水産動植物の被害防止に係る農薬登録保留基準として 環境大臣が定める基準の設定に関する資料

ピロキサスルホン

. 評価対象農薬の概要

1.物質概要

化学名	3 - [5 - (ジフルオロメトキシ) - 1 - メチル - 3 - (トリフルオロメチル) ピラゾール - 4 - イルメチルスルホニル] - 4 , 5 - ジヒドロ - 5 , 5 - ジメチ ル - 1 , 2 - オキサゾール				
分子式	C ₁₂ H ₁₄ F ₅ N ₃ O ₄ S	分子量	391.3	CAS NO.	447399-55-5
構造式			F ₃ C		NO OCHF ₂

2.作用機構等

ピロキサスルホンは、イソキサゾリン環を有する除草剤であり、その作用機構は、 植物のワックス層 (クチクラ)等の構造を構成する成分である超長鎖脂肪酸の合成 阻害と考えられている。

本邦では未登録である。

製剤は顆粒水和剤が、適用農作物等は芝として、登録申請されている。

3. 各種物性

	白色結晶、わずかな特異臭	土壌吸着係数	K _F ^{ads} _{OC} = 57 - 110(外国土
 外観・臭気			壌、25)
			K _{F OC} = 38 - 66 (日本土
			壌、25)
 融点	130.7	オクタノ・ル	logPow = 2.39 (25 、
	130.7	/ 水分配係数	pH8.7)
沸点	362.4	生物濃縮性	-

蒸気圧	2.4 × 10 ⁻⁶ Pa (25)	密度	1.6 g/cm³ (21.2)
加水分解性	半減期 1年以上(pH5、7:25) 375日(pH9:25)	水溶解度	3.49×10 ³ μg/L(20)
水中光分解性	半減期 124日 (滅菌緩衝液、pH7、25 、 1,160 - 1,390時間(東京春 (滅菌自然水、25 、44.6	季太陽光換算 276	6 - 332 日)

. 水産動植物への毒性

1.魚類

(1) 魚類急性毒性試験(コイ)

コイを用いた魚類急性毒性試験が実施され、96hLC₅₀ > 3,750 μg/L であった。

	化 二 黑热芯件	MH /N
被験物質	原体	
供試生物	コイ (Cyprinus carpio) 10 🛭	€/群
暴露方法	半止水式 (暴露開始 48 時間後に	[換水]
暴露期間	96h	
設定濃度(μg/L)	0	4,980
(有効成分換算値)		
実測濃度(µg/L)	0	3,750
(時間加重平均値)		
(有効成分換算値)		
死亡数/供試生物数	0/10	0/10
(96hr後;尾)		
助剤	DMF 0.1 mL/L	
LC ₅₀ (μg/L)	> 3,750(実測濃度(有効成分	換算値)に基づく)

表 1 魚類急性毒性試験結果

(2) 魚類急性毒性試験(ブルーギル)

ブルーギルを用いた魚類急性毒性試験が実施され、 $96hLC_{50} > 2,780 \mu g/L$ であった。

被験物質 原体 供試生物 ブルーギル (Lepomis macrochirus) 20 又は30 尾/群 暴露方法 半止水式(暴露開始24時間毎に換水) 暴露期間 96h 0 設定濃度(µg/L) 5,300 (有効成分換算値) 実測濃度(µg/L) 0 2,780 (幾何平均值) (有効成分換算值) 死亡数/供試生物数 0/20 0/30 (96hr後;尾) 助剤 なし

表 2 魚類急性毒性試験結果

(3) 魚類急性毒性試験(ニジマス)

 LC_{50} (μ g/L)

ニジマスを用いた魚類急性毒性試験が実施され、 $96hLC_{50} > 2,140 \mu g/L$ であった。

> 2,780 (実測濃度(有効成分換算値)に基づく)

		WHAL
被験物質	原体	
供試生物	ニジマス (Oncorhynchus mykiss	s) 20又は30尾/群
暴露方法	半止水式(暴露開始 24 時間毎に	換水)
暴露期間	96h	
設定濃度(µg/L)	0	3,200
(有効成分換算値)		
実測濃度(µg/L)	0	2,140
(幾何平均値)		
(有効成分換算値)		
死亡数/供試生物数	0/20	0/30
(96hr後;尾)		
助剤	なし	
LC ₅₀ (μg/L)	> 2,140(実測濃度(有効成分	換算値)に基づく)

表 3 魚類急性毒性試験結果

2. 甲殼類

(1)ミジンコ類急性遊泳阻害試験(オオミジンコ)

