【公表用資料】 2020 年度苫小牧沖における初秋調査結果 (概要版)

2016年4月から苫小牧沖において、海洋汚染等防止法に基づく環境大臣の許可を受けた国内第1号の海底下 CCS 事業である苫小牧沖海底下 CCS 実証試験事業が開始され、海底下への CO2の圧入が経済産業省により実施されていました。2020年11月末までに約30万tの CO2が圧入され終了しました。

2020 年度初秋(2020 年 9 月~10 月)に環境省が調査した結果、2011 年度から 2015 年度までの調査 $^{1)}$ と比較して、大きな変化は見られず、海洋への CO_2 の漏出が懸念されるデータはありませんでした。

【調査の概要】

海底下 CCS 事業に係る許可制度の規制当局である環境省として独自に、最新の知見に基づくモニタリング技術を活用し、結果を検証していくことにより、海底下 CCS 事業における適切な海域のモニタリング技術及びその適用方法の確立を図ることを目的として、苫小牧沖において海洋調査を実施しました。

調査海域は苫小牧沖の約 10km×8km の範囲とし、海水の化学的性状、底質、海洋生態系の変化について、図1に示す調査測点で調査しました。

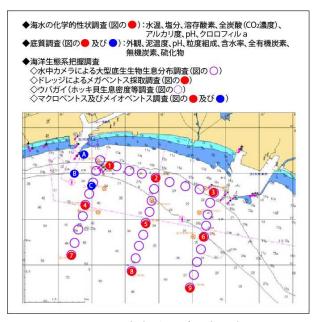


図1 調査海域及び調査測点

-

 $^{^{1)}}$ 2011~2015 年度に実施した海底下 CCS 実施のための海洋調査事業

1. 海水の化学的性状調査

万が一、圧入された CO_2 が漏出した場合、海水中の CO_2 濃度や平衡状態が変化すると予想され、例えば CO_2 の分圧(pCO_2)及び全炭酸(DIC)濃度の上昇や pH の低下が起こることが考えられます。このような変化を検知するため、採水を行い、海水中の CO_2 に関係するパラメータとして DIC、アルカリ度、pH 及び塩分について分析し、 pCO_2 を算出しました。

海水中の CO_2 濃度は、 CO_2 の漏出のような外的な要因だけでなく、例えば海水の混合度合いや生物の呼吸・光合成などにより著しく変化します。これらの影響を把握するため、多項目センサを用いて水温及び塩分の分布を把握し、溶存酸素 (DO) や光合成を行う植物プランクトンの指標となるクロロフィル a 濃度についても分析しました。

海水の化学的性状調査は2020年9月29日、30日に実施しました。

2. 底質調査

底泥中の水分(間隙水)に CO_2 が溶解すると pH の低下が起こります。この変化を検知するため、採泥を行い、pH を測定するとともに、関連項目として含水率、有機炭素、無機炭素、全窒素及び硫化物について分析しました。

底質調査は2020年10月9日、13日、14日に実施しました。

3. 海洋生態系調査

海洋生態系のうち、海底面上または底泥中に生息する底生生物は、海中を遊泳する魚類等と比較して移動範囲が狭いことから、底泥中の間隙水に CO_2 が溶解した場合、影響をより強く受ける可能性があります。特に炭酸カルシウムの殻を持つ生物は、底質のpH低下の影響を受けやすいと考えられます。

底生生物については、肉眼で見える大きさでドレッジやトロール等の底引き網で採取できるような大型の底生生物 (メガベントス)、1mm以上の中型の底生生物 (マクロベントス)、1mm未満の小型の底生生物 (メイオベントス) に区分されます。

水中カメラによる大型の底生生物生息分布調査は 2020 年 10 月 15 日~28 日に、ドレッジによる大型の底生生物採取調査は 2020 年 10 月 8 日に、苫小牧地域の水産重要種であるウバガイ(ホッキガイ)生息密度等調査を 2020 年 10 月 1 日に実施しました。

また、中型の底生生物及び小型の底生生物調査は 2020 年 10 月 9 日、13 日、14 日に 実施しました。

【調査の結果】

1. 海水の化学的性状調査

水温は $16.64\sim21.42$ °C、塩分は $32.78\sim33.99$ 、アルカリ度は $2,207\sim2,258$ μ mol/kg、DIC は $1,949\sim2,043$ μ mol/kg、pH は $8.02\sim8.16$ 、pCO $_2$ (計算値)は $340\sim425$ μ atm、DO は $211\sim237$ μ mol/kg、DO 飽和度(計算値)は $89\sim103$ %、クロロフィル a 濃度は $0.1\sim1.9$ μ g/L の範囲でした。2020 年度初秋調査の結果は、過年度の調査結果と比較して大きな変化は見られませんでした。

前述したように、海水中の CO_2 の漏出が起こらなくても、海域での光合成や呼吸(有機物の分解を含む)など生物的な要因によっても大きく変化します。光合成と呼吸は海水中の酸素の放出と消費を伴うことから、これら生物的な要因による変化分を pCO_2 と DO の関係から見積もることが可能であると考えられました。2011 年度から 2015 年度までの調査で得られたデータの解析により、調査海域における pCO_2 と DO 飽和度には曲線で示す関係があることが確認されています。この曲線の 95%予測区間の上限を超過するデータが確認された場合、 CO_2 圧入開始以前の過去の傾向から統計的に外れたとみなされることから、漏出を懸念することとしました。ただし統計学的には、漏出が発生していない場合においても、2.5%の確率で上限を超過するデータが確認される可能性があります。

