水産動植物の被害防止に係る農薬登録保留基準の設定に関する資料

メチダチオン(DMTP)

. 評価対象農薬の概要

1.物質概要

化学名	S-2,3-ジヒドロ-5-メトキシ-2-オキソ-1,3,4-チアジアゾール-3-イルメチル=0,0-ジメチル=ホスホロジチオアート						
分子式	C ₆ H ₁₁ N ₂ O ₄ PS ₃ 分子量 302.33 CAS NO. 950-37-8						
構造式			-o	S O	-s-P<0-		

2. 開発の経緯等

メチダチオン(DMTP)は、有機リン系の殺虫剤であり、中枢神経系のアセチルコリンエステラーゼ活性を阻害することにより殺虫活性を有する。本邦での初回登録は 1967 年である。

製剤は水和剤、乳剤が、適用作物は果樹、野菜、花き、樹木等がある。 原体の輸入量は、78.0t(17年度)、83.0t(18年度)、49.0t(19年度)であった。 年度は農薬年度(前年10月~当該年9月)、出典:農薬要覧-2008-((社)日本植物防疫協会)

3. 各種物性

外観	白色粉末、わずかな刺激臭 (25)	土壌吸着係数	$K_F^{ads}_{CC} = 368 - 627 (25)$		
融点	40.0 - 40.9	オクタノール / 水分配係数	logPow = 2.2(25)		
沸点	99.9 (1.3Pa) 約150 から分解するため 測定不可能(常圧)	生物濃縮性	- 1		
蒸気圧	2.25 × 10 ⁻⁴ Pa (25)	密度	1.54 g/cm ³ (22)		
加水分解性	半減期 37日(pH5、24-25) 48日(pH7、24-25) 13日(pH9、24-25)	水溶解度	2 × 10 ⁵ μ g/L (25)		
水中光分解性	半減期 40.1 日(緩衝液、pH7、23 、40.4W/m²、300-400nm) 13.6 日(滅菌蒸留水、pH7、25 、41.3W/m²、300-400nm)				

. 水産動植物への毒性

1. 魚類

(1) 魚類急性毒性試験(コイ)

コイを用いた魚類急性毒性試験が実施され、96hLC₅₀ = 1,540 μ g/L であった。

被験物質 原体 供試生物 コイ (Cyprinus carpio) 20 尾/群 暴露方法 止水式 暴露期間 96h 設定濃度(µg/L) 560 1,000 1,800 3,200 5,600 10,000 0 (被験物質濃度) 実測濃度(µg/L) 0 420 780 1,500 2,800 4,700 8,700 (幾何平均值) 死亡数/供試生物数 0/20 2/20 9/20 8/20 12/20 17/20 19/20 (96hr後;尾) 助剤 なし LC_{50} (μ g/L) 1,540 (95%信頼限界 1,060-2,120)(実測濃度(有効成分換算値) に基づく)

表 1 コイ急性毒性試験結果

2. 甲殼類

(1)ミジンコ類急性遊泳阻害試験(オオミジンコ)

オオミジンコを用いたミジンコ類急性遊泳阻害試験が実施され、 $48hEC_{50} = 1.1$ μ g/L であった。

校と「カスランコ心は遊が四古時候間大								
被験物質	原体	原体						
供試生物	オオミ	オオミジンコ (Daphnia magna) 20 頭/群						
暴露方法	止水豆	止水式						
暴露期間	48h	48h						
設定濃度(µg/L)	0	0.10	0.22	0.48	1.0	2.2	4.8	10
実測濃度(μg/L)	0	<0.075	0.36	0.57	1.3	2.2	4.8	10
(算術平均値)								
遊泳阻害数/供試生	0/20	0/20	1/20	1/20	7/20	16/20	20/20	20/20
物数(48hr後;頭)								
助剤	DMF 0.1mI/L							
EC ₅₀ (μg/L)	1.1(95%信頼限界 0.82-1.4)(設定濃度(有効成分換算値)に基							
	づく)							

