	1.6		1.1							2.4	
	DDT 類(参考)		_	_	1.0		1.0	1.0	1.0	2.0				0.4					
	[6-1] p,p'-DDT(参考)	6	2	2	1.0	1.4	1.3	1.2	1.0	2.8				0.4					
	[6-2] p,p'-DDE(参考)	2.7	0.9	3	2.7	1.0	1.1	1.7	0.8	5				1.8					
[6]	[6-3] p,p'-DDD(参考)	2.4	0.9	2	1.7	0.7	1.0	1.0	0.4	1.4				4.2					
	[6-4] o,p'-DDT (参考)	6	0.8	2	0.8	1.2	1.8	1.5	1.2	1.1				0.4					
	[6-5] o,p'-DDE(参考)	3	0.6	3	2.6	1.1	1.2	1.4	0.6	1.2				0.8					
	[6-6] o,p'-DDD(参考)	6	2	2	1.0	0.5	1.0	0.3	0.5	0.9				1.2					
	クロルデン類(参考)																		
	[7-1] cis-クロルデン (参考)	0.9	4	4	1.9	2.4	5	2.4	0.7	6	1.1	2.9	2.0				4.8		
	[7-2] trans-クロルデン (参	1.8	4	3	2.3	1.1	2.2	2.0	1.7	11	1.3	4.0	1.8				4		
	考)																		
[7]	[7-3] オキシクロルデン(参	1.5	1	3	2.0	2.9	2.5	3	2	1.0	2.2	1.7	1.3				3		
	考)																		
	[7-4] cis-ノナクロル (参考)	2.1	3	2	1.9	1.2	1.6	0.6	1.0	0.9	1.1	3	0.7				1.7		
	[7-5] trans-ノナクロル (参	1.5	2	2	1.5	1.2	1.7	2.2	0.9	6	0.8	2.4	1.2				6		
	考)																		
	ヘプタクロル類(参考)													l					
	[8-1] ヘプタクロル(参考)	1.8	3	3	2.5	1.9	3.0	4	1.1	1.1	1.8			1.5			0.9		
[8]	[8-2] <i>cis</i> -ヘプタクロルエポ		3	6	7	3.0	3	2	0.7	0.8	0.6			0.5			1.2		
	キシド (参考)																		
	[8-3] trans-ヘプタクロルエ		9	4	5	7	10	1.7	1.4	3	2.3			0.7			2.0		
-	ポキシド (参考) トキサフェン類 (参考)																		
			00	CO	CO	10	7	10	10									0	
[9]	[9-1] Parlar-26(参考) [9-2] Parlar-50(参考)		90 200	60 60	60 90	12 24	7 30	12 17	10 12									8	
	[9-2] Parlar-30(参考) [9-3] Parlar-62(参考)							90											
[10]	[9-3] Pariar-62 (参考) マイレックス (参考)		4,000 2	2,000	2,000	0.6	300	0.7	80		0.9							50 0.8	
[10]					0.9	0.0	0.9	0.7	1.0		0.9							0.8	
	HCH 類 [11-1] α-HCH	1.2	2	2	1.7	5	1.8	1.6	1.1	2.0	1.5	1.6	1.5	2.4	0.7	0.9	0.5		1.1
[11]	[11-1] α-HCH [11-2] β-HCH	0.9	2	3	2.6	1.3	0.9	0.8	1.1	2.4	3	1.5	0.4	0.9	0.7	0.9	1.5		1.1
[11]	[11-2] p-HCH 別名: リンデン)		2	2	2.0	2.1	1.2	0.9	0.6	2.0	3	1.3	0.6	2.7	0.5	0.8	1.0		1.0
	[11-4] δ-HCH		2	2	1.0	1.7	5	2	1.2	1.2	1.4	0.8	0.3	0.4	0.5	0.5	0.6		0.5
[12]	クロルデコン (参考)							0.42		0.4	0.40								
	ヘキサブロモビフェニル類								0.11						<u> </u>				
[13]	(参考)								~	1.5	3.6				0.8				
-	ポリブロモジフェニルエー								0.38			_							<u> </u>
	テル類 (臭素数が 4 から 10																		
	までのもの)																		
	[14-1] テトラブロモジフェ						!						<u>.</u>				!		
	ニルエーテル類								69	6	30	2		27	21	33	9	18	5
	[14-2] ペンタブロモジフェ							•											
	ニルエーテル類								24	5	5	2.4		6	18	12	9	4	3
	[14-3] ヘキサブロモジフェ							•						i		İ			
[141	ニルエーテル類								5	4	9	3		5	3	8	6	3	4
[1.7]	[14-4] ヘプタブロモジフェ															1			
	ニルエーテル類								9	4	7	4		16	3	6	15	14	6
	[14-5] オクタブロモジフェ													İ		İ .	_		_
	ニルエーテル類								1.2	10	10	19		12	48	6	5	1.2	3
	· · · · · · · · · · · · · · · · · · ·						•												
	[14-6] ノナブロモジフェニ								9	24	23	34		60	24	27	15	5	5
	-																		
	ルエーテル類																		
	-								60	220	40	270		240	40	120	30	42	4
	ルエーテル類 [14-7] デカブロモジフェニ																		
[15]	ルエーテル類 [14-7] デカブロモジフェニ ルエーテル								60 9.6	220 5	40 5	270 9		240	40	120	30	42 7	4 9
-	ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル								9.6	5	5	9		5	3	5		7	9
[15] [16]	ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル ホン酸 (PFOS)																		
-	ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル ホン酸 (PFOS) ペルフルオロオクタン酸								9.6	5	5	9		5	3	5		7	9

物質									底	質(pg	g/g-dry	_/)							
調査 番号	調査対象物質	'02	'03	'04	'05	'06	'07	.08	' 09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
	エンドスルファン類(参考) [18-1] α-エンドスルファン																		
[18]	(参考)										30	13						5	
	[18-2] β-エンドスルファン (参考)										9	13						5	
	1,2,5,6,9,10-ヘキサブロモ																		
	シクロドデカン類 (参考) [19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										280	180			150	130			
[10]	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										170	150			150	130			
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										260	160			110	150			
	[19-4] δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										250	300			180				
	[19-5] ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										210	150			130				
[20]	総ポリ塩化ナフタレン※							84								59	27	8.5	7.3
[21]	ヘキサクロロブタ-1,3-ジエ ン (参考)						22						9.9						
	ペンタクロロフェノール並 びにその塩及びエステル類																		
[22]	[22-1] ペンタクロロフェノ ール																4	18	6
	[22-2] ペンタクロロアニソ ール																5	27	2.1
	短鎖塩素化パラフィン類																		
	[23-1] 塩素化デカン類																		2,000
[23]	[23-2] 塩素化ウンデカン類																1 1	1	2,000
	[23-3] 塩素化ドデカン類																1	1	2,000
[24]	[23-4] 塩素化トリデカン類 ジコホル							160									12,000		-
[24]	ペルフルオロヘキサンスル							160											4
[25]	ホン酸 (PFHxS)																	11	13

⁽注 1) 2002 年度の定量下限値は IDL の 3 倍、2003 年度から 2005 年度の定量下限値は MDL の 3 倍、2006 年度以降の定量下限値は MDL 測定時に得られた標準偏差の 10 倍である。 (注 2 「---」は比較対象なしを意味する。 (注 3) ※: 定量下限値は、同族体ごとの検出下限値の合計とした。

表 7-3 モニタリング調査における定量下限値の比較(生物)

接受けられて	表 7-	3 モニタリング調査に	おり	「台江	三重	》、別人	直の片	上 較	(生物											
会子 一切 できまります。 では、 では、 では、 では、 では、 では、 では、 では、 では、 では、	物質	细木牡布肿质								生物	物(pg	g/g-we	t)							
WPCB性 35		調宜对象物質	' 02	'03	'04	'05	'06	'07	'08	·09	'10	'11	'12	'13	'14	'15	'16	'17	'18	·19
18 18 18 18 18 18 18 18	_	₩ pcp ₩																	$\overline{}$	
1 一次ドリン(参)								_							_		_			
1																-				
1																-				
DOTE (参生)																				
Figure 1	[2]		10	1.0	12	1,	- 1 1					-								
1 日 1			42	11	32	5.1	6	5	5	3	3			33		l			3	
10 16 13 19 10 10 10 10 10 10 10										-										
1 日 1	[6]				ž.			i .												
1	[0]														Ī	l				
1		_																		
カロルデン短(参考) (ア-1)になりロルデン(参考 キ) (ア-2) trans-クロルデン(参考 キ) (ア-3) なきのレルデン(参考 (ア-4) はな・ナクロル(参考) (ア-4) はな・ナクロル(参考) (ア-4) はな・ナクロル(参考) (ア-4) はな・ナクロル(参考) (ア-4) はな・ナクロル(参考) (ア-4) はな・ナクロル(参考) (ア-4) はな・ナクロル(参考) (ア-4) はな・ナクロル(参考) (ア-4) はな・ナクロル(参考) (ア-4) はな・ナクロルエ参考) (ア-4) はな・ナクロルエ参考 (ア-4) はな・ナクロルエ参考 (ア-4) はな・ナクロルエ参考 (ア-4) はな・ナクロルエ参考 (ア-4) はな・ナクロルエのルを (ア-4) はな・ナクタのは、ケーム (ア-4) はな・ナクロルエのルを (ア-4) はな・ナクタのは、ケーム (ア-4) はな・ナクタのは、ケーム (ア-4) はな・ナクタのは、ケーム (ア-4) はないかにはないかにはないかにはないかにはないかにはないかにはないかにはないかに							4		4		0.6			1.8					2.4	
Full Display 日かデン (参考) 24 39 18 12 4 5 5 4 4 5 5 4 4 5 5																				
F			2.4	3.9	18	12	4	5	5	4	4	3	5	13			3			
# 会)									_		_	,	_			•				
## (1) 1-1 1-2 1-2 1-3 1			2.4	7.2	48	10	4	6	7	4	3	4	7	16			6			
下分 「日本の子サクロル(参考)	[7]	[7-3]オキシクロルデン(参	26	0.1	0.2	0.2	7	_	7	4	o	2	2	2			2			
Post Post		考)	3.0	0.4	9.2	9.3	,	U	,	4	0	٥	ی	3			٥			
(四) (本) (本) (本) (本) (本) (本) (本) (本) (*			1.2	4.8	3.4	4.5	3	3	4	3	3	1.8	2	2.2			1.4			
密子 マインタクロル類(参考) 日本 日本 日本 日本 日本 日本 日本 日			2.4	3.6	13	62	3	7	6	3	4	3	4	10			3			
Rel ハブタクロル (参考) 42 66 41 61 61 62 63 63 73 73 74 73 75 75 75 75 75 75 75					10	0.2		ŕ	Ů		·			-10			Ü			
B8-2 cis-ベブタクロルエボ		721 12														Į.				
おシド(参考)			4.2	6.6	4.1	6.1	6	6	6	5	3	3	4	3		3.0	2.4			
R-3 framsブタクロルエ ボキンド (参考)	[8]			6.9	9.9	3.5	4	4	5	3	2.4	2.0	1.5	2.1		2.1	1.9			
ボキシド(参考)																				
5 トキサフェン類(参考)				13	12	23	13	13	10	8	3	7	8	7		7	9			
Position Positio																				
19				15	12	47	10	10	0	7						22			21	
[9-3] Parlar-62(参考)	[9]						i									Ē				
IO マイレックス(参考)						-				-										
HCH類	[10]															_		_		
[11-1] α-HCH	[10]			2.1	2.5	3.0				2.1		1.,							1.1	
I11			4.2	1.8	13	11	3	7	6	5	3	3	3.7	3	3	3.0	3	3		4
[11-4] δ-HCH	[11]						3	7	6						-					
Tight クロルデコン (参考)				3.3	31	8.4	4	9	9	7	3	3	2.3	2.4	2.2	4.8	3	3		4
[13] ヘキサプロモビフェニル類				3.9	4.6	5.1	3	4	6	5	3	3	3	3	3	2.1	3	2.3		4
Table Ta	[12]	クロルデコン (参考)							5.6		5.9	0.5								
ポリプロモジフェニルエーテル類 [14-4] ヘプタプロモジフェニルエーテル類 [14-5] オクタプロモジフェニルエーテル類 [14-6] ノナプロモジフェニルエーテル類 [14-7] デカプロモジフェニルエーテル類 [14-7] デカプロモジフェニルエーテル類 [14-7] デカプロモジフェニルエーテル類 [14-7] デカプロモジフェニルエーテル類 [14-8] ハナーテル類 [14-8] ハナーテル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル類 [14-8] ハナーデル [14	F131	ヘキサブロモビフェニル類									1.9	3				14				
デル類 (臭素数が 4 から 10 までのもの) 14-11 テトラプロモジフェ ニルエーテル類	[13]	(参考)									~8	3				14				
までのもの) [14-1] テトラプロモジフェ 5.9 43 16 19 15 15 13 16 14 18 18 14-2] ペンタプロモジフェ 16 14 15 18 12 13 9 12 11 10 11 10 11 14 16 20 16 17 11 17 17 17 17 17 17 17 17 17 17 17																				
[14-1] テトラブロモジフェ																				
コルエーテル類															ļ	ļ				
[14-2] ペンタブロモジフェ 16 14 15 18 12 13 9 12 11 10 11 10 11 11 11 11 11 11 11 11 11									5.9		43	16	19		15	15	13	16	14	18
コルエーテル類 コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コ					•	•	•	•						•						
[14] [14-3] ヘキサブロモジフェ ニルエーテル類									16		14	15	18		12	13	9	12	11	10
[14] ニルエーテル類																				
[14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル [14-7] ペルフルオロオクタンスル ホン酸 (PFOS)	[141								14		8	10	10		10	12	21	17	21	21
ニルエーテル類	[14]																			
[14-5] オクタブロモジフェニュルエーテル類									18		30	11	12		12	12	13	22	15	24
ニルエーテル類													_							
[14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ									9.6		11	7	8		11	14	16	20	16	17
ルエーテル類									2-		20	22	a.		20	20	0 -		40	
Nエーテル									35		30	22	24		30	23	36	50	40	50
Nエーテル									222		270	222	122		170	170	200	210	240	100
15 ホン酸 (PFOS)	L	2 2							220		270	230	120		170	170	300	210	240	190
ポン酸 (PFOS) [16] ペルフルオロオクタン酸 25 26 41 38 10 10 4 12 3	[15]									10	25	10	7		5	1	a	12		6
[16] (PFOA) 25 26 41 38 10 10 4 12 3	[13]									17	23	10	′		ر	4	7	12		U
(PFOA)	[16]									25	26	41	38		10	10	4	12		3
[17] ベンタクロロベンセン 180 1.9 4 8.1 78 9.3 12 15 4 15 3																				
	[17]	ベンタクロロベンゼン						180			1.9	4	8.1	78	9.3	12	15	4	15	3

物質 調査	细木牡布胁所								生生	物(pg	g/g-we	t)							
調宜 番号	調査対象物質	'02	'03	'04	'05	'06	'07	'08	. 09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
	エンドスルファン類(参考)																		
[18]	[18-1] α-エンドスルファン (参考)										50	71		60	120				
	[18-2] β-エンドスルファン (参考)										11	14		19	32				
	1,2,5,6,9,10-ヘキサブロモ シクロドデカン類																		
	[19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン										170	50		30	30	22	24	23	24
5101	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン										98	40		30	30	21	23	22	24
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン										210	30		30	30	24	24	21	22
	[19-4] δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										140	50		30	30				
	[19-5] ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン (参考)										140	40		30	30				
[20]	総ポリ塩化ナフタレン※						27	26							54	57	33	36	40
[21]	ヘキサクロロブタ-1,3-ジエン(参考)						36						9.4						
	ペンタクロロフェノール並 びにその塩及びエステル類																		
[22]	[22-1] ペンタクロロフェノ ール															63	36	30	10
	[22-2] ペンタクロロアニソ ール															3	4	6	3
	短鎖塩素化パラフィン類																		
	[23-1] 塩素化デカン類										ļ Ì					1,300	500	1,200	900
[23]	[23-2] 塩素化ウンデカン類															3,000	800	1,800	500
	[23-3] 塩素化ドデカン類														7	2,100		,	
	[23-4] 塩素化トリデカン類															1,100	500		
[24]	ジコホル					92		120										30	30
[25]	ペルフルオロヘキサンスル ホン酸 (PFHxS) (参考)																		

⁽注 1) 2002 年度の定量下限値は IDL の 3 倍、2003 年度から 2005 年度の定量下限値は MDL の 3 倍、2006 年度以降の定量下限値は MDL 測定時に得られた標準偏差の 10 倍である。 (注 2 「---」は比較対象なしを意味する。 (注 3) ※: 定量下限値は、同族体ごとの検出下限値の合計とした。

表 7-4 モニタリング調査における定量下限値の比較(大気)

表 7-	4 モニタリング調査に	- <i>1</i> 01	しつり	二里	1124	重りした	比較	(大タ	<i>(</i>)										
物質	细木牡布地所								大	:気(j	pg/m³)								
調査 番号	調査対象物質	'02	'03	'04	'05	'06	'07	'08	'09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
留万 [1]	総 PCB※	99	6.6	2.9	0.38	0.8	0.37	0.8	0.75	7.3	18	26	20	4.1	5.9	7.8	7	2.4	2.1
[2]	HCB	0.9	2.3	1.1	0.38	0.8	0.37	0.8	0.73	1.8	2.3	4.3	3.8	1.4	0.5	0.8	0.5	0.4	0.14
[3]	アルドリン (参考)		0.023	_										12					
[4]	ディルドリン (参考)	0.60		0.33	0.5		0.18				0.42			0.34					
[5]	エンドリン (参考)	_	0.042				0.09				0.09			0.2					
. ,	DDT 類(参考)																		
	[6-1] p,p'-DDT(参考)	0.24	0.14	0.22	0.16	0.17	0.03	0.07	0.07	0.10			0.11		0.15			0.03	
	[6-2] p,p'-DDE(参考)	0.09	0.40	0.12	0.1	0.10	0.04	0.04	0.08	0.62			0.10		0.12			0.03	
[6]	[6-3] p,p'-DDD(参考)	0.018	0.054	0.053	0.16	0.13	0.011	0.025	0.03	0.02			0.018		0.33			0.07	
	[6-4] o,p'-DDT(参考)	0.15	0.12	0.093	0.10	0.09	0.03	0.03	0.019	0.14			0.054		0.12			0.03	
	[6-5] o,p'-DDE(参考)	0.03	0.020	0.037	0.07	0.09	0.013	0.025	0.016	0.04			0.023		0.18			0.05	
	[6-6] o,p'-DDD(参考)	0.021	0.042	0.14	0.10	0.10	0.024	0.04	0.03	0.03			0.05		0.20			0.07	
	クロルデン類 (参考)																		
	[7-1] cis-クロルデン (参考)	0.60	0.51	0.57	0.16	0.13	0.1	0.14	0.16	0.9	1.3	1.5	0.7			0.9			
	[7-2] trans-クロルデン(参	0.60	0.86	0.69	0.3	0.17	0.12	0.17	0.12	1.2	1.6	2.1	0.8			1.0			
[7]	考)							•											
[7]	[7-3]オキシクロルデン(参考)	0.024	0.045	0.13	0.16	0.23	0.1	0.04	0.04	0.03	0.07	0.08	0.03			0.16			
		0 030	0.026	0.072	0.08	0.15	0.03	0.03	0.04	0.11	0.15	0.12	0.07			0.14			
	[7-5] trans-ノナクロル (参										0.13	0.12	0.07			0.14			
	考)	0.30	0.35	0.48	0.13	0.10	0.09	0.09	0.07	0.8	1.1	1.2	0.5			0.7			
	ヘプタクロル類(参考)																		
	[8-1] ヘプタクロル (参考)	0.12	0.25	0.23	0.16	0.11	0.03	0.06	0.04	0.11	0.30	0.41	0.16		0.19	0.22			
[8]	[8-2] cis-ヘプタクロルエポ		0.015	0.052	0.12	Λ11	0.02	0.022	0.02	0.02	0.04	0.05	0.02		0.5	0.12			
[o]	キシド (参考)		0.013	0.032	0.12	0.11	0.03	0.022	0.03	0.02	0.04	0.03	0.03		0.3	0.12			
	[8-3] <i>trans</i> -ヘプタクロルエ		0.099	0.6	0.16	0.3	0 14	0.16	0 14	0.16	0.13	0.12	0.12		0.03	0.3			
	ポキシド (参考)		0.077	0.0	0.10	0.5	0.11	0.10	0.11	0.10	0.13	0.12	0.12		0.05	0.5			
	トキサフェン類(参考)																		
[9]	[9-1] Parlar-26 (参考)		0.20		0.3	1.8		0.22										0.4	
	[9-2] Parlar-50(参考)		0.81	1.2	0.6	1.6	0.3	0.25	0.3									0.5	
[10]	[9-3] Parlar-62(参考) マイレックス(参考)		1.6 0.0084	0.05	0.10	0.12	0.02	0.03	1.6 0.015		0.04							0.4	
[10]	HCH 類		0.0084	0.03	0.10	0.13	0.03	0.03	0.013		0.04							0.03	
	[11-1] α-HCH								0.12	1.4	2.5	2.1	5.2	0.19	0.17	0.17	0.08		0.12
[11]	[11-2] β-HCH												0.21				0.11		0.06
	[11-3] γ-HCH (別名:リンデン)								0.06	0.35	1.6	0.95	2.2	0.17	0.19	0.18	0.10		0.12
	[11-4] δ-HCH								0.04	0.05	0.063	0.07	0.08	0.19	0.15	0.20	0.08		0.04
[12]	クロルデコン (参考)									0.04	0.04								
[13]	ヘキサブロモビフェニル類									0.3	0.3				0.06				
. ~,	(参考)																		
	ポリブロモジフェニルエー テル類 (臭素数が4から10																		
	ブル類 (吴系数か4から IU までのもの)																		
	[14-1] テトラブロモジフェ														3		5	1	
	ニルエーテル類								0.11	0.12	0.18	0.3		0.28	0.4	0.4	0.15	0.05	0.04
	[14-2] ペンタブロモジフェ		•		•	•	1		0.1-	0.12	01-	0.1.	1	0.20			0.10	0.20	0.12
	ニルエーテル類								0.16	0.12	0.16	0.14		0.28	0.6	0.4	0.10	0.20	0.12
	[14-3] ヘキサブロモジフェ								0.22	0.16	0.14	0.3		0.4	1.1	0.6	0.3	0.17	0.13
[14]	ニルエーテル類								0.22	0.10	0.14	0.3		0.4	1.1	0.0	0.5	0.17	0.13
	[14-4] ヘプタブロモジフェ								0.3	0.3	0.3	0.5		0.7	1.3	1.1	0.4	0.20	0.3
	ニルエーテル類			•			•		0.0	0.5		0.0	-	· · · ·	1.5		· · · ·	5.20	
	[14-5] オクタブロモジフェ								0.3	0.15	0.20	0.3		0.4	1.1	0.6	0.21	0.11	0.3
	ニルエーテル類																	•	
	[14-6] ノナブロモジフェニ ルエーテル類								1.8	3.7	0.9	1.2		4	3.2	1.4	0.6	0.4	0.3
	ルエーアル _規 [14-7] デカブロモジフェニ		c.																
	ルエーテル								16	27	12	16		9	2.2	3	2.4	2.0	0.3
	ペルフルオロオクタンスル									_									
[15]	ホン酸 (PFOS)									0.4	0.5	0.5	0.3	0.17	0.19	0.6	0.3		0.8
[1.0]	ペルフルオロオクタン酸									0.5		0.7	10	0.1	4.0	1.0	2.2		0.0
[16]	(PFOA)									0.5	5.4	0.7	1.8	0.4	4.2	1.3	3.3		0.8
[17]	ペンタクロロベンゼン						12		6.4	1.2	2.1	1.8	1.7	1.9	0.6	0.5	0.3	0.22	0.09

物質	3117-1-1-2-1-1-55									c気(j	pg/m³))							
調査 番号	調査対象物質	'02	'03	'04	'05	'06	'07	,08	'09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
	エンドスルファン類(参考)																		
[18]	[18-1] α-エンドスルファン (参考)										12	16		0.8	1.0	0.8			
	[18-2] β-エンドスルファン (参考)										1.2	1.2		1.2	0.5	0.8			
	1,2,5,6,9,10-ヘキサブロモ シクロドデカン類																		
	[19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.6		1.2	0.9	0.3	0.3		0.3
	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.3		1.0	0.8	0.3	0.3		0.21
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.3		1.3	0.8	0.3	0.3		0.4
	[19-4] δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)											0.4		1.8	1.9				
	[19-5] ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)											0.6		0.9	0.9				
[20]	総ポリ塩化ナフタレン※	-						4.0						2.8		0.79	0.67	0.5	0.6
[21]	ヘキサクロロブタ-1,3-ジエ ン														29	60	60	30	50
	ペンタクロロフェノール並 びにその塩及びエステル類																		
[22]	[22-1] ペンタクロロフェノ ール															0.5	0.6	0.5	0.6
	[22-2] ペンタクロロアニソ ール															1.0	1.2	1.1	0.3
	短鎖塩素化パラフィン類																		
	[23-1] 塩素化デカン類															290	140	150	400
[23]	[23-2] 塩素化ウンデカン類															610	190	110	300
	[23-3] 塩素化ドデカン類															430	100	110	260
	[23-4] 塩素化トリデカン類															320	120	180	250
[24]	ジコホル															0.5			0.4
[25]	ペルフルオロヘキサンスル ホン酸 (PFHxS) (参考)																		

⁽注 1) 2002 年度の定量下限値は IDL の 3 倍、2003 年度から 2005 年度の定量下限値は MDL の 3 倍、2006 年度以降の定量下限値は MDL 測定時に得られた標準偏差の10倍である。

⁽注 2 「---」は比較対象なしを意味する。 (注 3) ※: 定量下限値は、同族体ごとの検出下限値の合計とした。

5. 経年分析の方法

2002年度から (調査開始の年度が異なるため物質・媒体により2003年度以降から) の調査結果が経年的な傾向が統計学的な有意差をもっているか、図2に示す手順の分析及びその分析結果に対する評価を、以下に示す方法により行った。

経年分析の対象とする地点とは、2019年度に調査が実施されている地点であり、かつ、それぞれの調査 物質において調査を開始してから2019年度までの期間内において2か年以上調査を実施していない地点を 除いたものを分析対象地点とした。

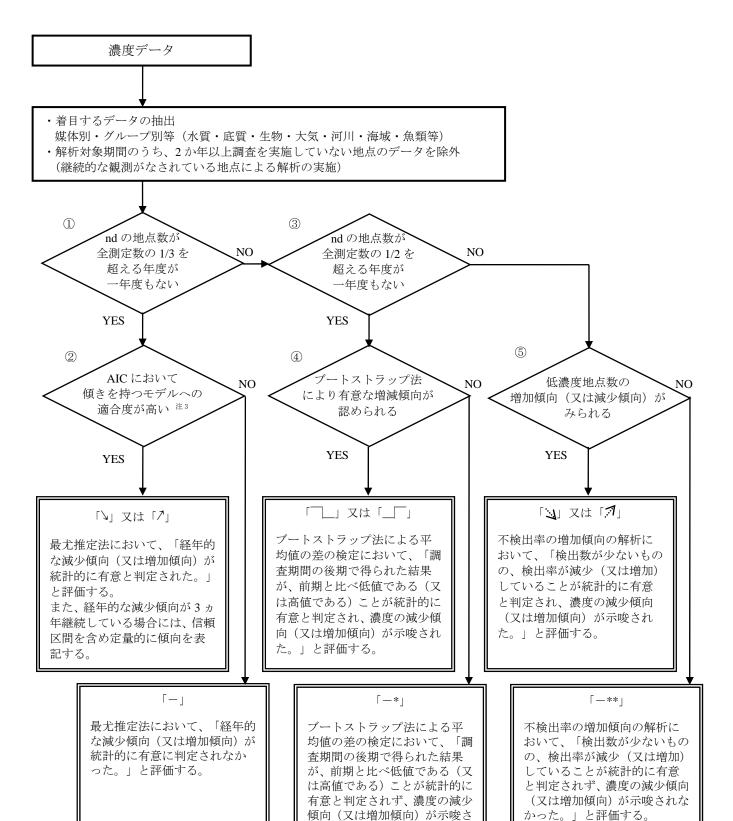
また、水質においては、2002年度は、1調査地点当たり3点で試料を採取し、それぞれを測定している。 一方で、2003年度以降は、1調査地点当たり1点で採取した試料を測定している。このため、2002年度は、 各調査地点とも、3検体の結果のうちで2003年度以降も継続して試料の採取が行われている点における1検 体の測定結果のみ経年分析に用いることとした。

底質においては、2009年度以前は、1地点当たり3点で試料を採取し、それぞれを測定している。一方で、2010年度以降は、1地点当たり3点で採取した試料を、調査地点毎に等量ずつ混合して1検体/地点として測定している。このため、2009年度以前は、調査地点毎に3つの測定結果を算術平均することで得られる値を経年分析に用いることとした。

生物においては、2009年度以前は、原則として1地点当たり5試料を調整し、それぞれを測定している。 一方で、2010年度は原則として1地点当たり5試料から中間的な大きさの試料として3試料を選択して調整し、 これを混合して1検体/地点として測定している。2011年度以降は原則として1地点当たり3試料をそれぞれ調 整し、調査地点毎に等量ずつ混合して1検体/地点として測定している。このため、2009年度以前は、測定地 点毎に5つの測定結果を算術平均することで得られる値を経年分析に用いることとした。

また、生物のうち鳥類に関しては、2013年度の調査から調査対象生物をカワウに変更したが、それに伴い調査地点を変更したことから2012年度までの結果と継続性がないため、経年分析の対象外とした。

- ① 2002年度以降の調査において継続的に調査を行っている地点(複数年度で欠測が生じていない地点)であり、かつ調査の最新年度である2015年度に調査が行われている地点での調査結果(具体的な調査地点名は前掲の表5-1から表5-4を参照のこと。)において、いずれかの年度の調査結果に検出下限値未満(nd)が検体の1/3以上存在する場合では、濃度の最多頻度が検出下限値未満(nd)となる場合があることから、検出下限値未満(nd)が検体の1/3を超える年度がない調査結果について、経年分析を行うこととした。
- ② 経年分析は、年度と対数濃度との回帰直線(対数線形回帰モデル※)を作成し、その回帰直線の傾きから増減傾向を判断することとした。回帰直線を作成する際には、測定結果の残差分布に従って各測定値の尤度の総積を最大とする方法(実データに基づいた残差分布による最尤推定法※)を利用して直線を選択した。なお、残差分布に複数のピークが存在する場合、又は各地点の減少傾向と2002年度(又は2003年度)の濃度に関連性があると示唆された場合には、地点を高濃度群及び低濃度群の2群に分け経年分析を行い、全体の傾向と矛盾が生じないか別途検討した。また、地点毎の検体数が異なる場合には、地点毎のデータの重みが等価となるよう重み付けを行った。


さらに、回帰直線「経年変化のあるモデル」のAIC(赤池情報量規準)※を求め、傾きを0とした回帰直線「経年変化のないモデル」のAICと比較し、モデルの適合度を評価した。「経年変化のあるモデル」が適合と判断したものについて、①で得られた回帰直線の傾きが負である(又は正である)場合に、「減

少傾向(又は増加傾向)が統計的に有意と判定された。」と評価し、後述の6. 調査結果の概要で示す表10においては「\」(又は「/」)と表記した。また、3か年以上継続して減少傾向が続く場合には、定量的な情報として調査結果に基づく環境中における半減期を表10に併記することとした。

- ③ 検出下限値未満 (nd) が検体の1/3以上存在する調査結果においては、①で述べたとおり実データに基づいた残差分布による最尤推定法による回帰直線での経年変化の分析を行うことは適切ではないとされたため、ブートストラップ法を用いた平均値の差の検定※を適用した。本検定では、調査を実施した2019年度まで調査結果のうち、各物質においてモニタリング調査開始から6か年を前期、直近の2014年度から2019年度までを後期とし、前期及び後期の各年度で検出下限値未満 (nd) が1/2以上存在していない調査結果において、前期の濃度と後期の濃度に有意に差が生じているか判定をすることとした。なお、調査年度が少ないポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)、ペルフルオロオクタン酸(PFOA)及びペンタクロロベンゼンについては、解析する媒体によっては前期及び後期の対象年数が6か年未満になる場合がある。
- ④ ブートストラップ法を用いた平均値の差の検定を行い、P値が5%未満のものについて差があると判断し、かつ、その差が後期の濃度群より前期の濃度群が低値である(又は高値である)場合には、「調査期間の後期で得られた結果が、前期と比べて低値である(又は高値である)ことが統計的に有意と判定され、濃度の減少傾向が示唆された。」と評価し、表10においては「 ̄___」(又は「 ___ 」)と表記した。
- ⑤ 検出下限値未満 (nd) が検体の1/2以上存在し、実データに基づいた残差分布による最尤推定法による回帰直線での経年変化の分析及びブートストラップ法を用いた平均値の差の検定による分析が適切ではない場合には、解析の対象とした期間における最も高い検出下限値に着目し、その検出下限値を下回る地点を「低濃度地点」と定義し、低濃度地点数が有意に増加(又は減少)した場合には、「調査期間における低濃度地点数の増加傾向(または減少傾向)が統計的に有意と判定され、濃度の減少傾向が示唆された。」と評価し、表10においては「コ」(又は「ゴ」)と表記した。なお、各年度における検出下限値の違いによる影響を回避するため、解析する際には解析対象年度内で最も高い検出下限値を用いて二項分布を想定したロジットモデルで最尤推定法を実施し、低濃度地点の割合を算出することとした。

なお、②の判断において減少傾向(又は増加傾向)が統計的に有意と判定されない場合には、表10において「 - 」と表記した。また、④の判断において差があると判断されない場合は、ブートストラップ法において調査期間の前期と後期との差が統計的に有意と判定されない場合として「 -* 」と表記した。また、⑤で検出した検体数の割合が有意に減少していない場合においては、検出率の減少(又は増加)が統計的に有意と判定されない場合として、表10において「 -** 」と表記した。

※ 経年変化解析の詳細な解析手法はそれぞれ章末に参考資料2として記載した。

- (注1) 図中の①~⑤の番号は、前述した経年分析の方法の項目番号と対応する。
- (注2) 濃度データが検出下限値未満 (nd) の場合には、図中の⑤の分析を除き、検出下限値の1/2として解析を実施している。
- (注3) ②において、AICにおいて傾きを持つモデルへの適合度が高い場合、回帰直線の傾きが負であれば「経年的な減少傾向が統計的 に有意に判定された。」と評価し、回帰直線の傾きが正であれば「経年的な増加傾向が統計的に有意に判定された。」と評価する

れなかった。」と評価する。

- (注4) ブートストラップ法の対象となる年度は、各物質においてモニタリング調査開始から6か年及び直近の2014年度から2019年度までの6か年としている。なお、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)、ペルフルオロオクタン酸(PFOA)及びペンタクロロベンゼンについては、解析する媒体によっては前期及び後期の対象年数が6か年未満になる場合がある。
- 図2 経年分析の手順及び分析結果に対する評価方法

6. 調査結果の概要

モニタリング調査の検出状況一覧を表8-1及び表8-2に、検出下限値一覧を表9に、幾何平均値の経年変化については図3として物質ごとに示した。

また、2019年度の調査も2002年度(物質・媒体により調査開始年度が2003年度以降)から継続的に調査を 実施している地点と概ね同一地点で実施しており、2019年度に調査を実施し、かつ、これまでに7か年度分以 上の調査結果の蓄積がある物質(群)については、調査対象期間を通じた経年的な傾向について統計的な分 析を行った。経年分析の結果を表10-1~表10-4に示した。

○調査結果についての留意事項は以下のとおりである。

底質

各調査地点とも3試料/地点の採取を行い、調査地点毎に3試料を等量ずつ混合して1検体/地点として測定した。

生物

各調査地点とも原則として3試料/地点の採取を行い、調査地点毎に3試料を等量ずつ混合して1検体/地点として測定した。

・大気

各地点ともに、温暖期(2019年9月24日~2019年11月12日)調査として実施した。

表 8-1 2019 年度モニタリング調査 検出状況一覧表 (水質及び底質)

表 8 物質	-1 2019 年度モニタリン	<u> </u>	- 覧表(水質及び原 g/L)	だ負 <i>)</i> ┃	g-dry)
調査 番号	調査対象物質	範囲 (検出頻度)	平均値	範囲 (検出頻度)	平均値
[1]	総 PCB	tr(6.6)~3,400 (48/48)	120	37~640,000 (61/61)	5,700
[2]	НСВ	nd~630 (46/48)	10	4.5~10,000 (61/61)	88
[3]	アルドリン				
[4]	ディルドリン				
[5]	エンドリン				
	DDT 類				
	[6-1] <i>p,p'</i> -DDT				
	[6-2] <i>p,p'</i> -DDE				
[6]	[6-3] <i>p,p'</i> -DDD				
	[6-4] <i>o,p'</i> -DDT				
	[6-5] <i>o,p'</i> -DDE				
	[6-6] <i>o,p'</i> -DDD				
	クロルデン類				
	[7-1] <i>cis-</i> クロルデン				
	[7-2] <i>trans-</i> クロルデン				
[7]	[7-3] オキシクロルデン				
	[7-4] <i>cis-</i> ノナクロル				
	[7-5] <i>trans-</i> ノナクロル				
	ヘプタクロル類				
101	[8-2] <i>cis-</i> 〜プタクロル [8-2] <i>cis-</i> 〜プタクロルエポ				
[8]	キシド				
	[8-3] <i>trans-</i> ヘプタクロルエ ポキシド				
	トキサフェン類 [9-1] Parlar-26				
[9]	[9-2] Parlar-50				
	[9-3] Parlar-62			<u> </u>	
[10]	マイレックス				
[10]	HCH 類				
	11-1] α-HCH	tr(2)~640 (48/48)	35	1.3~2,600 (61/61)	67
[111	[11-2] <i>β</i> -HCH	17~570 (48/48)	100	4.0~4,100 (61/61)	130
[-1]	[11-3] γ-HCH(別名:リンデ ン)	nd~480 (47/48)	14	$tr(0.6)\sim 2,100$ (61/61)	23
	[11-4] δ-HCH	nd~85 (46/48)	5.1	$tr(0.2)\sim 2,500$ (61/61)	22
[12]	クロルデコン			(22.22)	
[13]	ヘキサブロモビフェニル類				
(注	1) 「亚均值」は幾何亚均值を	 を意味する。nd(検出下限		の1/2として質出した	

⁽注1) 「平均値」は幾何平均値を意味する。nd (検出下限値未満) は検出下限値の1/2として算出した。 (注2) □は調査対象外であることを意味する。 (注3) tr(X)は、Xの値が定量下限値未満、検出下限値以上であることを意味する。

物質		水質((pg/L)	底質(pg/	/g-drv)
調査番号	調査対象物質	範囲 (検出頻度)	平均値	範囲 (検出頻度)	平均値
	ポリブロモジフェニルエー テル類(臭素数が 4 から 10 までのもの)				
	[14-1] テトラブロモジフェ ニルエーテル類	nd~320 (39/48)	tr(6)	nd~710 (58/61)	15
	[14-2] ペンタブロモジフェ ニルエーテル類	nd∼69 (19/48)	nd	nd~740 (52/61)	9
[14]	[14-3] ヘキサブロモジフェ ニルエーテル類	nd~8 (5/48)	nd	nd~690 (41/61)	14
	[14-4] ヘプタブロモジフェ ニルエーテル類	nd∼6 (2/48)	nd	nd~1,400 (39/61)	15
	[14-5] オクタブロモジフェ ニルエーテル類	nd∼14 (12/48)	nd	nd~2,000 (50/61)	33
	[14-6] ノナブロモジフェニ ルエーテル類	nd~150 (27/48)	tr(7)	nd~40,000 (59/61)	310
	[14-7] デカブロモジフェニ ルエーテル	tr(10)~2,200 (48/48)	110	14~560,000 (61/61)	4,400
[15]	ペルフルオロオクタンスル ホン酸 (PFOS)	nd~2,500 (47/48)	290	nd~460 (60/61)	44
[16]	ベルフルオロオクタン酸	160~11,000 (48/48)	1,000	tr(3)~190 (61/61)	21
[17]	ペンタクロロベンゼン	tr(2)~360 (48/48)	9	1.2~3,300 (61/61)	29
	エンドスルファン類				
[18]	[18-1] α-エンドスルファン				
	[18-2] <i>β</i> -エンドスルファン				
	1,2,5,6,9,10-ヘキサブロモシ クロドデカン類				
	[19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン				
[19]	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン				
[17]	[19-3] γ-1,2,5,6,9,10-ヘキサノ ロモシクロドデカン				
	[19-4] δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン				
	[19-5] ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン				
[20]	総ポリ塩化ナフタレン	nd~260 (32/48)	tr(14)	13~58,000 (61/61)	600
[21]	*				
	ペンタクロロフェノール並 びにその塩及びエステル類				
[22]	[22-1] ペンタクロロフェノ ール	nd~3,500 (32/48)	tr(60)	7~6,200 (61/61)	260
	[22-2] ペンタクロロアニソ ール	nd~210 (20/48)	tr(10)	nd~140 (60/61)	14
	短鎖塩素化パラフィン類				
	[23-1] 塩素化デカン類	nd~2,300 (17/48)	nd	nd~2,600 (8/61)	nd
[23]	[23-2] 塩素化ウンデカン類	nd~5,000 (19/48)	nd	nd~5,900 (22/61)	nd
[20]	[23-3] 塩素化ドデカン類	nd~34,000 (20/48)	nd	nd~83,000 (27/61)	tr(1,100)
	[23-4] 塩素化トリデカン類	nd~38,000 (17/48)	nd	nd~60,000 (39/61)	tr(1,700)
[24]	ジコホル	nd~40 (3/48)	nd	nd~84 (40/61)	4
[25]	ペルフルオロヘキサンスル ホン酸 (PFHxS)	nd~1,800 (45/48)	150	nd~15 (10/61)	nd
(注	1) 「亚特库」	ナ. 卒叶 ナフ 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	限値未満) は給出下限値	の1/01、1 ア管山した	<u></u>

⁽注1) 「平均値」は幾何平均値を意味する。nd (検出下限値未満) は検出下限値の1/2として算出した。

⁽注2) □は調査対象外であることを意味する。

⁽注3) tr(X)は、Xの値が定量下限値未満、検出下限値以上であることを意味する。

⁽注4) 短鎖塩素化パラフィン類は、塩素数が5から9までのものを測定の対象とした。 また、短鎖塩素化パラフィン類の結果は、測定法に様々な課題がある中での試行において得られた暫定的な値である。

表 8-2 2019 年度モニタリング調査 検出状況一覧表 (生物及び大気)

衣 8		マノ 門 旦	快口认仍	上一見衣(生 生物(pg)		<i>^\(\)</i>		大気(p	og/m³)
物質 調査		貝芽	類	魚類		鳥	類	温暖	
調査 番号	調査対象物質	範囲 (検出頻度)	平均値	範囲 (検出頻度)	平均値	範囲 (検出頻度)	平均値	範囲 (検出頻度)	平均値
[1]	総 PCB	350~17,000 (3/3)	2,200	1,000~160,000 (16/16)	12,000	190,000 (1/1)		27~340 (36/36)	89
[2]	НСВ	12~65 (3/3)	23	12~1,100 (16/16)	100	3,200 (1/1)		67~130 (36/36)	96
[3]	アルドリン								
[4]	ディルドリン								
[5]	エンドリン								
	DDT 類								
	[6-1] <i>p,p'</i> -DDT								
	[6-2] <i>p,p'</i> -DDE								
[6]	[6-3] <i>p,p'</i> -DDD								
	[6-4] <i>o,p'</i> -DDT								
	[6-5] <i>o,p'</i> -DDE								
	[6-6] <i>o,p'</i> -DDD								
	クロルデン類								
	[7-1] <i>cis</i> -クロルデン								
	[7-2] trans-クロルデン								
[7]	[7-3] オキシクロルデン								
	[7-4] cis-ノナクロル								
	[7-5] <i>trans</i> -ノナクロル								
	ヘプタクロル類								
	[8-1] ヘプタクロル								
[8]	[8-2] <i>cis</i> -ヘプタクロルエポ キシド								
	[8-3] <i>trans</i> -ヘプタクロルエ ポキシド								
	トキサフェン類								
FC-7	[9-1] Parlar-26								
[9]	[9-2] Parlar-50								
	[9-3] Parlar-62								
[10]	マイレックス								
	HCH 類	4~14		nd~130		63		6.3~230	
	[11-1] α-HCH	(3/3)	9	(12/16)	8	(1/1)		(36/36)	21
LIII	[11-2] β-HCH	11~33 (3/3)	23	3~400 (16/16)	27	950 (1/1)		0.38~29 (36/36)	2.3
	[11-3] γ-HCH(別名:リンデン)	nd~7 (2/3)	tr(2)	nd~34 (13/16)	tr(3)	7 (1/1)		0.88~49 (36/36)	6.4
	[11-4] δ-HCH	nd (0/3)	nd	nd~5 (6/16)	nd	4 (1/1)		tr(0.02)~19 (36/36)	0.46
[12]	クロルデコン								
[13]	ヘキサブロモビフェニル類								
(沙土1	·) 「巫均値」 け継何巫均値 2	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1 (144111111111111111111111111111111111	11 (± ± × ± × × × × × ×	川工門はの	1/01.1 一次1	17.3-		

⁽注1) 「平均値」は幾何平均値を意味する。nd (検出下限値未満) は検出下限値の1/2として算出した。 (注2) □は調査対象外であることを意味する。 (注3) tr(X)は、Xの値が定量下限値未満、検出下限値以上であることを意味する。

物質			lor:	生物(pg		i – –	vice:	大気(p	
調査	調査対象物質	<u>貝</u>		魚 範囲		鳥		温暖	
番号	10.17 8 28		平均値	(検出頻度)	平均値	範囲 (検出頻度)	平均値	範囲 (検出頻度)	平均値
	ポリブロモジフェニルエー テル類(臭素数が 4 から 10 までのもの)								
	[14-1] テトラブロモジフェ ニルエーテル類	tr(15)~68 (3/3)	26	tr(10)~210 (16/16)	57	210 (1/1)		tr(0.03)~5.5 (36/36)	0.25
	[14-2] ペンタブロモジフェ ニルエーテル類	$tr(5)\sim 28$ (3/3)	12	tr(4)~58 (16/16)	17	150 (1/1)		nd~6.1 (27/36)	tr(0.10)
[14]	[14-3] ヘキサブロモジフェ ニルエーテル類	nd~24 (1/3)	nd	tr(12)~290 (16/16)	42	480 (1/1)		nd~0.79 (15/36)	tr(0.05)
[11]	[14-4] ヘプタブロモジフェ ニルエーテル類	nd~tr(18) (1/3)	nd	nd~82 (9/16)	tr(10)	260 (1/1)		nd~2.7 (24/36)	tr(0.1)
	[14-5] オクタブロモジフェ ニルエーテル類	nd~39 (1/3)	tr(8)	nd~120 (8/16)	tr(8)	330 (1/1)		nd~2.6 (32/36)	tr(0.2)
	[14-6] ノナブロモジフェニ ルエーテル類	nd~81 (1/3)	tr(20)	nd (0/16)	nd	nd (0/1)		nd~3.1 (34/36)	0.5
	[14-7] デカブロモジフェニ ルエーテル	nd~tr(180) (1/3)	nd	nd (0/16)	nd	nd (0/1)		nd~14 (32/36)	1.8
[15]	ペルフルオロオクタンスル ホン酸 (PFOS)	tr(2)~140 (3/3)	10	tr(3)~3,600 (16/16)	67	360 (1/1)		1.3~7.8 (36/36)	3.8
[16]	ペルフルオロオクタン酸 (PFOA)	tr(2)~tr(5) (3/3)	tr(3)	nd~18 (12/16)	tr(3)	27 (1/1)		5.5~46 (36/36)	14
[17]	ペンタクロロベンゼン	7~14 (3/3)	10	3~280 (16/16)	20	470 (1/1)		36~110 (36/36)	64
	エンドスルファン類 [18-1] α-エンドスルファン								
[18]	[18-1] <i>α</i> -エンドスルファン [18-2] <i>β</i> -エンドスルファン								
	1,2,5,6,9,10-ヘキサブロモシ								
	クロドデカン類 [19-1] α-1,2,5,6,9,10-ヘキサ ブロエミシクロドデカン	68~260	140	nd~980	 79	1,100		nd~4.1	0.5
	ブロモシクロドデカン [19-2] β-1,2,5,6,9,10-ヘキサ ブロエシクロドデカン	(3/3) nd~tr(22)	nd	(15/16) nd	nd	(1/1) nd		(35/36) $nd\sim 1.2$ (26/36)	tr(0.13)
[19]	[19-3] γ -1,2,5,6,9,10- γ	$\frac{(1/3)}{\text{tr}(13)\sim 140}$	34	(0/16) nd~62	tr(12)	(0/1) nd		(26/36) nd~1.5	nd
	ブロモシクロドデカン [19-4] δ-1,2,5,6,9,10-ヘキサ ブロモシクロドデカン	(3/3)		(9/16)		(0/1)		(15/36)	
	[19-5] ε-1,2,5,6,9,10-ヘキサ ブロモシクロドデカン								
[20]	総ポリ塩化ナフタレン	nd~820 (2/3)	84	nd~270 (12/16)	46	170 (1/1)		6.5~1,100 (36/36)	100
[21]	ヘキサクロロブタ-1,3-ジエ ン	, /		, , ,				nd~5,800 (35/36)	1,500
	ペンタクロロフェノール並 びにその塩及びエステル類								
[22]	[22-1] ペンタクロロフェノ ール	13~54 (3/3)	26	nd~57 (14/16)	17	430 (1/1)		0.6~22 (36/36)	4.1
	[22-2] ペンタクロロアニソ ール	$tr(2)\sim 15$ (3/3)	4	tr(1)~59 (16/16)	5	91 (1/1)		4.3~180 (36/36)	30
	短鎖塩素化パラフィン類								
	[23-1] 塩素化デカン類	nd (0/3)	nd	nd~tr(700) (5/16)	nd	tr(600) (1/1)		tr(100)~1,500 (36/36)	400
[23]	[23-2] 塩素化ウンデカン類	nd~600 (1/3)	nd	nd~1,100 (11/16)	tr(300)	1,400 (1/1)		tr(100)~2,300 (36/36)	400
	[23-3] 塩素化ドデカン類	nd (0/3)	nd	nd~tr(900) (2/16)	nd	tr(500) (1/1)		nd~1,600 (23/36)	tr(140)
	[23-4] 塩素化トリデカン類	tr(300)~1,100 (3/3)	500	nd~1,300 (11/16)	tr(200)	1,300 (1/1)		nd~1,600 (19/36)	tr(90)
[24]	ジコホル	nd~tr(10) (1/3)	nd	nd~120 (12/16)	tr(10)	nd (0/1)		nd~0.4 (5/36)	nd
[25]	ペルフルオロヘキサンスル ホン酸 (PFHxS)								
(注1)		・辛吐・ナス	1 (松山下四	荷土港)戸校	出下四位の1	カレーテ管山	1 1-		

⁽注1) 「平均値」は幾何平均値を意味する。nd (検出下限値未満) は検出下限値の1/2として算出した。
(注2) □は調査対象外であることを意味する。
(注3) tr(X)は、Xの値が定量下限値未満、検出下限値以上であることを意味する。
(注4) ヘキサクロロブタ-1,3-ジエンの大気については3検体/地点の測定を行っており、範囲は全ての検体における最小値から最大値の範囲で示し、検出頻度は全測定地点に対して検出した地点数で示した。
(注5) 短鎖塩素化パラフィン類は、生物においては塩素数が5から9までのものを、大気においては塩素数が4から7までのものをそれぞれ測定の対象とした。

また 短鎖塩素化パラフィン類の結果は、測定法に様々な課題がある中での試行において得られた暫定的な値である。 また、短鎖塩素化パラフィン類の結果は、測定法に様々な課題がある中での試行において得られた暫定的な値である。

表 9 2019 年度モニタリング調査 定量 [検出] 下限値一覧表

衣 物質 調査	調査対象物質	水質(pg/L)	LI」下原他一見衣 底質(pg/g-dry)	生物(pg/g-wet)	大気 (pg/m³)
番号 [1]	総 PCB※	12 [4.7]	8.5 [3.3]	33 [11]	2.1 [0.8]
[2]	НСВ	8 [3]	0.9 [0.4]	3 [1]	0.14 [0.06]
[3]	アルドリン				
[4]	ディルドリン				
[5]	エンドリン				
	DDT 類				
	[6-1] <i>p,p'</i> -DDT				
	[6-2] <i>p,p'</i> -DDE				
[6]	[6-3] <i>p,p'</i> -DDD				
	[6-4] <i>o,p'</i> -DDT				
	[6-5] <i>o,p'</i> -DDE				
	[6-6] <i>o,p'</i> -DDD				
	クロルデン類				
	[7-1] <i>cis-</i> クロルデン				
	[7-2] <i>trans</i> -クロルデン				
[7]	[7-3] オキシクロルデン				
	[7-4] <i>cis-</i> ノナクロル				
	[7-5] trans-ノナクロル				
	ヘプタクロル類				
501	[8-1] ヘプタクロル				·
[8]	[8-2] <i>cis</i> -ヘプタクロルエポ キシド				
	[8-3] <i>trans-</i> ヘプタクロルエ ポキシド				
	トキサフェン類		_		
507	[9-1] Parlar-26				
[9]	[9-2] Parlar-50				
	[9-3] Parlar-62				
[10]	マイレックス				
	HCH 類				
	[11-1] α-HCH	4 [2]	1.1 [0.4]	4 [2]	0.12 [0.05]
[11]	[11-2] β-HCH	3 [1]	1.2 [0.5]	3 [1]	0.06 [0.02]
	[11-3] γ-HCH (別名:リンデン)	4 [2]	1.0 [0.4]	4 [1]	0.12 [0.05]
	[11-4] δ-HCH	1.0 [0.4]	0.5 [0.2]	4 [2]	0.04 [0.02]
[12]	クロルデコン				
[13]	ヘキサブロモビフェニル類				
(注1)上段は定量下限値、下段は				

⁽注1) 上段は定量下限値、下段は検出下限値。 (注2) ※は同族体又は該当物質ごとの定量[検出]下限値の合計とした。 (注3) 生物の定量下限値及び検出下限値は、貝類、魚類及び鳥類で共通であった。 (注4) □は調査対象外であることを意味する。

物質調査番号	調査対象物質	水質(pg/L)	底質(pg/g-dry)	生物(pg/g-wet)	大気(pg/m³)
	ポリブロモジフェニルエー テル類(臭素数が4から10 までのもの)				
	[14-1] テトラブロモジフェ ニルエーテル類	11 [4]	5 [2]	18 [7]	0.04 [0.01]
	[14-2] ペンタブロモジフェ ニルエーテル類	6 [2]	3 [1]	10 [4]	0.12 [0.05]
F4 43	[14-3] ヘキサブロモジフェ	2	4	21	0.13
[14]	ニルエーテル類 [14-4] ヘプタブロモジフェ	[1]	[2]	[8] 24	[0.05]
	ニルエーテル類 [14-5] オクタブロモジフェ	[2]	[3]	[9] 17	[0.1]
	ニルエーテル類	[1]	[1]	[7]	[0.1]
	[14-6] ノナブロモジフェニ ルエーテル類	8 [3]	5 [2]	50 [20]	0.3 [0.1]
	[14-7] デカブロモジフェニ ルエーテル	14 [6]	4 [2]	190 [70]	0.3 [0.1]
[15]	ペルフルオロオクタンスル	80	9	6	0.8
[16]	ホン酸 (PFOS) ペルフルオロオクタン酸	[30] 90	[4] 5	[2] 6	[0.3] 0.8
	(PFOA)	[40] 6	[2]	[2]	[0.3]
[17]	ペンタクロロベンゼン エンドスルファン類	[2]	[0.4]	[1]	[0.04]
54.03	<u>エンドスルファン</u> 頬 [18-1] α-エンドスルファン				
[10]	[18-2] <i>β</i> -エンドスルファン				
	1,2,5,6,9,10-ヘキサブロモシ				
	クロドデカン類 [19-1] α-1,2,5,6,9,10-ヘキサ			24	0.3
	ブロモシクロドデカン			[9]	[0.1]
	[19-2] β-1,2,5,6,9,10-ヘキサ ブロモシクロドデカン			24 [9]	0.21 [0.08]
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサ ブロモシクロドデカン			22 [9]	0.4 [0.2]
	[19-4] δ-1,2,5,6,9,10-ヘキサ			(2)	[0.2]
	ブロモシクロドデカン [19-5] ε-1,2,5,6,9,10-ヘキサ				
	ブロモシクロドデカン	24	7.3	40	0.6
	総ポリ塩化ナフタレン※ ヘキサクロロブタ-1,3-ジエ	[7.5]	[2.7]	[15]	[0.2]
[21]	ン				[20]
	ペンタクロロフェノール並 びにその塩及びエステル類				
[2:2:1	ペンタクロロフェノール [22-1] ペンタクロロフェノ	60	6	10	0.6
[22]	ール	[20]	[2]	[4]	[0.2]
	[22-2] ペンタクロロアニソ ール	30 [10]	2.1 [0.8]	3 [1]	0.3 [0.1]
	短鎖塩素化パラフィン類	600	2,000	900	400
	[23-1] 塩素化デカン類	[200] 1,400	[1,000]	[300]	[100]
[23]	[23-2] 塩素化ウンデカン類	[500]	2,000 [1,000]	500 [200]	300 [100]
	[23-3] 塩素化ドデカン類	1,000 [400]	2,000 [1,000]	1,200 [500]	260 [90]
	[23-4] 塩素化トリデカン類	1,300 [500]	2,000 [1,000]	400 [200]	250 [80]
[24]	ジコホル	13 [8]	4 [2]	30 [10]	0.4 [0.2]
[25]	ペルフルオロヘキサンスル	60	13	[10]	[0.2]
(注1)	ホン酸(PFHxS))上段は定量下限値。下段は	[30]	[5]		

⁽注1) 上段は定量下限値、下段は検出下限値。 (注2) ※は同族体又は該当物質ごとの定量[検出]下限値の合計とした。 (注3) 生物の定量下限値及び検出下限値は、貝類、魚類及び鳥類で共通であった。 (注4) □は調査対象外であることを意味する。

表 10-1 2002 年度から 2019 年度における経年分析結果(水質)

物質		水質				
調査 番号	調査対象物質		河川域	湖沼域	 河口域	海域
шу		7	7	7	7	
[1]	総 PCB	半減期7年	半減期8年	半減期7年	半減期 10 年	_
		[6~10年]	[7~10年]	[5~11年]	[7~18年]	
		7	,		7	_
[2]	НСВ	半減期 13 年	7	_	半減期9年	
[2]	アルドリン	[10~18年]			[7~11 年]	
[3] [4]	ディルドリン					
[5]	エンドリン					
[5]	DDT 類					
	[6-1] p,p'-DDT					
[6]	[6-2] p,p'-DDE					
[6]	[6-3] p,p'-DDD					
	[6-4] o,p'-DDT					
	[6-5] o,p'-DDE					
	[6-6] o,p'-DDD					
	クロルデン類					
	[7-1] cis-クロルデン					
[7]	[7-2] trans-クロルデン					
	[7-3] オキシクロルデン					
	[7-4] cis-ノナクロル					
	[7-5] trans-ノナクロル					
	ヘプタクロル類					
[8]	[8-1] ヘプタクロル					
[0]	[8-2] cis-ヘプタクロルエポキシド					
	[8-3] trans-ヘプタクロルエポキシド					
	トキサフェン類		,		,	
101	[9-1] Parlar-26					
[9]	[9-2] Parlar-50					
	[9-3] Parlar-62					
[10]	マイレックス					
	HCH 類		,		,	,
	[11-1] α-HCH	⅓ 半減期9年	7	_	7	7
		[7~13年]				
	[11 2] R HCH	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7	\	ν.	\
[11]	[11-2] β-HCH	半減期 13 年 [10~18 年]	K	半減期8年 [6~10年]	7	半減期 24 年 [18~38 年]
		7	7	7	7	7
	[11-3] _/ -HCH(別名:リンデン)	半減期6年	半減期5年	半減期7年	半減期 11 年	半減期6年
		[5~8年]	[4~8年]	[5~11年]	[9~14年]	[5~6年]
	[11-4] δ-HCH	一	7	_	*	**
	<u> </u>			l	l	

物質 調査	那太 小 在肿筋	水質				
調宜 番号	調査対象物質		河川域	湖沼域	河口域	海域
	ポリブロモジフェニルエーテル類		<i>y</i>		,	
	[14-1]テトラブロモジフェニルエー テル類	W	Ä	_**	_*	Ü
	[14-2]ペンタブロモジフェニルエー テル類	W	Ä	_**	Ü	Ü
	[14-3]ヘキサブロモジフェニルエー テル類	**	Ä	_**	Ë	Ë
[14]	[14-4]ヘプタブロモジフェニルエー テル類	_**	Ä	_**	Ä	Ä
	[14-5]オクタブロモジフェニルエー テル類	Ä	_**	_**	**	_**
	[14-6]ノナブロモジフェニルエーテ ル類	_*	_*	_**	_	_**
	[14-7]デカブロモジフェニルエーテ ル類	_*	_*	_**	_	_**
[15]	ペルフルオロオクタンスルホン酸 (PFOS)	_	_	↓ 半減期 10 年 [6∼22 年]	_	_
[16]	ペルフルオロオクタン酸 (PFOA)	7	_	_	半減期9年 [7~14年]	_
[17]	ペンタクロロベンゼン	_		_	_	—

- であることが統計的に有意と判定され、濃度の減少傾向が示唆されたことを、「」」は検出数が少ないものの、検出率が減少 していることが統計的に有意と判定され、濃度の減少傾向が示唆されたことを示す。
- (注3) 「一」は経年的な減少傾向もしくは増加傾向が統計的に有意と判定されなかったことを、「一*」はブートストラップ法において調査期間の後期で得られた結果が、前期と比べ低値であること(又は高値であること)が統計的に有意と判定されず、濃度 の減少傾向(又は増加傾向)が示唆されなかったことを、「一**」は不検出率の増加傾向の解析において検出数が少ないもの の、検出率が減少(又は増加)していることが統計的に有意と判定されず、濃度の減少傾向(又は増加傾向)が示唆されなか ったことを意味する。
- (注4) は 2019 年度の調査を実施しておらず、経年分析を行っていない。
- (注 5) 半減期は、実データに基づいた残差分布による最尤推定法で減少傾向が 3 か年以上継続している場合において、調査結果に基 づく環境中における半減期を記載している。[] 内の結果は、95%信頼区間における値を示す。
- (注6) 河川域、湖沼域、河口域及び海域の分類は表11に示すとおりである。
- (注7) ポリブロモジフェニルエーテル類、ペルフルオロオクタンスルホン酸 (PFOS) 及びペルフルオロオクタン酸 (PFOA) は 2009 年度以降の調査結果に基づく経年分析の結果を、ペンタクロロベンゼンは 2010 年度以降の調査結果に基づく経年分析の結果を それぞれ記載している。

表 10-2 2002 年度から 2019 年度における経年分析結果(底質)

物質	30 + 1	底質				
調査 番号	調査対象物質		河川域	湖沼域	河口域	海域
		7	7	:		7
[1]	総 PCB	半減期 19 年	半減期 14 年	_	_	半減期 22 年
		[14~33年]	[10~25年]			[16~38年]
[2]	НСВ	半減期 17 年	半減期 12 年	<u> </u>	_	_
		[12~33年]	[8~23年]			
[3]	アルドリン					
[4]	ディルドリン					
[5]	エンドリン					
	DDT 類			.		
	[6-1] <i>p,p'</i> -DDT					
	[6-2] <i>p,p'</i> -DDE					
[6]	[6-3] <i>p,p'</i> -DDD					
	[6-4] <i>o,p'</i> -DDT					
	[6-5] <i>o,p'</i> -DDE		ļ			
	[6-6] <i>o,p'</i> -DDD					
	クロルデン類		·	T	-,	·
	[7-1] cis-クロルデン					
[7]	[7-2] trans-クロルデン		ļ Ļ	ļ		
[7]	[7-3] オキシクロルデン					
	[7-4] <i>cis-</i> ノナクロル					
	[7-5] <i>trans</i> -ノナクロル					
	ヘプタクロル類		·	T	-,	
[8]	[8-1] ヘプタクロル			ļ		
[o]	[8-2] cis-ヘプタクロルエポキシド					
	[8-3] <i>trans-</i> ヘプタクロルエポキシド					
	トキサフェン類		.	·		
F0.1	[9-1] Parlar-26				ļ	
[9]	[9-2] Parlar-50					
	[9-3] Parlar-62					
[10]	マイレックス					
	HCH 類		.,		-,	
	[11-1] α-HCH	7	7	_	_	_
[11]	[11-2] <i>β</i> -HCH	<u> </u>	_	_	半減期 13 年 [9~22 年]	_
	[11-3] ₂ -HCH(別名:リンデン)	7	7	-	<u> </u>	<u>—</u>
	[11-4] δ-HCH	٧	_	_	半減期 18 年 [12~38 年]	_

物質調査	/8					
新 至	調宜对家物員		河川域	湖沼域	河口域	海域
	ポリブロモジフェニルエーテル類		,	·	,	,
	[14-1] テトラブロモジフェニルエー テル類	<u></u> *	Ŋ	_	<u> </u> *	_
	[14-2] ペンタブロモジフェニルエー テル類	*	Ŋ	<u> </u>	_	_
	[14-3] ヘキサブロモジフェニルエー テル類	*	Ŋ	_	_	_
[14]	[14-4] ヘプタブロモジフェニルエー テル類	*	Ŋ	<u></u> *	_	<u></u> *
	[14-5] オクタブロモジフェニルエー テル類	*	Ŋ	_	_	_
	[14-6] ノナブロモジフェニルエーテ ル類	_	*	_	_	_
	[14-7] デカブロモジフェニルエーテ ル	<u>—</u>	<u>—</u>		_	_
[15]	ペルフルオロオクタンスルホン酸 (PFOS)	7	_	_	7	7
[16]	ペルフルオロオクタン酸 (PFOA)	_	_		7	_
[17]	ペンタクロロベンゼン	_		_	_	_

- (注1) AIC での増減傾向の判定では、一次モデルの事後確率において 95%を閾値としている。 (注2) 「」は経年的な減少傾向が統計的に有意と判定されたことを、「 」」は調査期間の後期で得られた結果が前期と比べ低値であることが統計的に有意と判定され、濃度の減少傾向が示唆されたことを、「 」」は検出数が少ないものの、検出率が減少 していることが統計的に有意と判定され、濃度の減少傾向が示唆されたことを示す。
- (注3) 「一」は経年的な減少傾向もしくは増加傾向が統計的に有意と判定されなかったことを、「一*」はブートストラップ法におい て調査期間の後期で得られた結果が、前期と比べ低値であること(又は高値であること)が統計的に有意と判定されず、濃度 の減少傾向 (又は増加傾向) が示唆されなかったことを、「一**」は不検出率の増加傾向の解析において検出数が少ないもの の、検出率が減少(又は増加)していることが統計的に有意と判定されず、濃度の減少傾向(又は増加傾向)が示唆されなか ったことを意味する。
- (注4) は2019年度の調査を実施しておらず、経年分析を行っていない。
- (注 5) 半減期は、実データに基づいた残差分布による最尤推定法で減少傾向が 3 か年以上継続している場合において、調査結果に基 づく環境中における半減期を記載している。[] 内の結果は、95%信頼区間における値を示す。
- (注6) 河川域、湖沼域、河口域及び海域の分類は表11に示すとおりである。
- (注7) ポリブロモジフェニルエーテル類、ペルフルオロオクタンスルホン酸 (PFOS) 及びペルフルオロオクタン酸 (PFOA) は 2009 年度以降の調査結果に基づく経年分析の結果を、ペンタクロロベンゼンは 2010 年度以降の調査結果に基づく経年分析の結果を それぞれ記載している。

表 10-3 2002 年度から 2019 年度における経年分析結果(生物)

[1] 総 PCB 半減期 15 年	_
[9~43年]	
[2] HCB —	_
[3] アルドリン	
[4] ディルドリン	
[5] エンドリン	
DDT 類	
[6-1] <i>p,p'</i> -DDT	
[6-2] p,p'-DDE	
[6] [6-3] <i>p,p'</i> -DDD	
[6-4] <i>o,p'</i> -DDT	
[6-5] <i>o,p'</i> -DDE	
[6-6] <i>o,p'</i> -DDD	
クロルデン類	
[7-1] cis-クロルデン	
[7-2] trans-クロルデン	
[7] [7-3] オキシクロルデン	
[7-4] <i>cis-</i> ノナクロル	
[7-5] trans-ノナクロル	
ヘプタクロル類	
[8-1] ヘプタクロル	
[8] [8-2] <i>cis</i> -ヘプタクロルエポキシド	
[8-3] trans-ヘプタクロルエポキシド	
トキサフェン類	
[9-1] Parlar-26	
[9] [9-2] Parlar-50	
[9-3] Parlar-62	
[10] マイレックス	
HCH 類	
[11-1] α-HCH 半減期 10 年 [7~18 年]	7
[11-2] β-HCH —	7
[11-3] ₂ -HCH (別名: リンデン)	
[11-4] δ-HCH —**	<u>*</u> **

物質 調査 番号	調査対象物質	貝類	魚類					
	ポリブロモジフェニルエーテル類							
	[14-1] テトラブロモジフェニルエー テル類	↓ 半減期 6 年 [5∼7 年]	_					
	[14-2] ペンタブロモジフェニルエー テル類	_	7					
	[14-3] ヘキサブロモジフェニルエー テル類	_**	_					
[14]	[14-4] ヘプタブロモジフェニルエー テル類	**	—**					
	[14-5] オクタブロモジフェニルエー テル類	_**	_**					
	[14-6] ノナブロモジフェニルエーテ ル類	_**	¥					
	[14-7] デカブロモジフェニルエーテ ル	_**	Ä					
[15]	ペルフルオロオクタンスルホン酸 (PFOS)	_**	_					
[16]	ペルフルオロオクタン酸 (PFOA)	**	Ä					
[17]	ペンタクロロベンゼン	**	<u></u> *					
	1,2,5,6,9,10-ヘキサブロモシクロドデス	ン類						
	[19-1] α-1,2,5,6,9,10-ヘキサブロモシ クロドデカン	<i>\</i>	7					
[19]	[19-2] β-1,2,5,6,9,10-ヘキサブロモシ クロドデカン	<u> </u>	Ä					
	[19-3] γ-1,2,5,6,9,10-ヘキサブロモシ クロドデカン	エゴルの事処施売において050/ と関係しして	<u></u> *					

- (注 1) AIC での増減傾向の判定では、一次モデルの事後確率において 95%を閾値としている。 (注 2) 「」は経年的な減少傾向が統計的に有意と判定されたことを、「 」」は調査期間の後期で得られた結果が前期と比べ低値であることが統計的に有意と判定され、濃度の減少傾向が示唆されたことを、「 」」は検出数が少ないものの、検出率が減少 していることが統計的に有意と判定され、濃度の減少傾向が示唆されたことを示す。
- (注3) 「一」は経年的な減少傾向もしくは増加傾向が統計的に有意と判定されなかったことを、「一*」はブートストラップ法におい て調査期間の後期で得られた結果が、前期と比べ低値であること(又は高値であること)が統計的に有意と判定されず、濃度の減少傾向(又は増加傾向)が示唆されなかったことを、「-**」は不検出率の増加傾向の解析において検出数が少ないもの の、検出率が減少(又は増加)していることが統計的に有意と判定されず、濃度の減少傾向(又は増加傾向)が示唆されなか ったことを意味する。
- (注4) □は2019年度の調査を実施しておらず、経年分析を行っていない。
- (注 5) 半減期は、実データに基づいた残差分布による最尤推定法で減少傾向が 3 か年以上継続している場合において、調査結果に基 づく環境中における半減期を記載している。[]内の結果は、95%信頼区間における値を示す。
- (注 6) ポリブロモジフェニルエーテル類は 2008 年度以降の調査結果に基づく経年分析の結果を、ペルフルオロオクタンスルホン酸 (PFOS) 及びペルフルオロオクタン酸 (PFOA) は 2009 年度以降の調査結果に基づく経年分析の結果を、ペンタクロロベンゼ ンは 2010 年度以降の調査結果に基づく経年分析の結果、1,2,5,6,9,10-ヘキサブロモシクロドデカン類は 2011 年度以降の調査結 果に基づく経年分析の結果ををそれぞれ記載している。

表 10-4 2002 年度から 2019 年度における経年分析結果 (大気)

物質 調査	調査対象物質	大気 温暖期
[1]	総 PCB	半減期 15 年 [10~27 年]
[2]	НСВ	_
[3]	アルドリン	
[4]	ディルドリン	
[5]	エンドリン	
	DDT 類	
	[6-1] <i>p,p'</i> -DDT	
	[6-2] <i>p,p'</i> -DDE	
[6]	[6-3] <i>p,p'</i> -DDD	
	[6-4] <i>o,p'</i> -DDT	
	[6-5] <i>o,p'</i> -DDE	
	[6-6] <i>o,p'</i> -DDD	
	クロルデン類	
	[7-1] <i>cis-</i> クロルデン	
[7]	[7-2] <i>trans-</i> クロルデン	
[/]	[7-3] オキシクロルデン	
	[7-4] <i>cis-</i> ノナクロル	
	[7-5] trans-ノナクロル	
	ヘプタクロル類	
[8]	[8-1] ヘプタクロル	
[O]	[8-2] cis-ヘプタクロルエポキシド	
	[8-3] trans-ヘプタクロルエポキシド	
	トキサフェン類 	
101	[9-1] Parlar-26	
[9]	[9-2] Parlar-50	
	[9-3] Parlar-62	
[10]	マイレックス	
	HCH 類	
	[11-1] α-HCH	7
	[11-2] <i>β</i> -HCH	半減期 10 年
[11]		[7~15 年]
	[11-3] ₎ -HCH(別名:リンデン)	\ 半減期 9 年 [7~15 年]
	[11-4] δ-HCH	- <u>*</u>

物質	雪田 太 华上 在 胁加 所元	大気					
調査 番号	調査対象物質	温暖期					
	ポリブロモジフェニルエーテル類						
	[14-1] テトラブロモジフェニルエーテル類	↓ 半減期 6 年 [5∼8 年]					
	[14-2] ペンタブロモジフェニルエーテル類	У					
[14]	[14-3] ヘキサブロモジフェニルエーテル類	abla					
	[14-4] ヘプタブロモジフェニルエーテル類	Ä					
	[14-5] オクタブロモジフェニルエーテル類	¥					
	[14-6] ノナブロモジフェニルエーテル類	¥					
	[14-7] デカブロモジフェニルエーテル	Ä					
[15]	ペルフルオロオクタンスルホン酸 (PFOS)	7					
[16]	ペルフルオロオクタン酸 (PFOA)	_					
[17]	ペンタクロロベンゼン						

- (注1) AIC での増減傾向の判定では、一次モデルの事後確率において95%を閾値としている。
- (注 2) 「」は経年的な減少傾向が統計的に有意と判定されたことを、「 」」は調査期間の後期で得られた結果が前期と比べ低値であることが統計的に有意と判定され、濃度の減少傾向が示唆されたことを、「 」」は検出数が少ないものの、検出率が減少していることが統計的に有意と判定され、濃度の減少傾向が示唆されたことを示す。
- (注3) 「一」は経年的な減少傾向もしくは増加傾向が統計的に有意と判定されなかったことを、「一*」はブートストラップ法において調査期間の後期で得られた結果が、前期と比べ低値であること(又は高値であること)が統計的に有意と判定されず、濃度の減少傾向(又は増加傾向)が示唆されなかったことを、「一**」は不検出率の増加傾向の解析において検出数が少ないものの、検出率が減少(又は増加)していることが統計的に有意と判定されず、濃度の減少傾向(又は増加傾向)が示唆されなかったことを意味する。
- (注4) □は2019年度の調査を実施しておらず、経年分析を行っていない。
- (注 5) 平減期は、実データに基づいた残差分布による最尤推定法で減少傾向が 3 か年以上継続している場合において、調査結果に基づく環境中における半減期を記載している。 [] 内の結果は、95%信頼区間における値を示す。
- (注 6) HCH 類は 2009 年度以降の調査結果に基づく経年分析の結果を記載している。
- (注7) ポリブロモジフェニルエーテル類は 2009 年度以降の調査結果に基づく経年分析の結果を、ペルフルオロオクタンスルホン酸 (PFOS)、ペルフルオロオクタン酸 (PFOA) 及びは 2010 年度以降の調査結果に基づく経年分析の結果を、ペンタクロロベンゼンは 2007 年度以降の調査結果に基づく経年分析の結果をそれぞれ記載している。
- (注8) ※前回試料採取時と比較して、気温が大きく下がっている点を除外して解析した。

表 11 2002 年度から 2019 年度における経年分析の水域分類

分類	地方公共団体	調査地点	水質 水質	
		1, 122 2		底質
河川域	北海道	十勝川すずらん大橋(帯広市)	0	
	出イ旧	石狩川河口石狩河口橋(石狩市)	0	0
	岩手県	豊沢川(花巻市)	0	0
	仙台市	広瀬川広瀬大橋 (仙台市)		0
	山形県	最上川河口(酒田市)	0	0
	茨城県	利根川河口かもめ大橋(神栖市)	0	0
	栃木県	田川給分地区頭首工(宇都宮市)	0	0
	埼玉県	荒川秋ヶ瀬取水堰(志木市)	0	
	新潟県	信濃川下流(新潟市)	0	0
	富山県	神通川河口萩浦橋(富山市)	0	0
	福井県	笙の川三島橋(敦賀市)	0	0
	山梨県	荒川千秋橋(甲府市)		0
	静岡県	天竜川 (磐田市)	0	0
	京都市	桂川宮前橋(京都市)	0	0
	大阪市	大阪港	0	0
		淀川 (大阪市)		0
	奈良県	大和川(王寺町)		\circ
	和歌山県	紀の川河口紀の川大橋(和歌山市)	0	0
	高知県	四万十川河口(四万十市)	0	0
	熊本県	緑川平木橋 (宇土市)	0	
	宮崎県	大淀川河口(宮崎市)	0	0
	鹿児島県	天降川(霧島市)	0	0
		五反田川五反田橋(いちき串木野市)	0	0
胡沼域	秋田県	八郎湖	Ö	Ō
	長野県	諏訪湖湖心	0	0
	滋賀県	琵琶湖南比良沖中央		Ō
		琵琶湖唐崎沖中央	0	Ō
可口域	千葉市	花見川河口 (千葉市)	Ô	Ô
******	東京都	荒川河口 (江東区)	Ô	Ô
)(C)((隅田川河口(港区)	Ö	Ö
	川崎市	多摩川河口(川崎市)		Ö
	石川県	犀川河口(金沢市)	0	Ö
	愛知県	衣浦港		Ö
	三重県	鳥羽港		0
	大阪府	大和川河口(堺市)	0	0
	大阪市	淀川河口(大阪市)		0
	徳島県	吉野川河口(徳島市)	0	0
	香川県	高松港		0
	北九州市	洞海湾	0	0
	大分県	大分川河口(大分市)		0
	沖縄県	那覇港	0	0
海域	北海道	苫小牧港		0
1四次	宮城県	仙台湾(松島湾)	0	0
	福島県	小名浜港		0
	千葉県	市原・姉崎海岸		0
	横浜市	横浜港	0	0
	川崎市	川崎港京浜運河		0
	静岡県	清水港		0
		何小他 名古屋港	0	0
	三重県	□ 日本 日本 日本 日本 日本 日本 日本 日本	0	0
	三里兒 京都府	宮津港	0	0
	大阪市	大阪港外		0
	兵庫県	大阪港外 姫路沖	0	0
	神戸市	神戸港中央	0	0
	一一件戶巾 一	水島沖	0	0
	広島県	小島仲 呉港	0	0
	四岡州	兵商 広島湾	0	0
	II III III)
	山口県	徳山湾	0	0
		宇部沖	0	0
	五亿日	萩沖	0	0
	愛媛県	新居浜港		0
	福岡市	博多湾		0
	佐賀県 長崎県	伊万里湾 大村湾	0	0

(注) 調査地点の名称として河口としている地点の一部は、調査地点の状況から河川域及び海域に分類した。

2019 年度調査においては、2002 年度又は 2003 年度から継続的な分析が行われている PCB 類及び HCB について、全て検出された。

また、HCH 類、ポリブロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)、ペルフルオロオクタンスルホン酸(PFOS)、ペルフルオロオクタン酸(PFOA)、ペンタクロロベンゼン、1,2,5,6,9,10-ヘキサブロモシクロドデカン類のうち α -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び γ -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び γ -1,2,5,6,9,10-ヘキサブロモシクロドデカン、ポリ塩化ナフタレン類、ヘキサクロロブタ-1,3-ジエン、ペンタクロロフェノール並びにその塩及びエステル類、短鎖塩素化パラフィン類、ジコホル並びにペルフルオロヘキサンスルホン酸(PFHxS)についても分析が行われた。

HCH 類の δ -HCH が生物の貝類で、ポリブロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)のうちノナブロモジフェニルエーテル類及びデカブロモジフェニルエーテルが生物の貝類及び魚類で、1,2,5,6,9,10-ヘキサブロモシクロドデカン類のうち α -1,2,5,6,9,10-ヘキサブロモシクロドデカンが生物の魚類及び鳥類で、 β -1,2,5,6,9,10-ヘキサブロモシクロドデカンが生物の鳥類で、短鎖塩素化パラフィン類のうち塩素化ウンデカン類及び塩素化ドデカン類が生物のうち貝類で、ジコホルが生物のうち貝類で、それぞれ不検出であった以外は全て検出された。

物質(群)別の調査結果は、次のとおりである。

[1] 総 PCB

調査の経緯及び実施状況

PCB (ポリ塩化ビフェニル) 類は、絶縁油等に利用されていた。難分解性で、生物に蓄積しやすくかつ 慢性毒性を有するため、1974年6月に化審法に基づく第一種特定化学物質に指定されている。また、POPs 条約においては、2004年に条約が発効された当初から条約対象物質に指定されている。

2001 年度までの継続的調査においては、「生物モニタリング」ⁱⁱ⁾で 1978 年度から 2001 年度の全期間にわたって生物(貝類、魚類及び鳥類)について調査しており、「非意図的生成化学物質汚染実態追跡調査」 ⁱⁱⁱ⁾で 1996 年度及び 1997 年度に底質及び生物(魚類)、2000 年度及び 2001 年度に水質、底質、生物(魚類)及び大気の調査を実施している。

2002 年度以降のモニタリング調査では、水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を毎年度実施している。

•調査結果

<水質>

水質については、48 地点を調査し、検出下限値 4.7pg/L において 48 地点全てで検出され、検出濃度は $tr(6.6)\sim3,400pg/L$ の範囲であった。

2002 年度から 2019 年度における経年分析の結果、河川域、湖沼域及び河口域の減少傾向が統計的に有意と判定された。また、水質全体としても減少傾向が統計的に有意と判定された。

○2002 年度から	2019 年度におけ	る水質について	ての総 PCR	の給出状況

総 PCB	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
ME I CD	天旭十尺	平均值※	一八世	双八匹	双/17恒	下限值※※	検体	地点
	2002	470	330	11,000	60	7.4 [2.5]	114/114	38/3
	2003	530	450	3,100	230	9.4 [2.5]	36/36	36/.
	2004	630	540	4,400	140	14 [5.0]	38/38	38/
	2005	520	370	7,800	140	10 [3.2]	47/47	47/
	2006	240	200	4,300	15	9 [3]	48/48	48/
	2007	180	140	2,700	12	7.6 [2.9]	48/48	48/
	2008	260	250	4,300	27	7.8 [3.0]	48/48	48/
	2009	210	170	3,900	14	10 [4]	48/48	48/
水質	2010	120	99	2,200	nd	73 [24]	41/49	41/
(pg/L)	2011	150	130	2,100	16	4.5 [1.7]	49/49	49/
40 /	2012	400	280	6,500	72	44 [15]	48/48	48/
	2013	140	110	2,600	tr(13)	25 [8]	48/48	48/
	2014	150	120	4,800	16	8.2 [2.9]	48/48	48/
	2015	200	160	4,200	34	21 [7.3]	48/48	48/
	2016	140	120	3,100	tr(7.2)	8.4 [2.8]	48/48	48/
	2017	84	79	2,400	nd	16 [5.5]	46/47	46/
	2018	150	140	2,600	tr(11)	14 [5]	47/47	47/
	2019	120	90	3,400	tr(6.6)	12 [4.7]	48/48	48/

⁽注1)※:2002年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

底質については、61 地点を調査し、検出下限値 3.3pg/g-dry において 61 地点全てで検出され、検出濃度 は 37~640,000pg/g-dry の範囲であった。

2002 年度から 2019 年度における経年分析の結果、河川域及び海域の減少傾向が統計的に有意と判定された。また、底質全体としても減少傾向が統計的に有意と判定された。

⁽注2) ※※: 定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。

○2002 年度から 2019 年度における底質についての総 PCB の検出状況

総 PCB	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
形S PCB	天旭中及	平均值※	中大旭	取八胆	取小胆	下限值※※	検体	地点
	2002	11,000	11,000	630,000	39	10 [3.5]	189/189	63/63
	2003	9,400	9,500	5,600,000	39	10 [3.2]	186/186	62/62
	2004	8,400	7,600	1,300,000	38	7.9 [2.6]	189/189	63/63
	2005	8,600	7,100	690,000	42	6.3 [2.1]	189/189	63/63
	2006	8,800	6,600	690,000	36	4[1]	192/192	64/64
	2007	7,400	6,800	820,000	19	4.7 [1.5]	192/192	64/64
	2008	8,700	8,900	630,000	22	3.3 [1.2]	192/192	64/64
	2009	7,600	7,100	1,700,000	17	5.1 [2.1]	192/192	64/64
底質	2010	6,500	7,800	710,000	nd	660 [220]	56/64	56/64
(pg/g-dry)	2011	6,300	7,400	950,000	24	12 [4.5]	64/64	64/64
	2012	5,700	6,700	640,000	tr(32)	51 [18]	63/63	63/63
	2013	6,200	8,000	650,000	tr(43)	44 [13]	62/62	62/62
	2014	4,900	5,500	440,000	tr(35)	61 [21]	63/63	63/63
	2015	6,400	7,500	1,100,000	nd	62 [22]	61/62	61/62
	2016	5,300	5,300	770,000	tr(21)	53 [18]	62/62	62/62
	2017	4,600	6,200	610,000	nd	14 [5.0]	61/62	61/62
	2018	5,900	6,500	720,000	nd	170 [55]	58/61	58/61
	2019	5,700	7,900	640,000	37	8.5 [3.3]	61/61	61/61

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

生物のうち貝類については、3 地点を調査し、検出下限値 11pg/g-wet において 3 地点全てで検出され、検出濃度は $350\sim17,000pg/g$ -wet の範囲であった。魚類については、16 地点を調査し、検出下限値 11pg/g-wet において 16 地点全で検出され、検出濃度は $1,000\sim160,000pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 11pg/g-wet において検出され、検出濃度は 190,000pg/g-wet であった。