2020 年度初秋の pCO_2 と DO 飽和度との関係を過年度調査結果と比較したところ、図 2 のとおり 95%予測区間の上限を超過するデータ、すなわち CO_2 漏出を懸念されるデータはありませんでした。

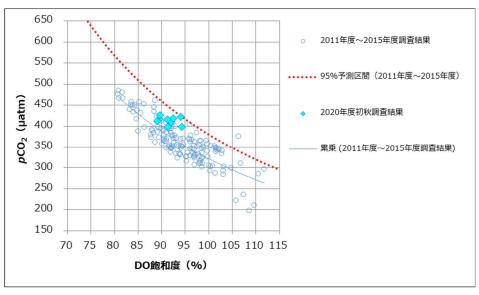


図 2 pCO₂ と DO 飽和度との関係

2. 底質調査

pH は 7.31~8.01、含水率は 20.0~34.5%、有機炭素は 0.9~10.4 mg/g-dry、無機炭素は定量下限値未満~0.3 mg/g-dry、全窒素は 0.13~1.20 mg/g-dry の範囲でした。硫化物は調査測点 2、3、5、7、8(調査開始から初めて検出された)及び C で検出され、0.1~0.4 mg/g-dry の範囲でした。

2020年度初秋の調査結果は、有機炭素及び硫化物の値が調査測点 8 で過年度秋季最大値より大きい値を示しました。それ以外の結果は、過年度秋季調査結果と比較して大きな変化は見られませんでした。

3. 海洋生態系調査

(1) 水中カメラによる大型底生生物 (メガベントス) 生息分布調査結果

キンコ、スナヒトデ、ヒダベリイソギンチャク、イソギンチャク目、アヤボラ、エゾボラ、腹足綱、多毛綱、ヤドカリ亜目、カレイ目、等が確認されました。

2020年度初秋の調査結果は、過年度秋季調査結果と比較して大きな変化は見られませんでした。

(2) ドレッジによる大型底生生物 (メガベントス) 採取調査結果

出現個体数は、ゴカイの仲間が多数を占めた環形動物門、クモヒトデの仲間が多数を占めた棘皮動物門、二枚貝の仲間が多数を占めた軟体動物門の順でした。

底質の pH 低下の影響を受けやすいと考えられる炭酸カルシウムの殻を持つもので出現個体数が多かったのは *Ophiura* 属、エゾハマグリ、フミガイ属でした。

2020 年度初秋の調査結果は、生息数では、過年度秋季調査結果の最小一最大の範囲にありました。湿重量(生物量)では、調査測点 1 で過年度秋季調査結果の最小値を下回りました。ただし、水中カメラによるメガベントス生息分布調査結果に大きな変化はなかったことが確認されています。

その他の調査測点の結果は、組成比に違いはあるものの、過年度秋季調査結果の最小ー 最大の範囲にあり、大きな変化は見られませんでした。

(3) ウバガイ(ホッキ貝) 生息密度調査結果

ウバガイ調査は2回曳網を行いました。1回目の曳網では、生息密度は350 個体/100m²、湿重量は117.7 kg-wet/100m²、2 回目の曳網では、生息密度は287 個体/100m²、湿重量は98.8 kg-wet/100m²でした。また、個体重量に対する貝殻重量の割合は1 回目の曳網では71%、2 回目の曳網では69%でした。

2020年度初秋の調査結果は、過年度秋季調査結果と比較して生息密度、貝殻重量、軟体部重量及び個体重量に対する貝殻重量の割合に大きな変化は見られませんでした。

(4) 中型底生生物(マクロベントス)及び小型底生生物(メイオベントス)調査結果

中型底生生物の出現個体数は、多毛綱(ゴカイの仲間)が最も多く、次に二枚貝綱、軟甲綱の順でした。

底質の pH 低下の影響を受けやすいと考えられる炭酸カルシウムの殻を持つもので出現個体数が多かったのは、ケシトリガイ、クルミガイ、チョノハナガイでした。

2020 年度初秋の調査結果は、過年度秋季調査結果の生息数の最小値を下回る調査測点はなく、マクロベントス生息数は過年度秋季調査結果のおおむね最小一最大の範囲であり、大きな変化は見られませんでした。

小型底生生物の出現個体数は、線形動物門(線虫の仲間)が最も多く、次に有孔虫目(有 孔虫の仲間)、ソコミジンコ目の順でした。

底質の pH 低下の影響を受けやすいと考えられる炭酸カルシウムの殻を持つもので出現個体数が多かったのは、有孔虫目、ソコミジンコ目、二枚貝綱でした。

2020 年度初秋の調査結果は、過年度秋季調査結果の生息数の最小値を下回る調査測点はなく、メイオベントス生息数は過年度秋季調査結果のおおむね最小一最大の範囲であり、大きな変化は見られませんでした。