既存化学物質審査シート(人健康影響・生態影響)

(平成22年12月17日開催)

官報公示			審議	刑惟	
整理番号	CAS No.	物質名称		生態影響	頁
3-36	103-64-0	β – ブロモスチレン	0	-	1
3-78 3-91	102-47-6	3, 4-ジクロロベンジルクロライド (別名称):1, 2-ジクロロ-4-(クロロメチル)ベンゼン	0	-	3
4-644	208-96-8	アセナフチレン	0	_	5
5-2275	91-96-3	アゾイックCC-5	0	_	7
5-2111	3618-60-8	モルダントブラック-7	0	_	9
7-1340	32492-61-8	ビスフェノールA-EO付加物	0	-	11
7–1340	37353-75-6	ビスフェノールA-PO付加物	0	_	13
2-224	75-91-2	tertーブチル=ヒドロペルオキシド	_	0	15
4-19	92-69-3	pーフェニルフェノール	_	0	16
3-78	95-75-0	3, 4ージクロロトルエン	_	0	18
3-1232	122-57-6 937-53-1 1896-62-4	ベンザルアセトン	_	0	20
3-78	19398-61-9	2, 5ージクロロトルエン	_	0	21

官報公示	3-36		CAS No.	103-64-0			
整理番号	H 11. 0 3						
名称 構造式等	名 称: β-ブロ 分子式: 183.0a						
押 担八守	分子式: C ₈ H ₇ I						
), , , , , , , , , , , , , , , , , , ,	51					
		// \\	—с=	CHBr			
		\ / H					
用途	_						
製造及び	_						
輸入数量							
外観	淡黄色液体						
分解性	難分解性						
蓄積性	高濃縮性でなり	`					
Ames	陰性	溶媒(DMSO-溶	マ名なく				
		帝媒(DMSO-宿 9, TA1535, TA1537					
				結果を参考に、以下の濃度まで実施.			
	(本試験 I)						
	-S9mix	x 群:78.1 μg/plate		TA1537: 39.1 μg/plate 以上で菌の生育阻害			
		212		最高用量で菌の生育阻害)			
	313 μg/plate(TA98, WP2uvrA:156 μg/plate 以上で菌の生育阻害) +S9mix 群:78.1 μg/plate(TA1535, TA1537:最高用量で菌の生育阻害)						
	+ S9mix 辞 . 76.1 μg/plate(TA1935, TA1937 . 最高角量で圏の生育阻害) 313 μg/plate(TA98, TA100, WP2uvrA : 156 μg/plate 以上で菌の生育阻害)						
	(本試験Ⅱ)						
	-S9mix 群: 78.1 μg/plate (TA1535, TA1537: 39.1 μg/plate 以上で菌の生育阻害						
	TA100: 最高用量で菌の生育阻害)						
	313 μg/plate(TA98, WP2uvrA: 156 μg/plate 以上で菌の生育阻害) +S9mix 群: 78.1 μg/plate(TA1535, TA1537: 最高用量で菌の生育阻害)						
	〒59mix 辞:78.1 μg/plate(TA1555, TA1557:東高州重で圏の生育阻害) 313 μg/plate(TA98, TA100, WP2uvrA:156 μg/plate 以上で菌の生育阻害)						
	(確認試験)						
		x 群:78.1 μg/plate	e (TA1535 :	: 最高用量で菌の生育阻害)			
染色体	陰性	※女性 (DM CO) ピ	₩ ##	//11			
異常		溶媒(DMSO-溶 10mM)まで実施した		/IU. 制試験の結果を参考に以下の濃度まで実施.			
	(本試験)	rommys く大旭 した	⊂₩₩₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	ilpiprig大ツ加小で多分に必1ツ仮及よく大旭。 			
	() () () ()	x 群:0.116mg/mL					
		x 群:0.0145mg/m					
		_		上細胞増殖抑制濃度)			
	48 時間 (確認試験)	心理群:0.116mg/n	nL(50%以。	上細胞増殖抑制濃度)			
		群: 0.0289mg/mL	』(50%以上	細胞増殖抑制濃度)			
28 日間		経口投与 溶媒:					
反復投与	純度 99.6						
		量(30, 125, 500 m	g/kg/day)				
		請試験:1000♂♀					
	本記	弐験:600♀(1/12)					

	NOEL	30 mg/kg/	day			
	推定根拠	尿検査(尿	尽量↑:125↓	以上♂500♀、浸透圧↓;1	25 以上♂)	
		血液生化学	血液生化学的検査(Cho↑·PL↑:125 以上♀)			
		相対重量(肝↑:125 以上♂500♀)				
		絶対重量	絶対重量(肝↑:125 以上♀500♂)			
		組織学的別	組織学的所見(腎-尿細管上皮好酸性小体:125以上♂、甲状腺—濾胞上皮細			
			25 以上♀500			
	他の毒性	7 - 1 - 11 -	(流涎:500♂	• •		
				抱:500♂♀)		
			-	$\uparrow \cdot \text{Alb} \uparrow : 500 \ \ \ \ \text{TP} \uparrow :$	500♂♀、TG↑:500♀)	
		,	(腎↑:500♂	,		
		相対重量(腎↑:500♂♀)				
	回復性	組織学的所見(肝-小葉中心性肝細胞肥大:500♂♀、腎-尿細管変性:500♂) TG↑				
		'				
環境調査	媒体	実施年度	検体	検出範囲	検出下限値	
※ 1	水質	S60	0/30	_	$(0.05) \mu \text{ g/L}$	
	底質	S60	0/30	_	$(0.003)\mu$ g/g-dry	
	魚類					
	大気					
	その他					
備考	% 1 S61	版「化学物	加質と環境」(- (環境省環境保健部環境安全	注課)	