2002 年度から 2019 年度における経年分析の結果、貝類の減少傾向が統計的に有意と判定された。

○2002 年度から 2019 年度における生物(貝類、魚類及び鳥類)についての総 PCB の検出状況

総 PCB	実施年度	年度 幾何 年度 平均 6 % 中央値 最大個	是七店	最小値	_{是小値} 定量[検出]		検出頻度	
邢 PCB	天旭十尺	平均值※	中大旭	取八胆	取小胆	下限值※※	検体	地点
	2002	8,800	28,000	160,000	200	25 [8.4]	38/38	8/8
	2003	11,000	9,600	130,000	1,000	50 [17]	30/30	6/6
	2004	11,000	11,000	150,000	1,500	85 [29]	31/31	7/7
	2005	11,000	13,000	85,000	920	69 [23]	31/31	7/7
	2006	8,500	8,600	77,000	690	42 [14]	31/31	7/7
	2007	9,000	11,000	66,000	980	46 [18]	31/31	7/7
	2008	8,600	8,600	69,000	870	47 [17]	31/31	7/7
	2009	8,700	11,000	62,000	780	32 [11]	31/31	7/7
貝類	2010	9,200	11,000	46,000	1,500	52 [20]	6/6	6/6
(pg/g-wet)	2011	8,900	17,000	65,000	820	220 [74]	4/4	4/4
	2012	6,600	12,000	34,000	680	34 [11]	5/5	5/5
	2013	5,200	7,800	44,000	730	44 [14]	5/5	5/5
	2014	2,900	2,600	15,000	600	95 [31]	3/3	3/3
	2015	2,400	2,500	9,600	580	52 [17]	3/3	3/3
	2016	2,300	2,300	12,000	420	60 [20]	3/3	3/3
	2017	2,500	1,600	19,000	500	68 [23]	3/3	3/3
	2018	2,000	900	12,000	740	63 [21]	3/3	3/3
	2019	2,200	1,900	17,000	350	33 [11]	3/3	3/3

⁽注2) ※※: 定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。

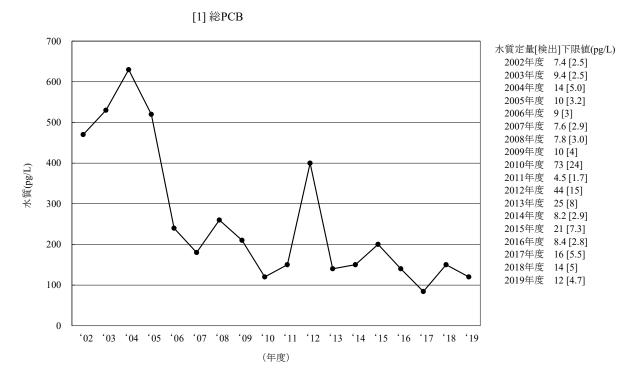
総 PCB	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値※※	検出	頻度
	2002	17,000	8,100	550,000	1,500	25 [8.4]	70/70	14/14
	2003	11,000	9,600	150,000	870	50 [17]	70/70	14/14
	2004	15,000	10,000	540,000	990	85 [29]	70/70	14/14
	2005	14,000	8,600	540,000	800	69 [23]	80/80	16/16
	2006	13,000	9,000	310,000	990	42 [14]	80/80	16/16
	2007	11,000	6,200	530,000	790	46 [18]	80/80	16/16
	2008	12,000	9,100	330,000	1,200	47 [17]	85/85	17/17
	2009	12,000	12,000	290,000	840	32 [11]	90/90	18/18
魚類	2010	13,000	10,000	260,000	880	52 [20]	18/18	18/18
(pg/g-wet)	2011	14,000	12,000	250,000	900	220 [74]	18/18	18/18
	2012	13,000	14,000	130,000	920	34 [11]	19/19	19/19
	2013	14,000	13,000	270,000	1,000	44 [14]	19/19	19/19
	2014	13,000	10,000	230,000	940	95 [31]	19/19	19/19
	2015	11,000	7,700	180,000	1,300	52 [17]	19/19	19/19
	2016	11,000	8,400	150,000	1,200	60 [20]	19/19	19/19
	2017	10,000	8,300	160,000	860	68 [23]	19/19	19/19
	2018	12,000	12,000	280,000	1,200	63 [21]	18/18	18/18
	2019	12,000	12,000	160,000	1,000	33 [11]	16/16	16/16
	2002	12,000	14,000	22,000	4,800	25 [8.4]	10/10	2/2
	2003	19,000	22,000	42,000	6,800	50 [17]	10/10	2/2
	2004	9,000	9,400	13,000	5,900	85 [29]	10/10	2/2
	2005	10,000	9,700	19,000	5,600	69 [23]	10/10	2/2
	2006	12,000	9,800	48,000	5,600	42 [14]	10/10	2/2
	2007	7,600	7,800	15,000	3,900	46 [18]	10/10	2/2
	2008	9,700	7,400	56,000	3,000	47 [17]	10/10	2/2
	2009	5,900	5,700	9,500	3,900	32 [11]	10/10	2/2
鳥類	2010	7,700		9,100	6,600	52 [20]	2/2	2/2
(pg/g-wet)	2011			5,400	5,400	220 [74]	1/1	1/1
	2012	5,900		6,200	5,600	34 [11]	2/2	2/2
	2013※※※	360,000		510,000	250,000	44 [14]	2/2	2/2
	2014***	46,000		140,000	15,000	95 [31]	2/2	2/2
	2015***			5,000	5,000	52 [17]	1/1	1/1
	2016***	31,000		100,000	9,800	60 [20]	2/2	2/2
	2017****	39,000		380,000	4,000	68 [23]	2/2	2/2
	2018****	110,000		130,000	85,000	63 [21]	2/2	2/2
	2019****	·		190,000	190,000	33 [11]	1/1	1/1

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

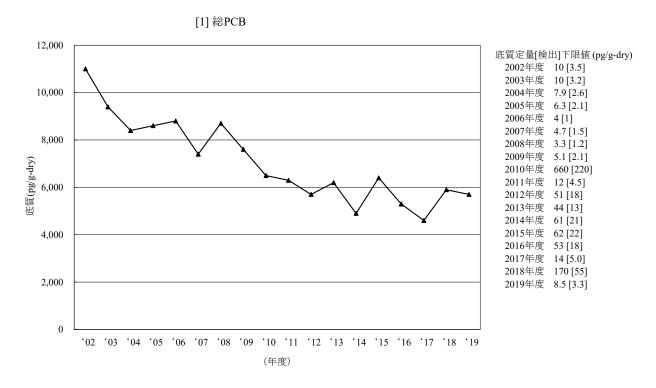
<大気>

大気については、36 地点を調査し、検出下限値 $0.8pg/m^3$ において 36 地点全てで検出され、検出濃度は $27{\sim}340pg/m^3$ の範囲であった。

2003 年度から 2019 年度における経年分析の結果、温暖期の減少傾向が統計的に有意と判定された。

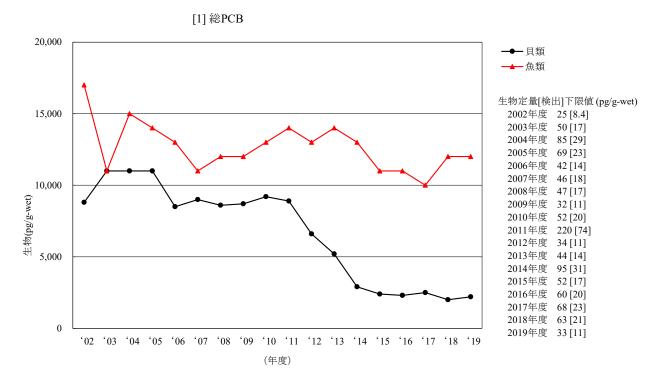

⁽注2) ※※: 定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。

⁽注3) ※※※:鳥類の2013年度以降における結果は、調査地点及び調査対象生物を変更したことから、2012年度までの結果と継続性がない。


○2002 年度から 2019 年度における大気についての総 PCB の検出状況

安抚左库	幾何 出出	中中	中山៨ 是土៨	是小店	定量[検出]	検出	頻度
夫肔午及	平均值	中共恒	取人他	取小胆	下限值※	検体	地点
2002***	100	100	880	16	99 [33]	102/102	34/34
2003 温暖期	260	340	2,600	36	6 6 [2 2]	35/35	35/35
2003 寒冷期	110	120	630	17	0.0 [2.2]	34/34	34/34
2004 温暖期	240	250	3,300	25	2 0 10 021	37/37	37/37
2004 寒冷期	130	130	1,500	20	2.9 [0.96]	37/37	37/37
2005 温暖期	190	210	1,500	23	0.38 [0.14]	37/37	37/37
2005 寒冷期	66	64	380	20		37/37	37/37
2006 温暖期	170	180	1,500	21	0.8.10.31	37/37	37/37
2006寒冷期	82	90	450	19	0.8 [0.3]	37/37	37/37
2007 温暖期	250	290	980	37	0.37 [0.13]	24/24	24/24
2007寒冷期	72	76	230	25	0.37 [0.13]	22/22	22/22
2008 温暖期	200	170	960	52		22/22	22/22
2008 寒冷期	93	86	1,500	21	0.8 [0.3]	36/36	36/36
2009 温暖期	200	190	1,400	43	0.75 [0.26]	34/34	34/34
2009寒冷期	85	78	380	380 20 0.73 [0.26]	34/34	34/34	
	160	150	970	36	7 3 [2 5]	35/35	35/35
	84	86	630	19	7.3 [2.3]	35/35	35/35
2011 温暖期	150	160	660	32	19 [5 0]	35/35	35/35
2011 寒冷期	76	66	320	tr(17)	16 [3.9]	37/37	37/37
	130	130	840	27	26 [8 5]	35/35	35/35
	54	62	280	tr(16)	20 [6.3]	35/35	35/35
	140	130	1,100	24	20 [6 5]	35/35	35/35
2013 寒冷期	57	55	300	tr(19)	20 [0.3]	35/35	35/35
2014 温暖期	140	150	1,300	28	4.1 [1.4]	36/36	36/36
2015 温暖期	98	110	950	17	5.9 [2.0]	35/35	35/35
2016温暖期	130	140	1,300	16	7.8 [2.7]	37/37	37/37
2017温暖期	120	110	3,300	26	7.0 [2.3]	37/37	37/37
2018温暖期	110	100	750	20	2.4 [0.8]	37/37	37/37
2019温暖期	89	90	340	27	2.1 [0.8]	36/36	36/36
	2003 温寒期 2003 温寒周期 2004 温寒温寒冷暖 2004 温寒温寒冷暖冷暖冷暖冷暖冷暖冷暖冷暖冷暖冷暖冷暖冷暖冷暖冷暖冷暖冷暖冷暖冷暖冷暖	実施中度 平均値 2002※※ 100 2003 温暖期 260 2003 寒冷期 110 2004 温暖期 240 2004 寒冷期 130 2005 温暖期 190 2005 寒冷期 66 2006 無冷期 82 2007 温暖期 250 2007 寒冷期 72 2008 温暖期 200 2008 寒冷期 93 2009 温暖期 200 2009 寒冷期 85 2010 温暖期 160 2010 寒冷期 84 2011 温暖期 150 2011 寒冷期 76 2012 温暖期 130 2012 寒冷期 54 2013 温暖期 140 2015 温暖期 140 2015 温暖期 18 2016 温暖期 130 2017 温暖期 120 2018 温暖期 110 2019 温暖期 89	実施中後 平均値 中大値 2002※※ 100 100 2003 温暖期 260 340 2003 寒冷期 110 120 2004 温暖期 240 250 2004 寒冷期 130 130 2005 温暖期 190 210 2005 寒冷期 66 64 2006 温暖期 170 180 2006 寒冷期 82 90 2007 温暖期 250 290 2007 温暖期 250 290 2007 温暖期 250 290 2007 温暖期 200 170 2008 温暖期 200 170 2008 寒冷期 93 86 2009 寒冷期 85 78 2010 湿暖期 200 190 2009 寒冷期 85 78 2010 寒冷期 84 86 2011 寒冷期 76 66 2012 寒冷期 54 62 2013 温暖期 140 130 2015 温暖期 57 <	実施中度 平均値 中大値 取大値 2002※※ 100 100 880 2003 温暖期 260 340 2,600 2003 寒冷期 110 120 630 2004 温暖期 240 250 3,300 2004 寒冷期 130 1,500 2005 温暖期 190 210 1,500 2005 寒冷期 66 64 380 2006 温暖期 170 180 1,500 2006 寒冷期 82 90 450 2007 湿暖期 250 290 980 2007 湿暖期 250 290 980 2007 寒冷期 72 76 230 2008 寒冷期 72 76 230 2008 寒冷期 93 86 1,500 2009 寒冷期 85 78 380 2010 寒冷期 160 150 970 2010 寒冷期 84 86 630 2011 寒冷期 76 66 320 2	実施中度 平均値 中大値 取入値 取入値 2002※※ 100 100 880 16 2003 温暖期 260 340 2,600 36 2003 寒冷期 110 120 630 17 2004 鬼冷期 130 130 1,500 20 2005 鬼冷期 190 210 1,500 23 2005 寒冷期 66 64 380 20 2006 寒冷期 82 90 450 19 2007 湿暖期 250 290 980 37 2007 寒冷期 72 76 230 25 2008 寒冷期 200 170 960 52 2008 寒冷期 93 86 1,500 21 2009 湿暖期 200 170 960 52 2008 寒冷期 93 86 1,500 21 2009 寒冷期 85 78 380 20 2010 寒冷期 160 150 970 36	実施中接 平均値 中大値 取入値 下限値※ 2002※※ 100 100 880 16 99 [33] 2003 温暖期 260 340 2,600 36 6.6 [2.2] 2003 寒冷期 110 120 630 17 6.6 [2.2] 2004 湿暖期 240 250 3,300 25 2.9 [0.98] 2004 寒冷期 130 130 1,500 20 2.9 [0.98] 2005 寒冷期 190 210 1,500 23 0.38 [0.14] 2005 寒冷期 66 64 380 20 0.38 [0.14] 2006 寒冷期 82 90 450 19 0.8 [0.3] 2007 湿暖期 250 290 980 37 0.37 [0.13] 2007 寒冷期 72 76 230 25 0.8 [0.3] 2008 寒冷期 93 86 1,500 21 0.8 [0.3] 2009 寒冷期 85 78 380 20 0.75 [0.26] 2010 寒冷期 160<	大胆中皮 平均値 取大胆 取小胆 下限値※ 検体 2002※※ 100 100 880 16 99 [33] 102/102 2003 温暖期 260 340 2,600 36 6.6 [2.2] 35/35 2003 寒冷期 110 120 630 17 6.6 [2.2] 34/34 2004 寒冷期 130 130 1,500 20 2.9 [0.98] 37/37 2005 海冷期 66 64 380 20 0.38 [0.14] 37/37 2005 寒冷期 66 64 380 20 0.38 [0.14] 37/37 2006 寒冷期 82 90 450 19 0.8 [0.3] 37/37 2007 寒冷期 250 290 980 37 0.37 [0.13] 24/24 2007 寒冷期 72 76 230 25 0.8 [0.3] 36/36 2007 寒冷期 93 86 1,500 21 0.8 [0.3] 36/36 2008 寒冷期 93 86 1,500 21

⁽注 1) ※:定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。 (注 2) ※※: 2002 年度の調査においては、特に低塩素化同族体の測定方法に技術的問題があったため、参考値とし て扱う。



(注) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 3-1-1 総 PCB の水質の経年変化 (幾何平均値)

(注) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 3-1-2 総 PCB の底質の経年変化(幾何平均値)

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。

図 3-1-3 総 PCB の生物の経年変化(幾何平均値)

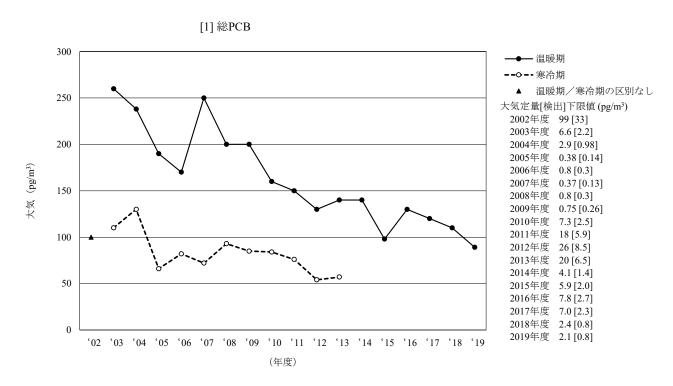


図 3-1-4 総 PCB の大気の経年変化(幾何平均値)

[2] HCB

・調査の経緯及び実施状況

HCBは、殺虫剤等の原料に利用されていた。1979年8月に、化審法に基づく第一種特定化学物質に指定されている。また、POPs 条約においては、2004年に条約が発効された当初から条約対象物質に指定されている。

2001 年度までの継続的調査においては、「生物モニタリング」ⁱⁱ⁾ で 1978 年度から 1996 年度までの毎年度と 1998 年度、2000 年度及び 2001 年度に生物(貝類、魚類及び鳥類)について調査を実施し、「水質・底質モニタリング」ⁱ⁾ で水質は 1986 年度から 1998 年度まで、底質は 1986 年度から 2001 年度の全期間にわたって調査を実施している。

2002 年度以降のモニタリング調査では、水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を毎年度実施している。

•調査結果

<水質>

水質については、48 地点を調査し、検出下限値 3pg/L において 48 地点中 46 地点で検出され、検出濃度は 630pg/L までの範囲であった。

2002 年度から 2019 年度における経年分析の結果、河川域及び河口域の減少傾向が統計的に有意と判定され、海域の調査期間の後期 6 か年で得られた結果が前期 6 か年と比べ低値であることが統計的に有意と判定され、減少傾向が示唆された。また、水質全体としても減少傾向が統計的に有意と判定された。

○2002 年度から 2019 年度における水質についての HCB の検出状況

НСВ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
псь	天 旭 中 及	平均值※	中大恒	取八胆	取力恒	下限値	検体	地点
	2002	37	28	1,400	9.8	0.6 [0.2]	114/114	38/38
	2003	29	24	340	11	5 [2]	36/36	36/36
	2004	30	tr(29)	180	tr(11)	30 [8]	38/38	38/38
	2005	21	17	210	tr(6)	15 [5]	47/47	47/4
	2006	16	tr(12)	190	nd	16 [5]	46/48	46/4
	2007	17	14	190	tr(4)	8 [3]	48/48	48/4
	2008	16	13	480	4	3 [1]	48/48	48/4
	2009	15	17	180	2.4	0.5 [0.2]	49/49	49/4
水質	2010	tr(10)	tr(8)	120	nd	13 [4]	39/49	39/4
(pg/L)	2011	13	12	140	tr(3)	5 [2]	49/49	49/4
46 /	2012	29	23	330	8.1	2.2 [0.7]	48/48	48/4
	2013	14	11	260	tr(4)	7 [2]	48/48	48/4
	2014	12	9.7	200	2.7	0.9 [0.4]	48/48	48/4
	2015	15	13	140	4.2	1.8 [0.6]	48/48	48/4
	2016	13	11	130	4.2	0.9 [0.3]	48/48	48/4
	2017	12	10	180	2.9	2.1 [0.8]	47/47	47/4
	2018	16	11	380	4.0	1.5 [0.6]	47/47	47/4
	2019	10	10	630	nd	8 [3]	46/48	46/4

(注)※:2002年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

底質については、61 地点を調査し、検出下限値 0.4pg/g-dry において 61 地点全てで検出され、検出濃度は $4.5\sim10,000$ pg/g-dry の範囲であった。

2002 年度から 2019 年度における経年分析の結果、河川域の減少傾向が統計的に有意と判定された。ま

た、底質全体としても減少傾向が統計的に有意と判定された。

○2002 年度から 2019 年度における底質についての HCB の検出状況

HCB	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
псь		平均值※	一八世		双/17恒	下限値 1	検体	地点
	2002	240	200	19,000	7.6	0.9 [0.3]	189/189	63/63
	2003	160	120	42,000	5	4 [2]	186/186	62/62
	2004	140	100	25,000	tr(6)	7 [3]	189/189	63/63
	2005	170	130	22,000	13	3 [1]	189/189	63/63
	2006	180	120	19,000	10	2.9 [1.0]	192/192	64/64
	2007	140	110	65,000	nd	5 [2]	191/192	64/64
	2008	160	97	29,000	4.4	2.0 [0.8]	192/192	64/64
	2009	150	120	34,000	nd	1.8 [0.7]	190/192	64/64
底質	2010	130	96	21,000	4	3 [1]	64/64	64/64
(pg/g-dry)	2011	150	110	35,000	11	7 [3]	64/64	64/64
400 37	2012	100	110	12,000	3	3 [1]	63/63	63/63
	2013	120	91	6,600	7.2	5.3 [1.8]	63/63	63/63
	2014	95	85	5,600	tr(4)	6 [2]	63/63	63/63
	2015	100	90	17,000	4	3 [1]	62/62	62/62
	2016	84	74	6,400	4	3 [1]	62/62	62/62
	2017	82	65	11,000	3	3 [1]	62/62	62/62
	2018	100	79	8,900	3.1	1.3 [0.5]	61/61	61/61
	2019	88	85	10,000	4.5	0.9 [0.4]	61/61	61/61

⁽注) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を 求めた。

<生物>

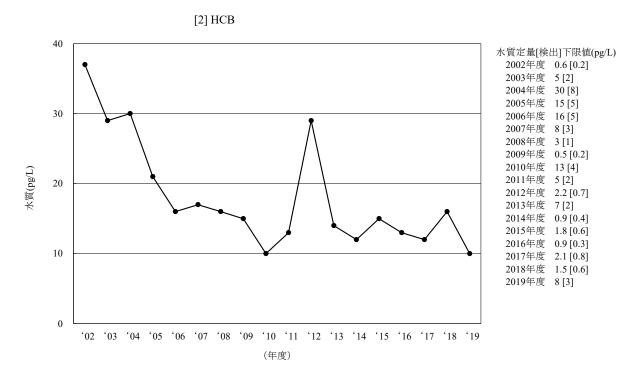
生物のうち貝類については、3 地点を調査し、検出下限値 1pg/g-wet において 3 地点全てで検出され、検出濃度は $12\sim65pg/g$ -wet の範囲であった。魚類については、16 地点を調査し、検出下限値 1pg/g-wet において 16 地点全で検出され、検出濃度は $12\sim1,100pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 3,200pg/g-wet であった。

○2002 年度から 2019 年度における生物(貝類、魚類及び鳥類)についての HCB の検出状況

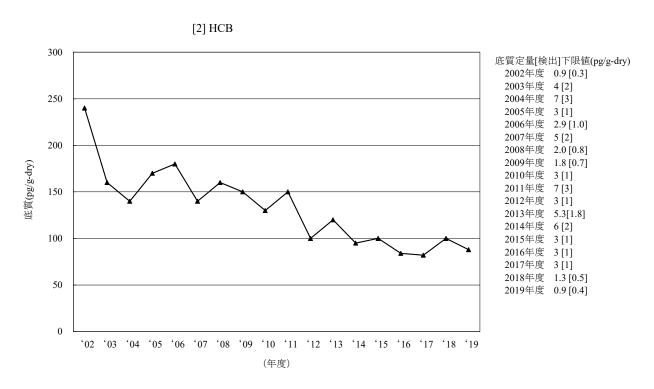
	017 12104		(XXXXX)	THE CONTRACT	(- > 1	C V TICD V TICE	ロヤハレロ	
НСВ	実施年度	幾何 平均値※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2002	21	22	330	2.4	0.18 [0.06]	38/38	8/8
	2003	44	27	660	tr(21)	23 [7.5]	30/30	6/6
	2004	32	31	80	14	14 [4.6]	31/31	7/7
	2005	51	28	450	19	11 [3.8]	31/31	7/7
	2006	46	28	340	11	3 [1]	31/31	7/7
	2007	37	22	400	11	7 [3]	31/31	7/7
	2008	38	24	240	13	7 [3]	31/31	7/7
	2009	34	32	200	12	4 [2]	31/31	7/7
貝類	2010	34	48	210	tr(4)	5 [2]	6/6	6/6
(pg/g-wet)	2011	45	34	920	`4	4 [1]	4/4	4/4
400	2012	39	38	340	10	8.4 [2.8]	5/5	5/5
	2013	32	39	250	nd	31 [10]	4/5	4/5
	2014	34	26	100	15	10 [3]	3/3	3/3
	2015	35	26	120	tr(14)	20 [6.5]	3/3	3/3
	2016	38	22	150	`17	8.1 [2.7]	3/3	3/3
	2017	41	26	99	26	3.9 [1.3]	3/3	3/3
	2018	21	23	28	14	3.3 [1.1]	3/3	3/3
	2019	23	16	65	12	3 [1]	3/3	3/3

HCD		幾何	+++	E 1./±	B 1 /±	定量[検出]	検出	頻度
HCB	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2002	140	180	910	19	0.18 [0.06]	70/70	14/14
	2003	180	170	1,500	28	23 [7.5]	70/70	14/14
	2004	230	210	1,800	26	14 [4.6]	70/70	14/14
	2005	180	160	1,700	29	11 [3.8]	80/80	16/16
	2006	180	220	1,400	25	3 [1]	80/80	16/16
	2007	160	140	1,500	17	7 [3]	80/80	16/16
	2008	170	210	1,500	25	7 [3]	85/85	17/17
	2009	210	180	30,000	29	4 [2]	90/90	18/18
魚類	2010	240	280	1,700	36	5 [2]	18/18	18/18
(pg/g-wet)	2011	260	320	1,500	34	4 [1]	18/18	18/18
	2012	200	300	1,100	33	8.4 [2.8]	19/19	19/19
	2013	240	220	1,500	36	31 [10]	19/19	19/19
	2014	280	340	1,900	37	10 [3]	19/19	19/19
	2015	170	150	1,700	43	20 [6.5]	19/19	19/19
	2016	150	150	1,300	24	8.1 [2.7]	19/19	19/19
	2017	190	180	1,100	33	3.9 [1.3]	19/19	19/19
	2018	140	150	900	25	3.3 [1.1]	18/18	18/18
	2019	100	99	1,100	12	3 [1]	16/16	16/16
	2002	1,000	1,200	1,600	560	0.18 [0.06]	10/10	2/2
	2003	1,800	2,000	4,700	790	23 [7.5]	10/10	2/2
	2004	980	1,300	2,200	410	14 [4.6]	10/10	2/2
	2005	1,000	1,100	2,500	400	11 [3.8]	10/10	2/2
	2006	970	1,100	2,100	490	3 [1]	10/10	2/2
	2007	960	1,100	2,000	420	7 [3]	10/10	2/2
	2008	880	1,100	2,500	240	7 [3]	10/10	2/2
	2009	850	910	1,500	400	4 [2]	10/10	2/2
鳥類	2010	970		1,900	500	5 [2]	2/2	2/2
(pg/g-wet)	2011			460	460	4 [1]	1/1	1/1
	2012	840		1,500	470	8.4 [2.8]	2/2	2/2
	2013※※	3,900		5,200	2,900	31 [10]	2/2	2/2
	2014※※	420		5,600	32	10 [3]	2/2	2/2
	2015※※			760	760	20 [6.5]	1/1	1/1
	2016※※	1,700		5,300	550	8.1 [2.7]	2/2	2/2
	2017※※	1,100		4,900	230	3.9 [1.3]	2/2	2/2
	2018※※	2,800		3,100	2,600	3.3 [1.1]	2/2	2/2
	2019※※			3,200	3,200	3 [1]	1/1	1/1

⁽注 1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

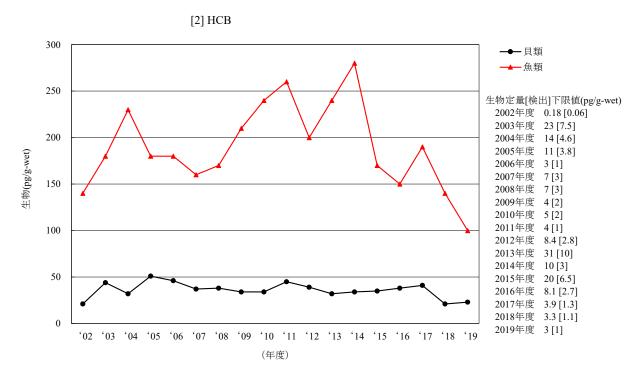

⁽注 2) ※※: 鳥類の 2013 年度以降における結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。

<大気>


大気については、36 地点を調査し、検出下限値 $0.06 pg/m^3$ において 36 地点全てで検出され、検出濃度は $67 \sim 130 pg/m^3$ の範囲であった。

○2002 年度から 2019 年度における大気についての HCB の検出状況

НСВ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
псь	天旭十尺	平均値	中大恒	取八胆	取小胆	下限值	検体	地点
	2002	99	93	3,000	57	0.9 [0.3]	102/102	34/34
	2003 温暖期	150	130	430	81	2.3 [0.78]	35/35	35/35
	2003 寒冷期	94	90	320	64	2.3 [0.76]	34/34	34/34
	2004 温暖期	130	130	430	47	1.1 [0.37]	37/37	37/37
	2004 寒冷期	98	89	390	51	1.1 [0.37]	37/37	37/37
	2005 温暖期	88	90	250	27	0.14 [0.034]	37/37	37/37
	2005 寒冷期	77	68	180	44	0.14 [0.034]	37/37	37/37
	2006 温暖期	83	89	210	23	0.21 [0.07]	37/37	37/37
	2006 寒冷期	65	74	170	8.2	0.21 [0.07]	37/37	37/37
	2007 温暖期	110	100	230	72	0.09 [0.03]	24/24	24/24
	2007 寒冷期	77	72	120	55		22/22	22/22
	2008 温暖期	120	110	260	78	0.22 [0.08]	22/22	22/22
	2008 寒冷期	87	83	160	58	0.22 [0.06]	36/36	36/36
⊥. <i>⊨</i>	2009 温暖期	110	110	210	78	0.6 [0.2]	34/34	34/34
大気	2009 寒冷期	87	87	150	59		34/34	34/34
(pg/m^3)	2010 温暖期	120	120	160	73	1.8 [0.7]	37/37	37/37
	2010寒冷期	100	96	380	56	1.0 [0.7]	37/37	37/37
	2011 温暖期	120	110	180	87	2.3 [0.75]	35/35	35/35
	2011 寒冷期	96	96	160	75	2.3 [0.73]	37/37	37/37
	2012 温暖期	120	110	150	84	4.3 [1.4]	36/36	36/36
	2012 寒冷期	97	95	150	68		36/36	36/36
	2013 温暖期	110	110	180	52	3.8 [1.3]	36/36	36/36
	2013 寒冷期	97	97	180	73		36/36	36/36
	2014 温暖期	150	160	240	84	1.4 [0.5]	36/36	36/36
	2015 温暖期	120	130	170	74	0.5 [0.2]	35/35	35/35
	2016 温暖期	130	130	220	79	0.8 [0.3]	37/37	37/37
	2017温暖期	130	120	550	73	0.5 [0.2]	37/37	37/37
	2018 温暖期	100	100	140	72	0.4 [0.2]	37/37	37/37
	2019 温暖期	96	99	130	67	0.14 [0.06]	36/36	36/36



(注) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 3-2-1 HCB の水質の経年変化(幾何平均値)

(注) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 3-2-2 HCB の底質の経年変化(幾何平均値)

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。

図 3-2-3 HCB の生物の経年変化(幾何平均値)

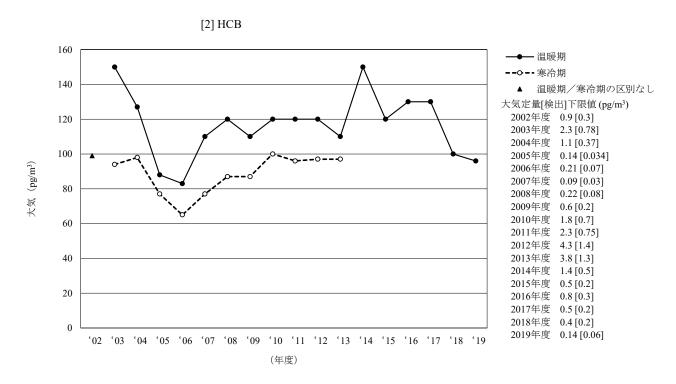


図 3-2-4 HCB の大気の経年変化(幾何平均値)

[3] アルドリン (参考)

調査の経緯及び実施状況

アルドリンは、日本では土壌害虫の駆除に使用されていたが、1971 年以降実質的に使用は中止された。 農薬取締法に基づく登録は1975 年に失効し、1981 年 10 月には化審法に基づく第一種特定化学物質に指定 されている。また、POPs 条約においては、2004 年に条約が発効された当初から条約対象物質に指定され ている。

2001 年度までの継続的調査においては、「生物モニタリング」ⁱⁱ⁾ で 1978 年度から 1989 年度並びに 1991 年度及び 1993 年度にて生物(貝類、魚類及び鳥類)について調査している。

2002 年度以降のモニタリング調査においては、2002 年度から 2009 年度の毎年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2014 年度に生物(貝類、魚類及び鳥類)及び大気の調査を、2018年度に底質の調査を実施している。

2019年度は調査を実施していないため、参考として以下に、2018年度までの調査結果を示す。

・2018 年度までの調査結果 (参考)

<水質>

○2002 年度から 2009 年度における水質についてのアルドリンの検出状況

アルドリン	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2002	0.8	0.9	18	nd	0.6 [0.2]	93/114	37/38
	2003	0.9	0.9	3.8	nd	0.6 [0.2]	34/36	34/36
	2004	tr(1.5)	tr(1.8)	13	nd	2 [0.4]	33/38	33/38
水質	2005	tr(0.6)	tr(0.7)	5.7	nd	0.9 [0.3]	32/47	32/47
(pg/L)	2006	nd	nd	4.4	nd	1.7 [0.6]	18/48	18/48
	2007	tr(0.6)	tr(0.6)	9.5	nd	1.0 [0.3]	34/48	34/48
	2008	tr(0.8)	tr(0.7)	21	nd	1.4 [0.6]	26/48	26/48
	2009	0.7	0.9	22	nd	0.7 [0.3]	32/49	32/49

⁽注)※: 2002年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

○2002 年度から 2018 年度における底質についてのアルドリンの検出状況

アルドリン	実施年度	幾何	中央値	最大値	見よは	定量[検出]	検出	頻度
ノルトリン	夫肔午及	平均值※	中共他	大胆 取入胆	最小值	下限値	検体	地点
	2002	14	12	570	nd	6 [2]	149/189	56/63
	2003	19	18	1,000	nd	2 [0.6]	178/186	60/62
	2004	10	10	390	nd	2 [0.6]	170/189	62/63
底質	2005	8.4	7.1	500	nd	1.4 [0.5]	173/189	62/63
	2006	10	9.3	330	nd	1.9 [0.6]	184/192	64/64
(pg/g-dry)	2007	7.5	6.7	330	nd	1.8 [0.6]	172/192	60/64
	2008	6	6	370	nd	3 [1]	153/192	56/64
	2009	8.9	7.8	540	nd	0.5 [0.2]	180/192	64/64
	2018	3.7	3.8	270	nd	1.6 [0.6]	50/61	50/61

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2010 年度から 2017 年度は調査を実施していない。

<生物>

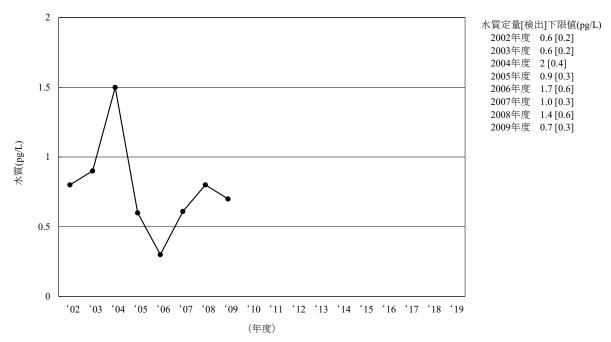
○2002 年度から 2014 年度における生物(貝類、魚類及び鳥類)についてのアルドリンの検出状況

マルドリン	安长左南	幾何	中山街	目.上.は	目.北.は	定量[検出]	検出	頻度
アルドリン	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2002	tr(1.6)	nd	34	nd	4.2 [1.4]	12/38	4/8
	2003	tr(1.7)	tr(0.85)	51	nd	2.5 [0.84]	15/30	3/6
	2004	tr(2.5)	tr(1.6)	46	nd	4.0 [1.3]	16/31	4/7
貝類	2005	tr(1.8)	nd	84	nd	3.5 [1.2]	11/31	3/7
	2006	tr(2)	nd	19	nd	4 [2]	11/31	3/7
(pg/g-wet)	2007	tr(2)	nd	26	nd	5 [2]	5/31	2/7
	2008	tr(2)	nd	20	nd	5 [2]	5/31	3/7
	2009	tr(1.6)	tr(0.8)	89	nd	2.1 [0.8]	16/31	6/7
	2014	nd	nd	nd	nd	1.8 [0.7]	0/3	0/3
	2002	nd	nd	tr(2.0)	nd	4.2 [1.4]	1/70	1/14
	2003	nd	nd	tr(1.9)	nd	2.5 [0.84]	16/70	7/14
	2004	nd	nd	tr(2.4)	nd	4.0 [1.3]	5/70	2/14
魚類	2005	nd	nd	6.4	nd	3.5 [1.2]	11/80	5/16
(pg/g-wet)	2006	nd	nd	tr(2)	nd	4 [2]	2/80	2/16
(pg/g-wet)	2007	nd	nd	tr(2)	nd	5 [2]	2/80	2/16
	2008	nd	nd	tr(2)	nd	5 [2]	1/85	1/17
	2009	nd	nd	3.1	nd	2.1 [0.8]	22/90	7/18
	2014	nd	nd	2.4	nd	1.8 [0.7]	4/19	4/19
	2002	nd	nd	nd	nd	4.2 [1.4]	0/10	0/2
	2003	nd	nd	nd	nd	2.5 [0.84]	0/10	0/2
	2004	nd	nd	nd	nd	4.0 [1.3]	0/10	0/2
鳥類	2005	nd	nd	nd	nd	3.5 [1.2]	0/10	0/2
(pg/g-wet)	2006	nd	nd	nd	nd	4 [2]	0/10	0/2
(Pg/g-wet)	2007	nd	nd	nd	nd	5 [2]	0/10	0/2
	2008	nd	nd	nd	nd	5 [2]	0/10	0/2
	2009	nd	nd	nd	nd	2.1 [0.8]	0/10	0/2
	2014※※	nd		nd	nd	1.8 [0.7]	0/2	0/2

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

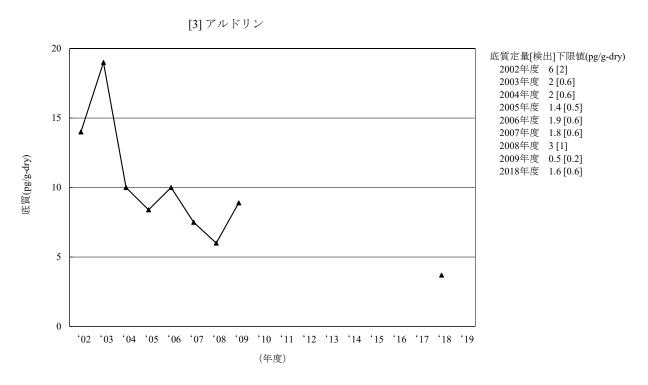
<大気>

○2002 年度から 2014 年度における大気についてのアルドリンの検出状況


アルドリン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
<i></i>		平均値	中关他	取入他	取小胆	下限値 1	人	地点
	2002	tr(0.030)	nd	3.2	nd	0.060 [0.020]	41/102	19/34
	2003 温暖期	1.5	1.9	28	nd	0.023 [0.0077]	34/35	34/35
	2003 寒冷期	0.55	0.44	6.9	0.030	0.023 [0.0077]	34/34	34/34
	2004 温暖期	tr(0.12)	nd	14	nd	0.15 [0.05]	15/37	15/37
	2004寒冷期	tr(0.08)	nd	13	nd	0.13 [0.03]	14/37	14/37
	2005 温暖期	0.33	0.56	10	nd	0.08 [0.03]	29/37	29/37
	2005 寒冷期	tr(0.04)	nd	1.8	nd	0.08 [0.03]	9/37	9/37
大気	2006 温暖期	0.30	0.35	8.5	nd	0.14 [0.05]	31/37	31/37
(pg/m^3)	2006寒冷期	tr(0.05)	nd	1.1	nd	0.14 [0.03]	16/37	16/37
	2007 温暖期	0.58	0.48	19	nd	0.05 [0.02]	35/36	35/36
	2007寒冷期	0.14	0.15	2.1	nd	0.03 [0.02]	34/36	34/36
	2008 温暖期	0.27	0.30	9.4	tr(0.02)	0.04 [0.02]	25/25	25/25
	2008 寒冷期	0.09	0.08	1.3	nd	0.04 [0.02]	22/25	22/25
	2009 温暖期	0.07	nd	10	nd	0.04 [0.02]	10/25	10/25
	2009寒冷期	tr(0.03)	nd	1.8	nd	0.04 [0.02]	8/24	8/24
	2014 温暖期	nd	nd	17	nd	12 [4]	6/34	6/34

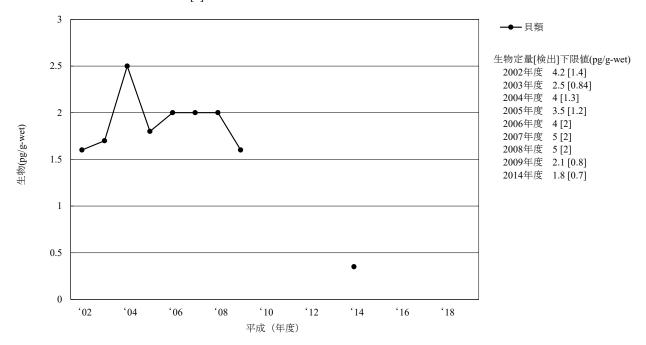
⁽注) 2010年度から 2013年度は調査を実施していない。

⁽注 2) ※※: 鳥類の 2014 年度における結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。

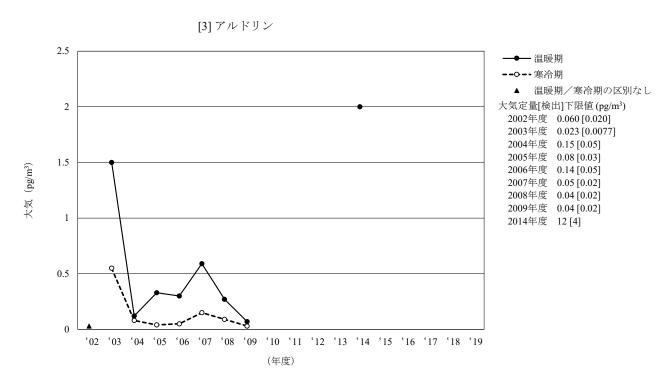

⁽注3) 2010年度から2013年度は調査を実施していない。

[3] アルドリン

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2010 年度から 2019 年度は調査を実施していない。
- (注3) 2006 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。


図 3-3-1 アルドリンの水質の経年変化 (幾何平均値)

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2010 年度から 2017 年度及び 2019 年度は調査を実施していない。


図 3-3-2 アルドリンの底質の経年変化(幾何平均値)

[3] アルドリン

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 魚類については、全ての年度において幾何平均値が検出下限値未満であったため、経年変化は示していない。
- (注3) 鳥類は2014年度に調査地点及び調査対象生物を変更したことから2009年度までと継続性がないため、経年変化は示していない。
- (注4) 2010 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。
- (注5) 2014 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。

図 3-3-3 アルドリンの生物の経年変化(幾何平均値)

- (注1) 2010 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。
- (注2) 2014 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。

図 3-3-4 アルドリンの大気の経年変化(幾何平均値)

[4] ディルドリン (参考)

調査の経緯及び実施状況

ディルドリンの農薬としての使用は、1955 年から 1964 年がピークであったといわれ、1971 年に農薬取締法に基づく土壌残留性農薬に指定され、1975 年には同法に基づく登録が失効した。しかし、ディルドリンはその後もシロアリ防除剤として使われていた。1981 年 10 月、化審法に基づく第一種特定化学物質に指定されている。また、POPs 条約においては、2004 年に条約が発効された当初から条約対象物質に指定されている。

2001 年度までの継続的調査においては、「生物モニタリング」ⁱⁱ⁾で 1978 年度から 1996 年度までの毎年度と 1998 年度、2000 年度及び 2001 年度に生物(貝類、魚類及び鳥類)について調査を実施し、「水質・底質モニタリング」ⁱ⁾で水質は 1986 年度から 1998 年度まで、底質は 1986 年度から 2001 年度の全期間にわたって調査を実施している。

2002 年度以降のモニタリング調査においては、2002 年度から 2009 年度の毎年度及び 2011 年度に水質、 底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2014 年度に水質、生物(貝類、魚類及び鳥類)及 び大気の調査を、2018 年度に底質の調査を実施している。

・2018 年度までの調査結果 (参考)

<水質>

○2002 年度から 2014 年度における水質についてのディルドリンの検出状況

					15 - 1 - 1			
ディルドリン	実施年度	幾何 平均値※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2002	42	41	940	3.3	1.8 [0.6]	114/114	38/38
	2003	57	57	510	9.7	0.7 [0.3]	36/36	36/36
	2004	55	51	430	9	2 [0.5]	38/38	38/38
	2005	39	49	630	4.5	1.0 [0.34]	47/47	47/47
水質	2006	36	32	800	6	3 [1]	48/48	48/48
(pg/L)	2007	38	36	750	3.1	2.1 [0.7]	48/48	48/48
40	2008	36	37	450	3.6	1.5 [0.6]	48/48	48/48
	2009	36	32	650	2.7	0.6 [0.2]	49/49	49/49
	2011	33	38	300	2.1	1.6 [0.6]	49/49	49/49
	2014	28	27	200	2.7	0.5 [0.2]	48/48	48/48

⁽注1) ※: 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

○2002 年度から 2018 年度における底質についてのディルドリンの検出状況

								I:
ディルドリン	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2002	70	51	2,300	4	3 [1]	189/189	63/63
	2003	66	56	9,100	nd	4 [2]	184/186	62/62
	2004	65	62	3,700	tr(1.9)	3 [0.9]	189/189	63/63
	2005	61	55	4,200	tr(2)	3 [1]	189/189	63/63
底質	2006	61	54	1,500	tr(1.7)	2.9 [1.0]	192/192	64/64
(pg/g-dry)	2007	49	40	2,700	tr(1.2)	2.7 [0.9]	192/192	64/64
	2008	48	43	2,900	tr(0.7)	1.2 [0.5]	192/192	64/64
	2009	51	47	3,000	1.1	0.8 [0.3]	192/192	64/64
	2011	47	44	2,200	2	5 [2]	64/64	64/64
	2018	33	33	860	nd	1.6 [0.6]	60/61	60/61
()) () ()				hala / ha I f f f f	3 15 3	habe the art it is	S & 1.1 1. (1)	

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2010年度、2012年度及び2013年度は調査を実施していない。

⁽注2) 2010 年度及び 2012 年度から 2017 年度は調査を実施していない。

<生物>

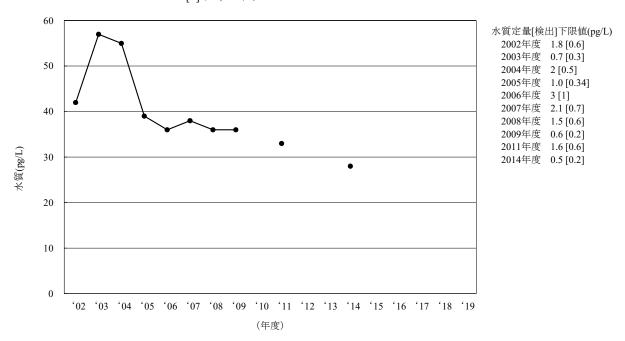
○2002 年度から 2014 年度における生物(貝類、魚類及び鳥類)についてのディルドリンの検出状況

		幾何				<u>ジングイン・ ファ</u> 定量[検出]	検出	
ディルドリン	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2002	440	390	190,000	tr(7)	12 [4]	38/38	8/8
	2003	440	160	78,000	46	4.8 [1.6]	30/30	6/6
	2004	630	270	69,000	42	31 [10]	31/31	7/7
	2005	500	140	39,000	34	9.4 [3.4]	31/31	7/7
貝類	2006	450	120	47,000	30	7 [3]	31/31	7/7
(pg/g-wet)	2007	380	110	77,000	37	9 [3]	31/31	7/7
(188)	2008	430	150	24,000	47	9 [3]	31/31	7/7
	2009	490	230	28,000	48	7 [2]	31/31	7/7
	2011	390	690	3,800	16	3 [1]	4/4	4/4
	2014	180	300	490	41	3 [1]	3/3	3/3
	2002	290	270	2,400	46	12 [4]	70/70	14/14
	2003	220	200	1,000	29	4.8 [1.6]	70/70	14/14
	2004	250	230	2,800	tr(23)	31 [10]	70/70	14/14
	2005	230	250	1,400	21	9.4 [3.4]	80/80	16/16
魚類	2006	230	220	1,400	19	7 [3]	80/80	16/16
(pg/g-wet)	2007	250	210	1,900	23	9 [3]	80/80	16/16
	2008	240	240	1,300	15	9 [3]	85/85	17/17
	2009	240	190	1,400	29	7 [2]	90/90	18/18
	2011	270	340	1,100	17	3 [1]	18/18	18/18
	2014	270	310	1,000	27	3 [1]	19/19	19/19
	2002	1,100	1,100	1,700	820	12 [4]	10/10	2/2
	2003	1,300	1,400	2,200	790	4.8 [1.6]	10/10	2/2
	2004	600	610	960	370	31 [10]	10/10	2/2
	2005	830	740	1,800	500	9.4 [3.4]	10/10	2/2
鳥類	2006	700	690	1,300	440	7 [3]	10/10	2/2
(pg/g-wet)	2007	710	710	910	560	9 [3]	10/10	2/2
	2008	680	620	1,300	260	9 [3]	10/10	2/2
	2009	470	420	890	330	7 [2]	10/10	2/2
	2011			770	770	3 [1]	1/1	1/1
	2014**	320		530	190	3 [1]	2/2	2/2

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

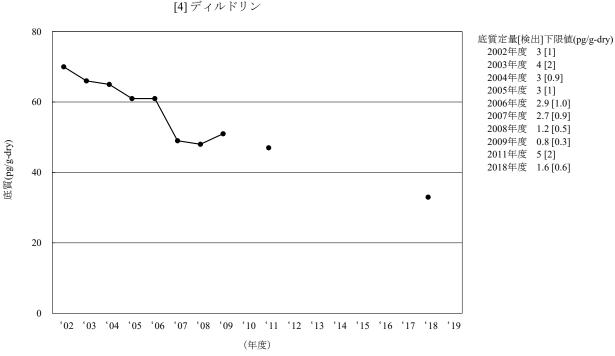
<大気>

○2002 年度から 2014 年度における大気についてのディルドリンの検出状況


ディルドリン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
7 1 70 1 9 2	天旭千茂	平均値	十大旭	取八胆	取小恒	下限値	検体	地点
	2002	5.6	5.4	110	0.73	0.60 [0.20]	102/102	34/34
	2003 温暖期	19	22	260	2.1	2.1 [0.70]	35/35	35/35
	2003 寒冷期	5.7	5.2	110	tr(0.82)	2.1 [0.70]	34/34	34/34
	2004 温暖期	17	22	280	1.1	0.22 [0.11]	37/37	37/37
	2004寒冷期	5.5	6.9	76	0.81	0.33 [0.11]	37/37	37/37
	2005 温暖期	14	12	200	1.5	0.54 [0.24]	37/37	37/37
	2005 寒冷期	3.9	3.6	50	0.88	0.34 [0.24]	37/37	37/37
	2006 温暖期	15	14	290	1.5	0.3 [0.1]	37/37	37/37
大気	2006寒冷期	4.5	4.2	250	0.7	0.3 [0.1]	37/37	37/37
(pg/m^3)	2007 温暖期	19	22	310	1.3	0.19 [0.07]	36/36	36/36
	2007寒冷期	4.5	3.7	75	0.96	0.18 [0.07]	36/36	36/36
	2008 温暖期	14	16	220	1.6	0.24 [0.09]	37/37	37/37
	2008寒冷期	4.9	3.8	72	0.68	0.24 [0.09]	37/37	37/37
	2009 温暖期	13	13	150	0.91	0.06 [0.02]	37/37	37/37
	2009寒冷期	4.5	4.0	80	0.52	0.00 [0.02]	37/37	37/37
	2011 温暖期	12	15	230	0.80	0.42 [0.14]	35/35	35/35
	2011寒冷期	4.3	4.9	96	0.52	0.42 [0.14]	37/37	37/37
()))	2014 温暖期	11	9.9	160	0.89	0.34 [0.11]	36/36	36/36

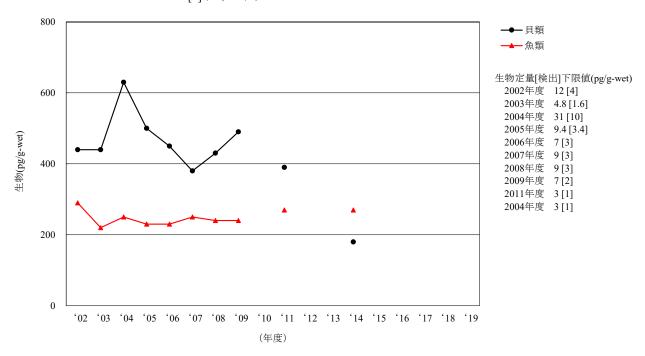
⁽注) 2010 年度、2012 年度及び 2013 年度は調査を実施していない。

⁽注2) ※※: 鳥類の2014年度における結果は、調査地点及び調査対象生物を変更したことから、2011年度までの結果と継続性がない。


⁽注3) 2010年度、2012年度及び2013年度は調査を実施していない。

[4] ディルドリン

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2010 年度、2012 年度、2013 年度及び 2015 年度から 2019 年度は調査を実施していない。


図 3-4-1 ディルドリンの水質の経年変化(幾何平均値)

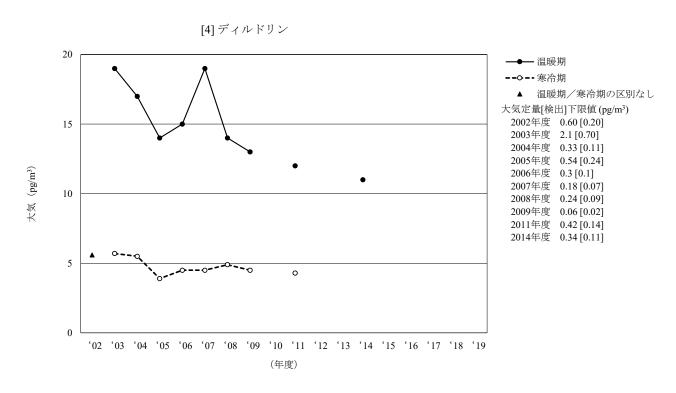

- (注1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求め た。
- (注2) 2010 年度、2012 年度から 2017 年度及び 2019 年度は調査を実施していない。

図 3-4-2 ディルドリンの底質の経年変化(幾何平均値)

[4] ディルドリン

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2014 年度に調査地点及び調査対象生物を変更したことから 2011 年度までと継続性がないため、経年変化は示していない。
- (注3) 2010 年度、2012 年度、2013 年度及び 2015 年度から 2019 年度は調査を実施していない。
- 図 3-4-3 ディルドリンの生物の経年変化(幾何平均値)

(注) 2010 年度、2012 年度、2013 年度及び 2015 年度から 2019 年度は調査を実施していない。 図 3-4-4 ディルドリンの大気の経年変化(幾何平均値)

[5] エンドリン (参考)

調査の経緯及び実施状況

エンドリンは、殺虫剤、殺鼠剤として利用されたが、1975年に農薬取締法に基づく登録は失効し、1981年10月に化審法に基づく第一種特定化学物質に指定されている。また、POPs条約においては、2004年に条約が発効された当初から条約対象物質に指定されている。

2001 年度までの継続的調査においては、「生物モニタリング」ⁱⁱ⁾ で 1978 年度から 1989 年度並びに 1991 年度及び 1993 年度にて生物(貝類、魚類及び鳥類)について調査している。

2002 年度以降のモニタリング調査においては、2002 年度から 2009 年度の毎年度及び 2011 年度に水質、 底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2014 年度は水質、生物(貝類、魚類及び鳥類)及 び大気の調査を、2018 年度に底質の調査を実施している。

2019 年度は調査を実施していないため、参考として以下に、2018 年度までの調査結果を示す。

・2018 年度までの調査結果 (参考)

<水質>

○2002 年度から 2014 年度における水質についてのエンドリンの検出状況

エンドリン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
エントリン	天旭十段	平均值※	中大旭	取八胆	取力阻	下限値 1	検体	地点
	2002	tr(4.8)	tr(5.5)	31	nd	6.0 [2.0]	101/114	36/38
	2003	5.7	6.0	78	0.7	0.7 [0.3]	36/36	36/36
	2004	7	7	100	tr(0.7)	2 [0.5]	38/38	38/38
	2005	4.0	4.5	120	nd	1.1 [0.4]	45/47	45/47
水質	2006	3.1	3.5	26	nd	1.3 [0.4]	44/48	44/48
(pg/L)	2007	3.5	3.4	25	nd	1.9 [0.6]	46/48	46/48
	2008	3	4	20	nd	3 [1]	45/48	45/48
	2009	2.0	2.3	67	nd	0.7 [0.3]	39/49	39/49
	2011	3.8	4.6	71	nd	1.6 [0.6]	47/49	47/49
	2014	2.5	2.2	25	tr(0.4)	0.5 [0.2]	48/48	48/48

⁽注1)※:2002年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

○2002 年度から 2018 年度における底質についてのエンドリンの検出状況

	2010 1 2010	or or and			· DOM TO	_		
エンドリン	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2002	10	10	19,000	nd	6 [2]	141/189	54/63
	2003	12	11	29,000	nd	5 [2]	150/186	53/62
	2004	15	13	6,900	nd	3 [0.9]	182/189	63/63
	2005	12	11	19,000	nd	2.6 [0.9]	170/189	61/63
底質	2006	12	10	61,000	nd	4[1]	178/192	63/64
(pg/g-dry)	2007	11	9	61,000	nd	5 [2]	151/192	55/64
	2008	11	11	38,000	nd	1.9 [0.7]	168/192	61/64
	2009	9.6	8.4	11,000	nd	1.6 [0.6]	168/192	63/64
	2011	8.8	14	1,100	nd	1.1 [0.4]	59/64	59/64
	2018	6.4	5.9	7,500	nd	2.4 [0.9]	48/61	48/61

⁽注 1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2010 年度、2012 年度及び2013 年度は調査を実施していない。

⁽注2) 2010年度、2012年度から2017年度は調査を実施していない。

<生物>

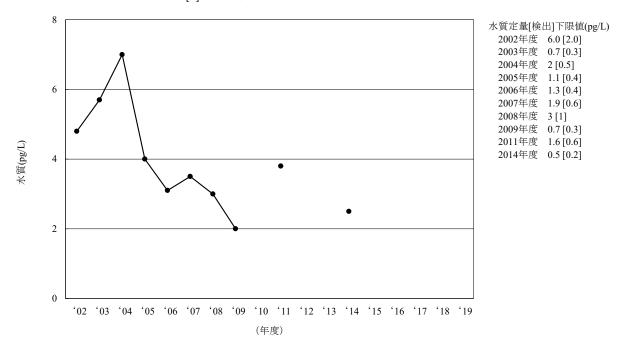
○2002 年度から 2014 年度における生物(貝類、魚類及び鳥類)についてのエンドリンの検出状況

-1.1811.1	中长左声	幾何	中中体	日上は	日』は	定量[検出]	検出	頻度
エンドリン	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2002	42	27	12,000	nd	18 [6]	35/38	7/8
	2003	38	21	5,000	6.3	4.8 [1.6]	30/30	6/6
	2004	65	25	4,600	tr(5.7)	12 [4.2]	31/31	7/7
	2005	39	19	2,100	nd	17 [5.5]	27/31	7/7
貝類	2006	40	15	3,100	tr(5)	11 [4]	31/31	7/7
(pg/g-wet)	2007	28	12	3,000	tr(6)	9 [3]	31/31	7/7
	2008	30	10	1,500	tr(6)	8 [3]	31/31	7/7
	2009	38	19	1,400	tr(5)	7 [3]	31/31	7/7
	2011	33	62	110	tr(3)	4 [2]	4/4	4/4
	2014	23	17	84	8	3 [1]	3/3	3/3
	2002	20	24	180	nd	18 [6]	54/70	13/14
	2003	14	10	180	nd	4.8 [1.6]	67/70	14/14
	2004	18	24	220	nd	12 [4.2]	57/70	13/14
	2005	19	tr(16)	2,100	nd	17 [5.5]	58/80	12/16
魚類	2006	13	tr(10)	150	nd	11 [4]	66/80	16/16
(pg/g-wet)	2007	13	12	170	nd	9 [3]	69/80	15/16
	2008	11	10	200	nd	8 [3]	63/85	14/17
	2009	17	12	270	nd	7 [3]	86/90	18/18
	2011	18	19	160	nd	4 [2]	16/18	16/18
	2014	16	16	140	nd	3 [1]	18/19	18/19
	2002	28	52	99	nd	18 [6]	7/10	2/2
	2003	22	30	96	5.4	4.8 [1.6]	10/10	2/2
	2004	tr(11)	25	62	nd	12 [4.2]	5/10	1/2
	2005	18	28	64	nd	17 [5.5]	7/10	2/2
鳥類	2006	16	23	57	tr(4)	11 [4]	10/10	2/2
(pg/g-wet)	2007	17	28	55	nd	9 [3]	9/10	2/2
	2008	10	26	83	nd	8 [3]	5/10	1/2
	2009	11	17	43	tr(3)	7 [3]	10/10	2/2
	2011			tr(3)	tr(3)	4 [2]	1/1	1/1
	2014※※	4		5	4	3 [1]	2/2	2/2

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

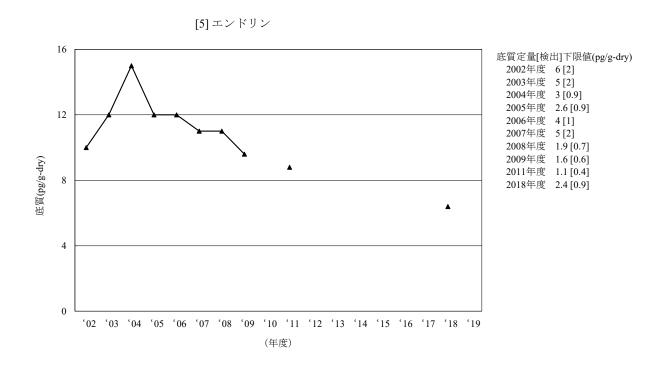
<大気>

○2002 年度から 2014 年度における大気についてのエンドリンの検出状況


エンドリン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
エントリン	天旭 中及	平均値	中大個	取八胆	取小恒	下限値	検体	地点
	2002	0.22	0.28	2.5	nd	0.090 [0.030]	90/102	32/34
	2003 温暖期	0.74	0.95	6.2	0.081	0.042 [0.014]	35/35	35/35
	2003 寒冷期	0.23	0.20	2.1	0.042	0.042 [0.014]	34/34	34/34
	2004 温暖期	0.64	0.68	6.5	tr(0.054)	0.14 [0.048]	37/37	37/37
	2004 寒冷期	0.23	0.26	1.9	nd	0.14 [0.046]	36/37	36/37
	2005 温暖期	tr(0.4)	tr(0.3)	2.9	nd	0.5 [0.2]	27/37	27/37
	2005 寒冷期	nd	nd	0.7	nd	0.5 [0.2]	8/37	8/37
	2006 温暖期	0.31	0.32	5.4	nd	0.30 [0.10]	32/37	32/37
大気	2006 寒冷期	nd	nd	5.0	nd		7/37	7/37
(pg/m^3)	2007 温暖期	0.69	0.73	6.3	tr(0.06)	0.09 [0.04]	36/36	36/36
	2007寒冷期	0.16	0.13	1.5	nd	0.09 [0.04]	33/36	33/36
	2008 温暖期	0.53	0.68	4.6	tr(0.06)	0.10 [0.04]	37/37	37/37
	2008 寒冷期	0.18	0.18	1.8	nd		35/37	35/37
	2009 温暖期	0.49	0.51	3.4	nd	0.09 [0.04]	36/37	36/37
	2009寒冷期	0.17	0.15	1.8	nd	0.09 [0.04]	36/37	36/37
	2011 温暖期	0.46	0.62	5.1	nd	0.09 [0.04]	34/35	34/35
	2011 寒冷期	0.16	0.16	1.8	nd	0.09 [0.0 4]	33/37	33/37
()))	2014 温暖期	0.39	0.48	2.9	nd	0.20 [0.07]	32/36	32/36

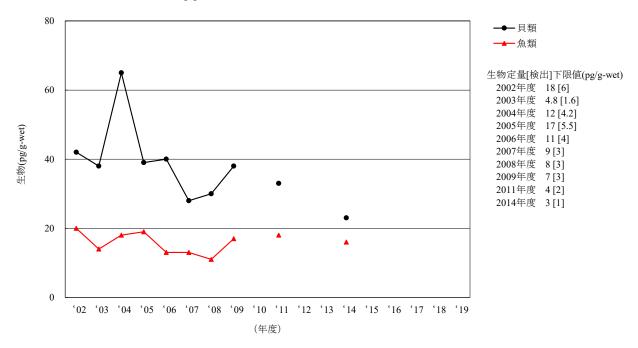
⁽注) 2010 年度、2012 年度及び 2013 年度は調査を実施していない。

⁽注2) 2010 年度、2012 年度及び2013 年度は調査を実施していない。

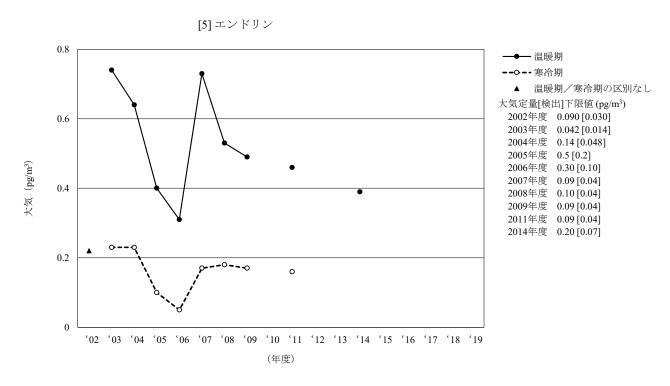

⁽注3) ※※: 鳥類の2014年度における結果は、調査地点及び調査対象生物を変更したことから、2011年度までの結果と継続性がない。

[5] エンドリン

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2010年度、2012年度、2013年度及び2015年度から2019年度は調査を実施していない。


図 3-5-1 エンドリンの水質の経年変化 (幾何平均値)

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2010年度、2012年度から2017年度及び2019年度は調査を実施していない。


図 3-5-2 エンドリンの底質の経年変化(幾何平均値)

[5] エンドリン

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2010 年度、2012 年度、2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-5-3 エンドリンの生物の経年変化(幾何平均値)

- (注1) 2010年度、2012年度、2013年度及び2015年度から2019年度は調査を実施していない。
- (注 2) 2005 年度及び 2006 年度の寒冷期は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。

図 3-5-4 エンドリンの大気の経年変化 (幾何平均値)

[6] DDT 類

調査の経緯及び実施状況

DDT は、ヘキサクロロシクロヘキサン (HCH) やドリン類とともに多用された殺虫剤である。1971 年に 農薬取締法に基づく登録は失効し、1981 年 10 月に化審法に基づく第一種特定化学物質に *p,p'*-DDT が指定 されている。また、POPs 条約においては、2004 年に条約が発効された当初から DDT が条約対象物質に指 定されている。

DDT には芳香環に置換している塩素の位置によっていくつかの異性体があるが、継続的調査においては、 殺虫剤の主な有効成分である p,p'-DDT に加えて o,p'-DDT を、また、DDT の環境中での分解産物である p,p'-DDE、o,p'-DDE、o,p'-DDD 及び o,p'-DDD も含めて 1978 年度からモニタリング調査を実施している。

2001 年度以前の継続的調査において、p,p'-DDT、p,p'-DDE 及びp,p'-DDD は「生物モニタリング」 ii)で 1978 年度から 2001 年度の全期間にわたって生物(貝類、魚類及び鳥類)について調査を実施し、「水質・底質モニタリング」 i)で水質は 1986 年度から 1998 年度まで、底質は 1986 年度から 2001 年度の全期間に わたって調査を実施している。また、o,p'-DDT、o,p'-DDE 及びo,p'-DDD は「生物モニタリング」 ii)で 1978 年度から 1996 年度の毎年と 1998 年度、2000 年度及び 2001 年度に生物(貝類、魚類及び鳥類)について 調査を実施している。

2002 年度以降のモニタリング調査においては、*p,p'*-DDT、*p,p'*-DDE、*p,p'*-DDD、*o,p'*-DDT、*o,p'*-DDE 及び *o,p'*-DDD について、2002 年度から 2010 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2013 年度も生物(貝類、魚類及び鳥類)及び大気の調査を、2014 年度に水質及び底質の調査を、2015 年度に大気の調査を、2018 年度に生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

2019 年度は調査を実施していないため、参考として以下に、2018 年度までの調査結果を示す。

・2018 年度までの調査結果(参考)

【p,p'-DDT、p,p'-DDE 及びp,p'-DDD】

<水質>

○2002 年度から 2014 年度における水質についての *p,p'*-DDT、*p,p'*-DDE 及び *p,p'*-DDD の検出状況

				1 1 '1 '	1 1	. 1 1		
p,p'-DDT	実施年度	幾何 平均值※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2002	13	11	440	0.25	0.6 [0.2]	114/114	38/38
	2003	14	12	740	tr(2.8)	3 [0.9]	36/36	36/36
	2004	15	14	310	nd	6 [2]	36/38	36/38
	2005	8	9	110	1	4 [1]	47/47	47/47
水質	2006	9.1	9.2	170	tr(1.6)	1.9 [0.6]	48/48	48/48
(pg/L)	2007	7.3	9.1	670	nd	1.7 [0.6]	46/48	46/48
	2008	11	11	1,200	nd	1.2 [0.5]	47/48	47/48
	2009	9.2	8.4	440	0.81	0.15 [0.06]	49/49	49/49
	2010	8.5	7.6	7,500	tr(1.0)	2.4 [0.8]	49/49	49/49
	2014	4.4	3.9	380	nd	0.4 [0.1]	47/48	47/48

n n/ DDE	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
p,p'-DDE	天旭午及	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
	2002	25	26	760	1.3	0.6 [0.2]	114/114	38/38
	2003	26	22	380	5	4 [2]	36/36	36/36
	2004	36	34	680	tr(6)	8 [3]	38/38	38/38
	2005	26	24	410	4	6 [2]	47/47	47/47
水質	2006	24	24	170	tr(4)	7 [2]	48/48	48/48
(pg/L)	2007	22	23	440	tr(2)	4 [2]	48/48	48/48
	2008	27	28	350	2.5	1.1 [0.4]	48/48	48/48
	2009	23	23	240	3.4	1.1 [0.4]	49/49	49/49
	2010	14	12	1,600	2.4	2.3 [0.8]	49/49	49/49
	2014	16	17	610	1.9	0.5 [0.2]	48/48	48/48
p,p'-DDD	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
р,р -БББ		平均值※				下限値	検体	地点
	2002	16	18	190	0.57	0.24[0.08]	114/114	38/38
	2003	19	18	410	4	2 [0.5]	36/36	36/36
	2004	19	18	740	tr(2.4)	3 [0.8]	38/38	38/38
	2005	17	16	130	tr(1.8)	1.9 [0.64]	47/47	47/47
水質	2006	16	17	99	2.0	1.6 [0.5]	48/48	48/48
(pg/L)	2007	15	12	150	tr(1.5)	1.7 [0.6]	48/48	48/48
	2008	22	20	850	2.0	0.6[0.2]	48/48	48/48
	2009	14	13	140	1.4	0.4[0.2]	49/49	49/49
	2010	12	10	970	1.6	0.20 [0.08]	49/49	49/49
*** 4	2014	9.0	8.7	87	1.0	1.0 [0.4]	48/48	48/48

⁽注1)※: 2002年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

○2002 年度から 2014 年度における底質についての *p,p'*-DDT、*p,p'*-DDE 及び *p,p'*-DDD の検出状況

		幾何			• •	<u>x い p,p -DDD</u> 定量[検出]	検出	角度
p,p'-DDT	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2002	380	240	97,000	tr(5)	6 [2]	189/189	63/63
	2003	290	220	55,000	` <u>á</u>	2 [0.4]	186/186	62/62
	2004	460	230	98,000	7	2 [0.5]	189/189	63/63
	2005	360	230	1,700,000	5.1	1.0 [0.34]	189/189	63/63
底質	2006	310	240	130,000	4.5	1.4 [0.5]	192/192	64/64
(pg/g-dry)	2007	210	150	130,000	3	1.3 [0.5]	192/192	64/64
	2008	270	180	1,400,000	4.8	1.2 [0.5]	192/192	64/64
	2009	250	170	2,100,000	1.9	1.0 [0.4]	192/192	64/64
	2010	230	200	220,000	9.3	2.8 [0.9]	64/64	64/64
	2014	140	140	12,000	tr(0.2)	0.4 [0.2]	63/63	63/63
p,p'-DDE	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
p,p -DDE	天旭午及	平均值※	中大恒	取八胆	取ЛШ	下限値	検体	地点
	2002	780	630	23,000	8.4	2.7 [0.9]	189/189	63/63
	2003	790	780	80,000	9.5	0.9 [0.3]	186/186	62/62
	2004	720	700	39,000	8	3 [0.8]	189/189	63/63
	2005	710	730	64,000	8.4	2.7 [0.94]	189/189	63/63
底質	2006	710	820	49,000	5.8	1.0 [0.3]	192/192	64/64
(pg/g-dry)	2007	670	900	61,000	3.2	1.1 [0.4]	192/192	64/64
	2008	920	940	96,000	9.0	1.7 [0.7]	192/192	64/64
	2009	700	660	50,000	6.7	0.8[0.3]	192/192	64/64
	2010	680	790	40,000	11	5 [2]	64/64	64/64
	2014	530	610	64,000	11	1.8 [0.6]	63/63	63/63
p,p'-DDD	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
P,P 222		平均值※				下限値	検体	地点
	2002	640	690	51,000	tr(2.2)	2.4 [0.8]	189/189	63/63
	2003	670	580	32,000	3.7	0.9 [0.3]	186/186	62/62
	2004	650	550	75,000	4	2 [0.7]	189/189	63/63
	2005	600	570	210,000	5.2	1.7 [0.64]	189/189	63/63
底質	2006	560	540	53,000	2.2	0.7 [0.2]	192/192	64/64
(pg/g-dry)	2007	520	550	80,000	3.5	1.0 [0.4]	192/192	64/64
	2008	740	660	300,000	2.8	1.0 [0.4]	192/192	64/64
	2009	540	560	300,000	3.9	0.4 [0.2]	192/192	64/64
	2010	510	510	78,000	4.4	1.4 [0.5]	64/64	64/64
	2014	330	410	21,000	4.9	4.2 [1.4]	63/63	63/63

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2011 年度から 2013 年度は調査を実施していない。

⁽注2) 2011 年度から 2013 年度は調査を実施していない。

<生物>

 \bigcirc 2002 年度から 2018 年度における生物(貝類、魚類及び鳥類)についての p,p'-DDT、p,p'-DDE 及び p,p'-DDD の検出状況

p,p'-DDT	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2002	200	200	1,200	38	4.2 [1.4]	38/38	8/8
	2003	290	290	1,800	49	11 [3.5]	30/30	6/6
	2004	360	340	2,600	48	3.2 [1.1]	31/31	7/7
	2005	240	170	1,300	66	5.1 [1.7]	31/31	7/7
	2006	250	220	1,100	56	6 [2]	31/31	7/7
貝類	2007	240	150	1,200	49	5 [2]	31/31	7/7
(pg/g-wet)	2007	160	100	1,400	12	5 [2]	31/31	7/7
	2009	240	170		46		31/31	7/
			280	9,600		3 [1]		6/0
	2010	180		470	43	3 [1]	6/6	
	2013	190	210	890	46	3.3 [1.1]	5/5	5/:
	2018	70	39	280	32	3 [1]	3/3	3/
	2002	430	450	24,000	6.8	4.2 [1.4]	70/70	14/
	2003	220	400	1,900	tr(3.7)	11 [3.5]	70/70	14/
	2004	410	330	53,000	5.5	3.2 [1.1]	70/70	14/
	2005	280	330	8,400	tr(3.8)	5.1 [1.7]	80/80	16/
魚類	2006	300	340	3,000	tr(5)	6 [2]	80/80	16/
(pg/g-wet)	2007	260	320	1,800	9	5 [2]	80/80	16/1
(188)	2008	280	310	2,900	7	5 [2]	85/85	17/1
	2009	250	300	2,000	4	3 [1]	90/90	18/
	2010	240	280	2,100	7	3 [1]	18/18	18/
	2013	280	250	3,300	5.2	3.3 [1.1]	19/19	19/
	2018	150	150	4,800	tr (2)	3 [1]	18/18	18/
	2002	440	510	1,300	76	4.2 [1.4]	10/10	2/2
	2003	610	620	1,400	180	11 [3.5]	10/10	2/2
	2004	340	320	700	160	3.2 [1.1]	10/10	2/2
鳥類 (**-/	2005	430	550	900	180	5.1 [1.7]	10/10	2/2
	2006	580	490	1,800	110	6 [2]	10/10	2/2
	2007	480	350	1,900	160	5 [2]	10/10	2/2
(pg/g-wet)	2008	160	170	270	56	5 [2]	10/10	2/2
	2009	300	190	2,900	85	3 [1]	10/10	2/2
	2010	3		15	nd	3 [1]	1/2	1/2
	2013※※	14		46	4.3	3.3 [1.1]	2/2	2/2
	2018**	43		63	29	3[1]	2/2	2/2
p,p'-DDE	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
1 4		平均值※				下限値	検体	地/
	2002	1,000	1,700	6,000	140	2.4 [0.8]	38/38	8/8
	2003	1,200	1,000	6,500	190	5.7 [1.9]	30/30	6/6
	2004	1,300	1,400	8,400	220	8.2 [2.7]	31/31	7/
							21/21	7/
	2005	1,200	1,600	6,600	230	8.5 [2.8]	31/31	
日粨	2005 2006	1,200 1,000	1,600 1,200	6,600 6,000	230 160	8.5 [2.8] 1.9 [0.7]	31/31	7/
貝類 (ng/g wet)	2005	1,200	1,600		230	8.5 [2.8]		7/
貝類 (pg/g-wet)	2005 2006 2007 2008	1,200 1,000	1,600 1,200	6,000	230 160	8.5 [2.8] 1.9 [0.7]	31/31	7/′ 7/′ 7/′
	2005 2006 2007 2008	1,200 1,000 1,100	1,600 1,200 1,200 1,100	6,000 5,600 5,800	230 160 180 120	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1]	31/31 31/31 31/31	7/′ 7/′ 7/′
	2005 2006 2007 2008 2009	1,200 1,000 1,100 900 940	1,600 1,200 1,200 1,100 1,100	6,000 5,600 5,800 6,400	230 160 180 120 150	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1]	31/31 31/31 31/31 31/31	7/′ 7/′ 7/′ 7/′
	2005 2006 2007 2008 2009 2010	1,200 1,000 1,100 900 940 1,100	1,600 1,200 1,200 1,100 1,100 1,300	6,000 5,600 5,800 6,400 6,300	230 160 180 120 150 230	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1]	31/31 31/31 31/31 31/31 6/6	7/′ 7/′ 7/′ 7/′ 6/0
	2005 2006 2007 2008 2009 2010 2013	1,200 1,000 1,100 900 940 1,100 790	1,600 1,200 1,200 1,100 1,100 1,300 1,600	6,000 5,600 5,800 6,400 6,300 3,000	230 160 180 120 150 230 170	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4]	31/31 31/31 31/31 31/31 6/6 5/5	7/′ 7/′ 7/′ 7/′ 6/0 5/:
	2005 2006 2007 2008 2009 2010 2013 2018	1,200 1,000 1,100 900 940 1,100 790 420	1,600 1,200 1,200 1,100 1,100 1,300 1,600 230	6,000 5,600 5,800 6,400 6,300 3,000 2,200	230 160 180 120 150 230 170 150	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 3 [1]	31/31 31/31 31/31 31/31 6/6 5/5 3/3	7/′ 7/′ 7/′ 6/0 5/:
	2005 2006 2007 2008 2009 2010 2013 2018	1,200 1,000 1,100 900 940 1,100 790 420 2,900	1,600 1,200 1,200 1,100 1,100 1,300 1,600 230 2,200	6,000 5,600 5,800 6,400 6,300 3,000 2,200 98,000	230 160 180 120 150 230 170 150	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 3 [1] 2.4 [0.8]	31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70	7/' 7/' 7/' 7/' 6// 5/: 3/:
	2005 2006 2007 2008 2009 2010 2013 2018 2002 2003	1,200 1,000 1,100 900 940 1,100 790 420 2,900 2,000	1,600 1,200 1,200 1,100 1,100 1,300 1,600 230 2,200 2,200	6,000 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000	230 160 180 120 150 230 170 150 510 180	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 3 [1] 2.4 [0.8] 5.7 [1.9]	31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70	7/' 7/' 7/' 7/' 6/- 5/: 3/: 14/
	2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004	1,200 1,000 1,100 900 940 1,100 790 420 2,900 2,000 3,000	1,600 1,200 1,200 1,100 1,100 1,300 1,600 230 2,200 2,200 2,100	6,000 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000	230 160 180 120 150 230 170 150 510 180 390	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7]	31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70	7// 7// 7// 6// 5// 3// 14/ 14/ 14/
(pg/g-wet)	2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005	1,200 1,000 1,100 900 940 1,100 790 420 2,900 2,000 3,000 2,400	1,600 1,200 1,200 1,100 1,100 1,300 1,600 230 2,200 2,200 2,100 2,400	6,000 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000	230 160 180 120 150 230 170 150 510 180 390 230	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8]	31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 80/80	7/' 7/' 7/' 7/' 6/0 5/: 3/: 14/ 14/ 16/
(pg/g-wet) 魚類	2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006	1,200 1,000 1,100 900 940 1,100 790 420 2,900 2,000 3,000 2,400 2,200	1,600 1,200 1,200 1,100 1,100 1,300 1,600 230 2,200 2,200 2,100 2,400 2,600	6,000 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000 28,000	230 160 180 120 150 230 170 150 510 180 390 230 280	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7]	31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 80/80 80/80	7/' 7/' 7/' 7/' 6/\ 5/: 3/: 14/ 14/ 16/ 16/
(pg/g-wet)	2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007	1,200 1,000 1,100 900 940 1,100 790 420 2,900 2,000 3,000 2,400 2,200 2,200	1,600 1,200 1,200 1,100 1,100 1,300 1,600 230 2,200 2,200 2,100 2,400 2,600 2,000	6,000 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000 28,000 22,000	230 160 180 120 150 230 170 150 510 180 390 230 280 160	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1]	31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 80/80 80/80 80/80	7/' 7/' 7/' 7/' 6/0 5/: 3/: 14/ 14/ 16/ 16/
(pg/g-wet) 魚類	2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007 2008	1,200 1,000 1,100 900 940 1,100 790 420 2,900 2,000 3,000 2,400 2,200 2,200 2,500	1,600 1,200 1,200 1,100 1,100 1,300 1,600 230 2,200 2,100 2,400 2,600 2,000 2,000	6,000 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000 28,000 22,000 53,000	230 160 180 120 150 230 170 150 510 180 390 230 280 160 320	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1]	31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85	7/' 7/' 7/' 7/' 6/0 5/: 3/: 14/ 14/ 16/ 16/ 16/ 17/
(pg/g-wet) 魚類	2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007 2008 2009	1,200 1,000 1,100 900 940 1,100 790 420 2,900 2,000 3,000 2,400 2,200 2,200 2,500 2,300	1,600 1,200 1,200 1,100 1,100 1,300 1,600 230 2,200 2,100 2,400 2,600 2,000 2,000 2,100	6,000 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000 28,000 22,000 53,000 20,000	230 160 180 120 150 230 170 150 510 180 390 230 280 160 320 260	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1]	31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90	7// 7// 7// 6/0 5/3 3/3 14/ 14/ 16/ 16/ 16/ 17/ 18/
(pg/g-wet) 魚類	2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007 2008	1,200 1,000 1,100 900 940 1,100 790 420 2,900 2,000 3,000 2,400 2,200 2,200 2,500	1,600 1,200 1,200 1,100 1,100 1,300 1,600 230 2,200 2,100 2,400 2,600 2,000 2,000	6,000 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000 28,000 22,000 53,000	230 160 180 120 150 230 170 150 510 180 390 230 280 160 320	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1]	31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85	7/7 7/7 7/7 7/7 6/6 5/3 3/3 14/7 14/7 16/7 16/7 18/7 18/7

p,p'-DDE	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
р,р -DDE		平均值※				下限値	検体	地
	2002	36,000	60,000	170,000	8,100	2.4 [0.8]	10/10	2/
	2003	66,000	76,000	240,000	18,000	5.7 [1.9]	10/10	2
	2004	34,000	65,000	200,000	6,800	8.2 [2.7]	10/10	2/
	2005	44,000	86,000	300,000	7,100	8.5 [2.8]	10/10	2/
鳥類	2006	38,000	57,000	160,000	5,900	1.9 [0.7]	10/10	2
両規 (pg/g-wet)	2007	40,000	56,000	320,000	6,700	3 [1]	10/10	2
(pg/g-wei)	2008	51,000	79,000	160,000	7,500	3 [1]	10/10	2
	2009	30,000	64,000	220,000	4,300	4 [1]	10/10	2.
	2010	32,000		160,000	6,300	3 [1]	2/2	2.
	2013※※	170,000		170,000	170,000	4.3 [1.4]	2/2	2
	2018***	80,000		290,000	22,000	3 [1]	2/2	2
/ DDD		幾何	中央値		·	定量[検出]	検出	頻度
p,p'-DDD	実施年度	平均值※	中央他	最大値	最小値	下限値 1	検体	地
	2002	340	710	3,200	11	5.4 [1.8]	38/38	8/
	2003	390	640	2,600	tr(7.5)	9.9 [3.3]	30/30	6/
	2004	440	240	8,900	7.8	2.2 [0.70]	31/31	7
	2005	370	800	1,700	13	2.9 [0.97]	31/31	7/
口松云	2006	300	480	1,400	7.3	2.4 [0.9]	31/31	7
貝類	2007	310	360	1,500	7	3 [1]	31/31	7
(pg/g-wet)	2008	280	280	1,300	6	3 [1]	31/31	7
	2009	220	170	2,400	5.8	2.4 [0.9]	31/31	7
	2010	180	330	960	11	1.3 [0.5]	6/6	6/
	2013	270	520	1,300	19	1.9 [0.7]	5/5	5/
	2018	110	93	830	17	1.4 [0.6]	3/3	3/
	2002	750	680	14,000	80	5.4 [1.8]	70/70	14/
	2003	510	520	3,700	43	9.9 [3.3]	70/70	14/
	2004	770	510	9,700	56	2.2 [0.70]	70/70	14
	2005	510	650	6,700	29	2.9[0.97]	80/80	16
魚類	2006	520	580	4,300	60	2.4 [0.9]	80/80	16
	2007	470	490	4,100	36	3 [1]	80/80	16
(pg/g-wet)	2008	460	440	4,100	33	3 [1]	85/85	17/
	2009	440	460	2,500	57	2.4 [0.9]	90/90	18
	2010	560	610	2,900	57	1.3 [0.5]	18/18	18
	2013	500	500	4,700	68	1.9 [0.7]	19/19	19
	2018	280	250	3,100	40	1.4 [0.6]	18/18	18/
	2002	580	740	3,900	140	5.4 [1.8]	10/10	2
	2003	640	860	3,900	110	9.9 [3.3]	10/10	2
	2004	330	520	1,400	52	2.2 [0.70]	10/10	2
	2005	310	540	1,400	45	2.9 [0.97]	10/10	2
鳥類	2006	410	740	1,800	55	2.4 [0.9]	10/10	2/
	2007	440	780	2,300	70	3 [1]	10/10	2
(pg/g-wet)	2008	240	490	1,100	35	3 [1]	10/10	2
	2009	280	430	3,400	31	2.4 [0.9]	10/10	2
	2010	440		1,600	120	1.3 [0.5]	2/2	2
	2013※※	140		270	70	1.9 [0.7]	2/2	2/
	2018※※	230		260	210	1.4 [0.6]	2/2	2

