第Ⅴ章 漂流ごみの特性に関わる考察

V.1 海域特性

令和2年度の秋季と冬季に同一方法で実施した調査結果に基づき季節ごとに、調査時の気象・海象を要約し、次いでマイクロプラスチック調査結果の比較を述べる。

V.1.1 秋季調査結果の比較

(1)調査日

表 V. 1-1 各海域の調査実施日(秋季)

泊村沖	令和2年12月12日
志賀町沖	令和2年10月19日
赤羽根町沖	令和2年11月17日

(2) 調査時の気象・海象概要

1) 泊村沖

- ①海流の影響・対馬暖流の影響は大きくなかった。
- ②外洋の影響 ・下層では、塩分が高く、外洋水の影響を受けていたが、表層は外洋水の影響を受けていなか。表層は外洋水の影響を受けていなかった。
- ③降雨・陸水の影響・調査前に降雨があり、表層は降雨・陸水の影響を受けていた。
- ④風、波浪の影響・継続して風が吹いていることから、沿岸湧昇が起こっていた可能性がある・表層付近に躍層がみられ、鉛直混合は起きていなかったと思われる。

2) 志賀町沖

- ①海流の影響・対馬暖流の影響はほとんどみられない。
- ②外洋の影響 ・下層では、塩分が高く、外洋水の影響を受けていたが、表層は外洋水の影響を受けていなかった。
- ③降雨・陸水の影響 ・調査前の降雨もほとんどなく、河川等の陸水の影響はなかった。
- ④風、波浪の影響・風速も遅く、風向もばらついているため、沿岸湧昇は起きていないと思われる。
 - ・有義波高も低く、風も弱かったため鉛直混合は起きていないと思われる。

3) 赤羽根町沖

- ①海流の影響・黒潮が沖合を通過しており、黒潮の反流が赤羽根町沖に回り込んでいた。
- ②外洋の影響・調査海域の塩分は高く、外洋の影響を受けていた。
- ③降雨・陸水の影響 ・調査前の降雨もほとんどなく、河川等の陸水の影響はなかった。
 - ・伊勢湾からの湾内水についても、影響ないものと思われた。
- ④風、波浪の影響 ・風は間欠的に強く吹いており、海域の密度の鉛直分布が一様であること から、風による鉛直混合があった可能性がある。

(3) マイクロプラスチックの個数と個数密度

各調査海域の各測線におけるマイクロプラスチックの総個数、海水 1 m^3 当たりの個数密度、総重量を図V.1-1に示す。

- ・ 泊村沖では1㎜未満画分が1~5㎜画分よりわずかに多かった。
- ・ 志賀町沖では特に測線④、⑤で1~5 mm画分が大部分を占め、1 mm未満画分は少なかった。
- ・ 赤羽根町沖では1mm未満画分が大部分を占め、1~5mm画分は少なかった。
- ・ 総個数、総個数密度は、泊村沖では測線②、⑤で、志賀町沖では測線④、⑤で、赤羽根町 沖では、測線④でそれぞれ他の測線よりも多かった。
- ・ 総重量は全ての海域で測線④、⑤が他の測線より多かった。
- ・ 3海域間で比較すると、総個数と個数密度は赤羽根町沖で、総重量は志賀町沖で多かった。

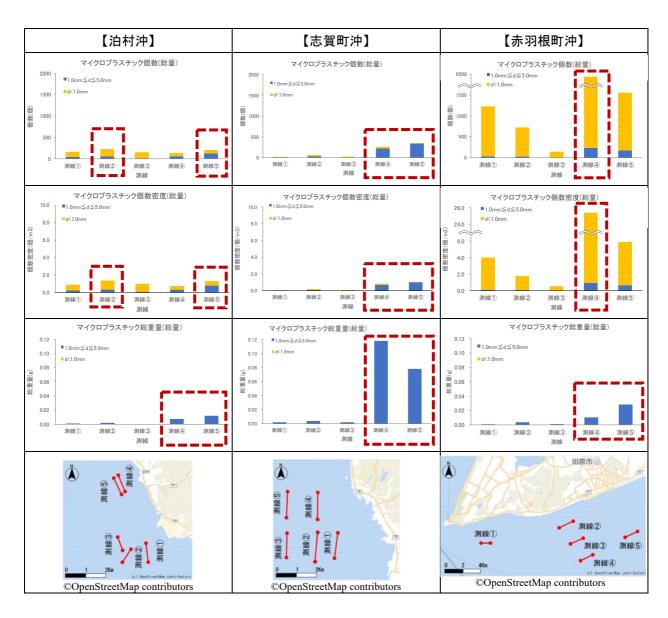


図 V.1-1 海域別個数、個数密度の比較 (個数は1 測線あたりの総採取量、個数密度は海水1 ㎡あたりの密度)

(4) マイクロプラスチックの形状割合

各調査海域の各測線におけるマイクロプラスチックの形状割合をサイズ別に図V.1-2に示す。

- ・ 3海域に共通して、サイズにかかわらず、破片の割合が高かった。
- ・ 破片以外には、繊維、フィルムなどが確認されたが、それらの割合は低かった。
- ・ 志賀町沖では、破片以外はほとんどみられなかった。

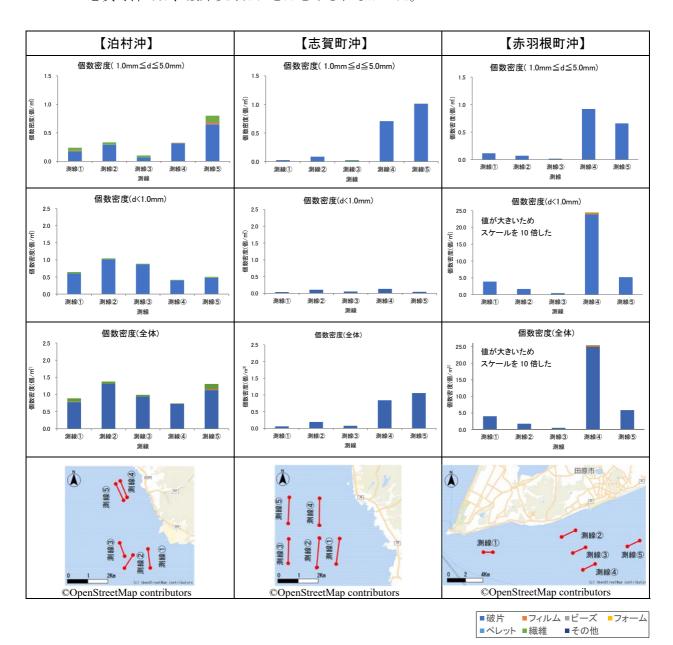
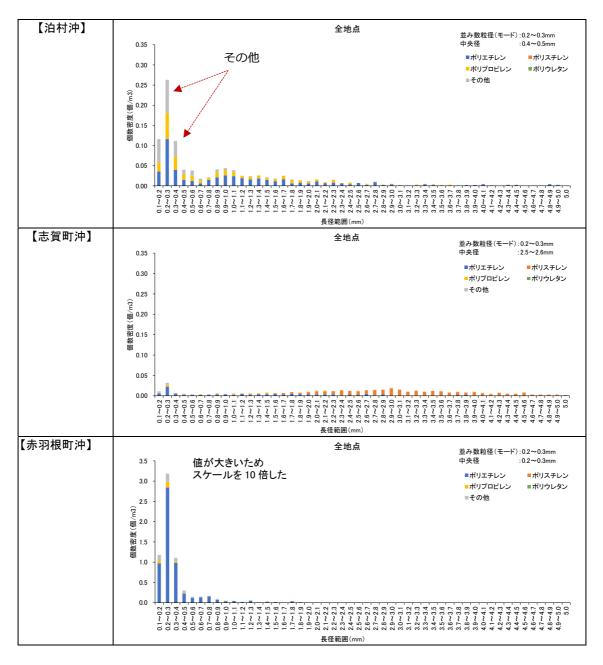



図 V. 1-2 海域別マイクロプラスチックの形状別個数密度 (個数密度は海水 1 ㎡あたりの密度)

(5) マイクロプラスチックの材質割合

マイクロプラスチックのサイズごとの材質割合(全地点)を図V.1-3 に示す。また、使用したネットの網目が 0.35~mm のため、網目より大きくデータの信頼性が高いと思われる長径 1~mm以上の画分を抽出して図V.1-4 に示す。

- いずれの海域においても、多くはポリエチレンとポリプロピレンであった。
- ・ 泊村沖では長径 0.5 mm以下の画分で「その他」の材質が他の海域より多くみられた。
- ・ 志賀町沖では長径1.9 mm以上の画分で、ポリエチレンよりもポリスチレンのほうが多かった。
- ・ マイクロプラスチックの長径の中央値は泊村沖では $0.4\sim0.5$ mm、志賀町沖では $2.5\sim2.6$ mm、赤羽根町沖では $0.2\sim0.3$ mmであり、志賀町沖が他の 2 海域に比べ大きかった。

図V.1-3 海域別マイクロプラスチックの材質別個数密度(全地点) (個数密度は海水1㎡あたりの密度)

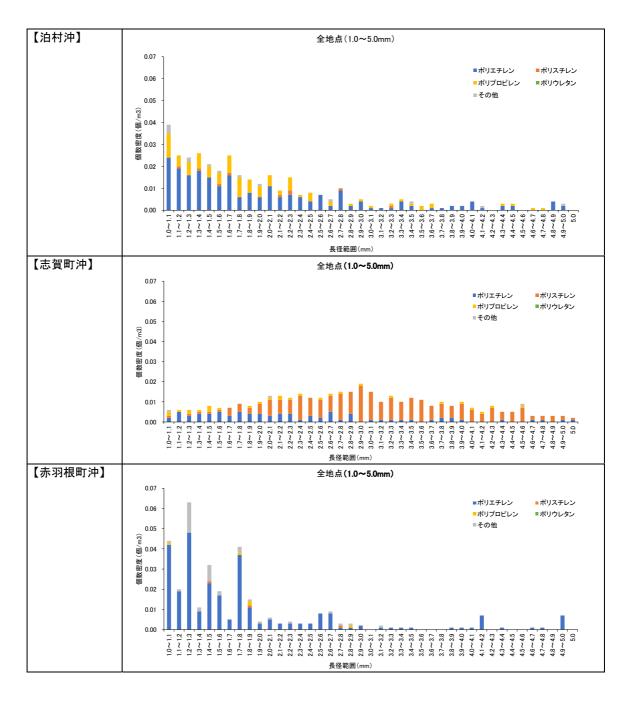
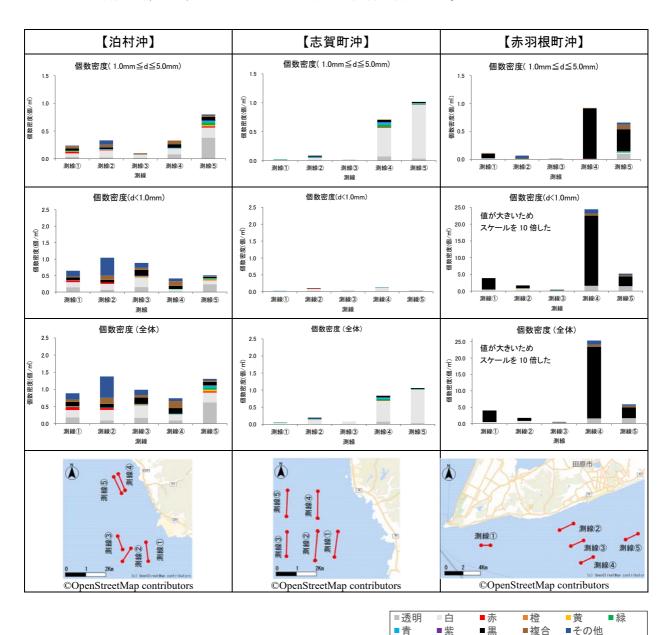



図 V. 1-4 海域別マイクロプラスチックの材質別個数密度(全地点:1~5 mm) (個数密度は海水 1 ㎡あたりの密度)

(6) マイクロプラスチックの色別割合

各調査海域の各測線におけるマイクロプラスチックの色別割合をサイズ別に図V.1-5に示す。

- ・ 泊村沖では、1~5 mm 一分で透明ないし白の割合が高かったが、1 mm未満画分では特に卓越する色はみられなかった。
- ・ 志賀町沖では、サイズにかかわらず白の割合が高かった。
- ・ 赤羽根町沖では、サイズにかかわらず黒の割合が高かった。

図V.1-5 海域別マイクロプラスチックの色別個数密度 (個数密度は海水1㎡あたりの密度)

V.1.2 冬季調査結果の比較

(1) 調査日

表 V. 1-2 各海域の調査実施日(冬季)

泊村沖	令和3年1月24日
志賀町沖	令和3年3月15日
赤羽根町沖	令和3年2月13日

(2) 調査時の気象・海象概要

1) 泊村沖

①海流の影響・対馬暖流の影響は大きくなかったと思われる。

②外洋の影響・調査海域の塩分は33~34程度であり、全ての測線で外洋水の影響を受けていた。

③降雨・陸水の影響・岸側の測線の表層で若干の塩分低下がみられており、陸水の影響を受けて いたと思われる。

④風、波浪の影響 ・調査日は、風は弱く、沿岸湧昇は起きていないと思われる。

・波高は 1m 以下と弱く、一時的な高波浪による鉛直混合はなかったと思われる。

2) 志賀町沖

①海流の影響・対馬暖流の影響は少ないと思われる。

②外洋の影響・調査海域は、塩分が高く、外洋の影響を受けていた。

③降雨・陸水の影響 ・調査前に降雨がみられたが、塩分の低下はみられず、降雨、河川等の陸水の 影響はみられなかった。

④風、波浪の影響 ・風速も遅く、沿岸湧昇は起きていなかったと思われる。

・波高は 1m 以下と弱く、一時的な高波浪による混合はなかったと思われる。

3) 赤羽根町沖

①海流の影響・黒潮が沖合を通過していたが、沿岸までは接近していない。

②外洋の影響 ・塩分は沖側の測線で高く、外洋水の影響を受けていた。

③降雨・陸水の影響・岸側の測線は、水温、塩分が低く、陸水の影響を受けていたものと思われる。

・伊勢湾からの湾内水の影響は、ないものと思われる。

④風、波浪の影響 ・現地観測で風が最大で 6m 台とやや強く、波もナウファスの有義波高で 1m 程度、現地観測で 1.0m 以上であった。

・このため風や波による鉛直混合が起きていた可能性が考えられた。

(3) マイクロプラスチックの個数と個数密度

各調査海域の各測線におけるマイクロプラスチックの総個数、海水 1 m当たりの個数密度、総重量を図V.1-6に示す。

- 3海域に共通して1mm未満画分が1~5mm画分より多かった。
- ・ 1 mm未満画分をみると、泊村沖では沖側の測線⑤で、志賀町沖では測線①で、それぞれ他の測線よりも少なかった。
- ・ 志賀町沖では測線②、⑤で、赤羽根町沖では最も岸寄りの測線②で他の測線より多かった。
- ・ なお、泊村沖は他の2海域に比べマイクロプラスチックの量が少なかった。