京却 八三			CACN	109-47-0				
官報公示整理番号	3-78 3-91		CAS No.	102-47-6				
名称	名 称:3,4-ジクロロベンジルクロライド							
構造式等	(別名称):1,2-ジクロロ-4-(クロロメチル)ベンゼン							
		分子式: 195.47						
	分子式:(分子式:C ₇ H ₅ Cl ₃						
		Cl						
		Ĭ.						
		CI	_					
		\bigvee						
		Į						
			CI					
 用途								
用歴 製造及び								
輸入数量	_							
外観	無色透明液							
分解性	難分解性							
蓄積性	高濃縮性で	でない						
Ames	陰性							
111100		.9%. 溶媒(DMSO-泡	容解).					
		A100, TA1535, TA153						
		5000μg/plate まで実施した用量設定試験の結果を参考に、以下の濃度まで実施.						
	(本試験	(本試験 I)						
	-s	—S9mix 群:100μg/plate(TA98, TA100, TA1535, TA1537, WP2uvrA						
				: 50μg/plate 以上で菌の生育阻害)				
	+S	+S9mix 群:100μg/plate(TA100, TA1535, TA1537, WP2uvrA						
	: 最高用量で菌の生育阻害)							
	200 μg/plate(TA98:最高用量で菌の生育阻害)							
	(本試験		(MAGG MA	100 MAINON MAINON WIDE				
	-s	9mix # : 50 μg/plate	(TA98, TA	100, TA1535, TA1537, WP2uvrA				
	1.0	!Omiv 群,100::-/-1:4:	(TA 100 TA	: 最高用量で菌の生育阻害)				
	+5	っっmix 時:100μg/piate	(1A100, TA	A1535, TA1537, WP2uvrA : 最高用量で菌の生育阻害)				
		200 ug/plat	·e (ТД98 · #	・ 取向用重く困め生育阻害)				
染色体	<u></u> 陰性	200 με/ριαί	D (11100 . 月	CIEN/N 金 <四マノエは四口/				
異常	* * * * * * * * * * * * * * * * * * * *	.9%. 溶媒(DMSO-i	容解).CHL	TU.				
/ \ 114				制試験の結果を参考に以下の濃度まで実施.				
	-	89mix 群:0.035mg/ml						
		89mix 群: 0.17mg/mL						
	24 時間処理群: 0.03mg/mL (50%以上細胞増殖抑制濃度)							
28 日間	投与方法	強制経口投与 溶媒:	: 0.5%CMC 7	大溶液				
反復投与	純度	99.9%						
	用量	4 用量(10, 30, 100,	300 mg/kg/da	ay)				
	死亡	本試験:300♀(1/12	2)					
	NOEL	10 mg/kg/day 未満						
i e e e e e e e e e e e e e e e e e e e		•						

	推定根拠	組織学的所見(前胃-角化亢進:10 以上♂·30 以上♀、 前胃-扁平上皮過形成: 10 以上♀·30 以上♂、 前胃-水腫・細胞浸潤:10 以上♂♀)
	他の毒性	絶対重量(肝↑・腎↑: 300以上♂♀) 相対重量(肝↑・腎↑:300以上♂♀) 尿検査(尿量↑・尿円柱↑:300以上♂、尿上皮細胞↑:300以上♀) 組織学的所見(前胃ーびらん:300♀、 腎-尿細管変性・好塩基性尿細管上皮・尿細管拡張・間質繊維化:300♂♀、 腎-硝子滴変性:100以上♂、腎-尿細管壊死・間質細胞浸潤:300♀)
	回復性	肝↑、腎↑、前胃-扁平上皮過形成、腎-好塩基性尿細管上皮、腎-尿細管拡張、腎-間質細胞浸潤
備考	,) ジクロロベンジルアルコール(CAS1805-32-9) ジクロロ安息香酸(3-1410)

官報公示 整理番号	4-644		CAS No.	208-96-8			
名称	名 称:フ	アセナフチレン					
構造式等	分子量:1	52.19					
	分子式: 0	$ m C_{12}H_8$	/==				
			/				
用途	_						
製造及び	_						
輸入数量	45 - 1						
外観	黄色固体						
分解性	難分解性	5411					
蓄積性 Ames	高濃縮性で 陰性	C1211					
Times		.3%. 溶媒(DMSO-溶	系解).				
	TA98, T	TA100, TA1535, TA153	7, WP2uvrA				
		-	量設定試験の)結果を参考に、以下の濃度まで実施.			
		(本試験 I)					
	-S9mix 群:19.5 μ g/plate(TA1537:9.77 μ g/plate 以上で菌の生育阻害) 78.1 μ g/plate(TA1535:39.1 μ g/plate 以上で菌の生育阻害)						
	(TA98, TA100, WP2uvrA: 最高用量で菌の生育阻害)						
	+S9mix 群: 78.1 μ g/plate (TA1535, TA1537: 39.1 μ g/plate 以上で菌の生育阻害)						
		212 / 1		高用量で菌の生育阻害)			
	(本試)		(TA100, W	P2uvrA : 156 μ g/plate 以上で菌の生育阻害)			
	` ` ` ` ` `	•	e (TA1537 :	: 9.77 µ g/plate 以上で菌の生育阻害)			
	~			39.1 µ g/plate 以上で菌の生育阻害)			
			•	100, WP2uvrA:最高用量で菌の生育阻害)			
	+8	89mix 群:78.1 μ g/plate		TA1537: 39.1 μ g/plate 以上で菌の生育阻害)			
		313 // g/plato		:高用量で菌の生育阻害) P2uvrA : 156 μ g/plate 以上で菌の生育阻害)			
染色体	陽性	στο μ g/piate	(171100, 11)	i Δuvin. 100 μ g/piate 外上(图V/工月阻吉)			
異常		.15mg/mL(+S9mix 如	1.理群:構造	異常)			
		mix 群において構造異常					
	,	.3%. 溶媒(DMSO-溶					
	1.55mg/ (本試験		こ細胞増殖剤	制試験の結果を参考に、以下の濃度まで実施.			
		89mix 群:0.0889mg/m	L(50%以上	細胞増殖抑制濃度)			
		59mix 群:0.133mg/mL					
28 日間							
反復投与	投与方法		0.5%メチル	セルロース水溶液			
	純度	96.3%	مر/اح س)				
	用量 死亡	3 投与群(4, 20, 100 m) 予備試験(1000♂♀:					
	プロレ	1 用	บเบ/				

