既存化学物質審査シート(良分解性等・人健康影響・生態影響)

(平成21年12月18日開催)

官報公示	元 判定結果				
整理番号	CAS No.	物質名称	人健康影響	生態影響	頁
2-140	75-50-3	トリメチルアミン	二監相当		1
2-186	75-59-2	テトラメチルアンモニウムヒドロキシド	二監相当		3
2-1065	79-39-0	メタクリルアミド	二監相当		5
2-608	88-09-5	2-エチル酪酸	二監相当		7
3-1183	90-02-8	2-ヒドロキシベンズアルデヒド	二監相当		9
5-56	97-99-4	テトラヒドロフルフリルアルコール	二監相当		11
3-2259	101-83-7	ジシクロヘキシルアミン	二監相当		13
2-235	110-63-4	1,4-ブタンジオール	二監相当		15
3-959	118-79-6	2,4,6-トリブロモフェノール	二監相当でない		17
3-500	123-07-9	4-エチルフェノール	二監相当		19
2-1514	126-98-7	メタクリロニトリル	二監相当		21
2-1291 2-2709	683-10-3	N,N-ジメチル-N-ドデシルグリシン	二監相当		23
2-1044	868-77-9	メタクリル酸2-ヒドロキシエチルエステル	二監相当		25
2-2583	2439-35-2	アクリル酸2-(ジメチルアミノ)エチルエステル	二監相当		27
2-1047	2867-47-2	2-(ジメチルアミノ)エチルメタクリラート	二監相当		29
2-798	111-82-0	ドデカン酸メチル		三監相当	31
2-66 2-68	111-85-3	1-クロロオクタン		三監相当	32
2-176 2-183	124-28-7	N,N-ジメチル-n-オクタデシルアミン		三監相当	33
2-814 2-827 2-2503	93-83-4	N,N-ビス(2-ヒドロキシエチル)-オレアミド		三監相当	34
2-8	111-65-9	オクタン		三監相当	35
2-27	112-41-4	1-ドデセン		三監相当	36
5-3732	52829-07-9	デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジニル)		三監相当	37

	の貝番宜ン	'					
官報公示	2-140		CAS No.	75-50-3			
整理番号							
判定結果	人健康影響 第二種監視化学物質相当						
名称	名 称:	トリメチルアミン					
構造式等	分子量:5						
	分子式:C	C_3H_9N					
			H ₃ C	CH ₃			
			N I				
			С	H ₃			
用途	_						
製造及び	100 t 以上	•					
輸入数量							
外観	無色透明気						
分解性	良分解性						
蓄積性	_						
Ames	陰性						
		.8 % (水溶液). 溶媒					
	-	TA100, TA1535, TA1					
	1250 μ g (本試懸	-	量設定試験討	は験の結果を参考に以下の濃度まで実施.			
	-s	89mix 群:1250 μ g/pla	te*(最高用)	量で菌の生育阻害)			
	+s	9 mix 群: 1250μ g/plat	e* (TA1535	,TA1537 : 625 μ g/plate 以上で菌の生育阻害)			
			(TA100: ‡	最高用量で菌の生育阻害)			
		5000 μ g/plate*(TA98:1250 μ g/plate 以上で菌の生育阻害)					
			(WP2uvr	A:2500 μ g/plate 以上で菌の生育阻害)			
	(本試験		. (8				
		89mix 群:1250 µ g/pla					
	+s			,TA1537:625 μ g/plate 以上で菌の生育阻害)			
				最高用量で菌の生育阻害)			
		5000μ g/plat		1250 µ g/plate 以上で菌の生育阻害)			
染色体	陽性		(WFZUVr	A:2500 μ g/plate 以上で菌の生育阻害)			
異常		.474mg/mL (-S9mix	群・構造異常	 ()			
Z 3 114		nix 群において構造異常		• /			
				-溶解).CHL/IU.純度換算有り*			
	0.591mg/	/mL(10mM)まで実施し	た細胞増殖抑	制試験の結果を参考に、以下の濃度まで実施.			
	(本語	式験)					
	-s	89mix 群:0.591mg/mL	* (10mM)				
		59mix 群:0.591mg/mL	*(50%以上	細胞増殖抑制濃度)			
	,,,,	忍試験)		Complete Manufacture (C.)			
		89mix 群:0.591mg/mL					
		9mix 群: 0.591mg/mL		細胞増殖抑制震度)			
反復投与 毒性, 生	動物種・系統	ラット Crj:CD(SD)I					
毒性·生 殖発生毒	投与方法	強制経口投与 溶媒:	局万注射用7	K			
<u></u>	濃度	30.8%(水溶液)	/I /I \				
験	用量	3 用量(8, 40, 200 mg					
心大	死亡	本試験(200:2/13♂	1/13半)				

	NOEL	反復投与書	≸性:8 mg/l	xg/day			
		生殖発生毒	≨性:200 m	g/kg/day			
	推定根拠	反復投与書	≨性:				
		組織学的	組織学的所見(精巣上体-管腔内細胞残屑:40 以上♂)				
			生殖発生毒性:				
			• • • • • • •	影響は認められていない			
	他の毒性	反復投与書	• .—				
				00♂♀、異常呼吸音:200) ₀ 7)		
				$(\text{TP}\downarrow \cdot \text{Alb}\downarrow : 200 \circlearrowleft)$			
		組織学的			びらん・潰瘍・出血・炎症性細		
			· ·		下織肉芽・漿膜肉芽、腺胃一粘		
					限胃ー粘膜炎症性細胞浸潤・粘 Rampa Rampa を持った。		
					母細胞/円形精子細胞変性・精細		
					巣上体-管腔内精子変性/減少: - 上皮粘液細胞化:200♀)		
		生殖発生書		5、脓目—柏脵俱爀、腟-	一工汉柏仪和旭化:200千)		
		工作工工	#1工 •				
	回復性	実施せず					
人健康影	Ames 試懸	食は陰性であ	るが染色体		NOEL 8mg/kg/day であること		
響判定根		重監視化学物		2011/1 (000101)	omg. ng. day		
拠							
環境調査	媒体	実施年度	検体	検出範囲	検出下限値		
※ 1	水質	S61	0/33	_	(3) μ g/L		
	底質	S61	4/27	0.13~0.63 μ g/g-dry	(0.08) µ g/g-dry		
	魚類						
	大気	Н3	1/48	150 ng/m ³	(150) ng/m ³		
	その他						
備考	※ 1 S62	2、H4 年版	「化学物質と	:環境」(環境省環境保健語	部環境安全課)		

官報公示	勿貝番宜ン 9-186		CAS No.	75-59-2			
整理番号	2 100		CAS No.	10 00 2			
判定結果	人健康影響 第二種監視化学物質相当						
名称	• • • • • • • • • • • • • • • • • • •	テトラメチルアンモニウ	ルムヒドロキ :	ンド			
構造式等	分子量:9						
	分子式:0	J4H13NU	ÇH ₃	OH			
				θ			
			H ₃ C ——Ņ——CH ₃				
			5-				
			ĊHą	3			
用途				工業用洗浄剤、接着剤用、写真・印刷等用、			
#u\\		電気・電子材料、冷媒・		也※1			
製造及び 輸入数量	2-186 とし	て 10,000~100,000 t	禾満*゚¹				
制八級重 外観	無色添明流						
分解性	良分解性	XIT (20 /0/NICILX)					
蓄積性	_						
Ames	陰性						
) % (水溶液). 溶媒 (
	-	TA100, TA1535, TA1					
	1250με (本試験		重設疋試験記	、験の結果を参考に以下の濃度まで実施.			
	, ,	89mix 群:1250 μ g/pla	te*(最高用量	量で菌の生育阻害)			
		9mix 群:1250 μ g/plate*(TA98, TA100, TA1535,TA1537:					
		最高用量で菌の生育阻害)					
	(本試験		te* (WP2u	vrA:2500 μ g/plate 以上で菌の生育阻害)			
	, ,	89mix 群:1250 μ g/pla	te*(最高用量	量で菌の生育阳害)			
				ΓA100, TA1535,TA1537 :			
				最高用量で菌の生育阻害)			
ÿh, <i>Þ</i> . ↔	17公上上	5000μ g/plat	te* (WP2u	vrA:2500 μ g/plate 以上で菌の生育阻害)			
染色体 異常	陰性 濃度 20	 % (水溶液) 溶雌 (洋	↓射用水—※↑	解).CHL/IU.純度換算有り*			
> <u>7</u> 111				制試験の結果を参考に、以下の濃度まで実施.			
	-s	59mix 群:0.91mg/mL*	(10mM)				
		59mix 群:0.91mg/mL*					
28 日間		時間処理群:0.91mg/m ラット Crj:CD(SD)I					
20 1 fi	投与方法 投与方法	強制経口投与 溶媒:		tk			
	濃度	20.19% (水溶液)	76373 EE/A37147	y-			
	用量	3 用量(5, 10, 20 mg/	kg/day)				
	死亡	なし					
	NOEL	5 mg/kg/day 未満					
	推定根拠	一般状態(流涎:5以		우)			
	他の毒性	絶対重量(心臓↓:5 相対重量(心臓↓:10					
	回復性	相対単単(心臓↓:10	リ外上0リ				
	山区山	IHIVE, & C					

	備考	予備試験(急性経口投与毒性試験)において 50 及び 100mg/kg の全例で間代性痙攣が認められた。
人健康影響判定根 拠		設及び染色体異常試験は陰性であるが、NOEL 5mg/kg/day 未満であることから 見化学物質相当。
備考	※1 化等	芝物質の製造・輸入量に関する実態調査(平成19年実績)

