1-CHLORO-2-NITROBENZENE DATE: 26-NOV-2003

Sex: male/female

SUBSTANCE ID: 88-73-3

18 ppm, esp. males: hypoactivity, abnormal posture, dyspnea mortality, 18 ppm: 1/5 male on day 2 (diffusely dark,

discoloured liver, severe centrilobular congestion,

necrosis)

body weight gain was not affected,

pathology:

concentration-related increases in liver weights, 18 ppm, all rats: increased spleen and kidney weights

histopathologic findings:

18 ppm, all rats: liver: coagulative necrosis with associated inflammation; spleen: haemosiderin deposition 18 ppm, esp. males: haematopoietic cell proliferation,

increased haematopoietic activity

9,18 ppm: hepatocytomegaly of the centrilobular cells 4.5, 9, 18 ppm, females: increasing incidence and severity

of haematopoietic activity

Reliability: (2) valid with restrictions dose-range finding study

21-MAR-2003 (80)

Species:

mouse

Strain: B6C3F1 Route of administration: oral feed Exposure period: 5 weeks Frequency of treatment: daily

Post exposure period: Doses:

0, 50, 500, 5000 ppm (calc. intake: (m):0,16,167,1120

mg/kg bw; (f):0,24,220,1310 mg/kg bw)

Control Group:

yes, concurrent no treatment ca. 50 ppm

NOAEL:

Method: other: according to OECD Guideline 407, 1981; 12

mice/sex/group and additional 6 mice/sex/group for the interim

sacrifice

Year: 1990

GLP: yes

Test substance:

as prescribed by 1.1 - 1.4

Result: except one male in the low dose group no deaths,

5000 ppm(m)/500, 5000 ppm(f): reduced food intake,

sign. clin. findings only in the male 5000 ppm gr.: narrowed

palpebral fissure and corneal opacity;

500/5000 ppm, m/f: centrilobular hepatocytomegaly

5000 ppm, m/f: reduced body weight gain, increased spleen weight, discolored spleen, deposition of hemosiderin in the spleen; increased liver weight (differences up to 89% were

noted in females)

5000 ppm, m: reduced tested weight, decreased urea;

5000 ppm, m/f: reduced erythrocyte count(change in morphology: anisocytosis, poiklocytosis and polychromasie), reduced HKand HB-content, increased MetHb (2.8 % f; 1.7% m), MCV, MCH,

MCHC, bilirubin,

500 and 5000 ppm, after 1 week, m/f: increased cholesterin

content, sign. changes in the activity of cytochrome

450-dependent EOD (7-Ethoxycoumarin deethylase), EH (Epoxide Hydroxylase) and ALD (Aldrin epoxidase) and Phase II enzymes:

GSH-T(Glutathion-S-transferase), GLU-T

(UDP-Glucuronyltransferase), and decreased gluconeogenesis

and glycogen; after 5 weeks:

f: normal ALD activity, increased activity of EOR, EH, Glu-T, slight increase in EOD, strong increase in GSH-T activity; m: increased activities of EOD, EOR, GLU-T, ALD,

5. TOXICITY DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

GSH-T, EH

5000 ppm: increased activity of ASAT, ALAT, alkaline

phosphatase(m), activated pentose phosphate cycle, increased

glycolysis

no signs of nephrotoxicity (1) valid without restriction

Reliability:

Flag: 30-AUG-2001 Critical study for SIDS endpoint

(4) (5) Sex: male/female

Species:

mouse other: Swiss CD-1

Strain: Route of administration: gavage

Exposure period: 14 d Frequency of treatment: daily no data

Post exposure period: Doses:

0, 20, 40, 80, 160 or 320 mg/kg bw/d dissolved in corn

oil

Control Group:

yes, concurrent vehicle

NOAEL:

ca. 40 mg/kg bw

Method:

other: 8 mice/sex/dose, statistical analysis 1992

Year: GLP:

yes

Test substance:

other TS: purity: > 99 %

Remark:

type: dose-setting study

Result:

mortality due to gavage trauma: control, f: 2/8, 20

mg-group, f: 1/8, 40-mg-group, f: 1/8 20 and 40 mg/kg bw/d: no clinical signs

80 mg/kg bw/d: all animals were inactive after the first two daily doses but appeared normal post-dosing

throughout the rest of the exposure period

160 mg/kg bw/d: during the first week, animals were slightly weak and inactive; during the second week, these animals became slightly cyanotic, but remained active

320 mg/kg bw/d: during the first 2 days of treatment, all mice died or were moribund and sacrificed; clinical signs of toxicity: recumbency, trembling, inacti-

vity, weakness and cyanosis

Reliability:

(2) valid with restrictions

dose-setting study, histopathologic examination not

performed

21-MAR-2003

(75) (80)

Sex: no data

Species:

rabbit no data

Strain: Route of administration: inhalation Exposure period:

up to 18 d

Frequency of treatment: Post exposure period:

8 h/d no $0.1 \, \text{mg/l}$

Doses: Control Group:

other: no data

Method:

other: no information

Year:

1910 no

GLP: Test substance:

other TS: no data on purity

Result:

78

deaths occurred after exposure for $8-18\ d$ (no further data)

Reliability:

(3) invalid

lack of information

UNEP PUBLICATIONS

OECD SIDS 5. TOXICITY 1-CHLORO-2-NITROBENZENE

Sex: no data

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

16-JUN-2003

Species:

cat

Strain: Route of administration: inhalation

no data

Exposure period:

up to 14 d 8 h/d

Frequency of treatment: Post exposure period:

Doses:

0.1 mg/l

Control Group:

other: no data

Method:

other: no data

Year:

1910

GLP:

no

Test substance:

other TS: no data on purity

Result:

deaths occurred after exposure for 8-14 d (no further

data); 1 animal survived (total number of animals not mentioned)

Reliability:

(3) invalid

lack of information

16-JUN-2003

(26)

Species:

cat Sex: no data

Strain:

no data

Route of administration: inhalation Exposure period:

all together 17.5 h during 3 consecutive d

Frequency of treatment: no data

no

Post exposure period: Doses:

0.05-0.18 mg/l

Control Group:

other: no data

Method: Year:

other: no details given

Result:

mortality: 100 % (no further data)

Reliability:

(3) invalid

1908

lack of information: secondary literature

16-JUN-2003

(96)

5.5 Genetic Toxicity 'in Vitro'

Type:

Ames test

System of testing: Concentration:

S. typhimurium TA 98, TA 100, TA 1535, TA 1537 0, 833.3, 1000.0, 1200.0, 1440.0, 1728.0, 2073.6

Metabolic activation:

ug/plate in DMSO; from 1000 ug/plate bacteriotoxicity with and without

Result:

positive

Method:

other: s. freetext

Year:

1984 yes

GLP: Test substance:

as prescribed by 1.1 - 1.4

Method:

suspensions of bacterial cells were incubated with the TS with and without S9-mix from rat liver for 48 hours at 37 celsius, the number of revertant colonies were counted; positive (2-aminoanthrazene, trypaflavine, endoxan) and

negative controls

Remark:

1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3 on strain TA 100, a marked dose-dependent increase in

mutation rate (up to 4 times higher than in control) was

found with metabolic activation

Reliability: (2) valid with restrictions

only 4 strains used

Flag: Critical study for SIDS endpoint

25-MAR-2003 (3)

Type: Ames test

S. typhimurium TA 100 System of testing:

Concentration: no data Metabolic activation: with Result: positive

Method: other: no data

1981 Year: GLP: no data

Test substance: other TS: no data on purity

Reliability: (4) not assignable

documentation insufficient for assessment

16-JUN-2003 (21)