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注 2) ※※: 鳥類の 2013 年度における結果は、調査地点及び調査対象生物を変更したことから、2010 年度までの結果と継続性がない。

⁽注3) 2011 年度、2012 年度及び 2014 年度から 2017 年度は調査を実施していない。

<大気>
○2002 年度から 2018 年度における大気についての p,p'-DDT、p,p'-DDE 及び p,p'-DDD の検出状況

実施年度 2002 2003 温暖期 2003 寒冷期 2004 温暖期 2004 寒冷期 2005 温暖期 2005 寒冷期 2006 温暖期	幾何 平均值 1.9 5.8 1.7 4.7 1.8 4.1 1.1	中央値 1.8 6.6 1.6 5.1 1.7	最大値 22 24 11 37	最小値 0.25 0.75 0.31	定量[検出] 下限値 0.24 [0.08] 0.14 [0.046]	検出 検体 102/102 35/35 34/34	<u>地</u> 34 35
2003 温暖期 2003 寒冷期 2004 温暖期 2004 寒冷期 2005 温暖期 2005 寒冷期 2006 温暖期 2006 寒冷期	5.8 1.7 4.7 1.8 4.1 1.1	6.6 1.6 5.1 1.7	24 11	0.75 0.31		35/35	35
2003 寒冷期 2004 温暖期 2004 寒冷期 2005 温暖期 2005 寒冷期 2006 温暖期 2006 寒冷期	1.7 4.7 1.8 4.1 1.1	1.6 5.1 1.7	11	0.31	0.14 [0.046]		
2004温暖期 2004寒冷期 2005温暖期 2005寒冷期 2006温暖期 2006寒冷期	4.7 1.8 4.1 1.1	5.1 1.7	<u>11</u> 37		0.17 [0.070]	34/34	2.4
2004 寒冷期 2005 温暖期 2005 寒冷期 2006 温暖期 2006 寒冷期	1.8 4.1 1.1	1.7	37				34
2005 温暖期 2005 寒冷期 2006 温暖期 2006 寒冷期	4.1 1.1		υ,	0.41	0.22 [0.074]	37/37	37
2005 寒冷期 2006 温暖期 2006 寒冷期	1.1		13	0.29	0.22 [0.074]	37/37	37
2005 寒冷期 2006 温暖期 2006 寒冷期		4.2	31	0.44	0.16.50.05.41	37/37	37
2006温暖期 2006寒冷期		0.99	4.8	0.25	0.16 [0.054]	37/37	37
2006寒冷期	4.2	3.8	51	0.35	0.17.50.063	37/37	37
2007 3月 157 447	1.4	1.2	7.3	0.29	0.17 [0.06]	37/37	37
2007 温暖期	4.9	5.2	30	0.6	0.07.50.003	36/36	36
2007寒冷期	1.2	1.2	8.8	0.23	0.07 [0.03]	36/36	36
2008温暖期	3.6	3.0	27	0.76		37/37	37
2008寒冷期	1.2	1.0	15	0.22	0.07 [0.03]	37/37	37
2009 温暖期	3.6	3.6	28	0.44		37/37	37
2009寒冷期	1.1	1.0	8.0	0.20	0.07 [0.03]	37/37	37
2010温暖期	3.5	3.1	56	0.28		37/37	<u>37</u>
					0.10 [0.03]	37/37 27/27	37
					0.11 [0.04]		36
	0.65						36
							35
2018 温暖期		2	14	0.15			37
宝썲岳庶	幾何	中央値	最大値	最小値	定量[検出]		
							抴
		2.7	28	0.56	0.09 [0.03]	102/102	34
		7.0	51	1.2	0.40 [0.12]	35/35	35
2003 寒冷期	2.8	2.4	22	1.1	0.40 [0.13]	34/34	34
2004 温暖期	6.1	6.3	95	0.62	0.12.50.0201	37/37	37
2004寒冷期			43		0.12 [0.039]		37
2005 温暖期		5.7	42			37/37	37
					0.14 [0.034]		37
							37
					0.10 [0.03]		37
2007 担 展 期							$\frac{37}{36}$
2007 年 冷 期					0.04 [0.02]		36
2007 冬行为						30/30	37
					0.04 [0.02]		
2008 寒行期							37
					0.08 [0.03]		37
2009 寒伶期					[]		37
2010 温暖期					0.62 [0.21]		37
2010寒冷期			28				37
	4.1		37	0.2	0.10 [0.03]		36
2013寒冷期	1.6	1.5	11	0.6	0.10 [0.03]	36/36	36
2015 温暖期	2.4	2.6	34	0.31	0.12 [0.04]	35/35	35
2018 温暖期	2.6	2.5	49	0.31	0.03 [0.01]	37/37	37
######		++++	□ 1./±		定量[検出]	検出	
 美胞牛皮	平均値	中央個	東大個	東小個	下限値		抴
2002		0.13	0.76	nd			34
							35
					0.054 [0.018]		34
							37
					0.053 [0.018]		
							37
					0.16 [0.05]		37
							28
					0.13 [0.04]		36
							36
					0.011 [0.004]		36
	0.093		0.5				36
	0.17	0.17	1.1	0.037	0.025 [0.000]	37/37	37
2008寒冷期	0.091	0.081	0.31	0.036	0.023 [0.009]	37/37	37
					0.02.50.013		37
					0.03 [0.01]		37
							37
					0.02 [0.01]		37
							36
					0.018 [0.007]		
2013 寒冷期	0.056	0.054	0.14 tr(0.31)	tr(0.015)	0.33 [0.11]	36/36	$\frac{36}{17}$
2015 温暖期	nd	nd		nd		17/35	
	2010 13 13 12 2013 13 12 2013 13 12 2013 13 12 2018 13 12 2018 13 12 2018 13 12 2018 13 12 2003 13 12 2004 13 12 2004 13 12 2005 13 12 2006 13 12 2007 13 12 2007 13 12 2008 13 12 2009 13 12 2009 13 12 2009 13 12 2019 13	2010 寒冷期	2010 寒冷期	2010 寒冷期	2010 寒冷期	1.3	2010 寒冷期

⁽注) 2011 年度、2012 年度、2014 年度、2016 年度及び2017 年度は調査を実施していない。

【o,p'-DDT、o,p'-DDE 及び o,p'-DDD】

<水質>

○2002 年度から 2014 年度における水質についての o,p'-DDT、o,p'-DDE 及び o,p'-DDD の検出状況

Ref	/ DDT	中长左声	幾何	++ t +	日上は	# I I I I I I I I I I I I I I I I I I I	定量[検出]	検出を	頻度
2003 6 5 100 tr(1.5) 3 [0.7] 36/36 36/36 2004 tr(4.5) 5 85 nd 5 [2] 29/38 29/38 29/38 2005 3 3 39 nd 3 [1] 42/47 42/48 42	o,p'-DDT	実施年度	平均值※	中央値	最大値	最小値	下限値		地点
2004		2002	5.4	4.6	77	0.19	1.2 [0.4]	114/114	38/38
2004		2003	6	5	100	tr(1.5)	3 [0.7]	36/36	36/36
水質 2005 3 3 3 39 nd 3 [1] 42/47 42/47 42/47 (pg/L) 2006 2.8 2.4 52 0.51 2.3 [0.8] 48/48 48/48 (pg/L) 2007 tr(2.1) tr(2.2) 86 nd 2.5 [0.8] 38/48 38/48 2008 3.1 3.0 230 nd 1.4 [0.5] 44/48 44/48 2009 2.4 2.4 100 0.43 0.16 [0.06] 49/49 49/49 2010 1.5 tr(1.2) 700 nd 1.5 [0.5] 43/49 43/49 2014 1.0 1.0 63 nd 0.4 [0.2] 42/48 42/48 42/48 2009 2.4 2.1 680 nd 0.9 [0.3] 113/114 38/38 2003 2.2 2.0 170 tr(0.42) 0.8 [0.3] 36/36 36/36 36/36 2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 水質 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 (pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48		2004	tr(4.5)	5	85	nd	5 [2]	29/38	29/38
水質 2006 2.8 2.4 52 0.51 2.3 [0.8] 48/48 48/48 (pg/L) 2007 tr(2.1) tr(2.2) 86 nd 2.5 [0.8] 38/48 38/48 2008 3.1 3.0 230 nd 1.4 [0.5] 44/48 44/48 2009 2.4 2.4 100 0.43 0.16 [0.06] 49/49 49/49 2010 1.5 tr(1.2) 700 nd 1.5 [0.5] 43/49 43/49 2014 1.0 1.0 63 nd 0.4 [0.2] 42/48 42/48 42/48 2009 実施年度 幾何 平均値※ 中央値 最大値 最大値 最小値 定量[検出] 検体 地点 2002 2.4 2.1 680 nd 0.9 [0.3] 113/114 38/38 2003 2.2 2.0 170 tr(0.42) 0.8 [0.3] 36/36 36/36 36/36 2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 水質 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 (pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48		2005	3		39	nd	3 [1]	42/47	42/47
2008 3.1 3.0 230 nd 1.4 [0.5] 44/48 44/48 2009 2.4 2.4 100 0.43 0.16 [0.06] 49/49 49/49 49/49 2010 1.5 tr(1.2) 700 nd 1.5 [0.5] 43/49 43/49 43/49 2014 1.0 1.0 63 nd 0.4 [0.2] 42/48 42/4	水質	2006	2.8	2.4		0.51	2.3 [0.8]	48/48	48/48
2008 3.1 3.0 230 nd 1.4 [0.5] 44/48 44/48 2009 2.4 2.4 100 0.43 0.16 [0.06] 49/49 49/49 2010 1.5 tr(1.2) 700 nd 1.5 [0.5] 43/49 43/49 2014 1.0 1.0 63 nd 0.4 [0.2] 42/48 42/48 2014 1.0 1.0 63 nd 0.4 [0.2] 42/48 42/48 2014 1.0 1.0 63 nd 0.4 [0.2] 42/48 42/48 202 2.4 2.1 680 nd 0.9 [0.3] 113/114 38/38 2003 2.2 2.0 170 tr(0.42) 0.8 [0.3] 36/36 36/36 2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 水質 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48	(pg/L)		tr(2.1)	tr(2.2)	86	nd	2.5 [0.8]	38/48	38/48
2010 1.5 tr(1.2) 700 nd 1.5 [0.5] 43/49 43/49 2014 1.0 1.0 63 nd 0.4 [0.2] 42/48 42/48 0,p'-DDE 実施年度 幾何 平均値※ 中央値 最大値 最小値 定量[検出] 下限値 検体 地点 2002 2.4 2.1 680 nd 0.9 [0.3] 113/114 38/38 2003 2.2 2.0 170 tr(0.42) 0.8 [0.3] 36/36 36/36 2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 水質 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 (pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48			3.1		230	nd	1.4 [0.5]	44/48	44/48
O,p'-DDE 実施年度 幾何 平均値※ 中央値 最大値 最小値 定量[検出] 下限値 検出頻度 検体 地点 2002 2.4 2.1 680 nd 0.9 [0.3] 113/114 38/38 2003 2.2 2.0 170 tr(0.42) 0.8 [0.3] 36/36 36/36 2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 水質 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 (pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48		2009	2.4	2.4	100	0.43	0.16 [0.06]	49/49	49/49
o,p'-DDE 実施年度 幾何 平均値※ 中央値 最大値 最小値 定量[検出] 下限値 検出頻度 検体 地点 2002 2.4 2.1 680 nd 0.9 [0.3] 113/114 38/38 2003 2.2 2.0 170 tr(0.42) 0.8 [0.3] 36/36 36/36 2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 水質 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 (pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48		2010	1.5	tr(1.2)	700	nd	1.5 [0.5]	43/49	43/49
b,p-DDE 実施中度 平均値※ 中大値 取入値 取入値 下限値 検体 地点 2002 2.4 2.1 680 nd 0.9 [0.3] 113/114 38/38 2003 2.2 2.0 170 tr(0.42) 0.8 [0.3] 36/36 36/36 2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 水質 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 (pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48		2014		1.0	63	nd	0.4 [0.2]		42/48
Pipe 大野地 大野	o n' DDE	宝梅年度	幾何	由 由.荷	是士店	是小估	定量[検出]	検出	頻度
2003 2.2 2.0 170 tr(0.42) 0.8 [0.3] 36/36 36/36 2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 水質 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 (pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48	<i>0,p</i> -DDE		平均值※	十大旭	取八胆	取小胆		検体	
2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 水質 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 (pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48									38/38
水質 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 水質 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 (pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48									36/36
水質 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 (pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48						tr(0.6)	2 [0.5]		38/38
(pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48						0.4			47/47
2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48			tr(1.6)			nd			28/48
	(pg/L)								
2009 1.3 1.1 140 nd 0.22 [0.09] 47/49 47/49						nd	0.7 [0.3]		39/48
		2009			140	nd	0.22[0.09]		47/49
						tr(0.13)	0.24 [0.09]		49/49
		2014		0.6	560	nd			36/48
o,p'-DDD 実施年度 幾何 中央値 最大値 最小値 定量[検出] 検出頻度	o n'-DDD	宝썲年度		中央値	最大値	最小値			
	0,р -DDD								地点
• •									38/38
									36/36
\						(/			38/38
						tr(0.5)			47/47
									40/48
	(pg/L)					tr(0.3)			48/48
									47/48
									49/49
									49/49
2014 3.7 3.2 38 0.33 0.20 [0.08] 48/48 48/48									48/48

⁽注1)※: 2002年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

○2002 年度から 2014 年度における底質についての o,p'-DDT、o,p'-DDE 及び o,p'-DDD の検出状況

/ DDT	中华左庄	幾何 平均值 ※	+++	最大値	最小値	定量[検出]	検出	頻度
o,p'-DDT	実施年度		中央値			下限値	検体	地点
	2002	76	47	27,000	nd	6 [2]	183/189	62/63
	2003	50	43	3,200	nd	0.8 [0.3]	185/186	62/62
	2004	69	50	17,000	tr(1.1)	2 [0.6]	189/189	63/63
	2005	58	46	160,000	0.8	0.8 [0.3]	189/189	63/63
底質	2006	57	52	18,000	tr(0.8)	1.2 [0.4]	192/192	64/64
(pg/g-dry)	2007	38	31	27,000	nd	1.8 [0.6]	186/192	63/64
	2008	51	40	140,000	tr(0.7)	1.5 [0.6]	192/192	64/64
	2009	44	30	100,000	nd	1.2 [0.5]	190/192	64/64
	2010	40	33	13,000	1.4	1.1 [0.4]	64/64	64/64
	2014	26	24	2,400	nd	0.4 [0.2]	62/63	62/63
o,p'-DDE	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2002	54	37	16,000	nd	3 [1]	188/189	63/63
	2003	48	39	24,000	tr(0.5)	0.6 [0.2]	186/186	62/62
	2004	40	34	28,000	nd	3 [0.8]	184/189	63/63
	2005	40	32	31,000	nd	2.6 [0.9]	181/189	62/63
底質	2006	42	40	27,000	tr(0.4)	1.1 [0.4]	192/192	64/64
(pg/g-dry)	2007	37	41	25,000	nd	1.2 [0.4]	186/192	63/64
• •	2008	50	48	37,000	nd	1.4 [0.6]	186/192	63/64
	2009	37	31	33,000	nd	0.6 [0.2]	191/192	64/64
	2010	37	32	25,000	tr(0.7)	1.2[0.5]	64/64	64/64
	2014	30	32	41,000	tr(0.5)	0.8 [0.3]	63/63	63/63

⁽注 2) 2011 年度から 2013 年度は調査を実施していない。

o,p'-DDD	実施年度	幾何	中央値	最大値	最小値	定量[検出]		検出頻度	
о,р выв	人加工人	平均值※	一八世			下限値 1	検体	地点	
	2002	160	150	14,000	nd	6 [2]	184/189	62/63	
	2003	160	130	8,800	tr(1.0)	2 [0.5]	186/186	62/62	
	2004	140	120	16,000	tr(0.7)	2 [0.5]	189/189	63/63	
	2005	130	110	32,000	tr(0.8)	1.0 [0.3]	189/189	63/63	
底質	2006	120	110	13,000	tr(0.3)	0.5 [0.2]	192/192	64/64	
(pg/g-dry)	2007	110	130	21,000	tr(0.5)	1.0 [0.4]	192/192	64/64	
	2008	170	150	50,000	0.5	0.3 [0.1]	192/192	64/64	
	2009	120	120	24,000	0.5	0.5 [0.2]	192/192	64/64	
	2010	130	130	6,900	tr(0.8)	0.9 [0.4]	64/64	64/64	
	2014	74	85	3,200	tr(0.7)	1.2 [0.5]	63/63	63/63	

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

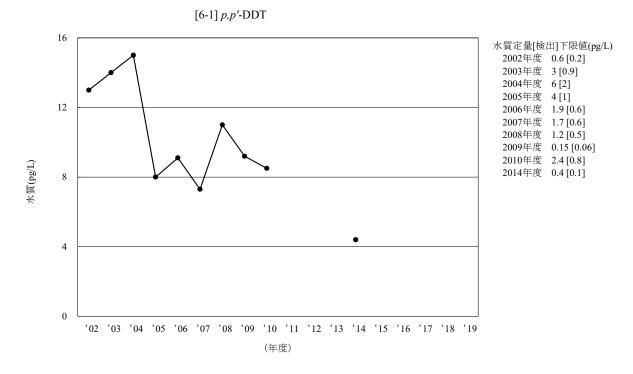
 \bigcirc 2002 年度から 2018 年度における生物(貝類、魚類及び鳥類)についての o,p'-DDT、o,p'-DDE 及び o,p'-DDD の検出状況

o,p'-DDT	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
·, _F		平均值※				下限値	検体	地点
	2002	110	83	480	22	12 [4]	38/38	8/8
	2003	130	120	480	35	2.9 [0.97]	30/30	6/6
	2004	160	140	910	20	1.8 [0.61]	31/31	7/7
	2005	98	57	440	29	2.6 [0.86]	31/31	7/7
貝類	2006	92	79	380	24	3 [1]	31/31	7/7
(pg/g-wet)	2007	79	52	350	20	3 [1]	31/31	7/7
(PS/S Wet)	2008	58	37	330	5	3 [1]	31/31	7/7
	2009	74	48	2,500	17	2.2 [0.8]	31/31	7/7
	2010	51	67	160	15	3 [1]	6/6	6/6
	2013	49	51	180	12	3 [1]	5/5	5/5
	2018	24	12	120	10	2.7 [0.9]	3/3	3/3
	2002	130	130	2,300	tr(6)	12 [4]	70/70	14/1
	2003	85	120	520	2.9	2.9 [0.97]	70/70	14/1
	2004	160	140	1,800	3.7	1.8 [0.61]	70/70	14/1
	2005	100	110	1,500	5.8	2.6 [0.86]	80/80	16/1
A 1/2	2006	100	110	700	6	3 [1]	80/80	16/1
魚類	2007	69	90	430	3	3 [1]	80/80	16/1
(pg/g-wet)	2008	72	92	720	3	3 [1]	85/85	17/
	2009	61	73	470	2.4	2.2 [0.8]	90/90	18/1
	2010	58	71	550	5	3 [1]	18/18	18/
	2013	58	76	310	4	3 [1]	19/19	19/
	2013	34	34	1,500	tr(1.1)	2.7 [0.9]	18/18	18/
	2002	12	tr(10)	58	nd	12 [4]	8/10	2/2
	2002	24	16	66	8.3	2.9 [0.97]	10/10	2/2
	2003	8.5	13	43	tr(0.87)	1.8 [0.61]	10/10	2/2
	2004	11	13	24	3.4	2.6 [0.86]	10/10	2/2
	2006	14	10	120	3.4		10/10	2/2
鳥類	2007	9	9	26		3 [1]	10/10	2/2
(pg/g-wet)	2007	4			tr(2)	3 [1]	8/10	
			6	16	nd	3 [1]		2/2
	2009	6.3	7.6	12	tr(1.4)	2.2 [0.8]	10/10	2/2
	2010	nd		nd	nd	3 [1]	0/2	0/2
	2013※※	nd		tr(1)	nd	3 [1]	1/2	1/2
	2018※※	tr(1.1)		tr(2.5)	nd	2.7 [0.9]	1/2	1/2
o,p'-DDE	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地/
	2002	83	66	1,100	13	3.6 [1.2]	38/38	8/8
	2003	85	100	460	17	3.6 [1.2]	30/30	6/6
	2004	86	69	360	19	2.1 [0.69]	31/31	7/7
	2005	70	89	470	12	3.4 [1.1]	31/31	7/7
□ ₩ ≠	2006	62	81	340	12	3 [1]	31/31	7/7
貝類	2007	56	69	410	8.9	2.3 [0.9]	31/31	7/7
(pg/g-wet)	2008	49	52	390	8	3 [1]	31/31	7/7
	2009	46	58	310	8	3 [1]	31/31	7/7
	2010	46	58	160	7.8	1.5 [0.6]	6/6	6/6
	2010	28	31	260	7.6 4		5/5	5/5
						4 [1]		
	2018	20	15	250	tr(2)	3 [1]	3/3	3/3

⁽注2) 2011 年度から 2013 年度は調査を実施していない。

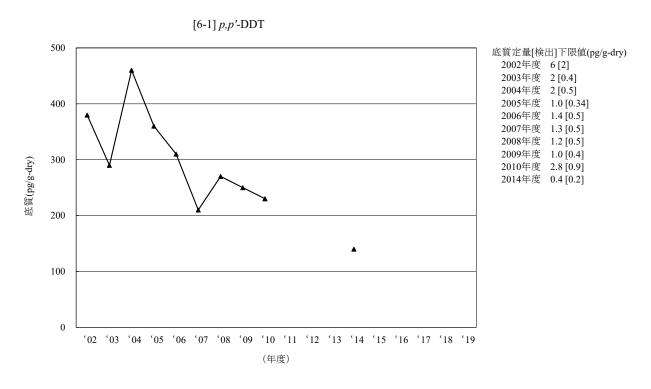
o,p'-DDE	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
-1	2002	平均值 <u>※</u> 91	50	13,000	3.6	下限値 3.6 [1.2]	<u>検体</u> 70/70	<u>地点</u> 14/14
	2002	51	54	2,500	nd	3.6 [1.2]	67/70	14/14
							70/70	14/14
	2004	76 5.4	48	5,800	tr(0.89)	2.1 [0.69]		
	2005	54	45	12,000	tr(1.4)	3.4 [1.1]	80/80	16/16
魚類	2006	56	43	4,800	tr(1)	3 [1]	80/80	16/16
(pg/g-wet)	2007	45	29	4,400	nd	2.3 [0.9]	79/80	16/16
(188)	2008	50	37	13,000	tr(1)	3 [1]	85/85	17/17
	2009	46	33	4,300	tr(1)	3 [1]	90/90	18/18
	2010	47	37	2,800	tr(1.2)	1.5 [0.6]	18/18	18/18
	2013	51	40	3,000	tr(1)	4 [1]	19/19	19/19
	2018	32	27	2,000	nd	3 [1]	17/18	17/18
	2002	28	26	49	20	3.6 [1.2]	10/10	2/2
	2003	tr(2.3)	tr(2.0)	4.2	nd	3.6 [1.2]	9/10	2/2
	2004	tr(1.0)	tr(1.1)	3.7	nd	2.1 [0.69]	5/10	1/2
	2005	tr(1.2)	tr(1.9)	tr(2.9)	nd	3.4 [1.1]	7/10	2/2
÷ 1/1	2006	tr(1)	tr(2)	Š	tr(1)	3 [1] أ	10/10	2/2
鳥類	2007	tr(1.0)	tr(1.4)	2.8	nd	2.3 [0.9]	6/10	2/2
(pg/g-wet)	2008	tr(1)	nd	3	nd	3 [1]	5/10	1/2
	2009	nd	tr(1)	tr(2)	nd	3 [1]	6/10	2/2
	2010	tr(1.1)		3.7	nd	1.5 [0.6]	1/2	1/2
	2013**	nd		tr(1)	nd	4[1]	1/2	1/2
	2018**	tr(1)			tr(1)	3 [1]	$\frac{1/2}{2/2}$	2/2
				tr(1)		3[1] 定量[検出]		
o,p'-DDD	実施年度	幾何 平均値 ※	中央値	最大値	最小値	下限値	検体	^{頻及} 地点
	2002	120	190	2,900	tr(9)	12 [4]	38/38	8/8
	2003	200	220	1,900	6.5	6.0 [2.0]	30/30	6/6
	2004	220	130	2,800	6.0	5.7 [1.9]	31/31	7/7
	2005	170	280	1,800	10	3.3 [1.1]	31/31	7/7
貝類	2006	150	200	1,000	7	4 [1] أ	31/31	7/7
	2007	150	200	1,200	6	3 [1]	31/31	7/7
(pg/g-wet)	2008	130	140	1,100	5	4 [2]	31/31	7/7
	2009	95	51	1,000	5	3 [1]	31/31	7/7
	2010	57	50	400	5.8	0.6 [0.2]	6/6	6/6
	2013	100	74	1,800	7.8	1.8 [0.7]	5/5	5/5
	2018	46	27	720	4.9	2.4 [0.9]	3/3	3/3
	2002	95	90	1,100	nd	12 [4]	66/70	14/14
	2003	75	96	920	nd	6.0 [2.0]	66/70	14/14
	2004	120	96	1,700	nd	5.7 [1.9]	68/70	14/14
	2005	83	81	1,400	nd	3.3 [1.1]	79/80	16/16
	2006	80	86	1,100	tr(1)	4[1]	80/80	16/16
魚類	2007	66	62	1,300	nd	3 [1]	78/80	16/16
(pg/g-wet)	2007		74					
		65		1,000	nd	4 [2]	80/85	16/17
	2009	63	64	760	nd	3 [1]	87/90	18/18
	2010	75 7 5	99	700	2.6	0.6 [0.2]	18/18	18/18
	2013	70	85	940	nd	1.8 [0.7]	18/19	18/19
	2018	40	39	1,100	nd	2.4 [0.9]	17/18	17/18
	2002	15	15	23	tr(8)	12 [4]	10/10	2/2
					4 (5 0)	6.0.[2.0]	10/10	2/2
	2003	15	14	36	tr(5.0)	6.0 [2.0]		
	2003 2004	6.1	5.7	25	nd	5.7 [1.9]	9/10	2/2
	2003 2004 2005	6.1 7.3	5.7 7.5			5.7 [1.9] 3.3 [1.1]		2/2
白松石	2003 2004	6.1	5.7	25	nd	5.7 [1.9] 3.3 [1.1]	9/10	
鳥類	2003 2004 2005 2006	6.1 7.3	5.7 7.5	25 9.7	nd 4.7	5.7 [1.9] 3.3 [1.1] 4 [1]	9/10 10/10	2/2
鳥類 (pg/g-wet)	2003 2004 2005 2006 2007	6.1 7.3 8 7	5.7 7.5 8 7	25 9.7 19 10	nd 4.7 5 5	5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1]	9/10 10/10 10/10 10/10	2/2 2/2 2/2
	2003 2004 2005 2006 2007 2008	6.1 7.3 8 7 4	5.7 7.5 8 7 tr(3)	25 9.7 19 10 14	nd 4.7 5 5 tr(2)	5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2]	9/10 10/10 10/10 10/10 10/10	2/2 2/2 2/2 2/2
	2003 2004 2005 2006 2007 2008 2009	6.1 7.3 8 7 4 6	5.7 7.5 8 7 tr(3) 5	25 9.7 19 10 14 13	nd 4.7 5 5 tr(2)	5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1]	9/10 10/10 10/10 10/10 10/10 10/10	2/2 2/2 2/2 2/2 2/2
	2003 2004 2005 2006 2007 2008	6.1 7.3 8 7 4	5.7 7.5 8 7 tr(3)	25 9.7 19 10 14	nd 4.7 5 5 tr(2)	5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2]	9/10 10/10 10/10 10/10 10/10	2/2 2/2 2/2 2/2

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。


⁽注 2) ※※: 鳥類の 2013 年度における結果は、調査地点及び調査対象生物を変更したことから、2010 年度までの結果と継続性がない。

⁽注3) 2011 年度、2012 年度及び 2014 年度から 2017 年度は調査を実施していない。

<大気> ○2002 年度から 2018 年度における大気についての o,p'-DDT、o,p'-DDE 及び o,p'-DDD の検出状況


o,p'-DDT	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2002	2.2	2.0	40	0.41	0.15 [0.05]	102/102	34/3
	2003 温暖期	6.9	7.7	38	0.61	0.12 [0.040]	35/35	35/3
	2003 寒冷期	1.6	1.4	6.4	0.43	0.12 [0.040]	34/34	34/3
	2004温暖期	5.1	5.4	22	0.54	0.093 [0.031]	37/37	37/3
	2004寒冷期	1.5	1.4	9.4	0.35		37/37	37/3
	2005 温暖期	3.0	3.1	14	0.67	0.10 [0.034]	37/37	37/3
	2005寒冷期	0.76	0.67	3.0	0.32		37/37	37/3
	2006温暖期	2.5	2.4	20	0.55	0.09 [0.03]	37/37	37/3
	2006寒冷期	0.90	0.79	3.9	0.37		37/37	37/3
大気	2007温暖期 2007寒冷期	2.9 0.77	2.6 0.63	19 3.4	0.24 0.31	0.03 [0.01]	36/36 36/36	36/3
(pg/m^3)	2007冬市場 2008 温暖期	2.3	2.1	<u>3.4</u> 18	0.31		37/37	36/3
	2008 無歲期	0.80	0.62	6.5	0.33	0.03 [0.01]	37/37	37/3
	2009 温暖期	2.3	2.2	<u>0.5</u> 14	0.33		37/37	37/3
	2009寒冷期	0.80	0.71	3.7	0.20	0.019 [0.008]	37/37	37/3
	2010 温暖期	2.2	1.9	26	0.19		37/37	37/3
	2010寒冷期	0.81	0.69	5.5	0.22	0.14 [0.05]	37/37	37/3
	2013 温暖期	1.7	1.7	12	0.15	0.054.50.0103	36/36	36/3
	2013 寒冷期	0.47	0.44	2.4	0.20	0.054 [0.018]	36/36	36/3
	2015 温暖期	0.99	1.2	6.8	0.14	0.12 [0.04]	35/35	35/3
	2018温暖期	1.0	1.1	6.3	0.08	0.03 [0.01]	37/37	37/3
o,p'-DDE	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
0,p -DDE		平均値				下限値	検体	地
	2002	0.60	0.56	8.5	0.11	0.03 [0.01]	102/102	34/3
	2003 温暖期	1.4	1.5	7.5	0.17	0.020 [0.0068]	35/35	35/.
	2003 寒冷期	0.50	0.47	1.7	0.18		34/34	34/
	2004 温暖期	1.1	1.2	8.9	0.14	0.037 [0.012]	37/37	37/.
	2004寒冷期	0.53	0.49	3.9	0.14		37/37	37/
	2005 温暖期	1.6	1.5	7.9	0.33	0.074 [0.024]	37/37	37/3
	2005寒冷期	0.62	0.59	2.0	0.24	***** [***= *]	37/37	37/
	2006 温暖期	1.1	1.1	7.4	nd	0.09 [0.03]	36/37	36/
	2006寒冷期 2007温暖期	0.65	0.56	2.6	0.19		37/37	37/
大気	2007 温暖期 2007 寒冷期	0.66 0.3	0.67 0.29	7 3.7	0.096 0.12	0.017 [0.007]	36/36 36/36	36/. 36/.
(pg/m^3)	2007冬市場	0.48	0.52	5.0	0.12		37/37	37/.
	2008 無歲期	0.48	0.32	1.1	0.11	0.025 [0.009]	37/37	37/.
	2008冬田朔	0.51	0.46	6.7	0.098		37/37	37/3
	2009寒冷期	0.27	0.40	23	0.072	0.016 [0.006]	37/37	37/.
	2010温暖期	0.49	0.41	9.0	0.09		37/37	37/.
	2010寒冷期	0.27	0.23	2.3	0.08	0.04 [0.01]	37/37	37/.
	2013 温暖期	0.38	0.35	3.3	0.051	0.000.0007	36/36	36/.
	2013 寒冷期	0.21	0.19	0.65	0.097	0.023 [0.009]	36/36	36/.
	2015 温暖期	0.25	0.24	1.1	nd	0.18 [0.06]	34/35	34/.
	2018温暖期	0.24	0.26	1.2	tr(0.04)	0.05 [0.02]	37/37	37/.
o m/ DDD	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
o,p'-DDD		平均値	中天恒	取八胆	取力恒	下限値	検体	地
	2002	0.14	0.18	0.85	nd	0.021 [0.007]	97/102	33/.
	2003 温暖期	0.37	0.42	1.3	0.059	0.042 [0.014]	35/35	35/.
	2003 寒冷期	0.15	0.14	0.42	0.062		34/34	34/
	2004 温暖期	0.31	0.33	2.6	tr(0.052)	0.14 [0.048]	37/37	37/.
	2004寒冷期	0.14	tr(0.13)	0.86	nd		35/37	35/
	2005 温暖期	0.22	0.19	0.90	tr(0.07)	0.10 [0.03]	37/37	37/
	2005寒冷期	tr(0.07)	tr(0.07)	0.21	nd		35/37	35/
	2006 温暖期	0.28	0.28	1.4	tr(0.05)	0.10 [0.03]	37/37	37/3
大気	2006寒冷期	0.12	0.11	0.79	nd		34/37	34/3
	2007 温暖期	0.28	0.29	1.9	0.05	0.05 [0.02]	36/36	36/3
(pg/m^3)	2007寒冷期 2008温暖期	0.095	0.09	0.33	tr(0.03)		36/36 37/37	36/.
/					0.05	0.04 [0.01]		
	2008寒冷期 2009温暖期	0.10	0.09	0.26	0.04		37/37 37/37	<u> 37/.</u> 37/.
	2009 温暖期 2009 寒冷期	0.20	0.19	0.90		0.03 [0.01]		37/3
	2009 寒行期 2010 温暖期				tr(0.02)		37/37	
	2010 温暖期 2010 寒冷期	0.21 0.10	0.19 0.09	1.8 0.48	0.04 tr(0.02)	0.03 [0.01]	37/37 37/37	37/3 37/3
	2010 冬 行 朔	0.10	0.18	1.2	$\frac{\text{tr}(0.02)}{\text{tr}(0.03)}$		36/36	36/3
	2013 温暖期	0.17	0.18	0.17	u(0.03) nd	0.05 [0.02]	35/36	35/3
				U.1/	IIU		22/20	ر الدر
	2015 基份期	tr(0.09)	tr(0.10)	0.37	nd	0.20 [0.07]	25/35	25/3

⁽注) 2011 年度、2012 年度、2014 年度、2016 年度及び 2017 年度は調査を実施していない。

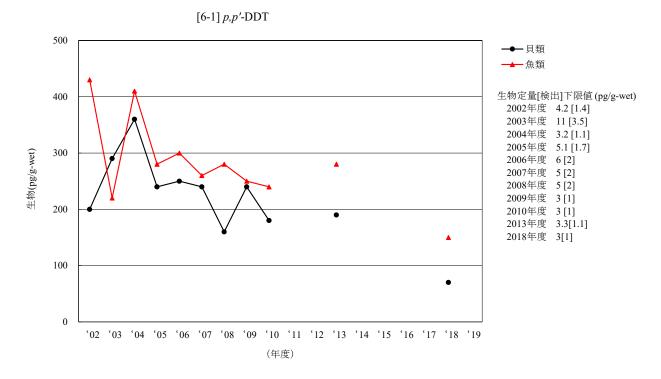

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-6-1-1 p,p'-DDT の水質の経年変化(幾何平均値)

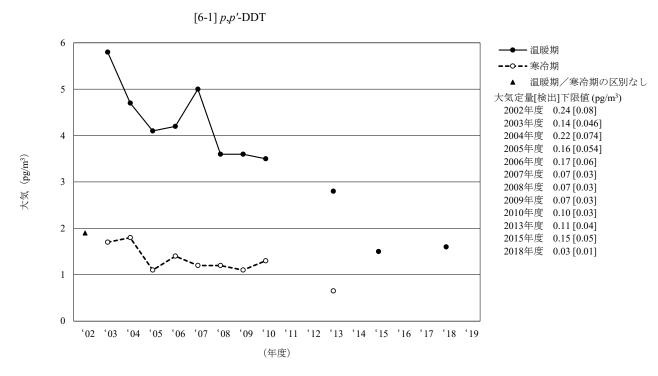
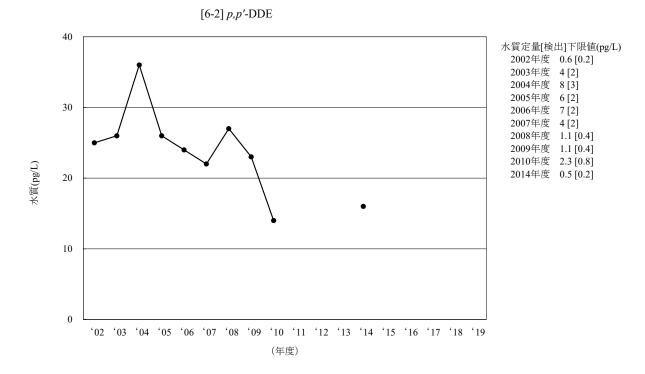
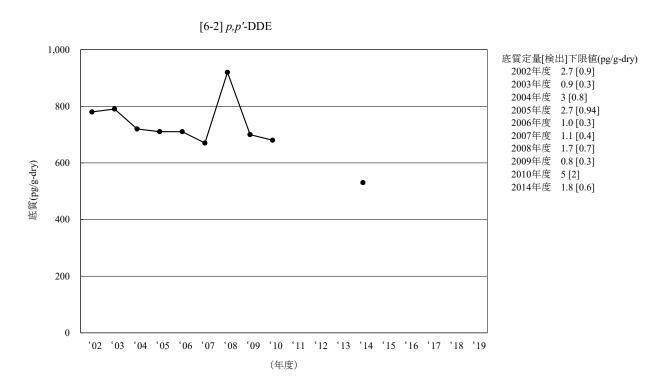

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-6-1-2 p,p'-DDT の底質の経年変化(幾何平均値)



- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2010 年度までと継続性がないため、経年変化は示していない。
- (注3) 2011 年度、2012 年度、2014 年度から 2017 年度及び 2019 年度は調査を実施していない。

図 3-6-1-3 p,p'-DDT の生物の経年変化(幾何平均値)



(注) 2011 年度、2012 年度、2014 年度、2016 年度、2017 年度及び 2019 年度は調査を実施していない。 図 3-6-1-4 p,p'-DDT の大気の経年変化(幾何平均値)

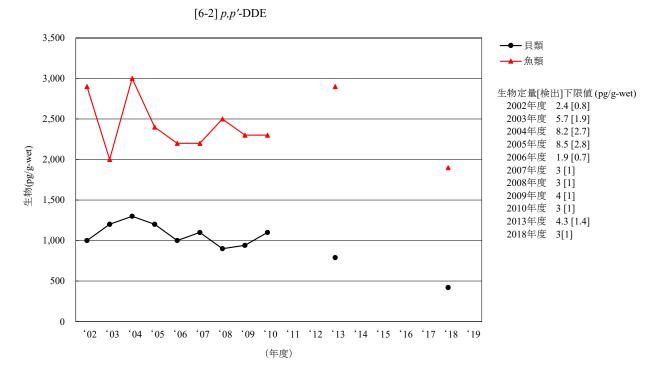

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-6-2-1 *p,p'*-DDE の水質の経年変化(幾何平均値)

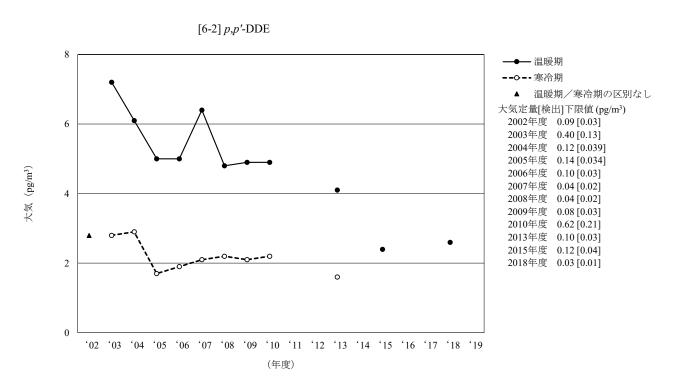
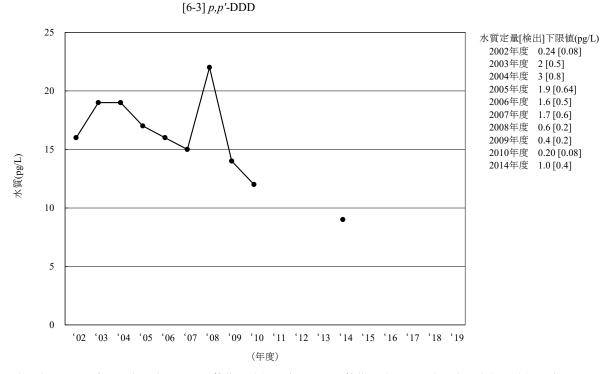
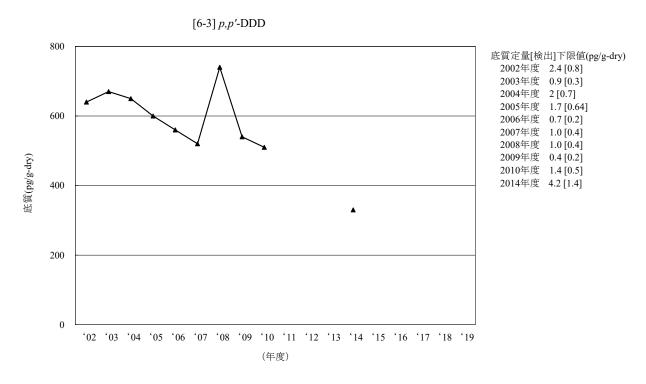

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求め た。
- (注 2) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-6-2-2 p,p'-DDE の底質の経年変化(幾何平均値)



- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2010 年度までと継続性がないため、経年変化は示していない。
- (注3) 2011 年度、2012 年度、2014 年度から 2017 年度及び 2019 年度は調査を実施していない。

図 3-6-2-3 p,p'-DDE の生物の経年変化(幾何平均値)



(注) 2011 年度、2012 年度、2014 年度、2016 年度から 2017 年度及び 2019 年度は調査を実施していない。図 3-6-2-4 p,p'-DDE の大気の経年変化(幾何平均値)

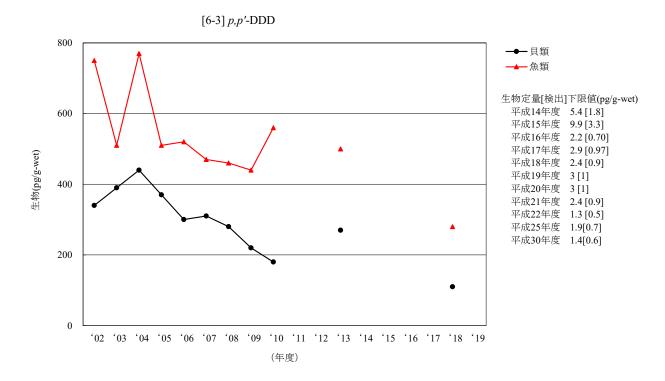

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-6-3-1 p,p'-DDD の水質の経年変化(幾何平均値)

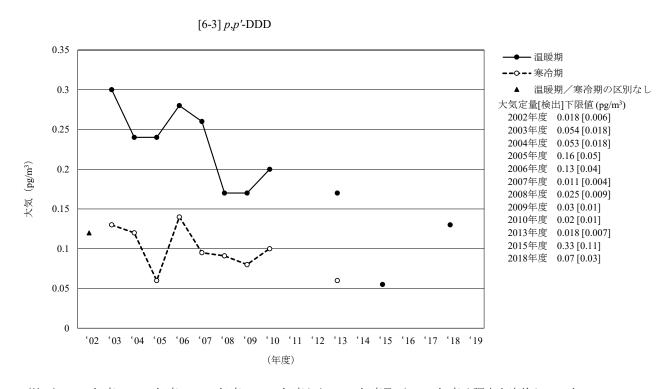
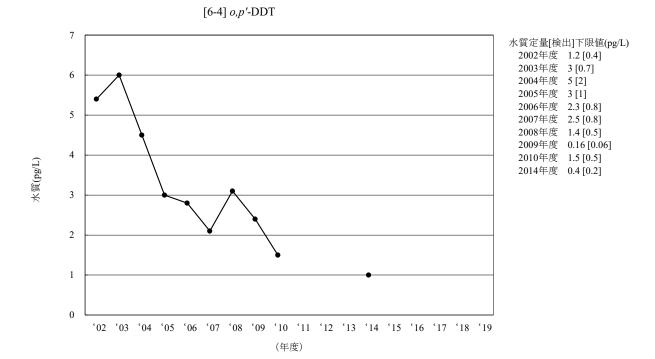

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた
- (注2) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-6-3-2 p,p'-DDD の底質の経年変化(幾何平均値)

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2010 年度までと継続性がないため、経年変化は示していない。
- (注3) 2011 年度、2012 年度、2014 年度から 2017 年度及び 2019 年度は調査を実施していない。


図 3-6-3-3 p,p'-DDD の生物の経年変化(幾何平均値)

(注1) 2011 年度、2012 年度、2014 年度、2016 年度から 2017 年度及び 2019 年度は調査を実施していない。

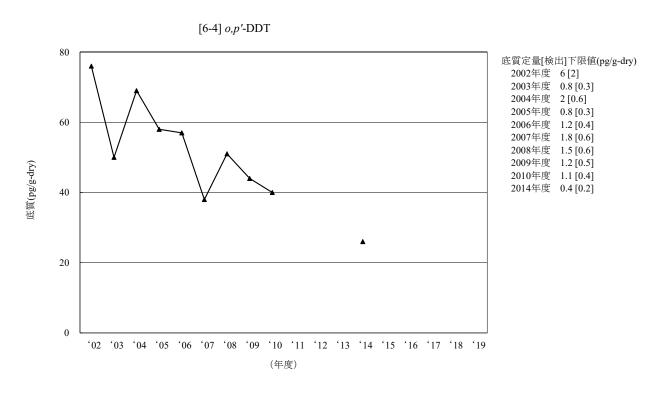

(注2) 2015 年度の温暖期は幾何平均値が検出下限値未満であったため、検出下限値の1/2の値を図示した。

図 3-6-3-4 p,p'-DDD の大気の経年変化(幾何平均値)

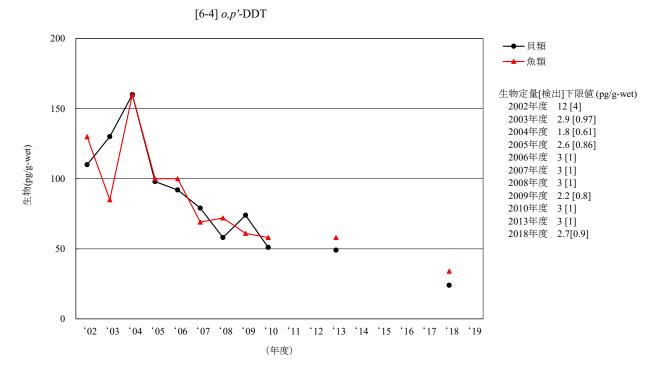

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-6-4-1 o,p'-DDT の水質の経年変化(幾何平均値)

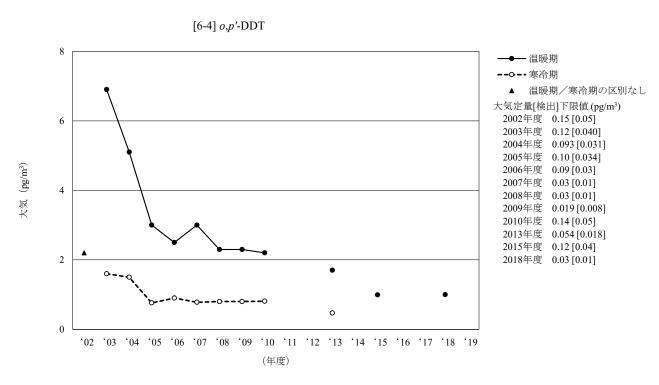
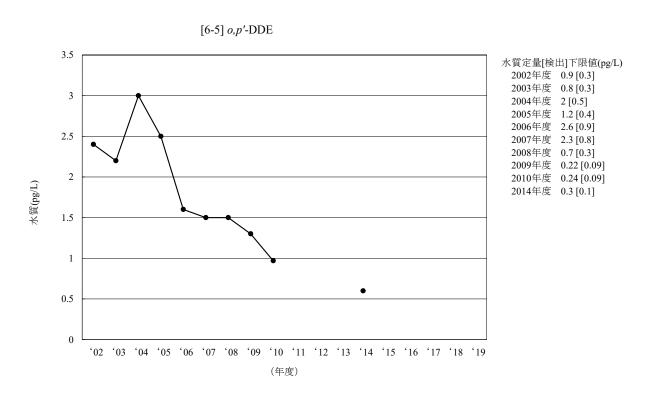

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-6-4-2 o,p'-DDT の底質の経年変化(幾何平均値)

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2010 年度までと継続性がないため、経年変化は示していない。
- (注3) 2011 年度、2012 年度、2014 年度から 2017 年度及び 2019 年度は調査を実施していない。

図 3-6-4-3 o,p'-DDT の生物の経年変化(幾何平均値)


(注) 2011 年度、2012 年度、2014 年度及び 2016 年度から 2017 年度は調査を実施していない。 図 3-6-4-4 o,p'-DDT の大気の経年変化(幾何平均値)

[6-5] *o,p'*-DDE 3.5 水質定量[検出]下限値(pg/L) 2002年度 0.9 [0.3] 2003年度 0.8 [0.3] 3 2004年度 2[0.5] 2005年度 1.2 [0.4] 2006年度 2.6 [0.9] 2.5 2007年度 2.3 [0.8] 2008年度 0.7 [0.3] 2009年度 0.22 [0.09] 2 2010年度 0.24 [0.09] 水質(pg/L) 2014年度 0.3 [0.1] 1.5 1 0.5 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

(年度)

図 3-6-5-1 o,p'-DDE の水質の経年変化(幾何平均値)

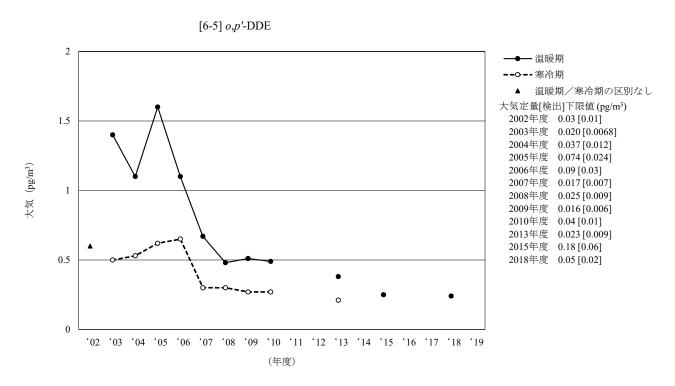
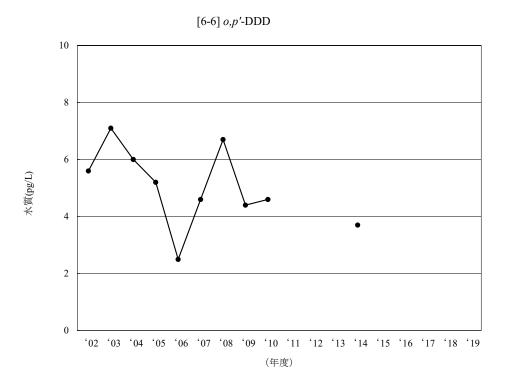
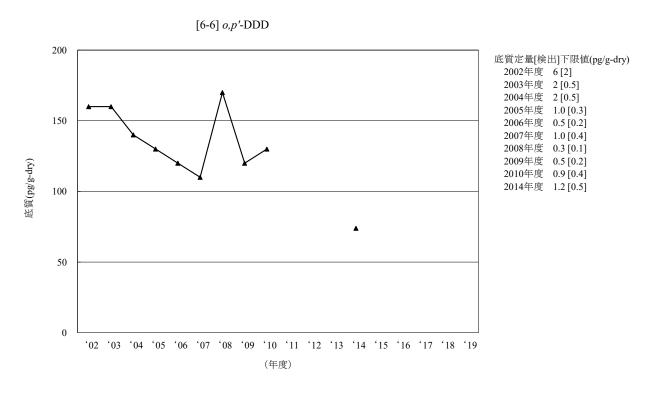

- (注1) o,p'-DDT の底質については、継続的調査において 2001 年度以前の調査を実施していない。
- (注 2) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注3) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-6-5-2 o,p'-DDE の底質の経年変化(幾何平均値)



- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2010 年度までと継続性がないため、経年変化は示していない。
- (注3) 2011 年度、2012 年度、2014 年度から 2017 年度及び 2019 年度は調査を実施していない。

図 3-6-5-3 o,p'-DDE の生物の経年変化(幾何平均値)



(注) 2011 年度、2012 年度、2014 年度、2016 年度から 2017 年度及び 2019 年度は調査を実施していない。 図 3-6-5-4 *o,p'*-DDE の大気の経年変化(幾何平均値)

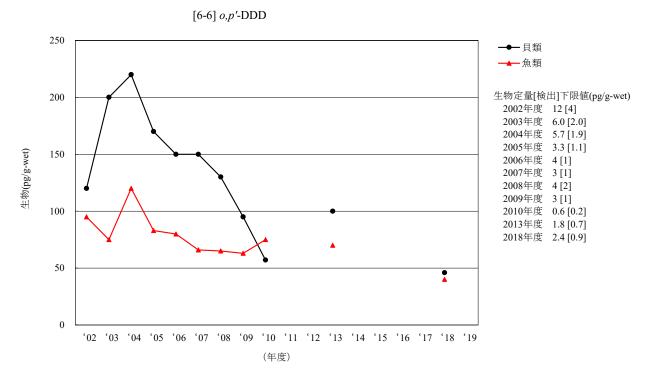

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-6-6-1 o,p'-DDD の水質の経年変化(幾何平均値)

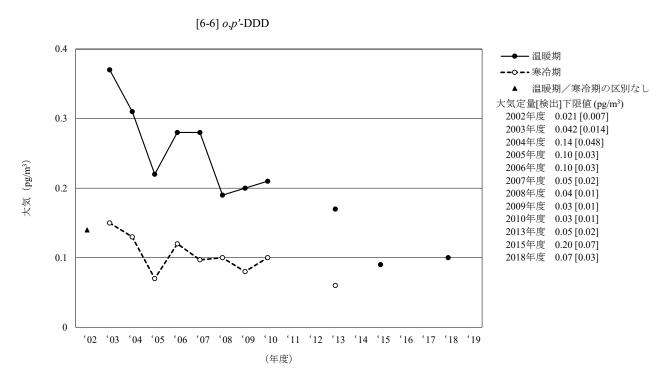

- (注1) o,p'-DDT の底質については、継続的調査において 2001 年度以前の調査を実施していない。
- (注 2) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注3) 2011 年度から 2013 年度及び 2015 年度から 2019 年度は調査を実施していない。

図 3-6-6-2 o,p'-DDD の底質の経年変化(幾何平均値)

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2010 年度までと継続性がないため、経年変化は示していない。
- (注3) 2011 年度、2012 年度、2014 年度から 2017 年度及び 2019 年度は調査を実施していない。

図 3-6-6-3 o,p'-DDD の生物の経年変化(幾何平均値)

(注) 2011 年度、2012 年度、2014 年度、2016 年度から 2017 年度及び 2019 年度は調査を実施していない。 図 3-6-6-4 *o,p'*-DDD の大気の経年変化(幾何平均値)

[7] クロルデン類 (参考)

・調査の経緯及び実施状況

クロルデンは、殺虫剤として利用されたが、1968年に農薬取締法に基づく登録が失効した。しかし、クロルデン類はその後も木材加工時に用いられ、シロアリ防除のために家屋等にも使用されていた。1986年9月に化審法に基づく第一種特定化学物質に指定された。また、POPs条約においては、2004年に条約が発効された当初から cis-クロルデン及び trans-クロルデンが条約対象物質に指定されている。

工業的に生産されたクロルデン類の組成は多岐にわたるが、継続的調査では、当初へプタクロル、 γ -クロルディーン、ヘプタクロルエポキシド、cis-クロルデン、trans-クロルデン、オキシクロルデン(クロルデン代謝物)、cis-ノナクロル(農薬として未登録)及び trans-ノナクロル(農薬として未登録)の8種類を調査対象物質とした。1983年度以降は、1982年度精密環境調査において特に検出頻度が高かった5物質(cis-クロルデン、trans-クロルデン、オキシクロルデン、cis-ノナクロル及び trans-ノナクロル)を調査対象物質に選定し、調査を実施している。

2001 年度までの継続的調査において、「生物モニタリング」ⁱⁱ⁾で 1983 年度から 2001 年度の全期間にわたって生物(貝類、魚類及び鳥類)について調査を実施している。また、「水質・底質モニタリング」ⁱ⁾で *cis-*クロルデン、*trans-*クロルデン、*cis-*ノナクロル及び*trans-*ノナクロルについて、水質は 1986 年度から 1998 年度まで、底質は 1986 年度から 2001 年度の全期間にわたって調査を実施している。

2002 年度以降のモニタリング調査においては、cis-クロルデン、trans-クロルデン、オキシクロルデン、cis-ノナクロル及びtrans-ノナクロルについて、2002 年度から 2013 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2016 年度に生物(貝類、魚類及び鳥類)及び大気の調査を、2017 年度に水質、底質の調査を実施している。

2018 年度及び 2019 年度は調査を実施していないため、参考として以下に、2017 年度までの調査結果を示す。

・2017年度までの調査結果(参考)

【cis-クロルデン及び trans-クロルデン】

<水質>

○2002 年度から 2017 年度における水質についての cis-クロルデン及び trans-クロルデンの検出状況

cis-クロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
CIS-9 LIV)	天旭午及	平均值※	中大旭	取八胆	取小胆	下限値 1	検体	地点
	2002	42	32	880	2.5	0.9 [0.3]	114/114	38/38
	2003	69	51	920	12	3 [0.9]	36/36	36/36
	2004	92	87	1,900	10	6 [2]	38/38	38/38
	2005	53	54	510	6	4 [1]	47/47	47/47
	2006	31	26	440	5	5 [2]	48/48	48/48
水質	2007	23	22	680	nd	4 [2]	47/48	47/48
	2008	29	29	480	2.9	1.6 [0.6]	48/48	48/48
(pg/L)	2009	29	26	710	4.4	1.1 [0.4]	49/49	49/49
	2010	19	14	170	nd	11 [4]	47/49	47/49
	2011	20	16	500	3.8	1.4 [0.6]	49/49	49/49
	2012	43	37	350	10	1.6 [0.6]	48/48	48/48
	2013	18	16	260	2.9	2.7 [0.9]	48/48	48/48
	2017	19	19	210	2	2 [1]	47/47	47/47

trans-クロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
trans-9 470) >	天旭千茂	平均值※	十大旭	取八胆	取小胆	下限値	検体	地点
	2002	33	24	780	3.1	1.5 [0.5]	114/114	38/38
	2003	34	30	410	6	5 [2]	36/36	36/36
	2004	32	26	1,200	5	5 [2]	38/38	38/38
	2005	25	21	200	3	4 [1]	47/47	47/47
	2006	24	16	330	tr(4)	7 [2]	48/48	48/48
水質	2007	16	20	580	nd	2.4 [0.8]	47/48	47/48
	2008	23	22	420	3	3 [1]	48/48	48/48
(pg/L)	2009	23	18	690	3.0	0.8 [0.3]	49/49	49/49
	2010	15	tr(11)	310	nd	13 [4]	44/49	44/49
	2011	16	13	470	3.2	1.0 [0.4]	49/49	49/49
	2012	41	33	300	12	2.5 [0.8]	48/48	48/48
	2013	15	13	200	3	3 [1]	48/48	48/48
	2017	15	15	150	tr(2)	3 [1]	47/47	47/47

⁽注1)※: 2002年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

○2002 年度から 2017 年度における底質についての cis-クロルデン及び trans-クロルデンの検出状況

cis-クロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出を	頻度
Cls-9 11/V) 2		平均值※	中大恒		取小胆	下限値 1	検体	地点
	2002	140	98	18,000	1.8	0.9 [0.3]	189/189	63/63
	2003	190	140	19,000	tr(3.6)	4 [2]	186/186	62/62
	2004	160	97	36,000	4	4 [2]	189/189	63/63
	2005	150	100	44,000	3.3	1.9 [0.64]	189/189	63/63
	2006	100	70	13,000	tr(0.9)	2.4 [0.8]	192/192	64/64
底質	2007	82	55	7,500	nd	5 [2]	191/192	64/64
(pg/g-dry)	2008	100	63	11,000	tr(2.3)	2.4 [0.9]	192/192	64/64
(pg/g-dry)	2009	84	61	8,600	2.0	0.7[0.3]	192/192	64/64
	2010	82	62	7,200	tr(4)	6 [2]	64/64	64/64
	2011	70	58	4,500	1.7	1.1 [0.4]	64/64	64/64
	2012	69	61	11,000	tr(2.6)	2.9 [1.0]	63/63	63/63
	2013	65	55	5,400	tr(1.9)	2.0 [0.8]	63/63	63/63
	2017	47	36	2,800	nd	4.8 [1.6]	61/62	61/62
trans-クロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
truits y · /· / •		平均值※				下限値	検体	地点
	2002	150	110	16,000	2.1	1.8 [0.6]	189/189	63/63
	2003	130	100	13,000	tr(2.4)	4 [2]	186/186	62/62
				,				
	2004	110	80	26,000	3	3 [0.9]	189/189	63/63
	2004 2005	110 110	80 81	26,000 32,000	3 3.4	3 [0.9] 2.3 [0.84]	189/189	63/63
	2004 2005 2006	110 110 110	80 81 76	26,000 32,000 12,000	3 3.4 2.2	3 [0.9] 2.3 [0.84] 1.1 [0.4]	189/189 192/192	63/63 64/64
庇啠	2004 2005 2006 2007	110 110 110 82	80 81 76 58	26,000 32,000 12,000 7,500	3 3.4 2.2 nd	3 [0.9] 2.3 [0.84] 1.1 [0.4] 2.2 [0.8]	189/189 192/192 191/192	63/63 64/64 64/64
底質 (ng/a-dry)	2004 2005 2006 2007 2008	110 110 110 82 110	80 81 76 58 66	26,000 32,000 12,000 7,500 10,000	3 3.4 2.2 nd 2.4	3 [0.9] 2.3 [0.84] 1.1 [0.4]	189/189 192/192	63/63 64/64 64/64 64/64
底質 (pg/g-dry)	2004 2005 2006 2007 2008 2009	110 110 110 82 110 91	80 81 76 58 66 68	26,000 32,000 12,000 7,500 10,000 8,300	3 3.4 2.2 nd 2.4 2.1	3 [0.9] 2.3 [0.84] 1.1 [0.4] 2.2 [0.8] 2.0 [0.8] 1.7 [0.7]	189/189 192/192 191/192 192/192 192/192	63/63 64/64 64/64 64/64
	2004 2005 2006 2007 2008 2009 2010	110 110 110 82 110 91	80 81 76 58 66 68 69	26,000 32,000 12,000 7,500 10,000 8,300 8,000	3 3.4 2.2 nd 2.4 2.1 tr(4)	3 [0.9] 2.3 [0.84] 1.1 [0.4] 2.2 [0.8] 2.0 [0.8] 1.7 [0.7] 11 [4]	189/189 192/192 191/192 192/192 192/192 64/64	63/63 64/64 64/64 64/64 64/64
	2004 2005 2006 2007 2008 2009 2010 2011	110 110 110 82 110 91 95 73	80 81 76 58 66 68 69 64	26,000 32,000 12,000 7,500 10,000 8,300 8,000 4,300	3 3.4 2.2 nd 2.4 2.1 tr(4) 3.2	3 [0.9] 2.3 [0.84] 1.1 [0.4] 2.2 [0.8] 2.0 [0.8] 1.7 [0.7]	189/189 192/192 191/192 192/192 192/192 64/64 64/64	63/63 64/64 64/64 64/64 64/64 64/64
	2004 2005 2006 2007 2008 2009 2010 2011 2012	110 110 110 82 110 91 95 73 80	80 81 76 58 66 68 69 64 71	26,000 32,000 12,000 7,500 10,000 8,300 8,000	3 3.4 2.2 nd 2.4 2.1 tr(4) 3.2 tr(2.9)	3 [0.9] 2.3 [0.84] 1.1 [0.4] 2.2 [0.8] 2.0 [0.8] 1.7 [0.7] 11 [4] 1.3 [0.5] 4.0 [1.3]	189/189 192/192 191/192 192/192 192/192 64/64 64/64 63/63	63/63 64/64 64/64 64/64 64/64 64/64 63/63
	2004 2005 2006 2007 2008 2009 2010 2011	110 110 110 82 110 91 95 73	80 81 76 58 66 68 69 64	26,000 32,000 12,000 7,500 10,000 8,300 8,000 4,300	3 3.4 2.2 nd 2.4 2.1 tr(4) 3.2	3 [0.9] 2.3 [0.84] 1.1 [0.4] 2.2 [0.8] 2.0 [0.8] 1.7 [0.7] 11 [4] 1.3 [0.5]	189/189 192/192 191/192 192/192 192/192 64/64 64/64	63/63 64/64 64/64 64/64 64/64 64/64

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2014年度から2016年度は調査を実施していない。

⁽注2) 2014年度から2016年度は調査を実施していない。

○2002 年度から 2016 年度における生物(貝類、魚類及び鳥類)についての cis-クロルデン及び trans-クロルデンの検出状況

<生物>

cis-クロルデン	実施年度	幾何 平均值 ※	中央値	最大値	最小值	定量[検出] 下限値	検出 検体	頻度 地点
	2002	730	1,200	26,000	24	2.4 [0.8]	38/38	8/8
	2003	1,100	1,400	14,000	110	3.9 [1.3]	30/30	6/6
	2004	1,300	1,600	14,000	91	18 [5.8]	31/31	7/7
	2005	1,000	960	13,000	78	12 [3.9]	31/31	7/7
	2006	970	1,100	18,000	67	4[1]	31/31	7/7
	2007	870	590	19,000	59	5 [2]	31/31	7/7
貝類	2008	750	560	11,000	85	5 [2]	31/31	7/7
(pg/g-wet)	2009	1,200	1,100	16,000	83	4 [2]	31/31	7/7
	2010	1,600	2,300	15,000	67	4 [2]	6/6	6/6
	2011	790	880	3,400	160	3 [1]	4/4	4/4
	2012	710	500	3,500	180	5 [2]	5/5	5/5
	2013	410	410	2,000	75	13 [4]	5/5	5/5
	2016	220	260	500	80	3 [1]	3/3	3/3
	2002	610	550	6,900	57	2.4 [0.8]	70/70	14/14
	2003	510	400	4,400	43	3.9 [1.3]	70/70	14/14
	2004	620	490	9,800	68	18 [5.8]	70/70	14/14
	2005	520	600	8,000	42	12 [3.9]	80/80	16/1
	2006	520	420	4,900	56	4[1]	80/80	16/1
t vir	2007	430	360	5,200	30	5 [2]	80/80	16/1
魚類	2008	430	340	3,500	36	5 [2]	85/85	17/1
(pg/g-wet)	2009	430	450	3,200	41	4 [2]	90/90	18/1
	2010	450	630	3,400	51	4 [2]	18/18	18/18
	2011	580	660	3,800	79	3 [1]	18/18	18/1
	2012	580	550	3,100	98	5 [2]	19/19	19/1
	2013	540	450	5,700	65	13 [4]	19/19	19/1
	2016	340	440	2,200	67	3 [1]	19/19	19/1
	2002	67	180	450	10	2.4 [0.8]	10/10	2/2
	2003	47	120	370	6.8	3.9 [1.3]	10/10	2/2
	2004	39	110	240	tr(5.8)	18 [5.8]	10/10	2/2
	2005	53	120	340	tr(5.8)	12 [3.9]	10/10	2/2
	2006	32	83	250	5	4[1]	10/10	2/2
	2007	29	83	230	tr(4)	5 [2]	10/10	2/2
鳥類	2008	24	87	280	tr(3)	5 [2]	10/10	2/2
(pg/g-wet)	2009	21	48	130	4	4 [2]	10/10	2/2
	2010	27		180	4	4 [2]	2/2	2/2
	2010			6	6	3 [1]	1/1	1/1
	2011	23		110	5	5 [2]	2/2	2/2
	2013***	37		140	tr(10)		2/2	2/2
						13 [4]		
	2016※※			110	13	3 [1] 定量[検出]	2/2 検出:	2/2 頻度
trans-クロルデン	実施年度	平均值※	中央値	最大値	最小值	下限値	検体	地点
	2002	390	840	2,300	33	2.4 [0.8]	38/38	8/8
	2003	550	840	2,800	69	7.2 [2.4]	30/30	6/6
	2004	560	770	2,800	53	48 [16]	31/31	7/7
	2001			2 400	40	10 [3.5]	31/31	7/7
	2005	470	660	2,400	40	10 [5.5]		
			660 580	2,400	41	4 [2]	31/31	7/7
F1 4/2=	2005	470				4[2]		7/7 7/7
貝類	2005 2006 2007	470 470 440	580 460	2,800 1,500	41 34	4 [2] 6 [2]	31/31 31/31	7/7
貝類 (pg/g-wet)	2005 2006 2007 2008	470 470 440 360	580 460 410	2,800 1,500 1,300	41 34 52	4 [2] 6 [2] 7 [3]	31/31 31/31 31/31	7/7 7/7
	2005 2006 2007 2008 2009	470 470 440 360 540	580 460 410 560	2,800 1,500 1,300 16,000	41 34 52 48	4 [2] 6 [2] 7 [3] 4 [1]	31/31 31/31 31/31 31/31	7/7 7/7 7/7
	2005 2006 2007 2008 2009 2010	470 470 440 360 540 520	580 460 410 560 640	2,800 1,500 1,300 16,000 5,500	41 34 52 48 31	4 [2] 6 [2] 7 [3] 4 [1] 3 [1]	31/31 31/31 31/31 31/31 6/6	7/7 7/7 7/7 6/6
	2005 2006 2007 2008 2009 2010 2011	470 470 440 360 540 520 490	580 460 410 560 640 470	2,800 1,500 1,300 16,000 5,500 2,900	41 34 52 48 31 150	4 [2] 6 [2] 7 [3] 4 [1] 3 [1] 4 [1]	31/31 31/31 31/31 31/31 6/6 4/4	7/7 7/7 7/7 6/6 4/4
	2005 2006 2007 2008 2009 2010	470 470 440 360 540 520	580 460 410 560 640	2,800 1,500 1,300 16,000 5,500	41 34 52 48 31	4 [2] 6 [2] 7 [3] 4 [1] 3 [1]	31/31 31/31 31/31 31/31 6/6	

ans-クロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
rans-9 1170) 2	天旭中及	平均值※	中大恒	取八胆	取力順	下限値 1	検体	地点
	2002	190	160	2,700	20	2.4 [0.8]	70/70	14/14
	2003	160	120	1,800	9.6	7.2 [2.4]	70/70	14/14
	2004	200	130	5,200	tr(17)	48 [16]	70/70	14/14
	2005	160	180	3,100	tr(9.8)	10 [3.5]	76/80	16/16
	2006	150	120	2,000	14	4 [2]	80/80	16/16
魚類	2007	130	100	2,100	8	6 [2]	80/80	16/16
	2008	120	71	1,300	14	7 [3]	85/85	17/17
(pg/g-wet)	2009	130	140	1,300	10	4 [1]	90/90	18/18
	2010	120	170	1,100	9	3 [1]	18/18	18/18
	2011	180	240	1,300	20	4 [1]	18/18	18/18
	2012	170	140	1,100	19	7 [2]	19/19	19/19
	2013	160	170	2,700	tr(14)	16 [5.2]	19/19	19/19
	2016	100	110	800	12	6 [2]	19/19	19/19
	2002	14	14	26	8.9	2.4 [0.8]	10/10	2/2
	2003	11	12	27	tr(5.9)	7.2 [2.4]	10/10	2/2
	2004	nd	nd	tr(26)	nd	48 [16]	5/10	1/2
	2005	11	12	30	tr(4.5)	10 [3.5]	10/10	2/2
	2006	7	8	17	tr(3)	4 [2]	10/10	2/2
÷ 1/7	2007	7	8	19	tr(3)	6 [2]	10/10	2/2
鳥類	2008	tr(5)	9	27	nd	7 [3]	7/10	2/2
(pg/g-wet)	2009	6	7	13	tr(3)	4 [1]	10/10	2/2
	2010	4		10	tr(2)	3 [1]	2/2	2/2
	2011			5	5	4[1]	1/1	1/1
	2012	tr(6)		10	tr(4)	7 [2]	2/2	2/2
	2013***	26		68	tr(10)	16 [5.2]	2/2	2/2
	2016***	18		46	7	6 [2]	2/2	2/2

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注 2) ※※: 鳥類の 2013 年度以降の結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。

⁽注3) 2014年度及び2015年度は調査を実施していない。

<大気>

○2002 年度から 2016 年度における大気についての cis-クロルデン及び trans-クロルデンの検出状況

2002 中皮がり 2	010 平及にも				, + <u>, , , , , , , , , , , , , , , , , ,</u>	uns-) L/V / V		
cis-クロルデン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頃度 地点
	2002	31	40	670	0.86	0.60 [0.20]	102/102	34/34
	2003 温暖期	110	120	1,600	6.4		35/35	35/35
	2003 寒冷期	30	38	220	2.5	0.51 [0.17]	34/34	34/34
	2004 温暖期	92	160	1,000	2.3		37/37	37/37
	2004寒冷期	29	49	290	1.2	0.57 [0.19]	37/37	37/37
	2005 温暖期	92	120	1,000	3.4		37/37	37/37
	2005 寒冷期	16	19	260	1.4	0.16 [0.054]	37/37	37/37
	2006 温暖期	82	110	760	2.9		37/37	37/37
	2006寒冷期	19	19	280	2.0	0.13 [0.04]	37/37	37/37
	2007 温暖期	90	120	1,100	3.3		36/36	36/36
	2007寒冷期	17	20	230	1.4	0.10 [0.04]	36/36	36/36
大気	2008 温暖期	75	120	790	1.9		37/37	37/37
(pg/m^3)	2008 寒冷期	21	34	200	1.5	0.14 [0.05]	37/37	37/37
(PS/III)	2009 温暖期	67	110	790	2.7		37/37	37/37
	2009 寒冷期	19	22	180	0.65	0.16 [0.06]	37/37	37/37
	2010温暖期	68	100	700	1.8		37/37	37/37
	2010 無歲朔	20	27	130	0.84	0.17 [0.06]	37/37	37/37
	2010 冬円 30	66	95	700	1.5		35/35	35/35
	2011 無限期	20	31	240	tr(0.88)) 1.3 [0.42]	37/37	37/37
	2011 冬刊 男 2012 温暖期	61	98	650	2.9		36/36	36/36
	2012 温吸翔	10	98 14	74	nd	1 2 10 211	35/36	35/36
	2012 冬 市 朔 2013 温暖期	58	97	580	1.5		36/36	36/36
	2013 温吸期	11	15	86	tr(0.5)	0.740.21	36/36	36/36
	2015 冬 市 朔 2016 温暖期	53	86	810	0.9	0.9 [0.3]	37/37	37/37
		幾何						
trans-クロルデン	実施年度	平均値	中央値	最大値	最小値	下限値	検体	地点
	2002	36	48	820	0.62	0.60 [0.20]	102/102	34/34
	2003 温暖期	130	150	2,000	6.5	0.86 [0.29]	35/35	35/35
	2003 寒冷期	37	44	290	2.5		34/34	34/34
	2004 温暖期	110	190	1,300	2.2	0.69 [0.23]	37/37	37/37
	2004 寒冷期	35	60	360	1.5		37/37	37/37
	2005 温暖期	100	130	1,300	3.2	0.34 [0.14]	37/37	37/37
	2005 寒冷期	19	23	310	1.9	0.54 [0.14]	37/37	37/37
	2006 温暖期	96	140	1,200	3.4	0.17 [0.06]	37/37	37/37
	2006寒冷期	22	21	350	2.0	0.17 [0.00]	37/37	37/37
	2007 温暖期	100	140	1,300	3.8	0.12 [0.05]	36/36	36/36
	2007 宝沙州					0.12 [0.05]	36/36	36/36
	2007寒冷期	20	24	300	1.5		30/30	
大気	2007 寒行期 2008 温暖期	20 87	130	300 990	1.5 2.5	0.17.50.061	37/37	37/37
大気 (pg/m³)		87				0.17 [0.06]	37/37	37/37
大気 (pg/m³)	2008 温暖期 2008 寒冷期		130	990	2.5			
	2008 温暖期	87 25 79	130 41	990 250	2.5 1.8	0.17 [0.06]	37/37 37/37	37/37 37/37 37/37
	2008 温暖期 2008 寒冷期 2009 温暖期 2009 寒冷期	87 25	130 41 120 30	990 250 960 210	2.5 1.8 2.6 0.68	0.12 [0.05]	37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37
	2008 温暖期 2008 寒冷期 2009 温暖期 2009 寒冷期 2010 温暖期	87 25 79 23 79	130 41 120 30 120	990 250 960 210 820	2.5 1.8 2.6 0.68 2.0		37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37
	2008 温暖期 2008 寒冷期 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期	87 25 79 23 79 24	130 41 120 30 120 34	990 250 960 210 820 150	2.5 1.8 2.6 0.68 2.0 tr(1.0)	0.12 [0.05]	37/37 37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37 37/37
	2008 温暖期 2008 寒冷期 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期	87 25 79 23 79 24 76	130 41 120 30 120 34	990 250 960 210 820 150 810	2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4)	0.12 [0.05]	37/37 37/37 37/37 37/37 37/37 37/37 35/35	37/37 37/37 37/37 37/37 37/37 37/37 35/35
	2008 温暖期 2008 寒冷期 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 寒冷期	87 25 79 23 79 24 76 24	130 41 120 30 120 34 110 37	990 250 960 210 820 150 810 290	2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70)	0.12 [0.05] 1.2 [0.4] 1.6 [0.53]	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37
	2008 温暖期 2008 寒冷期 2009 温暖期 2009 寒冷期 2010 温暖期 2011 温暖期 2011 温暖期 2011 寒冷期 2012 温暖期	87 25 79 23 79 24 76 24 70	130 41 120 30 120 34 110 37 120	990 250 960 210 820 150 810 290 780	2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70) 2.8	0.12 [0.05]	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36
	2008 温暖期 2008 寒冷期 2009 温暖期 2009 寒冷期 2010 温暖期 2011 温暖期 2011 温暖期 2012 温暖期 2012 寒冷期	87 25 79 23 79 24 76 24 70	130 41 120 30 120 34 110 37 120 18	990 250 960 210 820 150 810 290 780 95	2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70) 2.8 nd	0.12 [0.05] 1.2 [0.4] 1.6 [0.53] 2.1 [0.7]	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 35/36	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 35/36
	2008 温暖期 2008 寒冷期 2009 温暖期 2009 寒冷期 2010 温暖期 2011 温暖期 2011 温暖期 2012 温暖期 2012 温暖期 2013 温暖期	87 25 79 23 79 24 76 24 70 12	130 41 120 30 120 34 110 37 120 18	990 250 960 210 820 150 810 290 780 95	2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70) 2.8 nd 1.7	0.12 [0.05] 1.2 [0.4] 1.6 [0.53]	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 35/36 36/36	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 35/36
	2008 温暖期 2008 寒冷期 2009 温暖期 2009 寒冷期 2010 温暖期 2011 温暖期 2011 温暖期 2012 温暖期 2012 寒冷期	87 25 79 23 79 24 76 24 70	130 41 120 30 120 34 110 37 120 18	990 250 960 210 820 150 810 290 780 95	2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70) 2.8 nd	0.12 [0.05] 1.2 [0.4] 1.6 [0.53] 2.1 [0.7]	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 35/36	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 35/36

⁽注) 2014 年度及び 2015 年度は調査を実施していない。

【オキシクロルデン、cis-ノナクロル及び trans-ノナクロル】

<水質>

○2002 年度から 2017 年度における水質についてのオキシクロルデン、cis-ノナクロル及び trans-ノナクロル の検出状況

ユナンカーューン	中长 左库	幾何	由由体	日上伝	B .1 /±	定量[検出]	検出	頻度
オキシクロルデン	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2002	2.7	3.5	41	nd	1.2 [0.4]	96/114	35/38
	2003	3	2	39	tr(0.6)	2 [0.5]	36/36	36/36
	2004	3.2	2.9	47	tr(0.7)	2 [0.5]	38/38	38/38
	2005	2.6	2.1	19	nd	1.1 [0.4]	46/47	46/47
	2006	tr(2.5)	tr(2.4)	18	nd	2.8 [0.9]	43/48	43/48
水質	2007	tr(2)	nd	41	nd	6 [2]	25/48	25/48
/八貝 (pg/L)	2008	1.9	1.9	14	nd	1.9 [0.7]	40/48	40/48
(pg/L)	2009	2.0	1.9	19	nd	1.1 [0.4]	45/49	45/49
	2010	1.5	1.3	45	nd	0.7 [0.3]	47/49	47/49
	2011	1.9	1.8	34	nd	1.3 [0.5]	44/49	44/49
	2012	2.2	2.3	17	nd	0.9 [0.4]	44/48	44/48
	2013	1.8	1.8	12	nd	0.9 [0.4]	41/48	41/48
	2017	nd	nd	12	nd	4 [2]	19/47	19/47
cis-ノナクロル	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
	天旭千茂	平均值※	十大旭	取八胆		下限値	検体	地点
	2002	7.9	6.7	250	0.23	1.8 [0.6]	114/114	38/38
	2003	8.0	7.0	130	1.3	0.3 [0.1]	36/36	36/36
	2004	7.5	6.3	340	0.8	0.6[0.2]	38/38	38/38
	2005	6.0	5.9	43	0.9	0.5 [0.2]	47/47	47/47
	2006	6.6	5.6	83	1.0	0.8 [0.3]	48/48	48/48
水質	2007	5.9	6.1	210	nd	2.4 [0.8]	43/48	43/48
小貝 (pg/L)	2008	6.5	5.9	130	0.9	0.9 [0.3]	48/48	48/48
(pg/L)	2009	7.1	5.5	210	1.4	0.3 [0.1]	49/49	49/49
	2010	5.4	3.9	40	tr(0.9)	1.3 [0.4]	49/49	49/49
	2011	5.0	4.3	130	0.8	0.6 [0.2]	49/49	49/49
	2012	6.4	5.9	58	1.1	0.8 [0.3]	48/48	48/48
	2013	5.1	4.6	74	tr(0.7)	0.8[0.3]	48/48	48/48
-	2017	4.6	4.6	36	tr(0.6)	1.5 [0.6]	47/47	47/47
trans-ノナクロル	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出 検出	頻度 .
- Turis / / / - / -		平均值※				下限値	検体	地点
	2002	30	24	780	1.8	1.2 [0.4]	114/114	38/38
	2003	26	20	450	4	2 [0.5]	36/36	36/36
	2004	25	19	1,100	tr(3)	4 [2]	38/38	38/38
	2005	20	17	150	2.6	2.5 [0.84]	47/47	47/47
	2006	21	16	310	3.2	3.0 [1.0]	48/48	48/48
水質	2007	17	17	540	tr(2)	5 [2]	48/48	48/48
(pg/L)	2008	18	17	340	1.9	1.6 [0.6]	48/48	48/48
(18-2)	2009	20	17	530	2.7	1.0 [0.4]	49/49	49/49
	2010	12	11	93	nd	8 [3]	45/49	45/49
	2011	15	12	480	2.6	1.3 [0.5]	49/49	49/49
	2012	30	26	210	7.9	1.5 [0.6]	48/48	48/48
	2013	14	11	170	2.3	1.5 [0.6]	48/48	48/48
	2017	13	14	120	tr(2)	3 [1]	47/47	47/47

⁽注1)※:2002年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2014年度から2016年度は調査を実施していない。

<底質>

○2002 年度から 2017 年度における底質についてのオキシクロルデン、cis-ノナクロル及び trans-ノナクロル の検出状況

オキシクロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
		平均值※				下限値	検体	地点
	2002	2.7	1.7	120	nd	1.5 [0.5]	153/189	59/63
	2003	2	2	85	nd	1 [0.4]	158/186	57/62
	2004	tr(2.1)	tr(1.3)	140	nd	3 [0.8]	129/189	54/63
	2005	2.3	tr(1.9)	160	nd	2.0 [0.7]	133/189	51/63
	2006	tr(2.5)	tr(1.7)	280	nd	2.9 [1.0]	141/192	54/64
底質	2007	tr(2.1)	tr(1.5)	76	nd	2.5 [0.9]	117/192	46/64
(pg/g-dry)	2008	tr(2)	tr(1)	340	nd	3 [1]	110/192	48/64
(188)	2009	2	tr(1)	150	nd	2 [1]	97/192	45/64
	2010	1.7	1.2	60	nd	1.0 [0.4]	56/64	56/64
	2011	tr(1.6)	tr(1.2)	83	nd	2.2 [0.9]	36/64	36/64
	2012	tr(1.4)	tr(1.0)	75	nd	1.7 [0.7]	38/63	38/63
	2013	1.5	1.3	54	nd	1.3 [0.5]	50/63	50/63
	2017	tr(1)	tr(1)	78	nd	3 [1]	41/62	41/62
cis-ノナクロル	実施年度	幾何 平均値 ※	中央値	最大値	最小值	定量[検出] 下限値	検出 検体	頻度 地点
	2002	76	66	7,800	nd	2.1 [0.7]	188/189	63/63
	2003	66	50	6,500	nd	3 [0.9]	184/186	62/62
	2004	53	34	9,400	tr(0.8)	2 [0.6]	189/189	63/63
	2005	56	42	9,900	tr(1.1)	1.9 [0.64]	189/189	63/63
	2006	58	48	5,800	tr(0.6)	1.2 [0.4]	192/192	64/64
	2007	48	35	4,200	nd	1.6 [0.6]	191/192	64/64
底質	2008	57	42	5,100	1.1	0.6 [0.2]	192/192	64/64
(pg/g-dry)	2009	53	38	4,700	1.4	1.0 [0.4]	192/192	64/64
	2010	53	45	3,600	2.3	0.9 [0.3]	64/64	64/64
	2011	41	38	2,900	nd	1.1 [0.4]	63/64	63/64
	2012	44	35	4,900	tr(1)	3 [1]	63/63	63/63
	2012	41	31	3,100	tr(0.6)	0.7 [0.3]	63/63	63/63
	2013	31	25	1,500	nd	1.7 [0.7]	61/62	61/62
		幾何					検出症	
trans-ノナクロル	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2002	130	83	13,000	3.1	1.5 [0.5]	189/189	63/63
	2003	110	78	11,000	2	2 [0.6]	186/186	62/62
	2004	94	63	23,000	3	2 [0.6]	189/189	63/63
	2005	99	72	24,000	2.4	1.5 [0.54]	189/189	63/63
	2006	100	65	10,000	3.4	1.2 [0.4]	192/192	64/64
底質	2007	78	55	8,400	tr(1.6)	1.7 [0.6]	192/192	64/64
	2008	91	53	8,400	tr(1.6)	2.2 [0.8]	192/192	64/64
(pg/g-dry)	2009	85	58	7,800	2.0	0.9 [0.3]	192/192	64/64
	2010	80	65	6,200	tr(3)	6 [2]	64/64	64/64
	2011	68	52	4,500	1.7	0.8 [0.3]	64/64	64/64
	2012	69	62	10,000	2.5	2.4 [0.8]	63/63	63/63
	2013	67	54	4,700	2.2	1.2 [0.4]	63/63	63/63
	2017	47	39	2,600	nd	6 [2]	61/62	61/62
注 1) ※・2002 年周				質術亚均值:				

