
水産動植物の被害防止に係る農薬登録保留基準として 環境大臣が定める基準の設定に関する資料

シマジン(САТ)

. 評価対象農薬の概要

1.物質概要

2.作用機構等

シマジン(САТ)は、トリアジン骨格を有する除草剤であり、その作用機構は処 理後根によって吸収され、体内に移行し発芽後光合成を阻害して枯死させる。 本邦での初回登録は1958年である。

製剤は粒剤及び水和剤が、適用農作物等は雑穀、果樹、野菜、豆、花き、芝等があ る。

原体の輸入量は、13.0t(平成25年度)、13.4t(平成26年度)であった。 年度は農薬年度(前年10月~当該年9月)、出典:農薬要覧-2015-((社)日本植物防疫協会)

3. 各種物性

外観・臭気	白色粉末固体、無臭(25)	土壌吸着係数	$K_F^{ads}_{00} = 67 - 120 (25)$
融点	225.2	オクタノール / 水分配係数	logPow = 2.1 (25)
沸点	225 - 226 で昇華するため測定不能	生物濃縮性	-
蒸気圧	2.9 × 10 ⁻⁶ Pa (25)	密度	1.3 g/cm³ (22)
加水分解性	28 日間安定 (20 ; pH5、7、9)	水溶解度	$6.2 \times 10^3 \mu \text{g/L} (22 \text{pH7})$

	半減期
	> 70 日(東京春季太陽光換算 > 360 日)
	(滅菌蒸留水、25 、40W/m²(300 - 400nm)、920W/m²(300 - 800nm))
	2.4日(東京春季太陽光換算12.3日)
水中光分解性	(自然水、pH7.6、25 、40W/m²(300-400nm)、920W/m²(300-800nm))
	191 日(東京春季太陽光換算 754 日)
	(滅菌緩衝液、pH7、25 、390.0W/m²、300-800nm)
	東京春季太陽光換算 232 日
	(滅菌自然水、pH7.37、25 、23.8W/m²、300 - 400nm)

. 水産動植物への毒性

1.魚類

(1)申請者から提出された試験データ

魚類急性毒性試験[](コイ)

コイを用いた魚類急性毒性試験が実施され、96hLC₅₀ > 41,700 μg/L であった。

被験物質 原体 供試生物 コイ (Cyprinus carpio) 7尾/群 暴露方法 止水式 暴露期間 96h 設定濃度(µg/L) 0 100,000 0 41,700 実測濃度(µg/L) (幾何平均值、 有効成分換算値) 死亡数/供試生物数 0/7 0/7 (96hr後;尾) アルキルフェノールポリグリコールエーテル 助剤 4.0mg/L (使用した最高濃度) > 41,700 (実測濃度(有効成分換算値)に基づく) LC_{50} (μ g/L)

表 1 魚類急性毒性試験結果

(2)環境省が文献等から収集した毒性データ

魚類急性毒性試験[](ヒメダカ)

環境省は、OECD テストガイドライン No. 203 (1992) に準拠し、ヒメダカの急性毒性試験を実施した。96hLC $_{50}$ > 4,630 μ g/L であった。

表 2 魚類急性毒性試験結果

被験物質	純度 99.9%
供試生物	ヒメダカ (Oryzias latipes) 10尾/群
暴露方法	半止水式 (48 時間後換水、緩やかな曝気あり)
暴露期間	96 時間
設定濃度 (µg/L) (有効成分換算値)	0 5,000
実測濃度(µg/L) (時間加重平均値)	0 4,630
遊泳阻害数/供試生物数(96時間後、頭)	0/10 0/10
助剤	なし
96hLC ₅₀ (μg /L)	> 4,630 µg/L (実測濃度に基づく)

出典)環境省(2004): 平成 15 年度生態影響試験(シマジンのヒメダカによる 96 時間急性 毒性試験)

2. 甲殼類等

- (1)ミジンコ類急性遊泳阻害試験 [] (オオミジンコ) オオミジンコを用いたミジンコ類急性遊泳阻害試験が実施され、 $48hEC_{50}$
 - > $98,600 \mu g/L \$ であった。

表3 ミジンコ類急性遊泳阻害試験結果

被験物質	原体							
供試生物	オオミ	ジンコ(Daphnia	magna)	20 頭/群			
暴露方法	止水式							
暴露期間	48h							
設定濃度(μg/L)	0	3,200	5,800	10,000	18,000	32,000	58,000	100,000
実測濃度(μg/L)	0	2,500	4,000	6,100	12,600	27,200	53,400	98,600
(幾何平均値、								
有効成分換算値)								
遊泳阻害数/供試生	0/20	0/20	0/20	0/20	0/20	0/20	0/20	1/20
物数 (48hr 後;頭)								
助剤	THF: 8	37mg/L、	アルキル	フェノー	ルポリグ	ルコール	エーテル	: 4mg/L
	(使用	した最高	濃度)					
EC ₅₀ (μg/L)	> 98,	600(実測	濃度(有	動成分換	桑算値)に	基づく)		

3 . 藻類

(1)藻類生長阻害試験[](ムレミカヅキモ)

Pseudokirchneriella subcapitata を用いた藻類生長阻害試験が実施され、 $72hErC_{50} = 250 \mu g/L$ であった。