官報公示	2-1065		CAS No.	79-39-0			
整理番号							
判定結果	人健康影響	響 第二種監視化学物質	[相当				
名称	名 称: >	メタクリルアミド					
構造式等	分子量:8						
	分子式:(C ₄ H ₇ NO					
			H ₃ C	//			
			>				
			H ₂ C′	NH ₂			
用途	_						
製造及び	100 t 以上	<u>.</u>					
輸入数量	カな針 目						
外観	白色結晶						
分解性 蓄積性	良分解性						
	76 Lil.						
Ames	陰性	99.5 %. 溶媒(注射用	コレ ※京毎7)				
		79.5 %. 谷燥(任射片 TA100, TA1535, TA1		uszr A			
	1	5000 μ g/plate まで実施した用量設定試験の結果を参考に以下の濃度まで実施. (本試験 I)					
	-s	$-$ S9mix 群: 5000μ g/plate					
		89mix 群:5000 µ g/pla	te				
	(本試験Ⅱ)						
	$-$ S 9 mix 群: 5000μ g/plate						
染色体	+S	89mix 群:5000 µ g/pla	te				
異常		99.5 %. 溶媒(注射用)	水 —	СНІЛП			
25 ID				 制試験の結果を参考に、以下の濃度まで実施。 			
	0	89mix 群:0.90mg/mL					
		89mix 群:0.90mg/mL					
		時間処理群:0.90mg/m					
20 1 8		時間処理群: 0.90mg/m					
	動物種・系統	ラット Crj:CD(SD)I					
反復投与	投与方法		局方精製水				
	純度	99.5%	or/l- or/-l \				
	用量 死亡	3 用量(30, 100, 300) 予備試験(600:3/5♂					
	NOEL	フ加武鞅(600:3/5♂ 30 mg/kg/day 未満	1/0+)				
	推定根拠	FOB(自発運動低下:	- 30 以 F ♀ 10	00 以 는 전)			
	1年7月7月7日		90 WT-1	00 <u>シエ</u> ∪ /			

人健康影響判定根	Ames 試影	一小脳脚における軸索膨化、坐骨神経一神経線維の変性 定及び染色体異常試験は陰性であるが、NOEL 30mg/kg/day 未満であり神経毒 れる重要な毒性学的所見が認められ、かつ、回復性も悪いことから第二種監視化
	回復性	300♀♂) 回復期:握力↓ (後肢):300♂♀、開脚幅低値:300♂、精巣-ステージIX, Xにおけるステップ 19 精子細胞の retention:300♂ 体重↓、よろめき歩行、後肢の反転、歩行失調、筋緊張、自発運動低下、小脳
		絶対重量(副腎↓:300♂、胸腺↓:300♀、脳↓・肺↓・心↓・肝↓・下垂体↓・脾↓:300♂♀) 絶対重量(腎↑:100以上♂300♀、精巣↑・精巣上体↑・甲状腺↑:300♂、脳↑・肺↑・心↑・肝↑:300♂♀) 血液学的検査(Hct↓:300♀♂) 血液生化学的所見(TG↑:300♀) 剖検所見(膀胱−内腔拡張:300♀♂) 組織学的所見(小脳一小脳脚における軸索膨化、坐骨神経ー神経線維の変性:
	他の毒性	一般状態(よろめき歩行:300♀♂、後肢の反転:300♀) FOB(歩行失調・筋緊張の低下:300♀♂、握力(前肢)↓:300♂) 体重↓:100以上♀300♂

官報公示	2-608	CAS No.	88-09-5
整理番号	2 000	0110 110.	00 00 0
判定結果	人健康影響 第二種監視化学物質	[相当	
名称	名 称:2-エチル酪酸		
構造式等	分子量: 116.16		
	分子式:C ₆ H ₁₂ O ₂		
			CH₂CH₃
		CH ₃ CH ₂ C	ch l
		0 2	
			jc <u> </u>
		Н	
用途	2-608 として中間物。溶剤。プロ		<u>→</u> 着色剤、工業用洗浄剤、家庭等洗浄剤、塗
71170			ゴム添加剤、潤滑・研削油、燃料等、その他
	*1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
製造及び	2-608 として 100,000~1,000,00	0 t 未満 ^{※1}	
輸入数量			
外観	無色液体		
分解性	良分解性		
蓄積性	_		
Ames	陰性 // / / / / / / / / / / / / / / / / / /		
	純度 99.2%.溶媒(DMSO-》 TA98,TA100,TA1535,TA1		λ Λ
			がIA.)結果を参考に以下の濃度まで実施.
	(本試験 I)		THE THE STREET OF THE STREET
	−S9mix 群:5000 µ g/pla	te	
	$+$ S 9 mix 群 : 5000μ g/plat		00, TA1535, TA1537 : 最高用量で菌の生育阻害)
	(L 3 145 π)	(WP2uvrA	A)
	(本試験Ⅱ) -S9mix 群:5000 µ g/pla	t 0	
	~ =		00, TA1535, TA1537 : 最高用量で菌の生育阻害)
	. Zemman . Oooo a gipiat	(WP2uvrA	
染色体	陽性		
異常	D20 值=1.06mg/ml(24 時間9		異常)
	24 時間処理群において構造!		***
	純度 99.2%. 溶媒(DMSO-落 4.0mg/ml まで実施した細胞増		IU.)結果を参考に、以下の濃度まで実施.
	4.0mg/mm よく天旭 とた帰心時 一S9mix 群:1.6mg/mL	70年3月1月1日1日1日1日	が相木で参与に、以下の仮反よて天旭・
	+S9mix 群: 1.6mg/mL (細胞毒性のた	こめ 0.8mg/mL まで観察)
	24 時間処理群 : 1.6mg/mL	(細胞毒性の	ため 1.6mg/mL は半分の観察細胞数で観察)
		.5mg/mL(溶	琴媒:DMSO)及び 5.0mg/mL(溶媒:アセ
口供机片	トン)まで予備試験を実施。		
反復投与 毒性・生	7777 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -		
一 毎任・生 殖発生毒	投与方法溶媒:コーン油.強制純度99.2%.	1)栓口仅分.	
性併合試	用量 3 投与群(10, 50, 2	50mg/kg)	
験	死亡 予備試験(瀕死 100)		·吸異常])
	本試験(対照群:1/15		· · · · · - ·
	1		=:

П		La constant and the second
	NOEL	反復投与毒性:10 mg/kg/day
		生殖発生毒性:10 mg/kg/day
	推定根拠	反復投与毒性:
		血液学的検査(WBC↓:50以上♂)
		生殖発生毒性:
		分娩及び哺育行動異常:50 以上♀
	他の毒性	反復投与毒性:
		血液学的検査(plt↓:250♂)
		絶対重量(腎↑:250♀)
		相対重量(腎↑:250♀♂)
		生殖発生毒性:
		生児出産率↓・出生率↓
		生存児数(生存0日及び4日)↓:250
	回復性	実施せず
人健康影 響判定根		食は陰性であるが染色体異常試験は陽性であり、NOEL 10mg/kg/day であるこ 二種監視化学物質相当。
拠	てがり另=	一里面沉旧十物具作习。
備考	※1 化等	学物質の製造・輸入量に関する実態調査(平成19年実績)
<u> </u>		

	3-1183 CAS No. 90-02-8
整理番号	
判定結果	人健康影響 第二種監視化学物質相当
名称	名 称:2-ヒドロキシベンズアルデヒド
構造式等	分子量: 122.12
111,62, 4.1	分子式:C7H ₆ O ₂
	ÓH Ö
	, ä
	Н
 用途	3-1183 として中間物 ^{※1}
^{用速} 製造及び	3·1183 として 1,000~100,000 t 未満 ^{※1}
輸入数量	3 1163 と C 1,000 - 100,000 t 水闸
外観	淡黄色液体
分解性	良分解性
蓄積性	_
Ames	陰性
	純度≧95%. 溶媒 (DMSO−溶解). プレート法.
	TA98, TA100, TA1535, TA1537, WP2 uvrA.
	5000 μ g/plate まで実施した用量設定試験の結果を参考に、以下の濃度まで実施. (本試験 I)
	$-\mathbf{S}9\mathrm{mix}$ 群: 500μ g/plate(TA 100 :最高用量で菌の生育阻害)
	1000 μ g/plate(TA1537:500 μ g/plate 以上で菌の生育阻害)
	(TA98, TA1535: 最高用量で菌の生育阻害)
	4000 μ g/plate(WP2uvrA:最高用量で菌の生育阻害)
	+S9mix 群:500 µ g/plate(TA100:最高用量で菌の生育阻害) 2000 µ g/plate(TA98, TA1535, TA1537:最高用量で菌の生育阻害)
	2000 μ g/plate(IA98, IA1939, IA1937:最高角重(圏の生育阻害) 4000 μ g/plate(WP2uvrA:最高用量で菌の生育阻害)
	(本試験Ⅱ)
	-S9mix 群: 500 µ g/plate(TA100:最高用量で菌の生育阻害)
	1000 μ g/plate(TA98, TA1535, TA1537:最高用量で菌の生育阻害)
	4000 μ g/plate(WP2uvrA:最高用量で菌の生育阻害)
	+S9mix 群: 500 µ g/plate(TA100:最高用量で菌の生育阻害)
	2000 μ g/plate (TA1535: 1000 μ g/plate 以上で菌の生育阻害)
	(TA98, TA1537:最高用量で菌の生育阻害)
	4000 μ g/plate(WP2uvrA:最高用量で菌の生育阻害)

染色体	陽性						
異常		=0.025mg/ml(+S9mix 群:数的異常)					
		mix 群及び 24 時間処理群において構造異常の誘発、+S9mix 群及び 48 時間処					
	理群には	理群において数的異常の誘発.					
	純度≧9	純度≧95.0%. 溶媒 (DMSO−溶解). CHL/IU.					
	1.2mg/ml (10mM) まで実施した細胞増殖抑制試験の結果を参考に、以下の濃度まで実施						
	-S9mix 群: 0.2mg/mL (50%以上細胞増殖抑制濃度)						
	+S	9mix 群:0.2mg/mL(50%以上細胞増殖抑制濃度)					
	24	時間処理群:0.02mg/mL(50%以上細胞増殖抑制濃度)					
	48	時間処理群:0.02mg/mL(50%以上細胞増殖抑制濃度)					
反復投与	動物種・系統	ラット Crj:CD(SD)					
毒性・生	投与方法	溶媒:オリーブ油.強制経口投与.					
殖発生毒	純度	99.3%.					
性併合試	用量	4 投与群(2.5, 10, 40, 160mg/kg).					
験	死亡	予備試験(200:1/5♂2/5♀、400:5/5♂4/5♀)					
		本試験(40:1/12♀、160:1/12♀)					
	NOEL	反復投与毒性:10 mg/kg/day					
		生殖発生毒性:40 mg/kg/day					
	推定根拠	反復投与毒性:					
		組織学的所見(肝ー細胞内グリコーゲン量↑:40以上♀、肝ー小葉周辺脂					
	肪化減少:40 以上♂)						
	生殖発生毒性:						
		哺育4日までの同腹内新生児死亡の母体数増加:160♀					
		新生児生存率↓:160					
		低体重(生後0日)、体重増加抑制(生後4日):160					
	他の毒性						
		血液学的検査(PT↑:160♂)					
		血液生化学的所見(A/G↑・Alb↑:160♂)					
		相対重量(肝臓↑・卵巣↓:160♀)					
		絶対重量(肝臓↑・卵巣↓:160♀)					
		生殖発生毒性:					
		_					
	回復性	実施せず					
人健康影	Ames 試懸	食は陰性であるが染色体異常試験は陽性であり、NOEL 10mg/kg/day であるこ					
響判定根	とから第二	二種監視化学物質相当。					
拠							
備考	※1 化常	学物質の製造・輸入量に関する実態調査(平成19年実績)					
VIII J	10,	(1/20 - 1/20)					