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2014年度から2016年度は調査を実施していない。

<生物>

○2002 年度から 2016 年度における生物(貝類、魚類及び鳥類)についてのオキシクロルデン、cis-ノナクロル及び trans-ノナクロルの検出状況

ナキシクロルデン	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値	横出 <u>横体</u>	頻度 地点
	2002	71	83	5,600	nd	3.6 [1.2]	37/38	8/8
	2003	93	62	1,900	11	8.4 [2.8]	30/30	6/6
	2004	110	100	1,700	14	9.2 [3.1]	31/31	7/7
	2005 2006	99 91	79 90	1,400 2,400	12 7	9.3 [3.1]	31/31 31/31	7/7 7/7
	2007	70	43	2,400	8	7 [3] 6 [2]	31/31	7/7
貝類	2007	64	55	1,100	7	7 [2]	31/31	7/7
(pg/g-wet)	2009	100	89	820	10	4 [1]	31/31	7/7
	2010	240	390	3,300	11	8 [3]	6/6	6/6
	2011	68	100	260	8	3 [1]	4/4	4/4
	2012	66	80	450	12	3 [1]	5/5	5/5
	2013	42	44	210	8	3 [1]	5/5	5/5
	2016	27	40	43	11	3 [1]	3/3	3/3
	2002	170	140	3,900	16	3.6 [1.2]	70/70	14/14
	2003	150	160	820	30	8.4 [2.8]	70/70	14/14
	2004	160	140	1,500	25	9.2 [3.1]	70/70	14/14
	2005	150	150	1,900	20	9.3 [3.1]	80/80	16/16
	2006	150	120	3,000	28	7 [3] 6 [2]	80/80	16/16
魚類	2007	120	100	1,900	17	6 [2]	80/80	16/10
(pg/g-wet)	2008	130	130	2,200	15	7 [2]	85/85	17/17
(188)	2009	120	99	2,400	23	4 [1]	90/90	18/13
	2010 2011	120 140	140 130	1,000 2,300	33 33	8 [3] 3 [1]	18/18 18/18	18/13 18/13
	2011	140	180	390	28	3 [1]	19/19	19/19
	2012	130	130	560	31	3 [1]	19/19	19/19
	2016	96	80	950	31	3 [1]	19/19	19/19
	2002	640	630	890	470	3.6 [1.2]	10/10	2/2
鳥類 (pg/g yest)	2003	760	700	1,300	610	8.4 [2.8]	10/10	2/2
	2004	460	450	730	320	9.2 [3.1]	10/10	2/2
	2005	610	660	860	390	9.3 [3.1]	10/10	2/2
	2006	510	560	720	270	7 [3]	10/10	2/2
	2007	440	400	740	290	6 [2]	10/10	2/2
	2008	560	530	960	290	7 [2]	10/10	2/2
(pg/g-wet)	2009	300	290	540	190	4 [1]	10/10	2/2
	2010	400		510	320	8 [3]	2/2	2/2
	2011			590	590	3 [1]	1/1	1/1
	2012	250		360	170	3 [1]	2/2	2/2
	2013※※	2,500		3,400	1,900	3 [1]	2/2	2/2
	2016※※			1,400	240	3 [1] 定量[検出]	2/2 検出	
cis-ノナクロル	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2002	170	300	870	8.6	1.2 [0.4]	38/38	8/8
	2003	290	260	1,800	48	4.8 [1.6]	30/30	6/6
	2004	320	380	1,800	43	3.4 [1.1]	31/31	7/7
	2005	270	7.70	1 300			31/31	7/7
		270	220	1,300	27	4.5 [1.5]	21/21	7/7
	2006	270	180	1,500	31	3 [1]	31/31	7/7
貝類	2006 2007	270 250	180 250	1,500 1,000	31 26	3 [1] 3 [1]	31/31	7/7
貝類 (pg/g-wet)	2006 2007 2008	270 250 210	180 250 210	1,500 1,000 780	31 26 33	3 [1] 3 [1] 4 [1]	31/31 31/31	7/7 7/7
	2006 2007 2008 2009	270 250 210 300	180 250 210 310	1,500 1,000 780 10,000	31 26 33 31	3 [1] 3 [1] 4 [1] 3 [1]	31/31 31/31 31/31	7/7 7/7 7/7
	2006 2007 2008 2009 2010	270 250 210 300 280	180 250 210 310 310	1,500 1,000 780 10,000 1,300	31 26 33 31 35	3 [1] 3 [1] 4 [1] 3 [1] 3 [1]	31/31 31/31 31/31 6/6	7/7 7/7 7/7 6/6
	2006 2007 2008 2009 2010 2011	270 250 210 300 280 250	180 250 210 310 310 280	1,500 1,000 780 10,000 1,300 1,300	31 26 33 31 35 77	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7]	31/31 31/31 31/31 6/6 4/4	7/7 7/7 7/7 6/6 4/4
	2006 2007 2008 2009 2010 2011 2012	270 250 210 300 280 250 200	180 250 210 310 310 280 190	1,500 1,000 780 10,000 1,300 1,300 670	31 26 33 31 35 77 52	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1]	31/31 31/31 31/31 6/6 4/4 5/5	7/7 7/7 7/7 6/6 4/4 5/5
	2006 2007 2008 2009 2010 2011 2012 2013	270 250 210 300 280 250 200 150	180 250 210 310 310 280 190 140	1,500 1,000 780 10,000 1,300 1,300 670 900	31 26 33 31 35 77 52 38	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7]	31/31 31/31 31/31 6/6 4/4 5/5 5/5	7/7 7/7 7/7 6/6 4/4 5/5 5/5
	2006 2007 2008 2009 2010 2011 2012 2013 2016	270 250 210 300 280 250 200 150 72	180 250 210 310 310 280 190 140 46	1,500 1,000 780 10,000 1,300 1,300 670 900 220	31 26 33 31 35 77 52 38 37	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7] 1.4 [0.6]	31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3	7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3
	2006 2007 2008 2009 2010 2011 2012 2013 2016 2002	270 250 210 300 280 250 200 150 72 460	180 250 210 310 310 280 190 140 46	1,500 1,000 780 10,000 1,300 1,300 670 900 220 5,100	31 26 33 31 35 77 52 38 37	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7] 1.4 [0.6] 1.2 [0.4]	31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 70/70	7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 14/1
	2006 2007 2008 2009 2010 2011 2012 2013 2016 2002 2003 2004	270 250 210 300 280 250 200 150 72 460 360 430	180 250 210 310 310 280 190 140 46 420 360 310	1,500 1,000 780 10,000 1,300 1,300 670 900 220 5,100 2,600 10,000	31 26 33 31 35 77 52 38 37	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7] 1.4 [0.6] 1.2 [0.4] 4.8 [1.6] 3.4 [1.1]	31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 70/70 70/70 70/70	7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 14/1- 14/1-
	2006 2007 2008 2009 2010 2011 2012 2013 2016 2002 2003	270 250 210 300 280 250 200 150 72 460 360	180 250 210 310 310 280 190 140 46 420 360 310 360	1,500 1,000 780 10,000 1,300 1,300 670 900 220 5,100 2,600	31 26 33 31 35 77 52 38 37 46 19	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7] 1.4 [0.6] 1.2 [0.4] 4.8 [1.6] 3.4 [1.1] 4.5 [1.5]	31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 70/70 70/70 70/70 80/80	7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 14/1- 14/1-
	2006 2007 2008 2009 2010 2011 2012 2013 2016 2002 2003 2004 2005 2006	270 250 210 300 280 250 200 150 72 460 360 430 380 370	180 250 210 310 310 280 190 140 46 420 360 310 360 330	1,500 1,000 780 10,000 1,300 1,300 670 900 220 5,100 2,600 10,000 6,200 3,300	31 26 33 31 35 77 52 38 37 46 19 48 27 33	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7] 1.4 [0.6] 1.2 [0.4] 4.8 [1.6] 3.4 [1.1] 4.5 [1.5] 3 [1]	31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 70/70 70/70 70/70 80/80 80/80	7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 14/1- 14/1- 16/10 16/10
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2002 2003 2004 2005 2006 2007	270 250 210 300 280 250 200 150 72 460 360 430 380 370 320	180 250 210 310 310 280 190 140 46 420 360 310 360 330 280	1,500 1,000 780 10,000 1,300 1,300 670 900 220 5,100 2,600 10,000 6,200 3,300 3,700	31 26 33 31 35 77 52 38 37 46 19 48 27 33 16	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7] 1.4 [0.6] 1.2 [0.4] 4.8 [1.6] 3.4 [1.1] 4.5 [1.5] 3 [1] 3 [1]	31/31 31/31 31/31 6/6 4/4 5/5 5/5 5/5 3/3 70/70 70/70 70/70 80/80 80/80 80/80	7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 14/1: 14/1: 16/1: 16/1:
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2002 2003 2004 2005 2006 2007 2008	270 250 210 300 280 250 200 150 72 460 360 430 380 370 320 350	180 250 210 310 310 280 190 140 46 420 360 310 360 330 280 300	1,500 1,000 780 10,000 1,300 1,300 670 900 220 5,100 2,600 10,000 6,200 3,300 3,700 3,200	31 26 33 31 35 77 52 38 37 46 19 48 27 33 16 46	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7] 1.4 [0.6] 1.2 [0.4] 4.8 [1.6] 3.4 [1.1] 4.5 [1.5] 3 [1] 3 [1] 4 [1]	31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85	7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 14/1- 14/1- 16/10 16/10 17/1'
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2002 2003 2004 2005 2006 2007 2008 2009	270 250 210 300 280 250 200 150 72 460 360 430 380 370 320 350 340	180 250 210 310 310 280 190 140 46 420 360 310 360 330 280 300 340	1,500 1,000 780 10,000 1,300 1,300 670 900 220 5,100 2,600 10,000 6,200 3,300 3,700 3,200 2,600	31 26 33 31 35 77 52 38 37 46 19 48 27 33 16 46 27	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7] 1.4 [0.6] 1.2 [0.4] 4.8 [1.6] 3.4 [1.1] 4.5 [1.5] 3 [1] 4 [1] 4 [1] 3 [1]	31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90	7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 14/1- 14/1- 16/10 16/10 17/1 18/13
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2002 2003 2004 2005 2006 2007 2008 2009 2010	270 250 210 300 280 250 200 150 72 460 360 430 380 370 320 350 340 320	180 250 210 310 310 280 190 140 46 420 360 310 360 330 280 300 340 370	1,500 1,000 780 10,000 1,300 1,300 670 900 220 5,100 2,600 10,000 6,200 3,300 3,700 3,200 2,600 2,200	31 26 33 31 35 77 52 38 37 46 19 48 27 33 16 46 27 23	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7] 1.4 [0.6] 1.2 [0.4] 4.8 [1.6] 3.4 [1.1] 4.5 [1.5] 3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 4 [1]	31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18	7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 14/1- 14/1- 16/10 16/10 17/17 18/11 18/11
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011	270 250 210 300 280 250 200 150 72 460 360 430 380 370 320 350 340 320 440	180 250 210 310 310 280 190 140 46 420 360 310 360 330 280 300 340 370 450	1,500 1,000 780 10,000 1,300 1,300 670 900 220 5,100 2,600 10,000 6,200 3,300 3,700 3,200 2,600 2,200 2,900	31 26 33 31 35 77 52 38 37 46 19 48 27 33 16 46 27 23 45	3 [1] 3 [1] 4 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7] 1.4 [0.6] 1.2 [0.4] 4.8 [1.6] 3.4 [1.1] 4.5 [1.5] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1]	31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18	7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 14/1- 14/1- 16/16 16/16 17/1- 18/18 18/18
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2002 2003 2004 2005 2006 2007 2008 2009 2010	270 250 210 300 280 250 200 150 72 460 360 430 380 370 320 350 340 320	180 250 210 310 310 280 190 140 46 420 360 310 360 330 280 300 340 370	1,500 1,000 780 10,000 1,300 1,300 670 900 220 5,100 2,600 10,000 6,200 3,300 3,700 3,200 2,600 2,200	31 26 33 31 35 77 52 38 37 46 19 48 27 33 16 46 27 23	3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 1.8 [0.7] 2 [1] 2.2 [0.7] 1.4 [0.6] 1.2 [0.4] 4.8 [1.6] 3.4 [1.1] 4.5 [1.5] 3 [1] 3 [1] 4 [1] 3 [1] 3 [1] 4 [1]	31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18	7/7 7/7 7/7 6/6 4/4 5/5 5/5

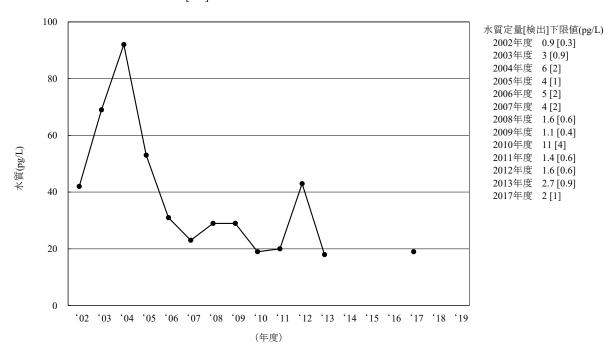
	学长 左南	幾何	++ +	日上は	日」は	定量[検出]	検出	頻度
cis-ノナクロル	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2002	200	240	450	68	1.2 [0.4]	10/10	2/2
	2003	200	260	660	68	4.8 [1.6]	10/10	2/2
	2004	140	150	240	73	3.4 [1.1]	10/10	2/2
	2005	160	180	370	86	4.5 [1.5]	10/10	2/2
	2006	120	130	270	60	3 [1]	10/10	2/2
鳥類	2007	130	140	300	42	3 [1]	10/10	2/2
馬與 (pg/g-wet)	2008	140	150	410	37	4 [1]	10/10	2/2
(pg/g-wei)	2009	81	85	160	44	3 [1]	10/10	2/2
	2010	100		190	57	3 [1]	2/2	2/2
	2011			76	76	1.8 [0.7]	1/1	1/1
	2012	75		100	56	2 [1]	2/2	2/2
	2013※※	270		970	74	2.2 [0.7]	2/2	2/2
	2016※※	240		770	74	1.4 [0.6]	2/2	2/2
trans-ノナクロル	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2002	450	1,100	1,800	21	2.4 [0.8]	38/38	8/8
	2003	800	700	3,800	140	3.6 [1.2]	30/30	6/6
	2004	780	870	3,400	110	13 [4.2]	31/31	7/7
	2005	700	650	3,400	72	6.2 [2.1]	31/31	7/7
	2006	660	610	3,200	85	3 [1]	31/31	7/7
口來去	2007	640	610	2,400	71	7 [3]	31/31	7/7
貝類	2008	510	510	2,000	94	6 [2]	31/31	7/7
(pg/g-wet)	2009	780	680	33,000	79	3 [1]	31/31	7/7
	2010	790	870	6,000	84	4 [2]	6/6	6/6
	2011	640	680	3,000	200	3 [1]	4/4	4/4
	2012	530	400	1,800	190	4 [1]	5/5	5/5
	2013	380	370	2,000	98	10 [3.4]	5/5	5/5
	2016	200	150	520	97	3 [1]	3/3	3/3
	2002	1,000	900	8,300	98	2.4 [0.8]	70/70	14/14
	2003	920	840	5,800	85	3.6 [1.2]	70/70	14/14
	2004	1,100	760	21,000	140	13 [4.2]	70/70	14/14
	2005	970	750	13,000	80	6.2 [2.1]	80/80	16/16
	2006	940	680	6,900	120	3 [1] 3	80/80	16/16
魚類	2007	800	680	7,900	71	7 [3]	80/80	16/16
(pg/g-wet)	2008	860	750	6,900	87	6 [2]	85/85	17/17
(P5/5 WCt)	2009	810	720	7,400	68	3 [1]	90/90	18/18
	2010	800	1,000	4,700	110	4 [2]	18/18	18/18
	2011	1,100	1,000	5,000	190	3 [1]	18/18	18/18
	2012	1,100	1,300	4,200	140	4 [1]	19/19	19/19
	2013 2016	1,100 690	1,100 410	7,800	150 170	10 [3.4] 3 [1]	19/19 19/19	19/19 19/19
				3,400				
	2002	890	980	1,900	350	2.4 [0.8]	10/10	2/2
	2003	1,100	1,400	3,700	350	3.6 [1.2]	10/10	2/2
	2004	690	780	1,200	390	13 [4.2]	10/10	2/2
	2005 2006	870 650	880	2,000	440	6.2 [2.1]	10/10	2/2
		650	620	1,500	310	3 [1]	10/10	2/2
鳥類	2007	590	680	1,400	200	7 [3]	10/10	2/2
(pg/g-wet)	2008	740	850	2,600	180	6 [2]	10/10	2/2
(PS/S WCU)	2009	400	430	730	220	3 [1]	10/10	2/2
(PB/B Wet)	2010			880	290	4 [2]	2/2	2/2
(PS/S Well)	2010	510						
(AB'B mer)	2011			400	400	3 [1]	1/1	1/1
(Pg/5 WOL)								

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注 2) ※※: 鳥類の 2013 年度以降における結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。

⁽注3) 2014年度及び2015年度は調査を実施していない。

○2002 年度から 2016 年度における大気についてのオキシクロルデン、cis-ノナクロル及び trans-ノナクロルの 検出状況


<大気>

オキシクロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
スインプロルブン	天旭千尺	平均値	十人但	取八胆	取/1、恒	下限値	検体	地点
	2002	0.96	0.98	8.3	nd	0.024 [0.008]	101/102	34/34
	2003 温暖期	2.5	2.7	12	0.41	0.045 [0.015]	35/35	35/35
	2003 寒冷期	0.87	0.88	3.2	0.41	0.043 [0.013]	34/34	34/34
	2004 温暖期	1.9	2.0	7.8	0.41	0.13 [0.042]	37/37	37/37
	2004寒冷期	0.80	0.76	3.9	0.27	0.13 [0.042]	37/37	37/37
	2005 温暖期	1.9	2.0	8.8	0.65	0.16.50.0543	37/37	37/37
	2005寒冷期	0.55	0.50	2.2	0.27	0.16 [0.054]	37/37	37/37
	2006温暖期	1.8	1.9	5.7	0.47	0.22.50.003	37/37	37/37
	2006寒冷期	0.54	0.56	5.1	tr(0.13)	0.23 [0.08]	37/37	37/37
	2007温暖期	1.9	1.8	8.6	0.56	0.05.50.023	36/36	36/36
	2007寒冷期	0.61	0.63	2.4	0.26	0.05 [0.02]	36/36	36/36
大気	2008 温暖期	1.7	1.7	7.1	0.50	0.04.50.043	37/37	37/37
(pg/m^3)	2008寒冷期	0.61	0.63	1.8	0.27	0.04 [0.01]	37/37	37/37
46 /	2009温暖期	1.7	1.8	6.5	0.38		37/37	37/37
	2009寒冷期	0.65	0.61	2.7	0.24	0.04 [0.02]	37/37	37/37
	2010 温暖期	1.5	1.5	6.2	0.44		37/37	37/37
	2010 無次別	0.56	0.55	2.3	0.26	0.03 [0.01]	37/37	37/37
	2011 温暖期	1.5	1.5	5.2	0.28			35/35
	2011 無ल期	0.61	0.57	2.6	0.21	0.07 [0.03]	35/35 37/37	37/37
	2012 温暖期	1.4	1.6	6.7	0.21			36/36
	2012 匯級別	0.41	0.38	1.0	0.22	0.08 [0.03] 36/36 36/36	36/36	
	2013 温暖期	1.4	1.5	4.7	0.22		36/36	36/36
	2013 無吸翔	0.43	0.41	1.0	0.30	0.03 [0.01]	36/36	36/36
	2015 冬 市 朔 2016 温暖期	1.4	1.4	8.9	0.19	0.16 [0.06]	37/37	37/37
	2010 価阪州		1.4	0.9	0.19			
cis-ノナクロル	実施年度	平均値	中央値	最大値	最小値	下限値	検体	^{庾反} 地点
	2002	3.1	4.0	62	0.071	0.030 [0.010]	102/102	34/34
	2003 温暖期	12	15	220	0.81	0.026.50.00003	35/35	35/35
	2003 寒冷期	2.7	3.5	23	0.18	0.026 [0.0088]	34/34	34/34
	2004温暖期	10	15	130	0.36	0.072.50.02.43	37/37	37/37
	2004寒冷期	2.7	4.4	28	0.087	0.072 [0.024]	37/37	37/37
	2005 温暖期	10	14	160	0.30	0.00.50.003	37/37	37/37
	2005 寒冷期	1.6	1.6	34	0.00	0.08 [0.03]	27/27	37/37
					0.08		31/31	
	2006 温暖期	11			0.08		37/37	
	2006 温暖期 2006 寒冷期	11 2.4	12	170	0.28	0.15 [0.05]	37/37	37/37
	2006寒冷期	2.4	12 2.0	170 41	0.28 tr(0.14)		37/37 37/37	37/37 37/37
	2006 寒冷期 2007 温暖期	2.4	12 2.0 14	170 41 150	0.28 tr(0.14) 0.31	0.15 [0.05]	37/37 37/37 36/36	37/37 37/37 36/36
大気	2006寒冷期 2007温暖期 2007寒冷期	2.4 10 1.6	12 2.0 14 1.7	170 41 150 22	0.28 tr(0.14) 0.31 0.09	0.03 [0.01]	37/37 37/37 36/36 36/36	37/37 37/37 36/36 36/36
大気 (ng/m³)	2006 寒冷期 2007 温暖期 2007 寒冷期 2008 温暖期	2.4 10 1.6 7.9	12 2.0 14 1.7 12	170 41 150 22 87	0.28 tr(0.14) 0.31 0.09 0.18		37/37 37/37 36/36 36/36 37/37	37/37 37/37 36/36 36/36 37/37
大気 (pg/m³)	2006 寒冷期 2007 温暖期 2007 寒冷期 2008 温暖期 2008 寒冷期	2.4 10 1.6 7.9 2.0	12 2.0 14 1.7 12 2.7	170 41 150 22 87 19	0.28 tr(0.14) 0.31 0.09 0.18 0.16	0.03 [0.01]	37/37 37/37 36/36 36/36 37/37 37/37	37/37 37/37 36/36 36/36 37/37 37/37
	2006 寒冷期 2007 温暖期 2007 寒冷期 2008 温暖期 2008 寒冷期 2009 温暖期	2.4 10 1.6 7.9 2.0 7.5	12 2.0 14 1.7 12 2.7 10	170 41 150 22 87 19	0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33	0.03 [0.01]	37/37 37/37 36/36 36/36 37/37 37/37 37/37	37/37 37/37 36/36 36/36 37/37 37/37
	2006寒冷期 2007温暖期 2007寒冷期 2008温暖期 2008寒冷期 2009温暖期 2009寒冷期	2.4 10 1.6 7.9 2.0 7.5 1.9	12 2.0 14 1.7 12 2.7 10 2.1	170 41 150 22 87 19 110	0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07	0.03 [0.01]	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37
	2006 寒冷期 2007 温暖期 2007 寒冷期 2008 温暖期 2008 寒冷期 2009 温暖期 2009 寒冷期 2010 温暖期	2.4 10 1.6 7.9 2.0 7.5 1.9	12 2.0 14 1.7 12 2.7 10 2.1	170 41 150 22 87 19 110 18	0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07	0.03 [0.01]	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37
	2006 寒冷期 2007 温暖期 2007 寒冷期 2008 温暖期 2008 寒冷期 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5	12 2.0 14 1.7 12 2.7 10 2.1 10 2.1	170 41 150 22 87 19 110 18 68 13	0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06)	0.03 [0.01]	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37
	2006 寒冷期 2007 温暖期 2007 寒冷期 2008 温暖期 2008 寒冷期 2009 湿暖期 2010 温暖期 2010 寒冷期 2011 温暖期	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4	12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8	170 41 150 22 87 19 110 18 68 13	0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06)	0.03 [0.01]	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35
	2006 寒冷期 2007 温暖期 2007 寒冷期 2008 温暖期 2008 寒冷期 2009 温暖期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 寒冷期	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4	12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9	170 41 150 22 87 19 110 18 68 13 89 28	0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24	0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04]	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 36/37
	2006 寒冷期 2007 温暖期 2007 寒冷期 2008 温暖期 2008 寒冷期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 黒暖期 2011 黒暖期	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9 6.9	12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9	170 41 150 22 87 19 110 18 68 13 89 28	0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd	0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04] 0.15 [0.051]	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37 36/36	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37 36/36
	2006 寒冷期 2007 温暖期 2007 寒冷期 2008 温暖期 2008 寒冷期 2009 温暖期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 温暖期 2012 温暖期	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9 6.9 0.98	12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9 11	170 41 150 22 87 19 110 18 68 13 89 28	0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd 0.29 tr(0.05)	0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04]	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37 36/36	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37 36/36 36/36
	2006 寒冷期 2007 温暖期 2007 寒冷期 2008 温暖期 2008 温暖期 2009 温暖期 2010 温暖期 2010 湿暖期 2011 温暖期 2011 温暖期 2012 温暖期 2012 温暖期 2013 温暖期	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9 6.9 0.98 6.4	12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9 11 1.1	170 41 150 22 87 19 110 18 68 13 89 28	0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd 0.29 tr(0.05)	0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04] 0.15 [0.051] 0.12 [0.05]	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/36 36/36 36/36	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/36 36/36
	2006 寒冷期 2007 温暖期 2007 寒冷期 2008 温暖期 2008 寒冷期 2009 温暖期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 温暖期 2012 温暖期	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9 6.9 0.98	12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9 11	170 41 150 22 87 19 110 18 68 13 89 28	0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd 0.29 tr(0.05)	0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04] 0.15 [0.051]	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37 36/36	37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37 36/36 36/36

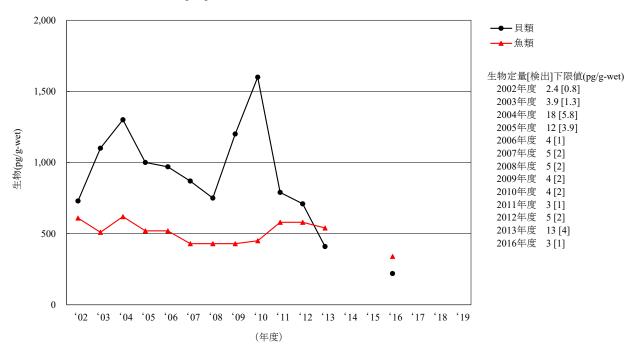
trans-ノナクロル	実施年度	幾何	中央値	具十個	最小値	定量[検出]	検出	頻度
trans-////	夫 肔 干 及	平均値	中天他	最大値	取小胆	下限值	人	地点
	2002	24	30	550	0.64	0.30 [0.10]	102/102	34/34
	2003 温暖期	87	100	1,200	5.1	0.35 [0.12]	35/35	35/35
	2003 寒冷期	24	28	180	2.1	0.55 [0.12]	34/34	34/34
	2004 温暖期	72	120	870	1.9	0.49 [0.16]	37/37	37/37
	2004寒冷期	23	39	240	0.95	0.48 [0.16]	37/37	37/37
	2005 温暖期	75	95	870	3.1	0.12 [0.044]	37/37	37/37
	2005寒冷期	13	16	210	1.2		37/37	37/37
	2006温暖期	68	91	800	3.0	0.10 [0.02]	37/37	37/37
	2006寒冷期	16	15	240	1.4	0.10 [0.03]	37/37	37/37
	2007温暖期	72	96	940	2.5	0.00.50.021	36/36	36/36
	2007寒冷期	13	15	190	1.1	0.09 [0.03]	36/36 36/36	36/36
大気	2008 温暖期	59	91	650	1.5	0.00.50.021	37/37	37/37
(pg/m^3)	2008寒冷期	17	25	170	1.3	0.09 [0.03]	37/37	37/37
	2009 温暖期	54	81	630	2.2	0.07.50.021	37/37	37/37
	2009寒冷期	16	19	140	0.75	0.07 [0.03]	37/37	37/37
	2010 温暖期	52	78	520	1.7	0.0.0.21	37/37	37/37
	2010寒冷期	15	17	89	tr(0.7)	0.8 [0.3]	37/37	37/37
	2011 温暖期	53	72	550	1.2	1 1 [0 25]	35/35	35/35
	2011寒冷期	16	24	210	tr(0.70)	1.1 [0.35]	37/37	37/37
	2012 温暖期	49	79	510	2.5	1 2 50 413	36/36	36/36
	2012寒冷期	8.1	10	61	tr(0.50)	1.2 [0.41]	36/36	36/36
	2013 温暖期	46	78	470	1.2	0.5.50.21	36/36	36/36
	2013 寒冷期	8.5	12	75	0.5	0.5 [0.2]	36/36	36/36
	2016温暖期	42	69	650	0.8	0.7 [0.2]	37/37	37/37

⁽注) 2014 年度及び 2015 年度は調査を実施していない。

[7-1] cis-クロルデン

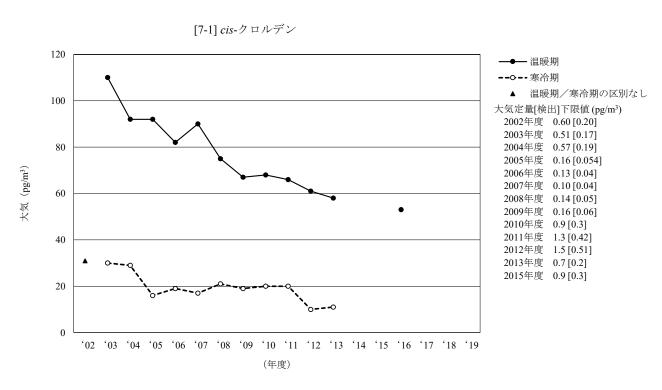
- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2014年度から2016年度、2018年度及び2019年度は調査を実施していない。

図 3-7-1-1 cis-クロルデンの水質の経年変化(幾何平均値)



[7-1] cis-クロルデン

- (注1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2014 年度から 2016 年度、2018 年度及び 2019 年度は調査を実施していない。


図 3-7-1-2 cis-クロルデンの底質の経年変化(幾何平均値)

[7-1] cis-クロルデン

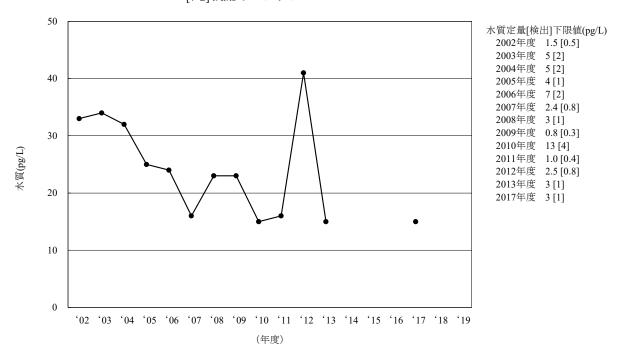
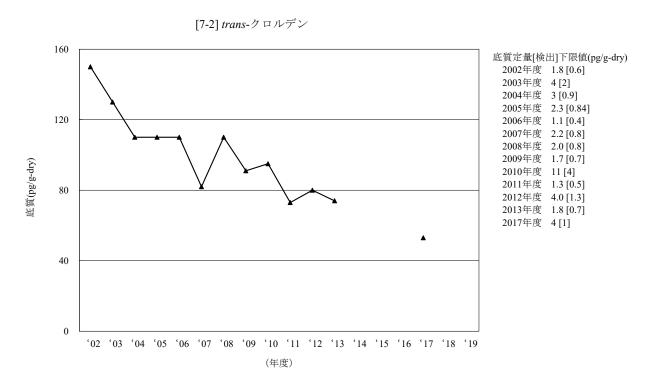

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注3) 2014 年度から 2015 年度及び 2017 年度から 2019 年度は調査を実施していない。

図 3-7-1-3 cis-クロルデンの生物の経年変化(幾何平均値)


(注) 2014年度から 2015年度及び 2017年度から 2019年度は調査を実施していない。 図 3-7-1-4 *cis-*クロルデンの大気の経年変化 (幾何平均値)

[7-2] *trans*-クロルデン

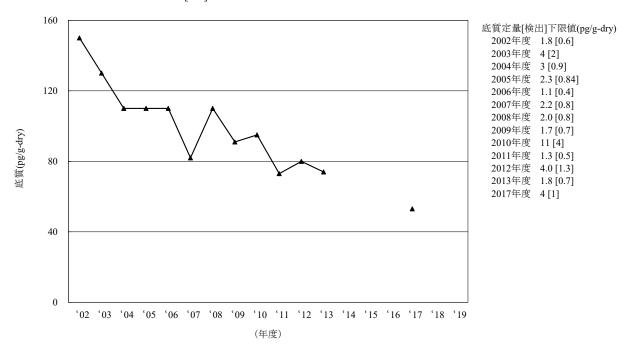
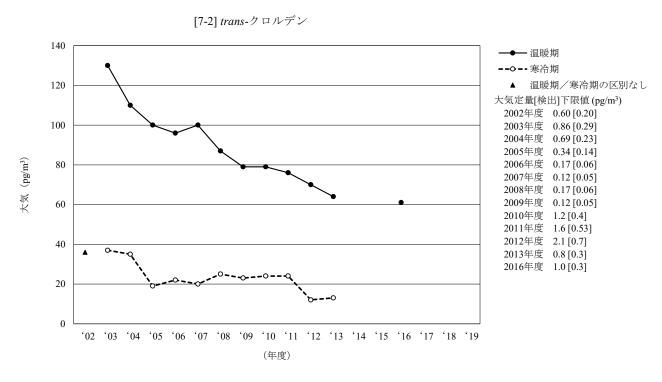

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2014年度から2016年度、2018年度及び2019年度は調査を実施していない。

図 3-7-2-1 trans-クロルデンの水質の経年変化(幾何平均値)


- (注1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2014年度から2016年度、2018年度及び2019年度は調査を実施していない。
- 図 3-7-2-2 trans-クロルデンの底質の経年変化(幾何平均値)

[7-2] trans-クロルデン

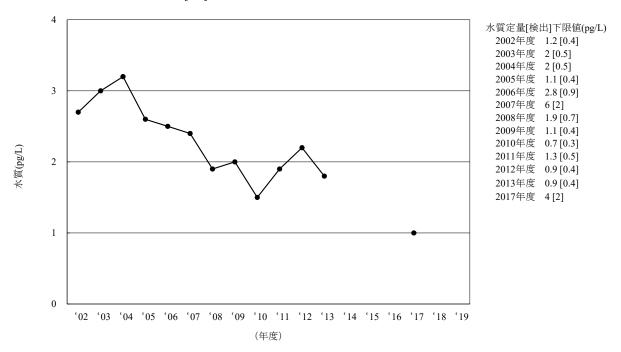
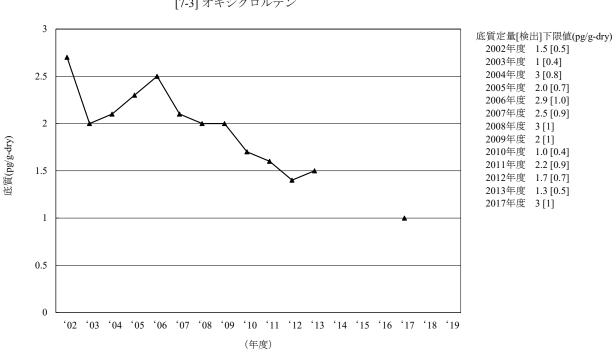
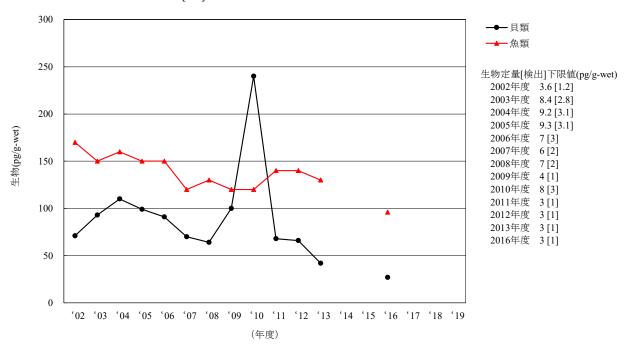

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注3) 2014 年度から 2015 年度及び 2017 年度から 2019 年度は調査を実施していない。

図 3-7-2-3 trans-クロルデンの生物の経年変化(幾何平均値)

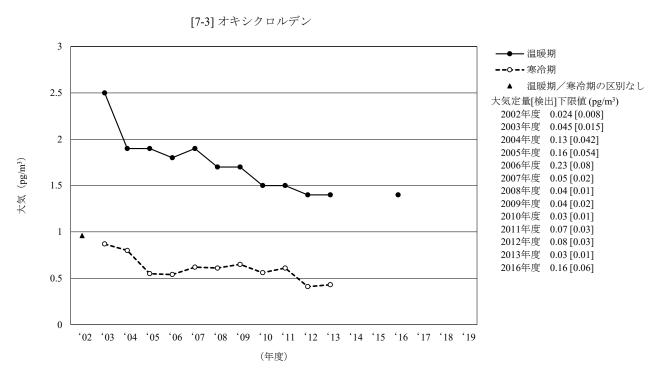

(注) 2014年度から 2015年度及び 2017年度から 2019年度は調査を実施していない。 図 3-7-2-4 *trans-*クロルデンの大気の経年変化(幾何平均値)

[7-3] オキシクロルデン

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2014 年度から 2016 年度、2018 年度及び 2019 年度は調査を実施していない。
- (注3) 2017 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。


図 3-7-3-1 オキシクロルデンの水質の経年変化(幾何平均値)

[7-3] オキシクロルデン


- (注1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求め た。
- (注2) 2014年度から2016年度、2018年度及び2019年度は調査を実施していない。
- 図 3-7-3-2 オキシクロルデンの底質の経年変化(幾何平均値)

[7-3] オキシクロルデン

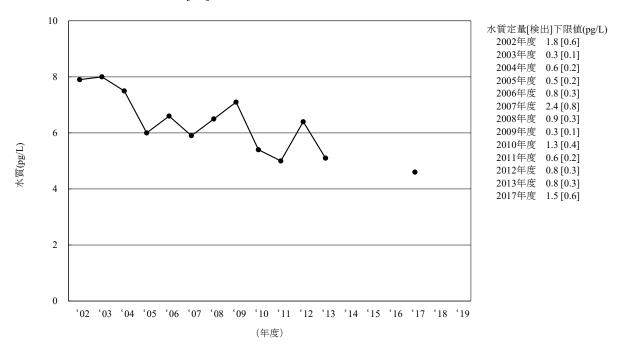
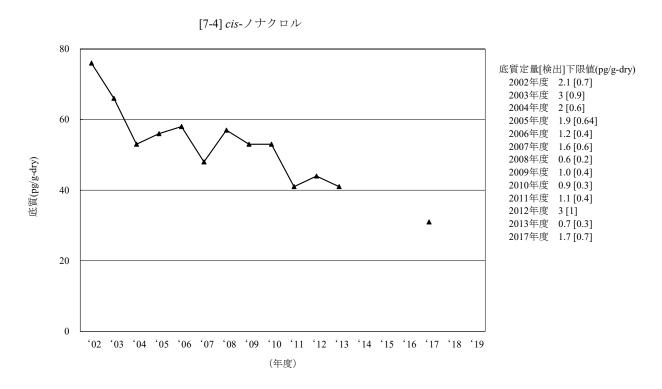
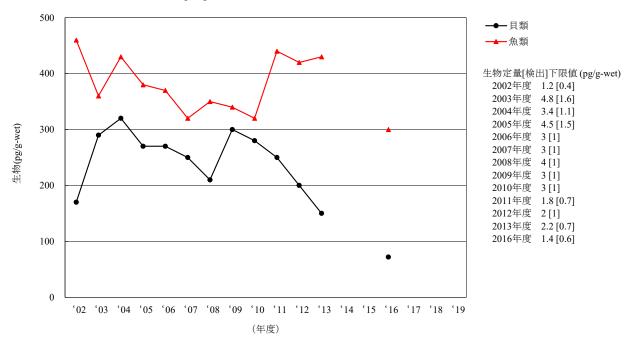

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注3) 2014 年度から 2015 年度及び 2017 年度から 2019 年度は調査を実施していない。

図 3-7-3-3 オキシクロルデンの生物の経年変化(幾何平均値)


(注) 2014年度から 2015年度及び 2017年度から 2019年度は調査を実施していない。 図 3-7-3-4 オキシクロルデンの大気の経年変化(幾何平均値)

[7-4] cis-ノナクロル

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2014年度から2016年度、2018年度及び2019年度は調査を実施していない。


図 3-7-4-1 cis-ノナクロルの水質の経年変化(幾何平均値)

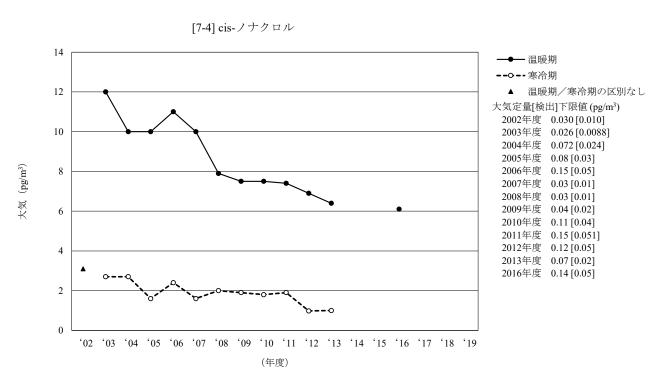
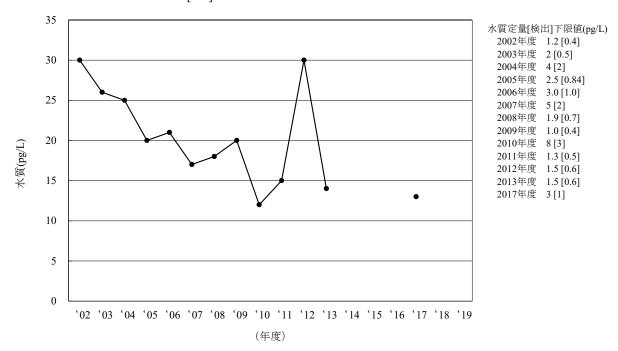
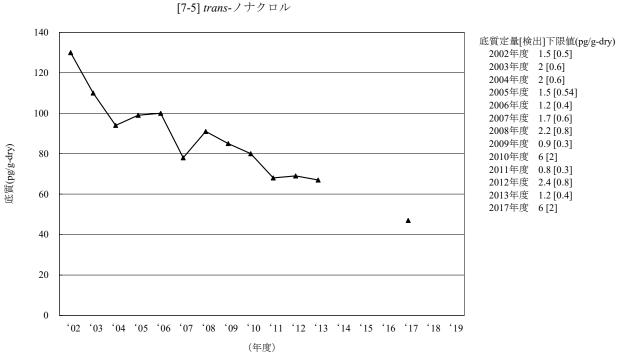

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2014年度から2016年度、2018年度及び2019年度は調査を実施していない。

図 3-7-4-2 cis-ノナクロルの底質の経年変化(幾何平均値)

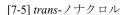
[7-4] cis-ノナクロル

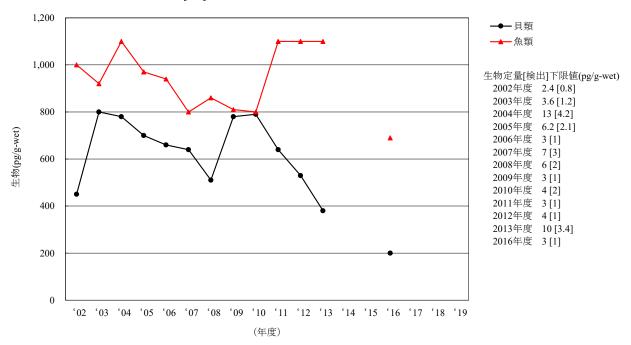


- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注3) 2014 年度から 2015 年度及び 2017 年度から 2019 年度は調査を実施していない。
- 図 3-7-4-3 cis-ノナクロルの生物の経年変化(幾何平均値)


(注) 2014 年度から 2015 年度及び 2017 年度から 2019 年度は調査を実施していない。 図 3-7-4-4 *cis-*ノナクロルの大気の経年変化 (幾何平均値)

[7-5] trans-ノナクロル


- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2014年度から2016年度、2018年度及び2019年度は調査を実施していない。


図 3-7-5-1 trans-ノナクロルの水質の経年変化(幾何平均値)

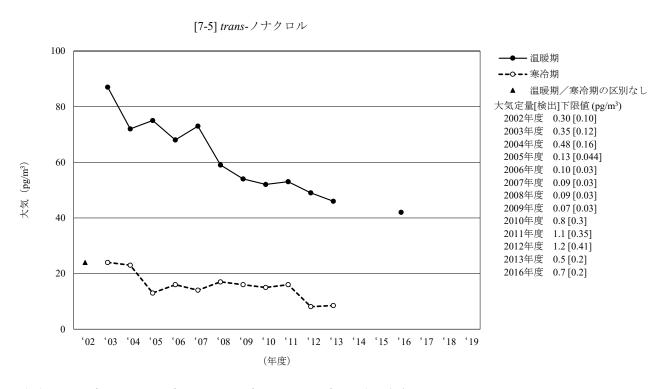

- (注1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値 を求めた。
- (注2) 2014年度から2016年度、2018年度及び2019年度は調査を実施していない。

図 3-7-5-2 trans-ノナクロルの底質の経年変化(幾何平均値)

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注3) 2014 年度から 2015 年度及び 2017 年度から 2019 年度は調査を実施していない。
- 図 3-7-5-3 trans-ノナクロルの生物の経年変化(幾何平均値)

(注) 2014 年度から 2015 年度及び 2017 年度から 2019 年度は調査を実施していない。 図 3-7-5-4 *trans-*ノナクロルの大気の経年変化 (幾何平均値)

[8] ヘプタクロル類(参考)

調査の経緯及び実施状況

ヘプタクロルは、有機塩素系殺虫剤の一種である。稲、麦類、じゃがいも、さつまいも、たばこ、豆類、あぶらな科野菜、ネギ類、ウリ類、てんさい、ほうれん草等の殺虫剤として使用された。農薬取締法に基づく登録は 1975 年に失効した。工業用クロルデン(シロアリ防除剤)にも含まれており、1986 年 9 月、化審法に基づく第一種特定化学物質に指定されている。また、POPs 条約においては、2004 年に条約が発効された当初から条約対象物質に指定されている。

継続的調査としては 2002 年度が初めての調査であり、2001 年度までの調査として「化学物質環境調査」 iv)では、ヘプタクロル及びその代謝物のヘプタクロルエポキシドについて 1982 年度に水質、底質及び魚類を、1986 年度に大気を調査している。

2002 年度以降のモニタリング調査においては、ヘプタクロルについて 2002 年度から、cis-ヘプタクロルエポキシド及び trans-ヘプタクロルエポキシドについて 2003 年度からそれぞれ調査を開始し、2002 年度から 2011 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2012 年度、2013 年度、2015 年度から 2017 年度に生物(貝類、魚類及び鳥類)及び大気の調査を、2014 年度及び 2017 年度に水質及び底質の調査を実施している。

2018 年度及び 2019 年度は調査を実施していないため、参考として以下に、2017 年度までの調査結果を示す。

・2017 年度までの調査結果 (参考)

<水質>

○2002 年度から 2017 年度における水質についてのヘプタクロル、cis-ヘプタクロルエポキシド及び trans-ヘプタクロルエポキシドの検出状況

ヘプタクロル	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
*\ <i>J J J U I</i> V		平均值※		取八胆	取小胆	下限値	検出 検体 97/114 36/36 9/38 25/47 5/48 12/48 19/48 20/49 4/49 6/49 28/48 2/47 検体 36/36 38/38 47/47 48/48 48/48 49/49 49/49 49/49 48/48 46/47	地点
	2002	tr(1.2)	tr(1.0)	25	nd	1.5 [0.5]		38/38
	2003	tr(1.8)	tr(1.6)	7	tr(1.0)	2 [0.5]		36/36
	2004	nd	nd	29	nd	5 [2]		9/38
	2005	nd	tr(1)	54	nd	3 [1]		25/47
	2006	nd	nd	6	nd	5 [2]		5/48
水質	2007	nd	nd	5.2	nd	2.4 [0.8]		12/48
(pg/L)	2008	nd	nd	4.6	nd	2.1 [0.8]		19/48
	2009	tr(0.5)	nd	17	nd	0.8 [0.3]		20/49
	2010	nd	nd	43	nd	2.2 [0.7]		4/49
	2011	nd	nd	22	nd	1.3 [0.5]	6/49	6/49
	2014	tr(0.2)	tr(0.2)	1.5	nd	0.5 [0.2]	28/48	28/48
	2017	nd	nd	6	nd	3 [1]	2/47	2/47
ris-ヘプタクロルエ	実施	幾何	出出	具 上 <i>估</i>	具心病	定量[検出]	検出	頻度
ポキシド	年度	平均值※	中央値	最大値	最小值	下限値	検体	地点
	2003	9.8	11	170	1.2	0.7 [0.2]	36/36	36/36
	2004	10	10	77	2	2 [0.4]	38/38	38/38
	2005	7.1	6.6	59	1.0	0.7 [0.2]	47/47	47/47
	2006	7.6	6.6	47	1.1	2.0[0.7]	48/48	48/48
I. FF	2007	6.1	5.8	120	tr(0.9)	1.3 [0.4]	48/48	48/48
水質	2008	4.7	5.0	37	nd	0.6[0.2]	46/48	46/48
(pg/L)	2009	5.5	4.2	72	0.8	0.5 [0.2]		49/49
	2010	5.9	3.9	710	0.7	0.4 [0.2]		49/49
	2011	5.8	5.8	160	0.7	0.7 [0.3]		49/49
	2014	4.9	3.4	56	0.7	0.5 [0.2]		48/48
	2017	4.7	3.5	83	nd	1.6 [0.6]		46/47

trans-ヘプタクロル	実施	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
エポキシド	年度	平均值※	中犬但	取入但	取小胆	下限値	検体	地点
	2003	nd	nd	2	nd	2 [0.4]	4/36	4/36
	2004	nd	nd	nd	nd	0.9 [0.3]	0/38	0/38
	2005	nd	nd	nd	nd	0.7 [0.2]	0/47	0/47
	2006	nd	nd	nd	nd	1.8 [0.6]	0/48	0/48
水質	2007	nd	nd	tr(0.9)	nd	2.0 [0.7]	2/48	2/48
	2008	nd	nd	nd	nd	1.9 [0.7]	0/48	0/48
(pg/L)	2009	nd	nd	nd	nd	0.7 [0.3]	0/49	0/49
	2010	nd	nd	8.0	nd	1.3 [0.5]	2/49	2/49
	2011	nd	nd	2.8	nd	0.8 [0.3]	3/49	3/49
	2014	nd	nd	nd	nd	0.8 [0.3]	0/48	0/48
	2017	nd	nd	nd	nd	2.3 [0.9]	0/47	0/47

⁽注1)※:2002年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

○2002 年度から 2017 年度における底質についてのヘプタクロル、*cis*-ヘプタクロルエポキシド及び *trans*- ヘプタクロルエポキシドの検出状況

ヘプタクロル	実施年度	幾何	由由結	最大値	具小店	定量[検出]	検出頻度	
<u>~</u> , , , , , , , , , , , , , , , , , , ,		平均值※	中央値		最小値	下限値	検体	地点
	2002	4.1	3.2	120	nd	1.8 [0.6]	167/189	60/63
	2003	tr(2.7)	tr(2.2)	160	nd	3 [1.0]	138/186	53/62
	2004	tr(2.8)	tr(2.3)	170	nd	3 [0.9]	134/189	53/63
	2005	3.1	2.8	200	nd	2.5 [0.8]	120/189	48/63
	2006	5.2	3.9	230	nd	1.9 [0.6]	190/192	64/64
底質	2007	tr(1.8)	tr(1.5)	110	nd	3.0 [0.7]	143/192	57/64
(pg/g-dry)	2008	tr(1)	nd	85	nd	4 [1]	59/192	27/64
	2009	1.6	1.3	65	nd	1.1 [0.4]	144/192	59/64
	2010	1.2	tr(0.8)	35	nd	1.1 [0.4]	51/64	51/64
	2011	tr(1.3)	tr(1.2)	48	nd	1.8 [0.7]	40/64	40/64
	2014	tr(1.0)	tr(0.9)	49	nd	1.5 [0.5]	38/63	38/63
	2017	1.2	1.1	40	nd	0.9 [0.3]	53/62	53/62
cis-ヘプタクロルエ	実施	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ポキシド	年度	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
	2003	4	3	160	nd	3 [1]	153/186	55/62
	2004	tr(5)	tr(3)	230	nd	6 [2]	136/189	52/63
	2005	tr(4)	tr(3)	140	nd	7 [2]	119/189	49/63
	2006	4.0	3.2	210	nd	3.0 [1.0]	157/192	58/64
底質	2007	3	tr(2)	270	nd	3 [1]	141/192	53/64
反貝 (pg/g-dry)	2008	3	2	180	nd	2 [1]	130/192	51/64
(pg/g-dry)	2009	2.7	1.9	290	nd	0.7 [0.3]	176/192	63/64
	2010	3.1	2.4	300	nd	0.8 [0.3]	62/64	62/64
	2011	2.8	2.5	160	nd	0.6[0.2]	63/64	63/64
	2014	2.1	1.7	310	nd	0.5 [0.2]	59/63	59/63
	2017	1.9	1.6	150	nd	1.2 [0.5]	51/62	51/62
trans-ヘプタクロル	実施	幾何	++4	日上仕	□ .	定量[検出]	検出	頻度
エポキシド	年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2003	nd	nd	nd	nd	9 [3]	0/186	0/62
	2004	nd	nd	tr(2.5)	nd	4 [2]	1/189	1/63
	2005	nd	nd	nd	nd	5 [2]	0/189	0/63
	2006	nd	nd	19	nd	7 [2]	2/192	2/64
底質	2007	nd	nd	31	nd	10 [4]	2/192	2/64
	2008	nd	nd	nd	nd	1.7 [0.7]	0/192	0/64
(pg/g-dry)	2009	nd	nd	nd	nd	1.4 [0.6]	0/192	0/64
	2010	nd	nd	4	nd	3 [1]	1/64	1/64
	2011	nd	nd	2.4	nd	2.3 [0.9]	2/64	2/64
	2014	nd	nd	3.6	nd	0.7[0.3]	1/63	1/63
	2017	nd	nd	nd	nd	2.0 [0.8]	0/62	0/62

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2012 年度から 2013 年度及び 2015 年度から 2016 年度は調査を実施していない。

⁽注 2) 2012 年度から 2013 年度及び 2015 年度から 2016 年度は調査を実施していない。

<生物>

○2002 年度から 2016 年度における生物(貝類、魚類及び鳥類)についてのヘプタクロル、cis-ヘプタクロルエポキシド及び trans-ヘプタクロルエポキシドの検出状況

ヘプタクロル	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
- / / / /		平均值※				下限値	検体	地点
	2002	tr(3.5)	4.6	15	nd	4.2 [1.4]	28/38	6/8
	2003	tr(2.8)	tr(2.4)	14	nd	6.6 [2.2]	16/30	4/6
	2004	tr(3.4)	5.2	16	nd	4.1 [1.4]	23/31	6/7
	2005	tr(2.9)	tr(2.9)	24	nd 1	6.1 [2.0]	18/31	6/7
	2006 2007	tr(4)	tr(4)	20 12	nd 1	6 [2] 6 [2]	23/31 20/31	6/7 6/7
貝類	2007	tr(3)	tr(3)		nd	0 [2] 6 [2]		5/7
		tr(2)	nd 1	120	nd 1	6 [2]	13/31	
(pg/g-wet)	2009 2010	tr(4)	nd +=(2)	120	nd nd	5 [2]	14/31	4/7
	2010	3 4	tr(2)	78 51	nd nd	3 [1]	5/6 3/4	5/6 3/4
	2011			13	nd nd	3 [1]	3/4 4/5	
	2012	tr(3)	tr(3)	19	nd nd	4 [1] 3 [1]	4/5	4/5 4/5
	2015	nd	tr(2) nd	tr(1.7)	nd	3.0 [1.0]	1/3	1/3
	2016 2002	nd 4.2	nd 4.8	tr(1.4)	nd nd	2.4 [0.9]	1/3 57/70	1/3 12/14
	2002				nd nd	4.2 [1.4]	29/70	8/14
	2003	nd tr(2.3)	nd tr(2.1)	11 460	nd nd	6.6 [2.2] 4.1 [1.4]	50/70	11/14
	2004	u(2.3) nd	nd	7.6	nd	6.1 [2.0]	32/80	8/16
	2003	tr(2)	nd	8	nd nd	6.1 [2.0] 6 [2]	36/80	8/16
	2007	tr(2)	nd	7	nd nd	6 [2] 6 [2]	28/80	6/16
魚類	2007	nd	nd	9	nd	6 [2]	25/85	7/17
(pg/g-wet)	2009	tr(2)	nd	8	nd	5 [2]	30/90	11/18
(pg/g-wet)	2010	tr(2)	tr(2)	5	nd	3 [1]	12/18	12/18
	2011	tr(1)	tr(1)	7	nd	3 [1]	13/18	13/18
	2012	nd	tr(1)	5	nd	4[1]	10/19	10/19
	2012	nd	nd	12	nd	3[1]	9/19	9/19
	2015	nd	nd	9.2	nd	3.0 [1.0]	9/19	9/19
	2016	nd	nd	5.5	nd	2.4 [0.9]	8/19	8/19
	2002	tr(1.7)	tr(2.8)	5.2	nd	4.2 [1.4]	7/10	2/2
	2002	nd	nd	nd	nd	6.6 [2.2]	0/10	0/2
	2003	nd	nd	tr(1.5)	nd	4.1 [1.4]	1/10	1/2
	2005	nd	nd	nd	nd	6.1 [2.0]	0/10	0/2
	2006	nd	nd	nd	nd	6 [2]	0/10	0/2
	2007	nd	nd	nd	nd	6 [2]	0/10	0/2
鳥類	2007	nd	nd	nd		6 [2]	0/10	0/2
					nd nd			0/2
(pg/g-wet)	2009 2010	nd	nd	nd	nd 1	5 [2]	0/10	1/2
		nd		tr(1)	nd 1	3 [1]	1/2	
	2011			nd	nd	3 [1]	0/1	0/1
	2012	nd1		nd 1	nd	4[1]	0/2	0/2
	2013※※	nd		nd	nd	3 [1]	0/2	0/2
	2015※※			nd	nd	3.0 [1.0]	0/1	0/1
2 - 2 - 2	2016※※	nd *** /=		nd	nd	2.4 [0.9]	0/2	0/2
is-ヘプタクロルエ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
ポキシド		平均值※				下限値	検体	地点
	2003	44	29	880	9.7	6.9 [2.3]	30/30	6/6
	2004 2005	64 49	34 20	840 590	tr(9.8)	9.9 [3.3]	31/31 31/31	7/7 7/7
	2005	56	20 23	1,100	7.4 8	3.5 [1.2] 4 [1]	31/31	7/7
	2006	36 37	23	1,100	8	4 [1] 4 [1]	31/31	7/7
	2007	37	20 19	510	8	5 [2]	31/31	7/7
貝類	2008	57 59	33	380	10	3 [2] 3 [1]	31/31	7/7
(pg/g-wet)	2009	170	260	1,800	9.0	2.4 [0.9]	6/6	6/6
,	2010	55	110	320	3.9		6/6 4/4	6/6 4/4
	2011	55 48	110			2.0 [0.8]		
	2012	48 28	29	180 110	6.2 4.4	1.5 [0.6] 2.1 [0.8]	5/5 5/5	5/5 5/5
	ZU13							
		2.1	1 /	Ω1	7 7	2 1 [0.01	2/2	2/2
	2015 2016	21 23	14 18	91 75	7.2 9.4	2.1 [0.8] 1.9 [0.7]	3/3 3/3	3/3 3/3

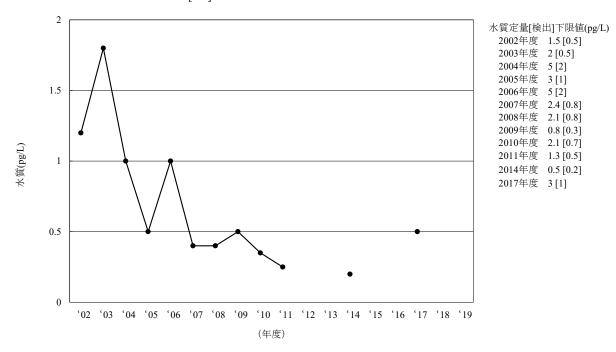
cis-ヘプタクロルエ ポキシド	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値		頻度
	2003	43	43	320	7.0	6.9 [2.3]	70/70	14/14
	2004 2005	51 41	49 45	620 390	tr(3.3) 4.9	9.9 [3.3] 3.5 [1.2]	70/70 80/80	14/14 16/16
	2006	42	48	270	4	4 [1]	80/80	16/16
	2007	43	49	390	4	4 [1]	80/80	16/16
魚類	2008	39	46	350	tr(3)	5 [2]	85/85	17/17
(pg/g-wet)	2009	41	50	310	4	3 [1]	90/90	18/18
(P5/5 Wet)	2010	39	49	230	5.0	2.4 [0.9]	18/18	18/18
	2011 2012	50 41	62 62	540 120	3.2 6.9	2.0 [0.8] 1.5 [0.6]	18/18 19/19	18/18 19/19
	2012	42	46	190	7.3	2.1 [0.8]	19/19	19/19
	2015	33	43	190	3.2	2.1 [0.8]	19/19	19/19
	2016	29	28	130	3.6	1.9 [0.7]	19/19	19/19
	2003	540	510	770	370	6.9 [2.3]	10/10	2/2
	2004	270	270	350	190	9.9 [3.3]	10/10	2/2
	2005	370	340	690	250	3.5 [1.2]	10/10	2/2
	2006	330	310	650	240	4 [1]	10/10	2/2
	2007 2008	280 370	270 370	350 560	250 180	4 [1] 5 [2]	10/10 10/10	2/2 2/2
鳥類	2009	220	210	390	160	3 [2]	10/10	2/2
(pg/g-wet)	2010	290		360	240	2.4 [0.9]	2/2	2/2
	2011			410	410	2.0 [0.8]	1/1	1/1
	2012	160		170	150	1.5 [0.6]	2/2	2/2
	2013※※	300		560	160	2.1 [0.8]	2/2	2/2
	2015**			20	20	2.1 [0.8]	1/1	1/1
-0 h h - 2	2016※※	91		270	31	1.9 [0.7]	2/2	2/2
trans-ヘプタクロル エポキシド	実施年度	幾何 平均値 <u>※</u>	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	地点
	2003	nd	nd d	48	nd 1	13 [4.4]	5/30	1/6
	2004 2005	nd nd	nd nd	55 37	nd nd	12 [4.0] 23 [7.5]	9/31 5/31	2/7 1/7
	2006	nd	nd	45	nd	13 [5]	5/31	1/7
	2007	nd	nd	61	nd	13 [5]	5/31	1/7
貝類	2008	nd	nd	33	nd	10 [4]	5/31	1/7
(pg/g-wet)	2009	tr(3)	nd	24	nd	8 [3]	13/31	3/7
(95/5)	2010	3	tr(2)	24	nd 1	3 [1]	3/6	3/6
	2011 2012	nd nd	nd nd	tr(6) tr(4)	nd nd	7 [3] 8 [3]	1/4 1/5	1/4 1/5
	2012	nd	nd	nd	nd	7 [3]	0/5	0/5
	2015	nd	nd	nd	nd	7 [3]	0/3	0/3
	2016	nd	nd	nd	nd	9 [3]	0/3	0/3
	2003	nd	nd	nd	nd	13 [4.4]	0/70	0/14
	2004	nd	nd	tr(10)	nd	12 [4.0]	2/70	2/14
	2005 2006	nd nd	nd nd	nd nd	nd nd	23 [7.5] 13 [5]	0/80 0/80	0/16 0/16
	2007	nd	nd	nd	nd	13 [5]	0/80	0/16
左 紫玉	2008	nd	nd	nd	nd	10 [4]	0/85	0/17
魚類 (pg/g-wet)	2009	nd	nd	nd	nd	8 [3]	0/90	0/18
(pg/g-wei)	2010	nd	nd	nd	nd	3 [1]	0/18	0/18
	2011	nd	nd	nd	nd	7 [3]	0/18	0/18
	2012 2013	nd nd	nd nd	nd nd	nd nd	8 [3] 7 [3]	0/19 0/19	0/19 0/19
	2015	nd nd	nd nd	nd 10	nd nd	7 [3] 7 [3]	5/19	5/19
	2016	nd	nd	nd	nd	9 [3]	0/19	0/19
-	2003	nd	nd	nd	nd	13 [4.4]	0/10	0/2
	2004	nd	nd	nd	nd	12 [4.0]	0/10	0/2
	2005	nd	nd	nd	nd	23 [7.5]	0/10	0/2
	2006	nd	nd	nd	nd	13 [5]	0/10	0/2
	2007	nd	nd d	nd	nd 1	13 [5]	0/10	0/2
鳥類	2008	nd	nd nd	nd nd	nd	10 [4]	0/10	0/2
(pg/g-wet)	2009 2010	nd nd	nd 	nd nd	nd nd	8 [3] 3 [1]	0/10 0/2	0/2 0/2
	2010	na 		nd nd	nd nd	3 [1] 7 [3]	0/2 0/1	0/2
	2011	nd		nd	nd	8 [3]	0/1	0/1
	2013**	nd nd		tr(5)	nd	7 [3]	1/2	1/2
	2015***			nd	nd	7 [3]	0/1	0/1
	2016※※	nd		nd	nd	9[3]	0/2	0/2
(注 1) ※ · 2002 年度	eから 2000 4	圧度は 冬地	占における	算術平均值?	を求め その) 算術平均値かり	う全地点の終	(何 亚 / 均 / 值

⁽注 1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

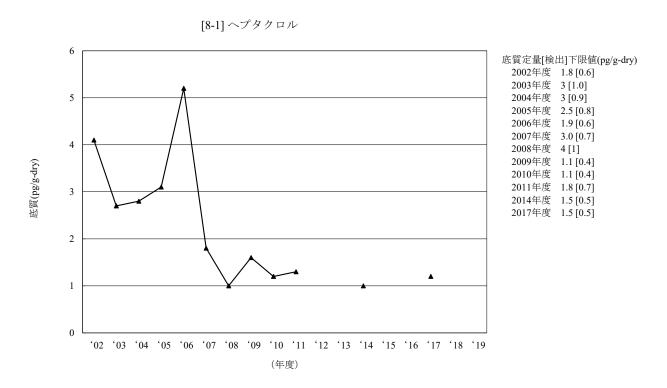
⁽注 2) ※※: 鳥類の 2013 年度以降における結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。

⁽注3) 2014年度は調査を実施していない。

○2002 年度から 2016 年度における大気についてのヘプタクロル、cis-ヘプタクロルエポキシド及び trans-ヘプタクロルエポキシドの検出状況


<大気>

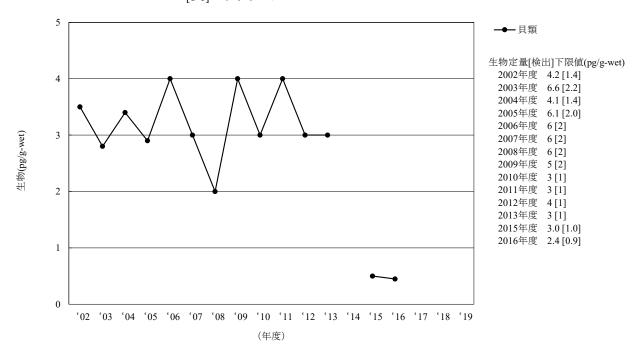
-7777676						定量[検出]	検出	陸库
ヘプタクロル	実施年度	幾何 平均値	中央値	最大値	最小値	た里[快山] 下限値	検体	^{殃及} 地点
	2002	11	14	220	0.20	0.12 [0.04]	102/102	34/34
	2003 温暖期	27	41	240	1.1		35/35	35/35
	2003 寒冷期	10	16	65	0.39	0.25 [0.085]	34/34	34/34
	2004温暖期	23	36	200	0.46	0.23 [0.078]	37/37	37/37
	2004寒冷期	11	18	100	0.53		37/37	37/37
	2005 温暖期	25	29	190	1.1		37/37	37/37
	2005寒冷期	6.5	7.9	61	0.52	0.16 [0.054]	37/37	37/37
	2006温暖期	20	27	160	0.88		37/37	37/37
	2006寒冷期	6.8	7.2	56	0.32	0.11 [0.04]	37/37	37/37
	2007温暖期	22	27	320	1.1		36/36	36/36
	2007寒冷期	6.3	8.0	74	0.42	0.07 [0.03]	36/36	36/36
	2008 温暖期	20	31	190	0.92		37/37	37/37
大気	2008 寒冷期	7.5	12	60	0.51	0.06 [0.02]	37/37	37/37
(pg/m^3)	2009 温暖期	18	30	110	0.48		37/37	37/37
	2009 寒冷期	6.3	7.8	48	0.15	0.04 [0.01]	37/37	37/37
	2010 温暖期	17	26	160	0.69		37/37	37/37
	2010 無ल期	7.2	9.5	53	0.03	0.11 [0.04]	37/37	37/37
	2011 温暖期	16	25	110	0.73		35/35	35/35
	2011 寒冷期	6.1	10	56	tr(0.13)	0.30 [0.099]	37/37	37/37
	2012 温暖期	13	21	58	0.46		36/36	36/36
	2012 無ल期	3.2	4.9	20	nd	0.41 [0.14]	35/36	35/36
	2013 温暖期	<u>3.2</u> 11	21	43	0.46		36/36	36/36
	2013 無吸列 2013 寒冷期	3.1	4.6	22	tr(0.10)	0.16 [0.05]	36/36	36/36
	2015 温暖期	8.7	1 1	49	0.43	0.19 [0.06]	35/35	35/35
	2016 温暖期	12	11 14	120	tr(0.18)	0.22 [0.08]	37/37	37/37
cis-ヘプタクロルエ		幾何				定量[検出]	検出	
ポキシド	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	2003 温暖期	3.5	3.5	28	0.45	0.015 [0.0048]	35/35	35/35
	2003 寒冷期	1.3	1.3	6.6	0.49		34/34	34/34
	2004 温暖期	2.8	2.9	9.7	0.65	0.052 [0.017]	37/37	37/37
	2004 寒冷期	1.1	1.1	7.0	0.44	0.032 [0.017]	37/37	37/37
	2005 温暖期	1.5	1.7	11	tr(0.10)	0.12 [0.044]	37/37	37/37
	2005寒冷期	0.91	0.81	2.9	0.43	0.12 [0.044]	37/37	37/37
	2006温暖期	1.7	2.0	6.7	0.13	0.11.50.043	37/37	37/37
	2006寒冷期	0.74	0.88	3.2	nd	0.11 [0.04]	36/37	36/37
	2007温暖期	2.9	2.8	13	0.54	0.02.50.013	36/36	36/36
	2007寒冷期	0.93	0.82	3.0	0.41	0.03 [0.01]	36/36	36/36
	2008 温暖期	2.4	2.2	9.9	0.53	0.022.50.0003	37/37	37/37
1. <i>E</i>	2008 寒冷期	0.91	0.84	3.0	0.37	0.022 [0.008]	37/37	37/37
大気 (pg/m³)	2009温暖期	2.5	2.6	16	0.37	0.02.50.013	37/37	37/37
(pg/III*)	2009寒冷期	1.0	0.91	3.8	0.42	0.03 [0.01]	37/37	37/37
	2010 温暖期	2.3	2.3	10	0.38	0.02.50.013	37/37	37/37
	2010寒冷期	0.93	0.85	4.3	0.33	0.02 [0.01]	37/37	37/37
	2011 温暖期	2.0	2.3	6.0	0.29	0.04.50.013	35/35	35/35
	2011寒冷期	0.90	0.90	2.8	0.35	0.04 [0.01]	37/37	37/37
	2012 温暖期	2.0	2.1	6.3	0.37	0.05.50.023	36/36	36/36
	2012 寒冷期	0.62	0.57	1.9	0.30	0.05 [0.02]	36/36	36/36
	2013 温暖期	2.0	2.1	7.7	0.43		36/36	36/36
	2013 寒冷期	0.66	0.63	1.4	0.32	0.03 [0.01]	36/36	36/36
	2015 温暖期	1.4	1.4	4.7	tr(0.4)	0.5 [0.2]	35/35	35/35
	2016 温暖期	1.9	1.9	9.1	0.30	0.12 [0.05]	37/37	37/37
	2010 1皿収7列	1.7	1.7	7.1	0.50	0.12 [0.02]	21121	21131


trans-ヘプタクロル	安坎左帝	幾何	由由は	目. 上. 広	目. J. 居	定量[検出]	検出	頻度
エポキシド	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	2003 温暖期	tr(0.036)	tr(0.038)	0.30	nd	0.099 [0.033]	検体 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36	18/35
	2003 寒冷期	nd	nd	tr(0.094)	nd	0.099 [0.033]	3/34	3/34
	2004 温暖期	nd	nd	tr(0.38)	nd	0.6 [0.2]	4/37	4/37
	2004 寒冷期	nd	nd	nd	nd	0.0 [0.2]	0/37	0/37
	2005 温暖期	tr(0.10)	tr(0.12)	1.2	nd	0.16 [0.05]	27/37	27/37
	2005 寒冷期	nd	nd	0.32	nd	0.16 [0.03]	3/37	3/37
	2006 温暖期	nd	nd	0.7	nd	0.3 [0.1]	2/37	2/37
	2006寒冷期	nd	nd	tr(0.1)	nd		1/37	1/37
	2007 温暖期	nd	nd	0.16	nd	0.14.50.063	8/36	8/36
	2007寒冷期	nd	nd	tr(0.06)	nd	0.14 [0.06]	1/36	1/36
		0.17	nd	0.16 [0.06]	6/37	6/37		
大気	2008寒冷期	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37
人 (pg/m³)	2009 温暖期	nd	nd	0.18	nd	0.14.50.053	<u>0/37</u> 10/37	10/37
(pg/III)	2009寒冷期	nd	nd	tr(0.06)	nd	0.14 [0.05]	1/37	1/37
	2010 温暖期	nd	nd	0.16	nd	0.16.50.061	6/37	6/37
	2010寒冷期	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37
	2011 温暖期	nd	nd	0.14	nd	0.12 [0.05]	5/35	5/35
	2011寒冷期	nd	nd	nd	nd	0.13 [0.05]	0/37	0/37
	2012 温暖期	nd	nd	tr(0.08)	nd	0.12 [0.05]	8/36	8/36
	2012寒冷期	nd	nd	nd	nd	0.12 [0.05]	0/36	0/36
	2013 温暖期	nd	nd	tr(0.11)	nd	0.12 [0.05]	7/36	7/36
	2013 寒冷期	nd	nd	nd	nd	0.12 [0.05]	0/36	0/36
	2015 温暖期	nd	nd	nd	nd	0.03 [0.01]	0/35	0/35
	2016 温暖期	nd	nd	tr(0.2)	nd	0.3 [0.1]	1/37	1/37

⁽注) 2014 年度は調査を実施していない。

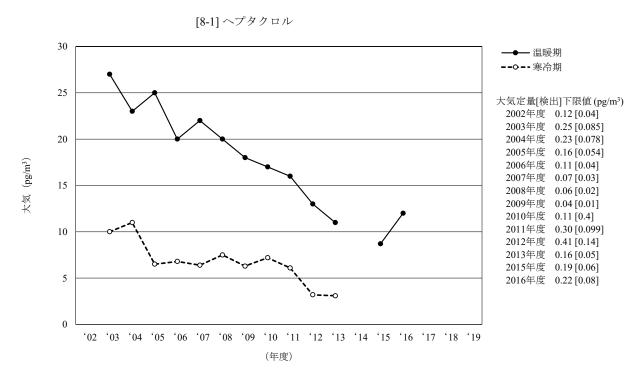
[8-1] ヘプタクロル

(注) 2012 年度、2013 年度、2015 年度、2016 年度、2018 年度及び 2019 年度は調査を実施していない。 図 3-8-1-1 ヘプタクロルの水質の経年変化(幾何平均値)



(注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

(注 2) 2012 年度、2013 年度、2015 年度、2016 年度、2018 年度及び 2019 年度は調査を実施していない。


図 3-8-1-2 ヘプタクロルの底質の経年変化(幾何平均値)

[8-1] ヘプタクロル

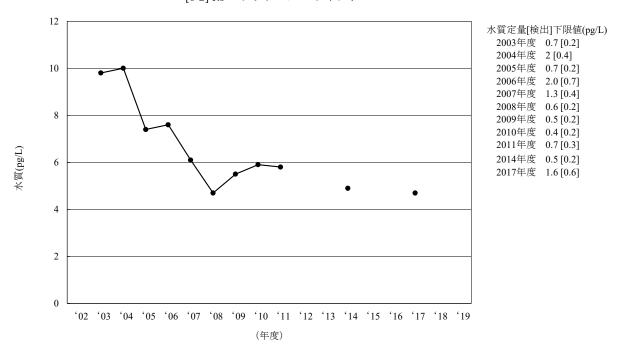
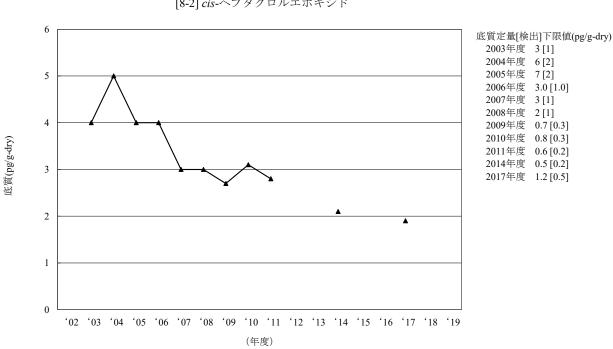
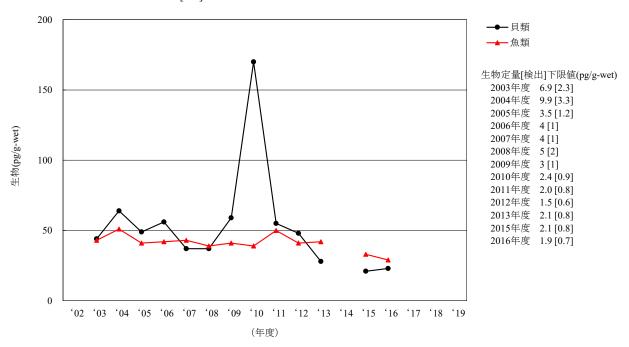

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 魚類については、多くの年度において幾何平均値が検出下限値未満であったため、経年変化は示していない。
- (注3) 鳥類は2013 年度に調査地点及び調査対象生物を変更したことから2012 年度までと継続性がないため、経年変化は示していない。
- (注4) 2014 年度及び 2017 年度から 2019 年度は調査を実施していない。
- (注 5) 2015 年度及び 2016 年度の貝類については幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を 図示した。

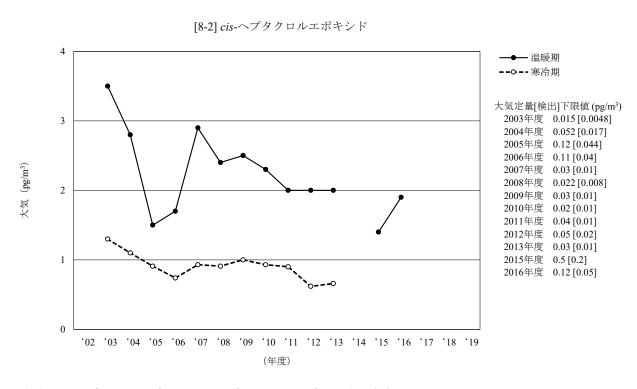
図 3-8-1-3 ヘプタクロルの生物の経年変化(幾何平均値)



(注) 2014 年度及び 2017 年度から 2019 年度は調査を実施していない。 図 3-8-1-4 ヘプタクロルの大気の経年変化(幾何平均値)

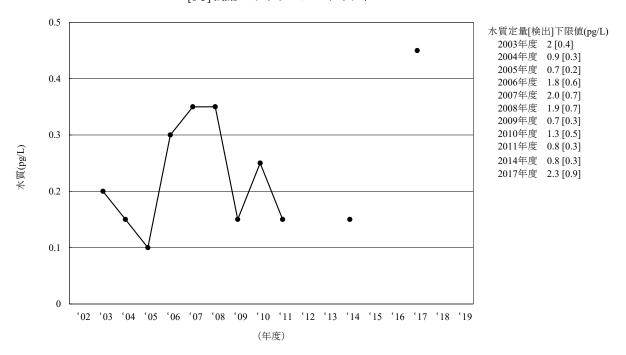
[8-2] cis-ヘプタクロルエポキシド


(注) 2002年度、2012年度、2013年度、2015年度、2016年度、2018年度及び2019年度は調査を実施していない。 図 3-8-2-1 cis-ヘプタクロルエポキシドの水質の経年変化(幾何平均値)


[8-2] cis-ヘプタクロルエポキシド

- (注1) 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求め
- (注2) 2002 年度、2012 年度、2013 年度、2015 年度、2016 年度、2018 年度及び 2019 年度は調査を実施していない。 図 3-8-2-2 cis-ヘプタクロルエポキシドの底質の経年変化(幾何平均値)

[8-2] cis-ヘプタクロルエポキシド


- (注 1) 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注3) 2002 年度、2014年度及び2017年度から2019年度は調査を実施していない。
- 図 3-8-2-3 cis-ヘプタクロルエポキシドの生物の経年変化(幾何平均値)

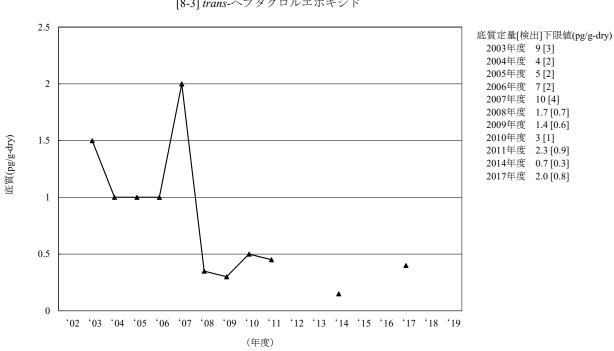

(注) 2002 年度、2014 年度及び 2017 年度から 2019 年度は調査を実施していない。

図 3-8-2-4 cis-ヘプタクロルエポキシドの大気の経年変化(幾何平均値)

[8-3] trans-ヘプタクロルエポキシド

(注) 2002 年度、2012 年度、2013 年度、2015 年度、2016 年度、2018 年度及び 2019 年度は調査を実施していない。 図 3-8-3-1 trans-ヘプタクロルエポキシドの水質の経年変化 (幾何平均値)

[8-3] trans-ヘプタクロルエポキシド

- (注1) 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求め
- (注2) 2002 年度、2012 年度、2013 年度、2015 年度、2016 年度、2018 年度及び 2019 年度は調査を実施していない。 図 3-8-3-2 trans-ヘプタクロルエポキシドの底質の経年変化(幾何平均値)

[9] トキサフェン類(参考)

調査の経緯及び実施状況

トキサフェン類は、有機塩素系殺虫剤の一種である。日本では農薬登録されたことはなく、国内での製造・輸入実績はない。2002 年 9 月に化審法に基づく第一種特定化学物質に指定されている。また、POPs 条約においては、2004 年に条約が発効された当初から条約対象物質に指定されている。

継続的調査としては 2003 年度が初めての調査であり、2002 年度までの調査として「化学物質環境調査」 iv) では、1983 年度に水質及び底質を調査している。

2002 年度以降のモニタリング調査においては、2-endo,3-exo,5-endo,6-exo,8,8,10,10-オクタクロロボルナン (Parlar-26)、2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-ノナクロロボルナン (Parlar-50)及び2,2,5,5,8,9,9,10,10-ノナクロロボルナン (Parlar-62)の3物質を分析対象として、2003年度から2009年度の毎年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2015年度に生物(貝類、魚類及び鳥類)の調査を、2018年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

2019年度は調査を実施していないため、参考として以下に、2018年度までの調査結果を示す。

・2018年度までの調査結果(参考)

<水質>

○2003 年度から 2018 年度における水質についての Parlar-26、Parlar-50 及び Parlar-62 の検出状況

D1 26	字坛左座	幾何	由由荷	具 土 / 広	具小店	定量[検出]	検出	頻度
Parlar-26	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	2003	nd	nd	nd	nd	40 [20]	0/36	0/36
	2004	nd	nd	nd	nd	9 [3]	0/38	0/38
	2005	nd	nd	nd	nd	10 [4]	0/47	0/47
水質	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	20 [5]	0/48	0/48
	2008	nd	nd	nd	nd	8 [3]	0/48	0/48
	2009	nd	nd	nd	nd	5 [2]	0/49	0/49
	2018	nd	nd	5	nd	4 [2]	7/47	7/47
D 1 50	安华左连	幾何	中市体	目. 土 /法	目、小 /击	定量[検出]	検出	頻度
Parlar-50	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	2003	nd	nd	nd	nd	70 [30]	0/36	0/36
	2004	nd	nd	nd	nd	20 [7]	0/38	0/38
	2005	nd	nd	nd	nd	20 [5]	0/47	0/47
水質	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	9 [3]	0/48	0/48
	2008	nd	nd	nd	nd	7 [3]	0/48	0/48
	2009	nd	nd	nd	nd	7 [3]	0/49	0/49
	2018	nd	nd	tr(2)	nd	6 [2]	1/47	1/47
D1 (2	安华左连	幾何	中市体	目. 土 /法	目、小 /击	定量[検出]	検出	頻度
Parlar-62	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	2003	nd	nd	nd	nd	300 [90]	0/36	0/36
	2004	nd	nd	nd	nd	90 [30]	0/38	0/38
	2005	nd	nd	nd	nd	70[30]	0/47	0/47
水質	2006	nd	nd	nd	nd	60 [20]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	70 [30]	0/48	0/48
	2008	nd	nd	nd	nd	40 [20]	0/48	0/48
	2009	nd	nd	nd	nd	40 [20]	0/49	0/49
	2018	nd	nd	nd	nd	40 [20]	0/47	0/47
(注) 2010 年度から	2017年度14	田木とウ状)	-1,2,1,					