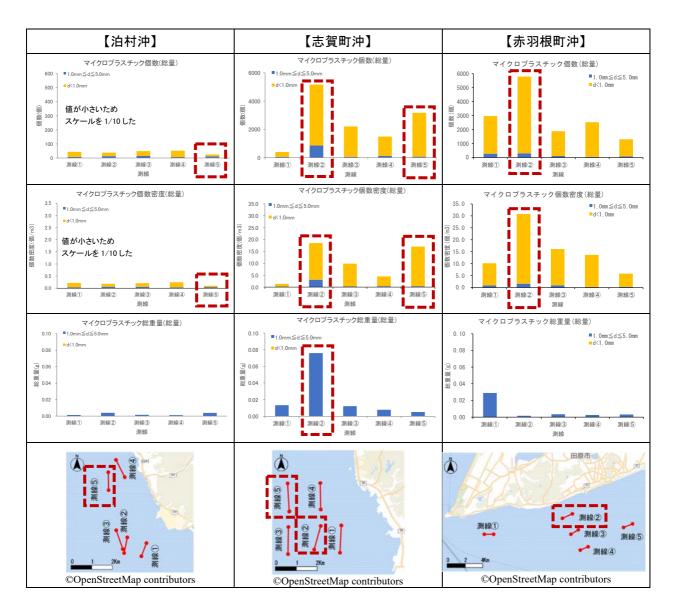
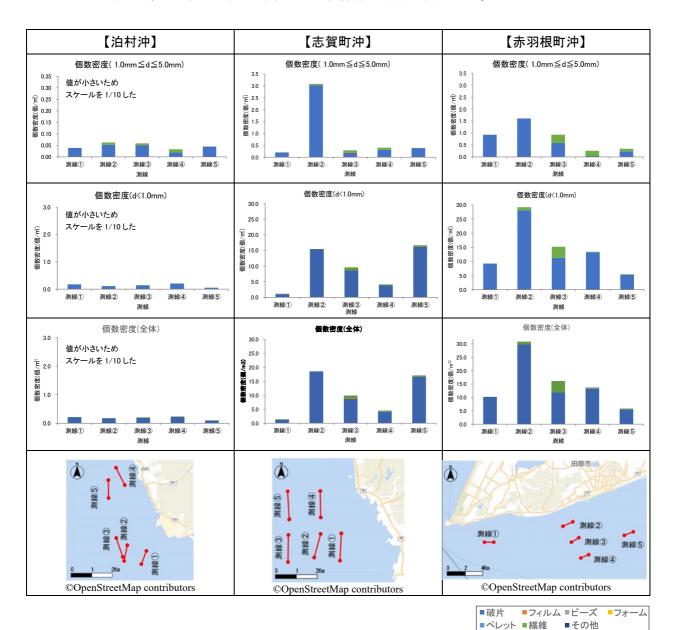
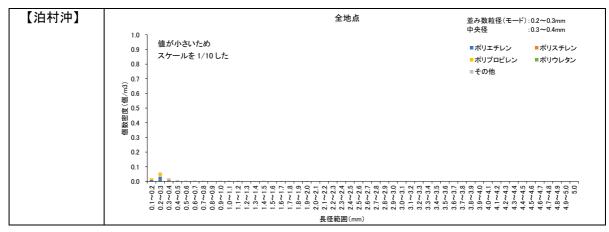


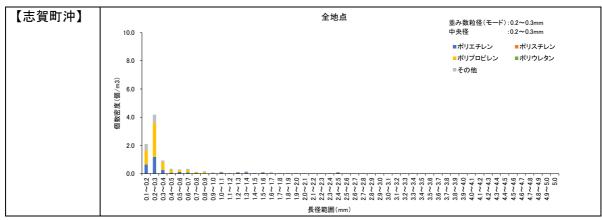
図 V.1-6 海域別個数、個数密度の比較 (個数は1 測線あたりの総採取量、個数密度は海水1 ㎡あたりの密度)

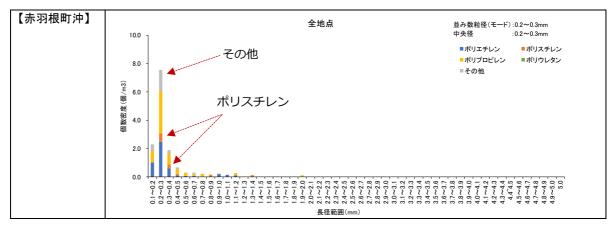
(4) マイクロプラスチックの形状割合

各調査海域の各測線におけるマイクロプラスチックの形状割合をサイズ別に図V.1-7に示す。

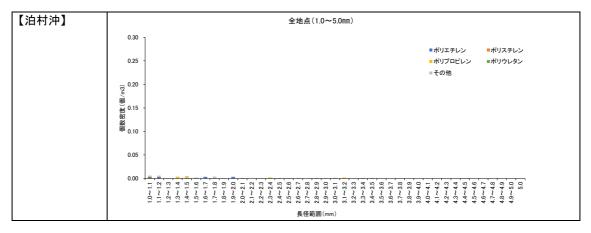
- ・ 3海域に共通して、サイズにかかわらず、破片の割合が最も高く、次いで繊維の割合が高かった。
- ・ 破片以外には、繊維、フィルム、ペレットが確認されたが、それらの割合は低かった。
- ・ 赤羽根町沖では、その他の海域に比べ、繊維の割合が高かった。

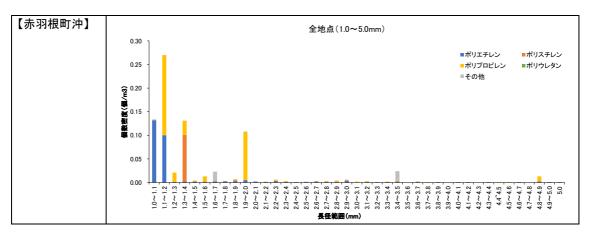




図 V. 1-7 海域別マイクロプラスチックの形状別個数密度 (個数密度は海水 1 ㎡あたりの密度)

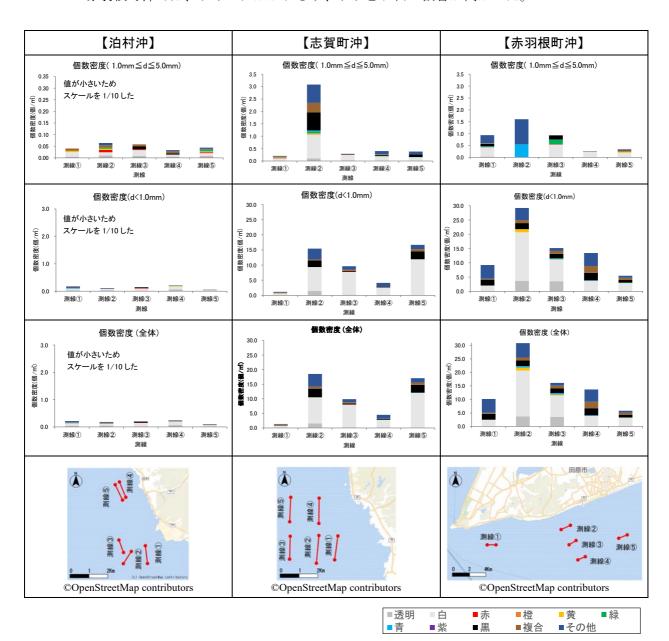

(5) マイクロプラスチックの材質割合

マイクロプラスチックのサイズごとの材質割合(全地点)を図V.1-8 に示す。また、使用したネットの網目が $0.35\,$ mm のため、網目より大きくデータの信頼性が高いと思われる長径 $1\,$ mm以上の画分を抽出して図V.1-9 に示す。


- いずれの海域においても、多くはポリエチレンとポリプロピレンであった。
- ・ 赤羽根町沖ではポリスチレンが他の海域より多くみられ、大部分は測線②であった。
- ・ 赤羽根町沖では「その他」の材質が他の海域より多くみられた。
- ・ マイクロプラスチックの長径の中央値は泊村沖が $0.3\sim0.4$ mm、その他の 2 海域は $0.2\sim0.3$ mmであり、3 海域で差はみられなかった。



図V.1-8 海域別マイクロプラスチックの材質別個数密度(全地点) (個数密度は海水1㎡あたりの密度)



図V.1-9 海域別マイクロプラスチックの材質別個数密度(全地点:1.0~5.0 mm) (個数密度は海水1 m あたりの密度)

(6) マイクロプラスチックの色別割合

各調査海域の各測線におけるマイクロプラスチックの色別割合をサイズ別に図V.1-10に示す。

- ・ 泊村沖では 1 mm未満画分でおおむね白の割合が高かったが、1~5 mm画分では白の割合は 1 mm未満画分より低く、特に卓越する色はみられなかった。
- ・ 志賀町沖ではサイズにかかわらず白の割合が高かった。
- ・ 赤羽根町沖では、サイズにかかわらず、おおむね白の割合が高かった。

図V.1-10 海域別マイクロプラスチックの色別個数密度 (個数密度は海水1㎡あたりの密度)

V.1.3 海域比較のまとめ

【気象・海象】

秋季	①海流の影響	・泊村沖と志賀町沖は海流の影響はほとんどみられなかった。 ・赤羽根町沖には黒潮の反流が流れ込んでいた。
	②外洋の影響	・3海域とも一部または全域で外洋水の影響を受けていた。
	③降雨・陸水の	・泊村沖は降雨・陸水の影響を受けていた。
	影響	・志賀町沖と赤羽根町沖では陸水の影響はなかった。
	④風、波浪の	・泊村沖と志賀町沖は鉛直混合は起きていなかったと思われる。
	影響	・泊村沖は沿岸湧昇が起きていた可能がある。
		・赤羽根町沖では鉛直混合があった可能性がある。

冬季	①海流の影響	・3海域とも海流の影響は小さかったと思われる。
	②外洋の影響	・3海域とも一部または全域で外洋水の影響を受けていた。
	③降雨・陸水の	・泊村沖と赤羽根町沖では一部の測線で陸水の影響を受けていたと思
	影響	われる
		・志賀町沖では陸水の影響は小さかった。
	④風、波浪の	・泊村沖と志賀町沖では、調査時には高波浪による鉛直混合はなかっ
	影響	たと思われる。
		・赤羽根町沖では鉛直混合が起きていた可能性が考えられた。

【マイクロプラスチック】

秋季	①個数と密度	 ・泊村沖と赤羽根町沖では1mm未満画分が1~5mm画分より多かった。 ・志賀町沖では1~5mm画分が1mm未満画分よりも多かった。 ・泊村沖 : 1.048個/㎡(個数密度の総量) ・志賀町沖 : 0.438個/㎡(個数密度の総量) ・赤羽根町沖: 6.703個/㎡(個数密度の総量)
	②形状	・3海域に共通して、サイズにかかわらず破片が多かった。
	③材質	・泊村沖:ポリエチレンとポリプロピレンが主体。一部の測線では「その他」の割合が高い
		・志賀町沖:ポリエチレンとポリスチレンが主体。一部の測線では ポリスチレンの割合が高い。
		・赤羽根町沖:ポリエチレンが主体、測線によってはポリプロピレンも 多かった。
	④色	・ 泊村沖: 透明と白が多かった。
		・志賀町沖:多くの測線で白が多かった。
		・赤羽根町沖:多くの測線で黒が多かった。

冬季	①個数と密度	 ・3 海域とも 1 mm未満画分が 1~5 mm画分より多かった。 ・泊村沖 : 0.188 個/㎡(個数密度の総量) ・志賀町沖 : 9.458 個/㎡(個数密度の総量) ・赤羽根町沖: 14.396 個/㎡(個数密度の総量)
	②形状	・3 海域とも破片が大部分を占め、次いで繊維が多かった。
	③材質	・3海域ともポリエチレン、ポリプロピレンが主体。 ・泊村沖では一部の測線で「その他」の割合が高い。 ・赤羽根町沖では一部の測線で「その他」の割合が高い。 ・赤羽根町沖では一部の測線でポリスチレンの割合が高い。
	④色	・3海域ともおおむね白が多かった。

V.2 季節特性

令和2年度の秋季と冬季に同一方法で実施した調査結果に基づき、海域ごとに、調査時の 気象・海象を要約し、次いでマイクロプラスチック調査結果の比較を述べる。

V.2.1 泊村沖調査結果の比較

(1) 調査日

表 V. 2-1 調査実施日(泊村沖)

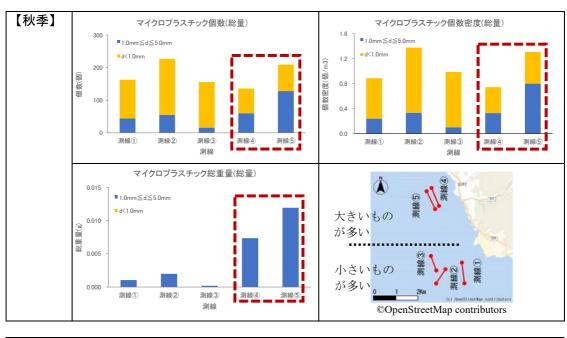
秋季	令和2年12月12日
冬季	令和3年1月24日

(2) 調査時の気象・海象概要

1) 秋季

①海流の影響

- ・対馬暖流の影響は大きくなかった。
- ・下層では塩分が高く外洋水の影響がみられたが、表層では外洋水の影響は ②外洋の影響 みられなかった。
- ③降雨・陸水の影響 ・調査前に高頻度の降雨があり、表層は降雨・陸水の影響を受けていた。
- ④風、波浪の影響
- ・継続して風が岸を左にみて吹いていることから、沿岸湧昇が起こっていた 可能性がある。
- ・STDデータでは、表層付近に躍層がみられ、鉛直混合は起きていなかったと 思われる。

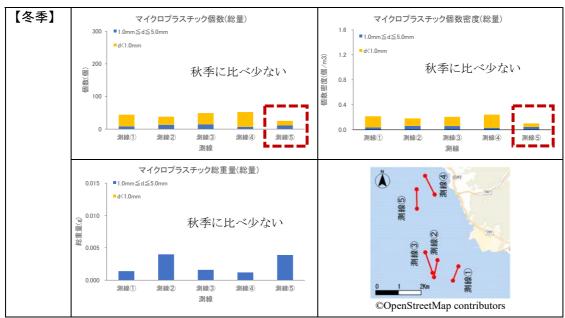
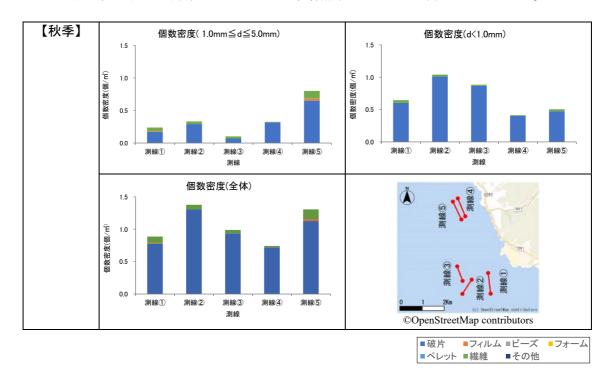

2) 冬季

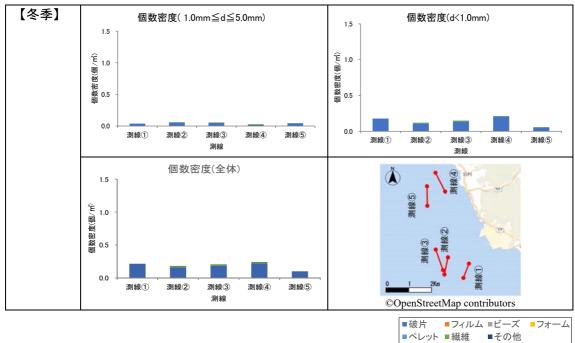
- ①海流の影響
- ・対馬暖流の影響は大きくなかった。
- ②外洋の影響
- ・調査海域の塩分は33~34程度であり、全ての測線で外洋水の影響を受 けていた。
- ③降雨・陸水の影響・・岸側の測線の表層が陸水の影響を受けていた。
- ④風、波浪の影響
- ・調査日は、風は弱く、調査当日に沿岸湧昇は起きていないと思われる。
- ・波高は 1m 以下と弱く、一時的な高波浪による鉛直混合は起きていなか ったと思われる。

(3) マイクロプラスチックの個数と個数密度

泊村沖におけるマイクロプラスチックの総個数、海水 1 m当たりの個数密度及び総重量を季節別に図V. 2-1 に示す。

- ・ 秋季は冬季に比べてマイクロプラスチックの総個数及び総重量がともに多かった。
- 両季とも 1 mm未満画分が 1~5 mm mm 分よりも多い傾向にあった。
- ・ 1 mm未満画分をみると、秋季は測線④、⑤で若干少なく、冬季は測線⑤で他の測線より少なかった。


図 V. 2-1 季節別個数、個数密度の比較(泊村沖) (個数は1 測線あたりの総採取量、個数密度は海水1 ㎡あたりの密度)

(4) マイクロプラスチックの形状割合

泊村沖におけるマイクロプラスチックの形状割合を季節別に図V.2-2に示す。

- ・ 両季の全測線を通じて、サイズにかかわらず、常に破片の割合が顕著に高かった。
- ・ 両季とも、破片に次いで繊維が多かった。
- ・ 秋季は、破片、繊維以外にペレット、フィルムが確認された。
- ・ 冬季は、いずれの測線においても破片、繊維以外のものは確認されなかった。

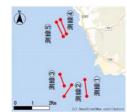
図V.2-2 マイクロプラスチックの季節別・形状別個数密度(泊村沖) (個数密度は海水1㎡あたりの密度)

(5) マイクロプラスチックの材質割合

泊村沖におけるマイクロプラスチックの材質割合を、季節別に表V.2-2、図V.2-3 に示す。また、使用したネットの網目が $0.35 \, \mathrm{mm}$ のため、網目より大きくデータの信頼性が高いと思われる長径 $1 \, \mathrm{mm}$ 以上の画分のグラフを図V.2-4 に示す。

- ・ 両季の全測線を通じて、おおむね材質の主体はポリエチレンとポリプロピレンであった。
- ・ 秋季の測線①~③の1mm未満画分では、「その他」がポリエチレンと同程度か、ポリエチレンより多くも高かった。
- ・ 冬季は、「その他」の割合が測線①で高かった。