官報公示	5-56		CAS No.	97-99-4				
整理番号								
判定結果	人健康影響	響 第二種監視化学物質	質相当					
名称	タ 称・ラ	テトラヒドロフルフリル	レアルコール					
構造式等	分子量:1		, , , , , , , , , , , , , , , , , , , ,					
	分子式: C							
			_	—CH₂OH				
				31.72311				
			<u></u>	L.W.				
用途		て工業用洗浄剤、塗料原		剤**				
製造及び	5-56 とし	て 1,000~100,000 t 未	満*1					
輸入数量 外観	無色液体							
分解性	良分解性							
蓄積性	一							
Ames	陰性							
Aines		.5%. 溶媒(注射用水-	- 溶解)					
		TA100, TA1535, TA1		uvrA/pKM101.				
)結果を参考に、以下の濃度まで実施.				
	(本試験	美 I)						
		S9mix 群: 5000μ g/plate						
		89mix 群:5000 μ g/pla	ite					
	(本試懸		1					
		59mix 群:5000 μ g/pla 59mix 群:5000 μ g/pla						
染色体	 陰性	9mmx 群 . 5000 μ g/pra	ite					
異常	**	.5%. 溶媒(生理食塩液	友─溶解). C	HL/IU.				
7 () (,, ,		試験の結果を参考に、以下の濃度まで実施.				
	-s	59mix 群:1.03mg/mL	(10mM)					
		89mix 群:1.03mg/mL						
		時間処理群:1.03mg/m						
	動物種・系統	ラット Crj:CD(SD)I						
反復投与 毒性試験	投与方法		某:局方精製	水				
世上时候	純度	99.5 %	2000 /1	/1				
	用量 死亡	4 投与群(10, 40, 150 なし	υ, ουυ mg/kg	/uay/				
	NOEL	40 mg/kg/day						
	推定根拠	一般状態(自発運動方	元進:150 以	F \$ 600♂)				
	111/C X1/C	血液生化学的検査(T						
		相対重量(下垂体↓:						
		組織学的所見(精巣-	-精上皮細胞	壊死・脾-被膜炎症:150 以上♂)				

	他の毒性回復性	体重↓:600♂、摂餌量↓:600♂ 一般状態(自発運動低下・腹臥姿勢:600♂♀) FOB(後肢握力↓:600♂) 尿検査(pH↓:600♂) 血液学的検査(WBC↓・Plt↓・PT↑・MCH↓・MCHC↓:600♂♀) 血液生化学的検査(Alb ↓・Ca↓:600♂♀、TG↓・BUN↑・Na↓:600 ♂) 絶対重量(胸腺↓・下垂体↓:600♂♀) 相対重量(胸腺↓:600♂♀、腎↑:600♀) 組織学的所見(胸腺→萎縮:600♂♀) 精巣ー精子形成サイクル検査(精子細胞/セルトリ細胞↓:600 [ステージ II-III・V・XII]) TP↓、BUN↑、Ca↓、胸腺↓、精巣ー精上皮細胞壊死、精巣ー精子形成サイ クル検査(パテキン期精母細胞・精子細胞/セルトリ細胞↓:600 [ステージ II-III・V])
人健康影響判定根 拠		後及び染色体異常試験は陰性であるが、NOEL 40mg/kg/day であり神経毒性と 所見及び毒性学的に重要な変化が認められ、かつ回復製が悪いことから第二種監 質相当。
備考	※1 化等	学物質の製造・輸入量に関する実態調査(平成19年実績)

官報公示	3-2259		CAS No.	101-83-7					
整理番号	人はまとり	事業の表別を表別を表示を表示。	, 						
刊足桁米	人健康影響 第二種監視化学物質相当								
名称 構造式等	分子量:1	名 称:ジシクロヘキシルアミン 分子量: 181.31 分子式: C ₁₂ H ₂₃ N							
用途	3-2259 と ※1	して中間物、プロセス	調節剤、ゴム	添加剤、潤滑・研削油、水処理剤、その他					
製造及び 輸入数量	3-2259 と	して 10,000~100,000 ラ	未満*1						
外観	無色液体								
分解性	良分解性								
蓄積性	_								
Ames 染色体 異常	陰性 純度 99.63%. 溶媒(アセトン-溶解). プレート法(-S9mix 群のみ). TA98, TA100, TA1535, TA1537, WP2 uvrA. 5000 μ g/plate まで実施した用量設定試験の結果を参考に、以下の濃度まで実施. (本試験) -S9mix 群: 2500 μ g/plate (最高用量で菌の生育阻害) +S9mix 群: 2500 μ g/plate (最高用量で菌の生育阻害) (確認試験) -S9mix 群: 2500 μ g/plate (1500 μ g/plate 以上で菌の生育阻害) 陽性 D20=0.96mg/mL (+S9mix 群: 構造異常) ±S9mix 群において、構造異常の誘発. 純度 99.63%. 溶媒(アセトン-溶解). CHL/IU. 1.4mg/ml まで実施した細胞増殖抑制試験の結果を参考に、以下の濃度まで実施S9mix 群: 1.0mg/mL (細胞毒性のため 0.6mg/mL 観察)								
	24 48	+S9mix 群:1.0mg/mL(50%以上細胞増殖抑制濃度) 24 時間処理群:0.5mg/mL(50%以上細胞増殖抑制濃度) 48 時間処理群:0.5mg/mL(細胞毒性のため 0.3mg/ml まで観察)							
	動物種·系統 投与方法	ラット Crj:CD(SD) 強制経口投与 溶媒	::コーン油						
毒性試験	純度	短前腔口权子 俗殊 99.63%	・・コーン曲						
	用量	3投与群(20, 70, 200	mg/kg/day)						
	死亡	予備試験(250:4/5♂							
		本試験(対照群:1/13	30° 、200 : 8/	/13♂8/13♀)					
	NOEL	20 mg/kg/day							
	推定根拠	一般状態(流涎:70 以 血液生化学的検査(Pi 絶対重量(卵巣↓:70	ⅰ↑:70以上	孿:70 以上♂200♀) ♀200♂、Ca↑:70 以上♀)					
		№2以里里(炉来↓:八	少丛上十月						

	他の毒性回復性	体重↓:200♂♀、摂餌量↓:200♂ 一般状態(姿勢異常・自発運動低下・異常発声・呼吸異常・被毛の汚れ・散瞳: 200♂♀、立毛:200♀) 血液学的検査(WBC↑:200♀) 血液生化学的検査(ALP↑:200♀) 絶対重量(副腎↑:200♂♀) 相対重量(副腎↑:200♂♀、卵巣↓:200♀)
人健康影響判定根 拠		食は陰性であるが染色体異常試験は陽性であり、NOEL 20mg/kg/day であるこ 二種監視化学物質相当。
備考	※1 化常	学物質の製造・輸入量に関する実態調査(平成19年実績)

官報公示	の貝番重ン		CAS No.	110-63-4						
整理番号	Z-Z39		CAS No.	110-05-4						
	// + /+ = =	聚 发一纸贴出 从兴州所	·+u \/							
判定結果	八)使尿於智	響 第二種監視化学物質	.作自							
力 手b	夕 张 1									
名称 構造式等		名 称:1,4-ブタンジオール								
押 但八守		分子量:90.12 分子式:C ₄ H ₁₀ O ₂								
	77 1 124 . (OH								
		HO_								
用途	2-235 とし	て中間物、溶剤、塗料	用、接着剤尿	月、樹脂添加剤 ^{※1}						
製造及び	2-235 とし	て 100,000~1,000,000) t 未満 ^{※1}							
輸入数量		, , ,								
外観	無色透明液	友 体								
分解性	良分解性									
蓄積性	_									
Ames	陰性									
	純度 99.	.8%. 溶媒(注射用水-	-溶解).							
	TA98,	TA100, TA1535, TA1	537, WP2	avrA.						
	5000μ g	g/plate まで実施した用	量設定試験の)結果を参考に、以下の濃度まで実施.						
	(本試験									
		59mix 群:5000 µ g/plat								
		89mix 群:5000 μ g/plat	te							
	(本試験	•								
		89mix 群:5000 μ g/plat								
 染色体	 陰性	89mix 群:5000 µ g/plat	te							
異常	**	.8%.溶媒(注射用水-	溶解) CH	I /III I						
27.114	,			制試験の結果を参考に、以下の濃度まで実施.						
	C	89mix 群:0.90mg/mL								
	+s	89mix 群:0.90mg/mL	(10mM)							
		時間処理群:0.90mg/m								
		時間処理群: 0.90mg/m	L (10mM)							
反復投与	動物種・系統	ラット Crj:CD(SD)								
毒性・生	投与方法		:局方注射							
殖発生毒性併合試	純度	98.0%		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
験	用量	3投与群(200, 400, 8	800 mg/kg/da	ay)						
*3)<	死亡	なし	/I /I +:	##:						
	NOEL	反復投与毒性: 200 m		両						
	化 学扫栅	生殖発生毒性: 400 m 反復投与毒性:	g/kg/day							
	推定根拠		1 000・11世紀	1 F3 6)						
		尿検査(血色素:20								
		生殖発生毒性:								
		新生児体重[生後 4	目〕↓:80	0♂♀						

	他の毒性	一般状態血液学的	: 400 以上♀ &(活動性の 800♂♀) 均検査(Hgb 機学的検査() ↓ : 400 以上♂,Hct↓:8 〈膀胱-びまん性粘膜上皮過	♀、昏睡・眼球突出・流涎: 800♂) 形成・粘膜固有層の線維化: ・出血:400 以上♀、脾臓ー
	回復性	実施せず			
人健康影響判定根 拠				陰性であるが、NOEL 200 所見が認められることから)mg/kg/day 未満であり、神経 第二種監視化学物質相当。
環境調査	媒体	実施年度	検体	検出範囲	検出下限値
※ 2	水質	S61	0/24	_	$(2) \mu \text{ g/L}$
	底質	S61	0/24	_	$(0.09) \mu \text{ g/g-dry}$
	魚類				
	大気				
	その他				
備考				関する実態調査(平成19 」(環境省環境保健部環境短	