	NOEL	4 mg/kg/d	ay				
	推定根拠	尿検査(小	、円形上皮細胞	包陽性:20 以上♂100♀)			
		相対重量	(肝↑:20以	上♂우)			
		組織学的形	斤見(肝ー小 類	萨中心性肝細胞肥大、副腎-	- 球状帯び慢性肥大 : 20 以上		
		♀100♂)	2100장)				
	他の毒性	体重↓・摂	₹餌量↓・摂フ	水量↑:100♂♀			
		一般状態	(流涎・粗毛・	・削痩・立ち上がり回数↓	: 100♀)		
		FOB(握力	」(前肢) ↓・聴	覚↓:100♂、痛覚↓:100♀、自	発運動低下:100 以上♂♀)		
				E↓:100♂♀)			
				Plt↑:100♂♀、Hgb↑・MC			
				o↑·PL↑:1000♂♀、TI	$P \uparrow \cdot Alb \uparrow : 100 ?)$		
			•	1♀、胸腺↓:100♀)			
				1♀、心↓・副腎↑:100♂			
		組織学的形			泡単細胞壊死、大腿骨・胸骨 はは1976年に、1976年に2016年2017年2017年2017年2017年2017年2017年2017年2017		
					基性尿細管・尿細管の単細胞 2、1551kg かせない 1950		
					宿、膀胱-被蓋細胞肥大:100		
			♂♀、腸間膜リンパ節ー萎縮、脾ーリンパ濾胞萎縮、子宮ー萎				
		同治地 . #	縮: 100 ♀) 回復期:握力(後肢)↓				
	ETZE III.			•	마 마스타 아 그 글마트 구스타		
	回復性				肝一髄外造血、副腎一球状		
		帝の便性肌	四大、腎 – 好均	品 全 性水神官			
環境調査	媒体	実施年度	検体	検出範囲	検出下限値		
※ 1	水質	S59	4/138	0.08~1.3 μ g/L	$(0.002\sim 1)\mu$ g/L		
		S58	0/33	_	$(0.06\sim0.4)\mu$ g/L		
	底質	S59	63/138	$0.0007 \sim 0.671 \mu$ g/g-dry	$(0.00006\sim 0.088) \mu$ g/g-dry		
		S58	13/33	$0.008 \sim 0.053 \mu$ g/g-dry	$(0.008\sim0.041)\mu\text{g/g-dry}$		
	魚類	S59	14/138	$0.0008 \sim 0.024 \mu$ g/g-wet	$(0.0002\sim0.05)\mu{\rm g/g\text{-}wet}$		
	大気						
	その他						
備考	※ 1 S59)、S60 版「	化学物質と環	- 環境 (環境省環境保健部環:			
MIII	, i 500	, 200/10	10 1 10 25 0 50		ノロンヽユ¬∀\\/		

官報公示 整理番号	5-2275	CAS No.	91-96-3
名称 構造式等	名 称: アゾイック CC-5 分子量: 380.44 分子式: C ₂₂ H ₂₄ N ₂ O ₄ O H ₃ C		CH ₃ NH O CH ₃
 用途	_		0
製造及び	_		
輸入数量			
外観	淡黄色粉末		
分解性	難分解性		
蓄積性	高濃縮性でない		
Ames	純度 97.5%. 溶媒 (DMSO-溶) TA98, TA100, TA1535, TA1537, 5000 μ g/plate まで実施した用量 (本試験 Ι) -S9mix 群: 313 μ g/plate +S9mix 群: 313 μ g/plate 1250 μ g/plate	で対照の 2 倍解). , WP2uvrA. , WP2uvrA. , は設定試験の (TA1537: (TA98, TA (WP2uvrA (TA1537: (TA1535:	を超える変異コロニーの誘発. 結果を参考に、以下の濃度まで実施. 156 μ g/plate 以上で菌の生育阻害) 100, TA1535: 最高用量で菌の生育阻害) A: 全用量で被験物質の析出)
	5000μ g/plate $+$ S9mix 群: 313μ g/plate 1250μ g/plate	(TA1537 : (TA98, TA (WP2uvrA (TA1537 : (TA1535 : (TA98, TA	156 μ g/plate 以上で菌の生育阻害) 100, TA1535:最高用量で菌の生育阻害) A:全用量で被験物質の析出)