Ames test Type:

System of testing: S. typhimurium TA 78, TA 100, TA 1535, TA 1538

Concentration: no data

Metabolic activation: with and without

Result: negative

Method: other: no data Year: 1983

GLP: no data Test substance: no data

Reliability: (4) not assignable

documentation insufficient for assessment

25-MAR-2003 (30)

Type: Ames test

S. typhimurium TA 98, TA 100, TA 1535, TA 1537 (1): 0.0, 6.0, 20.0, 60.0, 200.0, 600.0: System of testing:

Concentration:

TA98, TA100, TA1535, TA1537

(2): 0.0, 6.0, 20.0, 60.0, 200.0, 600.0: TA100, TA98 (3): 0.0, 62.5, 125.0, 250.0, 500.0, 1000.0: TA100

see RM

Metabolic activation: with and without

Result: positive

Method: other: s. freetext

1983 Year:

no data

other TS: purity 99 % Test substance: Method: preincubation method, solvent: DMSO, S9 prepared from rat

liver and hamster liver, positive controls (2-AA, NOPD, 9-AAD), sólvent control, performed in triplicate and

repeated twice, highest dose: cytotoxic, statistical method

according to Margolin et al. 1981

1-CHLORO-2-NITROBENZENE

5. TOXICITY

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

Remark:

(4): 0.0, 10.0, 33.3, 100.0, 333.3, 1000.0:

TA98, TA100, TA1535, TA1587

(5): 0.0, 10.0, 33.3,100.0, 333.3, 1000.0: TA100 the test substance was mutagenic only in strain TA 100

with metabolic activation from hamster and rat

Reliability:

(2) valid with restrictions

only 4 strains used, no information about GLP

Flag:

Critical study for SIDS endpoint

25-MAR-2003

Type:

Ames test

System of testing:

S. typhimurium TA 98, TA 100

Concentration: Metabolic activation: no information with and without

Result:

negative

Method:

other: preincubation method (only engl. abstract available)

Year: GLP: 1987 no data

Test substance:

no data

Reliability:

(4) not assignable

documentation insufficient for assessment

25-MAR-2003

(54)

(33) (80)

Type:

Ames test

System of testing:

S. typhimurium TA 97, TA 98, TA 100, TA 102, TA 1535,

TA 1537, TA 1538

Concentration:

no data

Metabolic activation:

with and without positive

Result: Method:

other: no data

Year:

1985 no data

GLP: Test substance:

no data

Remark:

the strain(s) on which the test substance induced an increase in the mutant count is (are) not mentioned in the

description of the test results

Reliability:

(4) not assignable

documentation insufficient for assessment

25-MAR-2003

(55)

Cytogenetic assay

System of testing:

Chinese Hamster Ovary cells

Concentration:

without: 0, 16, 50, 160 ug/ml DMSO; with: 0, 50, 160, 500 ug/ml DMSO

Metabolic activation:

with and without

Result:

Method:

ambiguous'

other: protocol in Galloway Environm. Mol. Mutagen. 10 [Suppl 10],1-175, 1987; solvent control, positive control, harvest

time: 14 hours

Year: GLP:

1993 no data

Test substance:

other TS: purity: 99 %

Remark:

type: chromosomal aberration test

Result:

without S9: equivocal, cell with aberrations (control, low

to high doses): 2, 7, 8, 9%

with S9: negative

Reliability:

(2) valid with restrictions

no information about GLP

OECD SIDS 5 TOXICITY 1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

Flag:

Critical study for SIDS endpoint

25-MAR-2003

(77) (80)

(77) (80)

Type:

System of testing:

Sister chromatid exchange assay Chinese Hamster Ovary cells

Concentration:

without S9:

(1) 0, 5, 16, 50 ug/ml DMSO

(2) 0,30, 40, 50, 60, 75ug/ml DMSO; with S9:

0, 50,160,500 ug/ml DMSO

Metabolic activation:

with and without

Result:

positive

Method:

other: s. freetext

Year: GLP: 1993 no data

Test substance:

other TS: purity: 99 %

Method:

protocol in Galloway Environm. Mol. Mutagen. 10 [Suppl 10],1-175, 1987; solvent control, positive control (mitomycin C, cyclophosphamide), S9-mix of induced rat liver, incubation time without S9: 26 hours, with S9: 2

hours, after removal of TS 26 hours

Remark:

the test substance exhibited a mutagenic response only in the absense of S9-mix (up to 29% increase over solvent

control)

Reliability:

(1) valid without restriction Critical study for SIDS endpoint

Flag: 25-MAR-2003

other: mutation assay in Actinobacteria spores of Actinomyces sphaeroides

System of testing: Concentration:

0, 0.63 g/l (= 0.004 M)

Metabolic activation:

no data

Result:

Type:

positive

Method:

other: no details given

Yéar: GLP:

1971 nο no data

Test substance: Reliability:

(4) not assignable

documentation insufficient for assessment

25-MAR-2003

(87)

Type:

Ames test

System of testing:

S. typhimurium TA 98, TA 100, TA 1535, TA 1537, TA 1538

0, 25.6, 51.2, 102.4, 204.8, 409.6, 819.2, 1638.4, Concentration:

3276.8 ug/plate in DMSO

Metabolic activation:

without

Result:

positive

Method:

other: according to: OECD Guide-line 471: pour plate method, highest dose cytotoxic, performed in duplicate and repeated at

least 2 times, solvent and positive control

Year: GLP: 1983

Test substance:

no data other TS: purity: 99 %

Remark:

increased mutation rate only in strains TA 98 and

TA 1538

82

UNEP PUBLICATIONS

1-CHLORO-2-NITROBENZENE

5. TOXICITY

DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

Reliability:

(2) valid with restrictions

study meets criteria of today but is only performed without

metabolic activation, no information about GLP

25-MAR-2003

(92)

Type:

Ames test

System of testing:

S. typhimurium TA 98, TA 100

Concentration:

0, 1, 5, 10, 15, 20 ug/plate in DMSO with and without

Metabolic activation:

Result:

positive

Method:

other: according to OECD Guide-line 471, preincubation method,

without S9-mix, and with S9-mix and 200 ug/plate Norharman

Year: GLP:

1983 no data

Test substance:

other TS: chromatographically pure

Remark:

the test substance exhibited no mutagenicity to the tester

strains in the absence of S9 mix, without norharman;

in the presence of S9 mix, without norharman,

o-chloronitrobenzene was not mutagenic to S. typhimurium TA

in the presence of norharman and S9-mix, the test

substance exhibited mutagenicity only to S. typhimurium TA

Reliability:

invalid (3)

special study, only performed in the presence of metabolic

activation, cytotox concentration not determined, no

information on GLP, no exact data on purity

25-MAR-2003

(98)

Type:

Ames test

System of testing:

S. typhimurium TA 98, TA 98 NR and TA 98/1,8-DNP6

Concentration: Metabolic activation:

0, 5, 10, 15, 20 ug/plate in DMSO with

Result:

positive

Method:

other: according to OECD Guide-line 471, preincubation method,

addition of S9-mix and norharman

Year: GLP: 1987 no data

Test substance:

other TS: no dataon purity

Remark:

the test substance exhibited weak mutagenicity towards TA 98 NR; the mutagenic activity, however, was much lower than that of o-chloronitrobenzene towards TA 98; the difference in the mutagenicities (test results: positive) of the test compound towards TA 98 and TA 98/ 1,8-DNP6 could not be regarded as significant

Reliability:

(3) invalid

special study, only performed in the presence of metabolic

activation, cytotox concentration not determined, no

information on GLP, no exact data on purity

16-JUN-2003

(97) (99)

other: SOS chromotest

System of testing:

E. coli PQ 37

Concentration:

3-5 different concentrations (no further information)

Metabolic activation:

with and without

Result:

Type:

negative

Method:

other

Year:

1988

UNEP PUBLICATIONS

Remark:

1-CHLORO-2-NITROBENZENE

5. TOXICITY DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

GLP: no data

other TS: no data on purity Test substance:

o-chloronitrobenzene did not induce SOS-repair in the chromotest with and without S9 mix (without norharman); it was tried to increase the sensitivity of the SOS chromotest by addition of norharman to the S9 mix: a negative result was obtained again with the test sub-

stance

(4) not assignable Reliability:

documentation insufficient for assessment

25-MAR-2003 (108)

Type: HGPRT assay

System of testing: V 79 Chinese Hamster lung cells

without S9-mix: 0,100,300,400,500,600,700,800,900 ug/ml Concentration:

with S9-mix: 0,100,200,450,600,750,900,1050,1200 ug/ml

DMSO

Cytotoxic Concentration: without: 800 ug/ml; with: 750 ug/ml

Metabolic activation: with and without

Result: negative

Method: other: OECD Guide-line 476, rat liver S9-mix (induced),

toxicity test prior to testing, exposure duration 5 hours,

positive controls (EMS, DMN)

Year: 1989 GLP: yes

other TS: purity: 99.8% Test substance:

Reliability: (1) valid without restriction Flag: Critical study for SIDS endpoint

25-MAR-2003 (101)

Type: Cytogenetic assay

System of testing: Chinese hamster ovary cells

Concentration: without S9-mix: 0, 10, 50, 100 ug/ml DMSO; with S9-mix:

0, 25, 125, 250 ug/ml DMSO

Metabolic activation:

with and without Result:

negative Method:

other: OECD Guide-line 473, harvest time: 8, 12, 21 hours,

cytotoxicity was tested prior to testing, positive controls:

mitomycin C, cyclophosphamide

Year: 1988 GLP: yes

other TS: purity: 99.8 % Test substance:

type: chromosomal aberration test Remark: (1) valid without restriction Reliability:

Flag: Critical study for SIDS endpoint

25-MAR-2003 (47)

Type: Ames test

System of testing: Salmonella typhimurium TA 100, TA 1535, TA 1537, TA

1538, TA 98, Escherichia coli WP2uvrA

0, 4, 20, 100, 500, 2500 ug/plate, dissolved in 100 ul Concentration:

DMSO, additionally: TA100 with S9-mix: 2000 ug/plate,

dissolved in 100 ul DMSO

Metabolic activation: with and without

positive Result:

Method: other: OECD Guideline 471, rat S9-mix, positive controls

1984 Year:

84

UNEP PUBLICATIONS

1-CHLORO-2-NITROBENZENE

5. TOXICITY DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

GLP:

ves

Test substance:

other TS: purity: 99 %

Remark:

mutagen with metabolic activation in TA100 and without in TA

1538

Source: Reliability: Hoechst AG Frankfurt/Main (1) valid without restriction

25-MAR-2003

(43)

Type:

Unscheduled DNA synthesis

System of testing:

Rat Hepatocytes

Concentration:

0, 1.0, 5.0, 10, 50, 75, 100 ug/ml DMSO, 500 ug/ml DMSO

was cytotoxic

Metabolic activation:

with and without

Result:

negative

Method:

other: in accordance with OECD Guide-line 482, no detailed

data available

Year:

1983

GLP:

yes

Test substance:

other TS: as prescribed in 1.1-1.4 of the Monsanto dataset

Remark:

Cytotoxicity observed at 100 ug/ml in preliminary, but not

replicate assay

Cytotoxicity at 500 ug/ml

Source:

Monsanto

Reliability:

(2) valid with restrictions

no details on results given

25-MAR-2003

(72)

Type:

other: UMU test

System of testing:

Salmonella typhimurium TA1535/pSK1002

Concentration:

100 ug/ml

Metabolic activation:

with and without

Result:

negative

Method:

other: incubation time: 4 hours; determination of

B-galactosidase activity

Year: GLP:

1992 no data Test substance: no data

Reliability:

(4) not assignable

documentation insufficient for assessment

25-MAR-2003

(81)

Type:

Bacterial reverse mutation assay

System of testing:

S. typhimurium TA98, TA100, TA1530, TA1532, TA1535,

TA1537, TA1538, TA1950, TA1975, G46

Concentration:

no data

Metabolic activation:

with and without

Result:

negative

Method:

other: OECD guideline 471: plate incorporation method: aerobic

and anaerobic condition; fluctuation method

Year:

1980

GLP: Test substance: no data other TS: purest grade available

Reliability:

(3) invalid

no details given, special study

25-MAR-2003

(29)

Type:

Sister chromatid exchange assay

System of testing:

Chinese Hamster Ovary cells

1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

(80)

Concentration:

without S9:

0,5,16,50 ug/ml DMSO;

with S9:

(1): 0, 50, 167, 500 ug/ml DMSO (2): 0, 63, 125, 250 ug/ml DMSO

Metabolic activation:

with and without

Result:

positive

Method:

other: s. freetext

Year:

1993 no data

GLP: Test substance:

other TS: purity: 99 %

Method:

protocol in Galloway Environm. Mol. Mutagen. 10 [Suppl 10],1-175, 1987; solvent control, positive control (mitomycin C, cyclophosphamide), S9-mix of induced rat liver, incubation time without S9: 26 hours, with S9: 2

hours, after removal of TS 26 hours

Result:

without S9-mix: negative; with S9-mix: positive (up to ca.

40% increase over solvent control)

Reliability:

(2) valid with restrictions no information about GLP

Flag:

Critical study for SIDS endpoint

25-MAR-2003

(--/

Type:

Cytogenetic assay

System of testing:

Chinese Hamster Ovary (CHO) cells

Concentration:

without S9: 0,47,101,216 ug/ml DMSO; with S9: 0,

101,125,216,250,465,500 ug/ml DMSO

Metabolic activation:

with and without

Result:

positive

Method:

other: protocol in Galloway Environm. Mol. Mutagen. 10 [Suppl 10],1-175, 1987; solvent control, positive control, harvest

time: without S9: 18.5 hours, with S9: 13.6 hours

Year: GLP:

Result:

1993 no data

Test substance:

other TS: purity: 99 %

.

with S9-mix: poitive;

D 11 11211

without S9-mix: negative
(2) valid with restrictions

Reliability:

no information about GLP

Flag:

Critical study for SIDS endpoint

25-MAR-2003

(80)

Type:

HGPRT assay

System of testing:

Chinese Hamster Ovary cells

Concentration:

with S9-mix: 0, 10,30,100,300,400 ug/ml DMSO; without

S9-mix: 0, 6.6, 20, 66.6, 200, 300 ug/ml DMSO

Metabolic activation:

with and without

Result:

negative

Method: Year: other: in accordance with OECD Guide-line 476 1984

GLP:

yes

Test substance:

other TS: as prescribed in 1.1-1.4 of the Monsanto dataset

Reliability:

(2) valid with restrictions only summarized report available

16-JUN-2003

(71)

Type:

Bacterial reverse mutation assay

86

UNEP PUBLICATIONS

1-CHLORO-2-NITROBENZENE

5 TOXICITY DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

System of testing:

Salmonella typhimurium TA100, TA1535, TA98, TA1537,

Escherichia coli WP2uvrA

Concentration:

0, 10, 20, 50, 100, 200, 500, 1000 ug/plate dissolved

in DMSO, highest dose cytotoxic

Metabolic activation:

Result:

with and without

Method:

other: OECD Guide-line 471, preincubation method, S9-mix from

induced rat liver, solvent and positive controls (AF2, NaN3,

9AA)

Year:

1996 no data

GLP: Test substance:

other TS: purity: 99 %

negative

Reliability:

(2) valid with restrictions

Flag:

no information about GLP

25-MAR-2003

Critical study for SIDS endpoint

(51)

Bacterial reverse mutation assay

System of testing: Concentration:

S. typhimurium TA100, TA1535, WP2uvrA, TA98, TA1537 0, 39.1, 78.1, 156, 313, 625, 1250, 2500, 5000, 10000 ug/plate dissolved in DMSO and TA100, TA1535, WP2uvrA:

500 ug/plate dissolved in DMSO

Metabolic activation:

with and without

Result:

positive

Method:

other: OECD Guide-line 471, preincubation method, S9-mix from

rat and from hamster, highest dose cytotoxic, solvent and

positive controls

Year:

1997

GLP: Test substance: no data other TS: purity: 99 %

Result:

positive: TA100 with rat and hamster S9, TA98 with hamster

WP2uvrA: positive and negative with hamster S9-mix

Reliability:

(2) valid with restrictions no information about GLP

25-MAR-2003

(52)

Type:

Ames test

System of testing:

S. typhimurium TA100, TA98

Concentration:

(1)0,10,33,100,133,166,250,333,666,1000,1666 ug/plate

(2)0,3,10,33,66,100,166,333,666 ug/plate

Metabolic activation:

with and without

Result:

positive

Method:

other: praeincubation assay, S9-mix from hamster and rat liver

Year:

1983 no data

Test substance:

other TS: purity: 98 %

Remark:

TS was positive only in TA98 in presence of 30 % hamster S9-mix and in TA100 in presence of induced hamster or rat

mix

Reliability:

(2) valid with restrictions

no information on GLP only two strains used

25-MAR-2003

(80)

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

5.6 Genetic Toxicity 'in Vivo'

Type:

Drosophila SLRL test

Species:

Drosophila melanogaster

Strain:

other: Canton-S wild type

Route of admin.: Exposure period:

: i.p. l: once

Doses:

0, 10000 ppm in peanut oil

Result:

negative

Method:

other: males(1-3d old), mated with 3x with Basc virgin females

Sex: male

Sex: male

Sex: male

brood1: 3d, brood2: 2d, brood3: 2d;

Year:

1985 no data

Test substance:

other TS: purity:>99 %

Reliability:

(2) valid with restrictions

no information about GLP

25-MAR-2003

(80) (116)

Type: Species: Strain: Drosophila molanogastor

Drosophila melanogaster

other: Canton-S wild type

Route of admin.: Exposure period:

oral feed 72 hours

Doses:

0, 125 ppm in 10 % ethanol and 5 % sucrose solution

Result:

negative

Method:

other: males(24 hrs old), mated with 3x with Basc virgin

females brood1: 3d, brood2: 2d, brood3: 2d;

Year:

1985 no data

GLP: Test substance:

other TS: purity: > 99 %

Reliability:

(2) valid with restrictions

no information about GLP

Flag:

Critical study for SIDS endpoint

25-MAR-2003

(80) (116)

Type:

Drosophila SLRL test

Species:

Drosophila melanogaster

Strain:

other: Canton S wild type

Route of admin.:

oral feed

Doses:

0, 60 ppm in 4 % ethanol

Result:

negative

Method:

other: see ME

Year: GLP: 1989 no data

Test substance:

other TS: purity: > 99 %

Method:

In order to obtain individuals for larval treatment Canton-S females and males were mated and eggs exposed in vials with standard cornmealfood containing the chemical plus solvent alone. Adult males emerging from the treatment were mated at approximately 24 hours of age with two successive harems of three to five Basc females to establish two single day broods. Males were then discarded and two conventional SLRL

assay were carried out.

1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

Reliability:

(2) valid with restrictions

no information about GLP

25-MAR-2003

(80) (115)

Type:

other: single-strand DNA-breaks

Species:

mouse

Strain: CD-1Route of admin.: i.p.

Exposure period:

single application

Doses: Result: 60 mg/kg bw

Method:

positive

other: 8 mice, 4 h post appl. nuclei were isolated from liver and kidney cells, DNA damage was evaluated by alkaline elution technique was used, coupled with a microfluorometric method

Sex: male

for DNA assay.

Year: GLP: 1982 no data

Test substance:

other TS: no data on purity

Result:

effects: an increased elution rate in alkali of DNA from

liver and kidney was obtained

Reliability:

(2) valid with restrictions

no data on purity and GLP, only 1 dose used Critical study for SIDS endpoint

Flag:

25-MAR-2003 (19)

5.7 Carcinogenicity

Species: Strain:

rat

Sex: male

Route of administration: oral feed

Frequency of treatment:

Exposure period:

other: CD 18 months

Post exposure period:

daily 6 months

0, 500, 1000 or 2000 ppm (= ca. 0, 37.5, 75 or 150

mg/kg bw/d) ; see method

yes, concurrent no treatment Control Group:

Method:

other: s. freetext

Year:

1978

GLP:

no data

Test substance:

other TS: purity: 97-99 %

Method:

25 rats/group,1000 or 2000 ppm for 6 mo., 500 or 1000 ppm for another 12 mo; complete gross necropsy and histology on certain organs (lung, liver, spleen, kidney, adrenal, heart, bladder, stomach, intestines, reproductive organs,

masses, statistical methods: Fisher Exact Test, Bonferroni

Remark:

correction pathological examination was not performed of animals that

pituitaries), on all grossly abnormal organs and tumour

died within the first six months

Result:

no information on body weight gain

multiple tumours at the low dose only and late in life: usually a pituitary adenoma along with either a stomach

papilloma, adrenal tumour, thyroid adenocarcinoma, lymphosarcoma, choliangosarcoma of the liver or

subcutaneous fibroma

incidences: low dose level:7/22, high dose level:1/19, simultaneous control: 1/22, pooled control: 14/111

OECD SIDS
5 TOXICITY

1-CHLORO-2-NITROBENZENE

Sex: male/female

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

Reliability:

(2) valid with restrictions

study doesn't meet the criteria of today (number of animals

too low, time of duration too short, doses too high),

reported in brief

Flag:

Critical study for SIDS endpoint

16-JUN-2003

(110)

Species: Strain: mouse

CD-1

Route of administration: oral feed

: oral reed 18 months

Exposure period: Frequency of treatment: Post exposure period:

daily 3 months

Doses:

0, 1500, 3000 or 6000 ppm (= ca.0, 225, 450 or 900

mg/kg bw/d)

· Control Group:

yes, concurrent no treatment

Method:

other: s. freetext

Year: GLP: 1978 no data

Test substance:

other TS: purity: 97-99 %

Method:

25 mice/sex/group,3000 or 6000 ppm for 8 mo., 1500 or 3000 ppm for another 10 mo; complete gross necropsy, histology on certain organs (lung, liver, spleen, kidney, adrenal, heart, bladder, stomach, intestines, reproductive organs), on all grossly abnormal organs and tumour masses, statistical

methods: Fisher-Exact Test, Bonferroni correction

Remark:

pathological examination was not performed of animals that

died within the first six months

Result:

no information on body weight gain significant increase in hepatocellular carcinomas in

female mice at both dose levels and in male mice at

the low dose level

incidences of hepatocellular carcinomas:

male mice:

low dose level: 7/17, high dose level: 3/16, simultaneous

control: 3/18, pooled control: 7/99;

female mice:

low dose level: 5/22, high dose level: 5/19, simultaneous

control: 0/20, pooled control: 1/102

Reliability:

(2) valid with restrictions

study doesn't meet the criteria of today (number of animals

too low, time of duration too short, doses too high),

reported in brief

Flag:

Critical study for SIDS endpoint

16-JUN-2003

(110)

5.8.1 Toxicity to Fertility

Type:

Two generation study

Species:

mouse

Sex: Strain: male/female
other: Swiss CD-1

Route of administration:

gavage

Exposure Period:

see type and remarks

Frequency of treatment:
Premating Exposure Period

daily

male:

7 d 7d

female:
Duration of test:

34 weeks

90

UNEP PUBLICATIONS

1-CHLORO-2-NITROBENZENE DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

Doses:

0, 40, 80 or 160 mg/kg bw/d dissolved in corn oil

Control Group:

yes, concurrent vehicle

NOAEL F1 Offspring: NOAEL F2 Offspring: ca. 160 mg/kg bw ca. 160 mg/kg bw

Method:

other: NTP Continuous Breeding Protocol, see also ME

Year:

1992 yes

GLP: Test substance:

other TS: purity: > 99 %

Method:

NTP Continuous Breeding Protocol: 20 ps/group, 40 ps (contr.), exposure period: F0: 7d prior to cohousing, 98d of continuous breeding. Last litter from F0, control and high dose groups were reared, weaned, and kept until mating. Siblings received the same treatment as their parents. At sexual maturity, 20 non-sibling males and females were cohabited for 7 days and housed singly through delivery, until sacrifice. Exam.: symtoms, bw gain, water consumption;

F0,F1: contr,160 mg-gr.: spleen weight, methb; F0,F1:

fertility indices; F1(m): testes, epididymis, F1(f): vaginal

cytolo

Result:

Conclusion:

In the presence of altered somatic and selected organ weights 2-chloronitrobenzene (2CNB) did not alter

reproductive function in either generation (NOEL 160 mg/kg bw); thus, 2CNB is not a selective reproductive toxicant.

FO mice:

Mortality: 2,2,2,3 control to high dose gr., 160 mg-group: increased terminal bw and spleen weights; 80 mg-gr.(1m), 160

mg-gr.(3m): with hepatocellular degeneration;

160 mg-gr.: methaemoglobinaemic, during the first 10 d mice were slightly inactive post dosing, 3 lactating females were cyanotic for up to 2 weeks; no other signs of clin.l

toxicity

F0-fertility and reproductive parameters were not affected

F1-pups:

in the final litter of the holding period following the continuous breeding phase, F1 pup weight gain dur-

ing suckling was lower in all treated groups;

at weaning, F1 pups in the 160 mg/kg bw/d group weighed

10-13% less than controls, all other fertility and

reproductive parameters were not affected; F1 mice (only control and high dose group): no signs of clin. tox. observed, 160 mg/kg bw/d:

significantly lowered body weights at weaning but sign. heavier than controls at mating and at terminal necropsy; right epididymis, kidney/adrenals(m), spleen and liver weights increased, seminal vesicle-to-body weight ratio was

sign. decreased, sign. methaemoglobinaemia;

none of the fertility and reproductive parameters examined were affected in F1 mice, i.e., epididymal sperm parameters (motility, count and percentage of abnormal sperms) and

estrous cycle length and estrual cyclicity

Reliability: Flag:

(1) valid without restriction Critical study for SIDS endpoint

27 - AUG - 2001

(20) (76) (80)

Type: Species: other:

Sex: Strain: male/female other: F344/N inhalation

Route of administration:

SUBSTANCE ID: 88-73-3

DATE: 26-NOV-2003

Exposure Period:

Frequency of treatment:

Doses:

6 h/d, 5 d/w

0, 4.5, 9 or 18 ppm (approx. 0, 28.8, 57.6, 115.2

mg/m3)

13 w

Control Group:

yes, concurrent no treatment

Method:

other: 10 rats/sex/group, reproduct. system evaluation: vaginal cytology, sperm morphology, necropsy body and

reproductive tissue weights, sperematozoal data,

spermatogenesis, oestrous cycle length, percent of cycle spent

in various

Year: GLP: 1993 ves

Test substance:

other TS: purity: 99 %

Remark:

see chapter 5.4.

Result:

Flag:

females: no effects observed

males, 18 ppm: decreases in cauda epididymis weights (6.8%), and in the spermatid count and spermatid heads/testis (ca.

13%)

Reliability:

(1) valid without restriction Critical study for SIDS endpoint

25-MAR-2003

(44) (80)

Type: Species: Sex:

other: rat. male

Strain:

Fischer 344 gavage

Route of administration:

single application

Exposure Period: Frequency of treatment:

once

Doses:

150 mg/kg bw

Control Group:

ves

Method:

other: 5or 6 rats, sacrifice on d1 and d25 post application, evaluation of testes weight, testicular histopathology, sperm production

Year: 1988 GLP: no data

Test substance:

other TS: no data

Result:

no effect on testicular histopathology (at 1 d) or testes

weight and daily sperm production (at 25 d)

Reliability:

(4) not assignable

lack of information

25-MAR-2003

(65)

Type: Species: Sex:

Strain:

mouse male/female B6C3F1 inhalation

Route of administration: Exposure Period:

13 w

other:

Frequency of treatment:

6 h/d, 5 d/w

Doses:

0, 4.5, 9 or 18 ppm (approx. 0, 28.8, 57.6, 115.2

mg/m3)

Control Group:

yes, concurrent no treatment

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

Method:

other: 10 rats/sex/group, reproductive system evaluation:

vaginal cytology, sperm morphology, necropsy body and

reproductive tissue weights, spermatosoal data,

spermatogenesis, estrous cycle length, percent of cycle spent

in various

Year:

1993 yes

GLP:

other TS: purity: 99 % Test substance:

Remark:

see chapter 5.4

Result:

male, 4.5, 9, 18 ppm: decreased sperm motility

females: increased terminal body weight; no reproductive

effects observed

Reliability:

(1) valid without restriction Critical study for SIDS endpoint

Sprague-Dawley

Flag: 03-SEP-2001

(20) (44) (80)

5.8.2 Developmental Toxicity/Teratogenicity

Species:

Sex: female

Strain:

Route of administration: gavage

Exposure period:

days 6-15 of gestation

Frequency of treatment:

daily 21 d

Duration of test: Doses:

0, 25, 75, or 150 mg/kg bw/d dissolved in corn oil

Control Group:

yes, concurrent vehicle

NOAEL Maternal Toxity:

ca. 25 mg/kg bw

Method:

other: 25 females/group, due to severe mat. tox. and mortality the 150 mg-level was terminated prior to scheduled sacrifice

Year:

1986

GLP: Test substance:

yes other TS: purity: commercial

Result:

mortality:

150 mg-gr.: due to severe toxicity and high mortality rate of the dams, all females were terminated prior to sheduled

sacrifice, 75 mg-group: 1/25;

general toxicity:

75 mg/kg bw/d: gest.-d. 6-10: reduced body weight gain

(slight but not significant) and

reduced food consumption; recovery later in gestation; urinary staining, alopecia; maternal reproductive parameters comparable to controls, mean number of early resorptions and

post implantation loss slightly increased (post implantation loss in the respective control very low when compared to

historical control; values range: 0-0.9)

25 mg/kg bw/d: no evidence of maternal toxicity

developmental toxicity:

fetal body weight comparable to control

variations: cervical #7 ribs at 25 mg-gr (1.1%) and sign. at 75 mg-gr (2%); 13 full pair of ribs with lumbar #1 rudimentary ribs in controls, at 25 mg-, 75 mg-gr increased,

but not sign.;

12 full pair of ribs with #13 unilateral full rib and/or rudimentary rib(s) in controls and in 25 mg-gr. increased,

but not sign.

