水産動植物の被害防止に係る農薬登録保留基準として 環境大臣が定める基準の設定に関する資料

メタミトロン

. 評価対象農薬の概要

1.物質概要

化学名	4 - アミノ - 3 - メチル - 6 - フェニル - 1 , 2 , 4 - トリアジン - 5 (4 <i>H</i>) - オン					
分子式	C ₁₀ H ₁₀ N ₄ O	分子量	202.2	CAS NO.	41394-05-2	
構造式				N N	N N CH_3	

2.作用機構等

メタミトロンは、非対称のトリアジン系の除草剤であり、その作用機構は葉緑体の 電子伝達阻害による光合成阻害であると考えられている。

本邦での初回登録は2002年である。

製剤は水和剤が、適用農作物等はてんさいがある。

申請者からの聞き取りによると、製剤の輸入量から有効成分換算した原体の輸入量は 127t(平成 24 年度)、183t(平成 25 年度)、110t(平成 26 年度)であった。

年は当該年1月~12月、25年は10月末まで

3. 各種物性

外観・臭気	淡黄色固体結晶、無臭	土壌吸着係数	K _F oc = 54 - 120 (日本土壌) K _F oc = 54 - 86 (外国土壌)
融点	166.9	オクタノール / 水分配係数	logPow = 0.83 (20)
沸点	220 で分解のため 測定不能	生物濃縮性	-
蒸気圧	9 x 10 ⁻⁷ Pa (20)	密度	1.4 g/cm³ (22.5)

	半減期					
 加水分解性	143 日 (25 、pH5)	 水溶解度	1.7×10 ⁶ μg/L (20)			
加小刀牌工	132日(25、pH7)	小俗胜反	μg/L (20)			
	13 - 17.5 日(25 、pH9)					
	半減期					
	4分					
	(緩衝液、pH5、15 - 17 、太陽光(450 - 550W/m²、300 - 1,100nm))					
水中光分解性	7 分 (北緯 30 ° 春季太陽光換算 0.48 時間)					
	(純水、15 - 17 、太陽光(450 - 550W/m²、300 - 1,100nm))					
	1.32 時間(東京春季太陽光換算 0.48 時間)					
	(自然水、pH7.02、25 、456W/m²、300 - 800nm)					

. 水産動植物への毒性

1.魚類

(1)魚類急性毒性試験[](コイ)

コイを用いた魚類急性毒性試験が実施され、 $96hLC_{50} > 98,600 \mu g/L$ であった。

次:						
被験物質	原体	原体				
供試生物	コイ (Cypri	inus carpid) 10尾/	詳		
暴露方法	止水式	止水式				
暴露期間	96h					
設定濃度(μg/L)	0	1,000	3,000	9,900	30,000	98,600
(公比約3)						
(有効成分換算値)						
死亡数/供試生物数	0/10	0/10	0/10	0/10	0/10	0/10
(96hr後;尾)						
助剤	10%硬化ヒマシ油含有 DMSO 100mg/L					
LC ₅₀ (μg/L)	> 98,600 (設定濃度(有効成分換算値)に基づく)					

表 1 魚類急性毒性試験結果

(2) 魚類急性毒性試験[](コイ)

コイを用いた魚類急性毒性試験が実施され、 $96hLC_{50}$ = 194,000 μ g/L であった。

表 2 魚類急性毒性試験結果

被験物質	原体					
供試生物	コイ (Cypri	inus carpic) 10尾/	詳		
暴露方法	止水式					
暴露期間	96h					
設定濃度(μg/L)	0	43,000	92,800	200,000	430,000	928,000
(有効成分換算値)						
実測濃度(µg/L)	0	46,500	106,000	223,000	483,000	937,000
(算術平均値、						
有効成分換算値)						
死亡数/供試生物数	0/10	0/10	3/10	8/10	6/10	10/10
(96hr後;尾)						
助剤	なし					
LC ₅₀ (μg/L)	194,000 (9	5%信頼限界	121,000-30	01,000) (実測濃度(有	可効成分換
	算値)に基	づく)				

2. 甲殼類等

(1)ミジンコ類急性毒性試験[](オオミジンコ)

オオミジンコを用いたミジンコ類急性毒性試験が実施され、遊泳阻害に関する $48hEC_{50} = 6,600 \mu g/L$ であった。

表3 ミジンコ類急性毒性試験結果

被験物質	原体					
供試生物	オオミジンコ (Daphnia magna)			20 頭/群		
暴露方法	止水式					
暴露期間	48h					
設定濃度(μg/L)	0	100	180	320	560	1,000
	1,800	3,200	5,600	10,000		
実測濃度(µg/L)	0	98.9~	- ~	393 ~	- ~	1,060~
(暴露開始時~		101	217	340	509	1,040
暴露終了時)	- ~	3,310~	- ~	10,200~		
	1,890	3,080	5,390	9,440		
遊泳阻害数/供試生	0/20	0/20	0/20	0/20	0/20	0/20
物数(48hr後;頭)	0/20	0/20	4/20	20/20		
助剤	なし					-
EC ₅₀ (μg/L)	6,600 (95 ⁹ に基づく)		5,000-7,400)(設定濃	度(有効成	分換算値)