官報公示	3-959 CAS No. 118-79-6								
整理番号									
判定結果	人健康影響 収集された情報からは第二種監視化学物質に該当するとは判断されない								
名称	名 称:2,4,6-トリブロモフェノール								
構造式等	分子量: 330.82								
	分子式:C ₆ H ₃ OBr ₃								
	OH 								
	Br Br								
	Br								
田心	Br								
用途 製造及び	3-959 として中間物、樹脂添加剤 ^{※1} 3-959 として 10,000~100,000 t 未満 ^{※1}								
製造及び輸入数量	5-959 として10,000で100,000 に未満で								
外観	白色粉末								
分解性	良分解性								
蓄積性	-								
Ames	陰性								
	純度 99.8%.溶媒(DMSO-溶解).								
	TA98, TA100, TA1535, TA1537, WP2 uvrA.								
	5000 μ g/plate まで実施した用量設定試験の結果を参考に、以下の濃度まで実施.								
	(本試験 I) - S9mix 群:500 µ g/plate(TA98, TA100, TA1535:最高用量で菌の生育阻害)								
	1000μ g/plate(TA1537: 500μ g/plate 以上で菌の生育阻害)								
	5000 μ g/plate (WP2uvrA: 2500 μ g/plate 以上で菌の生育阻害)								
	+S9mix 群:500 μ g/plate(TA100, TA1535, TA1537:最高用量で菌の生育阻害)								
	1000 µ g/plate (TA98:最高用量で菌の生育阻害)								
	5000 μ g/plate(WP2uvrA:2500 μ g/plate 以上で菌の生育阻害)								
	(本試験Ⅱ) -S9mix 群:500 µ g/plate(TA98, TA100, TA1535:最高用量で菌の生育阻害)								
	1000μ g/plate(TA1537: 500μ g/plate 以上で菌の生育阻害)								
	5000 μ g/plate(WP2uvrA:2500 μ g/plate 以上で菌の生育阻害)								
	+S9mix 群:500 µ g/plate(TA100, TA1535, TA1537:最高用量で菌の生育阻害)								
	1000 μ g/plate (TA98:最高用量で菌の生育阻害)								
染色体	5000 μ g/plate(WP2uvrA:2500 μ g/plate 以上で菌の生育阻害) 軽微な陽性								
異常	粒微な 物性 D20 値 = 0.10 mg/mL(±S9 mix 群:構造異常)								
Z 110	±S9mix 群で構造異常のわずかな誘発.								
	純度 99.8%.溶媒(DMSO-溶解).CHL/IU.								
	3.3mg/ml(10mM)まで実施した細胞増殖抑制試験の結果を参考に、以下の濃度まで実施.								
	- S9mix 群: 0.050mg/mL(50%以上細胞増殖抑制濃度)								
	+ S9mix 群: 0.10mg/mL(50%以上細胞増殖抑制濃度)								
	24 時間処理群:0.10mg/mL(50%以上細胞増殖抑制濃度) 48 時間処理群:0.050mg/mL(50%以上細胞増殖抑制濃度)								
<u> </u>	40 时间烂垤矸,U.UƏUIIIg/IIIL(ƏU /0以上种旭頃/旭州制候及/								

反復投与	動物種・系統	ラット(Crj:CD(SD)							
毒性・生	******			生、コーンが出						
■ 描述 工 殖発生毒	37C 4 7 4 1E.	強制経口控	文子 俗別	は:コーン油						
性併合試	純度	99.8%	(100, 000 :	1000						
■験	用量		3 投与群(100, 300, 1000 mg/kg/day)							
	死亡	なし	V							
	NOEL		豆復投与毒性:100 mg/kg/day							
	1.//. → 1.m 1.Lm		≨性:300 m	ng/kg/day						
	推定根拠	反復投与書	• •	(E 1/1 000 ↑ D)						
				(Cre↑: 300以上♂)	(7)					
				-尿細管好塩基性化:300以	.上♂リ					
		生殖発生制		·壬丨「44公〇口 44公 4口	7 . 1000 7 0					
	他の毒性			:重↓[生後 0 日・生後 4 日]: 1000g'¥					
	他の毒性	反復投与書	≇1生: : 1000♂♀							
				(TD↑ . Alb↑ . A/C↑ . AI	$\mathrm{LP} \uparrow \cdot \mathrm{K} \downarrow \cdot \mathrm{Cl} \uparrow : 1000 $					
				(TF * Alb * AlG * Al 1000♂、肝↑:1000♂♀)						
				『1000』、別「 10000 年) 肾↑・副腎↑:1000♂♀)						
					大、腎-管腔拡張・硝子円柱・					
		沙沙土小山小	KTHINE I. (1000♂、肝ーマクロファージ					
				集簇:1000♂♀)	10000 () () ()					
		生殖発生書	量性・	来派:10000 十/						
			/ 1⊥ •							
	回復性	実施せず								
人健康影		シュアシャ 沙	A 休 思 労 封	・ おけ取例かは州でなり NO	DEL 100mg/kg/day であるが、					
響判定根				級は軽減な陽性であり、NC いることから第二種監視化学						
■拠	毎江こし	C12331 00	ノこうんりゃ		一切東川コでなり。					
環境調査	媒体	実施年度	±△ <i>1</i> +-	₩ III	松川工四层					
□ 探児嗣宜 ※ 2	水質	,	検体 15/10	検出範囲	検出下限値 (0.00087)/I					
 	小貝	H17 H8	15/18 0/33	$0.0019 \sim 0.080 \mu$ g/L	(0.00087) μ g/L (0.35) μ g/L					
		S61	0/33		(0.006) μ g/L					
	<u></u> 底質	H8	0/33		(0.009) μ g/g-dry					
	心只	S61	2/33	0.0015~0.0040 μ g/g-dry	$(0.0005) \mu \text{ g/g dry}$ $(0.0005) \mu \text{ g/g-dry}$					
	魚類			σ.σστο σ.σστο μ g/g ury	(0.0000/ μ g/g tily					
	大気	H16	6/6	0.03~0.14 ng/m ³	(0.02) ng/m ³					
	その他		3, 0	0.00 0.11 lig/iii	(0,02) Hg/H					
	, []									
備考	-			- 関する実態調査(平成19						
II	※ 2 S62	2、H9、H1	7、H18年用	仮「化学物質と環境」(環境	省環境保健部環境安全課)					

	勿質番盆ン	1.	1							
官報公示 整理番号	3-500		CAS No.	123-07-9						
判定結果	人健康影響	人健康影響 第二種監視化学物質相当								
名称	名 称:4	エチルフェノール								
構造式等	分子量: 122.16									
	分子式: 0									
		カナス: C8H10O								
		HO								
		$HO \longrightarrow CH_2CH_3$								
			<u> </u>							
用途	3-500 とし	て中間物、塗料用、樹	脂添加剤※1							
製造及び	3-500 とし	て 1,000~10,000 t 未	満※1							
輸入数量										
外観	白色結晶									
分解性	良分解性									
蓄積性	_									
Ames	陰性									
	純度 98.	.328%. 溶媒(DMSO	-溶解).							
	TA98,	TA100, TA1535, TA1	1537, WP2	uvrA.						
	5000μ g (本試験		量設定試験⊄)結果を参考に、以下の濃度まで実施.						
	, ,		te (TA98 T	A100, TA1535, TA1537:						
		70 mix 4γ · 2000 μ g/piα	11100, 1	1000 µ g/plate 以上で菌の生育阻害)						
			(WP2uvr	A:最高用量で菌の生育阻害)						
	+S	89mix 群:2000 µ g/pla	te(最高用量	で菌の生育阻害)						
	(本試験	∌ I)								
	-s	- S9mix 群:2000 µ g/plate(TA98, TA100, TA1535, TA1537:								
				1000μ g/plate 以上で菌の生育阻害)						
				A:最高用量で菌の生育阻害)						
×4 5 11.		89mix 群:2000 μ g/pla	te(最高用量	はで菌の生育阻害)						
染色体	陽性	-0.055	18 60 78 74 44	* 用						
異常		=0.077mg/mL(24 時間 mix 群及び 24 時間処理								
		mx 砕及い24 時間処理 .328%.溶媒(DMSO-								
	,	*******		試験の結果を参考に、以下の濃度まで実施.						
	_			ため 0.20mg/mL まで観察)						
		· ·		ため 0.075mg/mL まで観察)						
	24	時間処理群:0.30mg/m	nL(細胞毒性	Eのため 0.075mg/mL まで観察)						
	動物種・系統	ラット Crj:CD(SD)I	GS							
反復投与	投与方法	強制経口投与 溶媒	其: オリーブ							
毒性試験	純度	98.3%								
	用量	3 投与群(100, 300, 3	1000 mg/kg/	day)						
	死亡	予備試験(1000:1/5	♀、2000:8	5/5♂5/5♀)						
	NOEL	100 mg/kg/day								
	推定根拠	相対重量(肝↑:300								
				上皮過形成:300以上♂、前胃一扁平上皮過						
		形成:	300 以上♂	1000半)						

	他の毒性	一般状態 尿所見(原 血液生化等 相対重量	(よろめき歩 R量↑:100 学的検査(G (腎↑:100 食査(食道- ーびら	PT↑:1000♂、γ-GTF 0♂) ·扁平上皮過形成、前胃-	P↑・cho↑:1000♀) - 潰瘍・粘膜下織肉芽形成、腺胃 早縁びらん:1000♂、前胃-扁平
	回復性	体重↓		1,200 1 //900 //22 1 200	
人健康影響判定根 拠			っるが染色体 二種監視化学		NOEL 100mg/kg/day かつ回復
環境調査	媒体	実施年度	検体	検出範囲	検出下限値
※ 2	水質	S58	0/33		$(0.06\sim 0.3)\mu \text{ g/L}$
	底質	S58	0/33	_	$(0.001\sim 0.02)\mu \text{ g/g-dry}$
	魚類				
	大気				
	その他				
備考				- 関する実態調査(平成 1 5」(環境省環境保健部環	