染色体	陽性					
異常	D20 値=	=0.36mg/mL(48 時間処理群:数的異常)				
	-S9mix 群及び 48 時間処理群において数的異常の誘発.					
	純度 97	.5%. 溶媒(注射用水-懸濁). CHL/IU.				
	C	mL(10mM)まで実施した細胞増殖抑制試験の結果を参考に以下の濃度まで実施.				
		9mix 群:3.85mg/mL				
		9mix 群:0.241mg/mL(50%以上細胞増殖抑制濃度)				
		時間処理群:3.85mg/mL				
		時間処理群:3.85mg/mL				
28 日間	動物種·系統					
反復投与	投与方法	強制経口投与 溶媒:0.5%メチルセルロース水溶液				
	純度	96.9%				
	用量	3 投与群(8, 40, 200, 1000 mg/kg)				
	死亡	なし				
	NOEL	8mg/kg/day				
	推定根拠	体重↓・摂餌量↓:40 以上♂♀、摂水量↓:40 以上♂1000♀				
		相対重量(肝↑40 以上♂200 以上♀)				
		組織学的所見(肝ー小葉中心性肝細胞肥大:40以上♂♀)				
	他の毒性	血液生化学的検査(Cho↑・PL↑:1000♂♀)				
		尿検査(尿量↓:1000♂)				
		絶対重量(胸腺↓:200以上♂)				
	回復性	体重↓				
他の試験	実施せず					
備考						

官報公示 整理番号	5-2111 CAS No. 3618-60-8
名称	名 称:モルダントブラック-7
構造式等	分子量: 416.77
	分子式:C ₁₆ H ₁₀ Na ₂ O ₆ SCl Cl
	OH
	N N N
	N N SO ₃ Na
	ÓH
用途	OH —
製造及び	_
輸入数量	
外観	無色透明液体
分解性	難分解性
蓄積性	高濃縮性でない
Ames	強い陽性
	比活性值=2256rev./mg(+S9mix 群:TA1537)
	- S9mix 群の TA98、+ S9mix 群の TA100, TA1537 で対照の 2 倍を超える変異コロニーの誘発. 純度 92.7%. 溶媒 (DMSO-溶解).
	TA98, TA100, TA1535, TA1537, WP2uvrA. 純度換算あり*
	5000μ g/plate まで実施した用量設定試験の結果を参考に、以下の濃度まで実施.
	(本試験 I)
	-S9mix 群:78.1 μ g/plate*(TA1535:39.1 μ g/plate 以上で菌の生育阻害)
	(TA100, TA1537: 最高用量で菌の生育阻害)
	313 μ g/plate* (TA98, WP2uvrA:最高用量で菌の生育阻害)
	+S9mix 群: 78.1 µ g/plate* (TA98, TA1535, TA1537, WP2uvrA: 最高用量で菌の生育阻害)
	取筒用量で圏の生育阻害) 313 μ g/plate*(TA100:78.1 μ g/plate 以上で菌の生育阻害)
	(本試験Ⅱ)
	-S9mix 群:78.1 μ g/plate*(TA1535:39.1 μ g/plate 以上で菌の生育阻害)
	(TA100, TA1537: 最高用量で菌の生育阻害)
	313 μ g/plate*(TA98, WP2uvrA:最高用量で菌の生育阻害)
	+S9mix 群: 78.1 µ g/plate* (TA98, TA1535, TA1537, WP2uvrA:
	最高用量で菌の生育阻害)
	313 μ g/plate*(TA100:78.1 μ g/plate 以上で菌の生育阻害)

染色体	陽性						
異常	D20 = 0	.18mg/mL(-S9mix 処理群:構造異常)					
	+S9mi	x 群において構造異常の誘発.					
	純度 92.	2.7%. 溶媒(注射用水-懸濁). CHL/IU.					
	U	nL(10mM)まで実施した細胞増殖抑制試験の結果を参考に、以下の濃度まで実施.					
		9mix 群:0.250mg/mL(細胞毒性のため 0.125mg/mL まで観察)					
		9mix 群:0.0625mg/mL(50%以上細胞増殖抑制濃度)					
		質の純度は92.7%であるが、純度換算は実施していない。					
		ラット Crl:CD(SD)					
反復投与	投与方法	強制経口投与溶媒:注射用水					
	純度	92.7%					
		※被験物質の純度は92.7%であるが、純度換算は実施していない。					
	用量	3 投与群(40, 200, 1000 mg/kg)					
	死亡	予備試験(1000♂:1/5)					
	NOEL	40 mg/kg/day 未満					
	推定根拠	尿検査(尿量↓・尿浸透圧↑:40 以上♀1000♂)					
		組織学的所見(盲腸一粘膜の反応性過形成:40 以上♂♀)					
	他の毒性	体重↓:1000♂、摂水量↑:200 以上♂1000♀					
		一般状態(軟便:200 以上♂♀)					
		自発運動↑:1000♀					
		血液生化学的検査(K↑:200以上♀)					
		尿検査(ビリルビン陽性:1000♀)					
		絶対重量(腎↑:1000♂)					
		相対重量(腎↑:1000♂♀)					
		組織学的所見 (結腸ー粘膜の過形成:200以上♂♀、腎ー尿細管褐色色素沈着:					
		200 以上♀、大腿部骨格筋-筋繊維の変性/壊死、直腸-粘膜の反					
		応性過形成:1000♂♀、腎-尿細管の好酸性小滴:1000♂)					
	回復性	尿浸透圧↑					
備考							

