令和元年度漂着ごみ対策総合検討業務

報告書【概要版】

令和２年３月

日本エヌ・ユー・エス株式会社
目 次

I 章 調査概要 .. 5

II 章 業務の内容 .. 6

1. 漂着ごみ等の回収実態把握調査等の実施結果 ... 6
 1.1 漂着ごみ等の回収実態把握調査等 .. 6
 1.1.1 調査概要 .. 6
 1.1.2 調査結果 .. 6
 1.2 地理情報システム（GIS）を用いた漂着ごみの回収・処理実績等のデータ化 ... 10

2. 漂着ごみの種類・組成等に係る調査 ... 11
 2.1 目的 ... 11
 2.2 調査方法 ... 12
 2.3 調査結果 ... 12
 2.3.1 2分類別の重量組成 ... 12
 2.3.2 大分類別の重量組成 ... 14
 2.3.3 プラスチックの容器包装等の組成 ... 15
 2.3.4 ペットボトル・キャップ・ふた等の言語表記別割合等 16
 2.4 総合解析 ... 19
 2.4.1 目的 ... 19
 2.4.2 過年度の調査内容及び使用データ ... 19
 2.4.3 解析結果 ... 23

3. 漂着ごみ等生態系影響把握調査 .. 28
 3.1 目的 ... 28
 3.2 調査方法 ... 28
 3.2.1 採集方法 ... 28
 3.2.2 分析方法 ... 28
 3.3 漂着ごみによる生態系影響把握調査（令和元年度） 28
 3.3.1 結果 ... 28
 3.3.2 考察 ... 30
 3.4 総合解析結果（平成 26 年度〜令和元年度） 31
 3.4.1 結果 ... 34
 3.4.2 考察 ... 37

4. モニタリング調査ガイドラインの修正 .. 41
 4.1 目的 ... 41
 4.2 方法 ... 41
 4.3 更新内容 ... 41
 4.3.1 地方自治体からの意見の反映 ... 41
4.3.2 国内外の動向の反映 42
4.3.3 調査時期・調査地点の選定に資する参考情報の充実 42
4.3.4 調査データの解析に資する情報の記載の充実 42
4.3.5 調査成果の向上、分析・施策への反映例の提示 42
Ⅰ章 調査概要

本業務では、海岸漂着物対策の一環として、海岸漂着物等地域対策推進事業に関する海岸漂着物処理推進法施行状況調査、我が国に漂着するごみの組成や量の現地調査、漂着ごみ等生態系影響把握調査等を実施し、発生源対策等の今後の漂着ごみ対策について検討することを目的とした。

なお、調査の計画、実施、結果の検討に当たっては、平成30年12月27日及び平成31年2月25日に開催した平成30年度漂着ごみ対策総合検討会の指導・助言のもとに実施した。

平成30年度漂着ごみ対策総合検討会 検討員名簿

<table>
<thead>
<tr>
<th>検討員（五十音順、敬称略）</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>磯辺 篤彦</td>
<td>九州大学応用力学研究所 教授</td>
</tr>
<tr>
<td>兼廣 春之</td>
<td>東京海洋大学 名誉教授</td>
</tr>
<tr>
<td>高田 秀重</td>
<td>東京農工大学農学部環境資源科学科 教授</td>
</tr>
<tr>
<td>日向 博文</td>
<td>愛媛大学大学院理工学研究科 教授</td>
</tr>
<tr>
<td>藤枝 繁</td>
<td>鹿児島大学産学・地域共創センター 特任教授</td>
</tr>
</tbody>
</table>
II章 業務の内容
1. 漂着ごみ等の回収実態把握調査等の実施結果
1.1 漂着ごみ等の回収実態把握調査等

