水産動植物の被害防止に係る農薬登録保留基準として 環境大臣が定める基準の設定に関する資料

ベンフレセート

I. 評価対象農薬の概要

1. 物質概要

化学名 (IUPAC)	2,3-ジヒドロ-3,3-ジメチルベンゾフラン-5-イル=エタンスルホナート				
分子式	$C_{12}H_{16}O_4S$	分子量	256. 3	CAS NO.	68505-69-1
構造式			C ₂ H ₅ SO ₂ O、		H ₃ C CH ₃

2. 作用機構等

ベンフレセートは、ベンゾフラン骨格を有する除草剤であり、その作用機構の詳細は解明されていないが、炭素数 18 以上の長鎖の脂肪酸の合成を阻害するものと考えられている。

本邦での初回登録は1994年である。

製剤は粒剤、水和剤が、適用農作物等は稲、芝がある。

原体の輸入量は 52.8t (平成 25 年度**)、36.1t (平成 26 年度**)、18.9t (平成 27 年度**) であった。

※年度は農薬年度(前年10月~当該年9月)、出典:農薬要覧-2016-((一社) 日本植物防疫協会)

3. 各種物性

外観・臭気	類白色結晶、無臭	土壤吸着係数	$K_F^{ads}_{0C} = 120 - 490$ $(25^{\circ}C)$
融点	30. 1℃	オクタノール /水分配係数	$logPow = 2.41 (20^{\circ}C)$
沸点	239 - 242℃ (24℃、大気圧)	生物濃縮性	
蒸気圧	2. 7×10 ⁻³ Pa (25℃)	密度	1.2 g/cm³ (20°C)
加水分解性	5 日間安定 (50℃; pH4、7、9)	水溶解度	2. 61×10 ⁵ μ g/L (25°C, pH6. 6)

	半減期
	7.4日(東京春季太陽光換算 146日)
水中光分解性	(滅菌緩衝液、pH7、25℃、4.3W/m²、290−320nm)
	6.7日(東京春季太陽光換算132日)
	(滅菌合成自然水、pH7、25℃、4.3W/m²、290-320nm)

Ⅱ. 水産動植物への毒性

1. 魚類

(1) 魚類急性毒性試験 [i] (コイ)

に基づく)

コイを用いた魚類急性毒性試験が実施され、96hLC₅₀ = 21,000 μ g/L であった。

被験物質 原体 供試生物 コイ(Cyprinus carpio) 7尾/群 暴露方法 半止水式 (暴露開始24時間毎に換水) 暴露期間 96h 設定濃度 (μg/L) 0 9,740 17,500 31, 200 97, 400 54, 500 (有効成分換算值) 実測濃度 (μg/L) 0 95, 500 8,230 15,500 27,800 51,900 (幾何平均值、有効 成分換算值) 死亡数/供試生物数 0/70/71/77/77/77/7(96hr後;尾) 助剤 なし 21,000 (95%信頼限界 19,000-26,000) (設定濃度 (有効成分換算値) LC_{50} (μ g/L)

表 1 魚類急性毒性試験結果

2. 甲殼類等

(1) ミジンコ類急性遊泳阻害試験 [i] (オオミジンコ) オオミジンコを用いたミジンコ類急性遊泳阻害試験が実施され、 $48hEC_{50}=35,000~\mu~g/L$ であった。

表2 ミジンコ類急性遊泳阻害試験結果

被験物質	原体								
供試生物	オオミ	オオミジンコ (Daphnia magna) 20 頭/群							
暴露方法 止水式									
暴露期間	48h	48h							
設定濃度 (μg/L)	0	800	1,600	3, 200	6, 100	12, 500	24, 800	49, 500	99,000
(有効成分換算値)									
実測濃度 (μg/L)	0	_	1, 730		6, 440	_	25, 800	_	91, 500
(幾何平均値、									
有効成分換算値)									
遊泳阻害数/供試生	0/20	0/20	0/20	0/20	0/20	0/20	0/20	20/20	20/20
物数 (48hr 後;頭)									
助剤	なし								
EC ₅₀ (μ g/L)	(μg/L) 35,000 (設定濃度 (有効成分換算値) に基づく)								

-: 測定せず

3. 藻類

(1) 藻類生長阻害試験 [i] (ムレミカヅキモ)

Pseudokirchneriella subcapitata を用いた藻類生長阻害試験が実施され、 $72hErC_{50}=33,400\,\mu$ g/L であった。

表 3 藻類生長阻害試験結果

被験物質	原体				
供試生物	P. subcapita	ta 初期生物量	$1 \times 10^4 \text{cells/m}$	nL	
暴露方法	振とう培養	振とう培養			
暴露期間	72h				
設定濃度 (μg/L)	0	14. 5	46. 4	148	474
(有効成分換算値)	1, 510	4, 840	15, 500	49, 400	98, 800
実測濃度(μg/L)	0			_	_
(幾何平均値、	1 640	5, 330	15, 700	35, 800	78, 600
有効成分換算値)	1, 640	5, 550	15, 700	55, 600	78,000
72hr 後生物量	69. 9	70.9	67.8	68.3	70. 5
$(\times 10^4 \text{cells/mL})$	57. 9	49. 2	23. 5	5. 80	8. 97
0-72hr 生長阻害率		-0.35	0.73	0. 54	-0. 20
(%)	4. 5	8.3	26	60	53
助剤	DMF 0.2mL/L(使用した最大濃度)				
ErC ₅₀ (μg/L) **	33,400(95%信頼限界 11,000-102,000(実測濃度(有効成分換算値)に				
	基づく)	基づく)			