官報公示	2-1514		CAS No.	126-98-7			
整理番号	2 1014		CAS No.	120 30 7			
判定結果	人健康影響	響 第二種監視化学物質					
名称		メタクリロニトリル					
構造式等	分子量:6						
	分子式:0	C_4H_5N	OLL	CNI			
			CH ₃	CN			
 用途	_						
製造及び	100 t 以上	_					
輸入数量	100 0 0,1	•					
外観	無色液体						
分解性	良分解性						
蓄積性	_						
Ames	陰性						
	,	%.溶媒(DMSO-溶					
	· ·	TA100, TA1535, TA					
	5000 μ g (本試験		重設正試験()結果を参考に、以下の濃度まで実施.			
	, , ,	映 1 <i>)</i> 89mix 群:5000 μ g/pla	ite				
		89mix 群:5000 μ g/pla					
	(本試願						
	-s	89mix 群:5000 μ g/pla	ite				
M. A. II.		S9mix 群:5000 μ g/pla	ite				
染色体	陽性	-0.0 · · · / · I · (CO · · ·	· · · · · · · · · · · · · · · · · · ·	ボ ケ/			
異常		=0.2mg/mL(+S9mix mix 群において構造異常		书 <i>)</i>			
		Mix 47 (23) (14 世 英 7 %		TU.			
				制試験の結果を参考に、以下の濃度まで実施.			
		89mix 群:0.67mg/mL					
		· ·		ため 0.27mg/mL まで観察)			
反復投与		時間処理群: 0.67mg/n					
及復女子	動物種·系統 投与方法	ラット Crj:CD(SD)] 強制経口投与 溶媒	IGS 某:オリーブ:	in the second se			
殖発生毒	純度	99%	モ・	Щ			
性併合試	用量	3投与群(7.5, 15, 30) mø/kø/dav)				
験	死亡	なし なし	mg/mg/aay/				
	NOEL	反復投与毒性: 7.5 m	g/kg/day 未清	齿			
		生殖発生毒性:30 mg					
	推定根拠	反復投与毒性:					
		相対重量(肝↑:7					
		組織学的所見(腺胃	引:びらん:'	7.5 以上♀)			
		生殖発生毒性:	万日く銀四元 シュラカ ハユ	۱ ام ۱ سرا ، به ا ،			
		全群で特に毒性学的	り影響は認め	676 (V 17\$ V)			

	他の毒性	反復投与毒性: 血液学的検査(RBC↓・Hct↓・Hgb↓:30♂) 血液生化学的検査(Bil↑:30♀、Cre↑:30♂) 絶対重量(肝↑・脾↑:30♀) 相対重量(脾↑:30♀) 組織学的所見(脾ー髄外造血:15以上♀) 生殖発生毒性:					
	回復性	実施せず					
人健康影 響判定根 拠			っるが染色体 と学物質相当		であり、NO	EL 7.5mg/kg/day 未満である	
環境調査	媒体	実施年度	検体	検出範	5囲	検出下限値	
※ 1	水質	S62	0/75	_		$(0.7)\mu$ g/L	
	底質	S62	0/75	_		(0.014) μ g/g-dry	
	魚類						
	大気	S62 $0/61$ - $(40) \text{ ng/m}^3$					
	その他						
備考	※ 1 S65	3 年版「化学	 対物質と環境	〕(環境省環境	保健部環境	安全課)	

90 11 10 1 T	勿負番金ンート ター・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・								
官報公示 整理番号	2-1291, 2-2709 CAS No. 683-10-3								
判定結果	人健康影響 第二種監視化学物質相当								
h th	H. M. M. M. M. D. M. D. W. D.								
名称	名 称: N,N-ジメチル-N-ドデシルグリシン								
構造式等	分子量: 271.25								
	分子式:C ₁₆ H ₃₃ NO ₂								
	CH_3								
	$CH_3(CH_2)_{11}$ $\xrightarrow{\begin{subarray}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$								
	$CH_3(CH_2)_{11}$ $$ CH_2COO								
	CH ₃								
用途	2-1291 及び 2-2709 として工業用洗浄剤、家庭等洗浄剤、塗料用、繊維剤、その他*1								
製造及び	2-1291 として 10,000~100,000 t 未満								
輸入数量	2-2709 として 1,000~10,000 t 未満 ^{※1}								
外観	淡黄色透明液体								
分解性	良分解性								
蓄積性									
Ames	陰性								
	TA98, TA100, TA1535, TA1537, WP2 uvrA/pKM101. 純度換算有り*								
	5000 μ g/plate まで実施した用量設定試験の結果を参考に、以下の濃度まで実施.								
	(本試験 I)								
	—S9mix 群 : 39.1 μ g/plate* (TA98, TA1537 : 19.5 μ g/plate 以上で菌の生育阻等	害)							
	78.1 μ g/plate* (TA100, TA1535: 39.1 μ g/plate 以上で菌の生育阻害)								
	156 μ g/plate*(WP2uvrA: 78.1 μ g/plate 以上で菌の生育阻害)								
	+S9mix 群:313 µ g/plate*(TA100, TA1535:最高用量で菌の生育阻害)								
	625 μ g/plate*(TA98, TA1537:313 μ g/plate 以上で菌の生育阻害)								
	2500 μ g/plate*(WP2uvrA:1250 μ g/plate 以上で菌の生育阻害)								
	(本試験Ⅱ)								
	-S9mix 群 : 39.1 μ g/plate* (TA98, TA1537 : 19.5 μ g/plate 以上で菌の生育阻害)								
	78.1 μ g/plate* (TA100, TA1535: 39.1 μ g/plate 以上で菌の生育阻等	善)							
	156 μ g/plate* (WP2uvrA: 78.1 μ g/plate 以上で菌の生育阻害)								
	+ S9mix 群: 313 µ g/plate* (TA100, TA1535: 最高用量で菌の生育阻害)	‡ ∖							
	625 μ g/plate*(TA98, TA1537:313 μ g/plate 以上で菌の生育阻領 2500 μ g/plate*(WP2uvrA:1250 μ g/plate 以上で菌の生育阻害)								
染色体	Z500 μ g/plate (Wr ZuvrA:1250 μ g/plate 以上(国の主自阻害) 陰性								
異常	15 15 15 15 15 15 15 15								
77.113	0.5mg/ml まで実施した細胞増殖抑制試験の結果を参考に、以下の濃度まで実施.								
	- S9mix 群: 0.2mg/mL(50%以上細胞増殖抑制濃度)								
	+S9mix 群: $0.3mg/mL$ (細胞毒性のため $0.3mg/mL$ は半分の観察細胞数で観察	察)							
	24 時間処理群:0.15mg/mL(細胞毒性のため 0.125mg/mL まで観察)	·							
反復投与	動物種・系統 ラット Crj:CD(SD)IGS								
毒性•生	投与方法 強制経口投与 溶媒:局方注射用水								
殖発生毒	濃度 27.1 % (水溶液)								
性併合試	用量 3 群(10, 60, 300 mg/kg/day)								
験	死亡 予備試験(1000:3/3♂3/3♀)								
	本試験(300: 2/17♀)								
11	1 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3								

	NOEL	反復投与毒性:10 mg/kg/day		
	TOBE	生殖発生毒性: 60 mg/kg/day		
	本学出生			
	推定根拠	反復投与毒性:		
		組織学的所見(腎一尿細管上皮変性/壊死:60以上♀、腎一腎盂上皮過形		
	成、膀胱−粘膜上皮過形成:60 以上♂♀)			
	生殖発生毒性:			
		妊娠期間延長・出産児数↓:300、出生児死亡:300		
	他の毒性	反復投与毒性:		
		血液生化学的検査(BUN↑:300♂♀、Ca↑:300♀)		
	組織学的所見(前胃ーび漫性炎症性細胞浸潤・水腫・びらん・角			
		平上皮過形成・錯角化:300♂♀、腎-尿細管好塩基性化:		
		3009)		
		生殖発生毒性:		
		(土)担先生母性。 		
	回復性	膀胱-粘膜上皮過形成、腎-腎盂上皮過形成		
人健康影	Ames 試験	後及び染色体異常試験は陰性であるが、NOEL 10mg/kg/day であり回復性が悪		
響判定根	いことから第二種監視化学物質相当。			
拠				
/++: - -y.	\•/ a /1.33	4.收成。\$P\$ 数1目)2用上文盘处理才(五上)。左边往)		
備考	※1 化等	学物質の製造・輸入量に関する実態調査(平成19年実績)		

官報公示	2-1044		CAS No.	868-77-9			
整理番号							
判定結果	人健康影響 第二種監視化学物質相当						
名称 構造式等	名 称:メタクリル酸 2-ヒドロキシエチルエステル 分子量:130.14 分子式:C ₆ H ₁₀ O ₃ O						
	CH ₂ OH						
用途		して中間物、溶剤、塗料		、その他 ^{※1}			
製造及び	2-1044 と	して 100,000~1,000,00	0 t 未満 ^{※1}				
輸入数量	無	±/ -					
外観 分解性	無色透明剂 良分解性	X1 4					
蓄積性	上						
Ames	陰性						
NI 4- II	純度 97.6%. 溶媒 (注射用水 - 溶解). TA98, TA100, TA1535, TA1537, WP2 uvrA. 5000 μ g/plate まで実施した用量設定試験の結果を参考に、以下の濃度まで実施. (本試験 I) - S9mix 群: 5000 μ g/plate + S9mix 群: 5000 μ g/plate (本試験 II) - S9mix 群: 5000 μ g/plate + S9mix 群: 5000 μ g/plate						
染色体 異常	陽性 D20=0.20mg/mL (48 時間処理群:構造異常) +S9mix 群及び 24 時間並びに 48 時間処理群において構造異常の誘発、-S9mix 群及び 48 時間処理群において数的異常の誘発。 純度 97.6%. 溶媒 (注射用水-溶解). CHL/IU. 4.0mg/ml まで実施した細胞増殖抑制試験の結果を参考に、以下の濃度まで実施S9mix 群: 1.3mg/mL (10mM) +S9mix 群: 1.3mg/mL (10mM) 24 時間処理群: 1.3mg/mL (10mM) 48 時間処理群: 1.3mg/mL (細胞毒性のため 0.65mg/mL まで観察)						
反復投与	動物種・系統	ラット Crj:CD(SD)		-			
毒性・生	投与方法	強制経口投与 溶媒	: 注射用水				
殖発生毒	純度	97.6 %					
性併合試 験	用量	4 投与群(30, 100, 300		kg/day)			
初火	死亡	1000♂ (1/12)、1000					
	NOEL	反復投与毒性:30 mg/ 生殖発生毒性:1000 m	~ .				