Reliability:

(2) valid with restrictions

highest dose was too high

Flag:

Critical study for SIDS endpoint

25-MAR-2003

(67) (105)

OECD SIDS 5. TOXICITY

1-CHLORO-2-NITROBENZENE DATE: 26-NOV-2003

Sex: female

SUBSTANCE ID: 88-73-3

Species: Strain:

rat

Sprague-Dawley

Route of administration: Exposure period:

gavage d6-d15

Frequency of treatment:

daily

Doses:

0, 100 mg/kg bw in corn oil yes, concurrent vehicle

Control Group:

Test substance:

other: NOAEL developmental toxicity:

ca. 100 mg/kg bw

Method:

other: 25 females/group, only one dose

Year:

1984

GLP:

yes other TS: purity: commercial

Remark:

The study was intended to clarify the observations of the

study of Monsanto, 1986

Result:

d6-10: slight maternal body weight loss accompanied by

reduction in food consumption for d6-16, maternal

reproductive parameters were not affected, fetal body weight

comparable to the respective controls; no teratogenic

effects were observed

Reliability:

(2) valid with restrictions

only one dose used

Flaq:

Critical study for SIDS endpoint

25-MAR-2003

(49)

5.8.3 Toxicity to Reproduction, Other Studies

5.9 Specific Investigations

5.10 Exposure Experience

Remark:

based on clinical and laboratory evaluation of cyanosis cases during a 10-year period a number of cyanogenic aromatic nitro compounds were ranked in descending order of relative hazard relating to their cyanogenic potential observed in exposed industrial workers (rank 1 = most potent, rank 13 = least potent): o-chloronitrobenzene was classified in rank 7; laboratory evaluation showed that total oxygenatable haemoglobin in some cases, notably after be expected from methaemoglobin analysis

(unspecified route of absorption)

Flag:

Critical study for SIDS endpoint

(59)

Remark:

experience with human exposure: a number of the more important aromatic nitrocompounds were ranked showing their commparative hazard ratings for cyanosis, anaemia and overall toxicity (the degree of hazard ranges from 1 = slight hazard to 6 = severe hazard): for o-chloronitrobenzene, the degree of hazard is 4 concerning cyanosis hazard, 2 concerning anaemia hazard and 3 concerning

over-all toxic hazard (no further data)

(60)

1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

Remark:

all 325 records of industrial chemical cyanosis poisoning

in

Britain notified to the inspectorate from 1961 to 1980 were scrutinised: the cases occurred mainly during chemical or dyestuff manufacture; a total of 50 cases of chemical cyanosis syndrome due to chloronitrobenzene were reported; 23 (46 %) cases were "early cases", i.e., the symptoms developed while at work on the same day of exposure, and 27 (54 %) cases were "delayed cases", i.e., the symptoms developed insidiously or some definite time after the "working" day on which the poisoning occurred (the route of

absorption is not described in detail for each test

compound,

the most cases resulted from skin absorption and/or inhalation; in this study, the isomer(s) of chloronitro-

benzene is/are not clearly specified)
Critical study for SIDS endpoint

Flag:

14-Aug-2001 (91)

Remark:

experience with human exposure: in chloronitrobenzene poisoning cardiac complications appear to be more frequent and more serious than in aniline poisoning and gastrointestinal irregularities (anacidity) also appear to be quite common (no further data, isomer(s) of chloronitrobenzene not specified)

(13) (14)

Remark:

experience with human exposure: four workmen were reported

who were hospitalized as the result of exposure to a

mizture

of o- and p-chloronitrobenzene; these cases resulted from two to four days exposure and all were cyanotic; headache

and weakness accompanied the cyanoses

Flag:

Critical study for SIDS endpoint

(84)

Remark:

The exposition against a mixture of 2-chloro- and 4-chloronitrobenzene caused severe intoxications which exceeds the signs of intoxication during repair of a unit

for isolation of the isomers. As symtoms cyanotic

appearance

and collapse were described. Hb-content was decreased up to 65 % of the normal value. During the recovery period the patients suffered from difficulty in breathing and

sensation

of dizziness. Within 7 weeks Hb content increased to 80 $\mbox{\ensuremath{\$}}$

of

the normal value.

Flag: 14-AUG-2001

Critical study for SIDS endpoint

(28)

5.11 Additional Remarks

Type:

other

Remark:

the level of lipid peroxidation, content of vitamine E and its metabolites as well as antioxidative activity in the blood serum, liver and spleen of white rats were studied. Toxicological efects of nitrochlorobenzenes were decreased:

by vitamine ${\tt E}$ (no further information) .

OECD SIDS
5. TOXICITY

1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

23-FEB-1998

(82) (83)

Type:

other: Haematotoxizitaet

Remark:

Ergebnis: 10 mg/kg Kgw. zeigte (2 Katzen): keine Letalitaet, leichte Veraenderungen im weissen Blutbild, leichten Anstieg der Zahl der Heinz'schen Innenkoerper und leichte Methaemoglobinaemie, nach 48 Stunden p.a. weitgehend

reversibel.

Source:

Hoechst AG Frankfurt/Main

Test substance:

technisch rein

(36)

Remark:

an attempt to vaporize o-chloronitrobenzene by passing air (2 l of air/min. for 1 h) through a tower of dust was not successful in that no weighable amounts of the test substance were vaporized; rats and mice in an inhalation chamber were exposed to the generated atmosphere for 1 h: no symptoms of toxicity were observable and no deaths occurred at the end of the exposure period or within an ob-

servation period of 7 d

Remark:

48 h after a single oral administration of 100 mg/kg bw of o-chloronitrobenzene to rabbits, 0.3 % of the administered dose was found in faeces as unabsorbed material which was completely reduced to the chloroaniline; in the urines collected each 24 h for 48 h the following metabolites of o-chloronitrobenzene were detectable (expressed as percentages of the administered dose): ether glucuronide (42 %), ethereal sulphate (24 %), mercapturic acid (7 %), free chloroaniline (9 %) (total accounted for: 82 %)

Flag:

Critical study for SIDS endpoint

Remark:

metabolism in vitro: radiolabelled (14 C) o-chloronitrobenzene (concentration not specified) was incubated with isolated rat hepatocytes for up to 90 min.: after 90 min., 71 % of the o-chloronitrobenzene had been metabolized; the primary metabolic pathway for o-chloronitrobenzene was reduction to o-chloroaniline (19.2 % of the total radioactivity after 90 min.); o-chloronitrobenzene was also conjugated with glutathione; two other very polar metabolites, com- prising 14.2 % of the total 14 C from

o-chloronitrobenzene, have not been identified

23-FEB-1998

(34) (35)

Remark:

in order to identify the specific enzymes involved in the metabolism of o-chloronitrobenzene by isolated rat hepatocytes, hepatic subcellular fractions were isolated from rats; microsomes incubated with radiolabelled (14 C) o-chloronitrobenzene in the presence of NADPH produced o-chloroaniline under aerobic conditions and SKF 525 A and metyrapone had no effect on the metabolism to o-chloroaniline: these findings suggest that cytochrome P-450 reductase is responsible for o-chloronitrobenzene reduction; radiolabelled o-chloronitrobenzene was also incubated with or without microsomes, cytosol and/or glutathione: o-chloronitrobenzene was converted to S-(2-nitrophenyl)glutathione in the presence of cytosol and glutathione suggesting that cytosolic glutathione transferase is involved in this conjugation (concentration of the test substance un-