官報公示整理番号	7-1340 CAS No. 32492-61-8				
名称					
構造式等	分子量:432(付加モル数を5モルと仮定した場合) 分子式:(C ₂ H ₄ O) _n (C ₂ H ₄ O) _n C ₁₅ H ₁₆ O ₂				
	HO $-CH_2$ $-CH_2$ $-O$ $-CH_2$ $-CH_2$ $-O$ $-CH_3$ $-O$ $-CH_4$ $-O$ $-O$ $-O$ $-O$ $-O$ $-O$ $-O$ $-O$				
	$_{\mathrm{CH}_{3}}^{\mathrm{C}}$				
用途	 中間物、塗料等溶媒、接着剤等溶媒、樹脂添加剤、潤滑・研削油 ^{※1}				
製造及び 輸入数量	7-1340 として 1,000~10,000 t 未満*1				
外観	無色透明液体				
分解性					
蓄積性					
Ames	陰性 純度≧99%. 溶媒 (DMSO−溶解).				
	TA98, TA100, TA1535, TA1537, WP2uvrA.				
	5000 μ g/plate まで実施した用量設定試験の結果を参考に以下の濃度まで実施. (本試験 I)				
	-S9mix 群:2000 μ g/plate(TA1535:1000 μ g/plate 以上で菌の生育阻害) (TA98, TA100, TA1537:最高用量で菌の生育阻害)				
	5000μ g/plate (WP2uvrA)				
	+S9mix 群: 5000 µ g/plate(TA1535: 2500 µ g/plate 以上で菌の生育阻害) (TA100: 最高用量で菌の生育阻害) (TA98, TA1537, WP2uvrA)				
	(本試験Ⅱ)				
	-S9mix 群:2000 μ g/plate(TA1535:1000 μ g/plate 以上で菌の生育阻害) (TA98, TA100, TA1537:最高用量で菌の生育阻害)				
	5000 μ g/plate (WP2uvrA)				
	+S9mix 群:5000 µ g/plate(TA1535:2500 µ g/plate 以上で菌の生育阻害) (TA98, TA100, TA1537, WP2uvrA)				
染色体	陽性 Page (the page of the page				
異常	D20 値 $=0.23$ mg/mL($-S9$ mix 群:構造異常) $\pm S9$ mix 群において構造異常の誘発.				
	純度≧99%. 溶媒(DMSO−溶解). CHL/IU.				
	3.0mg/mL (調製可能な最高用量)まで実施した細胞増殖抑制試験の結果を参考に以下の濃度まで実施. (本試験 I)				
	-S9mix 群:0.8mg/mL(細胞毒性のため 0.4mg/mL まで観察)				
	+ S9mix 群: 0.8mg/mL (細胞毒性のため 0.4mg/mL まで観察)				
	24 時間処理群:0.4mg/mL(細胞毒性のため 0.2mg/mL まで観察) (本試験Ⅱ)				
	「本色級 II				
	+S9mix 群: 0.5mg/mL (細胞毒性のため 0.4mg/mL まで観察)				
	動物種・系統 ラット Crl: CD(SD)				
与毒性・生	投与方法 強制経口投与 溶媒:オリーブ油				

殖発生毒性	純度	>99%
併合試験	用量	4 投与群(30, 120, 500, 1000 mg/kg/day)
(Reprotox)	死亡	なし
	NOEL	反復毒性:120 mg/kg/day
		生殖発生:1000 mg/kg/day
	推定根拠	反復毒性:
		血液生化学的検査(Cho↑:500 以上♂·1000♀)
		絶対重量(肝↑:500 以上♀)
		相対重量(肝↑:500以上♂♀, 腎↑:500以上♂)
		組織学的所見(肝一小葉中心性肝細胞肥大:500以上♂♀,
		腎-近位尿細管再生性過形成:500以上♂)
		生殖発生:
	At the state of	全群で特に毒性学的影響は認められていない
	他の毒性	反復毒性:
		体重↓(1000♂)
		血液学的検査(RBC↓・Hgb↓・Hct↓・Ret↑:1000♀)
		血液生化学的検査(ALT↑・Ca↑:1000♀)
		組織学的所見(肝一巣状壊死:1000♂♀)
		生殖発生:一
	回復性	腎-近位尿細管再生性過形成
備考	※1 化学	物質の製造・輸入量に関する実態調査(平成19年実績)