表 V. 2-2 季節別マイクロプラスチックの材質(泊村沖)


【秋季】 フェレー径の最大 1.0mm≤d≤5.0mm

フェレーほの取り		= - = -	J. O															
		測線①		測線②				測線③		測線④				測線⑤		合計		
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	24	0.130	54.5	23	0.139	41.8	8	0.051	50.0	39	0.213	65.0	100	0.625	78.1	194	0.228	64.0
ポリスチレン	0	0.000	0.0	3	0.018	5.5	0	0.000	0.0	5	0.027	8.3	1	0.006	8.0	9	0.011	3.0
ポリプロピレン	20	0.109	45.5	17	0.103	30.9	7	0.044	43.8	16	0.087	26.7	27	0.169	21.1	87	0.102	28.7
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	0	0.000	0.0	12	0.07	21.8	1	0.006	6.3	0	0.000	0.0	0	0.000	0.0	13	0.015	4.3
合計	44	0.239	100.0	55	0.333	100.0	16	0.101	100.0	60	0.328	100.0	128	0.800	100.0	303	0.356	100.0

フェレ—径の最大 d<1.0mm

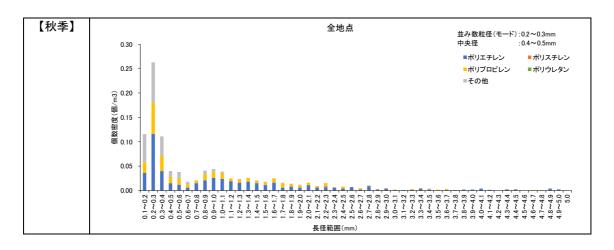
		測線①			測線②			測線③			測線④			測線⑤			合計		
	個	個/m³	%	個	個/m³	%	個	個/m³	%										
ポリエチレン	51	0.277	42.9	58	0.352	33.7	63	0.399	45.0	35	0.191	46.1	38	0.238	46.9	245	0.288	41.7	
ポリスチレン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	
ポリプロピレン	29	0.158	24.4	31	0.188	18.0	20	0.127	14.3	34	0.186	44.7	40	0.250	49.4	154	0.181	26.2	
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	_ 0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	
その他	39	0.212	32.8	83	0.502	48.3	57	0.361	40.7	7	0.038	9.2	3	0.019	3.7	189	0.222	32.1	
合計	119	0.647	100.0	172	1.042	100.0	140	0.886	100.0	76	0.415	100.0	81	0.506	100.0	588	0.692	100.0	

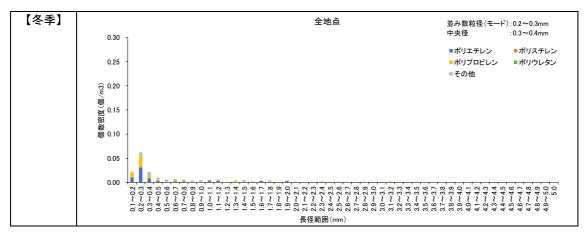
注:四捨五入の関係で合計値が一致しない場合がある。

©OpenStreetMap contributors

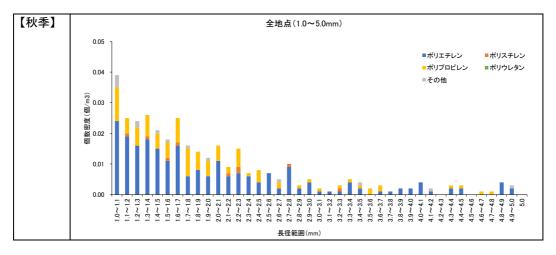
【冬季】 フェレー径の最大 1.0mm≤d≤5.0mm

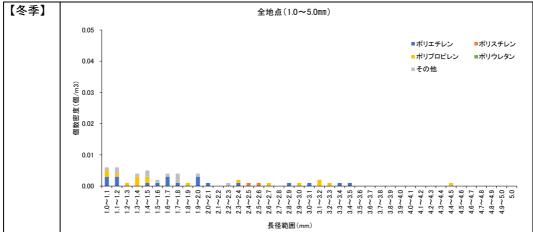
ノエレー性の表。	∧ I.Um	m = a = :	o.umm															
		測線①			測線②			測線③		測線④				測線⑤		合計		
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	2	0.010	25.0	6	0.029	46.2	5	0.021	35.7	1	0.005	14.3	7	0.029	63.6	21	0.019	39.6
ポリスチレン	0	0.000	0.0	2	0.010	15.4	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	2	0.002	3.8
ポリプロピレン	1	0.005	12.5	3	0.014	23.1	6	0.025	42.9	4	0.019	57.1	3	0.012	27.3	17	0.015	32.1
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	5	0.025	62.5	2	0.010	15.4	3	0.013	21.4	2	0.009	28.6	1	0.004	9.1	13	0.012	24.5
合計	8	0.039	100.0	13	0.062	100.0	14	0.059	100.0	7	0.033	100.0	11	0.045	100	53	0.048	100.0


フェレ—径の最大 d<1.0mm

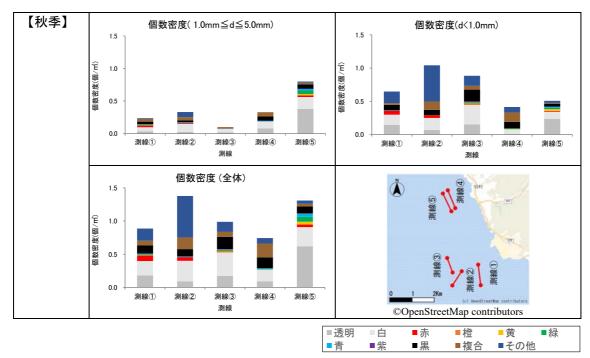

ノエレーほり取り		J1111111																
		測線①		測線②				測線③		測線④			測線⑤			合計		
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	10	0.049	27.8	6	0.029	24.0	22	0.093	62.9	22	0.103	48.9	3	0.012	21.4	63	0.057	40.6
ポリスチレン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
ポリプロピレン	8	0.039	22.2	14	0.067	56.0	7	0.030	20.0	20	0.093	44.4	4	0.016	28.6	53	0.048	34.2
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	18	0.089	50.0	5	0.024	20.0	6	0.025	17.1	3	0.014	6.7	7	0.029	50.0	39	0.035	25.2
合計	36	0.177	100.0	25	0.120	100.0	35	0.148	100.0	45	0.210	100.0	14	0.057	100	155	0.140	100.0

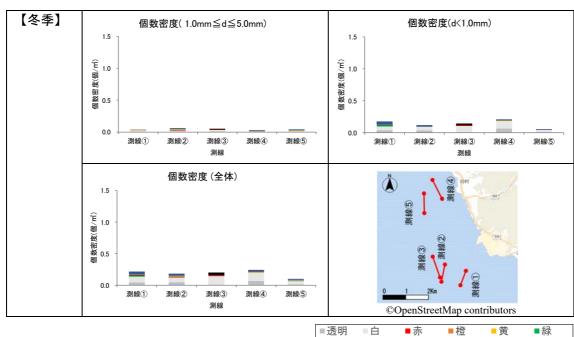
注:四捨五入の関係で合計値が一致しない場合がある。




©OpenStreetMap contributors

図V.2-3 マイクロプラスチックの季節別・材質別個数密度(泊村沖:全地点) (個数密度は海水1㎡あたりの密度)




図V.2-4 マイクロプラスチックの季節別・材質別個数密度(泊村沖:全地点、1~5 mm) (個数密度は海水 1 ㎡あたりの密度)

(6) マイクロプラスチックの色別割合

泊村沖におけるマイクロプラスチックの色別割合を季節別に図V.2-5に示す。

- ・ 両季の全測線を通じて、白及び透明の割合が高かった。
- ・ 秋季は $1\sim5$ mmm分では測線⑤を除き白の割合が最も高く、1 mm未満面分では特に卓越する色はみられなかった。
- ・ 冬季は、サイズに関わらず白の割合が高かった。
- ・ 白、透明以外の色としては複合、黒、「その他」等が確認された。

図V.2-5 マイクロプラスチックの季節別・色別個数密度(泊村沖) (個数密度は海水1m³あたりの密度)

■その他

V.2.2 志賀町沖調査結果の比較

(1) 調査日

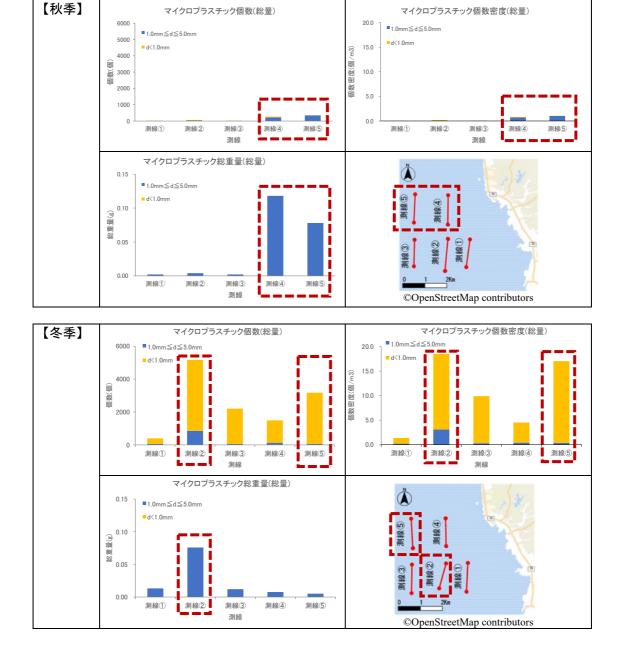
表 V. 2-3 調査実施日(志賀町沖)

秋季	令和2年10月19日
冬季	令和3年3月15日

(2) 調査時の気象・海象概要

1) 秋季

- ①海流の影響
- ・対馬暖流の影響はほとんどみられない。
- ②外洋の影響
- ・下層では、塩分が高く、外洋水の影響を受けていたが、表層は外洋水の 影響を受けていなかった。
- ③降雨・陸水の影響・調査前の降雨もほとんどなく、河川等の陸水の影響はなかった。
- ④風、波浪の影響
- ・風速も遅く、風向もばらついているため、沿岸湧昇は起きていなかった と思われる。
- ・有義波高も低く、風も弱かったため鉛直混合は起きていなかったと思わ れる。

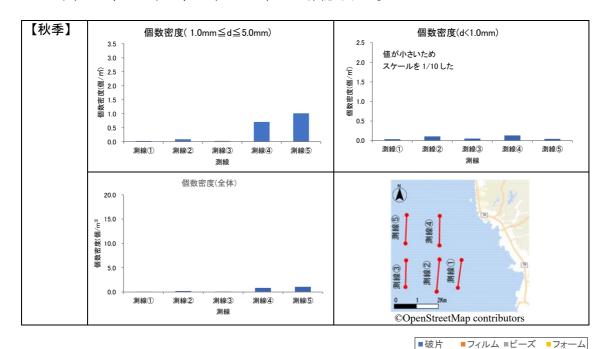

2) 冬季

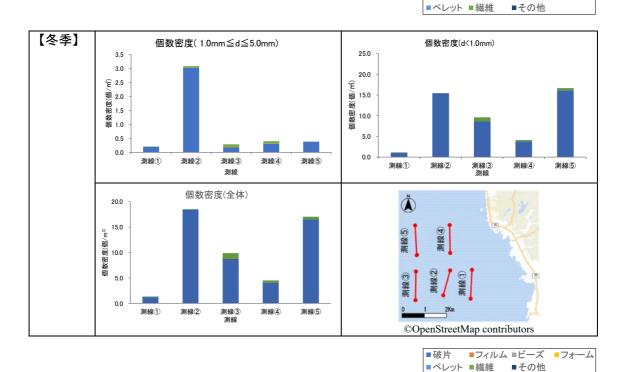
- ①海流の影響
- ・対馬暖流の影響は少ないと思われる。
- ②外洋の影響
- ・調査海域は、塩分が高く、外洋の影響を受けていた。
- ③降雨・陸水の影響 ・調査前に降雨がみられたが、塩分の低下はみられず、降雨、河川等の陸 水の影響はみられなかった。
- ④風、波浪の影響
- ・風速も遅く、沿岸湧昇は起きていなかったと思われる。
- ・波高は 1m 以下と弱く、一時的な高波浪による混合はなかったと思われ る。

(3) マイクロプラスチックの個数と個数密度

志賀町沖におけるマイクロプラスチックの総個数、海水 1 m当たりの個数密度及び総重量を季節別に図V. 2-6 に示す。

- ・ 個数、個数密度は秋季に比べ冬季に多かったが、総重量は、秋季の測線④、⑤、冬季の測 線②で多かった。
- ・ サイズ別の組成は、季節によって逆転し、秋季には1~5 mm 一分が、冬季には1 mm未満画分がそれぞれ多かった。
- ・ 1~5 mm 画分は、秋季には測線④、⑤で、冬季には測線②で他の測線より多かった。
- ・ 1 mm未満画分は、秋季には全体的に少ないものの測線②、④で他の測線より多く、冬季に は測線②、⑤で他の測線より多かった。




図V.2-6 季節別個数、個数密度の比較(志賀町沖) (個数は1測線あたりの総採取量、個数密度は海水1㎡あたりの密度)

(4) マイクロプラスチックの形状割合

志賀町沖におけるマイクロプラスチックの形状割合を季節別に図V.2-7に示す。

- ・ 両季、全測線を通じて、サイズにかかわらず、常に破片が多かった。
- ・ 破片に比べると割合は極めて小さかったが、2番目に多かったのは繊維であった。
- ・ 秋季には破片と繊維以外のものは確認されなかった。
- 冬季には、ペレット、フィルムが僅かに確認された。

図V.2-7 マイクロプラスチックの季節別・形状別個数密度(志賀町沖) (個数密度は海水1㎡あたりの密度)

(5) マイクロプラスチックの材質割合

志賀町沖におけるマイクロプラスチックの材質割合を季節別に表V.2-4、図V.2-8に示す。また、使用したネットの網目が 0.35mm のため、網目より大きくデータの信頼性が高いと思われる長径 1mm以上の画分のグラフを図V.2-9に示す。

- 両季を通じておおむね材質はポリエチレン、ポリプロピレンが多かった。
- 秋季には、測線④~⑤の1~5 mm 面分でポリスチレンの割合が高かった。
- ・ 冬季には、秋季に比べポリプロピレンが多い傾向がみられ、この傾向は1~5 mm画分より、1 mm未満画分で明瞭であった。

表 V. 2-4 季節別マイクロプラスチックの材質(志賀町沖)

【秋季】 フェレー径の最大 1.0mm≦d≦5.0mm

H		= -= .																
		測線①			測線②			測線③			測線④			測線⑤			合計	
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	6	0.017	66.7	23	0.067	79.3	2	0.006	22.2	71	0.225	31.8	30	0.090	8.8	132	0.079	21.7
ポリスチレン	2	0.006	22.2	1	0.003	3.4	1	0.003	11.1	134	0.425	60.1	291	0.871	85.8	429	0.256	70.4
ポリプロピレン	1	0.003	11.1	5	0.015	17.2	5	0.015	55.6	18	0.057	8.1	16	0.048	4.7	45	0.027	7.4
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	0	0.000	0.0	0	0.000	0.0	1	0.003	11.1	0	0.000	0.0	2	0.006	0.6	3	0.002	0.5
合計	9	0.026	100.0	29	0.085	100.0	9	0.027	100.0	223	0.707	100.0	339	1.015	100.0	609	0.365	100.0

フェレ—径の最大 d<1.0mm

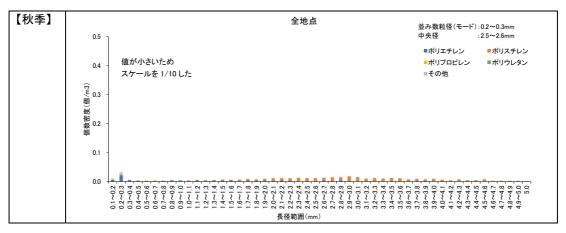
7 - E 17 AL		•																
		測線①			測線②			測線③			測線④			測線⑤			合計	-
	個	個/m³	%	個	個/m³	%												
ポリエチレン	5	0.014	38.5	31	0.091	83.8	15	0.045	83.3	29	0.092	69.0	4	0.012	26.7	84	0.050	67.2
ポリスチレン	1	0.003	7.7	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	3	0.009	20.0	4	0.002	3.2
ポリプロピレン	4	0.011	30.8	2	0.006	5.4	2	0.006	11.1	6	0.019	14.3	4	0.012	26.7	18	0.011	14.4
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	3	0.009	23.1	4	0.012	10.8	1	0.003	5.6	7	0.022	16.7	4	0.012	26.7	19	0.011	15.2
合計	13	0.037	100.0	37	0.109	100.0	18	0.054	100.0	42	0.133	100.0	15	0.045	100.0	125	0.075	100.0