1-CHLORO-2-NITROBENZENE DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

specified)

Remark:

the effect of o-chloronitrobenzene on heme synthesis was determined in vitro by studying its influence on delta-aminolevulinic acid synthetase (ALAS) and ferrochelatase (FC) activities in rat liver homogenates; at 0.001 mol/l concentration, o-chloronitrobenzene did not significant-

ly affect the enzyme activities

(53)

(34)

Remark:

o-chloronitrobenzene was administered by gavage to adult and geriatric rats at 65 mg/kg bw/d for 11 d; 14 C-o-chloronitrobenzene was administered on days 1, 5 and 9; 14 C was determined in urine and faeces up to 96 h after each 14 C-dose and in tissues at 72 h after the day 9 dose: in adult rats, at all treatment intervals, 71-74 % of each dose was excreted in urine and 20-27 % in faeces and the rates of excretion increased with pretreatment; 5 % of the day 9 dose was in tissues, the highest concentrations were in liver and kidney; 24 urinary metabolites were found; pattern, rate and extent of excretion of 14 C were similar in geriatric and adult rats, except that urinary excretion by unpretreated geriatrics was more extensive (85 %) and the rates of urinary and faecal excretion did not increase with pretreatment; tissue distribution of 14 C was also similar and 8 % of the day 9 dose was in tissues

Flag:

27-AUG-2001 (62)

Critical study for SIDS endpoint

Remark:

14 C-o-chloronitrobenzene was administered by gavage to rats at 2, 20 or 200 mg/kg bw (single administration); radioactivity was determined in urine and faeces up to 72 h and in tissues at 24 and 72 h: at 2 and 20 mg/kg bw 58-60 % of the dose was excreted in urine, 26-28 % in faeces, primarily during the first 24 h, 6 % was in 24-h and 3 % in 72-h tissues; at 200 mg/kg bw 74 % was in urine and only 7 % in faeces and it was excreted more slowly with 21 % in 24-h and 4 % in 72-h tissues; at 2 and 20 mg/kg bw o-chloronitrobenzene equivalent concentrations in tissues

were proportional to dose, whereas at 200 mg/kg bw they were disproportionately higher in all tissues, especially in fat, and disproportionately lower in liver; at all doses the highest concentrations were in liver and kidney and at 200 mg/kg bw in fat; up to 23 metabolites were in urine Critical study for SIDS endpoint

Flag:

27-AUG-2001 (63)

Remark:

After a single non-occlusive, protective dermal application of 14 C-o-chloronitrobenzene at doses of ca. 0.65, 6.5 or 65 mg/kg bw to male rats, 33-40 % of the doses of o-chloronitrobenzene was absorbed from the skin within 72 h; the absorbed 14 C was excreted in urine (21-28 %) and faeces (11-15 %). The extent absorption increased with an increase in dose from 0.65 to 6.5 mg/kg bw but increased only neglibly when the dose was increased to 65 mg/kg bw.

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

The extent of urinary excretion of radioactivity was not significantly affected by dose over the range studied. The initial rate of urinary excretion was also unaffected by dose. The initial rate of faecal exretion increased with dose over the 0.65 to 6.5 mg/kg range, but decreased notably

at the high dose.

Flag:

Critical study for SIDS endpoint

27-AUG-2001

(66) (79)

Remark:

metabolism of o-chloronitrobenzene by hepatic subcellular fractions from rats: to determine the enzyme systems involved in the metabolism of o-chloronitrobenzene by rat isolated hepatocytes, radiolabelled (14 C) o-chloronitrobenzene (100 uM) was incubated with hepatic microsomes (incubation mixture containing microsomes and NADPH, some incubations also containing UDP-glucuronic acid) or with cytosol (incubation mixture containing GSH and cytosolic protein): reduction of o-chloronitrobensene to o-chloroaniline occurred readily in microsomal incubations; substitution of NADH for NADPH or incubation of microsomes under a carbon monoxide atmosphere significantly inhibited nitroreduction, boiling the microsomes completely abolished reduction of o-chloronitrobenzene; addition of SKF 525-A or metyrapone significantly inhibited the microsomal reduction of o-chloronitrobenzene to o-chloroaniline (the inhibition of nitroreduction by carbon monoxide, SKF 525 A and metyrapone suggests that cytochrome P-450 catalyzes this reaction); incubation of o-chloronitrobenzene with rat hepatic cytosol and glutathione resulted in the formation of S-(2-nitrophenyl)glutathione Critical study for SIDS endpoint

Flag:

(85)

Remark:

in vitro study of metabolism: after 90 min. incubation of isolated rat hepatocytes with radiolabelled (14 C) o-chloronitrobenzene (100 uM final concentration), 46.7 % of the added o-chloronitrobenzene was metabolized; the calculated half-life for disappearance of o-chloronitrobenzene from the incubations was 84 min.; a major metabolic pathway for o-chloronitrobenzene was reduction to ochloroaniline (19.2 % of the total radioactivity after 90 min. incubation); o-chloroaniline was further metabolized to form the N-glucuronide accounting for 14.2 % of the total radioactivity; o-chloronitrobenzene was conjugated with glutathione and S-(2-nitrophenyl)glutathione accounted for 13.3 % of the total radioactivity

Flag:

Critical study for SIDS endpoint

(85)

Remark:

in vitro assay: the reduction of chloronitrobenzenes was investigated in purified milk xanthine oxidasexanthine system: o-chloronitrobenzene was less readily reduced by the enzyme than the corresponding para and meta isomers, indicating the steric hindrance

effect at ortho position

Flag:

Critical study for SIDS endpoint

(100)

OECD SIDS	1-CHLORO-2-NITROBENZENE
5. TOXICITY	DATE: 26-NOV-2003
	SUBSTANCE ID: 88-73-3
Remark:	in an in vivo study, 100 umoles/kg bw (= 15.7 mg/kg bw) of o-chloronitrobenzene was given i.p. to male rats, the animals were killed 5 h after the injection to ex- amine methaemoglobin levels: formation of methaemoglobin was observable (methaemoglobin level: 20.6 %)
Flag:	Critical study for SIDS endpoint
	. (109)
Remark:	in vitro methaemoglobin formation was studied by incubating haemolyzate (obtained from rats and containing 0.1 umole of haemoglobin) with 0.5 umole of o-chloro-nitrobenzene at pH 6.6 and 37 degrees centigrade for 5 h: formation of methaemoglobin (concentration: 4.8 %) was not significantly increased compared with the control
	(109)
Remark:	Single oral administration of 0.1 ml/100 g bw of a 0.5 M tricaprylinsolution of 1-chloro-2-nitrobensene (o-CNB) to female Wistar rats resulted in hemoglobin binding: 2.1 (mmol TS/mol Hb)/(mmol TS/kg bw)
Flag:	Critical study for SIDS endpoint

23-FEB-1998

(89) (90)

DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

- (1) Auergesellschaft: AUER Technikum, Ausgabe 12 (1988), p. 195
- (2) Back K.C. et al, Reclassification of materials listed as transportation Health hazard, Report No. TSA 20-72-3, Medical Aerospace Research Laboratory (AFSCS), Wright-Patterson Air Force Base, OHIO, Final Report, August 1972, At the request of Department of Transporation, Washington, D.C., PB214-270
- (3) Bayer AG data, Report No. 12848: o-Nitrochlorbenzol: Salmonella/Mikrosomem-Test zur Untersuchung auf punktmutagene Wirkung, August 9, 1984
- (4) Bayer AG data, Report No. 20209(F): Enzymhistochemisch darstellbare Veränderungen des Kohlenhydratstoffwechsels der Mausleber nach Gabe von o-Chlornitrobenzol, May/6/1991
- (5) Bayer AG data, Report No. 22240: o-Chlornitrobenzol: Subakute Toxizitätsstudie an B6C3F1-Mäusen - Schwerpunkt Leberdiagnostic - (Verabreichung im Futter bis zu 5 Wochen),
 - May/7/1993 (at the request of BG-Chemie, Heidelberg)
- (6) Bayer AG data, Report No. 5800, January 5, 1976
- (7) Bayer AG data: Loeser, E.: o-Nitrochlorbenzol. Untersuchungen zur akuten oralen Toxizitaet an maennlichen Wistar-Ratten, April 2, 1982
- (8) Bayer AG data: Loeser, E.: o-Nitrochlorbenzol. Untersuchungen zur akuten oralen Toxizitaet an weiblichen Wistar-Ratten, April 1, 1982
- (9) Bayer AG, Internal studies: 1. Geschlossener Flaschen-Test (1977), 2. Test on Leuciscus idus (1974), Oxygen consumption inhibition test according to Robra (1983); no records available
- (10) Bayer AG, Internal Study: GLP Final Report: vapor pressure, physical-chemical properties (2001-07-12)
- (11) Bayer AG, Internal study: Identity and Material Balance of o-Chloronitrobenzene (25.08.89)
- (12) Bayer AG: Safety Data Sheet (2001-07-19)
- (13) Bonzanigo, A.: Deut. Z. ges. gerichtl. Med. 16, 242-255, (1931)
- (14) Bonzanigo, A.: Samml. Vergiftungsfaellen 3, A 127-128 (1932)
- (15) Bray, H.G. et al.: Biochem. J. 64, 38-44 (1956)
- (16) BUA Report No. 2, o-Chloronitrobenzene, VCH, Weinheim, October 1985
- (17) Call, D.J. and Geiger, D.L., Subchronic toxicities of industrial and agricultural chemicals to Fathead Minnows (Pimephales promelas) Vol. I, Center for Lake Superior Environmental Studies, Lake Superior Research Institute, University of Wisconsin-Superior, USA (1992)

DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

- (18) Canton, J.H. et al., Regul. Toxicol. Pharmacol. 5, 123-131 (1985)
- (19) Cesarone, C.F. et al.: New Toxicology for Old, Arch. Toxicol., Suppl. 5, 355-359 (1982)
- (20) Chapin R. et al., Environm. Health Persp. 105 [Suppl 1], s 287 (1997)
- (21) D'Addario, A.P. and Jagannath, D.R.: Environ. Mutagen. 3, 325 (1981) (abstr.)
- (22) Davydova, S.G.: Hyg. and Sanit. 32(8), 161-166 (1967)
- (23) Deneer, J.W. et al., QSAR study of the toxicity of nitrobenzene derivatives towards Daphnia magna, Chlorella pyrenoidosa and Photobacterium phosphoreum, Aquatic Toxicology, 15, 83-98 (1989)
- (24) Deneer, J.W. et al., Quantitative structure-activity relationships for the toxicity and bioconcentration factor of nitrobensene derivatives towards the guppy (Poecilia reticulata), Aquatic Toxicology, 10, 115-129 (1987)
- (25) Deutsche Forschungsgemeinschaft (DFG): MAK-und BAT-Werte-Liste 2000, p. 39
- (26) Dressler: Dissertation Wuerzburg 1910: cited in Flury, F. and Zernik, F.: Schaedliche Gase, Berlin (1931)
- (27) Eckert, J.W., Fungistatic and Phytotoxic Properties of Some Derivatives of Nitrobenzene, Phytopathology, 52, 642-649 (1962)
- (28) Gerbis H., Nitrochlorbenzol-Vergiftung, gewerbliche, reperative Hyperglobulie, cited in: Fühner H. (ed.). Sammlung von Vergiftungsfällen, Bd.3, 125-126, Verlag von F.W.C. Vogel, Berlin, 1932
- (29) Gilbert P. et al., Arch. Environm. Contam. Toxicol. 9, 533-541 (1980)
- (30) Graham, R.C. et al.: Toxicity Summary o-Chloronitrobenzene. Unpublished summary by du Pont provided by Dastur (1983): cited in Chemical Hazard Information Profile Draft report 2-Chloronitrobenzene, June 13, 1983, Office of Toxic Substances, EPA, USA
- (31) Haskell laboratory, Inhalation median lethal concentration toxicity study with orthochloronitrobenzene in rats, at the request of DupOnt de Nemour, EPA OTS 0540655, 1992
- (32) Haskell Labs, Subchronic inhalation toxicity study of o-chloronitrobenzene in rats, at the request of Dupont Chem Co., OTS 0546562, 1992
- (33) Haworth, S. et al.: Environ. Mutagen. 5, (Suppl.1), 3-142 (1983)

6 REFERENCES

DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

- (34) Held, S.D. and Rickert, D.E.: Abstracts Eleventh Annual CIIT Scientific Evening, 17-18, September 8, 1987
- (35) Held, S.D. and Rickert, D.E.: Abstracts twelfth Annual CIIT Scientific Evening, 15-16, September 13, 1988
- (36) Hoechst AG (1975): Unveroeffentlichte Unters. Ber. 75.0494
- (37) Hoechst AG (1989): Produktinformation o-Nitrochlorbenzol der Abt. Verkauf Feinchemikalien (März 1989); document not available
- (38) Hoechst AG (1993): Sicherheitsdatenblatt o-Nitrochlorbenzol TTR (26.03.1993); document not available
- (39) Hoechst AG, Internal studies: 1. Zahn-Wellens-Test (1982), 2. Respirometer Test (1982), 3. Toxicity on Bacteria, Anaerobic (1982); no records available
- (40) Hoechst AG, Report No. 491/75: Akute orale Tozizität von o-Nitrochlorbenzol an männlichen SPF-Wistar-Ratten, 1975/oct/01
- (41) Hoechst AG, Report No. 493/75: Haut- und Schleimhautverträglichkeit von o-Nitrochlorbenzol an Kaninchen, 1975/oct./01
- (42) Hoechst AG, Report no.492/75: Akute dermale Toxizität von o-Nitrochlorbenzol an weiblichen SPF-Wistar-Ratten, 1975/oct./01
- (43) Hoechst AG: o-Chlornitrobenzol, Study of the mutagenic potential in strains of Salmonella typhimurium (Ames test) and Escherichia coli, unpublished Report No. 84.0410, 1984
- (44) Horstman, M.G. et al.: The Toxicologist 11, 87 (1991) (abstr.)
- (45) Horstman, M.G. et al.: The Toxicologist 11, 87 (1991) (abstr.)
- (46) Hulzebos, E.M. et al., Environ. Toxicol. Chem. 12 (6), 1079-1094 (1993)
- (47) Huntingdon Research Centre Ltd., Analysis of methaphase chromosomes obtained from CHO cells cultured in vitro and treated with o-chloronitrobenzene, HRC Report No. BGH 7/88867, 1988 (at the request of BG Chemie)
- (48) Hustert, E. et al., Chemosphere 16 (4), 809-812 (1987)
- (49) IRDC (International Research and Developmental Corporation): Modified teratology study in rats with o-Nitrochlorobenzene, Report no. ML-82-090A, october 1984 (at the request of Monsanto Company), EPA-OTS0522332
- (50) Izmerov, N.F. et al.: "Toxicometric Parameters of Industrial Toxic Chemicals under Single Exposure", Moscow, Centre of International Projects, GKNT, p. 92 (1982)