官報公示	7-1340		CAS No.	37353-75-6			
整理番号							
名称	名 称: ビスフェノール A-PO 付加物						
構造式等	分子量:502						
	分十八:(($C_3H_6O)_n(C_3H_6O)_nC_{15}H_$	116 U 2				
		Г		٦			
	НО -	$- \left[-(C_3H_6) - O \right]_n$		$O - (C_3H_6) - $ OH			
			CH ₃	Jn			
			ĊНз				
用途	中間物、塗	·	容媒、樹脂添	加剤、潤滑・研削油 ^{※1}			
製造及び	7-1340 と	して 1,000~10,000 t き	未満*1				
輸入数量							
外観	無色透明液	友体					
分解性	_						
蓄積性	一 四人山						
Ames	陰性 純庶 🗸 0	00/ 溶#(DMCO)	(宏格度)				
	純度>99%.溶媒(DMSO-溶解). TA98,TA100,TA1535,TA1537,WP2uvrA.						
	TA98, TA100, TA1939, TA1937, WP2UVFA. 5000μ g/plate まで実施した用量設定試験の結果を参考に以下の濃度まで実施.						
	(本試験 I)						
	$-\mathrm{S9mix}$ 群: 5000μ g/plate(2500μ g/plate 以上で被験物質の析出)						
	+S9mix 群:5000 μ g/plate(2500 μ g/plate 以上で被験物質の析出)						
	(本試験Ⅱ)						
	- S9mix 群: 5000 µ g/plate (2500 µ g/plate 以上で被験物質の析出)						
沙カ, <i>た</i> . 14-	+S9mix 群: 5000 µ g/plate (2500 µ g/plate 以上で被験物質の析出)						
染色体 異常	陰性 純度≧99%.溶媒(DMSO-溶解).CHL/IU.						
天市				.U. 抱増殖抑制試験の結果を参考に以下の濃度まで実施.			
	_			こめ 0.05mg/mL まで観察)			
				こめ 0.1mg/mL まで観察)			
	24 時間処理群:0.1mg/mL(細胞毒性のため 0.05mg/mL まで観察)						
反復経口投	動物種・系統	ラット Crj : CD(SD)					
与毒性・生	投与方法		: オリーブ油				
殖発生毒性	純度						
併合試験 (Reprotox)	用量	3 投与群(30, 120, 5		7)			
(iteprotox)	死亡	予備試験(1000:1/4					
	MOET	本試験 (500:1/12年					
	NOEL	反復投与毒性: 30 r	·				
		生殖発生発生:120 r	пулкулаау				

	推定根拠	反復投与毒性:
		一般状態(流涎:120 以上♀)
		血液生化学的検査(TP↓:120以上♂)
		組織学的所見(小腸-腸絨毛乳び管拡張:120 以上♂♀)
		生殖発生毒性:
		性周期↑ (500♀)
		新生児体重↓ (500)
	他の毒性	反復投与毒性:
		体重↓(500♂)
		一般状態(眼瞼下垂・自発運動低下:500♂)
		血液生化学的検査(Alb↓:500♂、Cho↑:500♂♀)
		絶対重量(肝↑:500♂)
		相対重量(肝↑:500♂♀、腎↑:500♂)
		組織学的所見(肝一小葉中心性肝細胞肥大:500♂♀)
		生殖発生毒性:一
	回復性	小腸-腸絨毛乳び管拡張
備考	※1 化学	物質の製造・輸入量に関する実態調査(平成19年実績)

官報公示	75-91-2 CAS No. 75-91-2						
整理番号 名称	A 称:tertーブチル=ヒドロペルオキシド						
名称 構造式等	名 你:tertークテル=ヒトロペルタキシト						
	ÇH₃						
	HOOCCH						
	HOO—C—CH ₃						
	CH_3						
用途	中間物、繊維剤(非成形)**1						
製造及び 輸入数量	2-224 として 100~1,000 t 未満** 1						
外観	透明液体						
分解性	難分解性						
蓄積性	高濃縮性でない						
藻類生長	生物種: Pseudokirchneriella subcapitata						
阻害試験	試験法:化審法 TG (2006) 培養方式:振とう培養						
	純度: 66.0% (不純物 水)						
	試験濃度:設定濃度 0.085、0.19、0.41、0.91、2.0、4.4 mg/L						
	実測濃度 一、一、0.14、0.66、1.9、4.0 mg/L(幾何平均値) 助剤:なし						
	72hEC50(実測値に基づく) = 1.1 mg/L						
	72hNOEC (実測値に基づく) = 0.14 mg/L						
	① 実材はの質山に果た。マ幼中梅質と伝。アンフ						
ミジンコ	①毒性値の算出に当たって純度換算を行っている。生物種:オオミジンコ Daphnia magna						
急性遊泳							
阻害試験	試験方式:止水式(密閉系)						
	純度:66.0% (不純物 水) 試験濃度:設定濃度 10、15、23、34、51 mg/L						
	実測濃度 9.7、15、21、33、51 mg/L (算術平均値)						
	助剤:なし						
	48hEC50(設定値に基づく) = 14 mg/L						
	①毒性値の算出に当たって純度換算を行っている。						
	生物種:ヒメダカ Oryzias latipes						
毒性試験	試験法:化審法 TG 試験方式:半止水式 (密閉系)、48 時間後に換水						
	純度: 66.0% (不純物 水)						
	試験濃度:設定濃度 25、35、50、70、100 mg/L						
	実測濃度 24、35、53、72、100 mg/L(算術平均値)						
	助剤:なし 96hLC50 (設定値に基づく) = 94 mg/L						
	①毒性値の算出に当たって純度換算を行っている。						
備考	※1 化学物質の製造・輸入量に関する実態調査(平成19年実績)						