	推定根拠	反復投与書	季性 :				
		相対重量 生殖発生書	絶対重量(腎↑:100以上♀) 相対重量(腎↑:100以上♂1000♀) 生殖発生毒性: 全群で特に毒性学的影響は認められていない				
	他の毒性	反復投与毒性: 体重↓:1000♂♀、摂餌量↓:1000♂♀ 一般状態(流涎:1000♂♀、自発運動低下・腹臥・流涙・被毛の汚れ・表皮温降下・呼吸緩徐:1000♀) 血液生化学的検査(TG↓・K↑・Cl↑・Pi↑:1000♂) 病理組織学的所見(腎一尿細管拡張・集合管拡張:1000♂) 生殖発生毒性:					
	回復性	実施せず					
人健康影 響判定根 拠		Ames 試験は陰性であるが染色体異常試験は陽性であり、NOEL 30mg/kg/day であることから第二種監視化学物質相当。					
環境調査	媒体	実施年度	検体	検出範囲	検出下限値		
※ 2	水質	H11	3/27	$0.12 \sim 051 \mu$ g/L	$(0.025) \mu \text{ g/L}$		
	底質	H11	0/27	_	$(0.0014) \mu \text{ g/g-dry}$		
	魚類						
	大気						
	その他						
備考	※1 化学物質の製造・輸入量に関する実態調査(平成19年実績) ※2 H12年版「化学物質と環境」(環境省環境保健部環境安全課)						

90111011	勿負番宜ンート						
官報公示 整理番号	2-2583 CAS No. 2439-35-2						
判定結果							
	NEAN I NOTE IN THE						
名称	名 称:アクリル酸 2- (ジメチルアミノ) エチルエステル						
構造式等	分子量:143.18						
	分子式:C ₇ H ₁₃ NO ₃ Q ÇH ₃						
	CH_2 N						
	O CH ₃						
用途							
製造及び	100 t 以上						
輸入数量	(加克·孟田·佐林·						
外観 分解性	無色透明液体 良分解性						
蓄積性	一						
Ames	B性						
Times	比活性値=10.6rev./mg(+S9mix 群:TA98)						
	+S9mix 群の TA98 で対照の 2 倍を超える変異コロニーの誘発.						
	純度 99.9%.溶媒 (注射用水-溶解).						
	TA98, TA100, TA1535, TA1537, WP2 uvrA.						
	5000 μ g/plate まで実施した用量設定試験の結果を参考に、以下の濃度まで実施. (本試験 I)						
	(本試験 1) - S9mix 群:2500 μ g/plate(TA98, TA1537:最高用量で菌の生育阻害)						
	5000 μ g/plate (TA100, TA1535, WP2uvrA:最高用量で菌の生育阻害)						
	+S9mix 群: 5000 µ g/plate (TA1535: 2500 µ g/plate 以上で菌の生育阻害)						
	(TA1537:最高用量で菌の生育阻害) (TA98, TA100, WP2uvrA)						
	(IA98, IA100, WP2uvrA) (本試験 Ⅱ)						
	- S9mix 群:2500 µ g/plate(TA1537:1250 µ g/plate 以上で菌の生育阻害)						
	(TA98:最高用量で菌の生育阻害)						
	5000 µ g/plate (TA1535: 2500 µ g/plate 以上で菌の生育阻害)						
	(TA100, WP2uvrA:最高用量で菌の生育阻害) +S9mix 群:5000 μ g/plate(TA1535, TA1537:最高用量で菌の生育阻害)						
	(TA98, TA100, WP2uvrA)						
	(確認試験)						
M. A. II.	+S9mix 群: 5000 µ g/plate (TA98)						
染色体 異常	陽性 D20=0.014mg/mL(-S9mix 群:構造異常)						
共币	D20-0.014mg/mL (-S9mix 群:構造異常) すべての群において構造異常及び数的異常の誘発.						
	純度 99.9%. 溶媒 (注射用水 – 溶解). CHL/IU.						
	1.4mg/ml まで実施した細胞増殖抑制試験の結果を参考に、以下の濃度まで実施.						
	- S9mix 群: 0.08mg/mL (細胞毒性のため 0.01mg/mL まで観察)						
	+S9mix 群:0.4mg/mL(細胞毒性のため 0.05mg/mL まで観察) 24 時間処理群:0.12mg/mL(細胞毒性のため 0.06mg/mL まで観察)						
	48 時間処理群: 0.12mg/mL (細胞毒性のため 0.06mg/mL まで観察)						
反復投与	動物種・系統 ラット Crj:CD(SD)						
毒性・生	投与方法 強制経口投与 溶媒:コーン油						

殖発生毒	純度	99.9 %				
性併合試	用量	3 投与群(4, 20, 100 mg/kg/day)				
験	死亡	100♀:2/12 [肺出血]				
	NOEL	反復投与毒性:4 mg/kg/day				
		生殖発生毒性:100 mg/kg/day				
	推定根拠	反復投与毒性:				
		病理組織学的検査(前胃-粘膜上皮過形成・炎症性細胞浸潤・潰瘍:20 以 上♂100♀)				
		生殖発生毒性:				
		全群で特に毒性学的影響は認められていない				
	他の毒性	反復投与毒性:				
		一般状態(流涎:100♂♀)				
		血液学的検査(Ret↑・Plt↑・Lymp↓・Seg↑: 100♂)				
		血液生化学的検査(Alb↓: 100♂)				
		相対重量(胸腺↓:100♀)				
		絶対重量(胸腺↓:100♀)				
		病理組織学的所見(膵十二指腸リンパ節-形質細胞の増生:100♂♀、胸腺 -退縮:100♀)				
		生殖発生毒性:				
		——————————————————————————————————————				
	回復性	実施せず				
人健康影 響判定根 拠						
備考	※1 化等	学物質の製造・輸入量に関する実態調査(平成19年実績)				

<u> </u>	勿質番 金ン					
官報公示	2-1047		CAS No.	2867-47-2		
整理番号						
判定結果	人健康影響 第二種監視化学物質相当					
名称	名 称:2·	-(ジメチルアミノ)コ	ニチルメタク	リラート		
構造式等	分子量:1	57.22				
	分子式: C	$_{8}\mathrm{H}_{15}\mathrm{NO}_{2}$				
	O CH₃					
		CH ₃		^ N		
		\mathbf{Y}	0	°CH₃		
		ĊΗ	l ₂			
用途	2-1047 と	して中間物、塗料用、	繊維剤、潤滑	・研削油、水処理剤※1		
製造及び	2-1047 と	して 10,000~100,000	t 未満 ^{※1}			
輸入数量						
外観	無色透明液	友 体				
分解性	良分解性					
蓄積性	_					
Ames	陽性					
	比活性值	=3.2rev./mg ($-$ S9m	nix 群:TA15	537)		
				える変異コロニーの誘発.		
		9%.溶媒(蒸留水-)				
		TA100, TA1535, TA				
	5000 μ g/plate まで実施した用量設定試験の結果を参考に、以下の濃度まで実施. (本試験 I)					
	-S9mix 群: 5000 μ g/plate(TA98, TA1537: 最高用量で菌の生育阻害)					
	(TA100, TA1535, WP2uvrA) +S9mix 群:5000 µ g/plate					
			ite			
	(本試験 Ⅱ) —S9mix 群:5000 μ g/plate(TA98, TA1537:最高用量で菌の生育阻害)					
	۵	n,		TA1535, WP2uvrA)		
	+s	9mix 群:5000 μ g/pla				
	(確認計					
		9mix 群 : 5000 µ g/pla	te (TA98, TA	A1537 : 3500 μ g/plate 以上で菌の生育阻害)		
染色体	陽性	10 / 7 / 2:	n)/ [#-// == //-			
異常		19mg/mL(一S9mix 和 19mg/mL)		·)		
		nix 群において構造異常		TT T		
		9%.溶媒(蒸留水ー浴		U. 結果を参考に、以下の濃度まで実施.		
	_			ため 0.6mg/mL まで観察)		
		9mix 群:1.6mg/mL				
	24 時間処理群:0.625mg/mL(50%以上細胞増殖抑制濃度)					
		時間処理群:0.625mg/				
反復投与	動物種・系統	ラット Crj:CD(SD)				
毒性・生	投与方法	強制経口投与 溶媒	某:コーン油			
殖発生毒	純度	99.9 %				
性併合試	用量	3 投与群(40, 200, 10	000 mg/kg/da	ay)		
験	死亡	対照群:1/12♀ [難層	[1000 : 3	/12♀「肺水腫 <u></u>		

	NOEL	反復投与毒性:40 mg/kg/day			
		生殖発生毒性:200 mg/kg/day			
	推定根拠	反復投与毒性:			
		一般状態(流涎:200 以上♀1000♂)			
		血液学的検査(Hgb↓・Hct↓・Ret↑:200 以上♂)			
		生殖発生毒性:			
		母体:哺育行動異常			
		児:生後 0 日児体重↓・生後 4 日児生存率↓:1000			
	他の毒性				
		体重↓・摂餌量↓:1000♀			
		一般状態(挙尾・攣縮:1000♂♀、間代性痙攣:1000♂)			
		尿検査(尿量↑:1000♂) 血液学的検査(RBC↓・MCV↓・MCH↓・WBC↑・Lymp↓:1000♂)			
		血液生化学的検査(BUN↑・Na↓:1000♂)			
		無限工信 f f f f f f f f f f f f f f f f f f f			
		相対重量(肝↑:1000♂、腎↑:1000♂♀、副腎↑:1000♀)			
		組織学的所見(胃ー水腫、前胃ーび漫性粘膜過形成・炎症性細胞浸潤、脳ー			
		赤核脊髓路領域神経線維変性、脊髄一背側後脊髄小脳路神経			
		線維変性:1000♂♀、腎-好塩基性尿細管:1000♂、前胃 -潰瘍、胸腺-萎縮:1000♀)			
		生殖発生毒性:			
		——————————————————————————————————————			
	回復性	実施せず			
人健康影	Ames 試懸	食及び染色体異常試験は陽性であり、NOEL 40mg/kg/day であり、神経毒性と			
響判定根	8 8 7				
拠	心物がの時に丁田川に至安は川ルが鳴いりないのことがりが一性血圧には一丁物具作品。				
備考	※1 化常	学物質の製造・輸入量に関する実態調査(平成19年実績)			
	,,,,	(1775 = 5 1 2 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5			