⁽注) 2010 年度から 2017 年度は調査を実施していない。

<底質>

○2003 年度から 2018 年度における底質についての Parlar-26、Parlar-50 及び Parlar-62 の検出状況

Parlar-26	実施年度	幾何	中央値	最大値	具小店	定量[検出]	検出	頻度
Pariar-20	夫 旭午及	平均值※	中犬但	取入胆	最小値	下限値	検体	地点
	2003	nd	nd	nd	nd	90 [30]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
	2005	nd	nd	nd	nd	60 [30]	0/189	0/63
底質	2006	nd	nd	nd	nd	12 [4]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	7 [3]	0/192	0/64
	2008	nd	nd	nd	nd	12 [5]	0/192	0/64
	2009	nd	nd	nd	nd	10 [4]	0/192	0/64
	2018	nd	nd	nd	nd	8 [3]	0/61	0/61
D1 50	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
Parlar-50	美 胞平度	平均值※	中犬旭	取入旭	取小胆	下限値	検体	地点
	2003	nd	nd	nd	nd	200 [50]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
	2005	nd	nd	nd	nd	90 [40]	0/189	0/63
底質	2006	nd	nd	nd	nd	24 [7]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	30 [10]	0/192	0/64
	2008	nd	nd	nd	nd	17 [6]	0/192	0/64
	2009	nd	nd	nd	nd	12 [5]	0/192	0/64
	2018	nd	nd	tr(3)	nd	8 [3]	1/61	1/61
D1 (2	実施年度	幾何	中央値	具 上 <i>估</i>	具小店	定量[検出]	検出	頻度
Parlar-62	天旭十尺	平均值※	中大旭	最大値	最小値	下限値	検体	地点
	2003	nd	nd	nd	nd	4,000 [2,000]	0/186	0/62
	2004	nd	nd	nd	nd	2,000 [400]	0/189	0/63
	2005	nd	nd	nd	nd	2,000 [700]	0/189	0/63
底質	2006	nd	nd	nd	nd	210 [60]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	300 [70]	0/192	0/64
	2008	nd	nd	nd	nd	90 [40]	0/192	0/64
	2009	nd	nd	nd	nd	80 [30]	0/192	0/64
(治1) ツ 2002 左	2018	nd	nd	tr(20)	nd	50 [20]	1/61	1/61

⁽注 1) ※: 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

○2003 年度から 2018 年度における生物(貝類、魚類及び鳥類)についての Parlar-26、Parlar-50 及び Parlar-62 の検出状況

P. I. O.	***	幾何	+++	B 1./+	B 1 /±	定量[検出]	検出	頻度
Parlar-26	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2003	nd	nd	tr(39)	nd	45 [15]	11/30	3/6
	2004	nd	nd	tr(32)	nd	42 [14]	15/31	3/7
	2005	nd	nd	tr(28)	nd	47 [16]	7/31	4/7
貝類	2006	tr(9)	tr(12)	25	nd	18 [7]	21/31	5/7
	2007	tr(7)	tr(8)	20	nd	10 [4]	26/31	6/7
(pg/g-wet)	2008	tr(7)	tr(8)	22	nd	9 [3]	27/31	7/7
	2009	9	9	23	nd	7 [3]	27/31	7/7
	2015	tr(10)	tr(15)	tr(17)	nd	23 [9]	2/3	2/3
	2018	tr(10)	tr(15)	tr(15)	nd	21 [8]	2/3	2/3
	2003	tr(28)	tr(24)	810	nd	45 [15]	44/70	11/14
	2004	43	tr(41)	1,000	nd	42 [14]	54/70	13/14
	2005	tr(42)	53	900	nd	47 [16]	50/75	13/16
魚類	2006	41	44	880	nd	18 [7]	70/80	15/16
	2007	24	32	690	nd	10 [4]	64/80	14/16
(pg/g-wet)	2008	35	33	730	nd	9 [3]	79/85	17/17
	2009	25	20	690	nd	7 [3]	82/90	18/18
	2015	26	28	400	nd	23 [9]	13/19	13/19
	2018	tr(17)	tr(17)	280	nd	21 [8]	12/18	12/18

⁽注2) 2010 年度から 2017 年度は調査を実施していない。

D 1 26	<i>*</i>	幾何	++/=	■ 1. <i>I</i> +	B 1 /±	定量[検出]	検出	頻度
Parlar-26	実施年度	平均值※	中央値	最大値	最小值	下限値	検体	地点
	2003	120	650	2,500	nd	45 [15]	5/10	1/2
	2004	70	340	810	nd	42 [14]	5/10	1/2
	2005	86	380	1,200	nd	47 [16]	5/10	1/2
白 來云	2006	48	290	750	nd	18 [7]	5/10	1/2
鳥類	2007	34	280	650	nd	10 [4]	5/10	1/2
(pg/g-wet)	2008	38	320	1,200	nd	9 [3]	6/10	2/2
	2009	26	200	500	nd	7 [3]	6/10	2/2
	2015※※			tr(10)	tr(10)	23 [9]	1/1	1/1
	2018***	53		54	53	21 [8]	2/2	2/2
Parlar-50	実施年度	幾何 平均値※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2003	tr(12)	tr(12)	58	nd	33 [11]	17/30	4/6
	2004	tr(15)	nd	tr(45)	nd	46 [15]	15/31	3/7
	2005	nd	nd	tr(38)	nd	54 [18]	9/31	4/7
日本五	2006	tr(10)	14	32	nd	14 [5]	24/31	6/7
貝類	2007	9	10	37	nd	9 [3]	27/31	7/7
(pg/g-wet)	2008	tr(7)	tr(6)	23	nd	10 [4]	23/31	6/7
	2009	9	9	31	nd	8 [3]	27/31	7/7
	2015	tr(11)	tr(15)	tr(16)	nd	30 [10]	2/3	2/3
	2018	tr(9)	16	17	nd	16 [6]	2/3	2/3
	2003	35	34	1,100	nd	33 [11]	55/70	14/14
	2004	60	61	1,300	nd	46 [15]	59/70	14/14
	2005	tr(52)	66	1,400	nd	54 [18]	55/80	13/16
魚類	2006	56	52	1,300	nd	14 [5]	79/80	16/16
	2007	35	41	1,100	nd	9 [3]	77/80	16/16
(pg/g-wet)	2008	44	45	1,000	nd	10 [4]	77/85	17/17
	2009	30	23	910	nd	8 [3]	85/90	18/18
	2015	tr(25)	tr(13)	640	nd	30 [10]	13/19	13/19
	2018	22	20	300	nd	16 [6]	16/18	16/18
	2003	110	850	3,000	nd	33 [11]	5/10	1/2
	2004	83	440	1,000	nd	46 [15]	5/10	1/2
	2005	100	480	1,500	nd	54 [18]	5/10	1/2
白华石	2006	46	380	1,000	nd	14 [5]	5/10	1/2
鳥類	2007	34	360	930	nd	9 [3]	5/10	1/2
(pg/g-wet)	2008	49	410	1,600	nd	10 [4]	5/10	1/2
	2009	29	250	620	nd	8 [3]	5/10	1/2
	2015※※			nd	nd	30 [10]	0/1	0/1
	2018***	tr(12)		tr(13)	tr(11)	16 [6]	2/2	2/2
D 1 (2		616 / 				스 B ELA ILIA		頻度
	字坛左庄	幾何	由由結	具土店	具心质	定量[検出]	7天口:	
Parlar-62	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定重[検出] 下限値		
Pariar-62			中央値		最小値 nd	下限値	検体	地点
Pariar-62	2003	平均值※	nd	nd	nd	下限値 120 [40]	<u></u> 検体 0/30	
Pariar-62	2003 2004	平均値※ nd nd	nd nd	nd nd	nd nd	下限値 120 [40] 98 [33]	検体 0/30 0/31	地点 0/6 0/7
	2003 2004 2005	平均值※ nd nd nd	nd nd nd	nd nd nd	nd nd nd	下限値 120 [40] 98 [33] 100 [34]	検体 0/30 0/31 0/31	地点 0/6 0/7 0/7
貝類	2003 2004 2005 2006	平均值 <u>※</u> nd nd nd nd	nd nd nd nd	nd nd nd nd	nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30]	検体 0/30 0/31 0/31 0/31	地点 0/6 0/7 0/7 0/7
	2003 2004 2005 2006 2007	平均值※ nd nd nd nd nd	nd nd nd nd	nd nd nd nd	nd nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30]	検体 0/30 0/31 0/31 0/31 0/31	地点 0/6 0/7 0/7 0/7 0/7
貝類	2003 2004 2005 2006 2007 2008	平均值※ nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30]	検体 0/30 0/31 0/31 0/31 0/31 0/31	地点 0/6 0/7 0/7 0/7 0/7 0/7
貝類	2003 2004 2005 2006 2007 2008 2009	平均值※ nd nd nd nd nd nd nd nd	nd nd nd nd nd nd	nd nd nd nd nd nd	nd nd nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20]	検体 0/30 0/31 0/31 0/31 0/31 0/31 0/31	地点 0/6 0/7 0/7 0/7 0/7 0/7 0/7
貝類	2003 2004 2005 2006 2007 2008 2009 2015	平均值※ nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd	nd nd nd nd nd nd	nd nd nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60]	検体 0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3	地点 0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/3
貝類	2003 2004 2005 2006 2007 2008 2009 2015 2018	平均值※ nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd	nd nd nd nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60] 100 [40]	検体 0/30 0/31 0/31 0/31 0/31 0/31 0/3 0/3	地点 0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/3 0/3
貝類	2003 2004 2005 2006 2007 2008 2009 2015 2018	平均值※ nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60] 100 [40]	検体 0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3 0/3 9/70	地点 0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/3 0/3 3/14
貝類	2003 2004 2005 2006 2007 2008 2009 2015 2018 2003 2004	平均值※ nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd sol 880	nd nd nd nd nd nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60] 100 [40] 120 [40] 98 [33]	検体 0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3 0/3 9/70 24/70	地点 0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/3 0/3 3/14 7/14
貝類 (pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2015 2018 2003 2004 2005	平均值※ nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd s80 870 830	nd nd nd nd nd nd nd nd nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60] 100 [40] 120 [40] 98 [33] 100 [34]	検体 0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3 0/3 9/70 24/70 23/80	地点 0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/3 0/3 3/14 7/14 8/16
貝類 (pg/g-wet) 魚類	2003 2004 2005 2006 2007 2008 2009 2015 2018 2003 2004 2005 2006	平均值※ nd nd nd nd nd nd nd nd nd nd nd nd tr(30)	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd s80 870 830 870	nd nd nd nd nd nd nd nd nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60] 100 [40] 120 [40] 98 [33] 100 [34] 70 [30]	検体 0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3 0/3 9/70 24/70 23/80 28/80	地点 0/6 0/7 0/7 0/7 0/7 0/7 0/3 0/3 3/14 7/14 8/16 10/16
貝類 (pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2015 2018 2003 2004 2005 2006 2007	平均值※ nd nd nd nd nd nd nd nd nd tr(30) tr(30)	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd s80 870 830 870 530	nd nd nd nd nd nd nd nd nd nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60] 100 [40] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30]	検体 0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3 0/3 9/70 24/70 23/80 28/80 22/80	地点 0/6 0/7 0/7 0/7 0/7 0/7 0/3 0/3 3/14 7/14 8/16 10/16
貝類 (pg/g-wet) 魚類	2003 2004 2005 2006 2007 2008 2009 2015 2018 2003 2004 2005 2006 2007 2008	平均值※ nd nd nd nd nd nd nd nd tr(30) tr(30)	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd s80 870 830 870 530 590	nd nd nd nd nd nd nd nd nd nd nd nd nd n	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60] 100 [40] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30]	検体 0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3 0/3 9/70 24/70 23/80 28/80 22/80 31/85	地点 0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/3 0/3 3/14 7/14 8/16 10/16 7/16 8/17
貝類 (pg/g-wet) 魚類	2003 2004 2005 2006 2007 2008 2009 2015 2018 2003 2004 2005 2006 2007	平均值※ nd nd nd nd nd nd nd nd nd tr(30) tr(30)	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd s80 870 830 870 530	nd nd nd nd nd nd nd nd nd nd nd nd nd	下限値 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60] 100 [40] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30]	検体 0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3 0/3 9/70 24/70 23/80 28/80 22/80	地点 0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/3 0/3 3/14 7/14 8/16 10/16 7/16

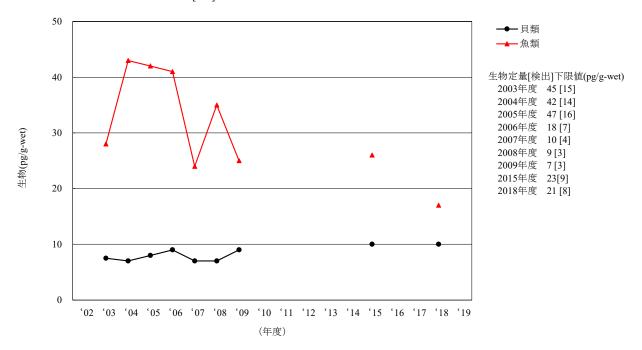
Doulou 62	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
Parlar-62	夫	平均值※	取八胆	取小胆	下限値	検体	地点	
	2003	tr(96)	200	530	nd	120 [40]	5/10	1/2
	2004	tr(64)	110	280	nd	98 [33]	5/10	1/2
	2005	tr(78)	130	460	nd	100 [34]	5/10	1/2
4 4 7	2006	70	120	430	nd	70 [30]	5/10	1/2
鳥類	2007	tr(60)	100	300	nd	70 [30]	5/10	1/2
(pg/g-wet)	2008	tr(70)	130	360	nd	80 [30]	5/10	1/2
	2009	tr(40)	80	210	nd	70 [20]	5/10	1/2
	2015***			nd	nd	150 [60]	0/1	0/1
	2018※※	nd		nd	nd	100 [40]	0/2	0/2

⁽注1) ※: 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

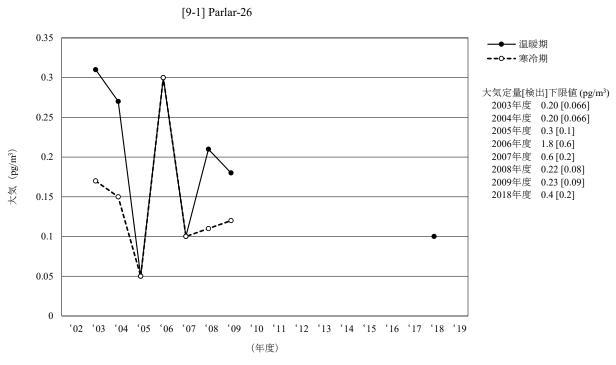
○2003 年度から 2018 年度における大気についての Parlar-26、Parlar-50 及び Parlar-62 の検出状況

Parlar-26	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検体 地点 35/35 35/3 34/34 34/3 34/34 34/3 37/37 37/3 37/37 0/37 0/37 0/37 0/37 0/37 37/3 36/37 37/3 36/37 37/3 33/37 37/3 33/37 37/3 33/37 37/3 33/37 37/3 33/37 37/3 33/37 37/3 33/37 37/3 37/37 37/3 37/37 37/3 37/37 37/3 37/37 37/3 37/37 37/3 37/37 37/3 37/37 37/3 37/37 37/3 37/37 37/3 37/37 37/3 37/37 37/3 37/37 37/3 37/37 37/3 37/37 37/		
Fallal-20	天旭千茂	平均值	十大旭	取八胆	取八吨	下限値	検体	地点	
	2003 温暖期	0.31	0.31	0.77	tr(0.17)	0.20 [0.066]	35/35	35/3	
	2003 寒冷期	tr(0.17)	tr(0.17)	0.27	tr(0.091)	0.20 [0.000]	34/34	34/3	
	2004 温暖期	0.27	0.26	0.46	tr(0.17)	0.20 [0.066]	37/37	37/3	
	2004 寒冷期	tr(0.15)	tr(0.15)	0.50	tr(0.094)	0.20 [0.000]	37/37	37/3	
	2005 温暖期	nd	nd	nd	nd	0.3 [0.1]	0/37	0/3	
	2005 寒冷期	nd	nd	nd	nd		0/37	0/3	
大気	2006 温暖期	nd	nd	nd	nd	1.8 [0.6]	0/37	0/3	
人気 (pg/m^3)	2006 寒冷期	nd	nd	nd	nd	1.6 [0.0]	0/37	0/3	
(pg/m/)	2007 温暖期	nd	nd	tr(0.3)	nd	0.6 [0.2]	18/36	18/3	
	2007 寒冷期	nd	nd	nd	nd	0.0 [0.2] 	0/36	0/3	
	2008 温暖期	tr(0.21)	0.22	0.58	tr(0.12)	0.22 [0.08]	37/37	37/3	
	2008 寒冷期	tr(0.11)	tr(0.12)	tr(0.20)	nd	0.22 [0.08]	36/37	36/3	
	2009 温暖期	tr(0.18)	tr(0.19)	0.26	tr(0.11)	0.23 [0.09]	37/37	37/3	
	2009 寒冷期	tr(0.12)	tr(0.13)	0.27	nd	0.23 [0.09]	33/37	33/	
	2018 温暖期	nd	nd	tr(0.3)	nd	0.4 [0.2]	12/37	12/	
Parlar-50	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度	
ranai-30		平均値	十大旭		取小胆	下限値	検体		
	2003 温暖期	nd	nd	tr(0.37)	nd	0.81 [0.27]	2/35	2/3	
	2003 寒冷期	nd	nd	nd	nd	0.81 [0.27] 	0/34	0/3	
	2004 温暖期	nd	nd	nd	nd	1.2 [0.4]	0/37	0/3	
	2004 寒冷期	nd	nd	nd	nd	1.2 [0.4]	0/37	0/3	
	2005 温暖期	nd	nd	nd	nd	0.6 [0.2]	0/37	0/3	
	2005 寒冷期	nd	nd	nd	nd	0.0 [0.2] 	0/37	0/3	
大気	2006 温暖期	nd	nd	nd	nd	1.6 [0.5]	0/37	0/3	
(pg/m^3)	2006 寒冷期	nd	nd	nd	nd		0/37	0/3	
(hg/m)	2007 温暖期	nd	tr(0.1)	tr(0.2)	nd	0.3 [0.1]	29/36	29/3	
	2007 寒冷期	nd	nd	nd	nd		0/36	0/3	
	2008 温暖期	nd	nd	tr(0.19)	nd	0.25 [0.09]	15/37	15/	
	2008 寒冷期	nd	nd	nd	nd		0/37	0/3	
	2009 温暖期	nd	nd	tr(0.1)	nd	0.3 [0.1]	11/37	11/3	
	2009 寒冷期	nd	nd	tr(0.1)	nd	U.3 [U.1] 	1/37	1/3	
	2018 温暖期	nd	nd	tr(0.2)	nd	0.5 [0.2]	2/37	2/3	


⁽注 2) ※※: 鳥類の 2015 年度における結果は、調査地点及び調査対象生物を変更したことから、2009 年度までの結果と継続性がない。

⁽注3) 2010 年度から 2014 年度、2016 年度及び 2017 年度は調査を実施していない。

D1 (2	字坛左庄	幾何	由由結	具 + /d	具示估	定量[検出]	検出	頻度
Parlar-62	実施年度	平均值	中央値	最大値	最小値	下限值	人	地点
	2003 温暖期	nd	nd	nd	nd	1.6 [0.52]	0/35	0/3
	2003 寒冷期	nd	nd	nd	nd	1.6 [0.32]	0/34	0/3
	2004 温暖期	nd	nd	nd	nd	2.4 [0.81]	0/37	0/3
	2004 寒冷期	nd	nd	nd	nd	nd	0/37	0/3
	2005 温暖期	nd	nd	nd	nd	1.2 [0.4]	0/37	0/3
	2005 寒冷期	nd	nd	nd	nd	1.2 [0.4]	0/37	0/3
1. <i>E</i>	2006 温暖期	nd	nd	nd	nd	0.[2]	0/37	0/3
大気 (pg/m³)	2006 寒冷期	nd	nd	nd	nd	8 [3]	0/37	0/3
(pg/III*)	2007 温暖期	nd	nd	nd	nd	1.5.50.63	0/36	0/3
	2007 寒冷期	nd	nd	nd	nd	1.5 [0.6]	0/36	0/3
	2008 温暖期	nd	nd	nd	nd	1 ([0 (]	0/37	0/3
	2008 寒冷期	nd	nd	nd	nd	1.6 [0.6]	0/37	0/3
	2009 温暖期	nd	nd	nd	nd	1 ([0 (]	0/37	0/3
	2009 寒冷期	nd	nd	nd	nd	1.6 [0.6]	0/37	0/3
	2018 温暖期	nd	nd	nd	nd	0.4 [0.2]	0/37	0/3


⁽注) 2010 年度から 2017 年度は調査を実施していない。

[9-1] Parlar-26

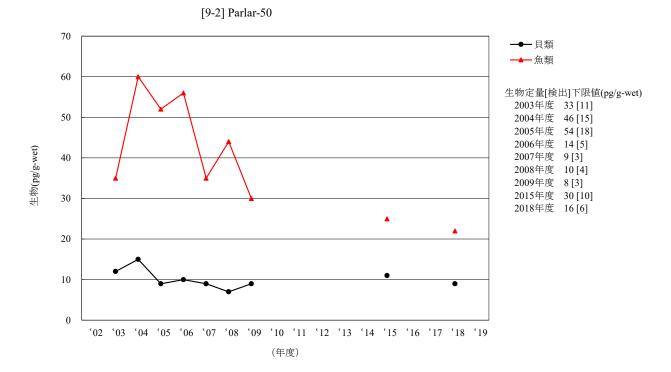

- (注 1) 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2009 年度までと継続性がないため、経年変化は示していない。
- (注3) 2002 年度、2010 年度から 2014 年度、2016 年度から 2017 年度及び 2019 年度は調査を実施していない。
- (注 4) 2003 年度から 2005 年度の貝類については幾何平均値が検出下限値未満であったため、 検出下限値の 1/2 の値を図示した。

図 3-9-1-1 トキサフェン Parlar-26 の生物の経年変化(幾何平均値)

- (注1) 2002 年度、2010 年度から 2017 年度及び 2019 年度は調査を実施していない。
- (注 2) 2005 年度から 2007 年度の温暖期及び寒冷期並びに 2018 年度の温暖期は幾何平均値が検出下限値未満であった ため、検出下限値の 1/2 の値を図示した。

図 3-9-1-2 トキサフェン Parlar-26 の大気の経年変化(幾何平均値)

- (注 1) 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2009 年度までと継続性がないため、経年変化は示していない。
- (注3) 2002 年度、2010 年度から 2014 年度、2016 年度から 2017 年度及び 2019 年度は調査を実施していない。
- (注4) 2005 年度の貝類については幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。
- 図 3-9-2-1 トキサフェン Parlar-50 の生物の経年変化(幾何平均値)

[10] マイレックス(参考)

調査の経緯及び実施状況

マイレックスは、米国で開発された有機塩素系殺虫剤で、海外では難燃剤としても使用されている。日本では農薬登録されたことはなく、国内での製造・輸入実績はない。2002年9月に化審法に基づく第一種特定化学物質に指定されている。また、POPs条約においては、2004年に条約が発効された当初から条約対象物質に指定されている。

継続的調査としては 2003 年度が初めての調査であり、2002 年度までの調査として「化学物質環境調査」 iv) では、1983 年度に水質及び底質を調査している。

2002 年度以降のモニタリング調査においては、2003 年度から 2009 年度、2011 年度及び 2018 年度に水質、 底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

2019年度は調査を実施していないため、参考として以下に、2018年度までの調査結果を示す。

・2018年度までの調査結果(参考)

<水質>

○2003 年度から 2018 年度における水質についてのマイレックスの検出状況

コノレッカフ	実施年度	幾何	中央値	最大値	定量[検出] 最小値 エ四は		検出頻度	
マイレックス	夫旭十尺	平均値	中犬旭	取入胆	取小胆	下限値	検体	地点
	2003	tr(0.13)	tr(0.12)	0.8	nd	0.3 [0.09]	25/36	25/36
	2004	nd	nd	1.1	nd	0.4 [0.2]	18/38	18/38
	2005	nd	nd	1.0	nd	0.4 [0.1]	14/47	14/47
水質	2006	nd	nd	0.07	nd	1.6 [0.5]	1/48	1/48
	2007	nd	nd	tr(0.5)	nd	1.1 [0.4]	2/48	2/48
(pg/L)	2008	nd	nd	0.7	nd	0.6 [0.2]	4/48	4/48
	2009	nd	nd	0.5	nd	0.4 [0.2]	8/49	8/49
	2011	nd	nd	0.8	nd	0.5 [0.2]	3/49	3/49
	2018	nd	nd	1.0	nd	0.7 [0.3]	3/47	3/47

⁽注) 2010年度及び2012年度から2017年度は調査を実施していない。

<底質>

○2003 年度から 2018 年度における底質についてのマイレックスの検出状況

マイレックス	実施年度	幾何	幾何 中央値 最大値	是土荷	最小値	定量[検出]	検出	頻度
<u> </u>	天旭千茂	平均值※	十大旭	取八胆	取力响	下限値	検体	地点
	2003	2	tr(1.6)	1,500	nd	2 [0.4]	137/186	51/62
	2004	2	tr(1.6)	220	nd	2 [0.5]	153/189	55/63
	2005	1.8	1.2	5,300	nd	0.9 [0.3]	134/189	48/63
底質	2006	1.7	1.2	640	nd	0.6 [0.2]	156/192	57/64
	2007	1.5	0.9	200	nd	0.9 [0.3]	147/192	55/64
(pg/g-dry)	2008	1.4	1.1	820	nd	0.7 [0.3]	117/192	48/64
	2009	1.4	1.3	620	nd	1.0 [0.4]	126/192	49/64
	2011	1.2	0.9	1,900	nd	0.9 [0.4]	42/64	42/64
	2018	1.1	0.9	240	nd	0.8 [0.3]	44/61	44/61

⁽注 1) ※: 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2010 年度及び 2012 年度から 2017 年度は調査を実施していない。

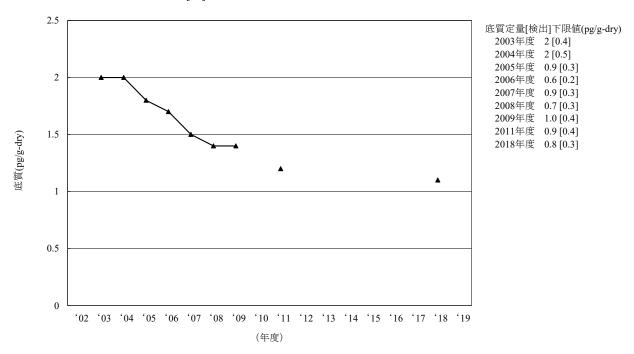
<生物>

○2003 年度から 2018 年度における生物(貝類、魚類及び鳥類)についてのマイレックスの検出状況

マイレックス	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
146777	大 旭十及	平均值※	17人世	双八胆	双/1 间	下限値	検体	地点
	2003	4.9	4.2	19	tr(1.6)	2.4 [0.81]	30/30	6/6
	2004	4.4	4.3	12	tr(1.1)	2.5 [0.82]	31/31	7/7
	2005	5.4	5.2	20	tr(1.9)	3.0 [0.99]	31/31	7/7
貝類	2006	5	4	19	tr(2)	3 [1]	31/31	7/7
	2007	5	4	18	tr(2)	3 [1]	31/31	7/7
(pg/g-wet)	2008	4	tr(3)	18	tr(2)	4 [1]	31/31	7/7
	2009	5.9	5.2	21	tr(1.7)	2.1 [0.8]	31/31	7/7
	2011	10	7.1	44	5.2	1.9 [0.8]	4/4	4/4
	2018	4.9	3.2	20	1.8	1.4 [0.5]	3/3	3/3
	2003	8.3	9.0	25	tr(1.7)	2.4 [0.81]	70/70	14/14
	2004	13	11	180	3.8	2.5 [0.82]	70/70	14/14
	2005	13	13	78	tr(1.0)	3.0 [0.99]	80/80	16/16
魚類	2006	11	10	53	tr(2)	3 [1]	80/80	16/16
	2007	9	11	36	tr(1)	3 [1]	80/80	16/16
(pg/g-wet)	2008	11	13	48	tr(1)	4 [1]	85/85	17/17
	2009	8.6	9.6	37	tr(0.9)	2.1 [0.8]	90/90	18/18
	2011	12	15	41	tr(1.3)	1.9 [0.8]	18/18	18/18
	2018	8.2	8.4	70	1.9	1.4 [0.5]	18/18	18/18
	2003	120	150	450	31	2.4 [0.81]	10/10	2/2
	2004	61	64	110	33	2.5 [0.82]	10/10	2/2
	2005	77	66	180	41	3.0 [0.99]	10/10	2/2
鳥類	2006	77	70	280	39	3 [1]	10/10	2/2
	2007	57	59	100	32	3 [1]	10/10	2/2
(pg/g-wet)	2008	74	68	260	27	4 [1]	10/10	2/2
	2009	49	50	79	32	2.1 [0.8]	10/10	2/2
	2011			58	58	1.9 [0.8]	1/1	1/1
	2018	110		260	47	1.4 [0.5]	2/2	2/2

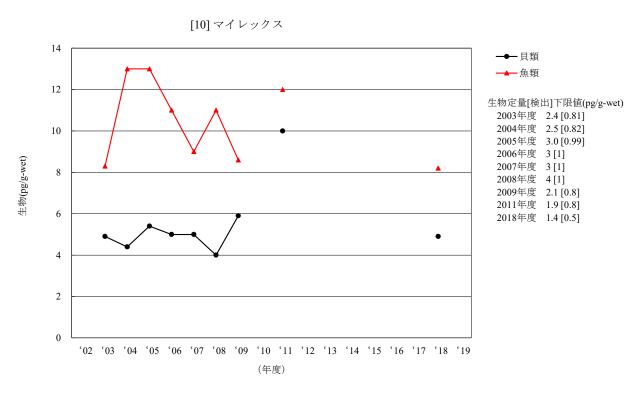
⁽注1) ※: 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>


○2003 年度から 2018 年度における大気についてのマイレックスの検出状況

マイレックス	実施年度	幾何	由由居	具土店	具小店	定量[検出]	検出	頻度
マイレックス	美 胞 干 及	平均値	中央値	最大値	最小値	下限値	検体	地点
	2003 温暖期	0.11	0.12	0.19	0.047	0.0084	35/35	35/35
	2003 寒冷期	0.044	0.043	0.099	0.024	[0.0028]	34/34	34/34
	2004 温暖期	0.099	0.11	0.16	tr(0.042)	0.05 [0.017]	37/37	37/37
	2004寒冷期	tr(0.046)	tr(0.047)	0.23	tr(0.019)	0.03 [0.017]	37/37	37/37
	2005 温暖期	tr(0.09)	tr(0.09)	0.24	tr(0.05)	0.10.50.021	37/37	37/37
	2005 寒冷期	tr(0.04)	tr(0.04)	tr(0.08)	nd	0.10 [0.03]	29/37	29/37
	2006 温暖期	tr(0.07)	tr(0.10)	0.22	nd	0.12.50.041	29/37	29/37
1.5	2006寒冷期	tr(0.07)	tr(0.07)	2.1	nd	0.13 [0.04]	27/37	27/37
大気	2007 温暖期	0.11	0.11	0.28	0.04	0.03 [0.01]	36/36	36/36
(pg/m^3)	2007寒冷期	0.04	0.04	0.09	tr(0.02)		36/36	36/36
	2008 温暖期	0.09	0.09	0.25	0.03	0.02.50.013	37/37	37/37
	2008 寒冷期	0.05	0.04	0.08	0.03	0.03 [0.01]	37/37	37/37
	2009 温暖期	0.12	0.13	0.48	0.049	0.017.50.0061	37/37	37/37
	2009寒冷期	0.058	0.054	0.18	0.030	0.015 [0.006]	37/37	37/37
	2011 温暖期	0.14	0.13	0.25	0.08	0.04.50.013	35/35	35/35
	2011 寒冷期	0.07	0.07	0.11	tr(0.03)	0.04 [0.01]	37/37	37/37
	2018温暖期	0.088	0.09	0.2	0.05	0.03 [0.01]	37/37	37/37

⁽注) 2010 年度及び 2012 年度から 2017 年度は調査を実施していない。


⁽注2) 2010 年度及び 2012 年度から 2017 年度は調査を実施していない。

[10] マイレックス

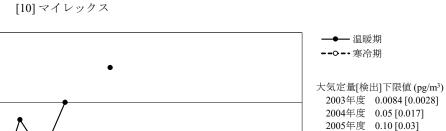

- (注1) 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2002 年度、2010 年度、2012 年度から 2017 年度及び 2019 年度は調査を実施していない。

図 3-10-1 マイレックスの底質の経年変化 (幾何平均値)

- (注 1) 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求め た。
- (注2) 2002 年度、2010 年度、2012 年度から 2017 年度及び 2019 年度は調査を実施していない。

図 3-10-3 マイレックスの生物の経年変化(幾何平均値)

| 2006年度 0.13 [0.04] | 2007年度 0.03 [0.01] | 2008年度 0.03 [0.01] | 2009年度 0.015 [0.006] | 2011年度 0.04 [0.01] | 2018年度 0.03 [0.01]

(注) 2002 年度、2010 年度、2012 年度から 2017 年度及び 2019 年度は調査を実施していない。 図 3-10-4 マイレックスの大気の経年変化(幾何平均値)

'02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16 '17 '18 '19 (年度)

0.16

0.12

0.08

0.04

0

大氣 (pg/m³)

[11] HCH 類

調査の経緯及び実施状況

HCH 類は、農薬、殺虫剤及びシロアリ駆除剤等として使用された。1971 年に農薬取締法に基づく登録が失効したが、その後もシロアリ駆除剤や木材処理剤として使われていた。2009 年 5 月に開催された POPs 条約の第 4 回条約締約国会議(COP4)において、HCH 類のうち α -HCH、 β -HCH 及び γ -HCH(別名:リンデン)について条約対象物質とすることが採択され、2010 年 4 月に化審法に基づく第一種特定化学物質に指定されている。

HCH 類には多くの異性体が存在するが、継続的調査においては α -体、 β -体、 γ -体及び δ -体の 4 種の異性体を調査対象物質として水質、底質、生物(貝類、魚類及び鳥類)並びに大気についてモニタリング調査を実施している。

2001 年度までの継続的調査においては、 α -体及び β -体について「水質・底質モニタリング」 i)で水質は 1986 年度から 1998 年度まで、底質は 1986 年度から 2001 年度の全期間にわたって調査している。「生物 モニタリング」 ii)では、1978 年度から 1996 年度までの毎年と 1998 年度、2000 年度及び 2001 年度に生物 (貝類、魚類及び鳥類) について調査している (γ -体は 1997 年度以降、 δ -体は 1993 年度以降未実施)。

2002 年度以降のモニタリング調査では、 α -体及び β -体の水質、底質及び生物(貝類、魚類及び鳥類)について 2002 年度から、 α -体及び β -体の大気並びに γ -体及び δ -体の水質、底質、生物(貝類、魚類及び鳥類)及び大気についは 2003 年度からそれぞれ調査を開始し、それ以降、2017 年度までの毎年度及び 2019 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

<水質>

 α -HCH: 水質については、48 地点を調査し、検出下限値 2pg/L において 48 地点全てで検出され、検出 濃度は $tr(2)\sim 640pg/L$ の範囲であった。

2002 年度から 2019 年度における経年分析の結果、河川域、河口域及び海域の減少傾向が統計的に有意と判定された。また、水質全体としても減少傾向が統計的に有意と判定された。

 β -HCH: 水質については、48 地点を調査し、検出下限値 1pg/L において 48 地点全てで検出され、検出 濃度は $17\sim570pg/L$ の範囲であった。

2002 年度から 2019 年度における経年分析の結果、河川域、湖沼域、河口域及び海域の減少傾向が統計的に有意と判定された。また、水質全体としても減少傾向が統計的に有意と判定された。

 γ -HCH (別名: リンデン) : 水質については、48 地点を調査し、検出下限値 2pg/L において 48 地点中 47 地点で検出され、検出濃度は 480pg/L までの範囲であった。

2002年度から2019年度における経年分析の結果、河川域、湖沼域、河口域及び海域の減少傾向が統計的に有意と判定された。また、水質全体としても減少傾向が統計的に有意と判定された。

 δ -HCH: 水質については、48 地点を調査し、検出下限値 0.4pg/L において 48 地点中 46 地点で検出され、 検出濃度は 85pg/L までの範囲であった。 2002年度から2019年度における経年分析の結果、河川域の減少傾向が統計的に有意と判定された。また、水質全体としては調査期間の後期6か年で得られた結果が前期6か年と比べ低値であることが統計的に有意と判定され、減少傾向が示唆された。

○2002 年度から 2019 年度における水質についての α-HCH、β-HCH、ν-HCH 及び δ-HCH の検出状況

○2002 年度から 20	19 年度にま	おける水質に	こついての	α -HCH, β	P-HCH、γ-HC	'H 及び δ-HCE	Iの検出状況
α-НСН	実施年度	幾何 平均值※	中央値	最大値	最小値	定量[検出]	検出頻度
и-псп		平均值※				下限値	検体 地点
	2002	86	76 120	6,500 970 5,700	1.9	0.9 [0.3] 3 [0.9]	114/114 38/38
	2003	120	120	970	13	3 [0.9]	36/36 36/36
	2004	150	145 81	5,700	13	6 [2] 4 [1]	38/38 38/38
	2005	90	81	660	16	4 [1]	47/47 47/47
	2006	110	90 73	2,100 720	25	3 [1]	48/48 48/48
	2007 2008	76 78	75 75	1,100	13 9	1.9 [0.6]	48/48 48/48 48/48 48/48
	2008	76 74	73	560	14	4 [2] 1.2 [0.4]	49/49 49/49
水質	2010	94	75 75	1 400	14	4 [1]	49/49 49/49
(pg/L)	2011	67	60	1,400	11	7 [3]	49/49 49/49
	2012	65	56	1,400 1,000 2,200	9.5	7 [3] 1.4 [0.5]	48/48 48/48
	2013	65 57	55	1,900	9	7 [2]	48/48 48/48
	2014	47	41	700	7.3	4.5 [1.5]	48/48 48/48
	2015	48	40	610	8.7	1.2 [0.4]	48/48 48/48
	2016	38	36	640	5.1	1.1 [0.4]	48/48 48/48
	2017	47	45	680	3.7	0.9 [0.4]	47/47 47/47
-	2019	35	37	640	tr(2)	4 [2]	48/48 48/48
β -HCH	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出頻度
μ-πεπ		平均值※				下限値 1	検体 地点
	2002	210	180	1,600	24	0.9 [0.3]	114/114 38/38
	2003	250	240	1,700	14	3 [0.7]	36/36 36/36
	2004 2005	260 200	250 170	3,400 2,300	31 25	4 [2] 2.6 [0.9]	38/38 38/38 47/47 47/47
	2005	200	160	2,300	42	2.6 [0.9] 1.7 [0.6]	48/48 48/48
	2007	170	150	1,300	18	2.7[0.9]	48/48 48/48
	2007	150	150 150	1,800	15	1.0 [0.4]	48/48 48/48
	2009	150	150	1,100	18	0.6 [0.2]	49/49 49/49
水質	2010	180	160	2,500	33	2.0 [0.7]	49/49 49/49
(pg/L)	2011	130	120	840	28	2.0 [0.8]	49/49 49/49
	2012	150	130	820	17	1.4 [0.5]	48/48 48/48
	2013	130	130	1.100	20	7 [2]	48/48 48/48
	2014	100	110	1.100	$\overline{11}$	1.0 [0.4]	48/48 48/48
	2015	130	120	1,100	21	1.2 [0.4]	48/48 48/48
	2016	100	96 110	1,100	12	1.2 [0.4] 1.8 [0.7]	48/48 48/48
	2017	100	110	830	12	1.8 [0.7]	47/47 47/47
	2019	100	92	570	17	3 [1]	48/48 48/48
γ-HCH	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出]	検出頻度
(別名: リンデン)	2003	平均恒※ 92	90			下限值	<u>検体</u> 地点 36/36 36/36
	2003	92 91	90 76	370	32 21	7 [2] 20 [7] 14 [5]	36/36 36/36
	2004	48	40	8,200 250	tr(8)	20 [7] 14 [5]	38/38 38/38 47/47 47/47
	2006	44	43	460	tr(9)	18 [6]	48/48 48/48
	2007	34	32	290	5.2	2.1 [0.7]	48/48 48/48
	2008	34 32	32 32 26	340	4	3 [1]	48/48 48/48
	2009	32	26	280	5.1	0.6 [0.2]	49/49 49/49
水質	2010	26	22 20	190	tr(5)	6 [2] 3 [1]	49/49 49/49
(pg/L)	2011	23 22	20	170	3	3 [1]	49/49 49/49
	2012	22	21	440	3.0	1.3 [0.4]	48/48 48/48
	2013	21	17	560	3.2 3.5	2.7 [0.8] 1.2 [0.4]	48/48 48/48
	2014	18	18	350	3.5	1.2 [0.4]	48/48 48/48
	2015	17	15	110	2.6	0.9 [0.3]	48/48 48/48
	2016	14	13	130	1.8 2.1	0.8 [0.3]	48/48 48/48 47/47 47/47
	2017 2019	17 14	16 12	190 480		1.4 [0.5] 4 [2]	47/47 47/47 47/48 47/48
	2019	14	12	480	nd	4 [2]	4//48 4//48

<i>δ</i> -HCH	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
0 11011		平均值※				下限値	検体	地点
	2003	14	14	200	tr(1.1)	2 [0.5]	36/36	36/36
	2004	24	29	670	tr(1.4)	2 [0.7]	38/38	38/38
	2005	1.8	nd	62	nd	1.5 [0.5]	23/47	23/47
	2006	24	18	1,000	2.2	2.0 [0.8]	48/48	48/48
	2007	11	9.7	720	tr(0.7)	1.2 [0.4]	48/48	48/48
	2008	11	10	1,900	tr(1.1)	2.3 [0.9]	48/48	48/48
	2009	10	11	450	tr(0.7)	0.9 [0.4]	49/49	49/49
水質	2010	16	17	780	0.9	0.8 [0.3]	49/49	49/49
(pg/L)	2011	8.6	8.9	300	0.7	0.4 [0.2]	49/49	49/49
46)	2012	7.9	6.7	220	tr(0.5)	1.1 [0.4]	48/48	48/48
	2013	8.2	8.9	320	tr(0.6)	1.1 [0.4]	48/48	48/48
	2014	7.1	6.5	590	0.7	0.4 [0.2]	48/48	48/48
	2015	7.2	7.4	310	0.8	0.3 [0.1]	48/48	48/48
	2016	5.5	6.0	920	tr(0.5)	0.8 [0.3]	48/48	48/48
	2017	8.2	8.2	690	tr(0.4)	1.0 [0.4]	47/47	47/47
	2019	5.1	5.3	85	nď	1.0 [0.4]	46/48	46/48

(注1)※:2002年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

(注2) 2018 年度は調査を実施していない。

<底質>

 α -HCH: 底質については、61 地点を調査し、検出下限値 0.4pg/g-dry において 61 地点全てで検出され、 検出濃度は $1.3\sim2$,600pg/g-dry の範囲であった。

2002年度から2019年度における経年分析の結果、河川域の減少傾向が統計的に有意と判定された。また、底質全体としても減少傾向が統計的に有意と判定された。

 β -HCH: 底質については、61 地点を調査し、検出下限値 0.5pg/g-dry において 61 地点全てで検出され、検出濃度は 4.0~4,100pg/g-dry の範囲であった。

2002 年度から 2019 年度における経年分析の結果、河口域の減少傾向が統計的に有意と判定された。

 γ -HCH(別名: リンデン): 底質については、61 地点を調査し、検出下限値 0.4pg/g-dry において 61 地点全てで検出され、検出濃度は $tr(0.6)\sim 2,100$ pg/g-dry の範囲であった。

2003年度から2019年度における経年分析の結果、河川域の減少傾向が統計的に有意と判定された。また、底質全体としても減少傾向が統計的に有意と判定された。

 δ -HCH: 底質については、61 地点を調査し、検出下限値 0.2pg/g-dry において 61 地点全てで検出され、検出濃度は $tr(0.2)\sim 2,500$ pg/g-dry の範囲であった。

2003 年度から 2019 年度における経年分析の結果、河口域の減少傾向が統計的に有意と判定された。また、底質全体としても減少傾向が統計的に有意と判定された。

 \bigcirc 2002 年度から 2019 年度における底質についての α -HCH、 β -HCH、 γ -HCH 及び δ -HCH の検出状況

. , , , , , ,	,						1541 1545	
α-НСН	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2002	150	170	8,200	2.0	1.2 [0.4]	189/189	63/63
	2002	160	170	9,500	2.0	2 [0.5]	186/186	62/62
	2003	160	180	5,700	tr(1.5)	2 [0.6]	189/189	63/63
	2004	140	160	7,000	3.4	1.7 [0.6]	189/189	63/63
	2005	140	160	4,300	tr(2)		192/192	64/64
	2007	140	150	12,000	tr(1.3)	5 [2] 1.8 [0.6]	192/192	64/64
	2007	140	190	5,200	n(1.5)	1.6 [0.6]	191/192	64/64
	2009	120	120	6,300	nd	1.1 [0.4]	191/192	64/64
底質	2010	140	140	3,700	3.1	2.0 [0.8]	64/64	64/64
(pg/g-dry)	2010	120	140	5,100	1.6	1.5 [0.6]	64/64	64/64
	2012	100	100	3,900	tr(1.1)	1.6 [0.5]	63/63	63/63
	2012	94	98	3,200	tr(0.6)	1.5 [0.5]	63/63	63/63
	2013	84	93	4,300	nd	2.4 [0.8]	62/63	62/63
	2015	97	120	9,600	1.1	0.7 [0.3]	62/62	62/62
	2016	64	77	5,000	1.1	0.9 [0.3]	62/62	62/62
	2017	77	86	1,900	1.0	0.5 [0.2]	62/62	62/62
	2019	67	83	2,600	1.3	1.1 [0.4]	61/61	61/61

		幾何				定量[検出]	検出	頻度
β -HCH	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2002	230	230	11,000	3.9	0.9 [0.3]	189/189	63/63
	2003	250	220	39,000	5	2 [0.7]	186/186	62/62
	2004	240	230	53,000	4	3 [0.8]	189/189	63/63
	2005	200	220	13,000	3.9	2.6 [0.9]	189/189	63/63
	2006	190	210	21,000	2.3	1.3 [0.4]	192/192	64/64
	2007	200	190	59,000	1.6	0.9 [0.3]	192/192	64/64
	2008	190	200	8,900	2.8	0.8 [0.3]	192/192	64/64
底質	2009	180	170	10,000	2.4	1.3 [0.5]	192/192	64/64
	2010	230	210	8,200	11	2.4 [0.8]	64/64	64/64
(pg/g-dry)	2011	180	210	14,000	3	3 [1]	64/64	64/64
	2012	160	170	8,300	3.7	1.5 [0.6]	63/63	63/63
	2013	160	170	6,900	4.5	0.4 [0.1]	63/63	63/63
	2014	140	140	7,200	2.9	0.9 [0.3]	63/63	63/63
	2015	160	170	5,900	2.5	0.8 [0.3]	62/62	62/62
	2016	130	160	6,000	3.7	0.9[0.3]	62/62	62/62
	2017	140	110	3,400	5.7	1.5 [0.6]	62/62	62/62
	2019	130	110	4,100	4.0	1.2[0.5]	61/61	61/61
γ-НСН	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
(別名:リンデン)		平均值※				下限値	検体	地点
	2003	51	47	4,000	tr(1.4)	2 [0.4]	186/186	62/62
	2004	53	48	4,100	tr(0.8)	2 [0.5]	189/189	63/63
	2005	49	46	6,400	tr(1.8)	2.0 [0.7]	189/189	63/63
	2006	48	49	3,500	tr(1.4)	2.1 [0.7]	192/192	64/64
	2007	42	41	5,200	tr(0.6)	1.2 [0.4]	192/192	64/64
	2008	40	43	2,200	tr(0.7)	0.9[0.4]	192/192	64/64
	2009	38	43	3,800	nd	0.6[0.2]	191/192	64/64
底質	2010	35	30	2,300	tr(1.5)	2.0 [0.7]	64/64	64/64
(pg/g-dry)	2011	35	42	3,500	nd	3 [1]	62/64	62/64
	2012	30	29	3,500	nd	1.3 [0.4]	61/63	61/63
	2013	33	35	2,100	0.9	0.6[0.2]	63/63	63/63
	2014	27	30	2,600	nd	2.7 [0.9]	61/63	61/63
	2015	29	35	2,800	tr(0.3)	0.5[0.2]	62/62	62/62
	2016	20	25	3,100	tr(0.7)	0.8 [0.3]	62/62	62/62
	2017	23	25	1,900	tr(0.4)	1.0 [0.4]	62/62	62/62
	2019	23	27	2,100	tr(0.6)	1.0 [0.4]	61/61	61/61
γ-НСН	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
(別名:リンデン)		平均值※			取/1、10	下限値	検体	地点
	2003	42	46	5,400	nd	2 [0.7]	180/186	61/62
	2004	55	55	5,500	tr(0.5)	2 [0.5]	189/189	63/63
	2005	52	63	6,200	nd	1.0 [0.3]	188/189	63/63
	2006	45	47	6,000	nd	1.7 [0.6]	189/192	64/64
	2007	26	28	5,400	nd	5 [2]	165/192	60/64
	2008	41	53	3,300	nd	2 [1]	186/192	64/64
	2009	36	37	5,000	nd	1.2 [0.5]	190/192	64/64
底質	2010	39	40	3,800	1.3	1.2 [0.5]	64/64	64/64
(pg/g-dry)	2011	37	47	5,000	nd	1.4 [0.5]	63/64	63/64
	2012	28	28	3,100	nd	0.8[0.3]	62/63	62/63
	2013	31	29	2,500	0.4	0.3 [0.1]	63/63	63/63
	2014	27	26	3,900	0.4	0.4[0.1]	63/63	63/63
	2015	27	28	2,900	tr(0.4)	0.5[0.2]	62/62	62/62
	2016	20	24	6,100	nd	0.5 [0.2]	60/62	60/62
	2017	25	22	1,700	tr(0.2)	0.6[0.2]	62/62	62/62
	2019	22	23	2,500	tr(0.2)	0.5 [0.2]	61/61	61/61
(注 1) ※ , 2002 年日	± 2. 2 0000 /	도 하고 - 선내	トラートントフ	かんいコムトナ	+ Lu 7 a	で発示的値が	A lik H as 616	/

⁽注1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

 α -HCH: 生物のうち貝類については、3 地点を調査し、検出下限値 2pg/g-wet において 3 地点全てで検出され、検出濃度は $4\sim14pg/g$ -wet の範囲であった。魚類については、16 地点を調査し、検出下限値 2pg/g-wet において 16 地点中 12 地点で検出され、検出濃度は 130pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 2pg/g-wet において検出され、検出濃度は 63pg/g-wet であった。

2002 年度から 2019 年度における経年分析の結果、貝類、魚類ともに減少傾向が統計的に有意と判定された。

⁽注2) 2018 年度は調査を実施していない。

 β -HCH: 生物のうち貝類については、3 地点を調査し、検出下限値 1pg/g-wet において 3 地点全てで検出され、検出濃度は $11\sim33$ pg/g-wet の範囲であった。魚類については、16 地点を調査し、検出下限値 1pg/g-wet において 16 地点全で検出され、検出濃度は $3\sim400$ pg/g-wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 950pg/g-wet であった。

2003年度から2019年度における経年分析の結果、魚類の減少傾向が統計的に有意と判定された。

 γ -HCH(別名:リンデン):生物のうち貝類については、3 地点を調査し、検出下限値 1pg/g-wet において 3 地点中 2 地点で検出され、検出濃度は 7pg/g-wet までの範囲であった。魚類については、16 地点を調査し、検出下限値 1pg/g-wet において 16 地点中 13 地点で検出され、検出濃度は 34pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 7pg/g-wet であった。

2003 年度から 2019 年度における経年分析の結果、貝類の減少傾向が統計的に有意と判定された。また、 魚類においては調査期間の後期6か年で得られた結果が前期6か年と比べ低値であることが統計的に有意 と判定され、減少傾向が示唆された。

 δ -HCH: 生物のうち貝類については、3 地点を調査し、検出下限値 2pg/g-wet において 3 地点全てで検出されなかった。魚類については、16 地点を調査し、検出下限値 2pg/g-wet において 16 地点中 6 地点で検出され、検出濃度は 5pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 2pg/g-wet において検出され、検出濃度は 4pg/g-wet であった。

 \bigcirc 2002 年度から 2019 年度における生物(貝類、魚類及び鳥類)についての α -HCH、 β -HCH、 γ -HCH 及び δ -HCH の検出状況

α-НСН	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
α-пСп	天旭十尺	平均值※	中大恒	取八胆	取力怕	下限値	検体	地点
	2002	67	64	1,100	12	4.2 [1.4]	38/38	8/8
	2003	45	30	610	9.9	1.8 [0.61]	30/30	6/6
	2004	56	25	1,800	tr(12)	13 [4.3]	31/31	7/7
	2005	38	25	1,100	tr(7.1)	11 [3.6]	31/31	7/7
	2006	30	21	390	6	3 [1]	31/31	7/7
	2007	31	17	1,400	8	7 [2]	31/31	7/7
	2008	26	16	380	7	6 [2]	31/31	7/7
貝類	2009	45	21	2,200	9	5 [2]	31/31	7/7
	2010	35	20	730	13	3 [1]	6/6	6/6
(pg/g-wet)	2011	64	33	1,200	13	3 [1]	4/4	4/4
	2012	23	12	340	4.0	3.7 [1.2]	5/5	5/5
	2013	30	25	690	6	3 [1]	5/5	5/5
	2014	16	16	39	7	3 [1]	3/3	3/3
	2015	11	15	25	3.5	3.0 [1.0]	3/3	3/3
	2016	13	20	22	5	3 [1]	3/3	3/3
	2017	15	16	32	6	3 [1]	3/3	3/3
	2019	9	12	14	4	4 [2]	3/3	3/3
	2002	57	56	590	tr(1.9)	4.2 [1.4]	70/70	14/14
	2003	43	58	590	2.6	1.8 [0.61]	70/70	14/14
	2004	57	55	2,900	nd	13 [4.3]	63/70	14/14
	2005	42	43	1,000	nd	11 [3.6]	75/80	16/16
	2006	44	53	360	tr(2)	3 [1]	80/80	16/16
	2007	39	40	730	tr(2)	7 [2]	80/80	16/16
	2008	36	47	410	nd	6 [2]	84/85	17/17
魚類	2009	39	32	830	tr(2)	5 [2]	90/90	18/18
(pg/g-wet)	2010	27	39	250	tr(1)	3 [1]	18/18	18/18
(pg/g-wet)	2011	37	54	690	tr(2)	3 [1]	18/18	18/18
	2012	24	32	170	nd	3.7 [1.2]	18/19	18/19
	2013	32	47	320	tr(2)	3 [1]	19/19	19/19
	2014	26	40	210	nd	3 [1]	18/19	18/19
	2015	18	26	180	tr(1.3)	3.0 [1.0]	19/19	19/19
	2016	15	17	81	nd	3 [1]	18/19	18/19
	2017	20	29	130	nd	3 [1]	18/19	18/19
	2019	8	8	130	nd	4 [2]	12/16	12/16

	2002	170	120	260	02	4.0.51.43	10/10	2/2
	2002 2003	170 73	130 74	360 230	93 30	4.2 [1.4] 1.8 [0.61]	10/10 10/10	2/2 2/2
	2004	190	80	1,600	58	13 [4.3]	10/10	2/2
	2005	76	77	85	67	11 [3.6]	10/10	2/2
	2006	76	75	100	55	3 [1]	10/10	2/2
	2007	75 48	59	210	43	7 [2]	10/10	2/2
	2008 2009	48 43	48 42	61 56	32 34	6 [2] 5 [2]	10/10 10/10	2/2 2/2
鳥類	2010	260		430	160	3 [1]	2/2	2/2
(pg/g-wet)	2011			48	48	3 [1]	1/1	1/1
	2012	35		39	32	3.7 [1.2]	2/2	2/2
	2013※※	46		130	16	3 [1]	2/2	2/2
	2014 ※ ※ 2015 ※ ※	61		220 13	17 13	3 [1] 3.0 [1.0]	2/2 1/1	2/2 1/1
	2016**	63		170	23	3 [1]	2/2	2/2
	2017※※	81		930	7	3 [1]	2/2	2/2
	2019※※			63	63	4 [2]	1/1	1/1
β -HCH	実施年度	幾何	中央値	最大値	最小値	定量[検出]		頻度
<i>p</i> -nen		平均值※				下限値		地点
	2002 2003	88 78	62 50	1,700 1,100	32 23	12 [4] 9.9 [3.3]	38/38 30/30	8/8 6/6
	2004	100	74	1,800	22	6.1 [2.0]	31/31	7/7
	2005	85	56	2,000	20	2.2 [0.75]	31/31	7/7
	2006 2007	81 79	70 56	880 1,800	11 21	3 [1] 7 [3]	31/31 31/31	7/7 7/7
	2008	73 83	51	1,100	23 27	6 [2]	31/31	7/7
貝類	2009	83	55	1,600	27	6 [2]	31/31	7/7
(pg/g-wet)	2010 2011	89 130	56 68	1,500 2,000	27 39	3 [1] 3 [1]	6/6 4/4	6/6 4/4
	2012	65	37	980	15	2.0 [0.8]	5/5	5/5
	2013	61	47	710	17	2.2 [0.8]	5/5	5/5
	2014 2015	40 34	35 45	64 69	28 13	2.4 [0.9] 3.0 [1.0]	3/3 3/3	3/3 3/3
	2016	37	47	50	21	3 [1]	3/3	3/3
	2017 2019	39 23	47 32	60 33	21 11	3 [1] 3 [1]	3/3 3/3	3/3 3/3
	2002	110	120	1,800	tr(5)	12 [4]	70/70	14/14
	2003 2004	81 110	96 140	1,100	tr(3.5)	9.9 [3.3]	70/70 70/70	14/14 14/14
	2004	95	110	1,100 1,300	tr(3.9) 6.7	6.1 [2.0] 2.2 [0.75]	80/80	16/16
	2006	89	110	1,100	4 7	3 [1]	80/80	16/16
	2007	110 94	120	810		7 [3] 6 [2]	80/80	16/16 17/17
A. Nort	2008 2009	94 98	150 130	750 970	tr(4) tr(5)	6 [2] 6 [2]	85/85 90/90	18/18
魚類 (pg/g-wet)	2010	81	110	760	5	3 [1]	18/18	18/18
(PB/B Wet)	2011 2012	100 72	140 100	710 510	4 6.5	3 [1] 2.0 [0.8]	18/18 19/19	18/18 19/19
	2012	80	110	420	7.2	2.0 [0.8]	19/19	19/19
	2014	75	140	460	4.4	2.4 [0.9]	19/19	19/19
	2015 2016	56 41	94 65	390 200	6.0 5	3.0 [1.0] 3 [1]	19/19 19/19	19/19 19/19
	2017	54	86	290	4	3 [1]	19/19	19/19
	2019	27	35	400	3	3 [1]	16/16	16/16
	2002 2003	3,000 3,400	3,000 3,900	7,300 5,900	1,600 1,800	12 [4] 9.9 [3.3]	10/10 10/10	2/2 2/2
	2004	2,300	2,100	4,800	1,100	6.1 [2.0]	10/10	2/2
	2005 2006	2,500 2,100	2,800	6,000	930 1,100	2.2 [0.75]	10/10 10/10	2/2 2/2
	2007	2,100	2,400 1,900	4,200 3,200	1,100	3 [1] 7 [3]	10/10	$\frac{2}{2}$
	2008	2,400	2,000	5,600	1,300	6 [2]	10/10	2/2
鳥類	2009 2010	1,600 1,600	1,400	4,200 2,800	870 910	6 [2] 3 [1]	$\frac{10/10}{2/2}$	2/2 2/2
(pg/g-wet)	2010	1,600		4.500	4,500	3 [1]	2/2 1/1	1/1
	2012	1,400		2,600 3,000	730	2.0 [0.8]	2/2	2/2
	2013 ** ** 2014 ** ** 2015 ** **	1,400 290		3,000 3,600	610 24	2.2 [0.8] 2.4 [0.9]	2/2 2/2	2/2 2/2
	2015**	290 		5,000 57	57	3.0 [1.0]	1/1	$\frac{2}{1}$
	2016※※ 2017※※	1,400		2,600	790	3 [1]	2/2	2/2
	2017※※ 2019※※	1,000		3,500 950	300 950	3 [1] 3 [1]	2/2 1/1	2/2 1/1
	2017777			930	730	[1] د	1/1	1/1

γ-НСН		幾何				 定量[検出]	検出頻度
, (別名:リンデン)	実施年度	平均值※	中央値	最大値	最小値	下限値	検体 地点
貝類 (pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019	19 tr(24) 23 18 16 12 14 14 26 8.1 7.2 7.4 7.3 6 4 tr(2)	18 tr(16) 13 12 10 10 12 9 17 3.5 3.9 4.8 7.8 5 3 tr(2)	130 230 370 140 450 98 89 150 320 68 31 18 14 11 11 7	5.2 nd tr(5.7) 7 tr(4) tr(3) tr(3) 5 5 3.0 tr(2.1) 4.6 tr(3.6) 4 tr(2) nd tr(1.7)	3.3 [1.1] 31 [10] 8.4 [2.8] 4 [2] 9 [3] 7 [3] 3 [1] 2.3 [0.9] 2.4 [0.9] 2.2 [0.8] 4.8 [1.6] 3 [1] 3 [1] 4 [1] 3.3 [1.1]	30/30 6/6 28/31 7/7 31/31 7/7 31/31 7/7 31/31 7/7 31/31 7/7 31/31 7/7 6/6 6/6 4/4 4/4 5/5 5/5 5/5 5/5 5/5 5/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 2/3 2/3 70/70 14/14
魚類 (pg/g-wet)	2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019	tr(28) 17 19 15 13 14 9 12 7.8 8.6 8.4 6.1 5 6 tr(3)	tr(24) 17 22 15 16 12 13 15 12 14 7.9 5 9 tr(3)	660 230 97 190 96 180 56 160 43 81 45 42 43 30 34	nd nd tr(2) nd nd nd tr(1) tr(1) nd nd nd nd nd	31 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1] 2.3 [0.9] 2.4 [0.9] 2.2 [0.8] 4.8 [1.6] 3 [1] 3 [1] 4 [1]	55/70 11/14 78/80 16/16 80/80 16/16 71/80 15/16 70/85 15/17 81/90 17/18 18/18 18/18 18/19 18/19 17/19 17/19 16/19 16/19 14/19 14/19 18/19 18/19 16/19 16/19 13/16 13/16
鳥類 (pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013*** 2014*** 2015*** 2016*** 2017*** 2019**	14 64 18 16 21 12 11 10 11 6.0 10 5 4	19 tr(21) 20 17 14 14 11	40 1,200 32 29 140 19 21 23 26 19 24 24 nd 14 20 7	3.7 tr(11) 9.6 8 tr(8) tr(5) tr(6) 4 26 6.3 tr(1.5) 4.4 nd tr(2) tr(1)	3.3 [1.1] 31 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1] 2.3 [0.9] 2.4 [0.9] 2.2 [0.8] 4.8 [1.6] 3 [1] 4 [1]	10/10
δ -HCH	実施年度	幾何 平均值 ※	中央値	最大値	最小值	定量[検出] 下限値	横出頻度 検体 地点
貝類 (pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019	7.4 6.3 5.4 6 4 tr(3) tr(4) 4 9 3 3 tr(1) nd tr(1.7) nd	tr(2.6) tr(2.1) tr(2.1) tr(2.1) tr(2) nd nd tr(2) tr(2) tr(1) tr(1) tr(1) tr(1) nd tr(1) nd	1,300 1,500 1,600 890 750 610 700 870 1,400 580 230 3 tr(1.5) tr(2) 3.0 nd	nd nd nd tr(1) nd nd nd tr(1) nd tr(1) tr(1) nd nd nd nd nd nd nd nd nd	3.9 [1.3] 4.6 [1.5] 5.1 [1.7] 3 [1] 4 [2] 6 [2] 5 [2] 3 [1] 3 [1] 3 [1] 3 [1] 2.1 [0.8] 3 [1] 2.3 [0.9] 4 [2]	29/30 6/6 25/31 6/7 23/31 6/7 31/31 7/7 12/31 4/7 7/31 3/7 14/31 4/7 5/6 5/6 4/4 4/4 3/5 3/5 3/5 3/5 2/3 2/3 1/3 1/3 3/3 3/3 3/3 3/3 0/3 0/3
魚類 (pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019	tr(3.6) tr(4.2) tr(3.2) 4 tr(3) tr(4) tr(3) tr(2) 3 tr(2) 4 tr(2) 2 4 tr(2) dr(1.7) tr(2) 2.4 dr(1.6)	4.0 tr(3.5) tr(3.1) 3 tr(2) tr(3) tr(3) tr(2) 4 tr(2) tr(2) tr(2) tr(2) tr(1.8) tr(2) 2.4 nd	16 270 32 35 31 77 18 36 19 12 40 23 17 10 23 5	nd nd nd nd nd nd nd nd nd nd nd nd nd n	3.9 [1.3] 4.6 [1.5] 5.1 [1.7] 3 [1] 4 [2] 6 [2] 5 [2] 3 [1] 3 [1] 3 [1] 3 [1] 2.1 [0.8] 3 [1] 2.3 [0.9] 4 [2]	59/70 13/14 54/70 11/14 55/80 12/16 72/80 16/16 42/80 10/16 54/85 12/17 57/90 13/18 13/18 13/18 14/18 14/18 14/19 14/19 14/19 14/19 14/19 12/19 12/19 12/19 15/19 15/19 6/16 6/16

	2003	19	18	31	12	3 9 [1 3]	10/10	2/2
	2004	30	14	260	6.4	4.6 [1.5]	10/10	2/2
	2005	16	15	30	10	5.1 [1.7]	10/10	2/2
	2006	13	12	21	9	3 [1] 3	10/10	2/2
	2007	12	10	22	4	4 [2]	10/10	2/2
	2008	9	8	31	tr(3)	6 [2]	10/10	2/2
	2009	.5	6	9	tr(3)	5 [2]	10/10	2/2
鳥類	2010	12		13	11	3 [1]	2/2	2/2
(pg/g-wet)	2011			5	5	3 [1]	1/1	1/1
	2012	4		7	tr(2)	3 [1]	2/2	2/2
	2013※※	3		4	tr(2)	3 [1]	2/2	2/2
	2014※※	tr(2)		3	tr(1)	3 [1]	2/2	2/2
	2015※※			nd	nd	2.1 [0.8]	0/1	0/1
	2016※※	tr(1)		tr(2)	tr(1)	3 [1]	2/2	2/2
	2017※※	nd		tr(1.0)	nd	2.3 [0.9]	1/2	1/2
	2019※※			4	4	4 [2]	1/1	1/1

⁽注 1) ※: 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

 α -HCH: 大気については、36 地点を調査し、検出下限値 0.05pg/m³ において 36 地点全てで検出され、検出濃度は $6.3\sim230$ pg/m³ の範囲であった。

2009 年度から 2019 年度における経年分析の結果、温暖期の減少傾向が統計的に有意と判定された。 β -HCH: 大気については、36 地点を調査し、検出下限値 $0.02 pg/m^3$ において 36 地点全てで検出され、検出濃度は $0.38 \sim 29 pg/m^3$ の範囲であった。

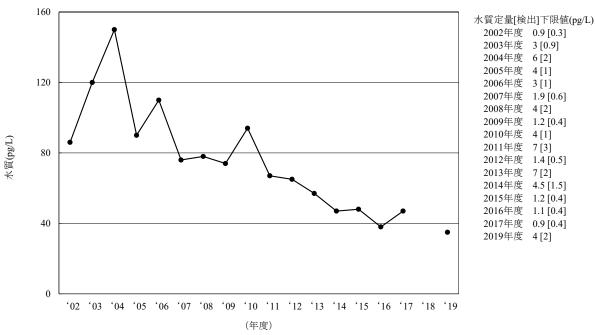
2009 年度から 2019 年度における経年分析の結果、温暖期の減少傾向が統計的に有意と判定された。 γ -HCH(別名:リンデン):大気については、36 地点を調査し、検出下限値 $0.05 pg/m^3$ において 36 地点全てで検出され、検出濃度は $0.88\sim49 pg/m^3$ の範囲であった。

2009 年度から 2019 年度における経年分析の結果、温暖期の減少傾向が統計的に有意と判定された。 δ -HCH: 大気については、36 地点を調査し、検出下限値 $0.02 pg/m^3$ において 36 地点全てで検出され、検出濃度は $tr(0.02)\sim19 pg/m^3$ の範囲であった。

なお、HCH 類の大気については、2003 年度から 2008 年度に用いた大気試料採取装置の一部から HCH 類が検出され、HCH 類の測定に影響を及ぼすことが判明したが、個別のデータについて影響の有無を遡って判断することが困難であるため、この期間の全てのデータについて欠測扱いとすることとした。

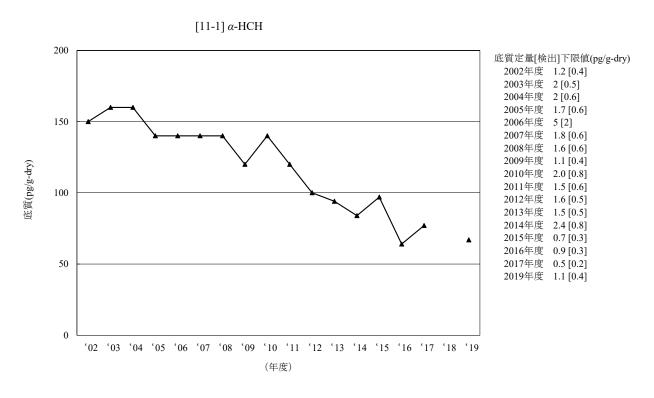
 \bigcirc 2009 年度から 2019 年度における大気についての α -HCH、 β -HCH、 γ -HCH 及び δ -HCH の検出状況

, , , , ,	, , , , , , , , , , , , , , , , , ,	, -, ., ., .		• •	٠,	/~ *	12 41 1 2 4 2	_
α-НСН	実施年度	幾何	世央値 東元	最大値	最小値	定量[検出]	検出	頻度
а-нсн	夫旭午及	平均值	中关他	取入胆	取小胆	下限値	検体	地点
	2009 温暖期	58	58	340	19	0.12 [0.05]	37/37	37/37
	2009 寒冷期	21	18	400	7.8	0.12 [0.05]	37/37	37/37
	2010 温暖期	46	51	280	14	1 4 [0 47]	37/37	37/37
	2010寒冷期	19	16	410	6.8	1.4 [0.47]	37/37	37/37
	2011 温暖期	43	44	410	9.5	2.5.[0.92]	35/35	35/35
	2011 寒冷期	18	15	680	6.5	2.5 [0.83]	37/37	37/37
大気	2012 温暖期	37	37	250	15	2 1 [0.7]	36/36	36/36
	2012 寒冷期	12	11	120	4.4	2.1 [0.7]	36/36	36/36
(pg/m^3)	2013 温暖期	36	39	220	13	5 2 [1 7]	36/36	36/36
	2013 寒冷期	10	8.8	75	tr(3.9)	5.2 [1.7]	36/36	36/36
	2014 温暖期	44	40	650	14	0.19 [0.06]	36/36	36/36
	2015 温暖期	33	32	300	8.8	0.17 [0.06]	35/35	35/35
	2016温暖期	39	35	520	5.4	0.17 [0.07]	37/37	37/37
	2017 温暖期	36	37	700	4.9	0.08 [0.03]	37/37	37/37
	2019 温暖期	21	21	230	6.3	0.12 [0.05]	36/36	36/36


⁽注2) ※※: 鳥類の2013 年度以降における結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。

⁽注3) 2018 年度は調査を実施していない。

0.11011	***	幾何	++++	B 1./±		定量[検出]	検出	頻度
β -HCH	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	2009 温暖期	5.6	5.6	28	0.96	0.09 [0.03]	37/37	37/37
	2009寒冷期	1.8	1.8	24	0.31	0.09 [0.03]	37/37	37/37
	2010温暖期	5.6	6.2	34	0.89	0.27 [0.00]	37/37	37/37
	2010寒冷期	1.7	1.7	29	tr(0.26)	0.27 [0.09]	37/37	37/37
	2011 温暖期	5.0	5.2	49	0.84	0.20.50.123	35/35	35/35
	2011寒冷期	1.7	1.7	91	tr(0.31)	0.39 [0.13]	37/37	37/37
I +	2012 温暖期	5.0	5.5	32	0.65	0.26 [0.12]	36/36	36/36
大気	2012寒冷期	0.93	1.1	8.5	tr(0.26)	0.36 [0.12]	36/36	36/36
(pg/m^3)	2013 温暖期	4.7	5.7	37	0.66	0.04.50.053	36/36	36/36
	2013 寒冷期	0.97	0.95	6.7	tr(0.17)	0.21 [0.07]	36/36	36/36
	2014温暖期	5.4	6.8	74	0.57	0.24 [0.08]	36/36	36/36
	2015 温暖期	3.0	3.0	34	0.36	0.25 [0.08]	35/35	35/35
	2016温暖期	4.8	5.6	64	0.3	0.3 [0.1]	37/37	37/37
	2017温暖期	4.1	5.1	59	0.67	0.11 [0.04]	37/37	37/37
	2019温暖期	2.3	2.4	29	0.38	0.06 [0.02]	36/36	36/36
у-НСН		幾何				定量[検出]		
(別名:リンデン)	実施年度	平均値	中央値	最大値	最小値	下限値	検体	地点
(3)-1	2009 温暖期		19	65	2.9		37/37	37/37
	2009 寒冷期	5.6	4.6	55	1.5	0.06 [0.02]	37/37	37/37
	2010 温暖期		16	66	2.3		37/37	37/37
	2010 無吸期	4.8	4.4	60	1.1	0.35 [0.12]	37/37	37/37
	2011 温暖期		4.4 17	<u>60</u> 98	2.7			35/35
大気		14				1.610.521	35/35	
	2011 寒冷期	5.1	4.8	67	tr(1.1)		37/37	37/37
	2012 温暖期	13	15	55	2.3	0.95 [0.32]	36/36 36/36	36/36
(pg/m^3)	2012 寒冷期	3.1	3.2	19	tr(0.63)			36/36
40	2013 温暖期	12	14	58	tr(2.0)	2.2 [0.7]	36/36	36/36
	2013 寒冷期	2.8	3.0	12	nd		34/36	34/36
	2014 温暖期	14	16	100	1.7	0.17 [0.06]	36/36	36/36
	2015 温暖期	8.3	10	51	1.4	0.19 [0.06]	35/35	35/35
	2016温暖期	12	13	89	0.79	0.18 [0.07]	37/37	37/37
	2017温暖期	10	11	93	0.84	0.10 [0.04]	37/37	37/37
	2019 温暖期	6.4	7.0	49	0.88	0.12 [0.05]	36/36	36/36
δ -HCH	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
<i>0</i> -11C11	天旭干及	平均値	17人世	双八胆	秋/1.11巨	下限値	検体	地点
	2009 温暖期	1.3	1.3	21	0.09	0.04 [0.02]	37/37	37/37
	2009寒冷期	0.36	0.33	20	0.04	0.04 [0.02]	37/37	37/37
	2010温暖期	1.4	1.3	25	0.11	0.05.00.023	37/37	37/37
	2010寒冷期	0.38	0.35	22	0.05	0.05 [0.02]	37/37	37/37
	2011 温暖期	1.1	1.1	33	0.11	0.062.50.0213	35/35	35/35
	2011寒冷期	0.35	0.34	26	tr(0.050)	0.063 [0.021]	37/37	37/37
	2012 温暖期	1.0	1.3	20	tr(0.06)	0.05.50.003	36/36	36/36
大気	2012 寒冷期	0.18	0.19	7.3	nd	0.07 [0.03]	35/36	35/36
(pg/m^3)	2013 温暖期	1.0	1.1	20	tr(0.05)		36/36	36/36
	2013 寒冷期	0.17	0.17	5.3	nd	0.08 [0.03]	34/36	34/36
	2014 温暖期	1.2	1.3	<u>5.5</u> 50	tr(0.07)	0.19 [0.06]	36/36	36/36
	2015 温暖期	0.55	0.71	22	nd	0.15 [0.05]	32/35	32/35
	2016 温暖期	1.0	1.2					
- 2				<u>46</u>	nd	0.20 [0.08]	35/37	35/37
	2017 温暖期	0.80	0.92	46	nd	0.08 [0.03]	36/37	36/37
注) 2002 左座など	2019温暖期	0.46	0.51	19	tr(0.02)	0.04 [0.02]	36/36	36/36


⁽注) 2003 年度から 2008 年度に用いた大気試料採取装置の一部から HCH 類が検出され、HCH 類の測定に影響を及ぼすことが判明したが、個別のデータについて影響の有無を遡って判断することが困難であるため、この期間の全てのデータについて欠測扱いとすることとした。

[11-1] α-HCH

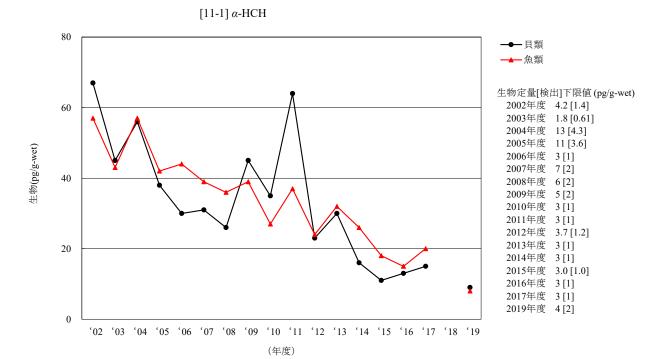

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2018 年度は調査を実施していない。

図 3-11-1-1 α-HCH の水質の経年変化(幾何平均値)

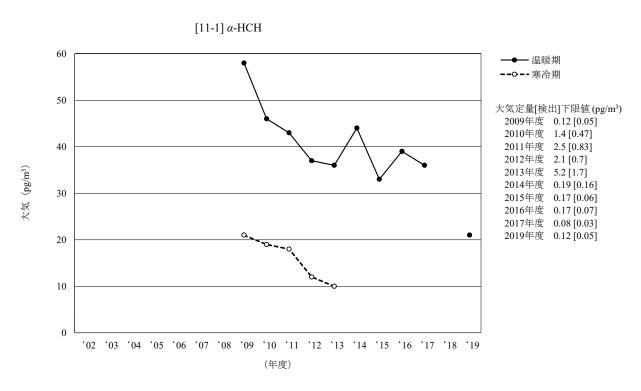
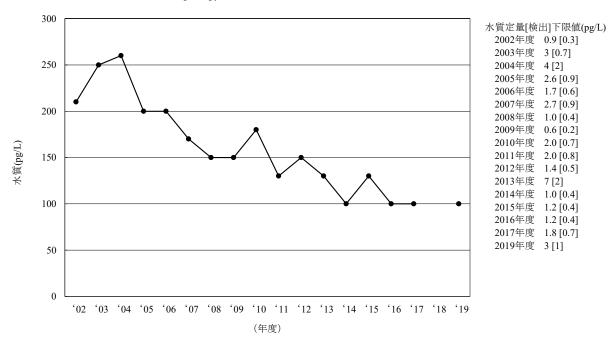
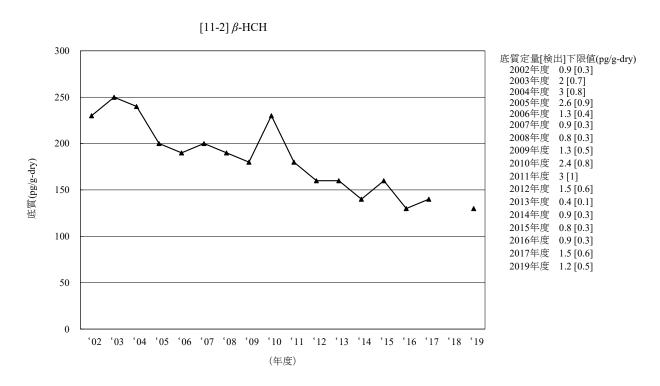

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2018 年度は調査を実施していない。

図 3-11-1-2 α-HCH の底質の経年変化(幾何平均値)

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注3) 2018 年度は調査を実施していない。


図 3-11-1-3 α-HCH の生物の経年変化 (幾何平均値)

- (注1) 2002 年度及び2018 年度は調査を実施していない。
- (注 2) 2002 年度及び 2008 年度は調査を実施していない。また、2003 年度から 2008 年度の全てのデータについては欠 測扱いとした。


図 3-11-1-4 α-HCH の大気の経年変化(幾何平均値)

[11-2] *β*-HCH

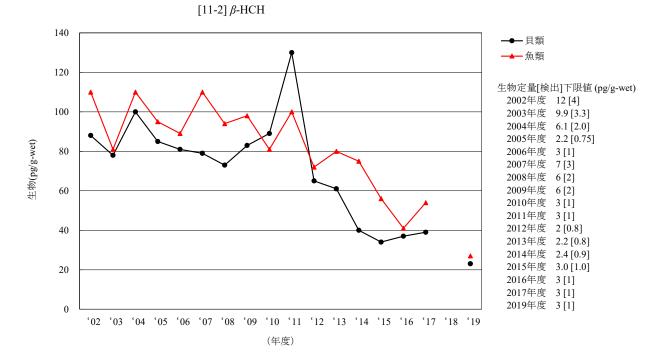

- (注1) 2002 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2018 年度は調査を実施していない。

図 3-11-2-1 β-HCH の水質の経年変化 (幾何平均値)

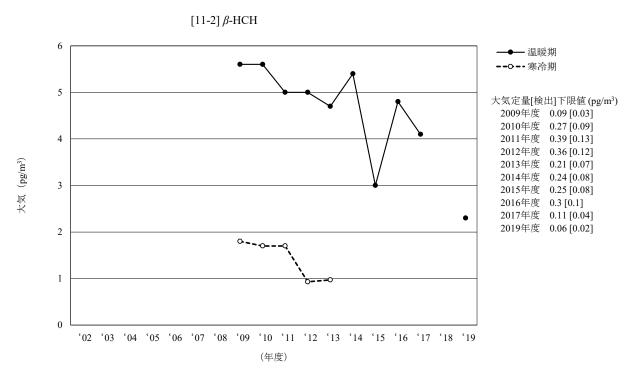
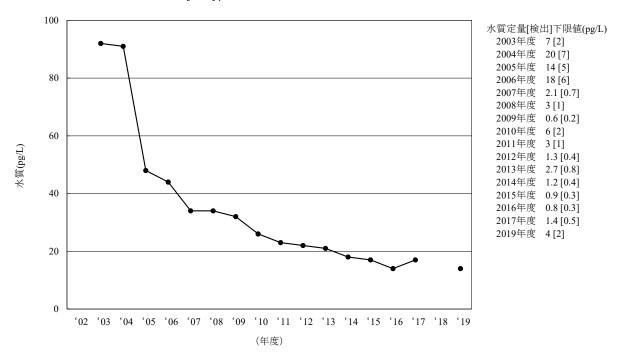
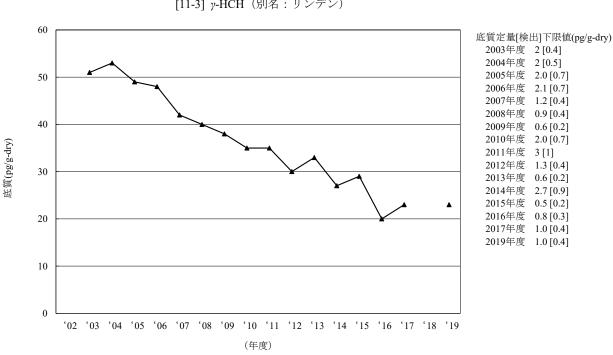

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2018 年度は調査を実施していない。

図 3-11-2-2 β-HCH の底質の経年変化(幾何平均値)

- (注 1) 2002 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注3) 2018 年度は調査を実施していない。


図 3-11-2-3 β-HCH の生物の経年変化(幾何平均値)

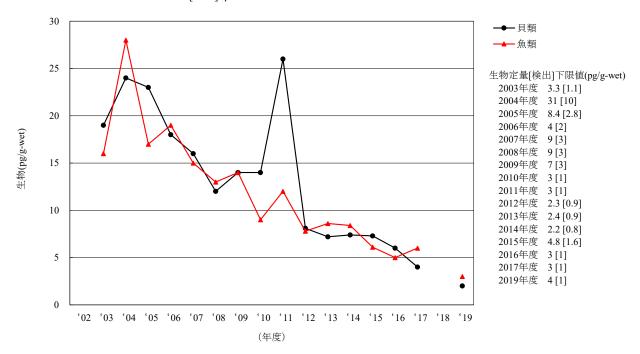
- (注1) 2002 年度及び 2018 年度は調査を実施していない。
- (注 2) 2002 年度及び 2008 年度は調査を実施していない。また、2003 年度から 2008 年度の全てのデータについては欠 測扱いとした。


図 3-11-2-4 β-HCH の大気の経年変化 (幾何平均値)

[11-3] γ-HCH (別名: リンデン)

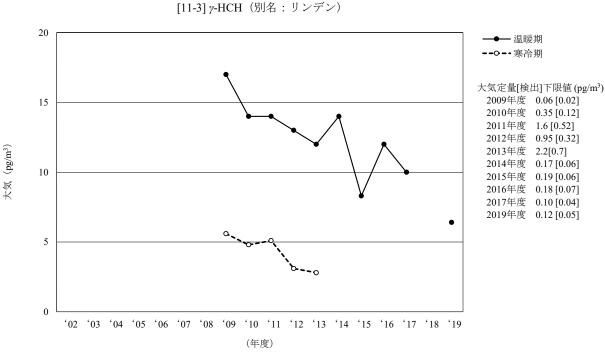
(注) 2002 年度及び 2018 年度は調査を実施していない。

図 3-11-3-1 γ-HCH (別名: リンデン) の水質の経年変化 (幾何平均値)



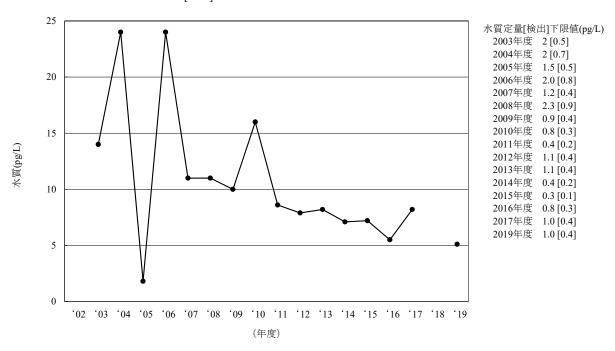
[11-3] γ-HCH (別名:リンデン)

- (注1) 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求め た。
- (注2) 2002 年度及び 2018 年度は調査を実施していない。