 	物質審査シート						
官報公示	4-19 CAS No. 92-69-3						
整理番号							
名称 # # # # #	名 称:p-フェニルフェノール						
構造式等							
	OH						
用途	_						
製造及び							
輸入数量							
外観	白色フレーク						
分解性	難分解性						
蓄積性	高濃縮性でない						
藻類生長	生物種:Pseudokirchneriella subcapitata						
阻害試験	試験法: 化審法 TG(2006)						
	培養方式:振とう培養						
	純度:99.8%						
	試験濃度:設定濃度 0.014、0.044、0.14、0.44、1.4、2.5、4.4、7.9 mg/L						
	実測濃度 0.013、0.041、0.13、0.39、1.3、2.3、4.2、7.5 mg/L(幾何平均値)						
	助剤:なし 72hEC50(実測値に基づく)=2.4 mg/L						
	72hNOEC (実測値に基づく) = 2.4 mg/L						
ミジンコ	e e e e e e e e e e e e e e e e e e e						
急性遊泳							
阻害試験	試験方式:止水式						
	純度:99.8%						
	試験濃度:設定濃度 0.86、1.3、1.9、2.7、4.0、5.9、8.6 mg/L						
	実測濃度 0.81、1.3、1.8、2.6、3.9、5.6、8.3 mg/L(算術平均値)						
	助剤:なし						
左 据 左 III	48hEC50(実測値に基づく)=3.9 mg/L						
魚類急性 毒性試験	生物種:ヒメダカ Oryzias latipes						
#1生刊款	試験法:化審法 TG						
	純庚:99.8%						
	試験濃度:設定濃度						
	実測濃度 1.0、1.5、1.9、2.5、3.3、4.4、6.1 mg/L (算術平均値)						
	助剤:なし						
	96hLC50(実測値に基づく) = 3.4 mg/L						
	以下の濃度群において以下のような毒性症状が認められた。						
	2.5 mg/L 群:遊泳異常(24h 2/10、48h 3/10)						
	3.3 mg/L 群:遊泳異常 (24h 10/10、48h 9/10、72h 6/6、96h 5/5)						
	遊泳不能(48h 1/10)						

環境調査	媒体	実施年度	検体	検出範囲	検出下限値
※ 1	水質	S53	0/30	_	$(0.02{\sim}50)\mu$ g/L
		H11	2/27	$0.007{\sim}0.009\mu$ g/L	$(0.006)\mu$ g/L
	底質	S53	0/30	_	$(0.06{\sim}2.5)\mu{\rm g/g}{-}{\rm dry}$
		H11	1/36	0.002μ g/g-dry	$(0.0016)\mu$ g/g-dry
	魚類	H11	1/33	0.010μ g/g-wet	$(0.0020)\mu$ g/g-wet
	大気				
	その他				
備考	※1 S54、H12版「化学物質と環境」(環境省環境保健部環境安全課)				

-						
官報公示	3-78 CAS No. 95-75-0					
整理番号						
名称	名 称:3,4-ジクロロトルエン					
構造式等	CI					
	CI					
	CI					
	Cu					
田之	— CH₃					
用途制造及び						
製造及び 輸入数量						
外観	無色透明液体					
分解性	難分解性					
蓄積性	高濃縮性でない					
藻類生長 阻害試験	生物種: <i>Pseudokirchneriella subcapitata</i> 試験法:化審法 TG(2006)					
阻吉武鞅	培養方式:振とう培養(密閉系)					
	純度: 99.9%					
	純度:99.9% 試験濃度:設定濃度 0.34、0.74、1.6、2.4、3.4、5.0 mg/L					
	実測濃度 0.092、0.23、0.48、0.73、1.0、1.7 mg/L (幾何平均値、非接種区)					
	助剤:なし					
	48 h E C 50(実測値に基づく) $=1.4 m g/L$					
	48hNOEC (実測値に基づく) =0.23 mg/L					
	(参考)					
	72hEC50 (実測値に基づく) =1.6 mg/L					
	72hNOEC(実測値に基づく) =0.22 mg/L					
	○遊休。の吸差による対験肺质連座の低下が考さされたため、 実歴はの質問に収む。 では					
	①藻体への吸着による被験物質濃度の低下が考えられたため、毒性値の算出に当たっては 					
	藻体非接種区の測定値を用いている。 ②密閉系で試験を実施したこともあり、0-72時間では日毎の変動係数が成立条件を満たさ					
	なかったため、0-48時間の毒性値を採用している。					
ミジンコ	生物種:オオミジンコ Daphnia magna					
急性遊泳						
阻害試験	試験方式:止水式(密閉系)					
	純度:99.9%					
	試験濃度:設定濃度 0.56、1.0、1.3、1.8、2.4、3.2、5.6 mg/L					
	実測濃度 0.42、0.76、0.99、1.4、1.8、2.4、4.2 mg/L(幾何平均値)					
	助剤:なし					
	48hEC50(実測値に基づく) = 1.4 mg/L					

魚類急性 生物種:ヒメダカ Oryzias latipes

毒性試験 | 試験法: 化審法 TG

試験方式:半止水式(密閉系)、24時間毎に換水

純度:99.9%

試験濃度:設定濃度 0.67、1.4、3.1、4.3、5.6、7.4、10 mg/L

実測濃度 0.62、1.1、2.4、3.3、4.2、6.0、8.1 mg/L(0,72 hr の算術平均値)

助剤:なし

96hLC50(実測値に基づく) =4.3 mg/L

以下の濃度群において以下のような毒性症状が認められた。

0.62 mg/L 群:遊泳異常(48h 1/10、72h 1/10、96h 5/10)

1.1 mg/L 群:遊泳異常(24h 2/10、48h 10/10、72h 10/10、96h 10/10) 2.4 mg/L 群:遊泳異常(24h 10/10、48h 10/10、72h 9/10、96h 9/10)

> 遊泳不能 (72h 1/10、96h 1/10) 外見異常 (72h 10/10、96h 10/10)

3.3 mg/L 群:遊泳異常 (24h 9/10、48h 10/10、72h 3/9、96h 1/8)

遊泳不能(24h 1/10、72h 6/9、96h 7/8)

外見異常 (24h 10/10、48h 10/10、72h 9/9、96h 8/8)

4.2 mg/L 群:遊泳異常(24h 8/10、48h 5/10、72h 4/8、96h 2/7)

遊泳不能(24h 2/10、48h 5/10、72h 4/8、96h 5/7) 外見異常(24h 10/10、48h 10/10、72h 8/8、96h 7/7)