1.1.1 調査概要

我が国における海岸漂着物等の発生の実態には、未解明の部分が多く残されており、海岸漂着物等の効果的な発生抑制のための施策を的確に企画し、実施するためには、まず、海岸漂着物等の発生の状況や原因について可能な限り把握し、施策の検討の資料として供することが必要である。このため、漂着ごみ等の回収実態等を把握することを目的として、全国で行われている漂着ごみ、漂流ごみ、海底ごみの回収実態を調査するとともに、発生抑制対策の実態を調査した。

調査内容は、①自治体による漂着ごみ等の回収状況、②民間の団体による漂着ごみ等の回収状況等に区分して実施した。本調査における区分ごとの調査対象は表 1.1-1 のとおりである。

表 1.1-1 漂着ごみ等の回収実態把握調査の対象

<table>
<thead>
<tr>
<th>区分</th>
<th>調査対象</th>
<th>調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>都道府県が実施した海岸漂着物等地域対策推進事業に関するアンケート調査の結果（平成30年度）</td>
<td>以下の内容について、都道府県毎に整理した。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・左記事業による漂着ごみの回収量</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・左記事業による漂流ごみ・海底ごみの回収量</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・都道府県及び市町村が実施または把握している左記事業以外の清掃活動での回収量</td>
</tr>
<tr>
<td>②</td>
<td>一般社団法人 JEAN がとりまとめた「国際海岸クリーンアップ（ICC）」の結果*</td>
<td>全国で実施された ICC に係る回収量*について、都道府県毎に整理した。</td>
</tr>
<tr>
<td></td>
<td>公益財団法人環日本海環境協力センター（NPEC）がとりまとめた「海辺の漂着物調査」の結果</td>
<td>全国で実施された海辺の漂着物調査に係る回収量について、都道府県毎に整理した。</td>
</tr>
<tr>
<td></td>
<td>環境省の委託により実施された現地調査の結果（平成30年度）</td>
<td>全国の主要な海岸において実施されたモニタリング調査に係る回収量について、調査地点毎に整理した。</td>
</tr>
</tbody>
</table>

*河川、道路など海岸漂着物以外の回収量を除く

1.1.2調査結果

（1）自治体による漂着ごみ等の回収状況

① 海岸漂着物等地域対策推進事業

都道府県及び市町村による漂着ごみの回収量は、図 1.1-1、図 1.1-2 のとおりであった。また、漂流ごみ・海底ごみの回収量は、図 1.2-3 のとおりであった。
注）岩手県、福島県、大阪府は調査データなし。

図 1.1-1 海岸漂着物等海域対策推進事業による漂着ごみの回収量
（平成 30 年度、都道府県別）

図 1.1-2 海岸漂着物等海域対策推進事業による漂着ごみの回収量
（平成 30 年度、12 地域別）
図 1.1-3 漂流ごみ・海底ごみの回収量（平成 30 年度、都道府県別）