^{- :} 測定せず

^{*:} 用量相関性を示さなかった最高濃度のデータは計算から省いた

Ⅲ. 水產動植物被害予測濃度(水產 PEC)

1. 製剤の種類及び適用農作物等

農薬登録情報提供システム((独)農林水産消費安全技術センター)によれば、本 農薬は製剤として粒剤及び水和剤があり、適用農作物等は稲、芝がある。

2. 水産 PEC の算出

(1) 水田使用時のPEC

水田使用時において、PEC が最も高くなる使用方法(下表左欄)について、第1段階のPECを算出する。算出に当たっては、農薬取締法テストガイドラインに準拠して下表右欄のパラメーターを用いた。

表4 PEC 算出に関する使用方法及びパラメーター (水田使用第1段階)

PEC 算出に関す	る使用方法	各パラメーターの値			
適用農作物等	稲	I: 単回・単位面積当たりの有効成分量 (有効成分 g/ha) (左側の最大使用量に、有効成分濃度を 乗じた上で、単位を調整した値)	600		
剤 型	6%粒剤	ドリフト量	考慮せず		
当該剤の単回・単位面積当たりの最大	1kg/10a (10a 当たり薬	A_p :農薬使用面積(ha)	50		
使用量	Manage	f _p :使用方法による農薬流出係数 (-)	1		
地上防除/航空防除 の別	地上防除	T _e :毒性試験期間 (day)	2		
使用方法	湛水散布				

これらのパラメーターより水田使用時の PEC は以下のとおりとなる。

水田 PEC _{Tierl} による算出結果	9. 0 μg/L
---------------------------------	-----------

(2) 非水田使用時の PEC

非水田使用時において、PEC が最も高くなる使用方法(下表左欄)について、第1段階のPEC を算出する。算出に当たっては、農薬取締法テストガイドラインに準拠して下表右欄のパラメーターを用いた。

表5 PEC 算出に関する使用方法及びパラメーター (非水田使用第1段階:地表流出)

PEC 算出に関 ^ー	する使用方法	各パラメーターの値	
適用農作物等	芝	I: 単回・単位面積当たりの有効成分量 (有効成分 g/ha) (左側の最大使用量に、有効成分濃度を 乗じた上で、単位を調整した値)	900
剤 型	30%水和剤	D _{river} :河川ドリフト率 (%)	
当該剤の単回単位 面積当たり最大使	0.3g/㎡ (1 ㎡当たり薬剤	Z _{river} :1日河川ドリフト面積(ha/day)	_
用量	0.3g を希釈水 100 ~200mL に添加)	N _{drift} :ドリフト寄与日数 (day)	-
地上防除/航空防除 の別 地上防除		Ru:畑地からの農薬流出率 (%)	0.02
使用方法	雑草茎葉散布	Au:農薬散布面積 (ha)	37. 5
区/11/11/4	本学全来队们	fu: 施用法による農薬流出係数 (-)	1

これらのパラメーターより非水田使用時の PEC は以下のとおりとなる。

非水田 PEC _{Tier1} による算出結果 0.0036 μg/L	非水田 PEC _{Tier1} による算出結果	0.0036 μg/L
--	----------------------------------	-------------

(3) 水産 PEC 算出結果

(1) 及び(2) より、最も値の大きい水田使用時の PEC 算出結果から、水産 PEC は 9.0 μ g/L となる。

IV. 総 合 評 価

1. 水産動植物の被害防止に係る登録保留基準値

各生物種のLC50、EC50は以下のとおりであった。

魚類[i] (コイ急性毒性)

96hLC₅₀ = 21,000 μ g/L

甲殻類等[i] (オオミジンコ急性遊泳阻害)

 $48hEC_{50} = 35,000 \mu g/L$

藻類[i] (ムレミカヅキモ生長阻害)

 $72hErC_{50} = 33,400$

 μ g/L

魚類急性影響濃度(AECf)については、魚類 [i] の LC_{50} (21,000 μ g/L)を採用し、不確実係数 10 で除した 2,100 μ g/L とした。

甲殻類等急性影響濃度 (AECd) については、甲殻類等 [i] の EC_{50} (35,000 μ g/L) を採用し、不確実係数 10 で除した 3,500 μ g/L とした。

藻類急性影響濃度(AECa)については、藻類 [i] の ErC_{50} (33, $400 \mu g/L$)を採用し、33, $400 \mu g/L$ とした。

これらのうち最小の AECf より、登録保留基準値は 2,100 μ g/L とする。

2. リスク評価

水産 PEC は 9.0 μ g/L であり、登録保留基準値 2,100 μ g/L を超えていないことを確認した。

<検討経緯>

平成29年2月3日 平成28年度水產動植物登録保留基準設定検討会(第6回) 平成29年3月3日 中央環境審議会土壌農薬部会農薬小委員会(第56回)