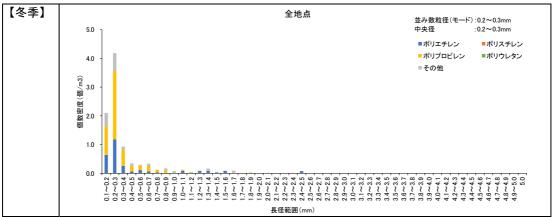
注:四捨五入の関係で合計値が一致しない場合がある。

©OpenStreetMap contributors

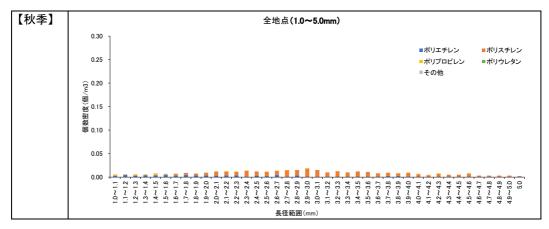
【冬季】 フェレー径の最大 1.0mm≦d≦5.0mm

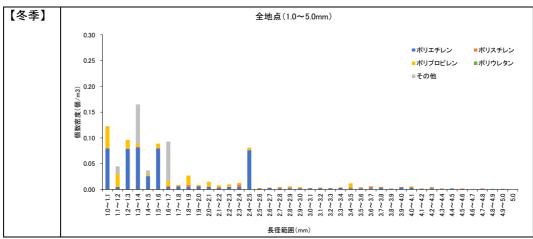
		測線①			測線②			測線③			測線④			測線⑤			合計	
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	10	0.034	16.4	600	2.151	69.8	15	0.067	23.4	21	0.063	15.9	25	0.134	35.2	671	0.510	56.5
ポリスチレン	17	0.057	27.9	19	0.068	2.2	5	0.022	7.8	12	0.036	9.1	5	0.027	7.0	58	0.044	4.9
ポリプロピレン	13	0.044	21.3	41	0.147	4.8	44	0.197	68.8	89	0.269	67.4	41	0.220	57.7	228	0.173	19.2
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	21	0.071	34.4	200	0.717	23.3	0	0.000	0.0	10	0.030	7.6	0	0.000	0.0	231	0.176	19.4
合計	61	0.206	100.0	860	3.082	100.0	64	0.287	100.0	132	0.399	100.0	71	0.382	100.0	1188	0.903	100.0


フェレ—径の最大 d<1.0mm

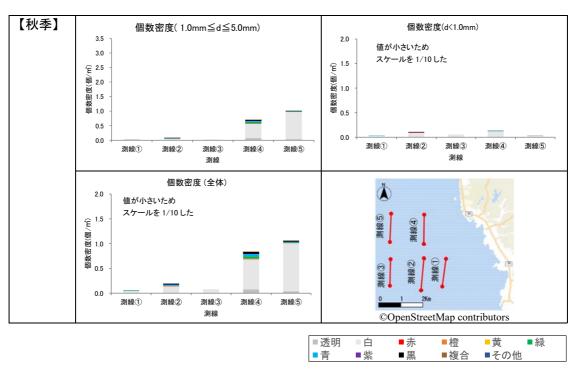

		測線①			測線②			測線③			測線④			測線⑤			合計	
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	21	0.071	6.1	704	2.523	16.4	300	1.345	14.0	592	1.789	43.5	1,480	7.957	47.7	3,097	2.355	27.5
ポリスチレン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	20	0.060	1.5	0	0.000	0.0	20	0.015	0.2
ポリプロピレン	301	1.017	88.0	2,001	7.172	46.5	1,720	7.713	80.4	620	1.873	45.5	1,440	7.742	46.5	6,082	4.625	54.1
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	20	0.068	5.8	1,600	5.735	37.2	120	0.538	5.6	130	0.393	9.5	180	0.968	5.8	2,050	1.559	18.2
合計	342	1.155	100.0	4,305	15.430	100.0	2,140	9.596	100.0	1,362	4.115	100.0	3,100	16.667	100.0	11,249	8.554	100.0

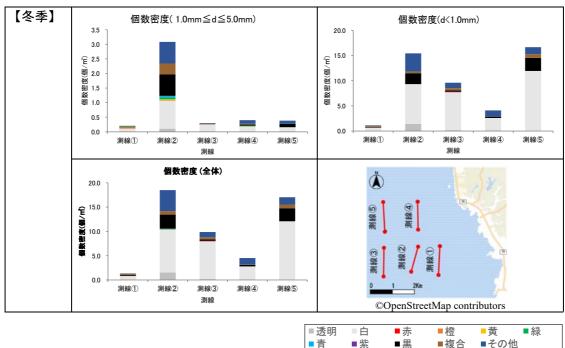
注:四捨五入の関係で合計値が一致しない場合がある。




©OpenStreetMap contributors

図V.2-8 マイクロプラスチックの季節別・材質別個数密度(志賀町沖:全地点) (個数密度は海水1㎡あたりの密度)




図V.2-9 マイクロプラスチックの季節別・材質別個数密度(志賀町沖:全地点、1~5 mm) (個数密度は海水 1 m³あたりの密度)

(6) マイクロプラスチックの色別割合

志賀町沖におけるマイクロプラスチックの色別割合を季節別に図V.2-10に示す。

- ・ 両季を通じて、サイズにかかわらず白の割合が高かった。
- ・ 冬季には白以外の色も多く、測線②、⑤では「その他」や黒の割合が他の測線に比べ高かった。

図V.2-10 マイクロプラスチックの季節別・色別個数密度(志賀町沖) (個数密度は海水1㎡あたりの密度)

V.2.3 赤羽根町沖調査結果の比較

(1) 調査日

表 V. 2-5 調査実施日(赤羽根沖)

秋季	令和2年11月17日
冬季	令和3年2月13日

(2) 調査時の気象・海象概要

1) 秋季

①海流の影響 ・黒潮が沖合を通過しており、黒潮の反流が赤羽根町沖に回り込んでいた。

②外洋の影響・調査海域の塩分は高く、外洋の影響を受けていた。

③降雨・陸水の影響・調査前の降雨もほとんどなく、河川等の陸水の影響はなかった。

・伊勢湾からの湾内水についても、影響ないものと思われた。

④風、波浪の影響 ・風は調査前から間欠的に強く吹いており、海域の密度の鉛直分布が一様であることから、風による鉛直混合があった可能性がある。

2) 冬季

①海流の影響・黒潮が沖合を通過していたが、沿岸までは接近していない。

②外洋の影響 ・塩分は沖合の測線では高く、外洋水の影響を受けていた。

③降雨・陸水の影響 ・岸側の測線は、水温、塩分が低く、陸水の影響を受けていたものと思われる。

・伊勢湾からの湾内水の影響はないものと思われる

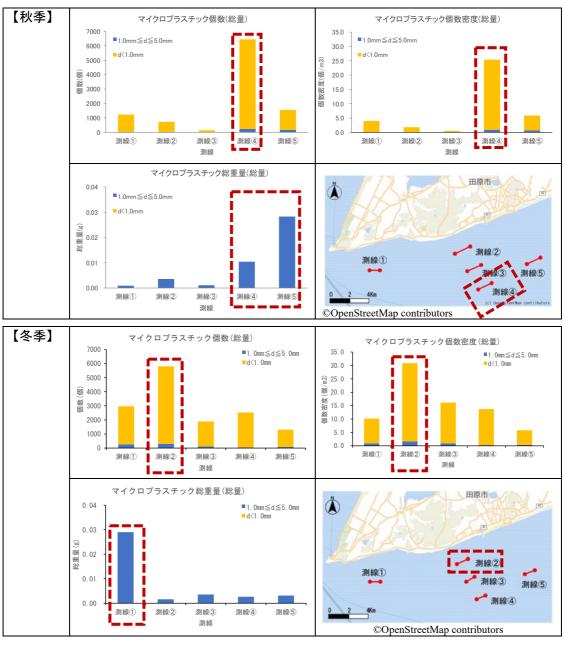
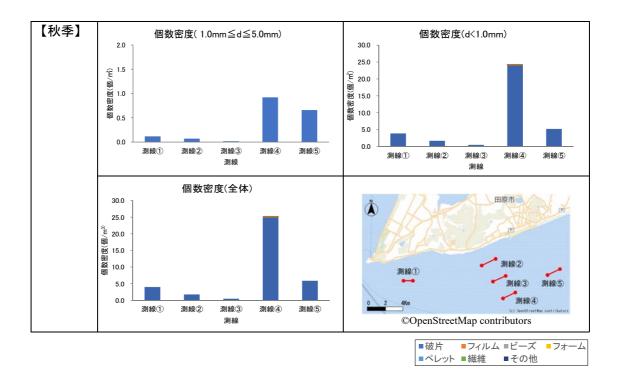
④風、波浪の影響 ・現地観測で風が最大で 6m 台とやや強く、波もナウファスの有義波高で 1m 程度、現地観測で 1.0m 以上であった。

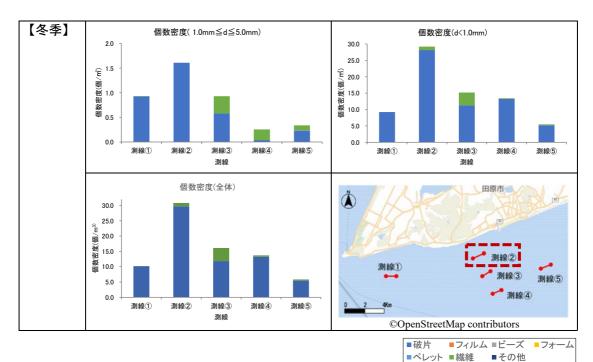
・このため風や波による鉛直混合が起きていた可能性が考えられた。

(3) マイクロプラスチックの個数と個数密度

赤羽根町沖におけるマイクロプラスチックの個数、海水 1 m当たりの個数密度及び総重量を季節別に図V.2-11に示す。

- ・ 秋季と冬季とで、マイクロプラスチックの量はほぼ同水準であった。
- ・ 両季を通じて、1 mm未満画分が 1~5 mm mm 分に比べて多かった。
- ・ 1~5 mm 画分は、秋季には測線④、⑤が、冬季には測線①、②が他の測線より多かった。
- ・ 1 mm未満画分は、秋季には沖側の測線④で多かったのに対して、冬季には岸側の測線②で 多かった。
- ・ 総重量が最も多かった測線は、秋季は沖側の測線⑤であり、冬季は伊勢湾口に近い測線① であった。


図 V. 2-11 季節別個数、個数密度の比較(赤羽根町沖) (個数は1測線あたりの総採取量、個数密度は海水1㎡あたりの密度)

(4) マイクロプラスチックの形状割合

赤羽根町沖におけるマイクロプラスチックの形状割合を季節別に図V.2-12に示す。

- ・ 両季、全測線を通じて、サイズにかかわらず、おおむね破片が多かったが、冬季の測線④ の1~5 mm 可分のみ、繊維が最も多かった。
- ・ 秋季は、破片の他にフィルム、繊維が確認された。
- ・ 冬季は、破片に次いで繊維が多く、測線③において最も繊維が多かった。

図V.2-12 マイクロプラスチックの季節別・形状別個数密度(赤羽根町沖) (個数密度は海水1㎡あたりの密度)

(5) マイクロプラスチックの材質割合

赤羽根町沖におけるマイクロプラスチックの材質割合を、季節別に表V. 2-6、図V. 2-13 に示す。また、使用したネットの網目が 0. 35mm のため、網目より大きくデータの信頼性が高いと思われる 1 mm以上の画分のグラフを図V. 2-14 に示す。

- ・ 秋季には、サイズかかわらず多くの測線でポリエチレンが主体であったが、ポリプロピレン、「その他」の割合が高い測線もあった。
- ・ 冬季には、ポリエチレン、ポリプロピレンが主体であったが、ポリスチレンや「その他」 の割合が高い測線もあり、全体的に秋季に比べて多様性が高かった。

表 V. 2-6 季節別マイクロプラスチックの材質 (赤羽根町沖)

【秋季】 フェレー径の最大 1.0mm≦d≦5.0m

大 1.0m	m≦d≦!	5.0mm															
	測線①			測線②			測線③			測線④			測線⑤			合計	
個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
30	0.098	83.3	3	0.007	10.3	4	0.015	80.0	232	0.913	99.1	141	0.534	81.0	410	0.272	85.8
0	0.000	0.0	2	0.005	6.9	0	0.000	0.0	0	0.000	0.0	1	0.004	0.6	3	0.002	0.6
2	0.007	5.6	1	0.002	3.4	1	0.004	20.0	1	0.004	0.4	2	800.0	1.1	7	0.005	1.5
0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
4	0.013	11.1	23	0.056	79.3	0	0.000	0.0	1	0.004	0.4	30	0.114	17.2	58	0.039	12.1
36	0.117	100.0	29	0.071	100.0	5	0.018	100.0	234	0.921	100.0	174	0.659	100.0	478	0.317	100.0
	個 30 0 2 0 4	測線① 個 個/m³ 30 0.098 0 0.000 2 0.007 0 0.000 4 0.013	測線(1)	測線①	測線① 測線② 個 個/m³ 96 個 個/m³ 30 0.98 83.3 3 0.007 0 0.000 0.0 2 0.005 2 0.007 5.6 1 0.002 0 0.000 0.0 0 0.000 4 0.013 11.1 23 0.056	測線① 測線② 個 個/m³ 96 個 個/m³ 96 30 0.098 83.3 3 0.007 10.3 0 0.000 0.0 2 0.005 6.9 2 0.007 5.6 1 0.002 3.4 0 0.000 0.0 0 0.000 0.0 0.000 4 0.013 11.1 23 0.056 79.3	測線① 測線② 個 個/m³ 96 個 個/m³ 96 個 30 0.098 83.3 3 0.007 10.3 4 0 0.000 0.0 2 0.005 6.9 0 2 0.007 5.6 1 0.002 3.4 1 0 0.000 0.0 0 0.000 0.0 0 4 0.013 11.1 23 0.056 79.3 0	測線① 測線② 測線③ 個 個/m³ 96 個 個/m³ 96 個 個/m³ 30 0.098 83.3 3 0.007 10.3 4 0.015 0 0.000 0.0 2 0.005 6.9 0 0 0.000 2 0.007 5.6 1 0.002 3.4 1 0.004 0 0.000 0.0 0 0.000 0.0 0 0.000 4 0.013 11.1 23 0.056 79.3 0 0.000	測線① 測線② 測線③ 個 個/m³ 96 個 個/m³ 96 個 個/m³ 96 30 0.098 83.3 3 0.007 10.3 4 0.015 80.0 0 0.000 0.0 2 0.005 6.9 0 0 0.00 0.0 2 0.007 5.6 1 0.002 3.4 1 0.004 20.0 0 0.000 0.0 0 0.000 0.0 0.0 0.0 0.0 4 0.013 11.1 23 0.056 79.3 0 0.000 0.0	測練① 測線② 測線③ 個 個/m³ % 個 個/m³ % 個 個/m³ % 個 個/m³ % 個 30 0.098 83.3 3 0.007 10.3 4 0.015 80.0 232 0 0.000 0.0 2 0.005 6.9 0.000 0.0 0 2 0.007 5.6 1 0.002 3.4 1 0.004 20.0 1 0 0.000 0.0 0 0.000 0.0 0.0 0 0 4 0.013 11.1 23 0.056 79.3 0 0.000 0.0 0 1	測練① 測線② 測線③ 測線④ 個 個/m³ %6 個 個/m³ %96 個 の 00 <	測練① 測線② 測線③ 測線④ 個 個/m³ % 個 個/m³ % 個 個/m³ % 個 個/m³ % 30 0.098 83.3 3 0.007 10.3 4 0.015 80.0 232 0.913 99.1 0 0.000 0.0 2 0.005 6.9 0 0.000 0.0 0 0.000 0.0 2 0.007 5.6 1 0.002 3.4 1 0.004 20.0 1 0.004 0.4 0 0.000 0.0 0 0.000 0.0 0 0.000 0.0 4 0.013 11.1 23 0.056 79.3 0 0.000 0.0 1 0.004 0.4	測練① 測線② 測線③ 測線④ 個 個/m³ 96 個 0 0 0 0 0 99.1 141 0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0	測練① 測線② 測線③ 測線④ 測線⑤ 個 個/m³ 96 個 0.00 0.00 0.00 0.00 1.00 0.00 <th< td=""><td>測練① 測線② 測線③ 測線④ 測線⑤ 個 個/m³ 96 個 個 個/m³ 96 個 個 個/m³ 96 個 個/m³ 96 個 0</td></th<> <td>測練① 測線② 測線③ 測線④ 測線⑤ 個 個/m³ 96 個 個 個/m³ 96 個 410</td> <td>測練① 測線② 測線③ 測線④ 測線⑤ 合計 個 個/m³ 96 個 個 個/m³ 96 個 個 個 個 個 個 3 0002 2 0.007 5.6 1 0.002</td>	測練① 測線② 測線③ 測線④ 測線⑤ 個 個/m³ 96 個 個 個/m³ 96 個 個 個/m³ 96 個 個/m³ 96 個 0	測練① 測線② 測線③ 測線④ 測線⑤ 個 個/m³ 96 個 個 個/m³ 96 個 410	測練① 測線② 測線③ 測線④ 測線⑤ 合計 個 個/m³ 96 個 個 個/m³ 96 個 個 個 個 個 個 3 0002 2 0.007 5.6 1 0.002