（2）民間の団体による漂流ごみ等の回収状況等

① 民間の団体による漂流ごみ等の回収状況

国際海岸クリーンアップ（ICC）及び海辺の漂流物調査（NPEC）による全国の漂流ごみの回収量の合計は、表 1.1-3 のとおりであった。

②モニタリング調査（環境省委託事業）

環境省の平成 30 年度委託業務により回収した漂流ごみの量は、以下のとおりであった。

表 1.1-2 環境省の委託調査による回収量（都道府県別）

<table>
<thead>
<tr>
<th>No.</th>
<th>都道府県</th>
<th>地点名</th>
<th>回数</th>
<th>回収量（t）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>北海道</td>
<td>紋別</td>
<td>1</td>
<td>0.250</td>
</tr>
<tr>
<td>2</td>
<td>北海道</td>
<td>岩内</td>
<td>1</td>
<td>0.288</td>
</tr>
<tr>
<td>3</td>
<td>青森県</td>
<td>深浦</td>
<td>1</td>
<td>1.080</td>
</tr>
<tr>
<td>4</td>
<td>青森県</td>
<td>岩内</td>
<td>1</td>
<td>0.088</td>
</tr>
<tr>
<td>5</td>
<td>千葉県</td>
<td>坂本</td>
<td>1</td>
<td>0.776</td>
</tr>
<tr>
<td>6</td>
<td>千葉県</td>
<td>千葉</td>
<td>1</td>
<td>0.066</td>
</tr>
<tr>
<td>7</td>
<td>大分県</td>
<td>岬</td>
<td>1</td>
<td>0.042</td>
</tr>
<tr>
<td>8</td>
<td>島根県</td>
<td>松江</td>
<td>1</td>
<td>0.658</td>
</tr>
<tr>
<td>9</td>
<td>宮崎県</td>
<td>日南</td>
<td>1</td>
<td>0.117</td>
</tr>
<tr>
<td>10</td>
<td>鹿児島県</td>
<td>南さつま</td>
<td>1</td>
<td>0.076</td>
</tr>
</tbody>
</table>

合 計 3.541
表 1.1-3 民間の団体による漂着ごみ等の回収量（平成 30 年度、都道府県別）

<table>
<thead>
<tr>
<th>№</th>
<th>都道府県名</th>
<th>回収量(t)</th>
<th>調査距離(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>北海道</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>青森県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>岩手県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>宮城県</td>
<td>0.08</td>
<td>1.22</td>
</tr>
<tr>
<td>5</td>
<td>秋田県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>山形県</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>7</td>
<td>福島県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>茨城県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>千葉県</td>
<td>0.50</td>
<td>0.36</td>
</tr>
<tr>
<td>10</td>
<td>東京都</td>
<td>0.19</td>
<td>2.20</td>
</tr>
<tr>
<td>11</td>
<td>神奈川県</td>
<td>6.40</td>
<td>6.98</td>
</tr>
<tr>
<td>12</td>
<td>新潟県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>北海道</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>青森県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>岩手県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>宮城県</td>
<td>0.08</td>
<td>1.22</td>
</tr>
<tr>
<td>17</td>
<td>秋田県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>18</td>
<td>山形県</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>19</td>
<td>福島県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>茨城県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>千葉県</td>
<td>0.50</td>
<td>0.36</td>
</tr>
<tr>
<td>22</td>
<td>東京都</td>
<td>0.19</td>
<td>2.20</td>
</tr>
<tr>
<td>23</td>
<td>神奈川県</td>
<td>6.40</td>
<td>6.98</td>
</tr>
<tr>
<td>24</td>
<td>新潟県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>北海道</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>青森県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>岩手県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>宮城県</td>
<td>0.08</td>
<td>1.22</td>
</tr>
<tr>
<td>29</td>
<td>秋田県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>30</td>
<td>山形県</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>31</td>
<td>福島県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>32</td>
<td>茨城県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>33</td>
<td>千葉県</td>
<td>0.50</td>
<td>0.36</td>
</tr>
<tr>
<td>34</td>
<td>東京都</td>
<td>0.19</td>
<td>2.20</td>
</tr>
<tr>
<td>35</td>
<td>神奈川県</td>
<td>6.40</td>
<td>6.98</td>
</tr>
<tr>
<td>36</td>
<td>新潟県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37</td>
<td>北海道</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>38</td>
<td>青森県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>39</td>
<td>岩手県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>宮城県</td>
<td>0.08</td>
<td>1.22</td>
</tr>
<tr>
<td>41</td>
<td>秋田県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>42</td>
<td>山形県</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>43</td>
<td>福島県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>44</td>
<td>茨城県</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>45</td>
<td>千葉県</td>
<td>0.11</td>
<td>0.70</td>
</tr>
<tr>
<td>46</td>
<td>東京都</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>47</td>
<td>神奈川県</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