官報公示 整理番号	2-798 CAS No. 111-82-0						
判定結果	生態影響 第三種監視化学物質相当						
名称	名 称:ドデカン酸メチル						
構造式等	O II						
用途	2-798 として中間物、溶剤、プロセス調節剤、家庭等洗浄剤、印刷インキ等、着香・消臭						
	剤、繊維剤、樹脂添加剤、ゴム添加剤、皮革処理剤、潤滑・研削油、電気電子材料、燃料						
製造及び	等、その他 ^{※1} 2-798 として 100,000~1,000,000 t 未満 ^{※1}						
輸入数量	2 100 C 0 C 100,000 1,000,000 17						
外観	無色透明液体						
分解性	良分解性						
蓄積性							
藻類生長	生物種:Pseudokirchneriella subcapitata						
阻害試験	試験法:化審法 TG (2003)						
	培養方式:振とう培養(密閉系)						
	純度:99.6% 試験濃度:設定濃度 0.038、0.075、0.15、0.30、0.60 mg/L						
	実測濃度 0.040、0.074、0.16、0.32、0.60 mg/L (ばく露開始時)						
	助剤: DMF 0.1 mL/L						
	72hEC50(実測値に基づく) = 0.32 mg/L						
	72hNOEC(実測値に基づく) = 0.040 mg/L						
ミジンコ							
繁殖阻害 試験	試験法:化審法 TG 試験方式:流水式						
中心沙穴	純度:99.6%						
	試験濃度:設定濃度 0.063、0.13、0.25、0.50、1.0 mg/L						
	実測濃度 0.0096、0.033、0.081、0.21、0.41 mg/L(算術平均値)						
	助剤:DMF 0.1 mL/L						
	21dNOEC(実測値に基づく) =0.081 mg/L						
生態影響	藻類生長阻害試験において $72\text{hNOEC} = 0.040 \text{ mg/L}$ 、ミジンコ繁殖阻害試験において						
判定根拠	21dNOEC=0.081 mg/L であることから、第三種監視化学物質相当。						
備考	試験用水溶解度:藻類培地:0.69 mg/L、脱塩素水道水:0.48 mg/L						
	※1 化学物質の製造・輸入量に関する実態調査(平成19年実績)						

-	 の資番金ンート						
官報公示 整理番号	2-66 2-68 CAS No. 111-85-3						
判定結果	生態影響 第三種監視化学物質相当						
名称 構造式等	名 称:1-クロロオクタン						
用途	2-68 として中間物、ゴム添加剤、潤滑・研削油、その他*1						
製造及び 輸入数量	2-68 として 10,000~100,000 t 未満 ^{*1}						
外観	無色透明液体						
分解性	良分解性						
蓄積性							
藻類生長	生物種:Pseudokirchneriella subcapitata						
阻害試験	試験法:OECD-TG201(1984)						
	培養方式:振とう培養						
	純度:≧95.0%						
	試験濃度:設定濃度 3.6、8.2、19、44、100 mg/L 実測濃度 0.074、0.095、0.16、0.27、1.5 mg/L(幾何平均値)						
	- 美例張及 0.074、0.095、0.16、0.27、1.5 mg/L (幾何平均値) 助剤:HCO-50 100 mg/L						
	72hEC50(実測値に基づく) > 1.5 mg/L						
	72hEC50(実例値に塞づく) $>$ 1.5 hlg/L 72hNOEC(実測値に基づく) $=$ 0.27 mg/L						
	①実測濃度の幾何平均値を用いて、速度法に基づく毒性値を再計算している。						
ミジンコ	生物種:オオミジンコ Daphnia magna						
繁殖阻害 試験	試験法:OECD-TG211(1997) 試験方式:半止水式、週に3回換水						
四个例欠	純胰力式:十正小式、週に 3 回換小 純度:≧95.0%						
	起度: \leq 95.0% 試験濃度:設定濃度 0.070 、 0.12 、 0.21 、 0.38 、 0.69 、 1.2 mg/L						
	実測濃度 - 、 - 、 - 、 0.073、 0.17、 0.30 mg/L (時間加重平均値)						
	助剤:HCO-50 100 mg/L						
A	21dNOEC(実測値に基づく) =0.073 mg/L						
生活段階 毒性試験	試験法:OECD-TG210(1992) 試験方式:流水式						
世江时顺	純度:99.9%						
	試験濃度:設定濃度 0.015、0.038、0.095、0.24、0.60 mg/L						
	実測濃度 0.0085、0.021、0.057、0.16、0.40 mg/L(算術平均値)						
	助剤:HCO-60 1.2 mg/L、DMF 約 0.1 mL/L						
	40dNOEC(孵化後の生存率)(実測値に基づく) =0.057 mg/L						
生態影響	藻類生長阻害試験において $72\text{hNOEC} = 0.27 \text{ mg/L}$ であるが、ミジンコ繁殖阻害試験にお						
判定根拠	いて 21dNOEC=0.073 mg/L、魚類初期生活段階毒性試験において 40dNOEC=0.057						
	mg/L であることから、第三種監視化学物質相当。						
備考	対水溶解度: 4.89 mg/L (25℃) (EPI Suite v.4.0)						
	※1 化学物質の製造・輸入量に関する実態調査(平成19年実績)						

	物具番宜ン一ト					
官報公示						
整理番号	2-185					
判定結果	生 態 影 響 第三種監視化学物質相当					
名称	名 称:N, N-ジメチル-n-オクタデシルアミン					
構造式等						
	H_3C					
	H_3C N — $(CH_2)_{17}$ — CH_3					
用途	2-176 として中間物、工業用洗浄剤、家庭等洗浄剤、工業用殺菌等、ゴム添加剤、水処理					
	剤、その他 ^{※1}					
製造及び	2-176 として 1,000~10,000 t 未満 ^{※1}					
輸入数量						
外観	無色透明液体					
分解性	良分解性					
蓄積性	_					
藻類生長	生物種: <i>Pseudokirchneriella subcapitata</i>					
阻害試験	試験法: OECD-TG201(1984)					
	培養方式:振とう培養					
	純度: 93.3%					
	試験濃度:設定濃度 0.0015、0.0027、0.0049、0.0089、0.016 mg/L					
	実測濃度 0.00060、0.00070、0.0010、0.0013、0.0018 mg/L (幾何平均值)					
	助剤:HCO-40 0.16 mg/L					
	72hEC50(実測値に基づく)=0.0018 mg/L					
	72hEC50(実測値に基づく) -0.0018 mg/L $72hNOEC$ (実測値に基づく) $=0.0010$ mg/L					
	72mNOEC(天側順に塞りて) = 0.0010 mg/L					
	①実測濃度の幾何平均値を用いて、速度法に基づく毒性値を再計算している。					
ミジンコ	生物種:オオミジンコ Daphnia magna					
繁殖阻害						
試験	試験方式:半止水式、24 時間毎に換水					
μ· V /9/2	純度:93.3%					
	試験濃度:設定濃度 0.0031、0.0063、0.013、0.025、0.050 mg/L					
	実測濃度 - 、- 、- 、0.01、- mg/L (時間加重平均値)					
	映剤: HCO-40 0.50 mg/L					
n ble make	21dNOEC(設定値に基づく) = 0.0063 mg/L					
生態影響	藻類生長阻害試験において 72hNOEC=0.0010 mg/L、ミジンコ繁殖阻害試験において					
判定根拠	21dNOEC=0.0063 mg/L であることから、第三種監視化学物質相当。					
備考	対水溶解度:0.44 mg/L(化審法の既存化学物質安全性点検データ集)					
	※1 化学物質の製造・輸入量に関する実態調査(平成19年実績)					