表 2 オオミジンコ急性遊泳阻害試験結果

3 . 藻類

(1)藻類生長阻害試験

Desmodesmus subcapitata を用いた藻類生長阻害試験が実施され、 $72hErC_{50} = 19,000 \ \mu g/L$ であった。

表 3 藻類生長阻害試験結果

(大) /未积工 (大) /未积工 (大) / (T) /							
被験物質	原体						
供試生物	Desmodesmus subcapitata 初期生物量1.9×10⁴cells/mL						
暴露方法	振とう培	i養					
暴露期間	72 h	72 h					
設定濃度(μg/L)	0	10,000	18,000	32,000	58,000	98,000	
(被験物質濃度)							
実測濃度(µg/L)	0	8,700	16,000	31,000	50,000	82,000	
(幾何平均值)							
72hr 後生物量	140	110	38	4.2	3.6	3.0	
(×104cells/mL)							
0-72hr 生長阻害率		14	35	83	88	90	
(%)							
助剤	なし						
ErC ₅₀ (μg/L)	19,000 (95%信頼限界 10,000-30,000) (実測濃度(有効成分換						
	算値)に基づく)						
NOECr(μg/L)	-						

. 環境中予測濃度 (PEC)

1.製剤の種類及び適用農作物等本農薬の製剤として水和剤、乳剤があり、果樹、野菜、花き、樹木等に適用がある。

2. PECの算出

(1) 非水田使用時の予測濃度

第1段階における予測濃度を、PECが最も高くなる果樹に乳剤を用いる以下の使用方法の場合について、以下のパラメーターを用いて河川ドリフトによるPECを算出する。

表4 PEC算出に関する使用方法及びパラメーター(非水田使用第1段階)

PEC 算出に関す	る使用方法	各パラメーターの値			
剤 型	30%乳剤	/: 単回の農薬散布量 (有効成分 g/ha)	6,000		
農薬散布液量 100L/10a		D _{river} :河川ドリフト率 (%)	3.4		
希釈倍数	50 倍	Z _{river} :1日河川ドリフト面積(ha/day)	0.12		
地上防除/航空防除	地上	N _{drift} :ドリフト寄与日数 (day)	2		
適用作物 果 樹		R _u :畑地からの農薬流出率 (%)	0.02		
施用法	樹幹及び主枝 に散布	A _u :農薬散布面積(ha)	37.5		
		f_u : 施用法による農薬流出係数 $($ - $)$	1		

これらのパラメーターより非水田使用時の環境中予測濃度は以下のとおりとなる。

非水田 PEC _{Tier1} による算出結果	0.094 μg/L
----------------------------------	------------

.総合評価

(1)登録保留基準値案

各生物種の LC_{50} 、 EC_{50} は以下のとおりであった。

魚類 (コイ急性毒性) 96hLC₅₀ = 1,540 μ g/L

甲殻類 (オオミジンコ急性遊泳阻害) 48hEC_{so} = 1.1 μg/L

藻類 (Pseudokirchneriella subcapitata生長阻害)

 $72hErC_{50} = 19,000 \mu g/L$

これらから、

無類急性影響濃度 $AECf = LC_{50}/10 = 154 \mu g/L$ 甲殼類急性影響濃度 $AECd = EC_{50}/10 = 0.11 \mu g/L$ 藻類急性影響濃度 $AECa = EC_{50} = 19,000 \mu g/L$

よって、これらのうち最小の AECd より、登録保留基準値 = 0.11(μg/L)とする。

(2)リスク評価

環境中予測濃度は、非水田 $PEC_{Tierf} = 0.094 (\mu g/L)$ であり、登録保留基準値 0.11 ($\mu g/L$)を下回っている。

<検討経緯>

2009年5月29日 平成21年度第1回水産動植物登録保留基準設定検討会2009年10月9日 平成21年度第4回水産動植物登録保留基準設定検討会