注）-：回収実績なし 0.00：回収量では1トン未満を示す。

（３）全国の海岸漂着物の回収量の推移

上記①及び②の回収量をとりまとめた結果及び回収量の推移は、表 1.1-4 のとおりである。
表 1-1-4 全国の海岸漂着物の回収量（都道府県別）

<table>
<thead>
<tr>
<th>No.</th>
<th>都道府県名</th>
<th>2018年度（平成30年度）</th>
<th>2019～2018年度合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>対策推進</td>
<td>環境省</td>
</tr>
<tr>
<td>1</td>
<td>北海道</td>
<td>4,111</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>青森県</td>
<td>561</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>岩手県</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>宮城県</td>
<td>403</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>秋田県</td>
<td>588</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>山形県</td>
<td>1,905</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>福島県</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>茨城県</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>千葉県</td>
<td>511</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>東京都</td>
<td>134</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>神奈川県</td>
<td>2,432</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>新潟県</td>
<td>1,900</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>富山県</td>
<td>1,812</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>石川県</td>
<td>662</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>福井県</td>
<td>501</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>静岡県</td>
<td>1,592</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>愛知県</td>
<td>568</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>三重県</td>
<td>1,199</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>兵庫県</td>
<td>333</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>大阪府</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>兵庫県</td>
<td>1,013</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>和歌山県</td>
<td>240</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>鳥取県</td>
<td>294</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>岡山県</td>
<td>716</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>岡山県</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>広島県</td>
<td>327</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>山口県</td>
<td>308</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>徳島県</td>
<td>797</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>香川県</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>愛媛県</td>
<td>281</td>
<td>-</td>
</tr>
<tr>
<td>39</td>
<td>高知県</td>
<td>898</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>福岡県</td>
<td>352</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>佐賀県</td>
<td>365</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>長崎県</td>
<td>1,711</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>宮崎県</td>
<td>310</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>大分県</td>
<td>1,396</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>宮崎県</td>
<td>938</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>鹿児島県</td>
<td>2,360</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>沖縄県</td>
<td>592</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>全国</td>
<td>32,486</td>
<td>3</td>
</tr>
</tbody>
</table>

注）-：回収実績なし 0：回収量では1トン未満を示す。

1.2 地理情報システム（GIS）を用いた漂着ごみの回収・処理実績等のデータ化

平成30年度の都道府県の漂着ごみの回収・処理実績等のデータからGISデータ（エクセル形式）を作成した。結果は海上保安庁の海洋台帳の社会情報「海ごみ」データとして「海しる」上に公開される（URL: https://www.msil.go.jp/msil/htm/topwindow.html）。
2. 漂着ごみの種類・組成等に係る調査

2.1 目的

漂着ごみ対策を適切に進めていくには、我が国の漂着ごみの現存量及び分布を把握するとともに、漂着ごみの組成の把握や、海域別又は地域別の組成の違いを明らかにすることが重要である。

このため、本調査では、我が国の漂着ごみの状況を把握する上で必要な地点における継続した漂着ごみのモニタリングにより、漂着ごみの組成の実態把握に必要な情報の収集・整理及び分析を行うことを目的とする。

2.2 調査方法

図 2.2-1 に示す 10 地点で、漂着ごみのモニタリング調査を実施した。海岸線 50m の範囲内で回収した漂着物を分類表に従い分類し、重量、容量、個数を計測した。ペットボトル、ペットボトルのキャップ、漁業用の浮子については、バーコードや本体の刻印等から言語表記別の分類を行い、数量を把握した。レジ袋については、袋に記載されている文字等からコンビニ、スーパー、薬局、その他の 4 つに分類し、個数を把握した。

図 2.2-1 令和元年度モニタリング調査の対象海岸の位置
2.3 調査結果

2.3.1 2分類別の重量組成

2分類（人工物、自然物）別の重量組成を

図 2.3-1 に示す。今年度の調査地点について、稚内、深浦、淡路では、自然物の割合が高く、そのほかの地点では、人工物の割合が高かった。
図 2.3-1 2 分類別の組成（重量：kg）
2.3.2 大分類別の重量組成