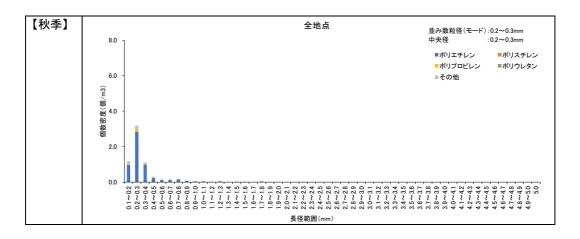
フェレ―径の最に	大 d<1.6	0mm																
		測線①			測線②			測線③			測線④			測線⑤			合計	
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	1,123	3.658	94.1	384	0.939	55.3	69	0.254	50.0	5,810	22.874	93.6	951	3.602	68.9	8,337	5.536	86.7
ポリスチレン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	40	0.157	0.6	0	0.000	0.0	40	0.027	0.4
ポリプロピレン	40	0.130	3.4	220	0.538	31.7	49	0.180	35.5	40	0.157	0.6	0	0.000	0.0	349	0.232	3.6
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	30	0.098	2.5	91	0.222	13.1	20	0.074	14.5	320	1.260	5.2	430	1.629	31.1	891	0.592	9.3
合計	1.193	3.886	100.0	695	1.699	100.0	138	0.507	100.0	6.210	24,449	100.0	1.381	5.231	100.0	9.617	6.386	100.0

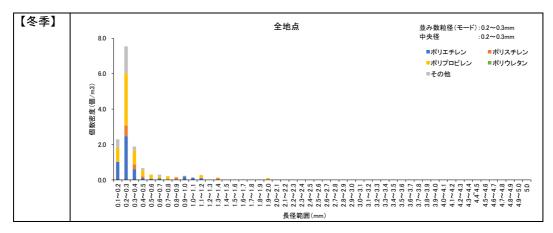
注:四捨五入の関係で合計値が一致しない場合がある。

©OpenStreetMap contributors

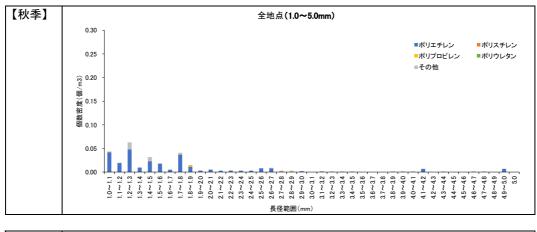
【冬季】 フェレー径の最大 1.0mm≦d≦5.0mm

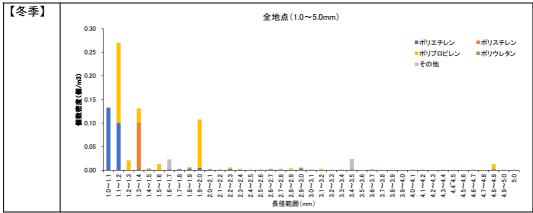
フェレー径の最	大 1.0m	m≦d≦:	5.0mm															
		測線①			測線②			測線③			測線④			測線⑤			合計	
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	143	0.489	52.4	100	0.531	33.0	25	0.213	22.9	3	0.016	6.4	13	0.058	17.1	284	0.282	35.1
ポリスチレン	4	0.014	1.5	102	0.541	33.7	3	0.026	2.8	0	0.000	0.0	1	0.004	1.3	110	0.109	13.6
ポリプロピレン	126	0.431	46.2	100	0.531	33.0	41	0.350	37.6	42	0.227	89.4	62	0.276	81.6	371	0.368	45.9
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	0	0.000	0.0	1	0.005	0.3	40	0.341	36.7	2	0.011	4.3	0	0.000	0.0	43	0.043	5.3
合計	273	0.934	100	303	1.608	100	109	0.929	100	47	0.254	100	76	0.339	100	808	0.802	100


フェレー	経の最	大水	(1.0mm	


		測線①			測線②			測線③			測線④			測線⑤			合計	
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	300	1.026	11.1	1601	8.498	29.1	640	5.456	36.0	1520	8.230	61.3	550	2.450	44.7	4611	4.578	33.7
ポリスチレン	0	0.000	0.0	1100	5,839	20.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	1100	1.092	8.0
ポリプロピレン	1200	4.104	44.4	2100	11.146	38.2	920	7.843	51.7	680	3.682	27.4	620	2.762	50.4	5520	5.480	40.3
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	1200	4.104	44.4	701	3.721	12.7	220	1.876	12.4	281	1.521	11.3	60	0.267	4.9	2462	2.444	18.0
合計	2700	9.234	100	5502	29.204	100	1780	15.175	100	2481	13.433	100	1230	5.479	100	13693	13.594	100

注:四捨五入の関係で合計値が一致しない場合がある。




©OpenStreetMap contributors

図V.2-13 マイクロプラスチックの季節別・材質別個数密度(赤羽根町沖:全地点) (個数密度は海水1m³あたりの密度)



図V.2-14 マイクロプラスチックの季節別・材質別個数密度(赤羽根町沖:全地点、1 mm以上) (個数密度は海水 1 ㎡あたりの密度)

(6) マイクロプラスチックの色別割合

赤羽根町沖におけるマイクロプラスチックの色別割合を、季節別に図V.2-15に示す。

- ・ 秋季には、サイズにかかわらず、黒の割合が顕著に高い傾向がみられたが、測線②の $1\sim5$ mm画分、測線③の $1\sim5$ mm画分と 1 mm未満画分では、それぞれ「その他」、白、透明が最も多く、黒の割合は低かった。
- ・ 冬季には、サイズにかかわらず、白の割合が高い傾向がみられたが、「その他」が多い測線もみられた。なお、測線②における1~5 mm 一分では白の割合が低く、「その他」や青が多い色組成がみられた。

図V.2-15 マイクロプラスチックの季節別・色別個数密度(赤羽根町沖) (個数密度は海水1㎡あたりの密度)

V.2.4 季節比較のまとめ

【泊村沖】

気象·海象	①海流	・2季とも対馬暖流の影響は大きくなかった。
	②外洋	・2季とも海域の一部は外洋水の影響を受けていた。
	③降雨•陸水	・2季とも全域または一部で降雨・陸水の影響を受けていた。
	④風、波浪	・秋季は沿岸湧昇が起きていた可能性があった。
		・2季とも調査日に高波浪による鉛直混合はなかったと思われる。
マイクロ	 ①個数と密度	・2 季とも 1 ㎜未満画分が 1~5 ㎜画分より若干多い。
プラスチック	1 世間数と名及	・秋季:個数密度の総量は 1.048 個/m³
		・冬季:個数密度の総量は 0.188 個/m³
	②形状	・2 季ともサイズに関わらず破片が多い。
	 ③材質	・2 季ともポリエチレン、ポリプロピレンが主体
		・2季とも1㎜未満画分では一部の測線で「その他」の割合が高い。
		(秋季:測線①~③、冬季:測線①)
	④色	・2 季とも、おおむね白が多いが、色にばらつきがみられる。

【志賀町沖】

気象・海象	①海流	・2季とも対馬暖流の影響は少ないと思われる。
	②外洋	・2季とも全域または一部で外洋水の影響を受けていた。
	③降雨·陸水	・2季とも降雨・陸水の影響はなかった。
	④風、波浪	・2季とも沿岸湧昇、波浪による鉛直混合はなかったと思われる。
マイクロ		・秋季は1~5 ㎜画分が1㎜未満画分より多く、冬季は1㎜未満画分
プラスチック	①個数と密度	が 1~5 ㎜画分より多い。
		・秋季:個数密度の総量は 0.438 個/m³
		・冬季:個数密度の総量は 9.458 個/m³
	②形状	・2季ともサイズに関わらず破片が多い。
		・秋季はポリエチレン、ポリスチレン、冬季はポリエチレン、ポリプ
		ロピレンが主体。
		・秋季は1~5㎜画分の測線④~⑤でポリスチレンの割合が高い。
	④色	・2季とも、おおむね白が多い。

【赤羽根町沖】

気象・海象	①海流	・秋季は黒潮の反流が赤羽根沖に回り込んでいたが、冬季は沿岸まで
		は接近していない。
	②外洋	・2 季とも全域または一部で外洋水の影響を受けていた。
	③降雨・陸水	・秋季は陸水の影響を受けていなかったが、冬季は岸側の測線で陸水
		の影響を受けていたものと思われる。
		・2季とも伊勢湾からの影響はなかったと思われる。
	④風、波浪	・2 季とも風、波による鉛直混合があった可能性がある。
マイクロ プラスチック	①個数と密度	・2 季とも 1 mm未満画分が 1~5 mm画分より多い
		・秋季:個数密度の総量は 6.703 個/m³
		・冬季:個数密度の総量は 14.396 個/m³
	②形状	・2季ともサイズに関わらず破片が多い。
		・秋季、冬季とも、おおむねポリエチレン、ポリプロピレンが主体
	③材質	・冬季は一部の測線で「その他」の割合が高い。
		・冬季は一部の測線でポリスチレンの割合が高い。
	④色	・秋季は黒、冬季は白が多い。

Ⅴ.3 環境要因とマイクロプラスチック

これまで述べたように、今年度は泊村沖、志賀町沖及び赤羽根町沖の3海域において、秋季、冬季にマイクロプラスチックを含む漂流ごみ調査を実施した。本章ではその結果に基づき、各海域における秋季と冬季の気象・海象とマイクロプラスチックの量及び分布との関係を取りまとめた。取りまとめに当たって、環境要因に関しては、海流、塩分、降雨量、風向・風速、有義波高がマイクロプラスチックの分布に影響するとみなし、関連情報を収集した。以下に環境要因に関するデータの出典を記す。

【海流】 ・日本海側については、日本海海況予測システム(JADE2)の再現データを使用した。

・ 赤羽根町沖については、愛知県が黒潮流路の状況を数日おきに公開しているため、調査 日付近の情報を使用した。

【塩分】 ・日本海側については、日本海海況予測システム(JADE2)の再現データを使用した。

・赤羽根町沖については、国土交通省名古屋港湾空港技術調査事務所の伊勢湾環境モニタ リングの情報を整理した。

【風向・風速】・風向・風速については、各調査海域付近のアメダス観測所のデータを使用した。

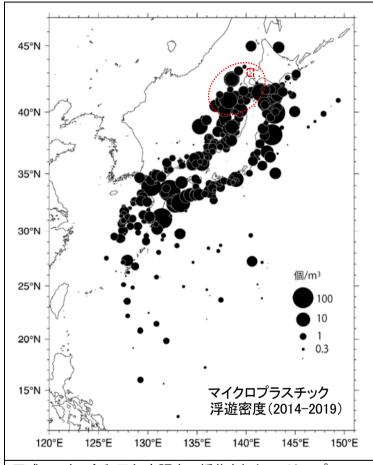
【有義波高】・有義波高は各調査海域付近のナウファスのデータを使用した。

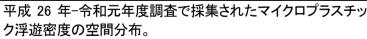
Ⅴ.3.1 海流

海洋表層でのマクロプラスチックの移動は表層の流れと風によって支配されると考えられる。ここでは、マイクロプラスチックの分布への海流の影響を確認する目的で、各海域の表層海流の概略、マイクロプラスチックの個数密度、及び、参考のために本邦周辺海域におけるマイクロプラスチックの浮遊密度(2014~2019)(東京海洋大学 2020)を併せて、図V.3-1~3 に示す。

(1) 泊村沖

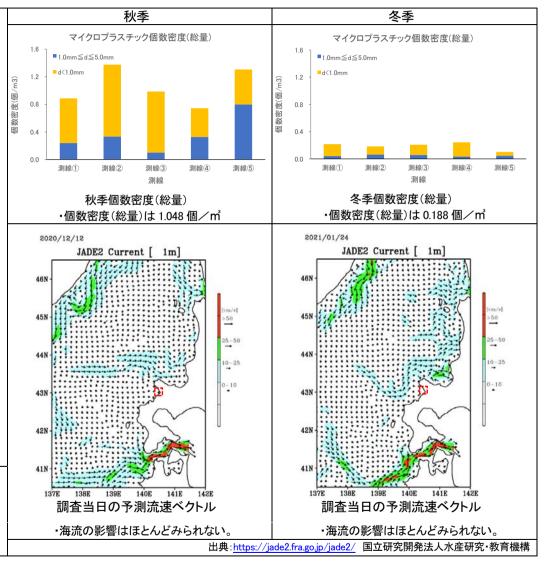
- ・ 東京海洋大学(2020)によれば、日本海におけるマイクロプラスチックの浮遊密度は対馬 暖流の流れる北陸から東北沖の日本海北部で高い。
- ・ 泊村沖での本調査の結果は、個数密度(総量)は秋季で約1個/㎡、冬季で約0.2個/㎡ で、東京海洋大学(2020)の日本海北部の密度に比べて低かった。
- 秋季、冬季とも海流の影響はみられず、泊村沖の個数密度も低かった。

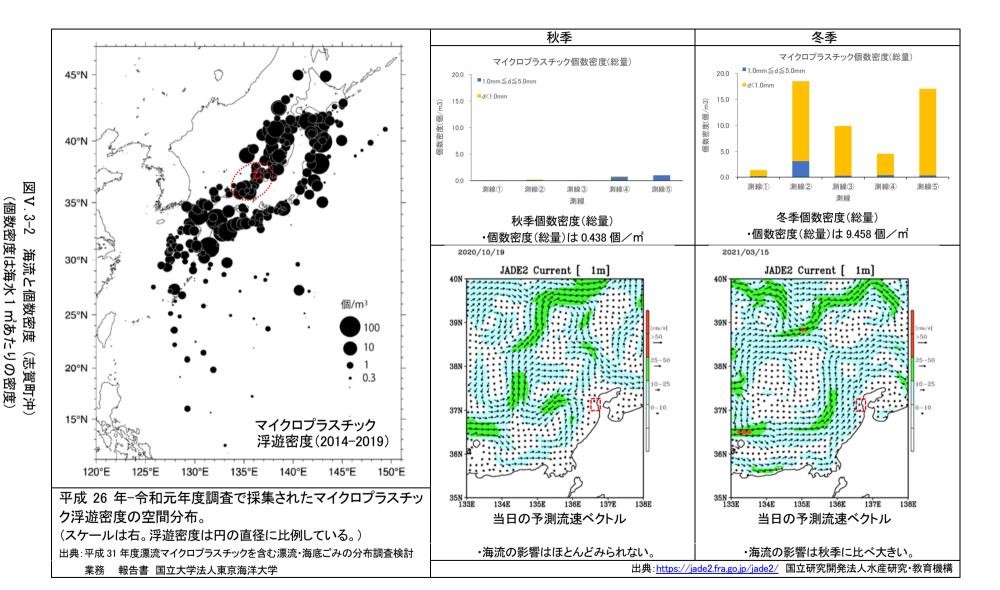

(2) 志賀町沖

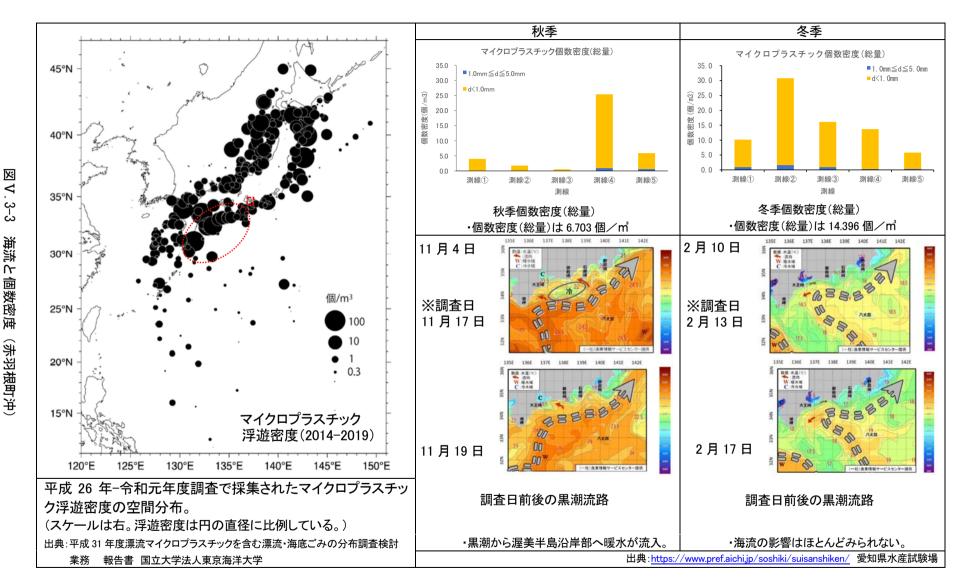

- ・ 東京海洋大学(2020)によれば、マイクロプラスチックの浮遊密度は能登半島周辺の日本 海で高い。
- ・ 志賀町沖での本調査の結果は、個数密度(総量)は秋季で約0.4個/m³、冬季で約9個/m³と秋季に比べ冬季は高かった。
- ・ 秋季は海流の影響は小さく、個数密度も低かったが、冬季は海流の影響を秋季よりはうけており個数密度も秋季より高かった。