表 4 藻類生長阻害試験結果

被験物質	原体						
供試生物	P. subc	api tata	初期生物量	± 1.0 × 10⁴c	ells/mL		
暴露方法	振とう培	養					
暴露期間	120h						
設定濃度(µg/L)	0	31	63	125	250	500	1,000
(有効成分換算値)							
実測濃度(μg/L)	0	34	67	130	290	540	1,050
(0-120h 幾何平均値、							
有効成分換算値)							
72hr 後生物量	106	88.7	43.0	30.7	7.63	4.00	2.10
(×10 ⁴ cells/mL)							
0-72hr 生長阻害率		4.2	20	27	57	70	85
(%)							
助剤	DMF 0.2	mL/L					
72hErC ₅₀ (μg/L)	250 (95%	信頼限界	220 - 300)	(実測濃度	夏(有効成分	分換算値)	こ基づく)

(2)藻類生長阻害試験[](イカダモ)

Desmodesmus subspicatusを用いた藻類生長阻害試験が実施され、 $72hErC_{50} = 172$ μ g/L であった。

表 5 藻類生長阻害試験結果

被験物質	原体					
供試生物	D. subspi	catus 初期	生物量 1.16:	×104cells/m	L	
暴露方法	振とう培養					
暴露期間	72h					
設定濃度(μg/L)	0	3.7	11	33	100	300
実測濃度(μg/L)	0	4.3	13.5	34.7	100	300
(幾何平均値)						
72hr 後生物量	129	123	119	94.7	27.0	5.3
(×10⁴cells/mL)						
0-72hr 生長阻害率		0.83	1.6	6.5	33	68
(%)						
助剤	なし					
ErC ₅₀ (μg/L)	172(95%信	輔限界 139	- 213)(実涯	則濃度(有効	成分換算值)) に基づく)

. 水產動植物被害予測濃度(水產 PEC)

1.製剤の種類及び適用農作物等

農薬登録情報提供システム((独)農林水産消費安全技術センター)によれば、本 農薬は製剤として粒剤及び水和剤があり、適用農作物等は雑穀、果樹、野菜、豆、 花き、芝等がある。

2. 水産 PEC の算出

(1)非水田使用時のPEC

非水田使用時において、PEC が最も高くなる使用方法(下表左欄)について、第1段階のPECを算出する。算出に当たっては、農薬取締法テストガイドラインに準拠して下表右欄のパラメーターを用いた。

表 6 PEC 算出に関する使用方法及びパラメーター (非水田使用第1段階:地表流出)

PEC 算出に関す	する使用方法	各パラメーターの値		
適用農作物等	果 樹	/: 単回・単位面積当たりの有効成分 量(有効成分 g/ha) (左側の最大使用量に、有効成分濃度 を乗じた上で、単位を調整した値)	1,500	
剤 型	50%水和剤	D _{river} :河川ドリフト率(%)	-	
当該剤の単回・単位面積当たり最大	300g/10a (10a 当たり 薬剤 150~300g を	Z _{river} :1 日河川ドリフト面積(ha/day)	1	
使用量	柔削 150~500g を 希釈水 70L~150L に添加)	N _{drift} :ドリフト寄与日数(day)	1	
地上防除/航空防除 の別	地上防除	R _u :畑地からの農薬流出率(%)	0.02	
使用方法	全面土壌散布	A _u :農薬散布面積(ha)	37.5	
文币/]/4	土山土城拟川	f_u :施用法による農薬流出係数 $(-)$	1	

これらのパラメーターより、非水田使用時の PEC は以下のとおりとなる。

非水田 PEC _{Tier1} による算出結果 0.0059 μg/L
--

(2)水産 PEC 算出結果

(1)より水産 PEC は 0.0059 μg/L となる。

.総合評価

1. 水産動植物の被害防止に係る登録保留基準値

各生物種のLC50、EC50 は以下のとおりであった。

無類 [] (コイ急性毒性) 96hL C_{50} > 41,700 μ g/L 魚類 [] (ヒメダカ急性毒性)【文献データ】 96hL C_{50} > 4,630 μ g/L 甲殻類等 [] (オオミジンコ急性遊泳阻害) 48hE C_{50} > 98,600 μ g/L 藻類 [] (ムレミカヅキモ生長阻害) 72hEr C_{50} = 250 μ g/L 藻類 [] (イカダモ生長阻害) 72hEr C_{50} = 172 μ g/L

魚類急性影響濃度 (AECf) については、魚類 []の LC_{50} (> 4,630 μ g/L)を採用し、不確実係数 10 で除した > 463 μ g/L とした。

甲殻類等急性影響濃度 (AECd) については、甲殻類等 [] の EC_{50} (> 98,600 μ g/L) を採用し、不確実係数 10 で除した > 9,860 μ g/L とした。

藻類急性影響濃度(AECa)については、藻類 []の ErC_{50} (172 μ g/L)を採用し、172 μ g/L とした。

これらのうち最小の AECa より、登録保留基準値は 170 μg/L とする。

2.リスク評価

水産 PEC は $0.0059\,\mu\,g/L$ であり、登録保留基準値 170 $\mu\,g/L$ を超えていないことを確認した。

<検討経緯>

平成 28 年 6 月 16 日 平成 28 年度水産動植物登録保留基準設定検討会(第 2 回)

平成 28 年 8 月 5 日 平成 28 年度水産動植物登録保留基準設定検討会(第 3 回)

平成 28 年 9 月 9 日 中央環境審議会土壌農薬部会農薬小委員会(第 53 回)