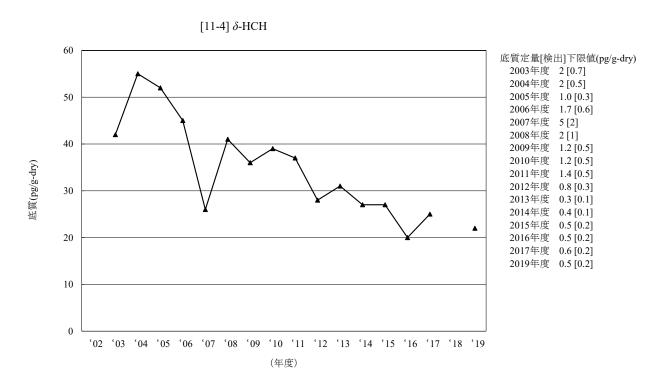

図 3-11-3-2 γ-HCH (別名: リンデン) の底質の経年変化 (幾何平均値)

[11-3] γ-HCH (別名: リンデン)

- (注1) 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求め
- (注2) 鳥類は2013年度に調査地点及び調査対象生物を変更したことから2012年度までと継続性がないため、経年変化 は示していない。
- (注3) 2002 年度及び 2018 年度は調査を実施していない。

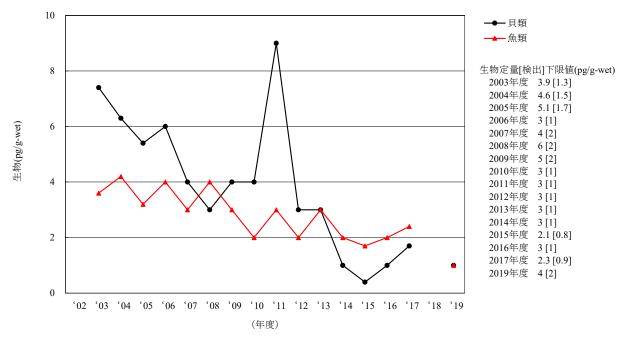

図 3-11-3-3 γ-HCH (別名: リンデン) の生物の経年変化 (幾何平均値)

- (注1) 2002 年度及び 2018 年度は調査を実施していない。
- (注 2) 2002 年度及び 2008 年度は調査を実施していない。また、2003 年度から 2008 年度の全てのデータについては欠 測扱いとした。


図 3-11-3-4 γ-HCH (別名: リンデン) の大気の経年変化 (幾何平均値)

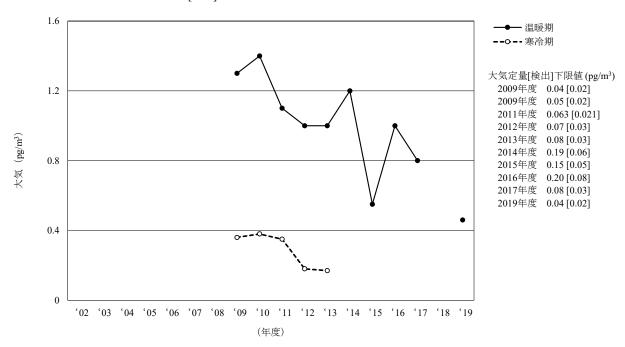
[11-4] δ -HCH

(注) 2002 年度及び 2018 年度は調査を実施していない。


図 3-11-4-1 δ -HCH の水質の経年変化(幾何平均値)

- (注 1) 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2002 年度及び 2018 年度は調査を実施していない。

図 3-11-4-2 δ-HCH の底質の経年変化(幾何平均値)


[11-4] δ -HCH

- (注1) 2003 年度から 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2013 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注3) 2002 年度及び 2018 年度は調査を実施していない。
- (注4) 2015 年度の貝類並びに 2019 年度の貝類及び魚類については幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。

図 3-11-4-3 δ-HCH の生物の経年変化 (幾何平均値)

[11-4] δ -HCH

- (注1) 2002 年度及び 2018 年度は調査を実施していない。
- (注 2) 2002 年度及び 2008 年度は調査を実施していない。また、2003 年度から 2008 年度の全てのデータについては欠 測扱いとした。

図 3-11-4-4 δ-HCH の大気の経年変化(幾何平均値)

[12] クロルデコン (参考)

・調査の経緯及び実施状況

クロルデコンは、有機塩素系殺虫剤の一種である。日本では農薬登録されたことはなく、国内での製造・輸入実績はない。2009年5月に開催されたPOPs条約の第4回条約締約国会議(COP4)において条約対象物質とすることが採択され、2010年4月に化審法に基づく第一種特定化学物質に指定されている。

継続的調査としては 2008 年度が初めての調査であり、2002 年度以降の化学物質環境実態調査の初期環境調査及び詳細環境調査等では、2003 年度に大気の調査を実施している。

2002 年度以降のモニタリング調査では、2008 年度に水質、底質及び生物(貝類、魚類及び鳥類)の調査を、2010 年度及び 2011 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

2012 年度から 2018 年度は調査を実施していないため、参考として以下に、2011 年度までの調査結果を示す。

・2011 年度までの調査結果 (参考)

<水質>

○2008 年度から 2011 年度における水質についてのクロルデコンの検出状況

 フロルデコン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
 水質	2008	nd	nd	0.76	nd	0.14 [0.05]	13/46	13/46
	2010	tr(0.04)	nd	1.6	nd	0.09 [0.04]	13/49	13/49
(pg/L)	2011	nd	nd	0.70	nd	0.20 [0.05]	15/49	15/49

⁽注) 2009 年度は調査を実施していない。

<底質>

○2008 年度から 2011 年度における底質についてのクロルデコンの検出状況

クロルデコン	実施年度	幾何	中央値	最大値 最小値 定量[検出]		検出頻度		
	天旭十尺	平均值※	十大旭	取八胆	秋/1.1匝	下限値	検体	地点
 底質	2008	nd	nd	5.8	nd	0.42 [0.16]	23/129	10/49
	2010	nd	nd	2.8	nd	0.4 [0.2]	9/64	9/64
(pg/g-dry)	2011	nd	nd	1.5	nd	0.40 [0.20]	9/64	9/64

⁽注1) ※: 2008 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

○2008年度から2011年度における生物(貝類、魚類及び鳥類)についてのクロルデコンの検出状況

クロルデコン	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出] 下限値		頻度 地点
	2008	nd	nd	nd	nd	5.6 [2.2]	0/31	0/7
貝類	2010	nd	nd	nd	nd	5.9 [2.3]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	0.5 [0.2]	0/4	0/4
 魚類	2008	nd	nd	nd	nd	5.6 [2.2]	0/85	0/17
	2010	nd	nd	nd	nd	5.9 [2.3]	0/18	0/18
(pg/g-wet)	2011	nd	nd	nd	nd	0.5 [0.2]	0/18	0/18
	2008	nd	nd	nd	nd	5.6 [2.2]	0/10	0/2
	2010	nd		nd	nd	5.9 [2.3]	0/2	0/2
(pg/g-wet)	2011			nd	nd	0.5 [0.2]	0/1	0/1

⁽注1)※: 2008年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2009 年度は調査を実施していない。

⁽注2) 2009 年度は調査を実施していない。

<大気>

○2010年度及び2011年度における大気についてのクロルデコンの検出状況

	. , , , , , , , ,	, -, ., .,	-		12 41 1 1			
クロルデコン	実施年度	幾何	中央値	最大値	最小値	定量[検出]		頻度
<i>y</i> = <i>y</i> = <i>y</i>	人加出十八人	平均値		双八匠	双 1 恒	下限値 1	検体	地点
	2010 温暖期	nd	nd	nd	nd		0/37	0/37
大気	2010寒冷期	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37
(pg/m^3)	2011 温暖期	nd	nd	nd	nd	0.04.00.023	0/35	0/35
	2011 寒冷期	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37

[13] ヘキサブロモビフェニル類(参考)

調査の経緯及び実施状況

ヘキサブロモビフェニル類は、プラスチック製品等の難燃剤として利用されていた。2009 年 5 月に開催された POPs 条約の第 4 回条約締約国会議 (COP4) において条約対象物質とすることが採択され、2010 年 4 月に化審法に基づく第一種特定化学物質に指定されている。

継続的調査としては 2009 年度が初めての調査であり、2001 年度までの調査として「化学物質環境調査」 では、1989 年度に水質、底質、生物(魚類)及び大気の調査を、2002 年度以降の化学物質環境実態調査の初期環境調査及び詳細環境調査等では、2003 年度に水質及び底質の調査を、2004 年度は大気の調査をそれぞれ実施している。

2002 年度以降のモニタリング調査では、2009 年度に水質、底質及び生物(貝類、魚類及び鳥類)の調査を、2010 年度及び 2011 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2015 年度は底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

2016 年度から 2018 年度は調査を実施していないため、参考として以下に、2015 年度までの調査結果を示す。

・2015年度までの調査結果(参考)

<水質>

○2009 年度から 2011 年度における水質についてのヘキサブロモビフェニル類の検出状況

ヘキサブロモ ビフェニル類	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値 ※	検出 検体	頻度 地点
水質	2009	nd	nd	nd	nd	5.7 [2.2]	0/49	0/49
/ / * \	2010	nd	nd	nd	nd	3 [1]	0/49	0/49
(pg/L)	2011	nd	nd	nd	nd	2.2 [0.9]	0/49	0/49

⁽注) ※: 2009 年度及び 2011 年度の定量[検出]下限値は、該当物質ごとの定量[検出]下限値の合計とした。

<底質>

○2009 年度から 2015 年度における底質についてのヘキサブロモビフェニル類の検出状況

へキサブロモ ビフェニル類	実施年度	幾何 平均值 ※	中央値	最大値	最小值	定量[検出] 下限値 ※※	検出 検体	頻度 地点
	2009	nd	nd	12	nd	1.1 [0.40]	45/190	21/64
底質	2010	nd	nd	18	nd	1.5 [0.6]	10/64	10/64
(pg/g-dry)	2011	nd	nd	6.3	nd	3.6 [1.4]	8/64	8/64
	2015	nd	nd	15	nd	0.8 [0.3]	9/62	9/62

- (注1) ※: 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) ※※: 2009 年度及び 2011 年度の定量[検出]下限値は、該当物質ごとの定量[検出]下限値の合計とした。
- (注3) 2012 年度から 2014 年度は調査を実施していない。

<生物>

○2009 年度から 2015 年度における生物(貝類、魚類及び鳥類)についてのヘキサブロモビフェニル類の 検出状況

ヘキサブロモ ビフェニル類	実施年度	幾何 平均値※	中央値	最大値	最小値	定量[検出] 下限値※※	検出 検体	頻度 地点
	2009	nd	nd	tr(0.53)	nd	1.3 [0.43]	1/31	1/7
貝類	2010	nd	nd	nd	nd	24 [10]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	3 [1]	0/4	0/4
	2015	nd	nd	nd	nd	14 [5]	0/3	0/3
	2009	tr(0.49)	tr(0.43)	6.0	nd	1.3 [0.43]	46/90	12/18
魚類	2010	nd	nd	nd	nd	24 [10]	0/18	0/18
(pg/g-wet)	2011	nd	nd	3	nd	3 [1]	5/18	5/18
	2015	nd	nd	nd	nd	14 [5]	0/19	0/19

ヘキサブロモ ビフェニル類	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値 ※※	検出 検体	頻度 地点
	2009	1.6	1.6	2.1	tr(1.2)	1.3 [0.43]	10/10	2/2
鳥類	2010	nd		nd	nd	24 [10]	0/2	0/2
(pg/g-wet)	2011			3	3	3 [1]	1/1	1/1
	2015***			nd	nd	14 [5]	0/1	0/1

- (注 1) ※: 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 (注 2) ※※: 2009 年度及び 2010 年度の定量[検出]下限値は、該当物質ごとの定量[検出]下限値の合計とした。
- (注3) ※※※: 鳥類の2015年度における結果は、調査地点及び調査対象生物を変更したことから、2011年度までの 結果と継続性がない。
- (注4) 2012 年度から 2014 年度は調査を実施していない。

<大気>

○2010年度から2015年度における大気についてのヘキサブロモビフェニル類の検出状況

へキサブロモ ビフェニル類	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
-	2010 温暖期	nd	nd	nd	nd	0.2 [0.1]	0/37	0/37
十层	2010寒冷期	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
()	- 気 <u>2010 寒冷期 nd nd</u> 2011 温暖期 nd nd	nd	nd	0.3 [0.1]	0/35	0/35		
(pg/m ³)	2011寒冷期	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
	2015 温暖期	nd	nd	1.1	nd	0.06 [0.02]	2/35	2/35

⁽注) 2012 年度から 2014 年度は調査を実施していない。

[14] ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)

調査の経緯及び実施状況

ポリブロモジフェニルエーテル類は、プラスチック製品等の難燃剤として利用されていた。2009年5月に開催された POPs 条約の第4回条約締約国会議(COP4)において、ポリブロモジフェニルエーテル類のうちテトラブロモジフェニルエーテル類、ペンタブロモジフェニルエーテル類、ヘキサブロモジフェニルエーテル類及びヘプタブロモジフェニルエーテル類について条約対象物質とすることが採択され、2010年4月に化審法に基づく第一種特定化学物質に指定されている。また、2017年4月から5月に開催された POPs条約の第8回条約締約国会議(COP8)において、デカブロモジフェニルエーテルについて条約対象物質とすることが採択され、2018年4月に化審法に基づく第一種特定化学物質に指定されている。

継続的調査としては2008年度が初めての調査であり、2001年度までの調査として「化学物質環境調査」 iv)では、1977年度に臭素数が10のものについて水質及び底質の調査を、1987年度及び1988年度に臭素数が6、8及び10のものについて水質及び生物(魚類)の調査を、1996年度に臭素数が10のものについて水質及び底質の調査を、2001年度に臭素数が1から7までのものについて大気の調査を、2002年度以降の化学物質環境実態調査の初期環境調査及び詳細環境調査等では、2002年度に臭素数が10のものについて水質、底質及び生物(魚類)の調査を、2003年度に臭素数が6、8及び10のものについて底質及び生物(魚類)の調査を、2004年度に臭素数が5のものについて底質の調査及び臭素数が1から7までのものについて大気の調査を、2004年度に臭素数が5のものについて底質の調査及び臭素数が1から7までのものについて大気の調査を、2005年度に臭素数が1、2、3、4、5、6、7、9及び10のものについて水質の調査をそれぞれ実施している。

2002 年度以降のモニタリング調査では、臭素数が 4 から 10 のものについて、2008 年度に生物(貝類、 魚類及び鳥類)の調査を、2009 年度に水質、底質及び大気の調査を、2010 年度から 2012 年度及び 2014 年 度から 2019 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

<水質>

テトラブロモジフェニルエーテル類:水質については、48 地点を調査し、検出下限値 4pg/L において 48 地点中 39 地点で検出され、検出濃度は 320pg/L までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、水質全体、河川域及び海域では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

ペンタブロモジフェニルエーテル類: 水質については、48 地点を調査し、検出下限値 2pg/L において 48 地点中 19 地点で検出され、検出濃度は 69pg/L までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、水質全体、河川域、河口域及び海域では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

ヘキサブロモジフェニルエーテル類: 水質については、48 地点を調査し、検出下限値 1pg/L において 48 地点中 5 地点で検出され、検出濃度は 8pg/L までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、河川域、河口域及び海域では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

ヘプタブロモジフェニルエーテル類: 水質については、48 地点を調査し、検出下限値 2pg/L において 48

地点中2地点で検出され、検出濃度は6pg/Lまでの範囲であった。

2009 年度から 2019 年度における経年分析の結果、河川域、河口域及び海域では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

オクタブロモジフェニルエーテル類: 水質については、48 地点を調査し、検出下限値 1pg/L において 48 地点中 12 地点で検出され、検出濃度は 14pg/L までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、水質全体では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

ノナブロモジフェニルエーテル類:水質については、48 地点を調査し、検出下限値 3pg/L において 48 地点中 27 地点で検出され、検出濃度は 150pg/L までの範囲であった。

デカブロモジフェニルエーテル: 水質については、48 地点を調査し、検出下限値 6pg/L において 48 地点全てで検出され、検出濃度は $tr(10)\sim 2,200pg/L$ の範囲であった。

○2009 年度から 2019 年度における水質についてのポリブロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)の検出状況

までのもの)の								
テトラブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
ニルエーテル類		平均値			取/1、恒	下限値 1	検体	地点
	2009	17	16	160	nd	8 [3]	44/49	44/49
	2010	nd	nd	390	nd	9 [3]	17/49	17/49
	2011	11	10	180	nd	4 [2]	48/49	48/49
	2012	tr(3)	tr(3)	22	nd	4 [1]	47/48	47/48
水質	2014	tr(6)	tr(6)	51	tr(4)	8 [3]	48/48	48/48
(pg/L)	2015	4.3	4.1	40	tr(1.2)	3.6 [1.2]	48/48	48/48
40 /	2016	5	tr(5)	47	tr(3)	5 [2]	48/48	48/48
	2017	tr(4)	tr(4)	12	nd	9 [3]	44/47	44/47
	2018	nd	nd	72	nd	13 [5]	22/47	22/47
	2019	tr(6)	tr(6)	320	nd	11 [4]	39/48	39/48
ペンタブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類		平均值			取小胆	下限値	検体	地点
	2009	11	12	87	nd	11 [4]	43/49	43/49
	2010	tr(1)	tr(1)	130	nd	3 [1]	25/49	25/49
	2011	5	4	180	nd	3 [1]	48/49	48/49
	2012	tr(1)	tr(1)	20	nd	2 [1]	32/48	32/48
水質	2014	nd	nd	39	nd	4 [2]	19/48	19/48
(pg/L)	2015	tr(3.0)	tr(3.2)	31	nd	6.3 [2.1]	34/48	34/48
	2016	tr(1.5)	tr(1.3)	36	nd	2.4 [0.9]	39/48	39/48
	2017	nd	tr(1)	8	nd	3 [1]	24/47	24/47
	2018	nd	nd	110	nd	9 [3]	13/47	13/47
	2019	nd	nd	69	nd	6 [2]	19/48	19/48
ヘキサブロモジフェ	- 実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
ニルエーテル類		平均值			取小胆	下限値	検体	地点
	2009	tr(0.9)	tr(0.7)	18	nd	1.4 [0.6]	26/49	26/49
	2010	nd	nd	51	nd	4 [2]	16/49	16/49
	2011	tr(1)	nd	39	nd	3 [1]	21/49	21/49
	2012	nd	nd	7	nd	3 [1]	6/48	6/48
水質	2014	nd	nd	8	nd	4 [1]	10/48	10/48
(pg/L)	2015	nd	nd	12	nd	1.5 [0.6]	5/48	5/48
- ·	2016	nd	nd	9.1	nd	2.1 [0.8]	9/48	9/48
	2017	nd	nd	tr(6)	nd	7 [3]	1/47	1/47
	2018	nd	nd	54	nd	3 [1]	15/47	15/47
	2019	nd	nd	8	nd	2[1]	5/48	5/48

ヘプタブロモジフェ		幾何			B 1 /#	定量[検出]	検出	頻度
ニルエーテル類	実施年度	平均値	中央値	最大値	最小値	下限値	検体	地点
	2009	nd	nd	40	nd	4 [2]	9/49	9/49
	2010	nd	nd	14	nd	3 [1]	17/49	17/49
	2011	nd	nd	14	nd	6 [2]	14/49	14/49
	2012	nd	nd	10	nd	4 [1]	9/48	9/48
水質	2014	nd	nd	8	nd	8 [3]	3/48	3/48
(pg/L)	2015	nd	nd	28	nd	2.0 [0.8]	9/48	9/48
(pg/L)	2016	nd	nd	11	nd	7 [3]	10/48	10/48
	2017	nd	nd	30	nd	14 [5]	1/47	1/47
	2018	nd	nd	65	nd	8 [3]	3/47	3/47
	2019	nd	nd	6	nd	4 [2]	2/48	2/48
オクタブロモジフェ	実施年度	幾何	中央値	具土店	最小値	定量[検出]	検出	頻度
ニルエーテル類		平均値		最大値	取小胆	下限値 1	検体	地点
	2009	3.0	3.9	56	nd	1.4 [0.6]	37/49	37/49
	2010	tr(2)	tr(2)	69	nd	3 [1]	40/49	40/49
	2011	4	3	98	nd	2 [1]	44/49	44/49
	2012	tr(2)	nd	35	nd	4 [2]	16/48	16/48
水質	2014	2.5	3.7	38	nd	1.6 [0.6]	33/48	33/48
(pg/L)	2015	2.3	3.1	36	nd	1.5 [0.6]	31/48	31/48
40 /	2016	5.8	7.5	230	nd	0.8 [0.3]	44/48	44/48
	2017	tr(2)	nd	33	nd	2 [1]	22/47	22/47
	2018	tr(2)	tr(1)	69	nd	3 [1]	35/47	35/47
	2019	nd	nd	14	nd	3 [1]	12/48	12/48
ノナブロモジフェニ	実施年度	幾何	中央値	見上は	最小値	定量[検出]	検出	頻度
ルエーテル類	夫旭午及	平均値	中央他	最大値	取小胆	下限値 1	検体	地点
	2009	tr(46)	tr(38)	500	nd	91 [30]	32/49	32/49
	2010	tr(17)	tr(13)	620	nd	21 [7]	32/49 39/49	39/49
	2010 2011	tr(17)	tr(13) 24	620 920		21 [7] 10 [4]	32/49 39/49 47/49	39/49 47/49
	2010 2011 2012	tr(17) 33 tr(21)	tr(13) 24 tr(19)	620 920 320	nd	21 [7] 10 [4] 40 [13]	32/49 39/49 47/49 30/48	39/49 47/49 30/48
水質	2010 2011 2012 2014	tr(17) 33 tr(21) 37	tr(13) 24 tr(19) 38	620 920 320 590	nd nd	21 [7] 10 [4] 40 [13] 6 [2]	32/49 39/49 47/49	39/49 47/49 30/48 47/48
	2010 2011 2012 2014 2015	tr(17) 33 tr(21) 37 36	tr(13) 24 tr(19) 38 33	620 920 320 590 330	nd nd nd nd nd	21 [7] 10 [4] 40 [13] 6 [2] 6 [2]	32/49 39/49 47/49 30/48	39/49 47/49 30/48 47/48
水質 (pg/L)	2010 2011 2012 2014 2015 2016	tr(17) 33 tr(21) 37 36 43	tr(13) 24 tr(19) 38 33 45	620 920 320 590 330 3,900	nd nd nd nd	21 [7] 10 [4] 40 [13] 6 [2]	32/49 39/49 47/49 30/48 47/48	39/49 47/49 30/48 47/48
	2010 2011 2012 2014 2015 2016 2017	tr(17) 33 tr(21) 37 36	tr(13) 24 tr(19) 38 33	620 920 320 590 330	nd nd nd nd nd	21 [7] 10 [4] 40 [13] 6 [2] 6 [2]	32/49 39/49 47/49 30/48 47/48 47/48	39/49 47/49 30/48 47/48
	2010 2011 2012 2014 2015 2016	tr(17) 33 tr(21) 37 36 43	tr(13) 24 tr(19) 38 33 45	620 920 320 590 330 3,900	nd nd nd nd tr(2)	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3]	32/49 39/49 47/49 30/48 47/48 47/48 48/48	39/49 47/49 30/48 47/48 47/48 48/48
(pg/L)	2010 2011 2012 2014 2015 2016 2017 2018 2019	tr(17) 33 tr(21) 37 36 43 17	tr(13) 24 tr(19) 38 33 45 26	620 920 320 590 330 3,900 460	nd nd nd nd tr(2) nd	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1]	32/49 39/49 47/49 30/48 47/48 47/48 48/48 37/47	39/49 47/49 30/48 47/48 47/48 48/48 37/47
(pg/L) <u>デカブロモジフェニ</u>	2010 2011 2012 2014 2015 2016 2017 2018 2019	tr(17) 33 tr(21) 37 36 43 17 12 tr(7)	tr(13) 24 tr(19) 38 33 45 26 12 8	620 920 320 590 330 3,900 460 170 150	nd nd nd nd nd tr(2) nd nd	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3] 6 [2] 8 [3] 定量[検出]	32/49 39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 検出:	39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48
(pg/L)	2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度	tr(17) 33 tr(21) 37 36 43 17 12 tr(7) 幾何 平均値	tr(13) 24 tr(19) 38 33 45 26 12 8	620 920 320 590 330 3,900 460 170 150	nd nd nd nd tr(2) nd nd nd	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3] 6 [2] 8 [3] 定量[検出] 下限値	32/49 39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 検出	39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 頻度 地点
(pg/L) <u>デカブロモジフェニ</u>	2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度	tr(17) 33 tr(21) 37 36 43 17 12 tr(7) 幾何 平均值 tr(310)	tr(13) 24 tr(19) 38 33 45 26 12 8 中央値 tr(220)	620 920 320 590 330 3,900 460 170 150 最大値	nd nd nd nd tr(2) nd nd nd	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3] 6 [2] 8 [3] 定量[検出] 下限値 600 [200]	32/49 39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 検出 検体 26/49	39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 頻度 地点 26/49
(pg/L) <u>デカブロモジフェニ</u>	2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010	tr(17) 33 tr(21) 37 36 43 17 12 tr(7) 幾何 平均值 tr(310) tr(250)	tr(13) 24 tr(19) 38 33 45 26 12 8 中央値 tr(220) tr(200)	620 920 320 590 330 3,900 460 170 150 最大値 3,400 13,000	nd nd nd nd tr(2) nd nd nd tr ad	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3] 6 [2] 8 [3] 定量[検出] 下限値 600 [200] 300 [100]	32/49 39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 検出 検体 26/49 31/49	39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 頻度 地点 26/49 31/49
(pg/L) <u>デカブロモジフェニ</u>	2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011	tr(17) 33 tr(21) 37 36 43 17 12 tr(7) 幾何 平均值 tr(310) tr(250) 200	tr(13) 24 tr(19) 38 33 45 26 12 8 中央値 tr(220) tr(200) 140	620 920 320 590 330 3,900 460 170 150 最大値 3,400 13,000 58,000	nd nd nd nd tr(2) nd nd d 最小值	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3] 6 [2] 8 [3] 定量[検出] 下限値 600 [200] 300 [100] 60 [20]	32/49 39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 検体 26/49 31/49 45/49	39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 類度 地点 26/49 31/49 45/49
(pg/L) デカブロモジフェニ ルエーテル	2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012	tr(17) 33 tr(21) 37 36 43 17 12 tr(7) 幾何 平均値 tr(310) tr(250) 200 tr(400)	tr(13)	620 920 320 590 330 3,900 460 170 150 最大値 3,400 13,000 58,000 12,000	nd nd nd nd tr(2) nd nd d d 最小值 nd nd nd	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3] 6 [2] 8 [3] 定量[検出] 下限値 600 [200] 300 [100] 60 [20] 660 [220]	32/49 39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 検体 26/49 31/49 45/49 31/48	39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 類度 地点 26/49 31/49 45/49 31/48
(pg/L) デカブロモジフェニ ルエーテル 水質	2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012 2014	tr(17) 33 tr(21) 37 36 43 17 12 tr(7) 幾何 平均值 tr(310) tr(250) 200 tr(400) 200	tr(13) 24 tr(19) 38 33 45 26 12 8 中央値 tr(220) tr(200) 140 tr(320) 230	620 920 320 590 330 3,900 460 170 150 最大値 3,400 13,000 58,000 12,000 5,600	nd nd nd nd tr(2) nd nd d 最 小値 nd nd nd tr(14)	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3] 6 [2] 8 [3] 定量[検出] 下限値 600 [200] 300 [100] 60 [20] 660 [220] 22 [9]	32/49 39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 検体 26/49 31/49 45/49 31/48 48/48	39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 類度 地点 26/49 31/49 45/49 31/48 48/48
(pg/L) デカブロモジフェニ ルエーテル	2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012 2014 2015	tr(17) 33 tr(21) 37 36 43 17 12 tr(7) 幾何 平均值 tr(310) tr(250) 200 tr(400) 200 720	tr(13) 24 tr(19) 38 33 45 26 12 8 中央値 tr(220) tr(200) 140 tr(320) 230 570	620 920 320 590 330 3,900 460 170 150 最大値 3,400 13,000 58,000 12,000 5,600 13,000	nd nd nd nd tr(2) nd nd d 基 小值 nd nd nd tr(14) 140	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3] 6 [2] 8 [3] 定量[検出] 下限値 600 [200] 300 [100] 60 [20] 660 [220] 22 [9] 18 [7]	32/49 39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 検体 26/49 31/49 45/49 31/48 48/48	39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 類 連 26/49 31/49 45/49 31/48 48/48
(pg/L) デカブロモジフェニ ルエーテル 水質	2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012 2014 2015 2016	tr(17) 33 tr(21) 37 36 43 17 12 tr(7) 幾何 平均值 tr(310) tr(250) 200 tr(400) 200 720 210	tr(13) 24 tr(19) 38 33 45 26 12 8 中央値 tr(220) tr(200) 140 tr(320) 230 570 160	620 920 320 590 330 3,900 460 170 150 最大値 3,400 13,000 58,000 12,000 5,600 13,000 34,000	nd nd nd nd tr(2) nd nd d d 最小值 nd nd nd tr(14) 140 tr(12)	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3] 6 [2] 8 [3] 定量[検出] 下限値 600 [200] 300 [100] 60 [20] 660 [220] 22 [9] 18 [7] 14 [6]	32/49 39/49 47/49 30/48 47/48 47/48 48/47 26/47 27/48 検体 26/49 31/49 45/49 31/48 48/48 48/48	39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 更 地点 26/49 31/49 45/49 31/48 48/48 48/48
(pg/L) デカブロモジフェニ ルエーテル 水質	2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012 2014 2015 2016 2017	tr(17) 33 tr(21) 37 36 43 17 12 tr(7) 幾何 平均值 tr(310) tr(250) 200 tr(400) 200 720 210 150	tr(13) 24 tr(19) 38 33 45 26 12 8 中央値 tr(220) tr(200) 140 tr(320) 230 570 160 210	620 920 320 590 330 3,900 460 170 150 最大値 3,400 13,000 58,000 12,000 5,600 13,000 34,000 4,100	nd nd nd nd tr(2) nd nd d d tr(14) 140 tr(12) nd	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3] 6 [2] 8 [3] 定量[検出] 下限値 600 [200] 300 [100] 60 [20] 660 [220] 22 [9] 18 [7] 14 [6] 24 [8]	32/49 39/49 47/49 30/48 47/48 47/48 48/47 27/48 (本) 26/49 31/49 45/49 31/48 48/48 48/48 48/48	39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 類度 地点 26/49 31/49 45/49 31/48 48/48 48/48 48/48
(pg/L) デカブロモジフェニ ルエーテル 水質	2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012 2014 2015 2016	tr(17) 33 tr(21) 37 36 43 17 12 tr(7) 幾何 平均值 tr(310) tr(250) 200 tr(400) 200 720 210	tr(13) 24 tr(19) 38 33 45 26 12 8 中央値 tr(220) tr(200) 140 tr(320) 230 570 160	620 920 320 590 330 3,900 460 170 150 最大値 3,400 13,000 58,000 12,000 5,600 13,000 34,000	nd nd nd nd tr(2) nd nd d d 最小值 nd nd nd tr(14) 140 tr(12)	21 [7] 10 [4] 40 [13] 6 [2] 6 [2] 4 [1] 7 [3] 6 [2] 8 [3] 定量[検出] 下限値 600 [200] 300 [100] 60 [20] 660 [220] 22 [9] 18 [7] 14 [6]	32/49 39/49 47/49 30/48 47/48 47/48 48/47 26/47 27/48 検体 26/49 31/49 45/49 31/48 48/48 48/48	39/49 47/49 30/48 47/48 47/48 48/48 37/47 46/47 27/48 更 地点 26/49 31/49 45/49 31/48 48/48 48/48

(注) 2013 年度は調査を実施していない。

<底質>

テトラブロモジフェニルエーテル類: 底質については、61 地点を調査し、検出下限値 2pg/g-dry において 61 地点中 58 地点で検出され、検出濃度は 710pg/g-dry までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、河川域では低濃度地点数の増加傾向が統計的に有意と 判定され、減少傾向が示唆された。

ペンタブロモジフェニルエーテル類: 底質については、61 地点を調査し、検出下限値 1pg/g-dry において 61 地点中 52 地点で検出され、検出濃度は 740pg/g-dry までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、河川域では低濃度地点数の増加傾向が統計的に有意と 判定され、減少傾向が示唆された。

ヘキサブロモジフェニルエーテル類: 底質については、61 地点を調査し、検出下限値 2pg/g-dry において

61 地点中 41 地点で検出され、検出濃度は 690pg/g-dry までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、河川域では低濃度地点数の増加傾向が統計的に有意と 判定され、減少傾向が示唆された。

ヘプタブロモジフェニルエーテル類: 底質については、61 地点を調査し、検出下限値 3pg/g-dry において 61 地点中 39 地点で検出され、検出濃度は 1,400pg/g-dry までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、河川域では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

オクタブロモジフェニルエーテル類: 底質については、61 地点を調査し、検出下限値 1pg/g-dry において 61 地点中 50 地点で検出され、検出濃度は 2,000pg/g-dry までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、河川域では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

ノナブロモジフェニルエーテル類: 底質については、61 地点を調査し、検出下限値 2pg/g-dry において 61 地点中 59 地点で検出され、検出濃度は 40,000pg/g-dry までの範囲であった。

デカブロモジフェニルエーテル: 底質については、61 地点を調査し、検出下限値 2pg/g-dry において 61 地点全てで検出され、検出濃度は $14\sim560,000pg/g$ -dry の範囲であった。

○2009 年度から 2019 年度における底質についてのポリブロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)の検出状況

テトラブロモジフェ		幾何	中 由 /古	日上店	目. J. 店	定量[検出]	検出	頻度
ニルエーテル類	実施年度	平均值※	中央値	最大値	最小值	下限値	検体	地点
	2009	tr(60)	tr(44)	1,400	nd	69 [23]		51/64
	2010	35	38	910	nd	6 [2]		57/64
	2011	32	30	2,600	nd	30 [10]		47/64
	2012	27	37	4,500	nd	2 [1]		60/63
底質	2014	tr(24)	tr(19)	550	nd	27 [9]		44/63
(pg/g-dry)	2015	30	28	1,400	nd	21 [7]	44/62	44/62
	2016	tr(21)	tr(16)	390	nd	33 [11]	35/62	35/62
	2017	13	10	570	nd	9 [4]	44/62	44/62
	2018	21	tr(16)	3,100	nd	18 [6]	43/61	43/61
	2019	15	14	710	nd	5 [2]	58/61	58/61
ペンタブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]		頻度
ニルエーテル類		平均值※			取/1、恒	下限値		地点
	2009	36	24	1,700	nd	24 [8]	146/192	57/64
	2010	26	23	740	nd	5 [2]	58/64	58/64
	2011	24	18	4,700	nd	5 [2]		62/64
	2012	21	21	2,900	nd	2.4 [0.9]		62/63
底質	2014	16	14	570	nd	6 [2]	131/192 57/64 47/64 60/63 44/63 44/62 35/62 44/62 43/61 58/61 検出頻	53/63
(pg/g-dry)	2015	23	20	1,300	nd	18 [6]		44/62
	2016	13	tr(10)	400	nd	12 [4]	46/62	46/62
	2017	10	tr(5.5)	560	nd	9 [4]		37/62
	2018	19	24	2,800	nd	4 [2]	53/61	53/61
	2019	9	9	740	nd	3 [1]		52/61
ヘキサブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]		頻度
ニルエーテル類		平均值※			双/1.1回	下限値		地点
	2009	21	21	2,600	nd	5 [2]		53/64
	2010	23	23	770	nd	4 [2]		57/64
	2011	31	42	2,000	nd	9 [3]		52/64
	2012	15	19	1,700	nd	3 [1]	48/63	48/63
底質	2014	21	27	730	nd	5 [2]	50/63	50/63
(pg/g-dry)	2015	11	15	820	nd	3 [1]	42/62	42/62
	2016	17	19	600	nd	8 [3]	40/62	40/62
	2017	16	24	570	nd	6 [2]	44/62	44/62
	2018	29	37	1,300	nd	3 [1]	52/61	52/61
	2019	14	17	690	nd	4 [2]	41/61	41/61
-								

ヘプタブロモジフェ		幾何				定量[検出]	検出	頻度
ニルエーテル類	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
-	2009	30	25	16,000	nd	9 [4]	125/192	51/64
	2010	28	18	930	nd	4 [2]	58/64	58/64
	2011	29	32	2,400	nd	7 [3]	55/64	55/64
	2012	34	32	4,400	nd	4 [2]	48/63	48/63
底質	2014	19	tr(14)	680	nd	16 [6]	41/63	41/63
(pg/g-dry)	2015	16	21	1,800	nd	3 [1]	44/62	44/62
400 37	2016	16	17	1,100	nd	6 [2]	44/62	44/62
	2017	18	16	580	nd	15 [6]	36/62	36/62
	2018	44	48	1,900	nd	14 [5]	46/61	46/61
	2019	15	11	1,400	nd	6 [3]	39/61	39/61
オクタブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類		平均值※				下限値	検体	地点
	2009	210	96	110,000	nd	1.2 [0.5]	182/192	63/64
	2010	71	76	1,800	nd	10 [4]	60/64	60/64
	2011	57	64	36,000	nd	10 [4]	55/64	55/64
eta EE	2012	78	74	15,000	nd	19 [6]	47/63	47/63
底質	2014	52	58	2,000	nd	12 [4]	55/63	55/63
(pg/g-dry)	2015	58	tr(44)	1,400	nd	48 [16]	41/62	41/62
	2016	51	49	1,400	nd	6 [2]	55/62	55/62
	2017	38	58	1,900	nd	5 [2]	48/62	48/62
	2018	100	140	5,500	nd	1.2 [0.5]	57/61	57/61
	2019	33	47	2,000	nd	3 [1]	50/61	50/61
		△ △ /				A B ELV IIII	77 111	선도 나는
ノナブロモジフェニ ルエーテル類	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	
	実施年度 2009	平均值※	中央値 710	最大値 230,000	最小値 nd	下限値	検出 <u>検体</u> 181/192	頻度 <u>地点</u> 64/64
		幾何 平均値 <u>※</u> 1,100 360			nd	下限値 9 [4]	検体	地点
	2009 2010	平均値 <u>※</u> 1,100 360	710 430	230,000 26,000	nd nd	下限値 9 [4] 24 [9]	<u>検体</u> 181/192 60/64	地点 64/64 60/64
	2009 2010 2011	平均值 <u>※</u> 1,100 360 710	710 430 630	230,000 26,000 70,000	nd nd nd	下限値 9 [4] 24 [9] 23 [9]	検体 181/192 60/64 62/64	地点 64/64 60/64 62/64
ルエーテル類	2009 2010 2011 2012	平均值※ 1,100 360 710 360	710 430 630 380	230,000 26,000 70,000 84,000	nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11]	検体 181/192 60/64 62/64 52/63	地点 64/64 60/64 62/64 52/63
ルエーテル類	2009 2010 2011 2012 2014	平均值※ 1,100 360 710 360 470	710 430 630 380 470	230,000 26,000 70,000 84,000 42,000	nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20]	検体 181/192 60/64 62/64	地点 64/64 60/64 62/64
ルエーテル類	2009 2010 2011 2012 2014 2015	平均值※ 1,100 360 710 360 470 300	710 430 630 380 470 420	230,000 26,000 70,000 84,000	nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8]	検体 181/192 60/64 62/64 52/63 60/63	地点 64/64 60/64 62/64 52/63 60/63
ルエーテル類	2009 2010 2011 2012 2014 2015 2016	平均值※ 1,100 360 710 360 470 300 430	710 430 630 380 470 420 390	230,000 26,000 70,000 84,000 42,000 11,000 26,000	nd nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9]	検体 181/192 60/64 62/64 52/63 60/63 55/62	地点 64/64 60/64 62/64 52/63 60/63 55/62
ルエーテル類	2009 2010 2011 2012 2014 2015 2016 2017	平均值※ 1,100 360 710 360 470 300	710 430 630 380 470 420	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000	nd nd nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5]	検体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62
ルエーテル類	2009 2010 2011 2012 2014 2015 2016	平均值※ 1,100 360 710 360 470 300 430 400	710 430 630 380 470 420 390 490	230,000 26,000 70,000 84,000 42,000 11,000 26,000	nd nd nd nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9]	検体 181/192 60/64 62/64 52/63 60/63 55/62 60/62	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62
ルエーテル類	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019	平均値※ 1,100 360 710 360 470 300 430 400 690 310 幾何	710 430 630 380 470 420 390 490 770 420	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000	nd nd nd nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2] 5 [2]	検体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61
ルエーテル類 底質 (pg/g-dry)	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019	平均值※ 1,100 360 710 360 470 300 430 400 690 310	710 430 630 380 470 420 390 490 770 420	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000 最大値	nd nd nd nd nd nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2] 5 [2] 定量[検出] 下限値	検体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61
ルエーテル類 底質 (pg/g-dry)	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度	平均值※ 1,100 360 710 360 470 300 430 400 690 310 ※ 何 平均値※ 6,000	710 430 630 380 470 420 390 490 770 420 中央値 4,800	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000 最大値 880,000	nd nd nd nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2] 5 [2] 定量[検出]	検体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61
ルエーテル類 底質 (pg/g-dry)	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010	平均值※ 1,100 360 710 360 470 300 430 400 690 310 幾何 平均值※ 6,000 5,100	710 430 630 380 470 420 390 490 770 420 中央値 4,800 4,200	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000 最大値	nd nd nd nd nd nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2] 5 [2] 定量[検出] 下限値	検体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 検出 検体 192/192 60/64	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 類度 地点 64/64
ルエーテル類 底質 (pg/g-dry)	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度	平均值※ 1,100 360 710 360 470 300 430 400 690 310 ※ 何 平均値※ 6,000	710 430 630 380 470 420 390 490 770 420 中央値 4,800	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000 最大値 880,000	nd nd nd nd nd nd nd nd nd td tr(30)	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2] 5 [2] 定量[検出] 下限値 60 [20]	検体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 検体 192/192	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 頻度 地点 64/64
ルエーテル類 底質 (pg/g-dry)	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012	平均值※ 1,100 360 710 360 470 300 430 400 690 310 幾何 平均值※ 6,000 5,100 4,200 5,700	710 430 630 380 470 420 390 490 770 420 中央値 4,800 4,200 4,700 6,300	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000 最大値 880,000 700,000 700,000 760,000	nd nd nd nd nd nd nd nd nd tr(30) nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2] 5 [2] 定量[検出] 下限値 60 [20] 220 [80]	機体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 検体 192/192 60/64 62/64 60/63	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 類度 地点 64/64 60/64 62/64 60/63
ルエーテル類 底質 (pg/g-dry) デカブロモジフェニ ルエーテル	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012 2014	平均值※ 1,100 360 710 360 470 300 430 400 690 310 幾何 平均值※ 6,000 5,100 4,200 5,700 5,600	710 430 630 380 470 420 390 490 770 420 中央値 4,800 4,200 4,700 6,300 5,000	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000 最大値 880,000 700,000 760,000 980,000	nd nd nd nd nd nd nd nd d nd nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2] 定量[検出] 下限値 60 [20] 220 [80] 40 [20] 270 [89] 240 [80]	機体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 検体 192/192 60/64 62/64 60/63 61/63	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 類度 地点 64/64 60/64 62/64 60/63 61/63
ルエーテル類 底質 (pg/g-dry)	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012 2014 2015	平均值※ 1,100 360 710 360 470 300 430 400 690 310 ※何 平均值※ 6,000 5,100 4,200 5,700 5,600 6,600	710 430 630 380 470 420 390 490 770 420 中央値 4,800 4,200 4,700 6,300	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000 最大値 880,000 700,000 700,000 760,000	nd nd nd nd nd nd nd nd nd tr(30) nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2] 5 [2] 定量[検出] 下限値 60 [20] 220 [80] 40 [20] 270 [89]	機体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 検体 192/192 60/64 62/64 60/63	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 類度 地点 64/64 60/64 62/64 60/63
ルエーテル類 底質 (pg/g-dry) デカブロモジフェニ ルエーテル	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012 2014 2015 2016	平均值※ 1,100 360 710 360 470 300 430 400 690 310 ※何 平均値※ 6,000 5,100 4,200 5,700 5,600 6,600 4,700	710 430 630 380 470 420 390 490 770 420 中央値 4,800 4,200 4,700 6,300 5,000 7,200 5,100	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000 最大値 880,000 700,000 700,000 760,000 980,000 490,000 940,000	nd nd nd nd nd nd nd nd d nd nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2] 定量[検出] 下限値 60 [20] 220 [80] 40 [20] 270 [89] 240 [80]	機体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 検体 192/192 60/64 62/64 60/63 61/63 62/62 61/62	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 類度 地点 64/64 60/64 62/64 60/63 61/63 62/62 61/62
ルエーテル類 底質 (pg/g-dry) デカブロモジフェニ ルエーテル	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012 2014 2015 2016 2017	平均值※ 1,100 360 710 360 470 300 430 400 690 310 ※何 平均值※ 6,000 5,100 4,200 5,700 5,600 6,600	710 430 630 380 470 420 390 490 770 420 中央値 4,800 4,200 4,700 6,300 5,000 7,200 5,100 5,700	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000 最大値 880,000 700,000 760,000 980,000 490,000	nd nd nd nd nd nd nd nd nd tr(30) nd nd nd d	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2]	機体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 検体 192/192 60/64 62/64 60/63 61/63 62/62 61/62 62/62	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 類度 地点 64/64 60/64 62/64 60/63 61/63 62/62 61/62 62/62
ルエーテル類 底質 (pg/g-dry) デカブロモジフェニ ルエーテル	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012 2014 2015 2016	平均值※ 1,100 360 710 360 470 300 430 400 690 310 ※何 平均値※ 6,000 5,100 4,200 5,700 5,600 6,600 4,700	710 430 630 380 470 420 390 490 770 420 中央値 4,800 4,200 4,700 6,300 5,000 7,200 5,100	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000 最大値 880,000 700,000 700,000 760,000 980,000 490,000 940,000	nd nd nd nd nd nd nd nd d nd nd nd nd nd	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2] 定量[検出] 下限値 60 [20] 220 [80] 40 [20] 270 [89] 240 [80] 40 [20] 120 [41] 30 [10]	機体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 検体 192/192 60/64 62/64 60/63 61/63 62/62 61/62	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 59/61 類度 地点 64/64 60/64 62/64 60/63 61/63 62/62 61/62
ルエーテル類 底質 (pg/g-dry) デカブロモジフェニ ルエーテル	2009 2010 2011 2012 2014 2015 2016 2017 2018 2019 実施年度 2009 2010 2011 2012 2014 2015 2016 2017 2018 2019	平均值※ 1,100 360 710 360 470 300 430 400 690 310 ※何 平均値※ 6,000 5,100 4,200 5,700 5,600 6,600 4,700 4,600	710 430 630 380 470 420 390 490 770 420 中央値 4,800 4,200 4,700 6,300 5,000 7,200 5,100 5,700 6,300 6,300 6,300	230,000 26,000 70,000 84,000 42,000 11,000 26,000 29,000 56,000 40,000 最大値 880,000 700,000 700,000 760,000 980,000 490,000 940,000 580,000 520,000 560,000	nd nd nd nd nd nd nd nd nd nd nd nd nd n	下限値 9 [4] 24 [9] 23 [9] 34 [11] 60 [20] 24 [8] 27 [9] 15 [5] 5 [2] 定量[検出] 下限値 60 [20] 220 [80] 40 [20] 270 [89] 240 [80] 40 [20] 120 [41]	機体 181/192 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 ** ** ** ** ** ** ** ** ** ** ** ** **	地点 64/64 60/64 62/64 52/63 60/63 55/62 60/62 61/62 60/61 類度 地点 64/64 60/64 62/64 60/63 61/63 62/62 61/62 62/62 61/61 61/61

(注1) ※: 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 (注2) 2013 年度は調査を実施していない。

<生物>

テトラブロモジフェニルエーテル類:生物のうち貝類については、3 地点を調査し、検出下限値 7pg/g-wet において 3 地点全てで検出され、検出濃度は $tr(15)\sim68pg/g$ -wet の範囲であった。魚類については、16 地点を調査し、検出下限値 7pg/g-wet において 16 地点全てで検出され、検出濃度は $tr(10)\sim210pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 7pg/g-wet において検出され、検出濃度は 210pg/g-wet であった。

2008年度から2019年度における経年分析の結果、貝類の減少傾向が統計的に有意と判定された。

ペンタブロモジフェニルエーテル類:生物のうち貝類については、3 地点を調査し、検出下限値 4pg/g-wet において 3 地点全てで検出され、検出濃度は $tr(5)\sim28pg/g$ -wet の範囲であった。魚類については、16 地点を調査し、検出下限値 4pg/g-wet において 16 地点全てで検出され、検出濃度は $tr(4)\sim58pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 4pg/g-wet において検出され、検出濃度は

150pg/g-wet であった。

2008 年度から 2019 年度における経年分析の結果、魚類の減少傾向が統計的に有意と判定された。

ヘキサブロモジフェニルエーテル類:生物のうち貝類については、3 地点を調査し、検出下限値 8pg/g-wet において 3 地点中 1 地点で検出され、検出濃度は 24pg/g-wet であった。魚類については、16 地点を調査し、検出下限値 8pg/g-wet において 16 地点全てで検出され、検出濃度は $tr(12)\sim 290pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 8pg/g-wet において検出され、検出濃度は 480pg/g-wet であった。

ヘプタブロモジフェニルエーテル類:生物のうち貝類については、3 地点を調査し、検出下限値 9pg/g-wet において 3 地点中 1 地点で検出され、検出濃度は tr(18)pg/g-wet であった。魚類については、16 地点を調査し、検出下限値 9pg/g-wet において 16 地点中 9 地点で検出され、検出濃度は 82pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 9pg/g-wet において検出され、検出濃度は 260pg/g-wet であった。

オクタブロモジフェニルエーテル類:生物のうち貝類については、3 地点を調査し、検出下限値 7pg/g-wet において3地点中1地点で検出され、検出濃度は39pg/g-wet であった。魚類については、16 地点を調査し、検出下限値7pg/g-wet において16 地点中8 地点で検出され、検出濃度は120pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値7pg/g-wet において検出され、検出濃度は330pg/g-wet であった。

ノナブロモジフェニルエーテル類: 生物のうち貝類については、3 地点を調査し、検出下限値 20pg/g-wet において 3 地点中 1 地点で検出され、検出濃度は 81pg/g-wet であった。魚類については、16 地点を調査し、検出下限値 20pg/g-wet において 16 地点全てで検出されなかった。鳥類については、1 地点を調査し、検出下限値 20pg/g-wet において検出されなかった。

2008 年度から 2019 年度における経年分析の結果、魚類では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

デカブロモジフェニルエーテル:生物のうち貝類については、3 地点を調査し、検出下限値 70pg/g-wet において 3 地点中 1 地点で検出され、検出濃度は tr(180)pg/g-wet であった。魚類については、16 地点を調査し、検出下限値 70pg/g-wet において 16 地点全てで検出されなかった。鳥類については、1 地点を調査し、検出下限値 70pg/g-wet において検出されなかった。

2008 年度から 2019 年度における経年分析の結果、魚類では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

○2008 年度から 2019 年度における生物(貝類、魚類及び鳥類)についてのポリブロモジフェニルエーテル類(臭素数が4から10までのもの)の検出状況

テトラブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類	天旭十尺	平均值※	十人他	拟八胆	政/1、旧	下限値	検体	地点
	2008	73	61	380	20	5.9 [2.2]	31/31	7/7
	2010	59	73	310	nd	43 [16]	5/6	5/6
	2011	96	120	490	26	16 [6]	4/4	4/4
	2012	59	44	190	24	19 [7]	5/5	5/5
貝類	2014	56	38	140	33	15 [6]	3/3	3/3
(pg/g-wet)	2015	48	38	89	32	15 [6]	3/3	3/3
	2016	42	32	98	23	13 [5]	3/3	3/3
	2017	47	23	200	23	16 [6]	3/3	3/3
	2018	36	26	68	26	14 [5]	3/3	3/3
	2019	26	tr(17)	68	tr(15)	18 [7]	3/3	3/3

	2008	120	110	1,300	9.8	5.9 [2.2]	85/85	17/17
	2010 2011	160 110	170 110	740 860	tr(16) tr(9)	43 [16] 16 [6]	18/18 18/18	18/18 18/18
	2012	120	140	650	tr(10)	19 [7]	19/19	19/19
魚類	2014	150	160	1,300	18	15 [6]	19/19	19/19
(pg/g-wet)	2015	90 76	82 53	580 390	tr(14)	15 [6] 13 [5]	19/19 19/19	19/19 19/19
	2016 2017	80	73	360 360	tr(10) tr(7)	16 [6]	19/19	19/19
	2018	79	61	440	tr(13)	14 [5]	18/18	18/18
	2019	57	62	210	tr(10)	18 [7]	16/16	16/16
	2008	170	190	1,200	32	5.9 [2.2]	10/10	2/2
	2010	140		270 67	72 67	43 [16]	2/2	2/2 1/1
	2011 2012	73		110	49	16 [6] 19 [7]	1/1 2/2	2/2
鳥類	2014**	190		480	78	15 [6]	2/2	2/2
局類 (pg/g-wet)	2015**			36	36	15 [6]	1/1	1/1
(pg/g-wet)	2016**	170		470	62	13 [5]	2/2	2/2
	2017※※	130		660	26	16 [6]	2/2	2/2
	2018※※	290		310	280	14 [5]	2/2	2/2
	2019***			210	210	18 [7]	1/1	1/1
ペンタブロモジフェ		幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類		平均值※				下限値	検体	地点
	2008	32	27	94	tr(11)	16 [5.9]	31/31	7/7
	2010	32 51	37	98	tr(9)	14 [6]	6/6	6/6
	2011 2012	28	60 24	160 67	tr(12) tr(8)	15 [6] 18 [6]	4/4 5/5	4/4 5/5
貝類	2012	30	37	41	18	12 [5]	3/3	3/3
(pg/g-wet)	2015	18	19	20	16	13 [5]	3/3	3/3
400	2016	11	9	20	tr(8)	9 [4]	3/3	3/3
	2017	18	16	62	tr(6)	12 [5]	3/3	3/3
	2018	13	21	23	tr(5)	11 [4]	3/3	3/3
	2019	12 30	12	28	tr(5)	10 [4]	3/3	3/3
	2008 2010	50 51	37 54	280 200	nd nd	16 [5.9] 14 [6]	72/85 16/18	16/17 16/18
	2010	39	39	300	nd	15 [6]	17/18	17/18
	2012	37	54	180	nd	18 [6]	17/19	17/19
魚類	2014	41	47	570	nd	12 [5]	18/19	18/19
(pg/g-wet)	2015	22	17	140	nd	13 [5]	18/19	18/19
	2016	18	14	87	tr(4)	9 [4]	19/19	19/19
	2017 2018	23 21	28 21	87 100	nd nd	12 [5] 11 [4]	18/19 17/18	18/19 17/18
	2018	17	18	58	tr(4)	10 [4]	16/16	16/16
	2008	150	130	440	52	16 [5.9]	10/10	2/2
	2010	150		200	120	14 [6]	2/2	2/2
	2011			110	110	15 [6]	1/1	1/1
卢 來去	2012	85		110	66	18 [6]	2/2	2/2
鳥類 (pg/g-wet)	2014 % % 2015 % %	100		320 22	31 22	12 [5] 13 [5]	2/2 1/1	2/2 1/1
(pg/g-wei)	2015	88		300	26	9 [4]	2/2	2/2
	2017***	77		500	12	12 [5]	2/2	2/2
	2018※※	180		240	140	11 [4]	2/2	2/2
	2019※※			150	150	10 [4]	1/1	1/1
ヘキサブロモジフェ ニルエーテル類	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーナル類	2008	平均恒% 19	16	82	tr(5.3)	<u>下限値</u> 14 [5.0]	<u>検体</u> 31/31	<u>地点</u> 7/7
	2010	8	16	26	u(3.3) nd	8 [3]	4/6	4/6
	2011	38	41	81	20	10 [4]	4/4	4/4
	2012	21	23	130	tr(6)	10 [4]	5/5	5/5
貝類	2014	23	21	52	11	10 [4]	3/3	3/3
(pg/g-wet)	2015	tr(9)	tr(6)	41	nd	12 [5]	2/3	2/3
	2016 2017	tr(13) tr(14)	tr(13) 20	40 36	nd nd	21 [8] 17 [7]	2/3 2/3	2/3 2/3
	2017	tr(12)	tr(12)	34	nd	21 [8]	2/3	2/3
	2019	nd	nd	24	nd	21 [8]	1/3	1/3
	2008	46	51	310	nd	14 [5.0]	83/85	17/17
	2010	39	47	400	nd	8 [3]	16/18	16/18
	2011	53	50	430	nd	10 [4]	17/18	17/18
A ¥石	2012	55 60	71 61	320	nd nd	10 [4]	18/19	18/19
魚類 (pg/g-wet)	2014 2015	60 44	61 45	1,100 250	nd nd	10 [4] 12 [5]	18/19 18/19	18/19 18/19
(hg/g-wei)	2015	42	36	190	nd	21 [8]	18/19	18/19
	2017	49	49	210	nd	17 [7]	18/19	18/19
	2018	44	48	190	nd	21 [8]	17/18	17/18
	2019	42	40	290	tr(12)	21 [8]	16/16	16/16

	2008	140	120	380	62	14 [5.0]	10/10	2/2
	2010	110		140	86	8 [3]	2/2	2/2
	2011			96	96	10 [4]	1/1	1/1
	2012	150		320	72	10 [4]	2/2	2/2
鳥類	2014***	170		680	42	10 [4]	2/2	2/2
(pg/g-wet)	2015***			30	30	12 [5]	1/1	1/1
	2016***	220		740	68	21 [8]	2/2	2/2
	2017※※	230		1,000	51	17 [7]	2/2	2/2
	2018***	650		1,300	330	21 [8]	2/2	2/2
。プロブロエバコ	2019***	 %l% / r		480	480	21 [8]	1/1	1/1
ヘプタブロモジフェ ニルエーテル類	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
一// / / / / / / / / / / / / / / / / / /	2008	tr(8.5)	tr(7.6)	35	nd	18 [6.7]	20/31	7/7
	2010	nd	nd	tr(10)	nd	30 [10]	1/6	1/6
	2011	14	26	44	nd	11 [4]	3/4	3/4
	2012	tr(8)	tr(6)	59	nd	12 [5]	3/5	3/5
貝類	2014	nd	nd	13	nd	12 [5]	1/3	1/3
(pg/g-wet)	2015	nd	nd	tr(11)	nd	12 [5]	1/3	1/3
	2016 2017	nd nd	nd nd	tr(8) tr(9)	nd nd	13 [5] 22 [8]	1/3 1/3	1/3 1/3
	2017	nd	nd	tr(10)	nd	15 [6]	1/3	1/3
	2019	nd	nd	tr(18)	nd	24 [9]	1/3	1/3
	2008	tr(11)	tr(8.1)	77	nd	18 [6.7]	44/85	10/17
	2010	nd	nd	40	nd	30 [10]	4/18	4/18
	2011	13	21	130	nd	11 [4]	13/18	13/18
	2012	tr(11)	18	120	nd	12 [5]	11/19	11/19
魚類	2014	tr(10)	13	280	nd	12 [5]	10/19	10/19
(pg/g-wet)	2015 2016	nd tr(9)	nd tr(7)	44 85	nd nd	12 [5] 13 [5]	4/19 11/19	4/19 11/19
	2017	tr(11)	tr(12)	55	nd	22 [8]	10/19	10/19
	2018	tr(9)	tr(8)	58	nd	15 [6]	11/18	11/18
	2019	tr(10)	tr(10)	82	nd	24 [9]	9/16	9/16
	2008	35	35	53	19	18 [6.7]	10/10	2/2
	2010	tr(19)		70	nd	30 [10]	1/2	1/2
	2011			44	44	11 [4]	1/1	1/1
鳥類	2012	63 19		280	14	12 [5]	2/2	2/2
局現 (pg/g-wet)	2014※※ 2015※※			150 tr(11)	nd tr(11)	12 [5] 12 [5]	1/2 1/1	1/2 1/1
(P5/5 Wet)	2016**	65		220	19	13 [5]	2/2	2/2
	2017※※	89		440	tr(18)	22 [8]	2/2	2/2
	2018※※	230		480	110	15 [6]	2/2	2/2
	2019※※			260	260	24 [9]	1/1	1/1
オクタブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
ニルエーテル類		平均值※				下限値	<u>検体</u>	<u>地点</u>
	2008 2010	nd nd	nd nd	10 tr(10)	nd nd	9.6 [3.6] 11 [4]	15/31 2/6	6/7 2/6
	2010	7	9	29	nd	7 [3]	3/4	3/4
	2012	8	tr(7)	25	nd	8 [3]	4/5	4/5
貝類	2014	tr(9.2)	11	14	tr(5)	11 [4]	3/3	3/3
(pg/g-wet)	2015	nd	nd	nd	nd	14 [5]	0/3	0/3
	2016	nd	nd	nd	nd	16 [6]	0/3	0/3
	2017	nd	nd	tr(9)	nd	20 [8]	1/3	1/3
	2018 2019	nd tr(8)	nd nd	nd 39	nd nd	16 [6] 17 [7]	0/3 1/3	0/3 1/3
	2019	tr(5.7)	nd	73	nd nd	9.6 [3.6]	35/85	7/17
	2010	tr(6)	nd	100	nd	11 [4]	8/18	8/18
	2011	tr(6)	tr(7)	150	nd	7 [3]	10/18	10/18
		11(0)	LI(//		114			12/19
	2012	tr(7)	8	160	nd	8 [3]	12/19	12/19
魚類	2012 2014	tr(7) 14	8 13	160 540	nd nd	8 [3] 11 [4]	15/19	15/19
魚類 (pg/g-wet)	2012 2014 2015	tr(7) 14 tr(7)	8 13 nd	160 540 60	nd nd nd	8 [3] 11 [4] 14 [5]	15/19 9/19	15/19 9/19
	2012 2014 2015 2016	tr(7) 14 tr(7) tr(8)	8 13 nd nd	160 540 60 86	nd nd nd nd	8 [3] 11 [4] 14 [5] 16 [6]	15/19 9/19 9/19	15/19 9/19 9/19
	2012 2014 2015 2016 2017	tr(7) 14 tr(7) tr(8) tr(9.7)	8 13 nd nd nd	160 540 60 86 88	nd nd nd nd nd	8 [3] 11 [4] 14 [5] 16 [6] 20 [8]	15/19 9/19 9/19 9/19	15/19 9/19 9/19 9/19
	2012 2014 2015 2016 2017 2018	tr(7) 14 tr(7) tr(8) tr(9.7) tr(7)	8 13 nd nd nd nd	160 540 60 86 88 74	nd nd nd nd nd nd	8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6]	15/19 9/19 9/19 9/19 8/18	15/19 9/19 9/19 9/19 8/18
	2012 2014 2015 2016 2017 2018 2019	tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(8)	8 13 nd nd nd nd nd	160 540 60 86 88 74 120	nd nd nd nd nd nd	8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7]	15/19 9/19 9/19 9/19 8/18 8/16	15/19 9/19 9/19 9/19 9/19 8/18 8/16
	2012 2014 2015 2016 2017 2018 2019	tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(8) 42	8 13 nd nd nd nd	160 540 60 86 88 74 120	nd nd nd nd nd nd nd	8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6]	15/19 9/19 9/19 9/19 8/18 8/16	15/19 9/19 9/19 9/19 8/18 8/16
	2012 2014 2015 2016 2017 2018 2019	tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(8) 42 41	8 13 nd nd nd nd nd 41	160 540 60 86 88 74 120	nd nd nd nd nd nd	8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3]	15/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1	15/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1
(pg/g-wet)	2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012	tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(8) 42 41 130	8 13 nd nd nd nd nd 41	160 540 60 86 88 74 120 64 65 66 420	nd nd nd nd nd nd 30 26 66 40	8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3]	15/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2	15/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2
(pg/g-wet) ——— 鳥類	2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014***	tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(8) 42 41 130	8 13 nd nd nd nd nd 41 	160 540 60 86 88 74 120 64 65 66 420	nd nd nd nd nd nd 30 26 66 40 nd	8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3]	15/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2	15/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2
(pg/g-wet)	2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014*** 2015**	tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(8) 42 41 130 17	8 13 nd nd nd nd 141 	160 540 60 86 88 74 120 64 65 66 420 140 tr(5)	nd nd nd nd nd nd 30 26 66 40 nd tr(5)	8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5]	15/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2	15/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2
(pg/g-wet) ——— 鳥類	2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014*** 2015*** 2016**	tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(8) 42 41 130 17 65	8 13 nd nd nd nd nd	160 540 60 86 88 74 120 64 65 66 420 140 tr(5) 220	nd nd nd nd nd nd 30 26 66 40 nd tr(5)	8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6]	15/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2 1/1 2/2	15/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2 1/1 2/2
(pg/g-wet) ——— 鳥類	2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014*** 2015*** 2016*** 2017***	tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(8) 42 41 130 17 65 130	8 13 nd nd nd nd nd 41	160 540 60 86 88 74 120 64 65 66 420 140 tr(5) 220 720	nd nd nd nd nd nd 30 26 66 40 nd tr(5) 19	8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8]	15/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2 1/1 2/2 2/2	15/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2 1/1 2/2 2/2
(pg/g-wet) ——— 鳥類	2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014*** 2015*** 2016**	tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(8) 42 41 130 17 65	8 13 nd nd nd nd nd	160 540 60 86 88 74 120 64 65 66 420 140 tr(5) 220	nd nd nd nd nd nd 30 26 66 40 nd tr(5)	8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6]	15/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2 1/1 2/2	15/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2 1/1 2/2

ノナブロモジフェニ _ン エーテル類	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
/エー/ // 類	2008	中均恒次 nd	nd	tr(23)	nd	35 [13]	5/31	1/7
	2010	tr(16)	tr(15)	60	nd	30 [10]	5/6	5/6
	2011	tr(12)	tr(11)	40	nd	22 [9]	3/4	3/4
	2012	tr(15)	25	45	nd	24 [9]	3/5	3/5
貝類	2014	40	tr(20)	110	tr(20)	30 [10]	3/3	3/3
	2015	nd	nd	tr(11)	nd	23 [9]	1/3	1/3
(188)	2016	nd	nd	nd	nd	36 [14]	0/3	0/3
	2017	nd	nd	nd	nd	50 [20]	0/3	0/3
	2018	nd	nd	nd	nd	40 [20]	0/3	0/3
	2019	tr(20)	nd	81	nd	50 [20]	1/3	1/3
	2008	nd	nd	tr(15)	nd	35 [13]	2/85	2/17
	2010	nd	nd	40	nd	30 [10]	3/18	3/18
	2011	nd	nd	tr(15)	nd	22 [9]	5/18	5/18
	2012	nd	nd	54	nd	24 [9]	9/19	9/19
	2014	tr(10)	tr(20)	40	nd	30 [10]	16/19	16/19
(pg/g-wet)	2015	nd	nd	35	nd	23 [9]		6/19
	2016	nd	nd	tr(22)	nd	36 [14]		3/19
	2017	nd	nd	68	nd	50 [20]		1/19
	2018	nd	nd	nd	nd	40 [20]		0/18
	2019	nd	nd	nd	nd	50 [20]		0/16
	2008	tr(21)	tr(20)	tr(33)	nd	35 [13]		2/2
	2010	32		50	tr(20)	30 [10]		2/2
	2011	100		62	62	22 [9]		1/1
鳥類 (pg/g-wet)	2012	100		150	67	24 [9]		2/2
	2014***	tr(10)		tr(20)	tr(10)	30 [10]		2/2
	2015***			tr(12)	tr(12)	23 [9]		1/1
	2016※※	nd d		tr(21)	nd 1	36 [14]		1/2
	2017***	nd 49		nd 52	nd 46	50 [20]	0/2 2/2	0/2 2/2
	2018 ※ ※ 2019 ※ ※	4 9		53 nd	-	40 [20] 50 [20]	0/1	0/1
デカブロエジフェー		幾何			nd			
	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	2008	nd	nd	tr(170)	nd	220 [74]	8/31	3/7
	2010	nd	nd	tr(190)	nd	270 [97]	2/6	2/6
	2011	nd	nd	240	nd	230 [80]	1/4	1/4
	2012	120	170	480	nd	120 [50]	4/5	4/5
貝類	2014	220	tr(150)	570	tr(120)	170 [60]	3/3	3/3
	2015	nd	nď	tr(70)	nď	170 [70]	1/3	1/3
,	2016	nd	nd	tr(110)	nd	300 [100]	1/3	1/3
	2017	nd	nd	tr(180)	nd	210 [80]	1/3	1/3
(pg/g-wet) カブロモジフェニ エーテル 貝類 (pg/g-wet)	2018	nd	nd	nd	nd	240 [80]	0/3	0/3
	2019	nd	nd	tr(180)	nd	190 [70]	1/3	1/3
					IIG	170 70		4/16
	2008	nd	nd	230	nd	220 [74]	5/76	
	2008 2010	nd nd	nd	tr(150)	nd nd	220 [74] 270 [97]	2/18	2/18
	2008 2010 2011	nd nd nd	nd nd	tr(150) tr(90)	nd nd nd	220 [74] 270 [97] 230 [80]	2/18 2/18	2/18 2/18
fa steri	2008 2010 2011 2012	nd nd nd tr(59)	nd nd tr(60)	tr(150) tr(90) 380	nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50]	2/18 2/18 11/19	2/18 2/18 11/19
魚類	2008 2010 2011 2012 2014	nd nd nd tr(59) tr(75)	nd nd tr(60) tr(70)	tr(150) tr(90) 380 300	nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60]	2/18 2/18 11/19 13/19	2/18 2/18 11/19 13/19
魚類 (pg/g-wet)	2008 2010 2011 2012 2014 2015	nd nd nd tr(59) tr(75) nd	nd nd tr(60) tr(70) nd	tr(150) tr(90) 380 300 380	nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70]	2/18 2/18 11/19 13/19 5/19	2/18 2/18 11/19 13/19 5/19
	2008 2010 2011 2012 2014 2015 2016	nd nd nd tr(59) tr(75) nd nd	nd nd tr(60) tr(70) nd nd	tr(150) tr(90) 380 300 380 tr(190)	nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100]	2/18 2/18 11/19 13/19 5/19 7/19	2/18 2/18 11/19 13/19 5/19 7/19
	2008 2010 2011 2012 2014 2015 2016 2017	nd nd nd tr(59) tr(75) nd nd	nd nd tr(60) tr(70) nd nd	tr(150) tr(90) 380 300 380 tr(190) 2,100	nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80]	2/18 2/18 11/19 13/19 5/19 7/19 1/19	2/18 2/18 11/19 13/19 5/19 7/19 1/19
	2008 2010 2011 2012 2014 2015 2016 2017 2018	nd nd nd tr(59) tr(75) nd nd nd	nd nd tr(60) tr(70) nd nd nd	tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110)	nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80]	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18
	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019	nd nd nd tr(59) tr(75) nd nd nd nd	nd nd tr(60) tr(70) nd nd nd nd	tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd	nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70]	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16
	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008	nd nd nd tr(59) tr(75) nd nd nd nd nd	nd nd tr(60) tr(70) nd nd nd nd nd	tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110)	nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74]	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16
	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010	nd nd nd tr(59) tr(75) nd nd nd nd nd	nd nd tr(60) tr(70) nd nd nd nd nd nd	tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd	nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97]	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2
	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011	nd nd tr(59) tr(75) nd nd nd nd nd	nd nd tr(60) tr(70) nd nd nd nd nd nd	tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110) nd tr(170)	nd nd nd nd nd nd nd nd nd nd nd nd nd n	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80]	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1
(pg/g-wet)	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012	nd nd rd tr(59) tr(75) nd nd nd nd nd nd	nd nd tr(60) tr(70) nd nd nd nd nd	tr(150) tr(90) 380 380 380 tr(190) 2,100 tr(110) nd tr(110) nd tr(170) 260	nd nd nd nd nd nd nd nd nd nd nd tr(170) 240	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50]	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2
(pg/g-wet) ——— 鳥類	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014***	nd nd rt(59) tr(75) nd nd nd nd nd nd rd tr(59) tr(75)	nd nd tr(60) tr(70) nd nd nd nd nd	tr(150) tr(90) 380 380 380 380 tr(190) 2,100 tr(110) nd tr(110) 260 tr(140)	nd nd nd nd nd nd nd nd nd tr(170) 240 nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60]	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2
(pg/g-wet)	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014*** 2015**	nd nd rd tr(59) tr(75) nd nd nd nd nd rd tr(55) tr(65)	nd nd tr(60) tr(70) nd nd nd nd nd	tr(150) tr(90) 380 380 380 tr(190) 2,100 tr(110) nd tr(170) 260 tr(140) tr(90)	nd nd nd nd nd nd nd nd nd nd tr(170) 240 nd tr(90)	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70]	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2 1/2	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2 1/1
(pg/g-wet) ——— 鳥類	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014*** 2015*** 2016	nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd rd 250 tr(65) nd	nd nd tr(60) tr(70) nd nd nd nd nd	tr(150) tr(90) 380 380 300 380 tr(190) 2,100 tr(110) nd tr(170) 260 tr(140) tr(90) nd	nd nd nd nd nd nd nd nd nd tr(170) 240 nd tr(90) nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100]	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2 1/1 0/2	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2 1/1 0/2
(pg/g-wet) ——— 鳥類	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014*** 2015**	nd nd rd tr(59) tr(75) nd nd nd nd nd rd tr(55) tr(65)	nd nd tr(60) tr(70) nd nd nd nd nd	tr(150) tr(90) 380 380 380 tr(190) 2,100 tr(110) nd tr(170) 260 tr(140) tr(90)	nd nd nd nd nd nd nd nd nd nd tr(170) 240 nd tr(90)	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70]	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2 1/2	2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2 1/1

⁽注1)※:2008年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

テトラブロモジフェニルエーテル類: 大気については、36 地点を調査し、検出下限値 $0.01 pg/m^3$ において 36 地点全てで検出され、検出濃度は $tr(0.03)\sim5.5 pg/m^3$ の範囲であった。

⁽注 2) ※※: 鳥類の 2014 年度以降における結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。

⁽注3) 2009 年度及び 2013 年度は調査を実施していない。

2009 年度から 2019 年度における経年分析の結果、温暖期の減少傾向が統計的に有意と判定された。

ペンタブロモジフェニルエーテル類:大気については、36 地点を調査し、検出下限値 $0.05pg/m^3$ において 36 地点中 27 地点で検出され、検出濃度は $6.1pg/m^3$ までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、温暖期では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

ヘキサブロモジフェニルエーテル類:大気については、36 地点を調査し、検出下限値 0.05pg/m³ において 36 地点中 15 地点で検出され、検出濃度は 0.79pg/m³ までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、温暖期では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

ヘプタブロモジフェニルエーテル類:大気については、36 地点を調査し、検出下限値 0.1pg/m³ において 36 地点中 24 地点で検出され、検出濃度は 2.7pg/m³ までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、温暖期では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

オクタブロモジフェニルエーテル類: 大気については、36 地点を調査し、検出下限値 0.1pg/m³ において 36 地点中 32 地点で検出され、検出濃度は 2.6pg/m³ までの範囲であった。

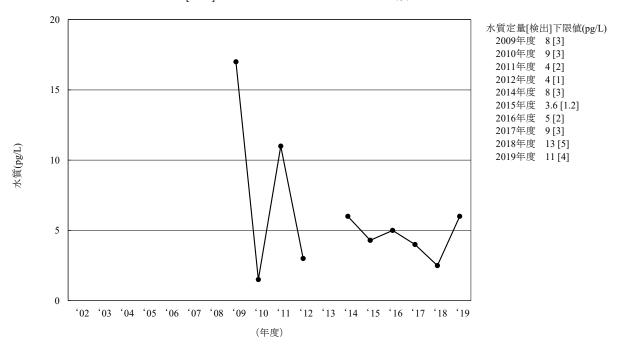
2009 年度から 2019 年度における経年分析の結果、温暖期では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

ノナブロモジフェニルエーテル類: 大気については、36 地点を調査し、検出下限値 $0.1 pg/m^3$ において 36 地点中 34 地点で検出され、検出濃度は $3.1 pg/m^3$ までの範囲であった。

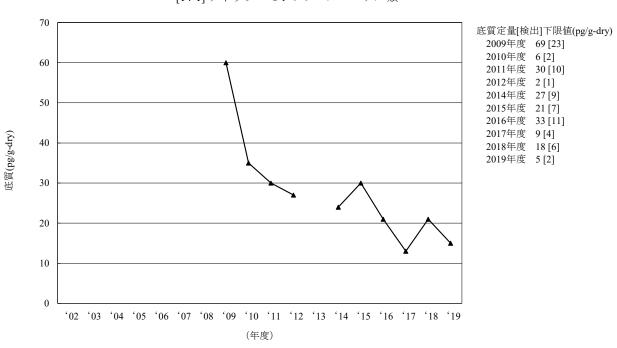
2009 年度から 2019 年度における経年分析の結果、温暖期では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

デカブロモジフェニルエーテル: 大気については、36 地点を調査し、検出下限値 $0.1 pg/m^3$ において 36 地点中 32 地点で検出され、検出濃度は $14 pg/m^3$ までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、温暖期では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。


○2009 年度から 2019 年度における大気についてのポリブロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)の検出状況

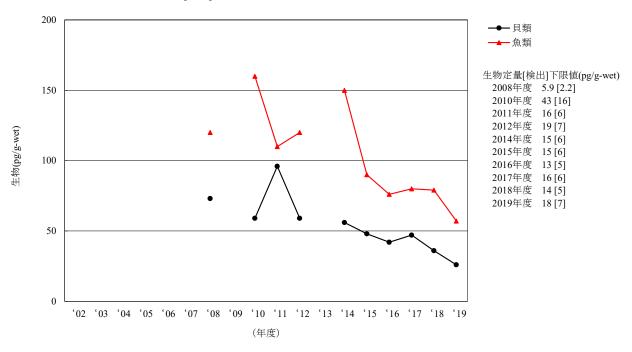
	検出状況							
テトラブロモジフ	ェ 実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類	2009 温暖期	平均值				下限值	検体	地点
		0.89	0.80	18	0.11	0.11 [0.04]	37/37	37/37
	2009 寒冷期 2010 温暖期	0.40	0.37 0.57	7.1 50	tr(0.04) 0.15		37/37 37/37	37/37 37/37
	2010 無碳朔	0.79	0.37	25	tr(0.09)	0.12 [0.05]	37/37	37/37
	2010 冬竹朔	0.80	0.72	9.3	tr(0.11)		35/35	35/35
	2011 寒冷期	0.36	0.72	7.0	nd	0.18 [0.07]	35/37	35/37
大気	2012 温暖期	0.7	0.7	5.7	nd		35/36	35/36
(pg/m^3)	2012 匯級 列	tr(0.2)	tr(0.2)	1.7	nd	0.3 [0.1]	25/36	25/36
(Pg/m ⁻)	2014 温暖期	0.53	0.47	2.3	tr(0.09)	0.28 [0.09]	36/36	36/36
	2015 温暖期	tr(0.3)	tr(0.3)	2.7	nd	0.4 [0.1]	30/35	30/35
	2016 温暖期	0.5	0.4	28	nd	0.4 [0.2]	30/37	30/37
	2017温暖期	0.39	0.34	4.1	tr(0.06)	0.15 [0.05]	37/37	37/37
	2018温暖期	0.28	0.26	3.9	0.05	0.05 [0.02]	37/37	37/37
	2019 温暖期	0.25	0.23	5.5	tr(0.03)	0.04 [0.01]	36/36	36/36
ペンタブロモジフ:		幾何			` '	定量[檢出]	検出	
ニルエーテル類	工 実施年度	平均値	中央値	最大値	最小値	定量[検出] 下限値	検体	地点
	2009 温暖期	0.20	0.19	18	nd		33/37	33/37
	2009 寒冷期	0.19	0.16	10	nd	0.16 [0.06]	29/37	29/37
	2010 温暖期	0.20	0.17	45	nd	0.12.50.053	35/37	35/37
	2010寒冷期	0.20	0.22	28	nd	0.12 [0.05]	34/37	34/37
	2011 温暖期	0.19	0.17	8.8	nd	0.16.50.061	31/35	31/35
	2011寒冷期	0.16	tr(0.14)	2.6	nd	0.16 [0.06]	31/37	31/37
大気	2012 温暖期	tr(0.13)	tr(0.12)	2.4	nd	0.14 [0.06]	30/36	30/36
(pg/m^3)	2012 寒冷期	tr(0.09)	tr(0.09)	0.77	nd	0.14 [0.06]	26/36	26/36
	2014 温暖期	tr(0.13)	tr(0.14)	0.80	nd	0.28 [0.09]	25/36	25/36
	2015 温暖期	nd	nd	0.9	nd	0.6 [0.2]	6/35	6/35
	2016 温暖期	nd	nd	28	nd	0.4 [0.2]	6/37	6/37
	2017温暖期	0.11	0.10	3.4	nd	0.10 [0.04]	33/37	33/37
	2018温暖期	tr(0.08)	nd	4.1	nd	0.20 [0.08]	18/37	18/37
	2019 温暖期	tr(0.10)	tr(0.06)	6.1	nd	0.12 [0.05]	27/36	27/36
					na	[]		
ヘキサブロモジフ	_	幾何				定量[検出]	検出	頻度
ヘキサブロモジフ: ニルエーテル類	工 実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 <u>検体</u>	頻度 地点
	^エ 実施年度 2009 温暖期	幾何 平均値 tr(0.11)	中央値 tr(0.11)	最大値 2.0	最小値 nd	定量[検出] 下限値	検出 <u>検体</u> 19/37	頻度 地点 19/37
	^エ 実施年度 2009 温暖期 2009 寒冷期	幾何 平均値 tr(0.11) tr(0.20)	中央値 tr(0.11) 0.22	最大値 2.0 27	最小値 nd nd	定量[検出]	検出 検体 19/37 24/37	頻度 地点 19/37 24/37
	工 実施年度 2009 温暖期 2009 寒冷期 2010 温暖期	幾何 平均值 tr(0.11) tr(0.20) tr(0.14)	中央値 tr(0.11) 0.22 tr(0.13)	最大値 2.0 27 4.9	最小値 nd nd nd	定量[検出] 下限値 0.22 [0.09]	検出 検体 19/37 24/37 29/37	頻度 地点 19/37 24/37 29/37
	工 実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24	中央値 tr(0.11) 0.22 tr(0.13) 0.27	最大値 2.0 27 4.9 5.4	最小值 nd nd nd nd	定量[検出] 下限値	検出 検体 19/37 24/37 29/37 31/37	頻度 地点 19/37 24/37 29/37 31/37
	生 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10)	最大値 2.0 27 4.9 5.4 1.2	最小値 nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06]	検出 検体 19/37 24/37 29/37 31/37 28/35	頻度 地点 19/37 24/37 29/37 31/37 28/35
ニルエーテル類	生 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 寒冷期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18	最大値 2.0 27 4.9 5.4 1.2 1.7	最小値 nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37
<u>ニルエーテル類</u> 大気	生 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 寒冷期 2012 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1	最小値 nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36
ニルエーテル類	** 実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 寒冷期 2012 温暖期 2012 寒冷期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1)	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5	最小値 nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36
<u>ニルエーテル類</u> 大気	生態 実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 寒冷期 2012 寒冷期 2012 寒冷期 2014 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1)	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5	最小値 nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36
<u>ニルエーテル類</u> 大気	実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 湿暖期 2012 寒冷期 2012 寒冷期 2014 温暖期 2015 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0	最小值 nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35
<u>ニルエーテル類</u> 大気	実施年度 2009 温暖期 2009 寒冷期 2010 寒冷期 2010 寒冷期 2011 温暖朔 2011 鬼冷期 2012 寒冷期 2012 寒冷期 2014 温暖期 2015 温暖期 2016 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7	最小值 nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37
<u>ニルエーテル類</u> 大気	生態 実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 鬼冷期 2012 寒冷期 2012 寒冷期 2014 温暖期 2015 温暖期 2016 温暖期 2017 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1	最小值 nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37
<u>ニルエーテル類</u> 大気	生 実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 鬼冷期 2012 鬼冷期 2012 鬼冷期 2014 温暖期 2015 温暖期 2016 温暖期 2017 温暖期 2018 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37
ニルエーテル類 大気 (pg/m³)	実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 温暖期 2012 温暖期 2014 温暖期 2015 温暖期 2017 温暖期 2018 温暖期 2019 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37
<u>ールエーテル類</u> 大気 (pg/m³)	実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 温暖期 2012 寒冷期 2012 鬼冷期 2014 温暖期 2015 温暖期 2016 温暖期 2017 温暖期 2018 温暖期 2018 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 検出	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度
ニルエーテル類 大気 (pg/m³)	実施年度 2009 温暖期 2009 寒冷期 2010 寒冷期 2010 寒冷期 2011 温暖冷期 2011 湿冷暖期 2012 寒冷期 2012 寒冷期 2014 温暖暖期 2015 温暖暖期 2016 温暖暖期 2017 温暖暖期 2018 温暖暖期 2018 温暖暖期 2019 温暖暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 校出	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点
<u>ールエーテル類</u> 大気 (pg/m³)	実施年度 2009 温暖期 2009 寒冷期 2010 寒傍期 2010 寒傍期 2011 温暖傍期 2011 湿冷暖期 2012 寒傍期 2012 寒傍期 2014 温暖暖期 2015 温暖暖期 2016 温暖暖期 2018 温暖暖期 2018 温暖暖期 2019 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd rd ud tr(0.05) 幾何 平均値 tr(0.1)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd nd nd nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 検出 17/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37
<u>ールエーテル類</u> 大気 (pg/m³)	実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 惠晚期 2011 温暖期 2011 温暖期 2012 墨冷暖期 2014 温暖期 2015 温暖期 2016 温暖期 2017 温暖期 2017 温暖期 2019 温暖期 2019 温暖期 2019 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd rd rd tr(0.05) 幾何 平均値 tr(0.1) tr(0.2)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd nd nd nd nd nd nd nd nd nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値 0.3 [0.1]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 校体 17/37 25/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37
<u>ールエーテル類</u> 大気 (pg/m³)	実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 惠晚期 2011 温暖期 2011 温暖期 2012 墨冷明 2014 温暖期 2015 温暖期 2016 温暖期 2017 温暖期 2017 温暖期 2018 温暖期 2019 温暖期 2019 温暖期 2019 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd rd tr(0.05) 幾何 平均値 tr(0.1) tr(0.2)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd nd nd nd nd r中央値 0.3 tr(0.1)	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20 1.4	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 校体 17/37 25/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37 24/37
<u>ールエーテル類</u> 大気 (pg/m³)	実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 温暖期 2012 鬼冷期 2014 温暖期 2015 温暖暖期 2016 温暖暖期 2017 温暖暖期 2018 温暖暖期 2018 温暖暖期 2019 温暖時 2009 寒冷期 2010 寒冷期 2010 寒冷期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd tr(0.05) 幾何 平均値 tr(0.1) tr(0.2) tr(0.2)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd nd re p中値 nd 0.3 tr(0.1) 0.4	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20 1.4 11	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値 0.3 [0.1] 0.3 [0.1]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 校体 17/37 25/37 24/37 28/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37 24/37 28/37
<u>ールエーテル類</u> 大気 (pg/m³)	実施年度 2009 温暖期 2009 寒冷期 2010 温暖期 2010 寒冷期 2011 温暖期 2011 温暖期 2012 鬼冷期 2014 温暖期 2015 温暖期 2016 温暖期 2017 温暖期 2018 温暖明 2019 温暖期 2019 温暖期 2019 鬼冷明 2009 寒冷期 2010 寒冷期 2010 寒冷期 2010 寒冷期 2011 温暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd rd tr(0.05) 幾何 平均値 tr(0.1) tr(0.2) tr(0.2)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd nd tr(0.1) nd nd nd nd nd nd tr(0.1) 0.3 tr(0.1) 0.4 tr(0.1)	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20 1.4 11 1.1	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値 0.3 [0.1]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 検体 17/37 25/37 24/37 28/37 20/35	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37 24/37 28/37
ニルエーテル類 大気 (pg/m³)	実施年度 2009 温暖期 2009 寒冷期 2010 寒傍期 2010 寒傍期 2011 温暖期 2011 温暖期 2012 寒冷期 2014 温暖期 2015 温暖暖期 2016 温暖暖期 2017 温暖暖期 2018 温暖暖期 2019 温暖暖期 2019 温暖時期 2010 寒冷期 2010 寒冷期 2010 寒冷期 2011 寒冷期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd rd tr(0.05) 幾何 平均値 tr(0.1) tr(0.2) tr(0.2) tr(0.1)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd rtd nd nd rtd nd nd rt(0.1) nd nd rtd nd nd rtd rt(0.1) nd rt(0.1) rt(0.1)	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20 1.4 11 1.1 2.3	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値 0.3 [0.1] 0.3 [0.1]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 検体 17/37 25/37 24/37 28/37 20/35 25/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37 24/37 28/37 20/35 25/37
ニルエーテル類大気 (pg/m³)ヘプタブロモジフ: ニルエーテル類大気	実施年度 2009 温暖期 2009 寒冷期 2010 寒傍期 2010 寒傍期 2011 温暖期 2011 温暖期 2012 鬼傍期 2014 温暖明 2015 温暖暖期 2016 温暖暖期 2018 温暖暖期 2018 温暖暖期 2019 温暖暖期 2019 温暖時期 2010 寒冷期 2010 寒冷期 2010 寒冷期 2011 温暖暖期 2011 温暖暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd tr(0.05) 幾何 平均値 tr(0.1) tr(0.2) tr(0.2) o.3	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd vp央値 nd 0.3 tr(0.1) 0.4 tr(0.1) tr(0.2) nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20 1.4 11 1.1 2.3 1.8	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値 0.3 [0.1] 0.3 [0.1]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 校本 17/37 25/37 24/37 28/37 20/35 25/37 6/36	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37 24/37 28/37 20/35 25/37 6/36
ニルエーテル類 大気 (pg/m³)	実施年度 2009 温暖期 2009 寒冷期 2010 寒傍期 2010 寒傍期 2011 温暖朔 2011 温暖朔 2012 鬼傍期 2014 温暖暖期 2015 温暖暖期 2016 温暖暖期 2018 温暖暖期 2019 温暖暖期 2019 温暖暖期 2019 温暖時期 2010 寒冷明 2010 寒冷期 2010 寒冷期 2011 温暖暖期 2011 温暖時期 2011 温暖時期 2011 鬼冷時期 2011 鬼冷時期 2011 鬼冷時期 2011 寒冷期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd tr(0.05) 幾何 平均値 tr(0.1) tr(0.2) tr(0.2) tr(0.2) o.3	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd tr(0.1) nd nd nd tr(0.1) nd nd nd nd nd nd nd nd nd nd nd nd nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20 1.4 11 1.1 2.3 1.8 0.7	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値 0.3 [0.1] 0.3 [0.1] 0.3 [0.1]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 校出 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36
ニルエーテル類大気 (pg/m³)ヘプタブロモジフ: ニルエーテル類大気	実施年度 2009 温暖期 2009 寒冷期 2010 寒傍期 2010 寒傍期 2011 温暖朔 2011 温暖朔 2012 鬼暖期 2014 温暖暖期 2015 温暖暖期 2016 温暖暖期 2018 温暖暖期 2019 温暖暖期 2019 温暖暖期 2019 温暖時期 2010 寒冷期 2010 鬼冷期 2010 鬼冷期 2011 温暖暖期 2011 温暖暖期 2011 温暖暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd rt(0.05) 幾何 平均値 tr(0.1) tr(0.2) tr(0.2) 0.3 tr(0.1) tr(0.2)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd vp央値 nd 0.3 tr(0.1) 0.4 tr(0.1) tr(0.2) nd nd nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20 1.4 11 1.1 2.3 1.8 0.7 tr(0.4)	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値 0.3 [0.1] 0.3 [0.1] 0.5 [0.2] 0.7 [0.2]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 校出 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36 2/36	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36
ニルエーテル類大気 (pg/m³)ヘプタブロモジフ: ニルエーテル類大気	実施年度 2009 温暖期 2009 寒冷期 2010 寒傍期 2010 寒傍期 2011 温暖朔 2011 温暖朔 2012 温暖朔 2014 温暖暖期 2015 温暖暖期 2016 温暖暖期 2018 温暖暖期 2019 温暖暖期 2019 温暖暖期 2019 温暖傍期 2010 寒冷明期 2010 寒冷明期 2010 寒冷明期 2011 温暖暖期 2011 温暖暖期 2011 温暖暖期	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd tr(0.05) 幾何 平均値 tr(0.1) tr(0.2) tr(0.2) 0.3 tr(0.1) tr(0.2)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd vp央値 nd 0.3 tr(0.1) 0.4 tr(0.1) tr(0.2) nd nd nd	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20 1.4 11 1.1 2.3 1.8 0.7 tr(0.4) tr(0.6)	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値 0.3 [0.1] 0.3 [0.1] 0.5 [0.2] 0.7 [0.2] 1.3 [0.4]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 校出 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36 2/36	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36 2/36
<u>ールエーテル類</u> 大気 (pg/m³) ヘプタブロモジフ: ニルエーテル類 大気	** 実施年度	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd rt(0.05) 幾何 平均値 tr(0.1) tr(0.2) tr(0.2) 0.3 tr(0.1) tr(0.2)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd re nd nd nd nd nd nd nd nd nd n	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20 1.4 11 1.1 2.3 1.8 0.7 tr(0.4) tr(0.6) 1.3	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値 0.3 [0.1] 0.3 [0.1] 0.5 [0.2] 0.7 [0.2] 1.3 [0.4] 1.1 [0.4]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 校出 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36 2/36 1/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36 2/36
ニルエーテル類大気 (pg/m³)ヘプタブロモジフ: ニルエーテル類大気	** 実施年度	幾何 平均值 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd rt(0.05) 幾何 平均值 tr(0.2) tr(0.2) tr(0.2) nd nd	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd re nd nd nd nd nd nd nd nd nd n	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20 1.4 11 1.1 2.3 1.8 0.7 tr(0.4) tr(0.6) 1.3 3.2	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値 0.3 [0.1] 0.3 [0.1] 0.5 [0.2] 0.7 [0.2] 1.3 [0.4] 1.1 [0.4] 0.4 [0.2]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 校出 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36 2/36 1/37 10/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36 2/36
<u>ールエーテル類</u> 大気 (pg/m³) ヘプタブロモジフ: ニルエーテル類 大気	** 実施年度	幾何 平均値 tr(0.11) tr(0.20) tr(0.14) 0.24 tr(0.11) 0.16 nd tr(0.1) nd nd nd rt(0.05) 幾何 平均値 tr(0.1) tr(0.2) tr(0.2) 0.3 tr(0.1) tr(0.2)	中央値 tr(0.11) 0.22 tr(0.13) 0.27 tr(0.10) 0.18 nd tr(0.1) nd nd nd nd re nd nd nd nd nd nd nd nd nd n	最大値 2.0 27 4.9 5.4 1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 1.5 0.79 最大値 1.7 20 1.4 11 1.1 2.3 1.8 0.7 tr(0.4) tr(0.6) 1.3	最小值 nd nd nd nd nd nd nd nd nd nd nd nd nd	定量[検出] 下限値 0.22 [0.09] 0.16 [0.06] 0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] 0.17 [0.06] 0.13 [0.05] 定量[検出] 下限値 0.3 [0.1] 0.3 [0.1] 0.5 [0.2] 0.7 [0.2] 1.3 [0.4] 1.1 [0.4]	検出 検体 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 校出 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36 2/36 1/37	頻度 地点 19/37 24/37 29/37 31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 9/37 15/36 頻度 地点 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36 2/36