(3) 赤羽根町沖

- ・ 東京海洋大学(2020)によれば、太平洋側では、北東北地方の沖、及び紀伊半島から九州 の沖にかけての海域でマイクロプラスチックの浮遊密度が高い。
- ・ 赤羽根町沖の個数密度(総量)は秋季で約7個/㎡、冬季で約14個/㎡と冬季の方が高かった。
- 秋季は海流の影響を冬季より受けていたが、個数密度は冬季より低かった。


叉 V. 3−1





(スケールは右。浮遊密度は円の直径に比例している。)

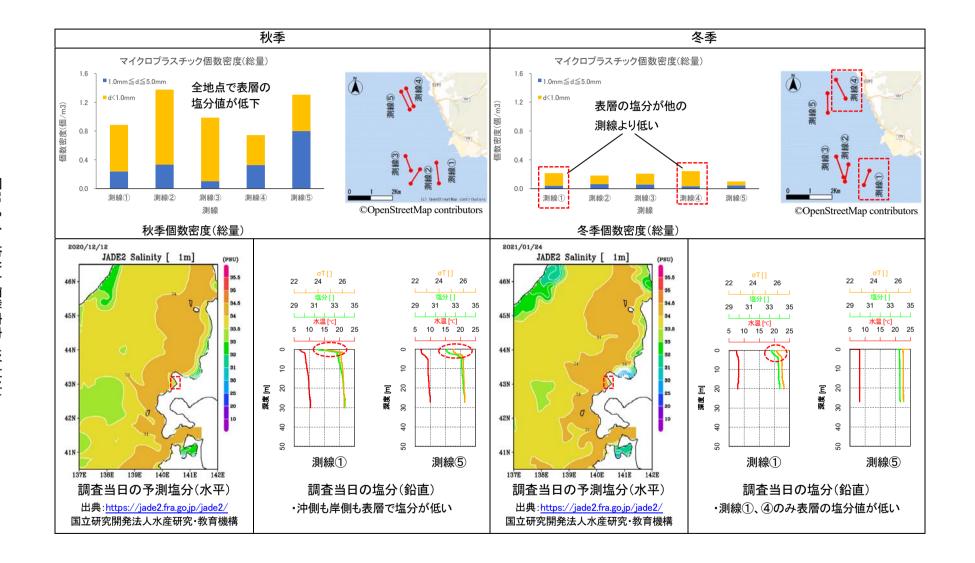
出典: 平成 31 年度漂流マイクロプラスチックを含む漂流・海底ごみの分布調査検討 業務 報告書 国立大学法人東京海洋大学

Ⅴ.3.2 塩分

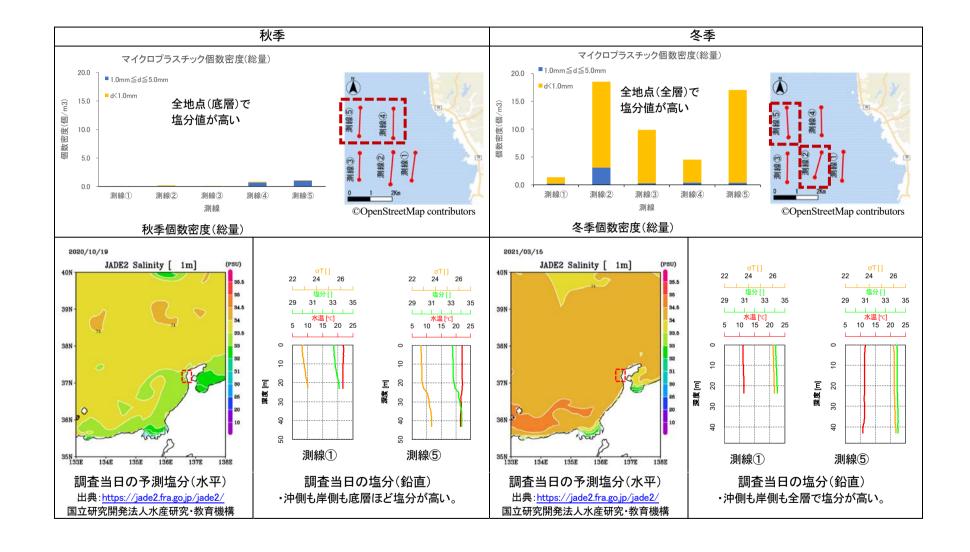
調査海域における外洋水(高塩分水)や河川水等の陸水(低塩分水)の影響を確認する目的で、関連情報から塩分データを引用し、本調査で明らかになった各調査海域におけるマイクロプラスチックの個数密度と現地観測結果(STD観測結果)を併せて図V.3-4~6に示す。

(1) 泊村沖

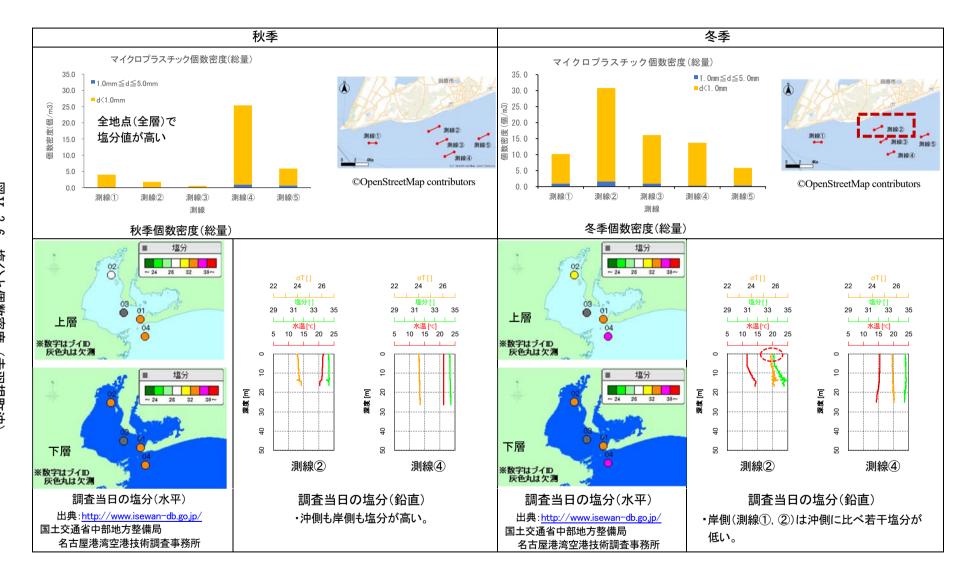
- 秋季、冬季ともに底層は外洋水の影響を受けていたと思われる。
- 秋季は全測線の表層で陸水の影響と思われる塩分の低下がみられた。
- ・ 冬季は測線①、④の表層で陸水の影響と思われる塩分の低下がみられたが、沖側の測線 では表層の塩分低下はみられず陸水の影響はないと思われる。
- ・ 秋季は冬季より陸水の影響を受けており、全域でマイクロプラスチックの個数密度が冬 季に比べ高かった。
- ・ また、冬季も表層で塩分の低下がみられる測線で個数密度が高い傾向がみられ、陸水の 影響が示唆された。


(2) 志賀町沖

- ・ STD 観測結果より、秋季の全測線で底層は塩分が高く、外洋水の影響を受けていたと思われる。
- 冬季は全測線、全層で塩分が高く外洋水の影響を受けていたと思われる。
- 秋季、冬季ともに全測線で塩分の低下はみられず陸水の影響はなかったと思われる。
- ・ 冬季は秋季より外洋水の影響が大きく、個数密度も秋季に比べ高かった。


(3) 赤羽根町沖

- ・ STD 観測結果より秋季は全測線、全層で塩分が高く、外洋水の影響を受けていたと思われる。
- ・ 冬季は沖側の測線では全層で塩分が高く、外洋水の影響を受けていたが、陸側の測線は 表層の塩分が沖側に比べ低く、陸水の影響を受けていた。
- ・ 伊勢湾環境モニタリングのデータ、STD 観測結果から秋季、冬季ともに本調査海域への伊勢湾からの湾内水の影響は小さかった。
- 冬季は秋季より外洋水の影響が小さく個数密度は秋季に比べ高かった。
- ・ 秋季は、低塩分がみられず、マイクロプラスチックは最も沖側の測線④で多かった。
- ・ 冬季は、岸側の測線①、②の表層は他の測線より塩分が低く、最も岸側の測線②でマイクロプラスチックの個数密度が、最も高かった。


図V.3-4 塩分と個数密度(泊村沖) (個数密度は海水1㎡あたりの密度)

図V.3-5 塩分と個数密度(志賀町沖) (個数密度は海水1㎡あたりの密度)

図V.3-6 塩分と個数密度 (赤羽根町沖) (個数密度は海水1㎡あたりの密度)

V.3.3 風向·風速

表層におけるマイクロプラスチックの移動は、流れとともに風によっても支配されると考えられる。このため、マイクロプラスチックの分布に対する風の影響を確認する目的で、各調査海域におけるマイクロプラスチックの個数密度と現地観測結果(風向・風速)を併せて図 $V.3-7\sim9$ に示す。

(1) 泊村沖

- ・ 秋季の風向はおおむね北西(沖からの風)、風速は3m以下であったが、測線②のみ6.2m の風が観測された。
- ・ 冬季の風向はおおむね南東(岸からの風)、風速は3m以下であった。
- 秋季、冬季ともに風は弱かったが、個数密度は冬季に比べ秋季が高かった。

(2) 志賀町沖

- ・ 秋季の風向はおおむね東から南東(岸からの風)、風速は 2m 以下であった。
- ・ 冬季の風向はおおむね西から南西(沖からの風)、風速は3m以下であった。
- ・ 秋季、冬季ともに風は弱かったが、個数密度は秋季に比べ冬季が高かった。

(3) 赤羽根町沖

- ・ 秋季の風向はおおむね北から北北西(岸からの風)、風速は 5m 以下であった。
- ・ 冬季の風向はおおむね北から北西(岸からの風)、風速は5~6m程度でやや風があった。
- ・ 冬季は最も岸側の測線②で個数密度が高くなっており、陸からの影響も考えられた。
- ・ 風は秋季に比べ冬季に強く、個数密度も秋季に比べ冬季が高かった。

図V.3-7 風向・風速と個数密度(泊村沖) (個数密度は海水1㎡あたりの密度)

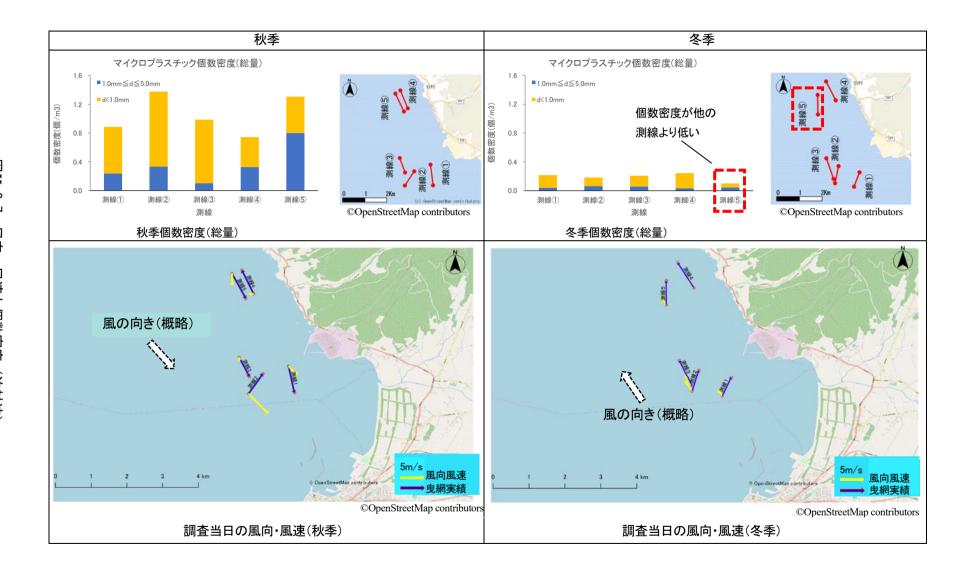
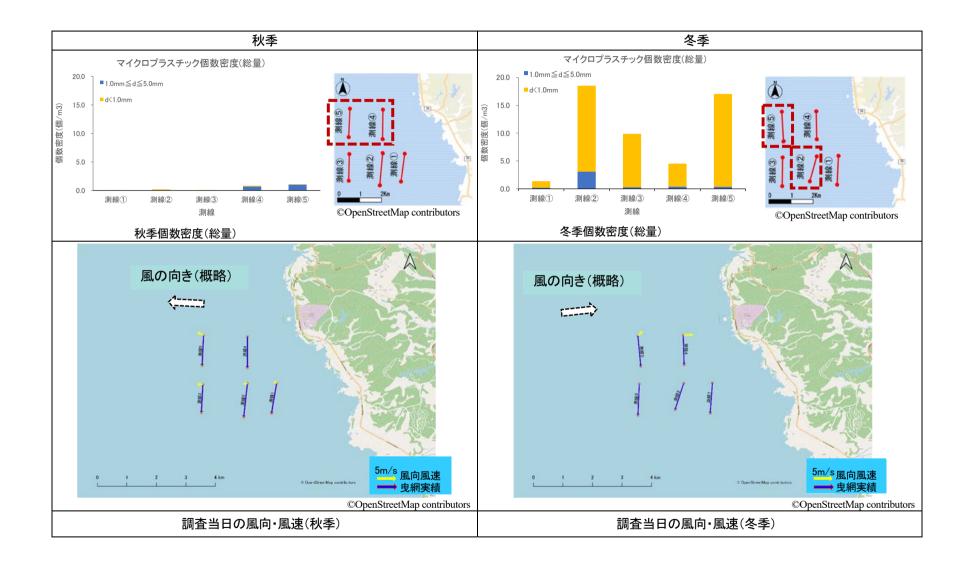
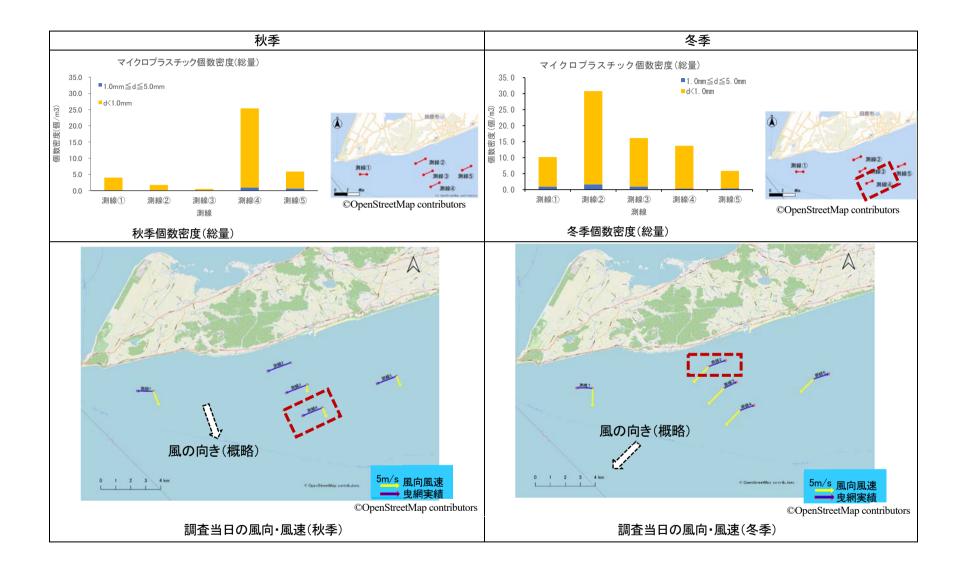