	勿負番食ンート 	ı						
官報公示		CAS No.	93-83-4					
整理番号	2-827							
	2-2503							
判定結果	生態影響 第三種監視化学物質	相当						
H 41.	+ 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1						
名称	名 称:N, N-ビス(2-ヒド	ロキンエナ	レ) ーオレアミド					
構造式等			ОН					
			J					
	(CH _o)	₇ CH ₃	OH					
	(8112)	770113						
		(CLI						
		(CH ₂)7 N					
	H. \	Ĭ						
		Ţ						
用途		<u>H</u> (田浩海沟)	O 家庭等洗浄剤、繊維剤、樹脂添加剤、潤滑・					
111/47	研削油、電気電子材料、その他 ^{*1}		多、庭 守心时于月1、 柳风作月1、 烟川日初2月11、 1国1日					
製造及び	2-814、2-827、2-2503 として 1,0		t 未満 ^{※1}					
輸入数量	2 014, 2 027, 2 2000 2 0 1,0	10,000	ر کار کالغال					
外観	無色透明液体							
分解性								
蓄積性								
	11 U AT D 11 1 1 1 1 1							
藻類生長	生物種:Pseudokirchneriella sub	ocapitata						
阻害試験	試験法: OECD-TG201(1984)							
	培養方式:振とう培養							
	純度:75.1%	4 4 0 0 1 1) 41 OF/I					
	試験濃度:設定濃度 1.0、2.1、4							
	実測濃度 0.55、1.1、2.4、5.1、12、22、55 mg/L(幾何平均值)							
		5 mg/I	助剤:不明					
	72hEC50 (実測値に基づく) >55 mg/L							
		_						
	72hNOEC (実測値に基づく) = 1	_						
	72hNOEC (実測値に基づく) = 1	12 mg/L	基づく畫性値を再計算していろ					
ミジンコ	72hNOEC(実測値に基づく) = 1 ①実測濃度の幾何平均値を用いて	l2 mg/L 、速度法に	基づく毒性値を再計算している。					
ミジンコ繁殖阻害	72hNOEC (実測値に基づく) = 1①実測濃度の幾何平均値を用いて生物種:オオミジンコ Daphnia	l2 mg/L 、速度法に	基づく毒性値を再計算している。					
ミジンコ 繁殖阻害 試験	72hNOEC (実測値に基づく) = 1①実測濃度の幾何平均値を用いて生物種:オオミジンコ Daphnia I試験法:OECD-TG211 (1998)	12 mg/L 、速度法にま magna	基づく毒性値を再計算している。					
繁殖阻害	72hNOEC (実測値に基づく) = 1①実測濃度の幾何平均値を用いて生物種:オオミジンコ Daphnia が試験法:OECD-TG211 (1998)試験方式:半止水式、週に3回換	12 mg/L 、速度法にま magna	基づく毒性値を再計算している。					
繁殖阻害	72hNOEC (実測値に基づく) = 1 ①実測濃度の幾何平均値を用いて 生物種:オオミジンコ <i>Daphnia</i> は 試験法:OECD-TG211 (1998) 試験方式:半止水式、週に3回換 純度:75.1%	12 mg/L 、速度法に magna 水						
繁殖阻害	 72hNOEC (実測値に基づく) = 1 ①実測濃度の幾何平均値を用いて生物種:オオミジンコ Daphnia を試験法:OECD-TG211 (1998) 試験方式:半止水式、週に3回換純度:75.1% 試験濃度:設定濃度 0.021、0.03 	12 mg/L <u>、速度法に要</u> magna 水 38、0.069、	0.12、0.22、0.40 mg/L					
繁殖阻害	 72hNOEC(実測値に基づく)=1 ①実測濃度の幾何平均値を用いて生物種:オオミジンコ Daphnia に試験法:OECD-TG211(1998) 試験方式:半止水式、週に3回換純度:75.1% 試験濃度:設定濃度 0.021、0.00 実測濃度 -、一、0.0 	12 mg/L <u>、速度法に要</u> magna 水 38、0.069、						
繁殖阻害	72hNOEC(実測値に基づく)=1 ①実測濃度の幾何平均値を用いて 生物種:オオミジンコ Daphnia に 試験法:OECD-TG211 (1998) 試験方式:半止水式、週に3回換 純度:75.1% 試験濃度:設定濃度 0.021、0.00 実測濃度 -、-、0.00 助剤:HCO-50 1.2 mg/L	12 mg/L 、速度法に magna 水 38、0.069、 010、0.026、	0.12、0.22、0.40 mg/L					
繁殖阻害試験	 72hNOEC(実測値に基づく)=1 ①実測濃度の幾何平均値を用いて生物種:オオミジンコ Daphnia に試験法:OECD-TG211(1998) 試験方式:半止水式、週に3回換純度:75.1% 試験濃度:設定濃度 0.021、0.03 実測濃度 -、一、0.0 助剤:HCO-50 1.2 mg/L 21dNOEC(実測値に基づく)=0 	12 mg/L 、速度法に magna 水 38、0.069、 010、0.026、	0.12、0.22、0.40 mg/L 0.057、0.13 mg/L(時間加重平均値)					
繁殖阻害 試験	72hNOEC(実測値に基づく)=1 ①実測濃度の幾何平均値を用いて 生物種:オオミジンコ Daphnia に 試験法:OECD-TG211 (1998) 試験方式:半止水式、週に3回換 純度:75.1% 試験濃度:設定濃度 0.021、0.00 実測濃度 -、-、0.0 助剤:HCO-50 1.2 mg/L 21dNOEC(実測値に基づく)=0 藻類生長阻害試験において72hNO	12 mg/L 、速度法に表 magna 水 38、0.069、 010、0.026、 0.057 mg/L OEC=12 m	0.12、0.22、0.40 mg/L 0.057、0.13 mg/L(時間加重平均値) g/L であるが、ミジンコ繁殖阻害試験におい					
繁殖阻害試験	 72hNOEC(実測値に基づく)=1 ①実測濃度の幾何平均値を用いて生物種:オオミジンコ Daphnia に試験法:OECD-TG211(1998) 試験方式:半止水式、週に3回換純度:75.1% 試験濃度:設定濃度 0.021、0.03 実測濃度 -、一、0.0 助剤:HCO-50 1.2 mg/L 21dNOEC(実測値に基づく)=0 	12 mg/L 、速度法に magna 水 38、0.069、 010、0.026、 0.057 mg/L OEC=12 m	0.12、0.22、0.40 mg/L 0.057、0.13 mg/L(時間加重平均値) g/L であるが、ミジンコ繁殖阻害試験におい 第三種監視化学物質相当。					

	物質番食ンート 						
官報公示 整理番号	2-8 CAS No. 111-65-9						
判定結果	生態影響 第三種監視化学物質相当						
名称	名 称:オクタン						
構造式等							
用途	2-8 として溶剤、燃料等*1						
製造及び	2-8 として 1,000,000~10,000,000 t 未満 ^{*1}						
輸入数量							
外観	無色透明液体						
分解性	_						
蓄積性	_						
藻類生長	生物種: Pseudokirchneriella subcapitata						
阻害試験	試験法: OECD-TG201 (1984)						
177 17 18 (40)	培養方式:振とう培養(密閉系)						
	純度:99.2%						
	試験濃度:設定濃度 20 mg/L (24 時間振とう後にばく露)、5.0、10、20 mg/L (試験液						
	調製直後にばく露)						
	実測濃度 0.089、0.28、0.57、1.1 mg/L(幾何平均值)						
	助剤:HCO-40 100 mg/L						
	溶解限度で影響が認められなかった。						
	①実測濃度の幾何平均値を用いて、速度法に基づく毒性値を再計算している。						
ミジンコ	生物種:オオミジンコ Daphnia magna						
繁殖阻害	試験法:OECD-TG211(1997)						
試験	試験方式:半止水式、24 時間毎に換水						
	純度:99.2%						
	試験濃度:設定濃度 0.024、0.043、0.077、0.14、0.25 mg/L						
	実測濃度 0.013、0.023、0.045、0.084、0.16 mg/L(時間加重平均値)						
	助剤: HCO-40 濃度不明						
A Vet be the	21dNOEC(実測値に基づく) = 0.045 mg/L						
	生物種:ヒメダカ Oryzias latipes						
	試験法: OECD-TG210(1992)						
毒性試験	試験方式:流水式						
	純度:98.1%						
	試験濃度:設定濃度 0.010、0.025、0.063、0.16、0.40 mg/L 実測濃度 0.0057、0.013、0.028、0.000、0.10 mg/L (管係更均原)						
	実測濃度 0.0057、0.013、0.028、0.069、0.19 mg/L(算術平均値)						
	助剤: HCO-60 0.8 mg/L、DMF 約 0.1 mL/L						
A Ala Divane	41dNOEC(体重・体長)(実測値に基づく) = 0.028 mg/L						
生態影響	藻類生長阻害試験において溶解限度で影響が認められないが、ミジンコ繁殖阻害試験にお						
判定根拠	いて 21dNOEC=0.045 mg/L、魚類初期生活段階毒性試験において 41dNOEC=0.028						
	mg/L であることから、第三種監視化学物質相当。						
備考	対水溶解度:0.66mg/L(20℃) (Handbook of Environmental Data on Organic Chemicals)						
	※1 化学物質の製造・輸入量に関する実態調査(平成19年実績)						

官報公示	2-27 CAS No. 112-41-4
整理番号	
判定結果	生態影響 第三種監視化学物質相当
名称	名 称:1-ドデセン
構造式等	
用途	2-27 として中間物、溶剤、塗料用、繊維剤、樹脂添加剤、その他
製造及び 輸入数量	2-27 として 10,000~100,000 t 未満 ^{*1}
外観	無色透明液体
分解性	_
蓄積性	
藻類生長	生物種:Pseudokirchneriella subcapitata
阻害試験	試験法: OECD-TG201(1984)
	培養方式:振とう培養
	純度:95% 試験濃度:設定濃度 0.45、0.95、2.0、4.3、9.0、19、40 mg/L
	実測濃度 0.016、0.020、0.030、0.041、0.059、0.086、0.097 mg/L(幾何平
	均値)
	助剤:HCO-50 100 mg/L
	72hEC50(実測値に基づく)>0.097 mg/L
	72hNOEC(実測値に基づく) = 0.059 mg/L
	①実測濃度の幾何平均値を用いて、速度法に基づく毒性値を再計算している。
ミジンコ	生物種:オオミジンコ Daphnia magna
繁殖阻害	試験法: OECD-TG211 (1998)
試験	試験方式:半止水式、週に3回換水
	純度:95% 試験濃度:設定濃度 0.019、0.033、0.060、0.11、0.19、0.35 mg/L
	実測濃度 0.0051、0.012、0.012、0.028、0.041、0.11mg/L (時間加重平均値)
	助剤:HCO-50 100 mg/L
	21dNOEC(実測値に基づく) =0.041 mg/L
生態影響	藻類生長阻害試験において 72hNOEC=0.059 mg/L、ミジンコ繁殖阻害試験において
判定根拠	21dNOEC=0.041 mg/L であることから、第三種監視化学物質相当。
備考	※1 化学物質の製造・輸入量に関する実態調査(平成19年実績)

整理番号 判定結果	4. 能 B. 鄉 . 故 . 在卧 担 儿 . 治 . 施 . 所 和 . L.
刊化桁米	
	生態影響 第三種監視化学物質相当
名称 /	名 称:デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジニル)
構造式等	
	H_3C CH_3 H_3C CH_3
	HN O — C — $(CH2)8-C—O NH$
	H ₃ C CH ₃ H ₃ C CH ₃
用途	5-3732 として塗料用、接着剤用、樹脂添加剤、電気電子材料 ^{※1}
	5-3732 として 10,000~100,000 t 未満*1
輸入数量	卢
外観 I 分解性 -	白色結晶性粉末
蓄積性 -	_
	生物種: <i>Pseudokirchneriella subcapitata</i>
	試験法:OECD-TG201(1984)
	培養方式:振とう培養
	純度:99.2% 試験濃度:設定濃度 0.020、0.043、0.093、0.20、0.43、0.93、2.0 mg/L
	実測濃度 0.011、0.013、0.050、0.13、0.35、0.72、1.8 mg/L (幾何平均値)
	助剤:THF 及び HCO-40 40 mg/L
	72hEC50(実測値に基づく) = 1.0 mg/L
'	$72\mathrm{hNOEC}$ (実測値に基づく) $=0.050~\mathrm{mg/L}$
(①実測濃度の幾何平均値を用いて、速度法に基づく毒性値を再計算している。
	生物種:オオミジンコ Daphnia magna
	試験法:OECD-TG211(1998) 試験方式:半止水式、24 時間毎に換水
	 純度:99.2%
	試験濃度:設定濃度 0.10、0.30、0.90、2.8、8.5 mg/L
	実測濃度 0.080、0.23、0.61、2.1、6.7 mg/L (時間加重平均値)
	助剤:THF 及び HCO-40 68 mg/L 21dNOEC(実測値に基づく)=0.23 mg/L
	21dNOEC (美側値に基づく) -0.23 mg/L ミジンコ繁殖阻害試験において 21dNOEC=0.23 mg/L であるが、藻類生長阻害試験にお
	マンコ繁殖阻害試験において $21 \text{dNOEC} = 0.25 \text{ mg/L}$ であるが、 藻類生長阻害試験において $72 \text{hNOEC} = 0.050 \text{ mg/L}$ であることから、第三種監視化学物質相当。
	※1 化学物質の製造・輸入量に関する実態調査(平成19年実績)