オクタブロモジフェ		श्रीर्थ /चा				空具[松田]	検出	哲 由
コクタフロモシフェニルエーテル類	」 実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検体	^{頻及} 地点
一儿工厂厂规	2009 温暖期	tr(0.2)	0.3	1.6	nd		23/37	23/37
						0.3 [0.1]		
	2009 寒冷期 2010 温暖期	0.3	0.4	7.1 2.3	nd 1		26/37	26/37
				2.3 6.9	nd	0.15 [0.06]	30/37	30/37
	2010寒冷期 2011温暖期	0.40	0.52	1.9	nd 1		32/37	32/37
			0.31		nd	0.20 [0.08]	27/35	27/35
1. 🖨	2011 寒冷期	0.35	0.44	7.0	nd nd		30/37	30/37
大気	2012 温暖期	tr(0.2)	tr(0.2)	1.2	nd	0.3 [0.1]	29/36	29/36
(pg/m^3)	2012 寒冷期	0.3	0.4	1.2	nd		30/36	30/36
	2014 温暖期	tr(0.1)	tr(0.1)	0.7	nd	0.4 [0.1]	22/36	22/36
	2015 温暖期	nd	nd	3.8	nd	1.1 [0.4]	9/35	9/35
	2016温暖期	nd	nd	1.6	nd	0.6 [0.2]	18/37	18/37
	2017温暖期	tr(0.19)	0.23	5.7	nd	0.21 [0.07]	28/37	28/37
	2018温暖期	0.15	0.14	1.3	nd	0.11 [0.04]	34/37	34/37
	2019温暖期	tr(0.2)	tr(0.2)	2.6	nd	0.3 [0.1]	32/36	32/36
ノナブロモジフェニ	- 実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
ルエーテル類		平均値				下限値	検体	地点
	2009 温暖期	tr(0.7)	tr(0.7)	3.0	nd	1.8 [0.6]	22/37	22/37
	2009 寒冷期	tr(1.0)	tr(0.8)	3.9	nd	1.6 [0.0]	27/37	27/37
	2010 温暖期	nd	nd	24	nd	3.7 [1.2]	12/37	12/37
	2010寒冷期	tr(1.2)	tr(1.3)	7.1	nd	3.7 [1.2]	22/37	22/37
	2011 温暖期	tr(0.8)	0.9	3.9	nd	0.0.0.41	29/35	29/35
	2011 寒冷期	1.1	1.1	14	nd	0.9 [0.4]	30/37	30/37
大気	2012 温暖期	tr(0.5)	tr(0.5)	5.1	nd	1 2 [0 4]	24/36	24/36
(pg/m^3)	2012 寒冷期	tr(0.9)	tr(1.1)	4.7	nd	1.2 [0.4]	30/36	30/36
40	2014 温暖期	nd	nd	tr(3)	nd	4 [1]	7/36	7/36
	2015 温暖期	nd	nd	12	nd	3.2 [1.1]	14/35	14/35
	2016温暖期	tr(0.9)	tr(0.9)	11	nd	1.4 [0.5]	28/37	28/37
	2017 温暖期	0.8	0.8	40	nd	0.6 [0.2]	31/37	31/37
	2018 温暖期	0.5	0.7	3.0	nd	0.4 [0.2]	31/37	31/37
	2019 温暖期	0.5	0.7	3.1	nd	0.3 [0.1]	34/36	34/36
デカブロモジフェニ	_	幾何				定量[検出]	検出	
ルエーテル	実施年度	平均値	中央値	最大値	最小値	下限値	検体	地点
·	2009 温暖期	tr(7)	tr(9)	31	nd		28/37	28/37
	2009 寒冷期	tr(10)	tr(11)	45	nd	16 [5]	29/37	29/37
	2010 温暖期	nd	nd	290	nd		10/37	10/37
	2010寒冷期	tr(11)	tr(12)	88	nd	27 [9.1]	21/37	21/37
	2011 温暖期	tr(8.2)	tr(9.0)	30	nd		31/35	31/35
	2011 寒冷期	tr(8.4)	tr(9.0)	44	nd	12 [4.0]	29/37	29/37
大気	2012 温暖期	nd	nd	31	nd		17/36	17/36
(pg/m^3)	2012 無吸朔	tr(10)	tr(12)	73	nd	16 [5]	28/36	28/36
(hg/m)	2012 冬	tr(4.7)	tr(5.0)		nd	9 [3]	24/36	24/36
	2015 温暖期	4.2	4.3	61	nd	2.2 [0.7]	30/35	30/35
	2015 温暖期		<u>4.3</u> 5	86			35/37	35/37
	2016 温暖期 2017 温暖期	<u>5</u> 4.2			nd nd	3 [1]		
	2017 温暖期 2018 温暖期	2.6	4.4	140	nd 1	2.4 [0.8]	34/37	34/37
			3.4	19	nd	2.0 [0.8]	31/37	31/37
(注) 2012 年 庄 注	2019 温暖期	1.8	2.6	14	nd	0.3 [0.1]	32/36	32/36

⁽注) 2013 年度は調査を実施していない。

[14-1] テトラブロモジフェニルエーテル類

- (注1) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。
- (注 2) 2010 年度及び 2018 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。
- 図 3-14-1-1 テトラブロモジフェニルエーテル類の水質の経年変化(幾何平均値)



[14-1] テトラブロモジフェニルエーテル類

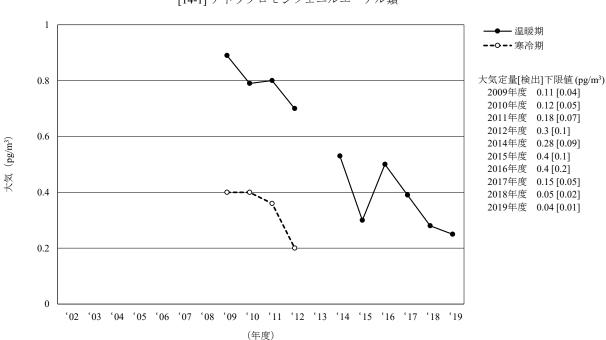
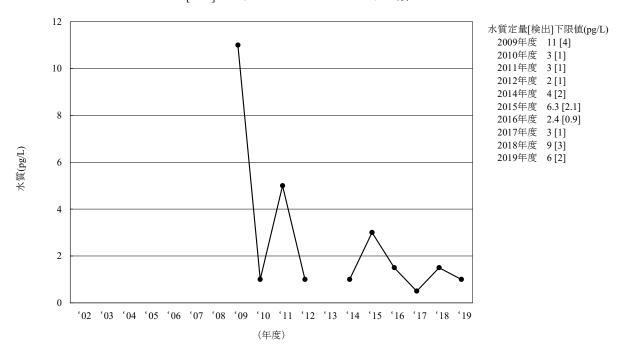

(注) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。

図 3-14-1-2 テトラブロモジフェニルエーテル類の底質の経年変化(幾何平均値)

[14-1] テトラブロモジフェニルエーテル類

- (注 1) 鳥類は 2014 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注2) 2002 年度から 2007 年度、2009 年度及び 2013 年度は調査を実施していない。
- 図 3-14-1-3 テトラブロモジフェニルエーテル類の生物の経年変化(幾何平均値)



[14-1] テトラブロモジフェニルエーテル類

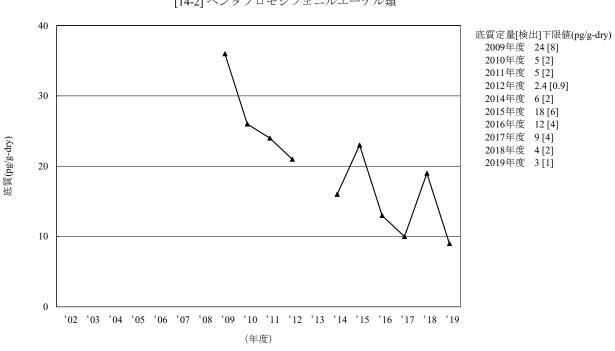
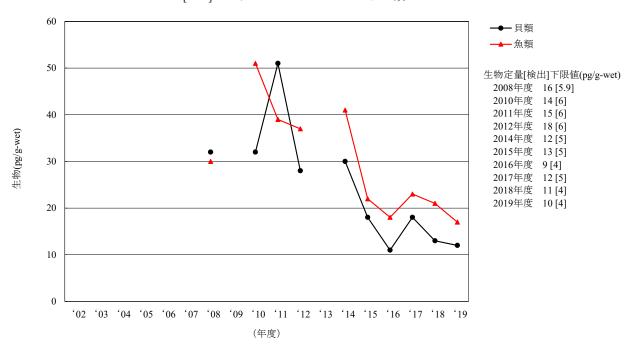

(注) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。

図 3-14-1-4 テトラブロモジフェニルエーテル類の大気の経年変化(幾何平均値)

[14-2] ペンタブロモジフェニルエーテル類

- (注1) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。
- (注 2) 2014年度、2017年度、2018年度及び2019年度は幾何平均値が検出下限値未満であったため、検出下限値の1/2 の値を図示した。
- 図 3-14-2-1 ペンタブロモジフェニルエーテル類の水質の経年変化(幾何平均値)



[14-2] ペンタブロモジフェニルエーテル類

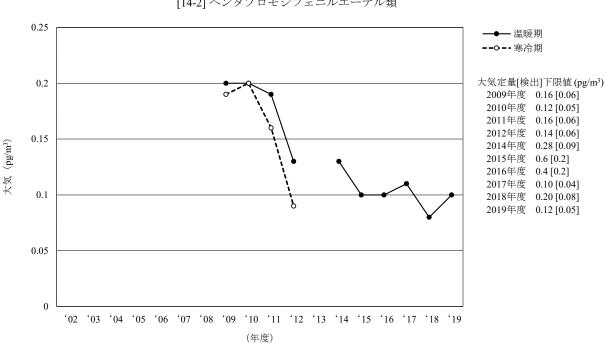
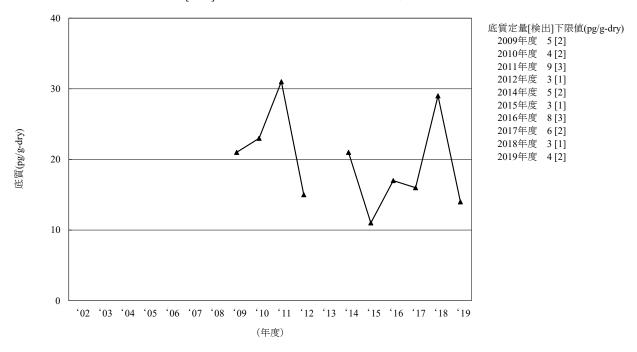

(注) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。

図 3-14-2-2 ペンタブロモジフェニルエーテル類の底質の経年変化(幾何平均値)

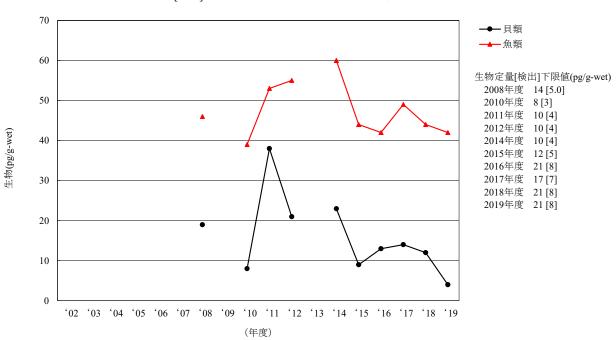
[14-2] ペンタブロモジフェニルエーテル類

- (注1) 鳥類は2014年度に調査地点及び調査対象生物を変更したことから2012年度までと継続性がないため、経年変化 は示していない。
- (注2) 2002 年度から 2007 年度、2009 年度及び 2013 年度は調査を実施していない。
- 図 3-14-2-3 ペンタブロモジフェニルエーテル類の生物の経年変化(幾何平均値)



[14-2] ペンタブロモジフェニルエーテル類

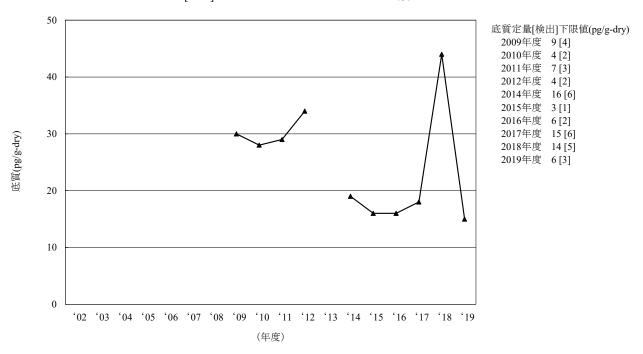
- (注1) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。
- (注2) 2015 年度及び 2016 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。


図 3-14-2-4 ペンタブロモジフェニルエーテル類の大気の経年変化(幾何平均値)

[14-3] ヘキサブロモジフェニルエーテル類

(注) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。

図 3-14-3-1 ヘキサブロモジフェニルエーテル類の底質の経年変化(幾何平均値)



[14-3] ヘキサブロモジフェニルエーテル類

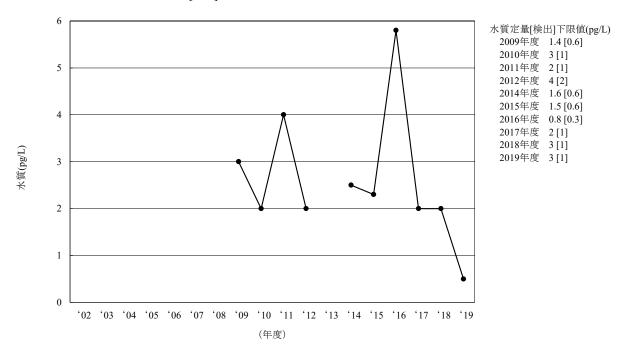
- (注 1) 鳥類は 2014 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注2) 2002 年度から 2007 年度、2009 年度及び 2013 年度は調査を実施していない。
- (注3) 2019 年度の貝類については幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。

図 3-14-3-2 ヘキサブロモジフェニルエーテル類の生物の経年変化(幾何平均値)

[14-4] ヘプタブロモジフェニルエーテル類

(注) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。

図 3-14-4-1 ヘプタブロモジフェニルエーテル類の底質の経年変化(幾何平均値)



[14-4] ヘプタブロモジフェニルエーテル類

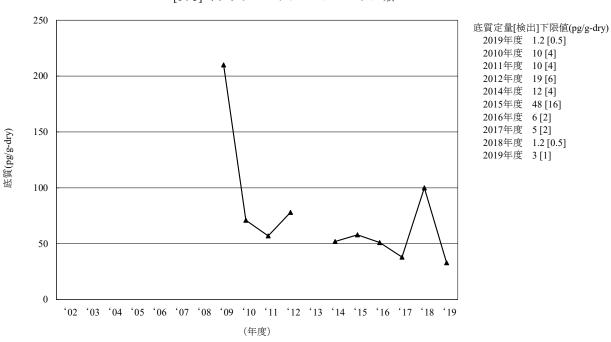
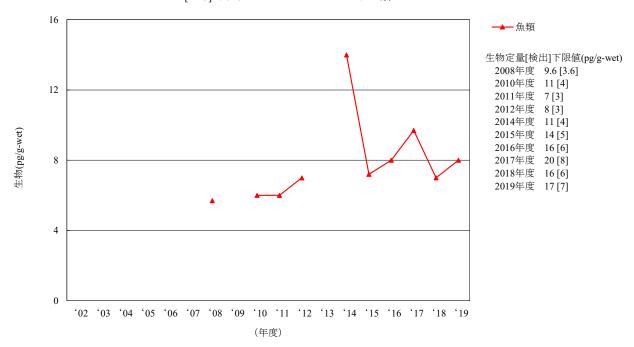

- (注1) 貝類については、多くの年度において幾何平均値が検出下限値未満であったため、経年変化は示していない。
- (注2) 鳥類は2014年度に調査地点及び調査対象生物を変更したことから2012年度までと継続性がないため、経年変化 は示していない。
- (注3) 2002 年度から 2007 年度、2009 年度及び 2013 年度は調査を実施していない。
- (注4) 2010 年度及び 2015 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。

図 3-14-4-2 ヘプタブロモジフェニルエーテル類の生物の経年変化(幾何平均値)

[14-5] オクタブロモジフェニルエーテル類

- (注1) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。
- (注2) 2019 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。
- 図 3-14-5-1 オクタブロモジフェニルエーテル類の水質の経年変化(幾何平均値)



[14-5] オクタブロモジフェニルエーテル類

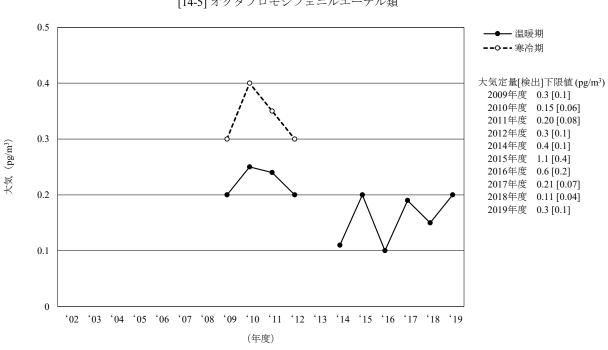
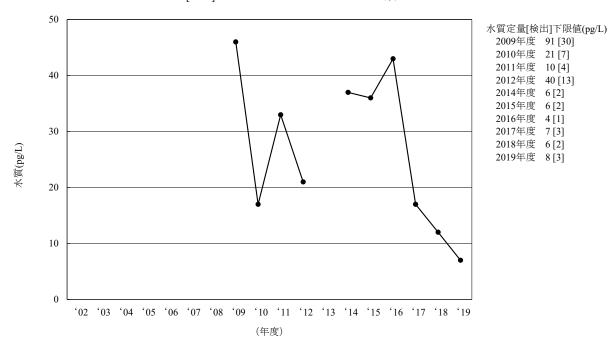

(注) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。

図 3-14-5-2 オクタブロモジフェニルエーテル類の底質の経年変化(幾何平均値)

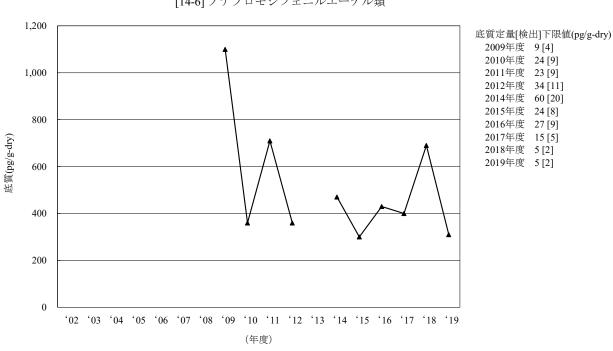
[14-5] オクタブロモジフェニルエーテル類

- (注1) 貝類については、多くの年度において幾何平均値が検出下限値未満であったため、経年変化は示していない。
- (注2) 鳥類は2014年度に調査地点及び調査対象生物を変更したことから2012年度までと継続性がないため、経年変化 は示していない。
- (注3) 2002 年度から 2007 年度、2009 年度及び 2013 年度は調査を実施していない。
- 図 3-14-5-3 オクタブロモジフェニルエーテル類の生物の経年変化(幾何平均値)



[14-5] オクタブロモジフェニルエーテル類

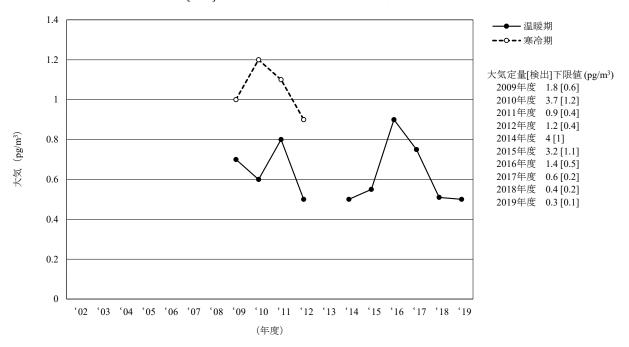
- (注1) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。
- (注2) 2015 年度及び 2016 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。


図 3-14-5-4 オクタブロモジフェニルエーテル類の大気の経年変化(幾何平均値)

[14-6] ノナブロモジフェニルエーテル類

(注) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。

図 3-14-6-1 ノナブロモジフェニルエーテル類の水質の経年変化(幾何平均値)



[14-6] ノナブロモジフェニルエーテル類

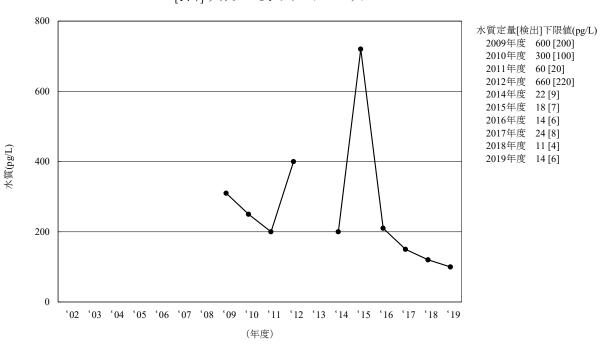
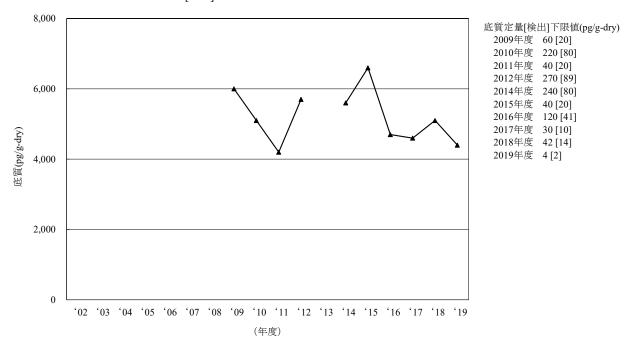

(注) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。

図 3-14-6-2 ノナブロモジフェニルエーテル類の底質の経年変化(幾何平均値)

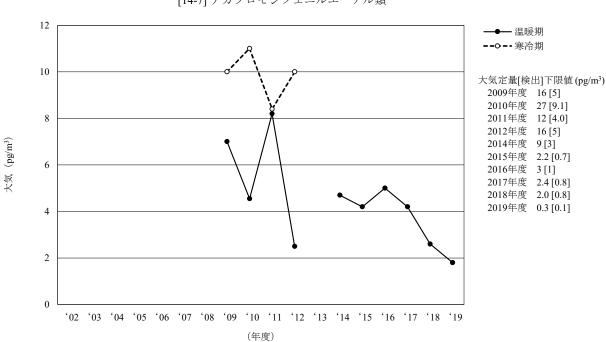
[14-6] ノナブロモジフェニルエーテル類

- (注1) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。
- (注 2) 2010 年度の温暖期並びに 2014 年度及び 2015 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。
- 図 3-14-6-3 ノナブロモジフェニルエーテル類の大気の経年変化(幾何平均値)



[14-7] デカブロモジフェニルエーテル

(注) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。


図 3-14-7-1 デカブロモジフェニルエーテルの水質の経年変化(幾何平均値)

[14-7] デカブロモジフェニルエーテル

(注) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。

図 3-14-7-2 デカブロモジフェニルエーテルの底質の経年変化(幾何平均値)

[14-7] デカブロモジフェニルエーテル類

- (注1) 2002 年度から 2008 年度及び 2013 年度は調査を実施していない。
- (注 2) 2010 年度及び 2012 年度の温暖期は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。

図 3-14-7-3 デカブロモジフェニルエーテルの大気の経年変化(幾何平均値)

[15] ペルフルオロオクタンスルホン酸 (PFOS)

調査の経緯及び実施状況

ペルフルオロオクタンスルホン酸 (PFOS) は、撥水撥油剤及び界面活性剤等として利用されている。 2009 年 5 月に開催された POPs 条約の第 4 回条約締約国会議 (COP4) においてペルフルオロオクタンスルホン酸及びその塩並びにペルフルオロオクタンスルホニルフルオリドを条約対象物質とすることが採択され、2010 年 4 月に化審法に基づく第一種特定化学物質にペルフルオロ(オクタン-1-スルホン酸)及びその塩並びにペルフルオロ(オクタン-1-スルホニル)フルオリドが指定されている。

継続的調査としては 2009 年度が初めての調査であり、2002 年度以降の化学物質環境実態調査の初期環境調査及び詳細環境調査等では、2002 年度に水質の調査を、2003 年度に底質及び生物(魚類)の調査を、2004 年度に大気の調査を、2005 年度に水質、底質及び生物(貝類及び魚類)の調査をそれぞれ実施している。

2002 年度以降のモニタリング調査では、直鎖のオクチル基を有するペルフルオロ(オクタン-1-スルホン酸)を分析対象として、2009 年度に水質、底質及び生物(貝類、魚類及び鳥類)の調査を、2010 年度から2012 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2013 年度は大気の調査を、2014年度から2016年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2017年度に生物(貝類、魚類及び鳥類)及び大気の調査を、2017年度に生物(貝類、魚類及び鳥類)及び大気、2018年度に水質及び底質の調査を、2019年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

<水質>

水質については、48 地点を調査し、検出下限値 30pg/L において 48 地点中 47 地点で検出され、検出濃度は 2,500pg/L までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、湖沼域の減少傾向が統計的に有意と判定された。

○2009 年度から 2019 年度における水質についてのペルフルオロオクタンスルホン酸 (PFOS) の検出状況

, , , , ,	. , , , , , , , , , , , , , , , , , , ,	/ - / / / /				. 104 (12 41 1 1 1 1 1 2
ペルフルオロオ クタンスルホン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出頻度	
ックノヘルホン酸 (PFOS)	天旭十尺	平均值	中大旭	取八胆	取小胆	下限値	検体	地点
	2009	730	580	14,000	tr(26)	37 [14]	49/49	49/49
	2010	490	380	230,000	tr(37)	50 [20]	49/49	49/49
	2011	480	360	10,000	tr(20)	50 [20]	49/49	49/49
-1. FF	2012	550	510	14,000	39	31 [12]	48/48	48/48
水質	2014	460	410	7,500	nd	50 [20]	47/48	47/48
(pg/L)	2015	630	490	4,700	120	29 [11]	48/48	48/48
	2016	330	300	14,000	tr(23)	50 [20]	48/48	48/48
	2018	310	300	4,100	nd	70 [30]	42/47	42/47
2019	290	260	2,500	nd	80 [30]	47/48	47/48	

⁽注) 2013 年度及び 2017 年度は調査を実施していない。

<底質>

底質については、61 地点を調査し、検出下限値 4pg/g-dry において 61 地点中 60 地点で検出され、検出濃度は 460pg/g-dry までの範囲であった。

2009 年度から 2019 年度における経年分析の結果、河口域及び海域の減少傾向が統計的に有意と判定された。また、水質全体としても減少傾向が統計的に有意と判定された。

○2009 年度から 2019 年度における底質についてのペルフルオロオクタンスルホン酸 (PFOS) の検出状況

0 = 0 0	1 /20.	, ,					(/	, , , , , , , , , , , , , , , , , , ,
ペルフルオロオ クタンスルホン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
酸 (PFOS)	大旭十尺	平均值※	十大旭	取八胆	取小胆	下限值	検体	地点
	2009	78	97	1,900	nd	9.6 [3.7]	180/190	64/64
	2010	82	100	1,700	tr(3)	5 [2]	64/64	64/64
	2011	92	110	1,100	nd	5 [2]	63/64	63/64
皮所	2012	68	84	1,200	tr(7)	9 [4]	63/63	63/63
底質	2014	59	79	980	nd	5 [2]	62/63	62/63
(pg/g-dry)	2015	91	88	2,200	7	3 [1]	62/62	62/62
	2016	54	61	690	5	5 [2]	62/62	62/62
	2018	43	57	700	nd	7 [3]	55/61	55/61
	2019	44	46	460	nd	9 [4]	60/61	60/61

⁽注1) ※: 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

生物のうち貝類については、3 地点を調査し、検出下限値 2pg/g-wet において 3 地点全てで検出され、検出濃度は $tr(2)\sim140pg/g$ -wet の範囲であった。魚類については、16 地点を調査し、検出下限値 2pg/g-wet において 16 地点全てで検出され、検出濃度は $tr(3)\sim3,600pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 2pg/g-wet において検出され、検出濃度は 360pg/g-wet であった。

○2009 年度から 2019 年度における生物(貝類、魚類及び鳥類)についてのペルフルオロオクタンスルホン酸(PFOS)の検出状況

ペルフルオロオ クタンスルホン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
酸(PFOS)		平均值※		取八胆	取小胆	下限值	検体	地点
	2009	24	28	640	nd	19 [7.4]	17/31	5/7
	2010	72	85	680	nd	25 [9.6]	5/6	5/6
	2011	38	44	100	16	10 [4]	4/4	4/4
貝類	2012	27	21	160	tr(4)	7 [3]	5/5	5/5
(pg/g-wet)	2014	8 7	6	93	nd	5 [2] 4 [2]	2/3	2/3
(PB/B 1101)	2015		tr(2)	210	nd	4 [2]	2/3	2/3
	2016	11	tr(6)	160	nd	9 [3]	2/3	2/3
	2017	22	34	160	nd	12 [4]	2/3	2/3
	2019	10	tr(4)	140	tr(2)	6 [2]	3/3	3/3
	2009	220	230	15,000	nd	19 [7.4]	83/90	17/13
	2010	390	480	15,000 3,200	nd	25 [9.6]	17/18	17/1
	2011	82	95	3,200	nd	10 [4]	16/18	16/1
魚類	2012	110	130	7,300	tr(5)	7 [3]	19/19	19/1
(pg/g-wet)	2014	82	83	4,600	nd	5 [2]	18/19	18/1
(PB/B 1101)	2015	91	90	2,500	nd	4 [2] 9 [3]	18/19	18/1
	2016	79	80	5,200	nd	9[3]	18/19	18/1
	2017	150	150	11,000	tr(4)	12 [4]	19/19	19/1
	2019	67	80	3,600	tr(3)	6 [2]	16/16	16/1
	2009	300	360	890	37	19 [7.4]	10/10	2/2
	2010	1,300		3,000	580	25 [9.6]	2/2	2/2
	2011	1.60		110	110	10 [4]	1/1	1/1
鳥類	2012	160		410	63	7 [3]	2/2	2/2
(pg/g-wet)	2014※※	4,600		110,000	190	5 [2]	2/2	2/2
(100	2015** 2016**	2 (00		790	790	4 [2]	1/1	1/1
	2016**	3,600		9,100	1,400	9 [3]	2/2	2/2
	2017※※	9,800		32,000	3,000	12 [4]	2/2	2/2
	2019※※			360	360	6 [2]	1/1	1/1

⁽注1)※:2009年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

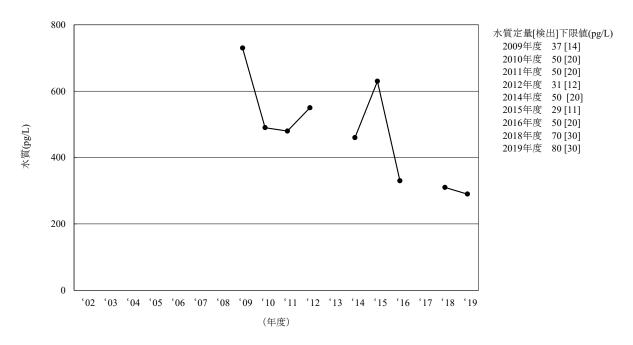
⁽注2) 2013 年度及び 2017 年度は調査を実施していない。

⁽注 2) ※※: 鳥類の 2014 年度以降の結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。

⁽注3) 2013 年度及び 2018 年度は調査を実施していない。

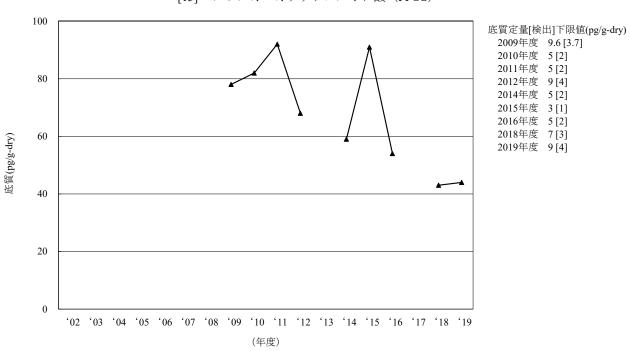
<大気>

大気については、36 地点を調査し、検出下限値 $0.3pg/m^3$ において 36 地点全てで検出され、検出濃度は $1.3\sim7.8pg/m^3$ の範囲であった。


2010年度から2019年度における経年分析の結果、温暖期の減少傾向が統計的に有意と判定された。

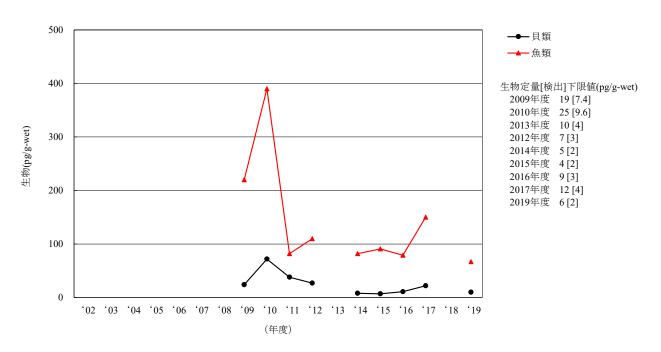
○2010 年度から 2019 年度における大気についてのペルフルオロオクタンスルホン酸 (PFOS) の検出状況

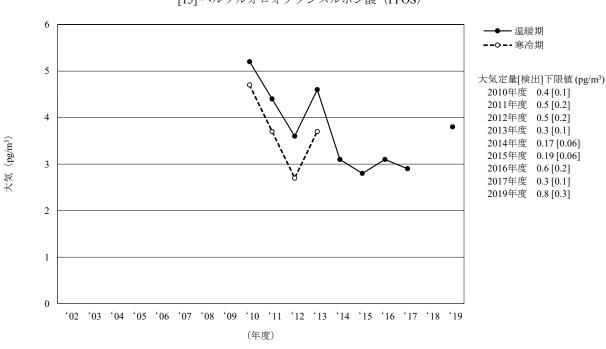
	717 十/文(こ40	17 37 7 7 11		70770		/ 1/ P A 1 D EX	(1105)	
ペルフルオロオ クタンスルホン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検	出頻度
酸 (PFOS)	天旭十尺	平均值	中大旭	取八胆	取小胆	下限値	検体	地点
	2010 温暖期	5.2	5.9	14	1.6	0.4 [0.1]	37/37	37/37
	2010寒冷期	4.7	4.4	15	1.4	0.4 [0.1]	37/37	37/37
	2011 温暖期	4.4	4.2	10	0.9	0.5.[0.2]	35/35	35/35
	2011寒冷期	3.7	3.8	9.5	1.3	1.3	37/37	37/37
	2012 温暖期	3.6	3.8	8.9	1.3	0.5.[0.2]	36/36	36/36
大気	2012 寒冷期	2.7	3.0	5.9	1.0	0.5 [0.2]	36/36	36/36
人又 (ng/m³)	2013 温暖期	4.6	5.2	9.6	1.2	0.2 [0.1]	36/36	36/36
(pg/m^3)	2013 寒冷期	3.7	3.9	7.4	1.6	0.3 [0.1]	36/36	36/36
	2014 温暖期	3.1	3.2	8.6	0.52	0.17 [0.06]	36/36	36/36
	2015 温暖期	2.8	2.6	8.8	0.59	0.19 [0.06]	35/35	35/35
	2016温暖期	3.1	2.4	9.3	0.7	0.6 [0.2]	37/37	37/37
	2017温暖期	2.9	2.7	8.9	1.1	0.3 [0.1]	37/37	37/37
	2019 温暖期	3.8	4.1	7.8	1.3	0.8 [0.3]	36/36	36/36


⁽注) 2018 年度は調査を実施していない。

[15] ペルフルオロオクタンスルホン酸 (PFOS)

(注) 2002 年度から 2008 年度、2013 年度及び 2017 年度は調査を実施していない。


図 3-15-1 ペルフルオロオクタンスルホン酸 (PFOS) の水質の経年変化 (幾何平均値)


[15] ペルフルオロオクタンスルホン酸 (PFOS)

(注) 2002 年度から 2008 年度、2013 年度及び 2017 年度は調査を実施していない。 図 3-15-2 ペルフルオロオクタンスルホン酸 (PFOS) の底質の経年変化 (幾何平均値)

[15] ペルフルオロオクタンスルホン酸 (PFOS)

- (注 1) 鳥類は 2014 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注2) 2002 年度から 2008 年度、2013 年度及び 2018 年度は調査を実施していない。
- 図 3-15-3 ペルフルオロオクタンスルホン酸 (PFOS) の生物の経年変化 (幾何平均値)

[15] ペルフルオロオクタンスルホン酸 (PFOS)

- (注) 2002 年度から 2009 年度及び 2019 年度は調査を実施していない。
- 図 3-15-4 ペルフルオロオクタンスルホン酸 (PFOS) の大気の経年変化 (幾何平均値)

[16] ペルフルオロオクタン酸(PFOA)

調査の経緯及び実施状況

ペルフルオロオクタン酸 (PFOA) は、ペルフルオロオクタンスルホン酸 (PFOS) と同様、撥水撥油剤及び界面活性剤等として利用されている。2019年の4月から5月に開催されたPOPs条約の第9回条約締約国会議 (COP9)においてペルフルオロオクタン酸並びにその塩及び関連物質を条約対象物質とすることが採択された。

継続的調査としては 2009 年度が初めての調査であり、2002 年度以降の化学物質環境実態調査の初期環境調査及び詳細環境調査等では、2002 年度に水質の調査を、2003 年度に底質及び生物(魚類)の調査を、2004 年度に大気の調査を、2005 年度に水質、底質及び生物(貝類及び魚類)の調査をそれぞれ実施している。

2002 年度以降のモニタリング調査では、2009 年度に水質、底質及び生物(貝類、魚類及び鳥類)の調査を、2010 年度から 2012 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2013 年度に大気の調査を、2014 年度から 2016 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2017 年度に生物(貝類、魚類及び鳥類)及び大気の調査を、2018 年度に水質及び底質の調査を、2019 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

なお、モニタリング調査では、直鎖のヘプチル基を有するペルフルオロオクタン酸を分析対象としている。ただし、生物では、ヘプチル基が分鎖状の異性体が含まれる可能性を否定できていない。

•調查結果

<水質>

水質については、48 地点を調査し、検出下限値40pg/Lにおいて48 地点全てで検出され、検出濃度は160 $\sim 11,000pg/L$ の範囲であった。

2009 年度から 2019 年度における経年分析の結果、河口域の減少傾向が統計的に有意と判定された。また、水質全体としても減少傾向が統計的に有意と判定された。

○2009 年度から 2019 年度における水質についてのペルフルオロオクタン酸 (PFOA) の検出状況

02007 120	1) (2)	ののの人	, , , , ,	/ - / - / 4		дх (11011)	*> 100 111 10 101	
ペルフルオロオ クタン酸 (PFOA)	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2009	1,600	1,300	31,000	250	59 [23]	49/49	49/49
	2010	2,700	2,400	23,000	190	60 [20]	49/49	49/49
	2011	2,000	1,700	50,000	380	50 [20]	49/49	49/49
水質	2012	1,400	1,100	26,000	240	170 [55]	48/48	48/48
	2014	1,400	1,400	26,000	140	50 [20]	48/48	48/48
(pg/L)	2015	1,400	1,200	17,000	310	56 [22]	48/48	48/48
	2016	1,300	1,200	21,000	260	50 [20]	48/48	48/48
	2018	1,100	1,100	28,000	160	70 [30]	47/47	47/47
	2019	1,000	900	11,000	160	90 [40]	48/48	48/48

⁽注) 2013 年度及び 2017 年度は調査を実施していない。

<底質>

底質については、61 地点を調査し、検出下限値 2pg/g-dry において 61 地点全てで検出され、検出濃度は $tr(3)\sim 190pg/g$ -dry の範囲であった。

2009年度から2019年度における経年分析の結果、河口域の減少傾向が統計的に有意と判定された。

○2009 年度から 2019 年度における底質についてのペルフルオロオクタン酸 (PFOA) の検出状況

ペルフルオロオ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
クタン酸(PFOA)	天旭十段	平均值※	十大旭	取八胆	取小胆	下限値 1	検体	地点
	2009	27	24	500	nd	8.3 [3.3]	182/190	64/64
	2010	28	33	180	nd	12 [5]	62/64	62/64
	2011	100	93	1,100	22	5 [2]	64/64	64/64
底質	2012	51	48	280	12	4 [2]	63/63	63/63
	2014	44	50	190	tr(6)	11 [5]	63/63	63/63
(pg/g-dry)	2015	48	48	270	8	3 [1]	62/62	62/62
	2016	27	27	190	nd	9 [4]	61/62	61/62
	2018	23	25	190	nd	9 [4]	58/61	58/61
	2019	21	22	190	tr(3)	5 [2]	61/61	61/61

⁽注1) ※: 2009 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

生物のうち貝類については、3 地点を調査し、検出下限値 2pg/g-wet において 3 地点全てで検出され、検出濃度は $tr(2)\sim tr(5)pg/g$ -wet の範囲であった。魚類については、16 地点を調査し、検出下限値 2pg/g-wet において 16 地点中 12 地点で検出され、検出濃度は 18pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 2pg/g-wet において検出され、検出濃度は 27pg/g-wet であった。

2009 年度から 2019 年度における経年分析の結果、魚類では低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

○2009 年度から 2019 年度における生物(貝類、魚類及び鳥類)についてのペルフルオロオクタン酸(PFOA) の給出状況

の検出状況								
ペルフルオロオ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
クタン酸(PFOA)	天旭千茂	平均值※	十大胆	取八胆	取小胆	下限值	検体	地点
	2009	tr(20)	tr(21)	94	nd	25 [9.9]	27/31	7/7
	2010	28	33	76	nd	26 [9.9]	5/6	5/6
	2011	tr(19)	tr(22)	tr(40)	nd	41 [14]	3/4	3/4
貝類	2012	tr(21)	tr(23)	46	nd	38 [13]	4/5	4/5
	2014	tr(4)	tr(6)	10	nd	10 [3]	2/3	2/3
(pg/g-wet)	2015	tr(6.5)	tr(6.3)	26	nd	10 [3.4]	2/3	2/3
	2016	4	7	9	nd	4 [2]	2/3	2/3
	2017	tr(6)	tr(7)	18	nd	12 [4]	2/3	2/3
	2019	tr(3)	tr(4)	tr(5)	tr(2)	6 [2]	3/3	3/3
	2009	tr(23)	tr(19)	490	nd	25 [9.9]	74/90	17/18
	2010	tr(13)	tr(11)	95	nd	26 [9.9]	13/18	13/18
	2011	nd	nd	51	nd	41 [14]	7/18	7/18
魚類	2012	tr(35)	tr(32)	86	nd	38 [13]	18/19	18/19
	2014	tr(6)	tr(4)	85	nd	10 [3]	11/19	11/19
(pg/g-wet)	2015	tr(5.7)	tr(5.3)	99	nd	10 [3.4]	11/19	11/19
	2016	4	tr(3)	20	tr(2)	4 [2]	19/19	19/19
	2017	tr(6)	tr(4)	79	nd	12 [4]	12/19	12/19
	2019	tr(3)	tr(3)	18	nd	6 [2]	12/16	12/16
	2009	32	29	58	tr(16)	25 [9.9]	10/10	2/2
	2010	38		48	30	26 [9.9]	2/2	2/2
	2011			nd	nd	41 [14]	0/1	0/1
鳥類	2012	tr(27)		tr(28)	tr(26)	38 [13]	2/2	2/2
馬類 (pg/g-wet)	2014※※	62		2,600	nd	10 [3]	1/2	1/2
(hg/g-wet)	2015※※			31	31	10 [3.4]	1/1	1/1
	2016※※	130		320	52	4 [2]	2/2	2/2
	2017※※	240		680	85	12 [4]	2/2	2/2
	2019※※			27	27	6 [2]	1/1	1/1

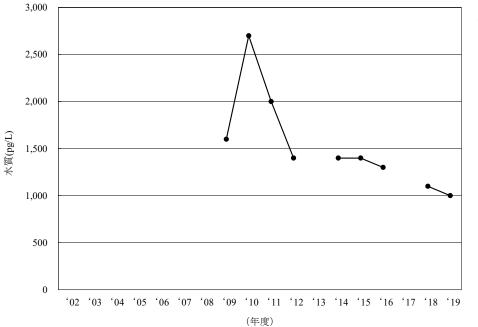
⁽注1)※: 2009年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2013 年度及び 2017 年度は調査を実施していない。

⁽注 2) ※※: 鳥類の 2014 年度以降の結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。

⁽注3) 2013 年度及び 2018 年度は調査を実施していない。

< 大気>

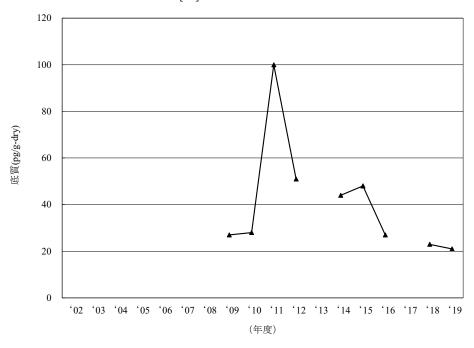

大気については、36 地点を調査し、検出下限値 $0.3 pg/m^3$ において 36 地点全てで検出され、検出濃度は $5.5 \sim 46 pg/m^3$ の範囲であった。

○2010 年度から 2019 年度における大気についてのペルフルオロオクタン酸 (PFOA) の検出状況

ペルフルオロオ	実施年度	幾何	中央値	最大値	最小値	定量[検出]		頻度
クタン酸(PFOA)	天旭十尺	平均値	中大恒	取八胆	取小胆	下限值 '	検体	地点
	2010 温暖期	25	26	210	4.0	0.5.[0.2]	37/37	37/37
	2010寒冷期	14	14	130	2.4	0.5 [0.2]	37/37	37/37
	2011 温暖期	20	18	240	tr(3.5)	5.4 [1.8]	35/35	35/35
	2011寒冷期	12	11	97	nd	3.4 [1.6]	36/37	36/37
	2012 温暖期	11	12	120	1.9	0.7.[0.2]	36/36	36/36
大気	2012寒冷期	6.9	6.0	48	1.6	0.7 [0.2]	36/36	36/36
2	2013 温暖期	23	23	190	3.2	1 9 [0 6]	36/36	36/36
(pg/m^3)	2013 寒冷期	14	14	53	3.0	1.8 [0.6]	36/36	36/36
	2014 温暖期	28	29	210	5.4	0.4 [0.1]	36/36	36/36
	2015 温暖期	19	17	260	tr(3.7)	4.2 [1.4]	35/35	35/35
	2016 温暖期	17	15	140	3.2	1.3 [0.4]	37/37	37/37
	2017 温暖期	14	13	150	tr(2.0)	3.3 [1.1]	37/37	37/37
	2019 温暖期	14	14	46	5.5	0.8 [0.3]	36/36	36/36

⁽注) 2018 年度は調査を実施していない。

[16] ペルフルオロオクタン酸 (PFOA)



水質定量[検出]下限値(pg/L) 2009年度 59 [23] 2010年度 60 [20] 2011年度 50 [20] 2012年度 170 [55] 2014年度 50 [20] 2015年度 56 [22] 2016年度 50 [20] 2018年度 70 [30]

2018年度 70 [30] 2019年度 90 [40]

(注) 2002 年度から 2008 年度、2013 年度及び 2017 年度は調査を実施していない。 図 3-16-1 ペルフルオロオクタン酸 (PFOA) の水質の経年変化 (幾何平均値)

[16] ペルフルオロオクタン酸 (PFOA)

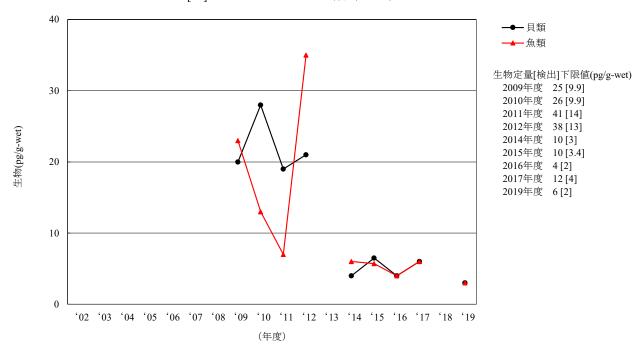
 2009年度
 8.3 [3.3]

 2010年度
 12 [5]

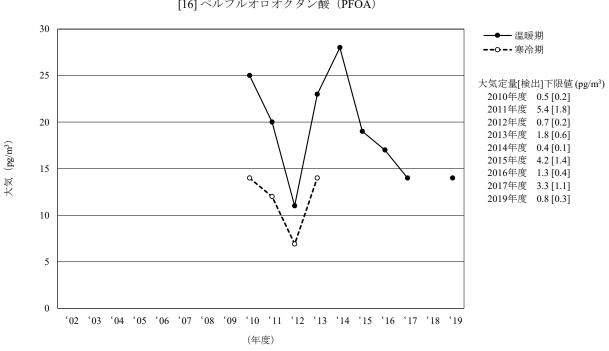
 2011年度
 5 [2]

 2012年度
 4 [2]

 2014年度
 11 [5]


 2015年度
 3 [1]

底質定量[検出]下限値(pg/g-dry)


2016年度9 [4]2018年度9 [4]2019年度5 [2]

(注) 2002 年度から 2008 年度、2013 年度及び 2017 年度は調査を実施していない。 図 3-16-2 ペルフルオロオクタン酸 (PFOA) の底質の経年変化 (幾何平均値)

[16] ペルフルオロオクタン酸 (PFOA)

- (注1) 鳥類は2014年度に調査地点及び調査対象生物を変更したことから2012年度までと継続性がないため、経年変化 は示していない。
- (注2) 2002 年度から 2008 年度、2013 年度及び 2018 年度は調査を実施していない。
- (注3) 2011 年度の魚類については幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。
- 図 3-16-3 ペルフルオロオクタン酸 (PFOA) の生物の経年変化 (幾何平均値)

[16] ペルフルオロオクタン酸 (PFOA)

(注) 2002 年度から 2009 年度及び 2018 年度は調査を実施していない。

図 3-16-4 ペルフルオロオクタン酸 (PFOA) の大気の経年変化 (幾何平均値)

[17] ペンタクロロベンゼン

調査の経緯及び実施状況

ペンタクロロベンゼンは、難燃剤として利用されていた。また、農薬としての用途もあったが、日本では農薬登録されたことはない。農薬製造時の副生成物質でもある他、燃焼に伴い非意図的にも生成する。 2009 年 5 月に開催された POPs 条約の第 4 回条約締約国会議 (COP4) において条約対象物質とすることが採択され、2010 年 4 月に化審法に基づく第一種特定化学物質に指定されている。

2001 年度までの継続的調査においては、「生物モニタリング」ⁱⁱ⁾で 1980 年度に生物(貝類及び魚類)について調査を、1981 年度から 1986 年度までの毎年度と 1988 年度、1990 年度、1992 年度、1996 年度及び 1999 年度に生物(貝類、魚類及び鳥類)について調査を実施している。

2002 年度以降のモニタリング調査では、2007 年度、2009 年度に大気の調査を、2010 年度から 2015 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2016 年度に底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2017 年度から 2019 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

<水質>

水質については、48 地点を調査し、検出下限値 2pg/L において 48 地点全てで検出され、検出濃度は tr(2) ~360pg/L の範囲であった。

○2007 年度から 2019 年度における水質についてのペンタクロロベンゼンの検出状況

	1 /2 (- 1,	- 17 @/11/54			. – .	- 17(11) 1/100		
ペンタクロロ ベンゼン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2007	nd	nd	nd	nd	3,300 [1,300]	0/48	0/48
	2010	8	5	100	tr(1)	4[1]	49/49	49/49
	2011	11	11	170	2.6	2.4 [0.9]	49/49	49/49
	2012	14	11	170	3	3 [1]	48/48	48/48
水質	2013	12	10	170	tr(3)	4 [1]	48/48	48/48
(pg/L)	2014	10	7.0	180	2.8	0.8 [0.3]	48/48	48/48
	2015	13	11	180	3.0	1.5 [0.5]	48/48	48/48
	2017	8.8	5.9	140	2.0	1.4 [0.6]	47/47	47/47
	2018	12	9.7	320	2.7	1.3 [0.5]	47/47	47/47
	2019	9	7	360	tr(2)	6 [2]	48/48	48/48

⁽注) 2008 年度、2009 年度及び 2016 年度は調査を実施していない。

<底質>

底質については、61 地点を調査し、検出下限値 0.4pg/g-dry において 61 地点全てで検出され、検出濃度は 1.2~3,300pg/g-dry の範囲であった。

○2007 年度から 2019 年度における底質についてのペンタクロロベンゼンの検出状況

ペンタクロロ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
ベンゼン	天旭十尺	平均值※	中大恒	取八胆	取小胆	下限値 1	検体	地点
	2007	tr(46)	nd	2,400	nd	86 [33]	79/192	35/64
	2010	90	95	4,200	1.0	0.9 [0.3]	64/64	64/64
	2011	95	76	4,500	3	5 [2]	64/64	64/64
	2012	33	33	1,100	nd	2.5 [0.8]	62/63	62/63
底質	2013	84	98	3,800	2.2	2.1 [0.7]	63/63	63/63
	2014	70	78	3,600	tr(1.2)	2.4 [0.8]	63/63	63/63
(pg/g-dry)	2015	65	69	2,600	2.4	1.5 [0.5]	62/62	62/62
	2016	62	71	3,700	tr(1.1)	1.8 [0.6]	62/62	62/62
	2017	61	61	2,800	1.3	1.2 [0.5]	62/62	62/62
	2018	72	77	3,400	1.2	0.9 [0.3]	61/61	61/61
	2019	29	27	3,300	1.2	0.9 [0.4]	61/61	61/61

⁽注1)※: 2007年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

生物のうち貝類については、3 地点を調査し、検出下限値 1pg/g-wet において 3 地点全てで検出され、検出濃度は $7\sim14pg/g$ -wet の範囲であった。魚類については、16 地点を調査し、検出下限値 1pg/g-wet において 16 地点全てで検出され、検出濃度は $3\sim280pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 470pg/g-wet であった。

○2007 年度から 2019 年度における生物(貝類、魚類及び鳥類)についてのペンタクロロベンゼンの検出 状況

ペンタクロロ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ベンゼン	天旭千茂	平均值※	十大旭		取小胆	下限值	検体	地点
	2007	nd	nd	tr(150)	nd	180 [61]	1/31	1/7
	2010	18	16	110	5.9	1.9 [0.7]	6/6	6/6
	2011	28	16	260	10	4 [1]	4/4	4/4
	2012	16	9.7	110	tr(5.8)	8.1 [2.7]	5/5	5/5
貝類	2013	nd	nd	87	nd	78 [26]	1/5	1/5
	2014	14	11	23	10	9.3 [3.1]	3/3	3/3
(pg/g-wet)	2015	tr(11)	tr(9.7)	18	tr(7.4)	12 [4.0]	3/3	3/3
	2016	tr(13)	tr(12)	15	tr(11)	15 [5.1]	3/3	3/3
	2017	18	19	22	14	4[1]	3/3	3/3
	2018	tr(8)	tr(7)	tr(13)	tr(5)	15 [5]	3/3	3/3
	2019	10	11	14	7	3 [1]	3/3	3/3
	2007	nd	nd	480	nd	180 [61]	36/80	10/16
	2010	42	37	230	5.6	1.9[0.7]	18/18	18/18
	2011	36	37	220	5	4 [1]	18/18	18/18
	2012	29	37	190	tr(5.0)	8.1 [2.7]	19/19	19/19
左 举云	2013	tr(35)	tr(40)	160	nd	78 [26]	11/19	11/19
魚類	2014	38	51	280	nd	9.3 [3.1]	18/19	18/19
(pg/g-wet)	2015	26	40	230	nd	12 [4.0]	18/19	18/19
	2016	19	22	150	nd	15 [5.1]	16/19	16/19
	2017	29	32	170	4	4[1]	19/19	19/19
	2018	19	29	70	nd	15 [5]	15/18	15/18
	2019	20	19	280	3	3 [1]	16/16	16/16
	2007	tr(140)	tr(140)	210	tr(89)	180 [61]	10/10	2/2
	2010	91		170	49	1.9 [0.7]	2/2	2/2
	2011			52	52	4 [1]	1/1	1/1
	2012	77		130	46	8.1 [2.7]	2/2	2/2
白紹	2013※※	300		390	230	78 [26]	2/2	2/2
鳥類 (ma/a wat)	2014※※	56		560	tr(5.6)	9.3 [3.1]	2/2	2/2
(pg/g-wet)	2015※※			53	53	12 [4.0]	1/1	1/1
	2016※※	240		570	100	15 [5.1]	2/2	2/2
	2017※※	130		470	35	4 [1]	2/2	2/2
	2018※※	370		480	280	15 [5]	2/2	2/2
	2019※※			470	470	3 [1]	1/1	1/1

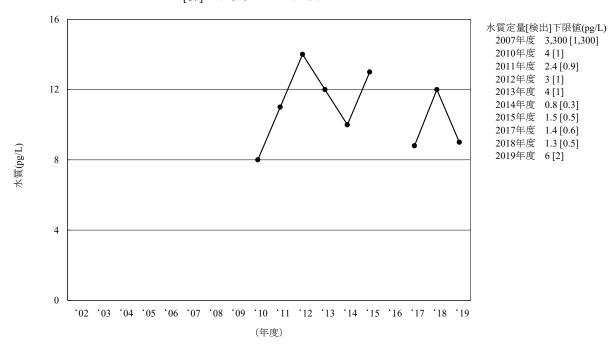
⁽注1)※:2007年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2008 年度及び 2009 年度は調査を実施していない。

⁽注 2) ※※: 鳥類の 2013 年度以降の結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。

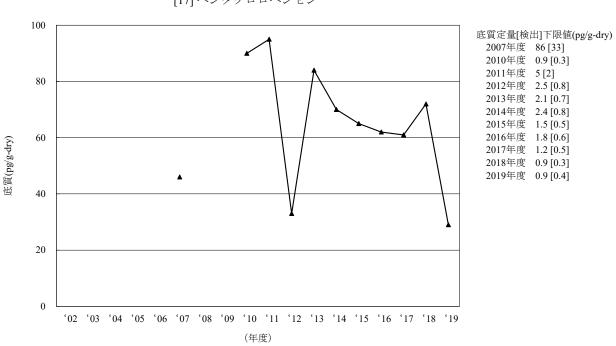
⁽注3) 2008 年度及び 2009 年度は調査を実施していない。

<大気>


大気については、36 地点を調査し、検出下限値 $0.04 pg/m^3$ において 36 地点全てで検出され、検出濃度は $36 \sim 110 pg/m^3$ の範囲であった。

○2007年度から2019年度における大気についてのペンタクロロベンゼンの検出状況

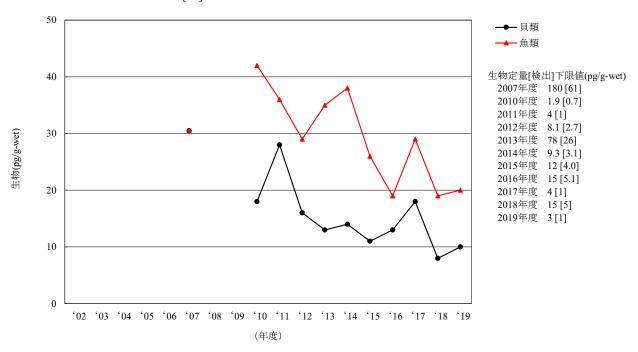
ペンタクロロ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ベンゼン	•	平均値	中大旭	取八胆		下限値 1	検体	地点
	2007 温暖期	85	83	310	18	12 [4.8]	78/78	26/26
	2007 寒冷期	60	55	220	27		75/75	25/25
	2009 温暖期	63	64	210	20	6.4 [2.5]	111/111	37/37
	2009 寒冷期	25	22	120	tr(5.0)		111/111	37/37
	2010 温暖期	68	73	140	36	1.2 [0.5]	37/37	37/37
	2010寒冷期	70	69	180	37		37/37	37/37
	2011 温暖期	61	60	140	30	2.1 [0.70]	35/35	35/35
	2011 寒冷期	59	57	180	26	2.1 [0.70]	37/37	37/37
大気	2012 温暖期	58	57	150	31	1.8 [0.6]	36/36	36/36
(pg/m^3)	2012 寒冷期	55	55	120	27		36/36	36/36
	2013 温暖期	55	58	160	27	1.7 [0.6]	36/36	36/36
	2013 寒冷期	55	52	110	34		36/36	36/36
	2014 温暖期	83	86	210	39	0.9 [0.3]	36/36	36/36
	2015 温暖期	67	68	170	34	0.6 [0.2]	35/35	35/35
	2016 温暖期	75	75	220	33	0.5 [0.2]	37/37	37/37
	2017温暖期	71	69	200	32	0.3 [0.1]	37/37	37/37
	2018 温暖期	59	61	100	30	0.22 [0.08]	37/37	37/37
	2019 温暖期	64	64	110	36	0.09 [0.04]	36/36	36/36


⁽注) 2008 年度は調査を実施していない。

[17] ペンタクロロベンゼン

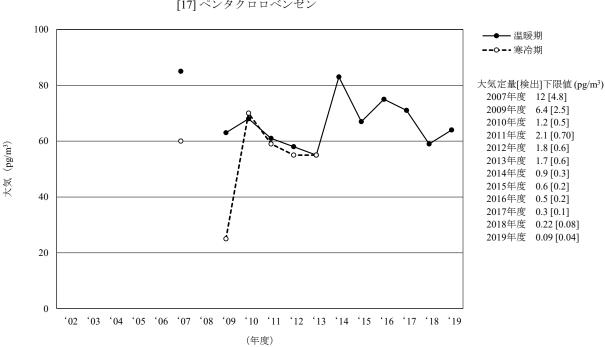
- (注1) 2007 年度は調査を実施したが、それ以後の調査と分析法が大きく異なり、検出下限値が高く、全検体が不検出であったことから、経年変化は示していない。
- (注2) 2002 年度から 2006 年度、2008 年度から 2009 年度及び 2016 年度は調査を実施していない。

図 3-17-1 ペンタクロロベンゼンの水質の経年変化(幾何平均値)



[17] ペンタクロロベンゼン

- (注1) 2007 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2002 年度から 2006 年度、2008 年度及び 2009 年度は調査を実施していない。


図 3-17-2 ペンタクロロベンゼンの底質の経年変化(幾何平均値)

[17] ペンタクロロベンゼン

- (注1) 2007 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 鳥類は2013年度に調査地点及び調査対象生物を変更したことから2012年度までと継続性がないため、経年変化 は示していない。
- (注3) 2002 年度から 2006 年度、2008 年度及び 2009 年度は調査を実施していない。
- (注4)2007年度の貝類及び魚類並びに2013年度の貝類については幾何平均値が検出下限値未満であったため、検出下限 値の 1/2 の値を図示した。

図 3-17-3 ペンタクロロベンゼンの生物の経年変化(幾何平均値)

[17] ペンタクロロベンゼン

(注) 2002 年度から 2006 年度、2008 年度は調査を実施していない。

図 3-17-4 ペンタクロロベンゼンの大気の経年変化(幾何平均値)

[18] エンドスルファン類(参考)

調査の経緯及び実施状況

エンドスルファン類は、有機塩素系殺虫剤の一種である。2011 年 4 月に開催された POPs 条約の第 5 回 条約締約国会議 (COP5) において条約対象物質とすることが採択され、2014 年 5 月に化審法に基づく第一 種特定化学物質に指定されている。

継続的調査としては2011年度が初めての調査であり、2001年度までの調査として「化学物質環境調査」 iv) では、1982年度に水質及び底質の調査を、1992年度に大気の調査をそれぞれ実施している。

2002 年度以降のモニタリング調査では、2011 年度及び 2012 年度に水質、底質、生物(貝類、魚類及び 鳥類)及び大気の調査を、2014 年度及び 2015 年度に生物(貝類、魚類及び鳥類)及び大気の調査を、2016 年度に大気の調査を、2018 年度に水質及び底質の調査を実施している。

2019 年度は調査を実施していないため、参考として以下に、2018 年度までの調査結果を示す。

・2018年度までの調査結果(参考)

<水質>

 \bigcirc 2011 年度から 2018 年度における水質についての α-エンドスルファン及び β -エンドスルファンの検出状況

α-エンドスルファン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	l頻度 地点
水質	2011 2012	nd nd	nd nd	180 30	nd nd	120 [50] 27 [10]	2/49 3/48	2/49 3/48
(pg/L)	2018	nd	nd	tr(50)	nd	120 [40]	1/47	1/47
β -エンドスルファン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	l頻度 地点
 水質	2011	nd	nd	270	nd	22 [9]	8/49	8/49
	2012	nd	nd	tr(12)	nd	24 [9]	1/48	1/48
(pg/L)	2018	nd	nd	tr(20)	nd	30 [10]	3/47	3/47

⁽注) 2013 年度から 2017 年度は調査を実施していない。

<底質>

 \bigcirc 2011 年度から 2018 年度における底質についての α -エンドスルファン及び β -エンドスルファンの検出状況

α-エンドスルファン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	横出 横体	頻度 地点
	2011	tr(13)	tr(11)	480	nd	30 [10]	35/64	35/64
	2012	nd	nd	480	nd	13 [5]	19/63	19/63
(pg/g-dry)	2018	nd	nd	30	nd	5 [2]	21/61	21/61
<i>β</i> -エンドスルファン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	横出 横体	頻度 地点
	2011	tr(5)	tr(4)	240	nd	9 [4]	38/64	38/64
)広貝 (pg/g-dry)	2012	nd	nd	250	nd	13 [5]	8/63	8/63
(pg/g-ury)	2018	nd	nd	41	nd	5 [2]	11/61	11/61

⁽注) 2013 年度から 2017 年度は調査を実施していない。

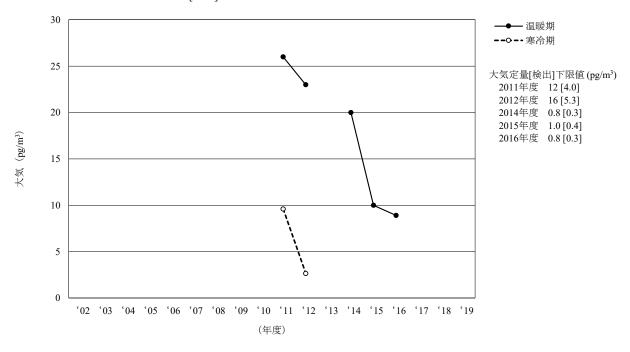
<生物>

〇2011 年度から 2015 年度における生物(貝類、魚類及び鳥類)についての α -エンドスルファン及び β -エンドスルファンの検出状況

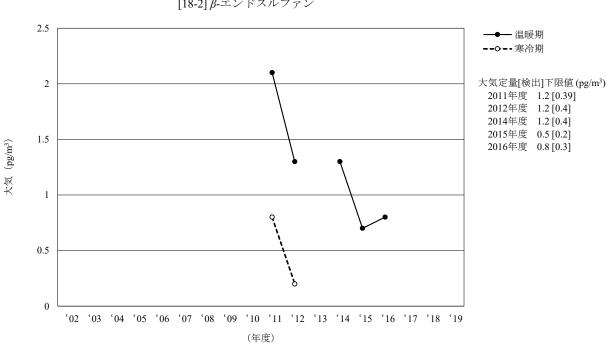
α-エンドスルファン	字坛左庄	幾何	由由荷	具土店	最小値	定量[検出]	検出	頻度
α-エントスルファン	実施年度	平均値	中央値	最大値	取小胆	下限値 1	検体	地点
	2011	62	120	330	nd	50 [20]	3/4	3/4
貝類	2012	tr(54)	tr(61)	200	nd	71 [24]	4/5	4/5
(pg/g-wet)	2014	tr(20)	nd	130	nd	60 [20]	1/3	1/3
	2015	nd	nd	130	nd	120 [38]	1/3	1/3
	2011	tr(20)	tr(20)	140	nd	50 [20]	10/18	10/18
魚類	2012	nd	nd	tr(54)	nd	71 [24]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(30)	nd	60 [20]	1/19	1/19
	2015※	nd	nd	tr(49)	nd	120 [38]	1/19	1/19
	2011			nd	nd	50 [20]	0/1	0/1
鳥類	2012	nd		nd	nd	71 [24]	0/2	0/2
(pg/g-wet)	2014※	nd		nd	nd	60 [20]	0/2	0/2
	2015※			nd	nd	120 [38]	0/1	0/1
	201071				114			
R-Tンドスルファン		幾何				定量[検出]	検出	頻度
β- エンドスルファン	実施年度	幾何 平均値	中央値	最大値	最小値		検出 検体	頻度 地点
<u>, </u>	実施年度 2011	平均値 16	26	最大値 52		定量[検出] 下限値 11 [4]	検出 <u>検体</u> 4/4	頻度 地点 4/4
<i>β</i> -エンドスルファン 貝類	実施年度 2011 2012	平均値 16 15	26 16	最大値 52 43	最小値	定量[検出] 下限値 11 [4] 14 [5]	検出 <u>検体</u> 4/4 4/5	頻度 地点 4/4 4/5
<u>, </u>	実施年度 2011 2012 2014	平均値 16	26	最大値 52 43 23	最小値 4	定量[検出] 下限値 11 [4] 14 [5] 19 [6]	検出 <u>検体</u> 4/4 4/5 1/3	頻度 地点 4/4 4/5 1/3
· 貝類	実施年度 2011 2012 2014 2015	平均値 16 15	26 16 nd nd	最大値 52 43 23 tr(22)	最小値 4 nd	定量[検出] 下限値 11 [4] 14 [5] 19 [6] 32 [11]	検出 <u>検体</u> 4/4 4/5 1/3 1/3	頻度 地点 4/4 4/5 1/3 1/3
貝類 (pg/g-wet)	実施年度 2011 2012 2014 2015 2011	平均値 16 15 nd	26 16 nd	最大値 52 43 23 tr(22) 37	最小値 4 nd nd	定量[検出] 下限値 11 [4] 14 [5] 19 [6] 32 [11] 11 [4]	検出 検体 4/4 4/5 1/3 1/3 9/18	頻度 地点 4/4 4/5 1/3 1/3 9/18
· 貝類	実施年度 2011 2012 2014 2015 2011 2012	平均值 16 15 nd nd nd	26 16 nd nd nd	最大値 52 43 23 tr(22) 37 15	最小値 4 nd nd nd	定量[検出] 下限値 11 [4] 14 [5] 19 [6] 32 [11] 11 [4] 14 [5]	検出 検体 4/4 4/5 1/3 1/3 9/18 6/19	頻度 地点 4/4 4/5 1/3 1/3 9/18 6/19
貝類 (pg/g-wet)	実施年度 2011 2012 2014 2015 2011 2012 2014	平均值 16 15 nd nd nd nd	26 16 nd nd nd nd	最大値 52 43 23 tr(22) 37 15 tr(8)	最小値 4 nd nd nd nd	定量[検出] 下限値 11 [4] 14 [5] 19 [6] 32 [11] 11 [4] 14 [5] 19 [6]	検出 検体 4/4 4/5 1/3 1/3 9/18 6/19 3/19	頻度 地点 4/4 4/5 1/3 1/3 9/18 6/19 3/19
貝類 (pg/g-wet) 魚類	実施年度 2011 2012 2014 2015 2011 2012 2014 2015	平均值 16 15 nd nd nd	26 16 nd nd nd	最大値 52 43 23 tr(22) 37 15	最小值 4 nd nd nd nd nd nd	定量[検出] 下限値 11 [4] 14 [5] 19 [6] 32 [11] 11 [4] 14 [5] 19 [6] 32 [11]	検出 検体 4/4 4/5 1/3 1/3 9/18 6/19 3/19 1/19	頻度 地点 4/4 4/5 1/3 1/3 9/18 6/19 3/19 1/19
貝類 (pg/g-wet) 魚類 (pg/g-wet)	実施年度 2011 2012 2014 2015 2011 2012 2014 2015 2011 2015 2011	平均值 16 15 nd nd nd nd	26 16 nd nd nd nd	最大値 52 43 23 tr(22) 37 15 tr(8) tr(11) nd	最小值 4 nd nd nd nd nd	定量[検出] 下限値 11 [4] 14 [5] 19 [6] 32 [11] 11 [4] 14 [5] 19 [6]	検出 検体 4/4 4/5 1/3 1/3 9/18 6/19 3/19 1/19 0/1	頻度 地点 4/4 4/5 1/3 1/3 9/18 6/19 3/19 1/19 0/1
貝類 (pg/g-wet) 魚類	実施年度 2011 2012 2014 2015 2011 2012 2014 2015 2011 2015 2011 2012	平均值 16 15 nd nd nd nd nd nd	26 16 nd nd nd nd nd	最大値 52 43 23 tr(22) 37 15 tr(8) tr(11)	最小值 4 nd nd nd nd nd nd	定量[検出] 下限値 11 [4] 14 [5] 19 [6] 32 [11] 11 [4] 14 [5] 19 [6] 32 [11] 11 [4] 14 [5]	検出 検体 4/4 4/5 1/3 1/3 9/18 6/19 3/19 1/19 0/1 1/2	頻度 地点 4/4 4/5 1/3 1/3 9/18 6/19 3/19 1/19 0/1 1/2
貝類 (pg/g-wet) 魚類 (pg/g-wet)	実施年度 2011 2012 2014 2015 2011 2012 2014 2015 2011 2015 2011	平均值 16 15 nd nd nd nd nd	26 16 nd nd nd nd nd	最大値 52 43 23 tr(22) 37 15 tr(8) tr(11) nd	最小值 4 nd nd nd nd nd nd nd	定量[検出] 下限値 11 [4] 14 [5] 19 [6] 32 [11] 11 [4] 14 [5] 19 [6] 32 [11] 11 [4]	検出 検体 4/4 4/5 1/3 1/3 9/18 6/19 3/19 1/19 0/1	頻度 地点 4/4 4/5 1/3 1/3 9/18 6/19 3/19 1/19 0/1

⁽注1) ※: 鳥類の 2014 年度以降の結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と 継続性がない。

<大気>


 \bigcirc 2011 年度から 2016 年度における大気についての α-エンドスルファン及び β -エンドスルファンの検出状況

α-エンドスルファン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
α- <i>Δ</i> - <i>Δ</i> - <i>Λ</i> / <i>λ</i> / <i>γ</i> / <i>γ</i> /	天旭 中及	平均值	中大恒	取八胆	取小胆	下限値 1	検体	地点
	2011 温暖期	26	24	190	tr(7.8)	12 [4.0]	35/35	35/35
	2011寒冷期	tr(9.6)	tr(9.8)	45	nd	12 [4.0]	35/37	35/37
大気	2012 温暖期	23	22	98	tr(6.0)	16 [5.3]	36/36	36/36
(pg/m^3)	2012 寒冷期	nd	nd	19	nd	10 [3.3]	15/36	15/36
(pg/III [*])	2014 温暖期	20	23	90	2.6	0.8 [0.3]	36/36	36/36
	2015 温暖期	10	11	140	1.6	1.0 [0.3]	35/35	35/35
	2016 温暖期	8.9	9.3	46	1.0	0.8 [0.3]	37/37	37/37
β-エンドスルファン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
p-= > - > / > / >		平均值	十八世	取八胆	权/1、旧	下限値	検体	地点
	2011 温暖期	2.1	1.8	11	nd	1.2 [0.39]	34/35	34/35
	2011寒冷期	tr(0.80)	tr(0.90)	8.3	nd	1.2 [0.39]	31/37	31/37
大気	2012 温暖期	1.3	1.3	18	nd	1.2 [0.4]	33/36	33/36
(pg/m^3)	2012 寒冷期	nd	nd	1.7	nd	1.2 [0.4]	17/36	17/36
(pg/III [*])	2014 温暖期	1.3	1.4	6.1	nd	1.2 [0.4]	33/36	33/36
	2015 温暖期	0.7	0.6	38	nd	0.5 [0.2]	33/35	33/35
(V) 2010 F F 13 F	2016 温暖期	0.8	tr(0.7)	3.3	nd	0.8 [0.3]	34/37	34/37


⁽注) 2013 年度は調査を実施していない。

⁽注2) 2013 年度は調査を実施していない。

[18-1] α-エンドスルファン

- (注1) 2002 年度から 2010 年度及び 2013 年度は調査を実施していない。
- (注2) 2012 年度の寒冷期は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。
- 図 3-18-1-1 α-エンドスルファンの大気の経年変化 (幾何平均値)

[18-2] *β*-エンドスルファン

- (注1) 2002 年度から 2010 年度及び 2013 年度は調査を実施していない。
- (注2) 2012 年度の寒冷期は幾何平均値が検出下限値未満であったため、検出下限値の1/2の値を図示した。

図 3-18-2-1 β-エンドスルファンの大気の経年変化(幾何平均値)

[19] 1,2,5,6,9,10-ヘキサブロモシクロドデカン類

・調査の経緯及び実施状況

1,2,5,6,9,10-ヘキサブロモシクロドデカン類は、樹脂用及び繊維用の難燃剤として利用されていた。2013年 4~5 月に開催された POPs 条約の第 6 回条約締約国会議(COP6)において α -1,2,5,6,9,10-ヘキサブロモシクロドデカン、 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び γ -1,2,5,6,9,10-ヘキサブロモシクロドデカンを条約対象物質とすることが採択され、2014年 5 月に化審法に基づく第一種特定化学物質に指定されている。

継続的調査としては 2011 年度が初めての調査であり、2001 年度までの調査として「化学物質環境調査」 では 1987 年度に水質、底質及び生物(魚類)を、2002 年度以降の化学物質環境実態調査の初期環境調査及び詳細環境調査等では 2003 年度に水質及び底質の調査を、2004 年度に生物(魚類)の調査をそれぞれ実施している。

2002 年度以降のモニタリング調査では、 α -1,2,5,6,9,10-ヘキサブロモシクロドデカン、 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び γ -1,2,5,6,9,10-ヘキサブロモシクロドデカンとが ϵ -1,2,5,6,9,10-ヘキサブロモシクロドデカンをが ϵ -1,2,5,6,9,10-ヘキサブロモシクロドデカンを加えたものについて、2011 年度に水質、底質及び生物(貝類、魚類及び鳥類)調査を、2012 年度に底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2015 年度に底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2015 年度に底質、生物(貝類、魚類及び鳥類)及び大気の調査を来施している。また、 α -1,2,5,6,9,10-ヘキサブロモシクロドデカン、 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び γ -1,2,5,6,9,10-ヘキサブロモシクロドデカンについて、2016年度に底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2018 年度に生物(貝類、魚類及び鳥類)及び大気の調査を、2019 年度に生物(貝類、魚類及び鳥類)及び大気の調査を、2019 年度に生物(貝類、魚類及び鳥類)及び大気の調査を、2018 年度に生物(貝類、魚類及び鳥類)の調査を、2019 年度に生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

<生物>

 α -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 生物のうち貝類については、3 地点を調査し、検出下限値 9pg/g-wet において 3 地点全てで検出され、検出濃度は $68\sim260$ pg/g-wet の範囲であった。魚類については、16 地点を調査し、検出下限値 9pg/g-wet において 16 地点で検出され、検出濃度は 980pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 9pg/g-wet において検出され、検出濃度は 1,100pg/g-wet であった。