図 A . 3-8 風向・風速と個数密度(志賀町沖) (個数密度は海水 1 ㎡あたりの密度)

図V.3-9 風向・風速と個数密度(赤羽根町沖) (個数密度は海水1㎡あたりの密度)

V. 3. 4 有義波高·風速

本調査では表層に浮遊しているマイクロプラスチックを対象としているが、その量と質は 鉛直混合や沿岸湧昇によって変化すると考えられる。このため、調査時の鉛直混合や沿岸湧 昇の有無を確認する目的で、関連情報から調査時前後の有義波高と風向風速に係るデータを 引用し、マイクロプラスチックの個数密度の結果と併せて図V.3-10~12に示す。

(1) 泊村沖

- ・ 秋季の調査時間帯の有義波高は 1m 以下、風速は 5m 以下であったが、現地観測では波高は 1m 以上、風速は最大で北西 6.2m であった。
- ・ 調査日以前から継続して岸と平行に風が吹いていることから、沿岸湧昇が起こっていた 可能性がある。
- ・ 冬季は調査時間帯の有義波高は 1m 以下、風速は西寄りの風が 2m 以下で、現地観測では 波高は 0.3m 以下、風は 3m 以下であった。
- ・ 調査日以前から継続して岸と平行に風が吹いていることから、沿岸湧昇が起こっていた 可能性がある。

(2) 志賀町沖

- ・ 秋季の調査時間帯の有義波高は 1m 以下、風速は 2m 以下であった。
- ・ 秋季は調査日以前から波高も低く、風も弱い日が続いていたため沿岸湧昇、鉛直混合は 起きていなかったと思われる。
- ・ 冬季の調査時間帯の有義波高は 1m 以下、風速は 4m 以下であった。
- ・ 現地観測でも波高は 0.5m 以下、風は 3m 以下であり、継続した風もなかったため、沿岸 湧昇は起きていないと思われた。
- ・ 密度の鉛直分布は一様であるが、冬季は対流により表層混合層が発達しているためで、 一時的な高波浪によるものではないと思われた。

(3) 赤羽根町沖

- ・ 秋季は有義波高が 1m 以下、風速は 4m 以下であった。
- ・ 現地観測でも波高は 0.3m 以下と海上は平穏であったが、海域の密度の鉛直分布が一様であることから、風による鉛直混合があった可能性がある。
- ・ 冬季の調査時間帯の有義波高は 1m 前後、風速は 4m 以下であった。
- ・ 現地観測では波高は 1m 以上、風況は北東の風が最大で 6m 台とやや強いため、湧昇が起きていた可能性が考えられた。

図V.3-10 有義波高・風速と個数密度(泊村沖) (個数密度は海水1㎡あたりの密度)

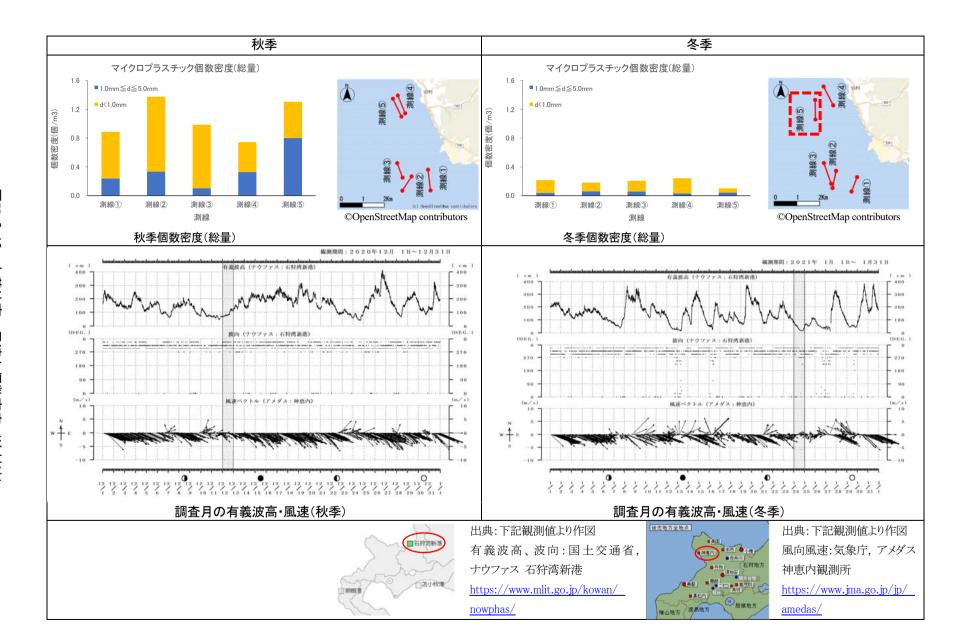
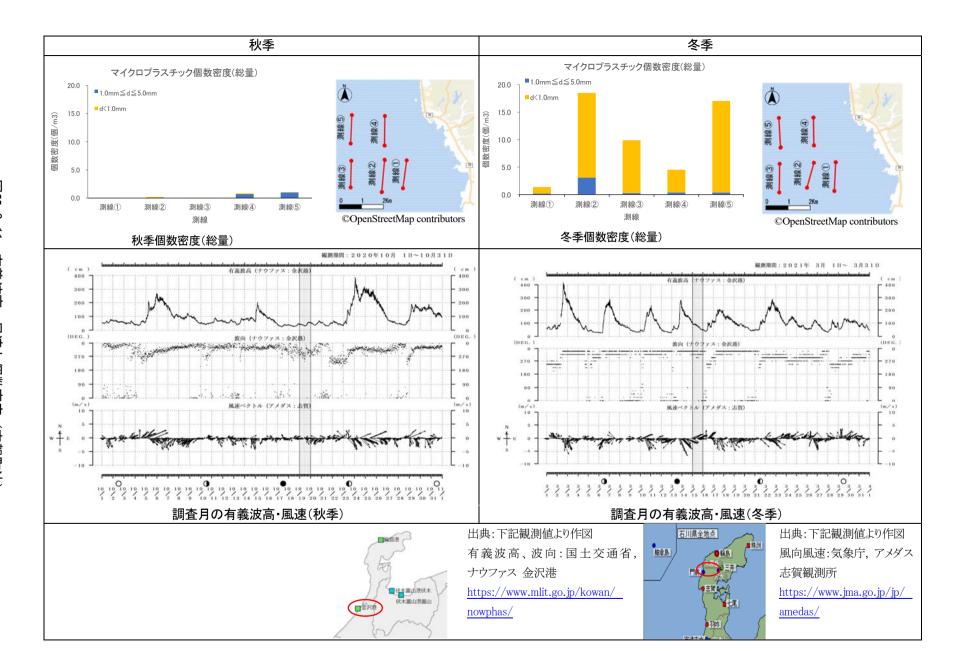
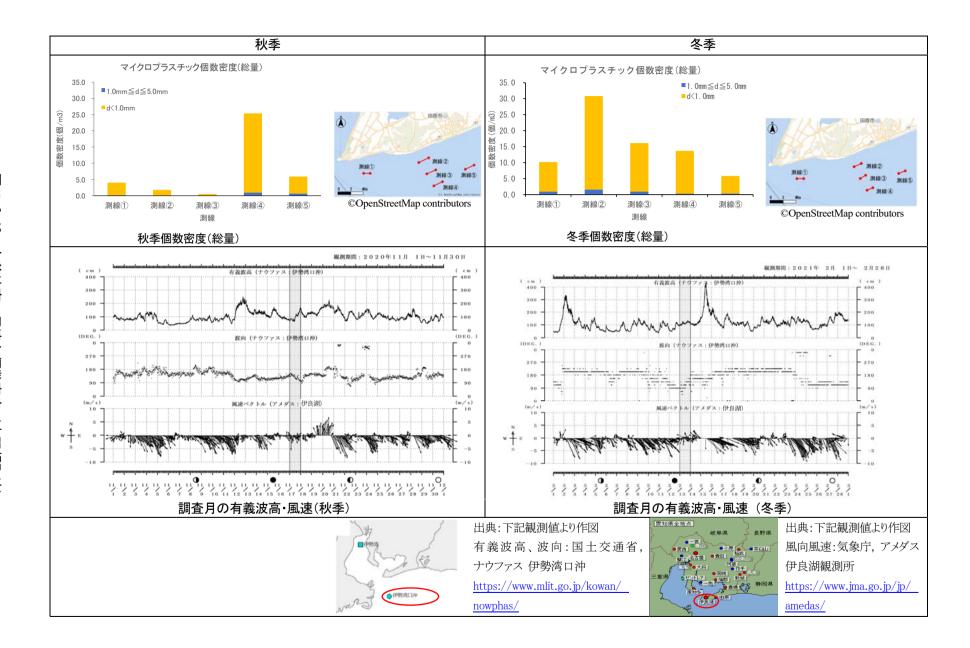




図 V.3-11 有義波高・風速と個数密度(志賀町沖) (個数密度は海水 1 ㎡あたりの密度)

図A.3-15 有義波高・風速と個数密度(赤羽根町沖) (個数密度は海水1㎡あたりの密度)

V.3.5 特異的な結果

V.3.5.1 色

【赤羽根町沖】

これまでに述べたように、3調査海域を通じて、マイクロプラスチックは白色のものが多い傾向がみられたが、秋季の赤羽根町沖では例外的に黒色のものが卓越していた。

黒いマイクロプラスチックは、海域に広く分布していたこと、調査日の前から間欠的に強い 風が吹いていたことから、風による供給の可能性を確認するため、調査時の風向とマイクロプ ラスチックの個数密度を図V.3-13に示す。

- ・ 秋季、冬季とも共通してマイクロプラスチックの形状は破片が多かった。
- ・ 材質は秋季にはポリエチレンが卓越していたが、冬季にはポリエチレン、ポリプロピレン、測線によってはポリスチレンが多いという違いがあった。
- ・ 秋季は測線③を除く海域全域で黒が卓越していたのに対し、冬季は他の海域と同様に白 が多く、白以外にも「その他」、透明、複合などの色がみられた。
- ・ このように、秋季は同じ材質、形状、色のマイクロプラスチックが卓越しており、発生源は同じであると推測される。
- ・ 秋季、冬季ともに、調査日の10日以上前から、主として北西風(陸からの風)が間欠的に吹いていた。
- ・ 以上のことから、秋季の黒いマイクロプラスチックは、陸域の発生源から風によって広 範囲に移送された可能性がうかがわれる。

個数密度(全体) 個数密度(全体) 30.0 25.0 25.0 秋季は黒色が卓越 £ 20.0 Ê 20.0 國黎 國 10.0 15.0 ポリエチレン(黒・破片) 10.0 5.0 5.0 0.0 0.0 測線② 測線③ 測線① 測線② 測線③ 測線④ 測線(5) 測線⑤ 色別の分析結果(秋季) 色別の分析結果(冬季) ポリエチレン(黒・破片) ■透明 ■ 緑 ■透明 ■ 緑 ■青 里 ■複合 ■その他 ■青 ■複合 ■その他 約0~4m 約5~7m ポリエチレン(白・破片) 18140(S) 測線(5) 測線4 風の向き(概略) 風の向き(概略)

図 V. 3-13 風向と色別個数密度(赤羽根町沖) (個数密度は海水 1 ㎡あたりの密度)

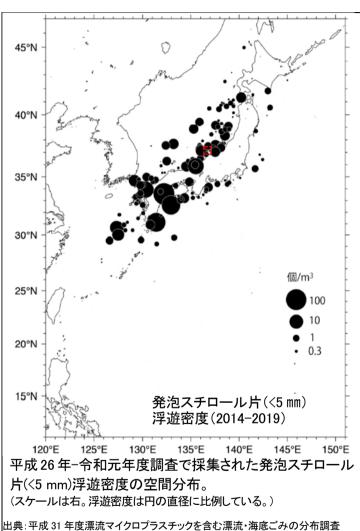
©OpenStreetMap contributors

・調査日の風向(陸から海へ)

ポリプロピレン(白・繊維)

©OpenStreetMap contributors

・調査日の風向(陸から海へ)


Ⅴ.3.5.2 ポリスチレン

これまでに述べたように、本調査結果では、マイクロプラスチックの材質はおおむねポリエチレン、ポリプロピレンが主体であったが、志賀町沖(秋季)及び赤羽根町沖(冬季)では他の海域に比べてポリスチレンが多かった。

ポリスチレンは発泡スチロールなどから発生することもあること、東京海洋大学 (2020) によれば、能登半島沖合は発泡スチロールの浮遊密度が高いことから、発泡スチロールからの供給の可能性を確認するため、調査時の海流、風向とマイクロプラスチックの個数密度及び本邦周辺海域における発泡スチロール片 (<5~mm) 浮遊密度 (2014~2019) (東京海洋大学 2020)を併せて、図V.3-14、15 に示す。

- ・ 東京海洋大学(2020)によれば、能登半島沖合は発泡スチロールの浮遊密度が高かった。
- ・ 秋季の志賀町沖の測線④、⑤では $1\sim5mm$ 画分でポリスチレンの割合が高かった(60%以上)。ただし、その個数密度は1個/m以下であった。
- ・ 冬季の赤羽根町沖の測線②では 1mm 未満画分でポリスチレンの個数密度が比較的高かった (約6個/㎡)。
- ・ 志賀町沖 (秋季) や赤羽根町沖 (冬季) は海流の影響は小さかったが、能登半島沖合には 高密度で発泡スチロールが分布しており、それらからポリスチレンが発生した可能性も 考えられる。
- ・ 赤羽根町沖(冬季)は調査日前には陸からの風が間欠的に吹いており、海岸に漂着した発 泡スチロールなどからポリスチレンが発生した可能性も考えられる。

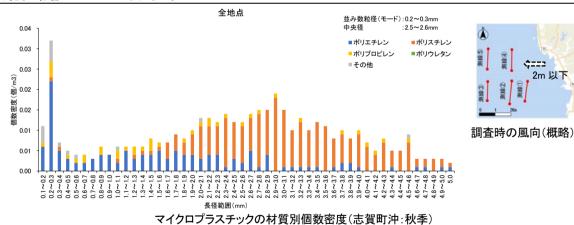
図V. 3-14

検討業務 報告書 国立大学法人東京海洋大学

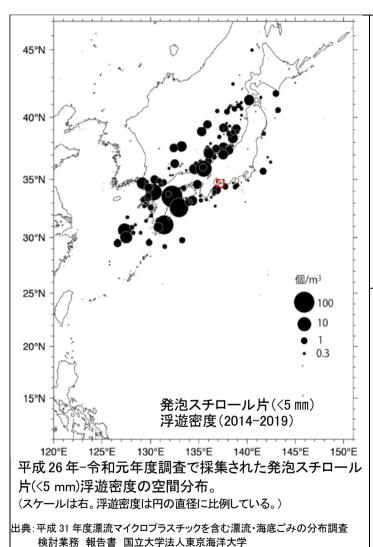
マイクロプラスチックの材質(志賀町沖:秋季)

フェレー径の最大	է 1.0m	m≦d≦	5.0mm												
/	測線①			測線②			測線③			測線④			測線⑤		
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	6	0.017	66.7	23	0.067	79.3	2	0.006	22.2	71	0.225	31.8	30	0.090	8.8
ポリスチレン	2	0.006	22.2	1	0.003	3.4	1	0.003	11.1	134	0.425	60.1	291	0.871	85.8
ポリプロピレン	1	0.003	11.1	5	0.015	17.2	5	0.015	55.6	18	0.057	8.1	16	0.048	4.7
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	0	0.000	0.0	0	0.000	0.0	1	0.003	11.1	0	0.000	0.0	2	0.006	0.6
合計	9	0.026	100.0	29	0.085	100.0	9	0.027	100.0	223	0.707	100.0	339	1.015	100.0

フェレー径の最大	フェレ ー径の最 大 d<1.0mm															
	測線①			測線(2)			測線③			測線④			測線⑤			ĺ
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	İ
ポリエチレン	5	0.014	38.5	31	0.091	83.8	15	0.045	83.3	29	0.092	69.0	4	0.012	26.7	ı
ポリスチレン	1	0.003	7.7	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	3	0.009	20.0	ı
ポリプロピレン	4	0.011	30.8	2	0.006	5.4	2	0.006	11.1	6	0.019	14.3	4	0.012	26.7	ı
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	ı
その他	3	0.009	23.1	4	0.012	10.8	1	0.003	5.6	7	0.022	16.7	4	0.012	26.7	
合計	13	0.037	100.0	37	0.109	100.0	18	0.054	100.0	42	0.133	100.0	15	0.045	100.0	l