環境調査	媒体	実施年度	検体	検出範囲	検出下限値
※ 1	水質	S56	0/21	_	$(10\sim 100) \mu \text{g/L}$
	底質	S56	0/21		$(0.25)\mu$ g/g-dry
	魚類				
	大気				
	その他				
/#: //.	10/1 OFF 11 11 11 11 11 11 11 11 11 11 11 11 1				

備考 ※1 S57版「化学物質と環境」(環境省環境保健部環境安全課)

既存化学物質審査シート

官報公示	3-1232 CAS No. 122-57-6, 937-53-1, 1896-62-4						
整理番号							
名称	名 称:ベンザルアセトン						
構造式等							
	O						
	⟨						
	\sim C=C- $\stackrel{\square}{C}$ -CH ₃						
用途							
用速 製造及び							
輸入数量 外観	薄黄色の結晶塊						
分解性	難分解性 京連続性であり、						
蓄積性	高濃縮性でない						
	生物種:Pseudokirchneriella subcapitata						
阻害試験	試験法: 化審法 TG(2006)						
	培養方式:振とう培養						
	純度:99.9%						
	試験濃度:設定濃度 0.25、0.43、0.72、1.2、2.1 mg/L						
	実測濃度 0.20、0.37、0.64、1.1、1.9 mg/L (試験開始時)						
	助剤:なし						
	72hEC50(実測値に基づく) = 0.55 mg/L						
	72hNOEC(実測値に基づく) = 0.20 mg/L						
	生物種:オオミジンコ Daphnia magna						
	試験法:化審法 TG						
阻害試験	試験方式: 止水式						
	純度:99.4%						
	試験濃度:設定濃度 10、13、18、24、32 mg/L						
	実測濃度 9.7、13、17、23、31 mg/L(幾何平均值)						
	助剤:なし						
A VT A U	48hEC50 (実測値に基づく) =15 mg/L						
魚類急性	生物種:ヒメダカ Oryzias latipes						
毒性試験	試験法:化審法 TG						
	試験方式:半止水式、24 時間毎に換水						
	純度:99.4%						
	試験濃度:設定濃度 1.0、1.8、3.2、5.6、10、18 mg/L						
	実測濃度 0.74、1.4、2.7、4.9、8.9、17 mg/L (時間加重平均値)						
	助剤:なし OOLECTO (空間体に共ぶく) F.E. (E.						
	96hLC50(実測値に基づく) = 5.7 mg/L						
備考							

	初貨番食ンート 						
H 177	3-78 CAS No. 19398-61-9						
整理番号							
名称	名 称:2,5-ジクロロトルエン						
構造式等							
	ÇI						
	CH ₃						
	O1 13						
用途							
製造及び	_						
輸入数量							
外観	無色透明液体						
分解性	難分解性						
蓄積性	高濃縮性でない						
藻類生長	生物種:Pseudokirchneriella subcapitata						
阻害試験	試験法: 化審法 TG (2006)						
	培養方式:振とう培養(密閉系)						
	純度:99.6%						
	試験濃度:設定濃度 1.0、1.6、2.5、4.0、6.3、10 mg/L						
	実測濃度 0.066、0.43、0.66、1.1、1.9、2.8 mg/L(幾何平均値、非接種区)						
	助剤:なし						
	48hEC50 (実測値に基づく) =1.7 mg/L						
	48hNOEC(実測値に基づく) =0.43 mg/L						
	(
	(参考)						
	72hEC50 (実測値に基づく) =1.9 mg/L						
	72hNOEC(実測値に基づく) =0.42 mg/L						
	○本体 の明治による特殊はのはてパセンタンとという 古ははの然れいない						
	①藻体への吸着による被験物質濃度の低下が考えられたため、毒性値の算出に当たっては						
	藻体非接種区の測定値を用いている。						
	②密閉系で試験を実施したこともあり、0-72時間では日毎の変動係数が成立条件を満たさ						
2 231 -	なかったため、0-48 時間の毒性値を採用している。						
ミジンコ	= 17 (= 1 7 7 7 7 1						
急性遊泳							
阻害試験	試験方式:半止水式(密閉系)、24 時間後に換水						
	純度:99.6%						
	試験濃度:設定濃度 0.56、1.0、1.8、3.2、5.6、10 mg/L						
	実測濃度 0.38、0.68、1.3、2.2、3.5、6.1 mg/L (時間加重平均値)						
	助剤:なし						
	48hEC50(実測値に基づく) = 1.1 mg/L						

魚類急性 生物種:ヒメダカ Oryzias latipes

毒性試験 | 試験法: 化審法 TG

試験方式:半止水式(密閉系)、24時間毎に換水

純度:99.6%

試験濃度:設定濃度 1.8、2.4、3.5、4.2、5.6、7.5、10 mg/L

実測濃度 1.6、1.9、2.7、3.1、4.0、6.3、8.7 mg/L(0,72 hr の算術平均値)

助剤:なし

96hLC50 (実測値に基づく) =4.0 mg/L

以下の濃度群において以下のような毒性症状が認められた。

1.6 mg/L 群:遊泳異常(24h 2/10、48h 5/10、72h 6/10、96h 6/10) 1.9 mg/L 群:遊泳異常(24h 6/10、48h 6/10、72h 6/10、96h 6/10) 2.7 mg/L 群:遊泳異常(24h 6/10、48h 7/10、72h 6/10、96h 7/10)

3.1 mg/L 群:遊泳異常 (24h 10/10、48h 10/10、72h 10/10、96h 10/10)

備考