2011 年度から 2019 年度における経年分析の結果、貝類、魚類ともに減少傾向が統計的に有意と判定された。

 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 生物のうち貝類については、3 地点を調査し、検出下限値 9pg/g-wet において 3 地点中 1 地点で検出され、検出濃度は tr(22)pg/g-wet であった。魚類については、16 地点を調査し、検出下限値 9pg/g-wet において 16 地点全てで検出されなかった。鳥類については、1 地点を調査し、検出下限値 9pg/g-wet において検出されなかった。

2011 年度から 2019 年度における経年分析の結果、貝類、魚類ともに低濃度地点数の増加傾向が統計的に有意と判定され、減少傾向が示唆された。

 γ -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 生物のうち貝類については、3 地点を調査し、検出下限値 9pg/g-wet において 3 地点全てで検出され、検出濃度は $tr(13)\sim140$ pg/g-wet の範囲であった。魚類については、16 地点を調査し、検出下限値 9pg/g-wet において 16 地点中 9 地点で検出され、検出濃度は 62pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 9pg/g-wet において検出されなかった。

2011年度から2019年度における経年分析の結果、貝類の減少傾向が統計的に有意と判定された。

〇2011 年度から 2019 年度における生物(貝類、魚類及び鳥類)についての α -1,2,5,6,9,10-ヘキサブロモシクロドデカン、 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び γ -1,2,5,6,9,10-ヘキサブロモシクロドデカンの検出状況

> \7\K \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
α-1,2,5,6,9,10-ヘキサブ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ロモシクロドデカン		平均值※				下限値	検体	地点
	2011 2012	1,100	1,200	13,000	tr(86)	170 [70]	10/10	4/4
		530 270	480	2,500 380	190 200	50 [20]	5/5	5/5
口本	2014		270			30 [10]	3/3	3/3
貝類	2015	260	200	560	150	30 [10]	3/3	3/3
(pg/g-wet)	2016	140	140	180	110	22 [9]	3/3	3/3
	2017	190	200	430	86	24 [9]	3/3	3/3
	2018	120	88	270	76	23 [9]	3/3	3/3
	2019	140	150	260	68	24 [9]	3/3	3/3
	2011	770	850	69,000	nd	170 [70]	41/51	16/17
	2012	510	560	8,700	nd	50 [20]	18/19	18/19
	2014	240	290	15,000	nd	30 [10]	18/19	18/19
魚類	2015	160	180	3,000	nd	30 [10]	18/19	18/19
(pg/g-wet)	2016	110	140	1,100	tr(12)	22 [9]	19/19	19/19
	2017	140	140	7,800	tr(9)	24 [9]	19/19	19/19
	2018	89	140	530	nd	23 [9]	17/18	17/18
	2019	79	92	980	nd	24 [9]	15/16	15/16
	2011	200	nd	530	nd	170 [70]	1/3	1/1
	2012 2014 ※ ※	120		1,400	nd	50 [20]	1/2	1/2 2/2
ń V.	2014***	480		1,800	130	30 [10]	2/2	2/2
鳥類	2015***			80	80	30 [10]	1/1	1/1
(pg/g-wet)	2016※※	400		1,600	100	22 [9]	2/2	2/2
	2017***	330		2,200	50	24 [9]	2/2	2/2
	2018***	600		610	590	23 [9]	2/2	2/2
0.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2019※※			1,100	1,100	24 [9]	1/1	1/1
8-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
ロモングロトアルン		平均值※				下限値	<u>検体</u>	地点
	2011	tr(70)	tr(85)	240	nd	98 [40]	7/10	3/4
	2012	tr(25)	40	90	nd	40 [10]	4/5	4/5
	2014	tr(10)	tr(10)	tr(20)	tr(10)	30 [10]	3/3	3/3
貝類	2015	tr(10)	tr(10)	30	nd	30 [10]	2/3	2/3
(pg/g-wet)			(0)					2/3
	2016	nd	tr(8)	tr(9)	nd	21 [8]	2/3	
	2017	tr(9)	nd	36	nd	23 [9]	1/3	1/3
	2017 2018	tr(9) nd	nd nd	36 nd	nd nd	23 [9] 22 [8]	1/3 0/3	1/3 0/3
	2017 2018 2019	tr(9) nd nd	nd nd nd	36 nd tr(22)	nd nd nd	23 [9] 22 [8] 24 [9]	1/3 0/3 1/3	1/3 0/3 1/3
	2017 2018 2019 2011	tr(9) nd nd nd	nd nd nd nd	36 nd tr(22) 760	nd nd nd nd	23 [9] 22 [8] 24 [9] 98 [40]	1/3 0/3 1/3 11/51	1/3 0/3 1/3 5/17
	2017 2018 2019 2011 2012	tr(9) nd nd nd nd	nd nd nd nd nd	36 nd tr(22) 760 40	nd nd nd nd nd	23 [9] 22 [8] 24 [9] 98 [40] 40 [10]	1/3 0/3 1/3 11/51 8/19	1/3 0/3 1/3 5/17 8/19
da sterr	2017 2018 2019 2011 2012 2014	tr(9) nd nd nd nd nd nd	nd nd nd nd nd	36 nd tr(22) 760 40 30	nd nd nd nd nd nd	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10]	1/3 0/3 1/3 11/51 8/19 5/19	1/3 0/3 1/3 5/17 8/19 5/19
魚類	2017 2018 2019 2011 2012 2014 2015	tr(9) nd nd nd nd nd nd nd nd	nd nd nd nd nd nd	36 nd tr(22) 760 40 30 tr(20)	nd nd nd nd nd nd	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 30 [10]	1/3 0/3 1/3 11/51 8/19 5/19 2/19	1/3 0/3 1/3 5/17 8/19 5/19 2/19
魚類 (pg/g-wet)	2017 2018 2019 2011 2012 2014 2015 2016	tr(9) nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd	36 nd tr(22) 760 40 30 tr(20) tr(12)	nd nd nd nd nd nd nd	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8]	1/3 0/3 1/3 11/51 8/19 5/19 2/19 3/19	1/3 0/3 1/3 5/17 8/19 5/19 2/19 3/19
******	2017 2018 2019 2011 2012 2014 2015 2016 2017	tr(9) nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	36 nd tr(22) 760 40 30 tr(20) tr(12) tr(12)	nd nd nd nd nd nd nd nd	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8] 23 [9]	1/3 0/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19	1/3 0/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19
******	2017 2018 2019 2011 2012 2014 2015 2016 2017 2018	tr(9) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd	36 nd tr(22) 760 40 30 tr(20) tr(12) tr(12) nd	nd nd nd nd nd nd nd nd	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 31 [10] 21 [8] 23 [9] 22 [8]	1/3 0/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18	1/3 0/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18
******	2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019	tr(9) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	36 nd tr(22) 760 40 30 tr(20) tr(12) tr(12) nd nd	nd nd nd nd nd nd nd nd nd	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 31 [10] 21 [8] 23 [9] 22 [8] 24 [9]	1/3 0/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16	1/3 0/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16
******	2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019	tr(9) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd	36 nd tr(22) 760 40 30 tr(20) tr(12) tr(12) nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 31 [10] 21 [8] 23 [9] 22 [8] 24 [9] 98 [40]	1/3 0/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16	1/3 0/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16
******	2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012	tr(9) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	36 nd tr(22) 760 40 30 tr(20) tr(12) tr(12) nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 31 [10] 21 [8] 23 [9] 22 [8] 24 [9] 98 [40] 40 [10]	1/3 0/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/3 0/2	1/3 0/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/1
(pg/g-wet)	2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014***	tr(9) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	36 nd tr(22) 760 40 30 tr(20) tr(12) tr(12) nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10]	1/3 0/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/3 0/2	1/3 0/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/1 0/2 0/2
(pg/g-wet) 鳥類	2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014*** 2015**	tr(9) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	36 nd tr(22) 760 40 30 tr(20) tr(12) tr(12) nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 30 [10]	1/3 0/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/3 0/2 0/1	1/3 0/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/1 0/2 0/2 0/1
(pg/g-wet)	2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014*** 2015*** 2016	tr(9) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd	36 nd tr(22) 760 40 30 tr(20) tr(12) tr(12) nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8]	1/3 0/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/3 0/2 0/1 0/2	1/3 0/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/1 0/2 0/1 0/2
(pg/g-wet) 鳥類	2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014*** 2015*** 2016** 2017	tr(9) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd	36 nd tr(22) 760 40 30 tr(20) tr(12) tr(12) nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8] 23 [9]	1/3 0/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/3 0/2 0/1 0/2 0/2 0/2	1/3 0/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/1 0/2 0/2 0/1 0/2 0/2 0/2
(pg/g-wet) 鳥類	2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014*** 2015*** 2016	tr(9) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd	36 nd tr(22) 760 40 30 tr(20) tr(12) tr(12) nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8]	1/3 0/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/3 0/2 0/1 0/2	1/3 0/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/1 0/2 0/1 0/2

γ-1,2,5,6,9,10-ヘキサブ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ロモシクロドデカン	夫旭千皮	平均值※	中天他	取入但	取小胆	下限值 1	検体	地点
	2011	440	470	3,300	nd	210 [80]	8/10	4/4
	2012	170	180	910	30	30 [10]	5/5	5/5
	2014	60	60	110	30	30 [10]	3/3	3/3
貝類	2015	70	90	200	tr(20)	30 [10]	3/3	3/3
(pg/g-wet)	2016	37	39	61	tr(21)	24 [9]	3/3	3/3
~	2017	49	30	200	tr(20)	24 [9]	3/3	3/3
	2018	tr(19)	39	46	nd	21 [8]	2/3	2/3
	2019	34	22	140	tr(13)	22 [9]	3/3	3/3
	2011	210	tr(90)	50,000	nd	210 [80]	26/51	10/17
	2012	75	80	1,600	nd	30 [10]	16/19	16/19
	2014	30	tr(20)	2,800	nd	30 [10]	12/19	12/19
魚類	2015	tr(20)	tr(10)	230	nd	30 [10]	10/19	10/19
(pg/g-wet)	2016	tr(16)	tr(13)	160	nd	24 [9]	11/19	11/19
	2017	tr(16)	tr(18)	120	nd	24 [9]	12/19	12/19
	2018	tr(11)	tr(11)	130	nd	21 [8]	10/18	10/18
	2019	tr(12)	tr(13)	62	nd	22 [9]	9/16	9/16
	2011	tr(180)	nd	460	nd	210 [80]	1/3	1/1
	2012	31		190	nd	30 [10]	1/2	1/2
	2014※※	tr(10)		tr(10)	tr(10)	30 [10]	2/2	2/2
鳥類	2015※※			tr(10)	tr(10)	30 [10]	1/1	1/1
(pg/g-wet)	2016※※	tr(10)		tr(20)	nd	24 [9]	1/2	1/2
	2017※※	tr(9)		tr(18)	nd	24 [9]	1/2	1/2
	2018※※	nd		nd	nd	21 [8]	0/2	0/2
(2)	2019***			nd	nd	22 [9]	0/1	0/1

⁽注1)※: 2011年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

 α -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 大気については、36 地点を調査し、検出下限値 0.1pg/m³ において 36 地点中 35 地点で検出され、検出濃度は 4.1pg/m³ までの範囲であった。

 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 大気については、36 地点を調査し、検出下限値 $0.08 pg/m^3$ において 36 地点中 26 地点で検出され、検出濃度は $1.2 pg/m^3$ までの範囲であった。

 γ -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 大気については、36 地点を調査し、検出下限値 $0.2pg/m^3$ において 36 地点中 15 地点で検出され、検出濃度は $1.5pg/m^3$ までの範囲であった。

○2012 年度から 2019 年度における大気についての 1,2,5,6,9,10-ヘキサブロモシクロドデカン類の検出状況

		1) 2/1/1	() ()	1,2,5,0,7,10	. () / .	/ /	70 0 25 07 1	火口がし
α-1,2,5,6,9,10-ヘキサフロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2012 温暖期	1.7	2.2	130	nd	0.6 [0.2]	31/36	31/36
	2012 寒冷期	2.9	3.0	63	nd	0.0 [0.2]	35/36	35/36
大気	2014 温暖期	tr(0.6)	tr(0.7)	3.1	nd	1.2 [0.4]	25/36	25/36
(pg/m^3)	2015 温暖期	tr(0.6)	tr(0.7)	30	nd	0.9 [0.3]	26/35	26/35
(pg/III [*])	2016 温暖期	0.5	0.5	2.4	tr(0.1)	0.3 [0.1]	37/37	37/37
	2017 温暖期	0.5	0.5	3.3	nd	0.3 [0.1]	36/37	36/37
	2019 温暖期	0.5	0.5	4.1	nd	0.3 [0.1]	35/36	35/36
β-1,2,5,6,9,10-ヘキサフロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2012 温暖期	0.5	0.5	29	nd		30/36	30/36
	2012 寒冷期	0.8	0.8	18	nd	0.3 [0.1]	35/36	35/36
大気	2014 温暖期	nd	nd	tr(0.8)	nd	1.0 [0.3]	8/36	8/36
	2015 温暖期	nd	nd	3.9	nd	0.8 [0.3]	7/35	7/35
(pg/m^3)	2016温暖期	tr(0.1)	tr(0.1)	0.7	nd	0.3 [0.1]	21/37	21/37
	2017温暖期	tr(0.2)	tr(0.1)	0.8	nd	0.3 [0.1]	33/37	33/37
	2019 温暖期	tr(0.13)	tr(0.15)	1.2	nd	0.21 [0.08]	26/36	26/36

⁽注 2) ※※: 鳥類の 2014 年度以降の結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。

⁽注3) 2013 年度は調査を実施していない。

γ-1,2,5,6,9,10-ヘキサフロエシ/クロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出]	検出 検体	頻度 地点
<u> </u>	2012 温暖期	1.6	1.7	280	nd	0.2.50.13	31/36	31/36
	2012 寒冷期	2.1	1.8	84	nd	0.3 [0.1]	35/36	35/36
大気	2014 温暖期	nd	nd	tr(1.2)	nd	1.3 [0.4]	4/36	4/36
	2015 温暖期	nd	nd	4.4	nd	0.8 [0.3]	11/35	11/35
(pg/m^3)	2016温暖期	tr(0.1)	nd	1.4	nd	0.3 [0.1]	16/37	16/37
	2017 温暖期	tr(0.1)	tr(0.1)	0.8	nd	0.3 [0.1]	20/37	20/37
	2019 温暖期	nd	nd	1.5	nd	0.4 [0.2]	15/36	15/36

⁽注) 2013 年度及び 2018 年度は調査を実施していない。

・2016 年度までの調査結果 (参考)

<水質>

○2011 年度及び 2014 年度における水質についての 1,2,5,6,9,10-ヘキサブロモシクロドデカン類の検出状況

○2011 十及及○ 20.		つい。ついばい		1,2,2,0,7,10	- ''() / '		/ /V / FR V/1	火山小心
α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
水質	2011	nd	nd	6,300	nd	1,500 [600]	4/47	4/47
(pg/L)	2014	nd	nd	1,600	nd	1,500 [600]	1/48	1/48
β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 <u>検体</u>	頻度 地点
水質	2011	nd	nd	1,300	nd	1,300 [500]	4/47	4/47
(pg/L)	2014	nd	nd	tr(300)	nd	500 [200]	1/48	1/48
γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
水質	2011	nd	nd	65,000	nd	1,200 [500]	5/47	5/47
(pg/L)	2014	nd	nd	nd	nd	700 [300]	0/48	0/48
δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 <u>検体</u>	頻度 地点
	2011	nd	nd	nd	nd		0/47	
(pg/L)	2014	nd	nd	nd	nd	600 [200]	0/48	0/48
ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
水質	2011	nd	nd	nd	nd	740 [300]	0/47	0/47
(pg/L)	2014	nd	nd	nd	nd	400 [200]	0/48	0/48
δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン 水質 (pg/L) ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン 水質	実施年度 2011 2014 実施年度 2011	幾何 平均値 nd nd 幾何 平均値 nd	中央値 nd nd 中央値	最大値 nd nd 最大値	最小値 nd nd 最小値 nd	定量[検出] 下限値 790 [300] 600 [200] 定量[検出] 下限値 740 [300]	検出 検体 0/47 0/48 (検出 検体 0/47	頻度

<底質>

○2011 年度から 2016 年度における底質についての 1,2,5,6,9,10-ヘキサブロモシクロドデカン類の検出状況

○2011 十次7 つ 20	10 TX (CA	のいる皮質に		1,2,3,0,7,10-	**() /		/ / V V X X V /	火口が心
α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2011	430	nd	24,000	nd	420 [280]	78/186	35/62
底質	2012	310	280	22,000	nd	180 [70]	47/63	47/63
(pg/g-dry)	2015	390	410	27,000	nd	150 [60]	47/62	47/62
	2016	260	210	27,000	nd	130 [60]	43/62	43/62
β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2011	nd	nd	14,000	nd	250 [170]	48/186	21/62
底質	2012	tr(93)	nd	8,900	nd	150 [60]	29/63	29/63
(pg/g-dry)	2015	120	92	7,600	nd	150 [60]	33/62	33/62
400 37	2016	tr(87)	nd	7,400	nd	130 [50]	31/62	31/62
γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2011	670	nd	570,000	nd	400 [260]	89/186	36/62
底質	2012	420	330	55,000	nd	160 [60]	52/63	52/63
(pg/g-dry)	2015	330	450	60,000	nd	110 [42]	48/62	48/62
	2016	250	190	50,000	nd	150 [60]	42/62	42/62
δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
产 所	2011	nd	nd	800	nd	350 [250]	11/186	6/62
底質	2012	nd	nd	680	nd	300 [100]	5/63	5/63
(pg/g-dry)	2015	nd	nd	nd	nd	180 [70]	0/62	0/62
ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2011	nd	nd	tr(260)	nd	280 [210]	2/186	1/62
底質	2012	nd	nd	310	nd	150 [60]	7/63	7/63
(pg/g-dry)	2015	nd	nd	nd	nd	130 [51]	0/62	0/62

⁽注1)※: 2011年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

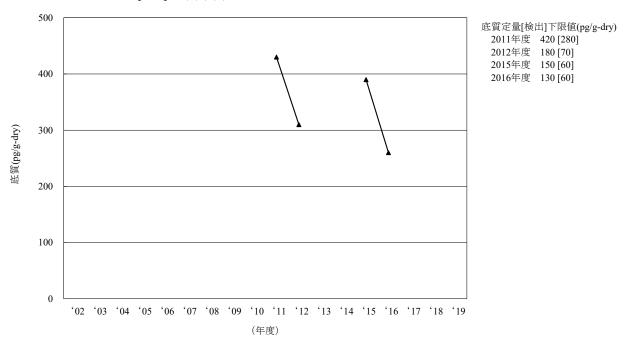
⁽注 2) 2013 年度及び 2014 年度は調査を実施していない。また、2016 年度は δ -1,2,5,6,9,10-ヘキサブロモシクロドデカン 及び ϵ -1,2,5,6,9,10-ヘキサブロモシクロドデカンの調査を実施していない。

<生物>

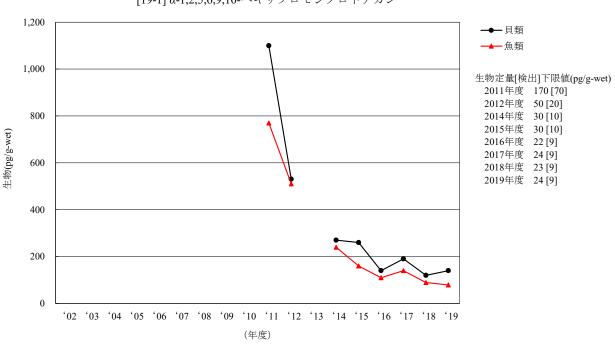
〇2011 年度から 2015 年度における生物(貝類、魚類及び鳥類)についての δ -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び ϵ -1,2,5,6,9,10-ヘキサブロモシクロドデカンの検出状況

δ-1,2,5,6,9,10-ヘキサブ		幾何	由由結	- 1 / / * *	型 小 / di	定量[検出]	検出	頻度
ロモシクロドデカン	実施年度	平均值※	中央値	最大値	最小値	下限值 1	検体	地点
	2011	nd	nd	nd	nd	140 [60]	0/10	0/4
貝類	2012	nd	nd	nd	nd	50 [20]	0/5	0/5
(pg/g-wet)	2014	nd	nd	nd	nd	30 [10]	0/3	0/3
	2015	nd	nd	nd	nd	30 [10]	0/3	0/3
	2011	nd	nd	nd	nd	140 [60]	0/51	0/17
魚類	2012	nd	nd	nd	nd	50 [20]	0/19	0/19
(pg/g-wet)	2014	nd	nd	nd	nd	30 [10]	0/19	0/19
-	2015	nd	nd	tr(20)	nd	30 [10]	1/19	1/19
	2011	nd	nd	nd	nd	140 [60]	0/3	0/1
鳥類	2012	nd		nd	nd	50 [20]	0/2	0/2
(pg/g-wet)	2014※※	nd		nd	nd	30 [10]	0/2	0/2
-	2015※※			nd	nd	30 [10]	0/1	0/1
ε-1,2,5,6,9,10-ヘキサブ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	, 検出	頻度
ロモシクロドデカン		平均值※				下限値	<u></u>	地点
	2011	nd	nd	nd	nd	140 [60]	0/10	0/4
貝類	2012	nd	nd	tr(30)	nd	40 [20]	1/5	1/5
(pg/g-wet)	2014	nd	nd	tr(20)	nd	30 [10]	1/3	1/3
	2015	nd	nd	tr(10)	nd	30 [10]	1/3	1/3
A 1/17	2011	nd	nd	nd	nd	140 [60]	0/51	0/17
魚類	2012	nd	nd	tr(30)	nd	40 [20]	3/19	3/19
(pg/g-wet)	2014	nd	nd	80	nd	30 [10]	3/19	3/19
·	2015	nd	nd	tr(10)	nd	30 [10]	1/19	1/19
÷ 1/1	2011	nd	nd	nd	nd	140 [60]	0/3	0/1
鳥類	2012	nd		nd	nd	40 [20]	0/2	0/2
(pg/g-wet)	2014※※	nd		nd	nd	30 [10]	0/2	0/2
	2015***			nd	nd	30 [10]	0/1	0/1

- (注1)※: 2011年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) ※※: 鳥類の 2014 年度以降の結果は、調査地点及び調査対象生物を変更したことから、2012 年度までの結果と継続性がない。
- (注3) 2013 年度は調査を実施していない。

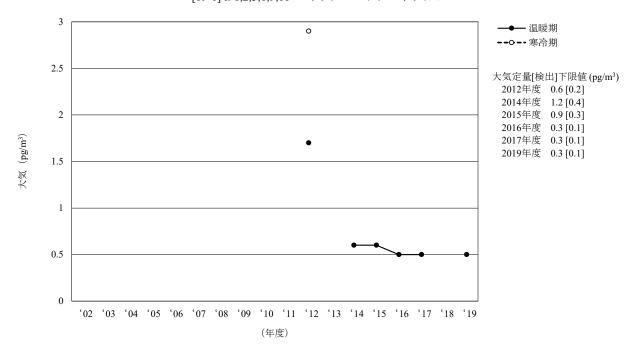

<大気>

〇2012 年度から 2015 年度における大気についての δ -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び ϵ -1,2,5,6,9,10-ヘキサブロモシクロドデカンの検出状況

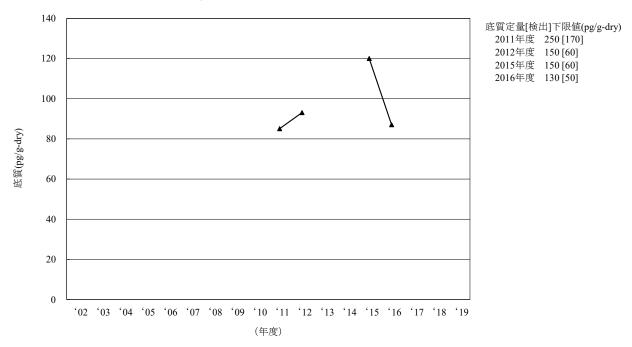

, , , , ,								
δ-1,2,5,6,9,10-ヘキサフロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2012 温暖期	nd	nd	0.8	nd	0.4 [0.2]	1/36	1/36
大気	2012 寒冷期	nd	nd	1.1	nd	0.4 [0.2]	1/36	1/36
(pg/m^3)	2014 温暖期	nd	nd	nd	nd	1.8 [0.6]	0/36	0/36
	2015 温暖期	nd	nd	1.9	nd	1.9 [0.6]	1/35	1/35
ε-1,2,5,6,9,10-ヘキサフロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	ず 実施年度 2012 温暖期		中央値 nd	最大値 nd	最小値 nd	下限値		
	実施年度 2012 温暖期 2012 寒冷期	平均値				定量[検出] 下限値 0.6 [0.2]	検体	地点
ロモシクロドデカン	実施年度 2012 温暖期 2012 寒冷期 2014 温暖期	平均值 nd	nd	nd	nd	下限値	<u>検体</u> 0/36	地点 0/36
ロモシクロドデカン大気	実施年度 2012 温暖期 2012 寒冷期	平均値 nd nd	nd nd	nd tr(0.5)	nd nd	下限値 0.6 [0.2]	<u>検体</u> 0/36 1/36	地点 0/36 1/36

(注) 2013 年度は調査を実施していない。

[19-1] α-1,2,5,6,9,10-ヘキサブロモシクロドデカン

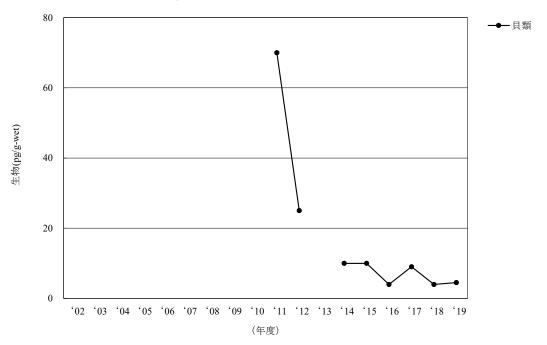

- (注1) 2011 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2002 年度から 2010 年度、2013 年度、2014 年度及び 2017 年度から 2019 年度は調査を実施していない。
- 図 3-19-1-1 α-1,2,5,6,9,10-ヘキサブロモシクロドデカンの底質の経年変化(幾何平均値)

[19-1] α-1,2,5,6,9,10-ヘキサブロモシクロドデカン


- (注1) 2011 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2014 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注3) 2002 年度から 2010 年度、2013 年度及び 2019 年度は調査を実施していない。
- 図 3-19-1-2 α-1,2,5,6,9,10-ヘキサブロモシクロドデカンの生物の経年変化(幾何平均値)

[19-1] α-1,2,5,6,9,10-ヘキサブロモシクロドデカン

(注) 2002 年度から 2011 年度、2013 年度、2018 年度及び 2019 年度は調査を実施していない。 図 3-19-1-3 α-1,2,5,6,9,10-ヘキサブロモシクロドデカンの大気の経年変化(幾何平均値)


[19-2] β-1,2,5,6,9,10-ヘキサブロモシクロドデカン

- (注1) 2011 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2002 年度から 2010 年度、2013 年度、2014 年度及び 2017 年度から 2019 年度は調査を実施していない。
- (注2) 2011 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。

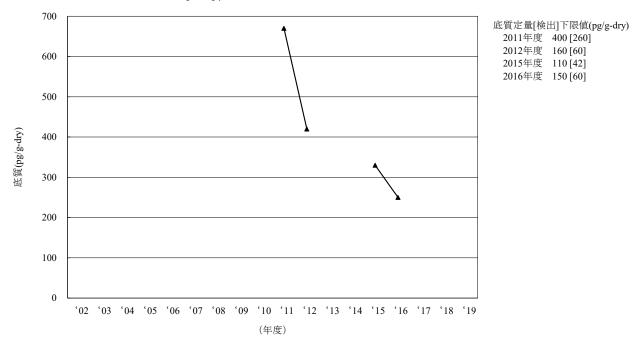
図 3-19-2-1 β -1,2,5,6,9,10-ヘキサブロモシクロドデカンの底質の経年変化(幾何平均値)

[19-2] β-1,2,5,6,9,10-ヘキサブロモシクロドデカン

- (注1) 2011 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 魚類については、全ての年度において幾何平均値が検出下限値未満であったため、経年変化は示していない。
- (注3) 鳥類は2014年度に調査地点及び調査対象生物を変更したことから2012年度までと継続性がないため、経年変化は示していない。
- (注4) 2002 年度から 2010 年度、2013 年度及び 2019 年度は調査を実施していない。
- (注 5) 2016 年度、2018 年度及び 2019 年度は幾何平均値が検出下限値未満であったため、検出下限値の 1/2 の値を図示した。
- 図 3-19-2-2 β-1,2,5,6,9,10-ヘキサブロモシクロドデカンの生物の経年変化(幾何平均値)

1 ◆ 温暖期 --0--寒冷期 大気定量[検出]下限値(pg/m³) 0.8 2012年度 0.3 [0.1] 2014年度 1.0 [0.3] 2015年度 0.8 [0.3] 2016年度 0.3 [0.1] 0.6 大気 (pg/m³) 2017年度 0.3 [0.1] 2019年度 0.21 [0.08] 0.4 0.2 0 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16 '17 '18 '19

[19-2] β-1,2,5,6,9,10-ヘキサブロモシクロドデカン


(注1) 2002 年度から 2011 年度、2013 年度、2018 年度及び 2019 年度は調査を実施していない。

(年度)

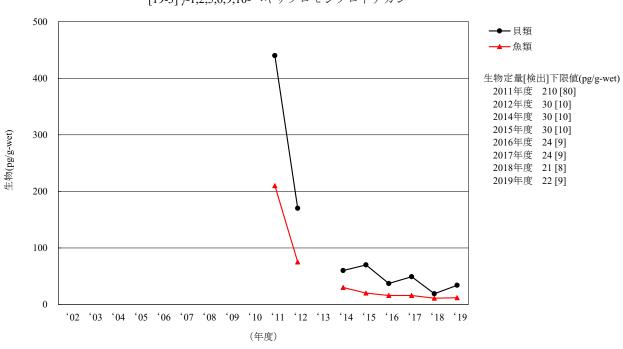

(注2) 2014年度及び2015年度は幾何平均値が検出下限値未満であったため、検出下限値の1/2の値を図示した。

図 3-19-2-3 β-1,2,5,6,9,10-ヘキサブロモシクロドデカンの大気の経年変化(幾何平均値)

[19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロドデカン

- (注1) 2011 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2002 年度から 2010 年度、2013 年度、2014 年度及び 2017 年度から 2019 年度は調査を実施していない。
- 図 3-19-3-1 γ-1,2,5,6,9,10-ヘキサブロモシクロドデカンの底質の経年変化(幾何平均値)

[19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロドデカン

- (注1) 2011 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2014 年度に調査地点及び調査対象生物を変更したことから 2012 年度までと継続性がないため、経年変化は示していない。
- (注3) 2002 年度から 2010 年度、 2013 年度及び 2019 年度は調査を実施していない。
- 図 3-19-3-2 γ-1,2,5,6,9,10-ヘキサブロモシクロドデカンの生物の経年変化(幾何平均値)

[20] 総ポリ塩化ナフタレン

調査の経緯及び実施状況

ポリ塩化ナフタレン類は、機械油等として利用されていた。ポリ塩化ナフタレン類のうち、塩素数が 3 以上のものが 1979 年 8 月に化審法に基づく第一種特定化学物質に指定されている。また、POPs 条約では、2015 年 5 月に開催された第 7 回条約締約国会議 (COP7) において塩素数が 2 から 8 までの塩化ナフタレンについて条約対象物質とすることが採択され、化審法に基づく第一種特定化学物質に塩素数が 2 のものが2016 年 4 月に追加指定されている。

2001 年度までの継続的調査においては、「生物モニタリング」ⁱⁱ⁾で 1980 年度から 1985 年度までの毎年度と 1987 年度、1989 年度、1991 年度及び 1993 年度に生物(貝類、魚類及び鳥類)について調査を実施している。

2002 年度以降のモニタリング調査でも、塩素数が1から8までのものを対象として、2006 年度に生物(貝類、魚類及び鳥類)の調査を、2008 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2014 年度に大気の調査を、2015 年度に生物(貝類、魚類及び鳥類)の調査を、2016 年度及び 2017 年度に底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2018 年度及び 2019 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、2018 年度及び 2019 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調查結果

<水質>

水質については、48 地点を調査し、検出下限値 7.5pg/L において 48 地点中 32 地点で検出され、検出濃度は 260pg/L までの範囲であった。

○2008 年度から 2019 年度における水質についての総ポリ塩化ナフタレンの検出状況

レン 実施中度 平均値 中大値 取入値 取小値 下限値※ 水質 2008 nd nd 180 nd 85[30] 水質 2018 **(22) **(24) 2(0) **d 25 [12]	
(pg/L) 2018 tr(32) tr(34) 260 nd 35 [12] 2019 tr(14) tr(12) 260 nd 24 [7.5]	nd 35 [12] 39/47 39/47

⁽注1)※:定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。

<底質>

底質については、61 地点を調査し、検出下限値 2.7pg/g-dry において 61 地点全てで検出され、検出濃度は $13\sim58,000pg/g$ -dry の範囲であった。

○2008 年度から 2019 年度における底質についての総ポリ塩化ナフタレンの検出状況

総ポリ塩化ナフタ レン	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値 ※※	検出 検体	頻度 地点
	2008	410	400	28,000	nd	84 [30]	166/189	58/63
皮所	2016	760	870	160,000	nd	59 [20]	59/62	59/62
底質 (ng/g dw/)	2017	630	800	32,000	tr(16)	27 [9.1]	62/62	62/62
(pg/g-dry)	2018	680	810	34,000	9.9	8.5 [3.2]	61/61	61/61
	2019	600	720	58,000	13	7.3 [2.7]	61/61	61/61

⁽注1)※:2008年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 2009 年度から 2017 年度は調査を実施していない。

⁽注2) ※※: 定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。

⁽注3) 2009 年度から 2015 年度は調査を実施していない。

<生物>

生物のうち貝類については、3 地点を調査し、検出下限値 15pg/g-wet において 3 地点中 2 地点で検出され、検出濃度は 820pg/g-wet までの範囲であった。魚類については、16 地点を調査し、検出下限値 15pg/g-wet において 16 地点中 12 地点で検出され、検出濃度は 270pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値※5pg/g-wet において検出され、検出濃度は 170pg/g-wet であった。

○2006 年度から 2019 年度における生物(貝類、魚類及び鳥類)についての総ポリ塩化ナフタレンの検出 状況

プリ塩化ナフタレ		幾何				定量[検出]	検出	厢 庄
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	実施年度	平均值※	中央値	最大値	最小値	下限値※※	検体	地点
	2006	98	73	1.2	tr(19)	27 [11]	31/31	7/7
	2008	94	73	1,300	tr(11)	26 [10]	31/31	7/7
	2015	70	67	580	nd	54 [18]	2/3	2/3
貝類	2016	72	tr(49)	790	nd	57 [19]	2/3	2/3
(pg/g-wet)	2017	46	68	1,400	nd	33 [12]	2/3	2/3
	2018	58	tr(22)	700	tr(13)	36 [12]	3/3	3/3
	2019	84	96	820	nd	40 [15]	2/3	2/3
	2006	72	49	2,700	nd	27 [11]	78/80	16/16
	2008	59	40	2,200	nd	26 [10]	79/85	17/17
A. W.T.	2015	tr(50)	85	390	nd	54 [18]	13/19	13/19
魚類	2016	tr(44)	tr(48)	340	nd	57 [19]	13/19	13/19
(pg/g-wet)	2017	32	51	360	nd	33 [12]	17/19	17/19
	2018	41	36	520	nd	36 [12]	16/18	16/18
	2019	46	78	270	nd	40 [15]	12/16	12/16
	2006	tr(17)	tr(18)	27	tr(11)	27 [11]	10/10	2/2
	2008	tr(10)	nd	tr(22)	nd	26 [10]	5/10	1/2
卢 华玉	2015※※※			tr(20)	tr(20)	54 [18]	1/1	1/1
鳥類	2016※※※	130		320	tr(49)	57 [19]	2/2	2/2
(pg/g-wet)	2017※※※	91		460	tr(18)	33 [12]	2/2	2/2
	2018※※※	230		250	220	36 [12]	2/2	2/2
	2019※※※			170	170	40 [15]	1/1	1/1

⁽注1) ※: 2006 年度及び 2008 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

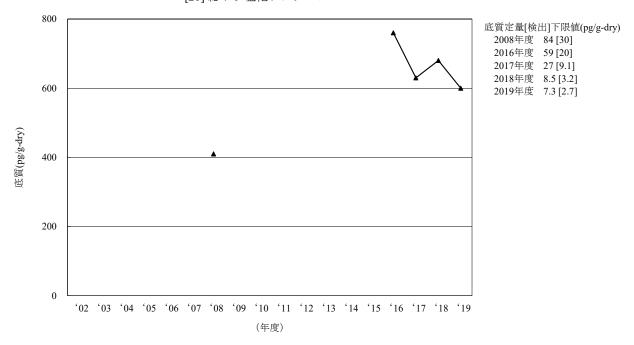
<大気>

大気については、36 地点を調査し、検出下限値 $0.2pg/m^3$ において 36 地点全てで検出され、検出濃度は $6.5\sim1,100pg/m^3$ の範囲であった。

○2008年度から2019年度における大気についての総ポリ塩化ナフタレンの検出状況

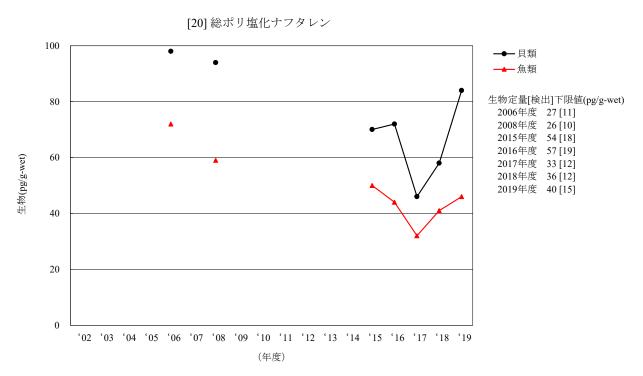
		, -, -, -, -, -, -, -, -, -, -, -, -, -,	-			12 41 1 1 1 1 1 2		
総ポリ塩化ナフタ ン	ア 実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値※	検出 検体	頻度 地点
	2008 温暖期	200	230	660	35	4.0 [1.3]	22/22	22/22
	2008寒冷期	tr(9.6)	tr(9.8)	45	nd	4.0 [1.3]	36/36	36/36
I #	2014 温暖期	110	130	1,600	5.4	2.8 [1.0]	36/36	36/36
大気	2016 温暖期	110	130	660	9.0	0.79 [0.28]	37/37	37/37
(pg/m^3)	2017 温暖期	110	120	920	7	0.67 [0.24]	37/37	37/37
	2018 温暖期	86	110	590	5.3	0.5 [0.2]	37/37	37/37
	2019 温暖期	100	130	1,100	6.5	0.6 [0.2]	36/36	36/36

⁽注1)※:定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。


⁽注2) ※※: 定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。

⁽注3) ※※※:鳥類の2015年度以降における結果は、調査地点及び調査対象生物を変更したことから、2008年度までの結果と継続性がない。

⁽注4) 2007 年度及び 2009 年度から 2014 年度は調査を実施していない。


⁽注2) 2009 年度から 2013 年度及び 2015 年度は調査を実施していない。

[20] 総ポリ塩化ナフタレン

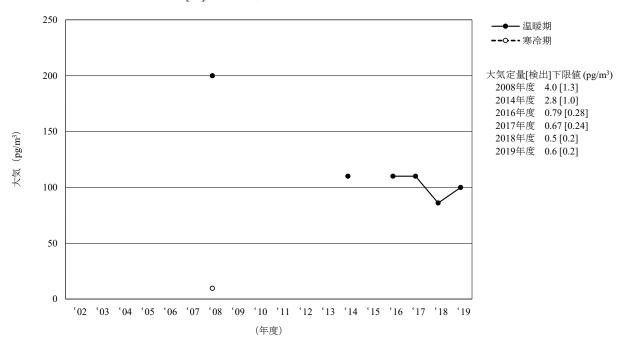

- (注1) 2008 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2002 年度から 2007 年度及び 2009 年度及から 2015 年度は調査を実施していない。

図 3-20-1 総ポリ塩化ナフタレンの底質の経年変化(幾何平均値)

- (注 1) 2006 年度及び 2008 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注 2) 鳥類は 2015 年度に調査地点及び調査対象生物を変更したことから 2008 年度までと継続性がないため、経年変化 は示していない。
- (注3) 2002 年度から 2005 年度、2007 年度及び 2009 年度から 2014 年度は調査を実施していない。
- 図 3-20-2 総ポリ塩化ナフタレンの生物の経年変化(幾何平均値)

[20] 総ポリ塩化ナフタレン

- (注1) 2008 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 2002 年度から 2007 年度、2009 年度から 2013 年度及び 2015 年度は調査を実施していない。

図 3-20-3 総ポリ塩化ナフタレンの大気の経年変化(幾何平均値)

[21] ヘキサクロロブタ-1.3-ジエン

調査の経緯及び実施状況

へキサクロロブタ-1,3-ジエンは、溶媒として利用されていたが、2005 年 4 月 1 日に化審法に基づく第一種特定化学物質に指定されている。また、POPs 条約においては、2015 年 5 月に開催された第 7 回条約締約国会議(COP7)において条約対象物質とすることが採択された。

継続的調査としては 2007 年度が初めての調査であり、2002 年度までの調査として「化学物質環境調査」 では 1981 年度に水質及び底質の調査を、2002 年度以降の化学物質環境実態調査の初期環境調査及び詳細環境調査等では 2007 年度に水質及び底質の調査を実施している。

2002 年度以降のモニタリング調査では、2007 年度及び 2013 年度に水質、底質及び生物(貝類、魚類及び鳥類)の調査を、2015 年度から 2019 年度に大気の調査を実施している。

•調査結果

<大気>

大気については、36 地点を調査し、検出下限値 20pg/m³ において 36 地点中 35 地点で検出され、検出濃度は 5,800pg/m³ までの範囲であった。

○2015年度から 2019年度における大気についてのヘキサクロロブタ-1,3-ジエンの検出状況

	,	, -, ., .,	-		,-	12 41 1	V - D =	
ヘキサクロロブタ -1,3-ジエン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2015 温暖期	1,100	1,200	3,500	45	29 [11]	102/102	34/34
+ <i>E</i>	2016 温暖期	850	800	4,300	510	60 [20]	111/111	37/37
大気 (ng/m³)	2017 温暖期	4,200	4,000	23,000	1,100	60 [20]	37/37	37/37
(pg/m^3)	2018 温暖期	3,600	3,500	8,500	150	30 [10]	110/110	37/37
	2019 温暖期	1,500	2,600	5,800	nd	50 [20]	104/108	35/36

・2013年度までの水質、底質及び生物(貝類、魚類及び鳥類)の調査結果(参考)

<水質>

○2007 年度及び 2013 年度における水質についてのヘキサクロロブタ-1,3-ジエンの検出状況

, , , , , , , ,	- ,	, - , , , ,	-		,-	12 * 1 . 1	V * V =	
ヘキサクロロブタ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出頻	度
-1,3-シエン)	平均値	1 7 4 12	PIX Y Y IES	7K 7 IE	下限値 1	検体	地点
水質	2007	nd	nd	nd	nd	870 [340]	0/48	0/48
(pg/L)	2013	nd	nd	tr(43)	nd	94 [37]	1/48	1/48

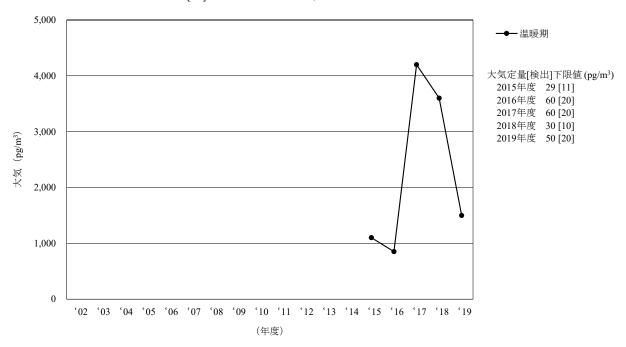
<底質>

○2007 年度及び 2013 年度における底質についてのヘキサクロロブタ-1,3-ジエンの検出状況

ヘキサクロロブタ -1,3-ジエン	実施年度	幾何 平均值 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
底質	2007	nd	nd	1,300	nd	22 [8.5]	22/192	10/64
(pg/g-dry)	2013	nd	nd	1,600	nd	9.9 [3.8]	40/189	20/63

⁽注)※:各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>


○2007 年度及び 2013 年度における生物(貝類、魚類及び鳥類)についてのヘキサクロロブタ-1,3-ジエンの検出状況

ヘキサクロロブタ -1,3-ジエン	実施年度	幾何 平均値※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
貝類	2007	nd	nd	nd	nd	36 [12]	0/31	0/7
(pg/g-wet)	2013	nd	nd	tr(7.1)	nd	9.4 [3.7]	3/13	1/5
魚類	2007	nd	nd	nd	nd	36 [12]	0/80	0/16
(pg/g-wet)	2013	nd	nd	59	nd	9.4 [3.7]	7/57	4/19
鳥類	2007	nd	nd	nd	nd	36 [12]	0/10	0/2
(pg/g-wet)	2013※※	nd	nd	nd	nd	9.4 [3.7]	0/6	0/2

⁽注1)※:各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注 2) ※※: 鳥類の 2013 年度における結果は、調査地点及び調査対象生物を変更したことから、2007 年度の結果と 継続性がない。

[21] ヘキサクロロブタ-1,3-ジエン

(注) 2002 年度から 2014 年度は調査を実施していない。

図 3-21-1 ヘキサクロロブタ-1,3-ジエンの大気の経年変化(幾何平均値)

[22] ペンタクロロフェノール並びにその塩及びエステル類

調査の経緯及び実施状況

ペンタクロロフェノールは、木材用の防腐剤、防虫剤及びかび防止剤等として利用されていた。2015 年 5 月に開催された POPs 条約の第 7 回条約締約国会議 (COP7) においてペンタクロロフェノール並びにその塩及びエステル類について条約対象物質とすることが採択され、2016 年 10 月 1 日に化審法に基づく第一種特定化学物質に指定されている。

継続的調査としては 2015 年度が初めての調査であり、2001 年度までの調査としてペンタクロロフェノールについて、「化学物質環境調査」^{iv)}では 1974 年度及び 1996 年度に水質及び底質の調査を、2002 年度以降の化学物質環境実態調査の初期環境調査及び詳細環境調査等では 2005 年度に水質の調査をそれぞれ実施している。

2002年度以降のモニタリング調査では、2015年度にペンタクロロフェノールについて水質の調査を、2016年度にペンタクロロフェノール及びペンタクロロアニソールについて底質、生物(貝類、魚類及び鳥類)及び大気の調査、2017年度から 2019年度にペンタクロロフェノール及びペンタクロロアニソールについて水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

<水質>

ペンタクロロフェノール: 水質については、48 地点を調査し、検出下限値 20pg/L において 48 地点中 32 地点で検出され、検出濃度は 3,500pg/L までの範囲であった。

ペンタクロロアニソール: 水質については、48 地点を調査し、検出下限値 10pg/L において 48 地点中 20 地点で検出され、検出濃度は 210pg/L までの範囲であった。

○2015 年度から 2019 年度における水質についてのペンタクロロフェノール及びペンタクロロアニソール の検出状況

ペンタクロロフェノ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
ール	天旭十尺	平均值	一人但	双八匹	政/1.1匝	下限值	検体	地点
	2015	tr(130)	tr(90)	26,000	nd	260 [85]	25/48	25/48
水質	2017	86	110	3,500	nd	30 [10]	43/47	43/47
(pg/L)	2018	50	47	4,400	nd	24 [9]	44/47	44/47
	2019	tr(60)	tr(50)	3,500	nd	60 [20]	32/48	32/48
ペンタクロロアニソ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
ール	天旭十尺	平均值	十人直	取八胆	取/1、恒	下限値 1	検体	地点
水質	2017	tr(10)	tr(8)	1,000	nd	14 [5]	32/47	32/47
	2018	tr(10)	tr(7)	230	nd	16 [6]	30/47	30/47
(pg/L)	2019	tr(10)	nd	210	nd	30 [10]	20/48	20/48

⁽注) 2016年度は調査を実施していない。また、2015年度はペンタクロロアニソールの調査を実施していない。

<底質>

ペンタクロロフェノール: 底質については、61 地点を調査し、検出下限値 2pg/g-dry において 61 地点全てで検出され、検出濃度は $7\sim6,200pg/g$ -dry の範囲であった。

ペンタクロロアニソール: 底質については、61 地点を調査し、検出下限値 0.8pg/g-dry において 61 地点中 60 地点で検出され、検出濃度は 140pg/g-dry までの範囲であった。

○2017 年度から 2019 年度における底質についてのペンタクロロフェノール及びペンタクロロアニソール の検出状況

1241 1040-								
ペンタクロロフェノ ール	実施年度	幾何 平均値	中央値	最大値	最小值	定量[検出] 下限値	横出 横体	頻度 地点
底質	2017	350	390	7,400	8	4 [2]	62/62	62/62
	2018	220	300	3,900	nd	18 [6]	59/61	59/61
(pg/g)	2019	260	380	6,200	7	6 [2]	61/61	61/61
ペンタクロロアニソ	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値		頻度 地点
- /12								
底質	2017	34	32	190	nd	5 [2]	61/62	61/62
	2018	tr(23)	tr(25)	160	nd	27 [9]	53/61	53/61
(pg/g)	2019	14	15	140	nd	2.1 [0.8]	60/61	60/61

<生物>

ペンタクロロフェノール: 生物のうち貝類については、3 地点を調査し、検出下限値 4pg/g-wet において 3 地点全てで検出され、検出濃度は $13\sim54$ pg/g-wet の範囲であった。魚類については、16 地点を調査し、検出下限値 4pg/g-wet において 16 地点中 14 地点で検出され、検出濃度は 57pg/g-wet までの範囲であった。 鳥類については、1 地点を調査し、検出下限値 4pg/g-wet において検出され、検出濃度は 430pg/g-wet であった。

ペンタクロロアニソール: 生物のうち貝類については、3 地点を調査し、検出下限値 1pg/g-wet において 3 地点全てで検出され、検出濃度は $tr(2)\sim15pg/g$ -wet の範囲であった。魚類については、16 地点を調査し、検出下限値 1pg/g-wet において 16 地点全てで検出され、検出濃度は $tr(1)\sim59pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 91pg/g-wet であった。

○2016 年度から 2019 年度における生物(貝類、魚類及び鳥類)についてのペンタクロロフェノール及びペンタクロロアニソールの検出状況

ペンタクロロフェノ		幾何	++ + +	日上伝	日』は	定量[検出]	検出	頻度
ール	実施年度	平均值	中央値	最大値	最小值	下限値	検体	地点
	2016	tr(45)	tr(46)	65	tr(30)	63 [21]	3/3	3/3
貝類	2017	nd	nd	tr(35)	nd	36 [12]	1/3	1/3
(pg/g-wet)	2018	tr(20)	tr(20)	30	tr(10)	30 [10]	3/3	3/3
	2019	26	26	54	13	10 [4]	3/3	3/3
	2016	100	130	990	nd	63 [21]	18/19	18/19
魚類	2017	tr(15)	tr(15)	110	nd	36 [12]	14/19	14/19
(pg/g-wet)	2018	tr(10)	tr(10)	80	nd	30 [10]	13/18	13/18
	2019	17	22	57	nd	10 [4]	14/16	14/16
	2016	1,200		3,100	440	63 [21]	2/2	2/2
鳥類	2017	1,800		11,000	300	36 [12]	2/2	2/2
(pg/g-wet)	2018	460		1,200	180	30 [10]	2/2	2/2
	2019			430	430	10 [4]	1/1	1/1
ペンタクロロアニソ		幾何	中央値			定量[検出]	検出	頻度
ペンタクロロアニソ ール	実施年度	平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 <u>検体</u>	頻度 地点
ール	実施年度 2016	平均值 7	3	最大値 35	最小値 3	定量[検出] 下限値 3[1]	検出 <u>検体</u> 3/3	頻度 地点 3/3
<u>ール</u> 貝類	実施年度 2016 2017	平均値 7 6	3 tr(3)	最大値 35 36	最小値 3 tr(2)	定量[検出] 下限値 3 [1] 4 [1]	検出 検体 3/3 3/3	頻度 地点 3/3 3/3
ール	実施年度 2016 2017 2018	平均値 7 6 6	3 tr(3) tr(4)	最大値 35 36 21	最小値 3 tr(2) tr(2)	定量[検出] 下限値 3 [1] 4 [1] 6 [2]	検出 <u>検体</u> 3/3 3/3 3/3	頻度 地点 3/3 3/3 3/3 3/3
<u>ール</u> 貝類	実施年度 2016 2017 2018 2019	平均値 7 6 6 4	3 tr(3) tr(4) tr(2)	最大値 35 36 21 15	最小値 3 tr(2) tr(2) tr(2)	定量[検出] 下限値 3 [1] 4 [1] 6 [2] 3 [1]	検出 検体 3/3 3/3 3/3 3/3	頻度 地点 3/3 3/3 3/3 3/3
ール 貝類 (pg/g-wet)	実施年度 2016 2017 2018 2019 2016	平均値 7 6 6 4 8	3 tr(3) tr(4) tr(2)	最大値 35 36 21 15 100	最小值 3 tr(2) tr(2) tr(2) tr(2)	定量[検出] 下限値 3 [1] 4 [1] 6 [2] 3 [1] 3 [1]	検出 検体 3/3 3/3 3/3 3/3 19/19	頻度 地点 3/3 3/3 3/3 3/3 19/19
リカリック 月類 (pg/g-wet) 魚類	実施年度 2016 2017 2018 2019 2016 2017	平均値 7 6 6 4 8 7	3 tr(3) tr(4) tr(2)	最大値 35 36 21 15 100 120	最小値 3 tr(2) tr(2) tr(2) tr(1) tr(1)	定量[検出] 下限値 3 [1] 4 [1] 6 [2] 3 [1] 3 [1] 4 [1]	検出 検体 3/3 3/3 3/3 3/3 19/19 19/19	頻度 地点 3/3 3/3 3/3 3/3 19/19 19/19
ール 貝類 (pg/g-wet)	実施年度 2016 2017 2018 2019 2016 2017 2018	平均値 7 6 6 4 8 7 8	3 tr(3) tr(4) tr(2) 6 5 7	最大値 35 36 21 15 100 120 73	最小値 3 tr(2) tr(2) tr(2) tr(1) tr(1) nd	定量[検出] 下限値 3 [1] 4 [1] 6 [2] 3 [1] 3 [1] 4 [1] 6 [2]	検出 検体 3/3 3/3 3/3 3/3 19/19 19/19 16/18	頻度 地点 3/3 3/3 3/3 3/3 19/19 19/19 16/18
リカリック 月類 (pg/g-wet) 魚類	実施年度 2016 2017 2018 2019 2016 2017 2018 2019	平均値 7 6 6 4 8 7 8 5	3 tr(3) tr(4) tr(2)	最大値 35 36 21 15 100 120 73 59	最小値 3 tr(2) tr(2) tr(2) tr(1) tr(1) nd tr(1)	定量[検出] 下限値 3 [1] 4 [1] 6 [2] 3 [1] 4 [1] 6 [2] 3 [1]	検出 検体 3/3 3/3 3/3 3/3 19/19 19/19 16/18 16/16	頻度 地点 3/3 3/3 3/3 3/3 19/19 19/19 16/18 16/16
リガ (pg/g-wet) 無類 (pg/g-wet)	実施年度 2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019	平均値 7 6 6 4 8 7 8 5	3 tr(3) tr(4) tr(2) 6 5 7	最大値 35 36 21 15 100 120 73 59	最小値 3 tr(2) tr(2) tr(2) tr(1) tr(1) nd tr(1)	定量[検出] 下限値 3 [1] 4 [1] 6 [2] 3 [1] 4 [1] 6 [2] 3 [1] 3 [1]	検出 検体 3/3 3/3 3/3 3/3 19/19 19/19 16/18 16/16 2/2	頻度 地点 3/3 3/3 3/3 3/3 19/19 19/19 16/18 16/16 2/2
リ類 (pg/g-wet) 無類 (pg/g-wet)	実施年度 2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019	平均値 7 6 6 4 8 7 8 5 12 23	3 tr(3) tr(4) tr(2) 6 5 7 6	最大値 35 36 21 15 100 120 73 59 14 47	最小値 3 tr(2) tr(2) tr(2) tr(1) tr(1) nd tr(1) 10	定量[検出] 下限値 3 [1] 4 [1] 6 [2] 3 [1] 4 [1] 6 [2] 3 [1] 3 [1] 4 [1]	検出 検体 3/3 3/3 3/3 3/3 19/19 19/19 16/18 16/16 2/2 2/2	頻度 地点 3/3 3/3 3/3 3/3 19/19 19/19 16/18 16/16 2/2 2/2
リガ (pg/g-wet) 無類 (pg/g-wet)	実施年度 2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019	平均値 7 6 6 4 8 7 8 5	3 tr(3) tr(4) tr(2) 6 5 7 6	最大値 35 36 21 15 100 120 73 59	最小値 3 tr(2) tr(2) tr(2) tr(1) tr(1) nd tr(1)	定量[検出] 下限値 3 [1] 4 [1] 6 [2] 3 [1] 4 [1] 6 [2] 3 [1] 3 [1]	検出 検体 3/3 3/3 3/3 3/3 19/19 19/19 16/18 16/16 2/2	頻度 地点 3/3 3/3 3/3 3/3 19/19 19/19 16/18 16/16 2/2

<大気>

ペンタクロロフェノール: 大気については、36 地点を調査し、検出下限値 $0.2pg/m^3$ において 36 地点全てで検出され、検出濃度は $0.6\sim22pg/m^3$ の範囲であった。

ペンタクロロアニソール: 大気については、36 地点を調査し、検出下限値 $0.1 pg/m^3$ において 36 地点全てで検出され、検出濃度は $4.3 \sim 180 pg/m^3$ の範囲であった。

○2016 年度から 2019 年度における大気についてのペンタクロロフェノール及びペンタクロロアニソール の検出状況

ペンタクロロフェノ ール	夫肔午及	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2016 温暖期	6.3	6.0	25	0.6	0.5 [0.2]	37/37	37/37
大気	2017 温暖期	4.6	4.8	33	0.7	0.6 [0.2]	37/37	37/37
(pg/m^3)	2018 温暖期	5.1	5.8	30	0.9	0.5 [0.2]	37/37	37/37
	2019 温暖期	4.1	4.2	22	0.6	0.6 [0.2]	36/36	36/36
ペンタクロロアニソ	, 実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2016 温暖期	39	42	220	3.4	1.0 [0.4]	37/37	37/37
大気	2017 温暖期	34	36	210	6.0	1.2 [0.5]	37/37	37/37
(pg/m^3)	2018 温暖期	34	40	110	4.6	1.1 [0.4]	37/37	37/37
	2019 温暖期	30	32	180	4.3	0.3 [0.1]	36/36	36/36

[23] 短鎖塩素化パラフィン類

調査の経緯及び実施状況

短鎖塩素化パラフィン類は、ゴム、塗料及び接着剤の可塑剤、プラスチックの難燃剤並びに金属加工液の極圧潤滑剤等として利用されている。2016 年 4 月から 5 月に開催された POPs 条約の第 8 回条約締約国会議(COP8)において短鎖塩素化パラフィン類について条約対象物質とすることが採択され、2018 年 4 月に塩素の含有量が全重量の 48%を超えるものが化審法に基づく第一種特定化学物質に指定されている。

継続的調査としては 2016 年度が初めての調査であり、2002 年度以降の化学物質環境実態調査の初期環境調査及び詳細環境調査等では、2004 年度に水質、底質及び生物(魚類)の調査を、2005 年度に水質、底質及び生物(貝類及び魚類)の調査をそれぞれ実施している。2016 年度のモニタリング調査では、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

2002 年度以降のモニタリング調査では、2016 年度に生物(貝類、魚類及び鳥類)及び大気の調査を、2017 年度から 2019 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

なお、短鎖塩素化パラフィン類の結果は、測定法に様々な課題がある中での試行において得られた暫定 的な値である。

•調査結果

<水質>

塩素化デカン類: 水質については、48 地点を調査し、検出下限値 200pg/L において 48 地点中 17 地点で 検出され、検出濃度は 2,300pg/L までの範囲であった。

塩素化ウンデカン類:水質については、48 地点を調査し、検出下限値 500pg/L において 48 地点中 19 地点で検出され、検出濃度は 5,000pg/L までの範囲であった。

塩素化ドデカン類: 水質については、48 地点を調査し、検出下限値 400pg/L において 48 地点中 20 地点で検出され、検出濃度は 34,000pg/L までの範囲であった。

塩素化トリデカン類: 水質については、48 地点を調査し、検出下限値 500pg/L において 48 地点中 17 地点で検出され、検出濃度は 38,000pg/L までの範囲であった。

○2017年度から2019年度における水質についての短鎖塩素化パラフィン類の検出状況

塩素化デカン類	実施年度	幾何	由由結	最大値	最小値	定量[検出]	検出	頻度
塩茶化アルノ類	夫旭年及	平均值	中央値	取人他	取小胆	下限值 1	検体	地点
 水質	2017	nd	nd	tr(1,600)	nd	3,300 [1,100]	1/47	1/47
	2018	nd	nd	1,600	nd	1,000 [400]	8/47	8/47
(pg/L)	2019	nd	nd	2,300	nd	600 [200]	17/48	17/48
塩素化ウンデカン類	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
塩米化ソイノカイ類	天旭千茂	平均値	十大旭	取八胆	取小胆	下限値	検体	地点
水質	2017	nd	nd	3,100	nd	1,500 [500]	13/47	13/47
バ貝 (pg/L)	2018	nd	nd	3,500	nd	2,000 [800]	6/47	6/47
(pg/L)	2019	nd	nd	5,000	nd	1,400 [500]	19/48	19/48
塩素化ドデカン類	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
塩ポルドノハマ 規	天旭千反	平均値	十八世	取八世	取/1、恒	下限値	検体	地点
水質	2017	nd	nd	10,000	nd	3,300 [1,100]	4/47	4/47
バ貝 (pg/L)	2018	nd	nd	3,000	nd	3,000 [1,000]	16/47	16/47
(pg/L)	2019	nd	nd	34,000	nd	1,000 [400]	20/48	20/48
塩素化トリデカン類	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
塩ポルドナノハマ 規	天旭千反	平均値	十八世	取八世	取/1、恒	下限値	検体	地点
水質	2017	nd	nd	10,000	nd	3,600 [1,200]	7/47	7/47
バ貝 (pg/L)	2018	nd	nd	11,000	nd	4,500 [1,500]	18/47	18/47
(hg/r)	2019	nd	nd	38,000	nd	1,300 [500]	17/48	17/48

⁽注) 塩素数が5から9までのものを測定の対象とした結果である。

<底質>

塩素化デカン類: 底質については、61 地点を調査し、検出下限値 1,000pg/g-dry において 61 地点中 8 地点で検出され、検出濃度は 2,600pg/g-dry までの範囲であった。

塩素化ウンデカン類: 底質については、61 地点を調査し、検出下限値 1,000pg/g-dry において 61 地点中 22 地点で検出され、検出濃度は 5,900pg/g-dry までの範囲であった。

塩素化ドデカン類: 底質については、61 地点を調査し、検出下限値 1,000pg/g-dry において 61 地点中 27 地点で検出され、検出濃度は 83,000pg/g-dry までの範囲であった。

塩素化トリデカン類: 底質については、61 地点を調査し、検出下限値 1,000pg/g-dry において 61 地点中 39 地点で検出され、検出濃度は 60,000pg/g-dry までの範囲であった。

○2017 年度から 2019 年度における底質についての短鎖塩素化パラフィン類の検出状況

実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
2017	nd	nd	17,000	nd	10,000 [4,000]	12/62	12/62
2018	nd	nd	7,000	nd	6,000 [2,000]	7/61	7/61
2019	nd	nd	2,600	nd	2,000 [1,000]	8/61	8/61
実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
2017	nd	nd	37,000	nd	10,000 [4,000]	19/62	19/62
2018	nd	nd	tr(13,000)	nd	15,000 [5,000]	7/61	7/61
2019	nd	nd	5,900	nd	2,000 [1,000]	22/61	22/61
実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
2017	nd	nd	44,000	nd	11,000 [4,000]	19/62	19/62
2018	tr(2,000)	nd	38,000	nd	6,000 [2,000]	28/61	28/61
2019	tr(1,100)	nd	83,000	nd	2,000 [1,000]	27/61	27/61
実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
2017	nd	nd	94,000	nd	12,000 [5,000]	18/62	18/62
2018	nd	nd	36,000	nd	9,000 [3,000]	24/61	24/61
2019	tr(1,700)	tr(1,700)	60,000	nd	2,000 [1,000]	39/61	39/61
	2017 2018 2019 実施年度 2017 2018 2019 実施年度 2017 2018 2019 実施年度	実施年度 平均値 2017 nd 2018 nd 2019 nd 実施年度 幾何 2017 nd 2018 nd 2019 nd 実施年度 幾何 2017 nd 2018 tr(2,000) 2019 tr(1,100) 実施年度 幾何 平均値 2017 nd 2017 nd 2017 nd 2018 nd	実施年度 平均値 平大値 2017 nd nd 2018 nd nd 2019 nd nd 実施年度 幾何 中央値 2017 nd nd 2018 nd nd 2019 nd nd 実施年度 幾何 中央値 2017 nd nd 2018 tr(2,000) nd 2019 tr(1,100) nd 実施年度 幾何 中央値 2017 nd nd 2017 nd nd 2017 nd nd 2018 nd nd 2017 nd nd 2018 nd nd	実施年度 平均値 中央値 取入値 2017 nd nd 17,000 2018 nd nd 7,000 2019 nd nd 2,600 実施年度 幾何 中央値 最大値 2017 nd nd 37,000 2018 nd nd tr(13,000) 2019 nd nd 5,900 実施年度 幾何 中央値 最大値 2017 nd nd 44,000 2018 tr(2,000) nd 38,000 2019 tr(1,100) nd 83,000 実施年度 幾何 中央値 最大値 2017 nd nd 94,000 2018 nd nd 36,000	実施年度 平均値 中央値 取入値 取小値 2017 nd nd 17,000 nd 2018 nd nd 7,000 nd 2019 nd nd 2,600 nd 実施年度 幾何 平均値 最大値 最小値 2017 nd nd 37,000 nd 2018 nd nd tr(13,000) nd 2019 nd nd 5,900 nd 要施年度 幾何 平均値 最大値 最小値 実施年度 幾何 中央値 最大値 最小値 実施年度 幾何 中央値 最大値 最小値 実施年度 投戶 中央値 最大値 最小値 2017 nd nd 83,000 nd 実施年度 投戶 中央値 最大値 最小値 2017 nd nd 94,000 nd 2017 nd nd 94,000 nd 2018 nd <td>実施年度 平均値 中大値 取入値 下限値 2017 nd nd 17,000 nd 10,000 [4,000] 2018 nd nd 7,000 nd 6,000 [2,000] 2019 nd nd 2,600 nd 2,000 [1,000] 実施年度 幾何 中央値 最大値 最小値 定量[検出] 2017 nd nd 37,000 nd 10,000 [4,000] 2018 nd nd tr(13,000) nd 15,000 [5,000] 2019 nd nd 5,900 nd 2,000 [1,000] 実施年度 幾何 中央値 最大値 最小値 定量[検出] 下限値 2017 nd nd 44,000 nd 11,000 [4,000] 2018 tr(2,000) nd 38,000 nd 6,000 [2,000] 2019 tr(1,100) nd 83,000 nd 2,000 [1,000] 実施年度 幾何 中央値 最大値 最小値 定量[検出]</td> <td>実施年度 平均値 中央値 取入値 下限値 検体 2017 nd nd 17,000 nd 10,000 [4,000] 12/62 2018 nd nd 7,000 nd 6,000 [2,000] 7/61 2019 nd nd 2,600 nd 2,000 [1,000] 8/61 実施年度 幾何 中央値 最大値 最小値 定量[検出] 検体 2017 nd nd 37,000 nd 10,000 [4,000] 19/62 2018 nd nd tr(13,000) nd 15,000 [5,000] 7/61 2019 nd nd 5,900 nd 2,000 [1,000] 22/61 実施年度 幾何 中央値 最大値 最小値 定量[検出] 検体 2017 nd nd 44,000 nd 11,000 [4,000] 19/62 2018 tr(2,000) nd 38,000 nd 6,000 [2,000] 28/61 2019 tr(1,100) nd 83,000 nd</td>	実施年度 平均値 中大値 取入値 下限値 2017 nd nd 17,000 nd 10,000 [4,000] 2018 nd nd 7,000 nd 6,000 [2,000] 2019 nd nd 2,600 nd 2,000 [1,000] 実施年度 幾何 中央値 最大値 最小値 定量[検出] 2017 nd nd 37,000 nd 10,000 [4,000] 2018 nd nd tr(13,000) nd 15,000 [5,000] 2019 nd nd 5,900 nd 2,000 [1,000] 実施年度 幾何 中央値 最大値 最小値 定量[検出] 下限値 2017 nd nd 44,000 nd 11,000 [4,000] 2018 tr(2,000) nd 38,000 nd 6,000 [2,000] 2019 tr(1,100) nd 83,000 nd 2,000 [1,000] 実施年度 幾何 中央値 最大値 最小値 定量[検出]	実施年度 平均値 中央値 取入値 下限値 検体 2017 nd nd 17,000 nd 10,000 [4,000] 12/62 2018 nd nd 7,000 nd 6,000 [2,000] 7/61 2019 nd nd 2,600 nd 2,000 [1,000] 8/61 実施年度 幾何 中央値 最大値 最小値 定量[検出] 検体 2017 nd nd 37,000 nd 10,000 [4,000] 19/62 2018 nd nd tr(13,000) nd 15,000 [5,000] 7/61 2019 nd nd 5,900 nd 2,000 [1,000] 22/61 実施年度 幾何 中央値 最大値 最小値 定量[検出] 検体 2017 nd nd 44,000 nd 11,000 [4,000] 19/62 2018 tr(2,000) nd 38,000 nd 6,000 [2,000] 28/61 2019 tr(1,100) nd 83,000 nd

⁽注) 塩素数が5から9までのものを測定の対象とした結果である。

<生物>

塩素化デカン類: 生物のうち貝類については、3 地点を調査し、検出下限値 300pg/g-wet において 3 地点全てで検出されなかった。魚類については、16 地点を調査し、検出下限値 300pg/g-wet において 16 地点中5 地点で検出され、検出濃度は tr(700)pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 300pg/g-wet において検出され、検出濃度は tr(600)pg/g-wet であった。

塩素化ウンデカン類: 生物のうち貝類については、3 地点を調査し、検出下限値 200pg/g-wet において 3 地点中 1 地点で検出され、検出濃度は 600pg/g-wet であった。魚類については、16 地点を調査し、検出下限値 200pg/g-wet において 16 地点中 11 地点で検出され、検出濃度は 1,100pg/g-wet までの範囲であった。 鳥類については、1 地点を調査し、検出下限値 200pg/g-wet において検出され、検出濃度は 1,400pg/g-wet であった。

塩素化ドデカン類: 生物のうち貝類については、3 地点を調査し、検出下限値 500pg/g-wet において 3 地点全てで検出されなかった。魚類については、16 地点を調査し、検出下限値 500pg/g-wet において 16 地点中 2 地点で検出され、検出濃度は tr(900)pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 500pg/g-wet において検出され、検出濃度は tr(500)pg/g-wet であった。

塩素化トリデカン類:生物のうち貝類については、3地点を調査し、検出下限値 200pg/g-wet において3

地点全てで検出され、検出濃度は $tr(300)\sim1,100pg/g$ -wet の範囲であった。魚類については、16 地点を調査し、検出下限値 200pg/g-wet において 16 地点中 11 地点で検出され、検出濃度は 1,300pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 200pg/g-wet において検出され、検出濃度は 1,300pg/g-wet であった。

○2016 年度から 2019 年度における生物(貝類、魚類及び鳥類)についての短鎖塩素化パラフィン類の検出状況

ШИЛ		*12.*						
塩素化デカン類	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
		平均值				下限值	検体	地点
	2016	tr(700)	tr(700)	2,200	nd	1,300 [500]	2/3	2/3
貝類	2017	670	1,700	1,800	nd	500 [200]	2/3	2/3
(pg/g-wet)	2018	nd	tr(400)	tr(400)	nd	1,200 [400]	2/3	2/3
	2019	nd	nd	nd	nd	900 [300]	0/3	0/3
to store	2016	tr(600)	tr(700)	2,800	nd	1,300 [500]	13/19	13/19
魚類	2017	tr(410)	tr(400)	2,100	nd	500 [200]	16/19	16/19
(pg/g-wet)	2018	nd	nd	tr(800)	nd	1,200 [400]	1/18	1/18
	2019	nd	nd	tr(700)	nd	900 [300]	5/16	5/16
	2016	tr(1,000)		1,300	tr(800)	1,300 [500]	2/2	2/2
鳥類	2017	tr(400)		1,600	nd	500 [200]	1/2	1/2
(pg/g-wet)	2018	nd		tr(600)	nd	1,200 [400]	1/2	1/2
	2019			tr(600)	tr(600)	900 [300]	1/1	1/1
塩素化ウンデカン類	宝旃年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
		平均値				下限値	検体	地点
	2016	tr(2,900)	tr(2,000)	6,000	tr(2,000)	3,000 [1,000]	3/3	3/3
貝類	2017	2,200	3,400	11,000	tr(300)	800 [300]	3/3	3/3
(pg/g-wet)	2018	nd	nd	nd	nd	1,800 [700]	0/3	0/3
	2019	nd	nd	600	nd	500 [200]	1/3	1/3
	2016	tr(2,900)	tr(2,000)	15,000	nd	3,000 [1,000]	18/19	18/19
魚類	2017	1,900	1,100	24,000	nd	800 [300]	16/19	16/19
(pg/g-wet)	2018	nd	nd	tr(700)	nd	1,800 [700]	1/18	1/18
	2019	tr(300)	tr(400)	1,100	nd	500 [200]	11/16	11/16
	2016	4,900		8,000	3,000	3,000 [1,000]	2/2	2/2
鳥類	2017	5,000		31,000	800	800 [300]	2/2	2/2
(pg/g-wet)	2018	nd		nd	nd	1,800 [700]	0/2	0/2
400	2019			1,400	1,400	500 [200]	1/1	1/1
塩素化ドデカン類	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
塩糸化ドノガイ類		平均値				下限値	検体	地点
	2016	tr(1,400)	tr(1,500)	tr(1,800)	tr(1,100)	2,100 [700]	3/3	3/3
貝類	2017	2,000	1,400	4,700	1,300	900 [300]	3/3	3/3
(pg/g-wet)	2018	nd	nd	nd	nd	1,500 [600]	0/3	0/3
	2019	nd	nd	nd	nd	1,200 [500]	0/3	0/3
	2016	tr(1,800)	tr(1,800)	8,700	nd	2,100 [700]	17/19	17/19
魚類	2017	2,100	2,100	19,000	nd	900 [300]	18/19	18/19
(pg/g-wet)	2018	nd	nd	nd	nd	1,500 [600]	0/18	0/18
400	2019	nd	nd	tr(900)	nd	1,200 [500]	2/16	2/16
	2016	3,800		6,600	2,200	2,100 [700]	2/2	2/2
鳥類	2017	5,500		25,000	1,200	900 [300]	2/2	2/2
(pg/g-wet)	2018	nd		nd	nd	1,500 [600]	0/2	0/2
(188)	2019			tr(500)	tr(500)	1,200 [500]	1/1	1/1
たまル コロヴェンギ		幾何	++/=			定量[検出]	検出	
塩素化トリデカン類	美 施牛皮	平均値	中央値	最大値	最小値	下限値	検体	地点
	2016	tr(700)	tr(700)	tr(900)	tr(500)	1,100 [400]	3/3	3/3
貝類	2017	870	700	3,100	tr(300)	500 [200]	3/3	3/3
(pg/g-wet)	2018	nd	nd	nd	nd	1,400 [500]	0/3	0/3
(100)	2019	500	400	1,100	tr(300)	400 [200]	3/3	3/3
	2016	tr(800)	tr(800)	4,900	nd	1,100 [400]	17/19	17/19
魚類	2017	tr(290)	nd	4,100	nd	500 [200]	8/19	8/19
(pg/g-wet)	2018	nd	nd	nd	nd	1,400 [500]	0/18	0/18
(155 """)	2019	tr(200)	tr(200)	1,300	nd	400 [200]	11/16	11/16
	2016	1,400		1,500	1,400	1,100 [400]	2/2	2/2
鳥類	2017	900		8,100	nd	500 [200]	1/2	1/2
馬與 (pg/g-wet)	2017	nd			nd	1,400 [500]	0/2	0/2
(hg/g-wei)	2018	110		nd 1,300	1,300			1/1
(注) 垢主料ぶらふさ	2019	の ナ. 測 点 σ		1,300	1,300	400 [200]	1/1	1/1

⁽注) 塩素数が5から9までのものを測定の対象とした結果である。

<大気>

塩素化デカン類: 大気については、36 地点を調査し、検出下限値 $100pg/m^3$ において 36 地点全てで検出され、検出濃度は $tr(100)\sim 1,500pg/m^3$ の範囲であった。

塩素化ウンデカン類: 大気については、36 地点を調査し、検出下限値 $100pg/m^3$ において 36 地点全てで検出され、検出濃度は $tr(100)\sim 2,300pg/m^3$ の範囲であった。

塩素化ドデカン類: 大気については、36 地点を調査し、検出下限値 $90pg/m^3$ において 36 地点中 23 地点で検出され、検出濃度は $1,600pg/m^3$ までの範囲であった。

塩素化トリデカン類: 大気については、36 地点を調査し、検出下限値 $80pg/m^3$ において 36 地点中 19 地点で検出され、検出濃度は $1,600pg/m^3$ までの範囲であった。

○2016年度から2019年度における大気についての短鎖塩素化パラフィン類の検出状況

塩素化デカン類	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
塩米11/ハイ規	天旭十尺	平均値	十大旭	取八胆	取小胆	下限値	検体	地点
	2016 温暖期	tr(170)	tr(200)	940	nd	290 [110]	24/37	24/37
大気	2017 温暖期	370	380	1,500	tr(70)	140 [50]	37/37	37/37
(pg/m^3)	2018 温暖期	370	390	1,700	tr(130)	150 [60]	37/37	37/37
	2019 温暖期	400	400	1,500	tr(100)	400 [100]	36/36	36/36
塩素化ウンデカン類	頁 実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2016 温暖期	tr(350)	tr(320)	3,200	nd	610 [240]	20/37	20/37
大気	2017 温暖期	500	510	2,300	tr(90)	190 [60]	37/37	37/37
(pg/m^3)	2018 温暖期	450	430	2,600	tr(100)	110 [40]	37/37	37/37
	2019 温暖期	400	400	2,300	tr(100)	300 [100]	36/36	36/36
塩素化ドデカン類	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
塩ポルドノカマ 類		平均値	十八世		取/1、10	下限値	検体	地点
	2016 温暖期	nd	nd	740	nd	430 [170]	7/37	7/37
大気	2017 温暖期	190	190	730	tr(30)	100 [30]	37/37	37/37
(pg/m^3)	2018 温暖期	190	190	880	tr(60)	110 [40]	37/37	37/37
	2019 温暖期	tr(140)	tr(170)	1,600	nd	260 [90]	23/36	23/36
塩素化トリデカン類	頁 実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2016温暖期	nd	nd	510	nd	320 [120]	13/37	13/37
大気	2017 温暖期	150	160	1,600	nd	120 [40]	35/37	35/37
(pg/m^3)	2018 温暖期	tr(100)	tr(110)	470	nd	180 [70]	26/37	26/37
= 2	2019 温暖期	tr(90)	tr(90)	1,600	nd	250 [80]	19/36	19/36

⁽注) 2016 年度の塩素化デカン類は塩素数が 4 から 6 までのもの、塩素化ウンデカン類、塩素化ドデカン類及び塩素化トリデカン類は塩素数が 4 から 7 までのものをそれぞれ対象とした測定結果である。2017 年度以降は、いずれの物質についても塩素数が 4 から 7 までのものを測定の対象とした結果である。

[24] ジコホル

調査の経緯及び実施状況

ジコホルは、殺虫剤及び防ダニ剤等として利用されていた。農薬取締法に基づく登録は2004年に失効し、2005年4月には化審法に基づく第一種特定化学物質に指定されている。また、POPs条約では、2019年の4月から5月に開催された第9回条約締約国会議(COP9)において条約対象物質とすることが採択された。

継続的調査としては 2006 年度が初めての調査であり、2002 年度以降の化学物質環境実態調査の初期環境調査及び詳細環境調査等では、2004 年度に底質の調査を実施している。

2002 年度以降のモニタリング調査では、2006 年度に生物(貝類、魚類及び鳥類)の調査を、2008 年度に水質、底質及び生物(貝類、魚類及び鳥類)の調査を、2016 年度に大気の調査を、2018 年度に生物(貝類、魚類及び鳥類)の調査を、2019 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査実施している。

•調査結果

<水質>

水質については、48 地点を調査し、検出下限値8pg/Lにおいて48 地点中3 地点で検出され、検出濃度は40pg/Lまでの範囲であった。

○2008年度及び2019年度における水質についてのジコホルの検出状況

	ジコホル	実施年度	幾何	中央値	最大値	最小値	定量[検出]		検出頻度	
	• • • • • • • • • • • • • • • • • • • •	天旭十尺	平均値	一人但	双八匝	政/1.1匝	下限値	検体	地点	
· ·	水質	2008	nd	nd	76	nd	25 [10]	13/48	13/48	
	(pg/L)	2019	nd	nd	40	nd	13 [8]	3/48	3/48	

<底質>

底質については、61 地点を調査し、検出下限値 2pg/g-dry において 61 地点中 40 地点で検出され、検出濃度は 84pg/g-dry までの範囲であった。

○2008 年度及び 2019 年度における底質についてのジコホルの検出状況

_	ジコホル	実施年度	幾何	中央値	最大値	最小値	定量[検出]		頻度
	J = 11/1	大旭十段	平均值※	十大旭	取八胆	取小胆	下限値	検体	地点
_	底質	2008	nd	nd	460	nd	160 [63]	13/63	30/186
	(pg/g-dry)	2019	4	4	84	nd	4 [2]	40/61	40/61

⁽注)※: 2008年度は各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

生物のうち貝類については、3 地点を調査し、検出下限値 10pg/g-wet において 3 地点中 1 地点で検出され、検出濃度はtr(10)pg/g-wet であった。魚類については、16 地点を調査し、検出下限値 10pg/g-wet において 16 地点中 12 地点で検出され、検出濃度は 120pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 10pg/g-wet において検出されなかった。

○2006年度から2019年度における生物(貝類、魚類及び鳥類)についてのジコホルの検出状況

ジコホル	実施年度	幾何 平均値※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	2006	tr(58)	tr(70)	240	nd	92 [36]	22/31	5/7
貝類	2008	tr(110)	120	210	nd	120 [48]	28/31	7/7
(pg/g-wet)	2018	nd	nd	30	nd	30 [10]	1/3	1/3
	2019	nd	nd	tr(10)	nd	30 [10]	1/3	1/3
	2006	nd	nd	290	nd	92 [36]	5/80	1/16
魚類	2008	tr(62)	tr(77)	270	nd	120 [48]	55/85	14/17
(pg/g-wet)	2018	tr(10)	nd	280	nd	30 [10]	9/18	9/18
	2019	tr(10)	tr(10)	120	nd	30 [10]	12/16	12/16
	2006	nd	nd	nd	nd	92 [36]	0/10	0/2
鳥類	2008	nd	nd	300	nd	120 [48]	1/10	1/2
(pg/g-wet)	2018	nd		nd	nd	30 [10]	0/2	0/2
	2019			nd	nd	30 [10]	0/1	0/1

⁽注1) ※: 2006 年度及び 2008 年度は各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を 求めた。

<大気>

大気については、36 地点を調査し、検出下限値 $0.2 pg/m^3$ において 36 地点中 5 地点で検出され、検出濃度は $0.4 pg/m^3$ までの範囲であった。

○2016年度及び2019年度における大気についてのジコホルの検出状況

_	ジコホル	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	出頻度 地点 地点
_	大気	2016 温暖期	nd	nd	1.0	nd	0.5 [0.2]	10/37	10/37
	(pg/m^3)	2019 温暖期	nd	nd	0.4	nd	0.4 [0.2]	5/36	5/36

⁽注2) 2007 年度及び 2009 年度から 2017 年度は調査を実施していない。

[25] ペルフルオロヘキサンスルホン酸 (PFHxS)

・調査の経緯及び実施状況

ペルフルオロヘキサンスルホン酸 (PFHxS) は、フッ素ポリマー加工助剤、界面活性剤等として利用されている。2019 年 10 月に開催されたストックホルム条約残留性有機汚染物質検討委員会第 15 回会合 (POPRC15)においてペルフルオロヘキサンスルホン酸 (PFHxS) とその塩及び PFHxS 関連物質について、条約上の廃絶対象物質 (附属書 A) への追加を締約国会議に勧告することが決定されている。

2002 年度以降のモニタリング調査では、ペルフルオロヘキサンスルホン酸 (PFHxS) を分析対象として、2018 年度及び 2019 年度に水質及び底質の調査を実施している。

•調査結果

<水質>

水質については、48 地点を調査し、検出下限値 30pg/L において 48 地点中 45 地点で検出され、検出濃度は 1,800pg/L までの範囲であった。

○2018 年度及び 2019 年度における水質についてのペルフルオロヘキサンスルホン酸 (PFHxS) の検出状況

ペルフルオロヘキサ		幾何		B 1 11.	п. п.	定量[検出]	検出	頻度
ンスルホン酸 (PFHxS)	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
水質	2018	190	130	2,600	nd	120 [50]	44/47	44/47
(pg/L)	2019	150	120	1,800	nd	60 [30]	45/48	45/48

<底質>

底質については、61 地点を調査し、検出下限値 5pg/g-dry において 61 地点中 10 地点で検出され、検出濃度は 15pg/g-dry までの範囲であった。

○2018 年度及び 2019 年度における底質についてのペルフルオロヘキサンスルホン酸 (PFHxS) の検出状況

ペルフルオロヘキサ		幾何				定量[検出]	検出	頻度
ンスルホン酸 (PFHxS)	実施年度	平均値	中央値	最大値	最小値	下限値	検体	地点
底質	2018	nd	nd	27	nd	11 [5]	15/61	15/61
(pg/g-dry)	2019	nd	nd	15	nd	13 [5]	10/61	10/61

●参考文献(全物質共通)

- i) 環境省環境保健部環境安全課、「化学物質と環境」水質・底質モニタリング調査 (http://www.env.go.jp/chemi/kurohon/)
- ii) 環境省環境保健部環境安全課、「化学物質と環境」生物モニタリング調査 (http://www.env.go.jp/chemi/kurohon/)
- iii) 環境省環境保健部環境安全課、「化学物質と環境」非意図的生成化学物質汚染実態追跡調査 (http://www.env.go.jp/chemi/kurohon/)
- iv) 環境省環境保健部環境安全課、「化学物質と環境」化学物質環境調査 (http://www.env.go.jp/chemi/kurohon/)