オオミジンコを用いたミジンコ類急性遊泳阻害試験が実施され、 $48hEC_{50} > 4,370~\mu\,g/L$ であった。

	ペー ヘノノコ級心は進か四百	
被験物質	原体	
供試生物	オオミジンコ (Daphnia magna)	20 又は 40 頭/群
暴露方法	止水式	
暴露期間	48h	
設定濃度(μg/L)	0	5,300
(有効成分換算値)		
実測濃度(µg/L)	0	4,370
(幾何平均値)		
(有効成分換算値)		
遊泳阻害数/供試生	0/20	0/40
物数 (48hr 後;頭)		
助剤	なし	·
EC ₅₀ (μg/L)	> 4,370(実測濃度(有効成分換	ぬ算値)に基づく)

表 4 ミジンコ類急性遊泳阻害試験結果

3.藻類

(1)藻類生長阻害試験

Pseudokirchneriella subcapitata を用いた藻類生長阻害試験が実施され、 $72hErC_{50} = 0.743 \mu g/L$ であった。

で						
被験物質	原体					
供試生物	P. subcap	itata 初期	生物量 1.0;	×10⁴cells	/mL	
暴露方法	振とう培養	Ę				
暴露期間	96 h					
設定濃度(µg/L)	0	0.05	0.10	0.20	0.40	0.80
実測濃度(µg/L)	0	0.074	0.072	0.133	0.240	0.881
(時間加重平均値)						
72hr 後生物量	46.7	44.7	38.3	32.6	23.0	5.0
(×10 ⁴ cells/mL)						
0-72hr 生長阻害率		1.1	5.3	9.2	18.4	59.7
(%)						
助剤	なし					
ErC ₅₀ (μg/L)	0.743(95%信頼限界0.654-0.842)(設定濃度(有効成分換算値)					
	に基づく) (95%信頼限界は事務局算出値)					
NOECr(μg/L)	0.396(設定	定濃度(有效	协成分換算值	5) に基づ	<)	

表 5 藻類生長阻害試験結果

. 水産動植物被害予測濃度(水産 PEC)

1.製剤の種類及び適用農作物等 本農薬は製剤は顆粒水和剤、適用農作物等は芝として登録申請されている。

2 . 水産 PEC の算出

(1)非水田使用時のPEC

非水田使用農薬として、PEC が最も高くなる使用方法について、下表のパラメーターを用いて第1段階のPECを算出する。

表 6 PEC 算出に関する使用方法及びパラメーター (非水田使用第 1 段階: 地表流出)

PEC 算出に関す	る使用方法	各パラメーターの値		
剤 型	85%顆粒水和剤	/: 単回の農薬散布量 (有効成分 g/ha)	850	
農薬量	100g/10a	D _{river} :河川ドリフト率 (%)	-	
希釈水量	200L/10a	Z _{river} :1 日河川ドリフト面積(ha/day)	-	
地上防除/航空防除	地上	N _{drift} :ドリフト寄与日数 (day)	-	
適用農作物等	芝	R _u :畑地からの農薬流出率 (%)	0.02	
施用法	散 布	<i>A_u</i> :農薬散布面積(ha)	37.5	
		f_u :施用法による農薬流出係数 $(-)$	1	

これらのパラメーターより非水田使用時の PEC は以下のとおりとなる。

非水田 PEC _{Tier}	による算出結果	0.0034 μg/L

(2)水産 PEC 算出結果

(1)より、水産 PEC = 0.0034 (μg/L)となる。

.総合評価

(1)水産動植物の被害防止に係る登録保留基準値(案)

各生物種のLC₅₀、EC₅₀は以下のとおりであった。

魚類(コイ急性毒性)	96hLC ₅₀ >	3,750	μg/L
魚類(ブルーギル急性毒性)	96hLC ₅₀ >	2,780	μg/L
魚類(ニジマス急性毒性)	96hLC ₅₀ >	2,140	μg/L
甲殻類(オオミジンコ急性遊泳阻害)	48hEC ₅₀ >	4,370	μg/L
藻類 (P. subcapitata 生長阻害)	$72hErC_{50} =$	0.743	μg/L

魚類については、最小値であるニジマス急性毒性試験のデータを採用し、3種(3 上目3目3科)以上の生物種試験が行われた場合に該当することから、不確実係数 は通常の10ではなく、3種~6種の生物種のデータが得られた場合に使用する4 を適用し、

魚類急性影響濃度	$AECf = LC_{50}/4 >$	· 535 µg/L
甲殼類急性影響濃度	$AECd = EC_{50}/10 >$	· 437 μg/L
藻類急性影響濃度	$AECa = EC_{50} =$	0.743 μg/L

よって、これらのうち最小の AECa をもって、登録保留基準値 = 0.74 (μ g/L) とする。

(2)リスク評価

水産 PEC = 0.0034(µg/L)であり、登録保留基準値(案)0.74(µg/L)を下回っている。

<検討経緯>

2013年8月9日 平成25年度水産動植物登録保留基準設定検討会(第2回)2014年2月5日 平成25年度水産動植物登録保留基準設定検討会(第5回)