・ポリスチレンは1~5 mm画分で側線④が 0.425 個/㎡、側線⑤が 0.871 個/㎡

海流の影響はほとんどみられない。

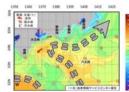


2020/10/19

出典:https://jade2.fra.go.jp/jade2/

・風は陸側から吹いていたが、風速は 2m 以下と弱かった。

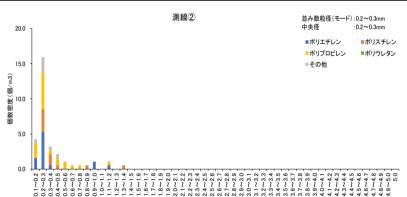
マイクロプラスチックの材質(赤羽根町沖:冬季)


フェレ―径の最	大 1.0n	nm≦d≦	5.0mm												
	測線①			測線②			測線③			測線④			測線⑤		
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	143	0.489	52.4	100	0.531	33.0	25	0.213	22.9	3	0.016	6.4	13	0.058	17.1
ポリスチレン	4	0.014	1.5	102	0.541	33.7	3	0.026	2.8	0	0.000	0.0	1	0.004	1.3
ポリプロピレン	126	0.431	46.2	100	0.531	33.0	41	0.350	37.6	42	0.227	89.4	62	0.276	81.6
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	0	0.000	0.0	1	0.005	0.3	40	0.341	36.7	2	0.011	4.3	0	0.000	0.0
合計	273	0.934	100.0	303	1.608	100.0	109	0.929	100.0	47	0.254	100.0	76	0.339	100.0

フェレ―径の最	フェレー径の最大 d<1.0mm														
	測線①			測線②			測線③			測線④			測線⑤		
	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%	個	個/m³	%
ポリエチレン	300	1.026	11.1	1601	8.498	29.1	640	5.456	36.0	1520	8.230	61.3	550	2.450	44.7
ポリスチレン	0	0.000	0.0	1100	5.839	20.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
ポリプロピレン	1200	4.104	44.4	2100	11.146	38.2	920	7.843	51.7	680	3.682	27.4	620	2.762	50.4
ポリウレタン	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
その他	1200	4.104	44.4	701	3.721	12.7	220	1.876	12.4	281	1.521	11.3	60	0.267	4.9
合計	2700	9.234	100.0	5502	29.204	100.0	1780	15.175	100.0	2481	13.433	100.0	1230	5.479	100.0

·ポリスチレンは側線2の1mm未満画分で5.839個/㎡

・海流の影響は少ないと思われる。


2月10日の海流 ※調査日2月13日

2月17日の海流

出典:https://www.pref.aichi.jp/soshiki/suisanshiken/

愛知県水産試験場

長経範囲(mm)
 マイクロプラスチックの材質別個数密度(赤羽根沖:冬季)

・調査日、調査前に陸からの風がやや強く吹いていた。

調査時の風向(概略)

V.4 今後の課題

令和2年度は、泊村沖、志賀町沖及び赤羽根町沖で秋季、冬季の2季に調査を実施し、評価した。年間のマイクロプラスチックの平均的な分布状況について検討するためには、調査を複数年継続することが必要である。これにより、平均的な分布を把握することが可能になり、分布に影響を与える環境要因の考察も可能となると考えられる。また、平均的な傾向を把握することで、調査時の特異的な現象についても考察が可能になると思われる。

更に長期的に調査を実施しデータを蓄積することで、経年的な変化を把握することも可能 となるものと考えられる。

第Ⅵ章 検討会の議事内容

VI.1 第1回議事概要

令和2年度 海洋ごみの実態把握と効果的・効率的な海洋ごみ回収 に関する検討会(第1回)

議事概要

日時:令和2年11月6日(金)13:00~15:00

場所:TKP新橋カンファレンスセンター

カンファレンスルーム 12A

議 事

開会 (13:00)

- 1. 環境省あいさつ
- 2. 資料の確認
- 3. 検討委員の紹介
- 4. 座長選任
- 5. 議事
 - (1) 本検討会の趣旨について [資料 1-1、1-2]
 - (2) 沿岸域における漂流ごみ分布調査計画について〔資料 2-1~2-4、参考資料 1、2〕
 - (3) 海底ごみ回収に係る効果測定手法、取組現状把握について〔資料 3-1~3-5〕
 - (4) その他 [参考資料 3、4]
- 6. 連絡事項

閉会 (15:00)

配布資料

- 資料 1-1 海洋ごみの実態把握と効果的・効率的な海洋ごみ回収に関する検討会設置要綱
- 資料 1-2 海洋ごみの実態把握に関するこれまでの成果と今後の検討の方向性
- 資料 2-1 沿岸海域における漂流ごみ分布調査計画について
- 資料 2-2 沿岸域における漂流ごみ分布調査 測線の設定について
- 資料 2-3 漂流ごみに関する調査手法について
- 資料 2-4 関連する海域特性情報の収集について
- 資料 3-1 漁業者と自治体の協力による海底ごみ回収事業マニュアル(仮称)について
- 資料 3-2 令和 2 年度漁業者の協力による海底ごみ回収実証調査全体計画について
- 資料 3-3 海底ごみモニタリング調査方法及びガイドライン
- 資料3-4 実証海域における漁業者の協力による海底ごみ回収計画について(案)
- 資料 3-5 <海底ごみ回収事業にご協力いただく自治体の方々へ> ~アンケート回答のお願い~ (漁業組合、協力自治体用)
- 参考資料 1 操業海域図
- 参考資料 2 操業隻日 20 日の妥当性について
- 参考資料 3 平成 29 年度漂着ごみ対策総合検討業務 海洋ごみ対策に関する事例集
- 参考資料 4 河川における漂流ボトル調査事例

(五十音順、敬称略)

(五十音順、	敬称略
検討員	
磯辺 篤彦 九州大学応用力学研究所 教授	
内田 圭一 東京海洋大学大学院海洋資源エネルギー学部門 准教授	
北門 利英 東京海洋大学海洋生物資源学部門 教授	
清水 健一 長崎大学大学院水産・環境科学総合研究科 海洋生産システム学分野	准教授
東海 正 東京海洋大学学術研究院 教授	
日向 博文 愛媛大学大学院理工学研究科 教授	
藤枝 繁 鹿児島大学産学・地域共創センター 特任教授	
オブザーバー	
山本 隆久 水産庁増殖増進部漁場資源課生態系保全室 課長補佐	
環境省	
山下 信 水・大気環境局水環境課海洋環境室 室長	
安陪 達哉 水・大気環境局水環境課海洋環境室 室長補佐	
藤本 諒 水・大気環境局水環境課海洋環境室 環境専門調査員	
事務局:日本エヌ・ユー・エス株式会社	
井川 周三 地球環境管理ユニット サブマネジャー	
川村 始 技術理事	
内田 啓太 地球環境管理ユニット	
三洋テクノマリン株式会社	
岡部 克顕 新事業開発部 部長	
松村 繁徳 東京支社技術部 環境コンサルタントグループ	
熊谷 仁志 新事業開発部 チーフエンジンア	
入江 正己 東京支社技術部 環境コンサルタントグループ	
渡邊 真由子 東京支社技術部 環境コンサルタントグループ	
奥村 邦明 東京支社技術部 部長	
島田 久子 東京支社技術部 環境コンサルタントグループ グループ長	
澤井 雅幸 東京支社技術部 環境コンサルタントグループ	
日髙 光帆 新事業開発部	
日本海環境サービス株式会社	
明石 秀司 取締役 環境調査部長	
佐藤 遼 環境調査部	
米島 伸 分析事業部	
杉本 綾乃 分析事業部	
株式会社テクノ中部	
吉田 謙 環境技術センター 水域調査グループ グループ長	

岡野 光良 環境技術センター 水域調査グループ 副長

令和2年度 海洋ごみの実態把握と効果的・効率的な海洋ごみ回収 に関する検討会(第2回)

議事概要

日時:令和3年1月7日(木)15:00~17:00

場所:日本エヌ・ユー・エス株式会社 新宿本社

議事

開会 (15:00)

- 1. 資料の確認
- 2. 議事
 - (1) 漂着ごみ組成調査の手法の改善・結果の整理・分析方法について

「資料 1-1~1-3、参考資料 1、2]

- (2) 漂着ごみ回収データの分析方針について〔資料 2-1~2-2〕
- (3) 沿岸域における漂流ごみ分布調査の中間結果について〔資料 3-1~3-3、参考資料 3、4〕
- (4)漁業者と自治体の協力による海底ごみ回収に係るアンケート結果及び現地調査について 〔資料 4-1~4-2〕
- 3. 連絡事項

閉会 (17:00)

配布資料

- 資料 1-1 地方公共団体向け研修結果を踏まえた漂着ごみ組成調査手法の改善について
- 資料 1-2 漂着ごみ組成調査に係る Q&A 集(案)(第1版)
- 資料 1-3 漂着ごみ組成調査の結果の整理・分析方法について
- 資料 2-1 漂着ごみ回収データの分析方針について
- 資料 2-2 漂着ごみ回収データの分析方針(補足資料)
- 資料 3-1 沿岸海域における漂流ごみ分布調査について
- 資料 3-2 秋季調査状況について
- 資料 3-3 石川県能登半島西岸(志賀町沖)における分析結果について
- 資料 4-1 自治体及び漁業協同組合へのアンケート回収状況
- 資料 4-2 調査量の設定
- 参考資料 1 地方公共団体向け漂着ごみ組成調査ガイドライン (ver.2)
- 参考資料 2 令和元年度漂着ごみ組成調査の分析結果の概要について
- 参考資料 3 漂流ごみに関する調査手法について
- 参考資料 4 石川県能登半島西岸(志賀町沖)における調査結果データシート
- 参考資料 5 藤枝委員から事前に提出された意見

(五十音順、敬称略)

			(五十音順、	敬称略
検討員				
磯辺	篤彦	九州大学応用力学研究所 教授		
内田	圭一	東京海洋大学大学院海洋資源エネルギー学部門 准教授		
北門	利英	東京海洋大学海洋生物資源学部門 教授		
清水	健一	長崎大学大学院水産・環境科学総合研究科 海洋生産システ	ム学分野	准教授
東海	正	東京海洋大学学術研究院 教授		
日向	博文	愛媛大学大学院理工学研究科 教授		
	繁	鹿児島大学産学・地域共創センター 特任教授		
オブザー	~,,	THE PROPERTY OF THE PROPERTY O		
	隆久	水産庁増殖増進部漁場資源課生態系保全室 課長補佐		
環境省	主人	<u> </u>		
	信	水・大気環境局水環境課海洋環境室 室長		
, ,		水・大気環境局水環境課海洋環境室 室長補佐		
藤本	諒	水・大気環境局水環境課海洋環境室 環境専門調査員		
事務局:	日本エヌ・	ユー・エス株式会社		
井川	周三	地球環境管理ユニット サブマネジャー		
後藤	澄江	地球環境管理ユニット		
内田	啓太	地球環境管理ユニット		
福井	隆	地球環境管理ユニット		
杉村	亮	地球環境管理ユニット		
三洋テク	ノマリン株	式会社		
岡部	克顕	新事業開発部 部長		
松村	繁徳	東京支社技術部 環境コンサルタントグループ		
白石	和広	新事業開発部 チーフエンジンア		
入江	正己	東京支社技術部 環境コンサルタントグループ		
渡邊	真由子	東京支社技術部 環境コンサルタントグループ		
奥村	邦明	東京支社技術部 部長		
島田	久子	東京支社技術部 環境コンサルタントグループ グループ	長	
日髙	光帆	新事業開発部		
日本海環	境サービス	株式会社		
明石	秀司	環境調査部長		
佐藤	遼	環境調査部		
	律子	分析事業部 課長		
	伸	分析事業部		
杉本	綾乃	分析事業部		
株式会社	テクノ中部	S		
吉田	謙	環境技術センター 水域調査グループ グループ長		
<i>t</i> → +++	P & 334	-mr (-b ((((((((((((((((((

環境技術センター 水域調査グループ 主任

伊藤 隆道

【用語】 1/2

アメダス

アメダス(AMeDAS)とは「Automated Meteorological Data Acquisition System」の略で、「地域気象観測システム」といいます。 雨、風、雪などの気象状況を時間的、地域的に細かく監視するために、降水量、風向・風速、気温、湿度の観測を自動的におこない、気象災害の防止・軽減に重要な役割を果たしています。現在、降水量を観測する観測所は全国に約 1,300 か所(約 17km 間隔)あります。このうち、約 840 か所(約 21km 間隔)では降水量に加えて、風向・風速、気温、湿度を観測しているほか、雪の多い地方の約 330 か所では積雪の深さも観測しています。

出典: 気象庁 HP 一部抜粋

沿岸水(えんがんすい)

外洋水に対比して用いられる言葉で、厳密な定義はなく、場合によって異なる。内湾の現象を論じるときは、河川水・陸水の影響を受けた沿岸に極近い部分の水を、湾外からの外洋水と区別することがある。また、例えば東シナ海では、広い大陸棚上の水全体を、陸棚縁を流れる黒潮域およびその沖合いの水(外洋水)と対比して、沿岸水と呼ぶことがある。

出典:海洋情報研究センターHP 一部抜粋

沿岸湧昇(えんがんゆうしょう)

地球自転にともなうコリオリの力が働くため、表層の水は全体として北(南)半球では風の方向に直角右(左)向きに運ばれる(エクマンの吹送流)。したがって、海岸を左(右)に見て海岸に平行な風が吹くと、沿岸域の表層水は沖に運ばれ、一方が海岸に遮られているため、その後に下層の冷たい栄養塩に富んだ海水が湧昇してくる。この現象を沿岸湧昇と呼ぶ。

出典:海洋情報研究センターHP 一部抜粋

海流(かいりゅう)

海洋においてほぼ一定方向の海水の流れをいう。

外洋水 (がいようすい)

河川水・陸水あるいは浅海での潮汐混合の影響を受けていない海水をさすわけであるが、明確に定義されているわけではない。 陸棚斜面から沖、あるいは黒潮の流れるわが国の南岸では黒潮域およびその沖合の水を指すことも多い。 内湾域の沿岸近くの水を、外洋から流入した水と区別して用いることもある。

出典:海洋情報研究センターHP 一部抜粋

黒潮(くろしお)

黒潮は、東シナ海を北上して九州と奄美大島の間のトカラ海峡から太平洋に入り、日本の南岸に沿って流れ、房総半島沖を東に流れる海流です。流速は速いところでは毎秒 2m以上に達し、その強い流れは幅 100km にも及び、輸送する水の量は毎秒 5,000 万トンにも達します。

出典: 気象庁 HP 一部抜粋

[用語] 2/2

対馬暖流(つしまだんりゅう)

東シナ海の大陸棚斜面を流れる黒潮水を主な起源とし、対馬海峡を通って流入する高温・高塩分水(以下、暖水)が広がっています。その大部分は津軽海峡を通って太平洋に、一部は宗谷海峡を通ってオホーツク海に流出します。この暖水の流れが対馬暖流です。

出典:気象庁 HP 一部抜粋

表層混合層(ひょうそうこんごうそう)

海面付近には深さ方向に水温変化の少ない層があります。これを表層混合層といいます。冬季には海面で海水が冷却され、また海上を吹く風によって上層と下層の水が活発にかき混ぜられるため、厚い表層混合層が形成されます。夏季には、海面付近の海水が、日射により温められ、海面付近と下層の温度差が大きくなるため、表層混合層は薄くなります。

出典: 気象庁 HP 一部抜粋

密度躍層(みつどやくそう)

海洋の物理学的特性の一つは、その著しい成層構造にあり、海水の密度は深さと共に増大してい く。この密度の分布において、特にその鉛直勾配の大きな層を密度躍層と呼ぶ。

出典:海洋情報研究センターHP 一部抜粋

有義波高(ゆうぎはこう)

ある地点で連続する波を1つずつ観測したとき、波高の高い方から順に全体の1/3の個数の波 (例えば100個の波が観測された場合、高い方から33個の波)を選び、これらの波高を平均したもの を有義波高と呼ぶ。有義波は統計的に定義された波であるが、熟練した観測者が目視で観測する波 高や周期に近いと言われている。

出典:気象庁 HP 一部抜粋

陸水(りくすい)

地球上に存在する水のうち、海水を除いたものの総称。