: 測定せず

3 . 藻類

(1)藻類生長阻害試験[](ムレミカヅキモ)

Pseudokirchneriella subcapitata を用いた藻類生長阻害試験が実施され、 $72hErC_{50} = 900~\mu\,g/L\,$ であった。

表 4 藻類生長阻害試験結果

被験物質	原体				
供試生物	P. subcapitata	初期生物量 1.0	×10⁴cells/mL		
暴露方法	振とう培養	振とう培養			
暴露期間	72 h				
設定濃度(μg/L)	0	99	180	320	
(有効成分換算値)	560	990	1,800	3,200	
実測濃度(µg/L) (算術平均値、	0	60	110	200	
有効成分換算値)	350	600	1,100	2,000	
72hr 後生物量	178	157	121	92.9	
(×10 ⁴ cells/mL)	52.8	22.1	8.61	4.66	
0-72hr 生長阻害率		2.5	7.6	13	
(%)	23	40	58	69	
助剤	なし				
ErC ₅₀ (μg/L)	900(実測濃度(有効成分換算値)に基づく)				

. 水産動植物被害予測濃度(水産 PEC)

1.製剤の種類及び適用農作物等

農薬登録情報提供システム((独)農林水産消費安全技術センター)によれば、本 農薬は製剤として水和剤があり、適用農作物等はてんさいがある。

2 . 水産 PEC の算出

(1) 非水田使用時の PEC

非水田使用農薬として、PEC が最も高くなる使用方法(下表左欄)について、第1段階のPEC を算出する。算出に当たっては、農薬取締法テストガイドラインに準拠して下表右欄のパラメーターを用いた。

表 5 PEC 算出に関する使用方法及びパラメーター (非水田使用第1段階:地表流出)

PEC 算出に関す	する使用方法	各パラメーターの値	
適用農作物等	てんさい	/: 単回・単位面積当たりの有効成分 量(有効成分 g/ha) (左側の最大使用量に、有効成分濃度 を乗じた上で、単位を調整した値)	4,200
剤 型	70%水和剤	D _{river} :河川ドリフト率(%)	-
当該剤の単回・単位	600g/10a (10a 当たり薬剤	Z _{river} :1 日河川ドリフト面積(ha/day)	-
面積当たり最大 使用量	400~600g を 希釈水 50~100L に添加)	N _{drift} :ドリフト寄与日数(day)	ı
地上防除/航空防除 の別	地上防除	R _u :畑地からの農薬流出率(%)	0.02
(市田 <u>古</u> 注	姚芦芝菅勒左	A _u :農薬散布面積(ha)	37.5
使用方法 維草茎葉散布		f _u :施用法による農薬流出係数(-)	1

これらのパラメーターより非水田使用時の PEC は以下のとおりとなる。

非水田 PEC _{Tier1} による算出結果	0.017 μg/L
----------------------------------	------------

(2)水産 PEC 算出結果

(1)より、水産 PEC = $0.017(\mu g/L)$ となる。

.総合評価

(1)水産動植物の被害防止に係る登録保留基準値(案)

各生物種のLC₅₀、EC₅₀は以下のとおりであった。

96hLC₅₀ > 魚類「 1(コイ急性毒性) 98,600 $\mu g/L$](コイ急性毒性) 魚類[$96hLC_{50} = 194,000$ $\mu g/L$ 甲殻類等[](オオミジンコ急性遊泳阻害) $48hEC_{50} =$ 6,600 $\mu g/L$ 藻類[](ムレミカヅキモ生長阻害) $72hErC_{50} =$ 900 $\mu g/L$

魚類急性影響濃度(AECf)については、魚類 []の LC_{50} (194,000 μ g/L)を採用し、不確実係数 10 で除した 19,400 μ g/L とした。

甲殻類等急性影響濃度 (AECd) については、甲殻類等 []の EC_{50} (6,600 μ g/L)を採用し、不確実係数 10 で除した 660μ g/L とした。

藻類急性影響濃度(AECa)については、藻類 []の ErC_{50} (900 μ g/L)を採用し、900 μ g/L とした。

これらのうち最小の AECd より、登録保留基準値 = 660 (μg/L)とする。

(2)リスク評価

水産 PEC は 0.017μ g/L であり、登録保留基準値 660μ g/L を超えていないことを確認した。

<検討経緯>

平成 26 年 2 月 5 日 平成 25 年度水産動植物登録保留基準設定検討会(第 5 回)

平成 28 年 8 月 5 日 平成 28 年度水産動植物登録保留基準設定検討会(第 3 回)

平成 28 年 9 月 9 日 中央環境審議会土壌農薬部会農薬小委員会(第 53 回)