人工物の大分類（プラスチック、天然繊維・革、ガラス・陶器、金属、紙・段ボール、ゴム、木・木材系、電化製品・電気機器、その他の9分類）別の重量組成を図2.3-2に示す。令和元年度に実施した以下の調査地点における調査結果について、高知及び下関では、木・木材系の割合が最も高く、そのほかの地点では、プラスチックの割合が最も高かった。
2.3.3 プラスチックの容器包装等の組成

プラスチックの容器包装等（容器包装（飲料用ボトル、その他のパペット、容器類、ポリ袋）、製品（カトラリー、その他のプラスチック）、海域由来（漁網・ロープ、ブイ、発泡フロート、その他漁具））別の重量組成を図 2.3-3 に示す。令和元年度に実施した以下の調査地点における調査結果について、淡路及び高知では、容器包装の割合が最も高く、そのほかの地点では、海域由来の割合が最も高かった。

図 2.3-3 プラスチックの容器包装等の組成（重量：kg）
2.3.4 ペットボトル・キャップ・ふた等の言語表記別割合等

ペットボトル、キャップ・ふた、浮子の言語表記等別割合を図 2.3-4 图 2.3-2～図 2.3-6 に示す。令和元年度に実施した以下の調査地点におけるペットボトルの調査結果について、淡路及び高知では、日本の割合が最も高く、稚内、函館、八丈は不明分を除くと日本の割合が高く、松江は不明分を除くと中国の割合が高く、下関は不明分を除くと韓国の割合が高かった。羽咋、奄美では、中国の割合が最も高く、深浦では、韓国の割合が最も高かった。
令和元年度に実施した以下の調査地点におけるキャップ・ふたの調査結果について、淡路及び高知では、日本の割合が最も高く、羽咋、松江、下関では不明分を除くと韓国の割合が高く、奄美では不明分を除くと中国の割合が高く、深浦、八丈は不明分を除くと日本の割合が高かった。稚内、函館では、キャップ・ふたのサンプルが各国1個と少量であった。

図 2.3-5 キャップ・ふたの言語表記別割合（調査地点別）
令和元年度に実施した以下の調査地点における浮子の調査結果について、奄美では中国の割合が最も高く、そのほかの地点では、不明分の割合が最も多かった。不明分を除くと、淡路では日本の割合が高く、稚内、深浦、八丈、松江、下関では中国の割合が高かった。また、松江、下関では、ほかの地点と比較して韓国の割合が20%程度と多かった。

表2.3-1 浮子の言語表記別個数

<table>
<thead>
<tr>
<th>調査地点</th>
<th>日本</th>
<th>中国</th>
<th>韓国</th>
<th>その他</th>
<th>不明</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>奄美</td>
<td>0</td>
<td>103</td>
<td>2</td>
<td>1</td>
<td>24</td>
<td>130</td>
</tr>
<tr>
<td>下関</td>
<td>1</td>
<td>92</td>
<td>54</td>
<td>0</td>
<td>116</td>
<td>263</td>
</tr>
<tr>
<td>松江</td>
<td>0</td>
<td>13</td>
<td>12</td>
<td>0</td>
<td>36</td>
<td>61</td>
</tr>
<tr>
<td>高知</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>淡路</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>八丈</td>
<td>0</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>66</td>
<td>90</td>
</tr>
<tr>
<td>羽咋</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>深浦</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>函館</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>稚内</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>合計</td>
<td>3</td>
<td>245</td>
<td>70</td>
<td>1</td>
<td>281</td>
<td>600</td>
</tr>
</tbody>
</table>

図2.3-6 浮子の言語表記別割合（調査地点別）
2.4 総合解析

2.4.1 目的
今年度及び過年度に得られたデータを用いて総合的な解析を行い、漂着ごみの組成や量の地域特性を明らかにする。以て、今後の漂着ごみモニタリング調査の計画立案に資することを目的とした。

2.4.2 過年度の調査内容及び使用データ

（1）過年度の調査地点
環境省による漂着ごみのモニタリング調査は、平成22年度～令和元年度まで、調査地点や組成の分類方法に途中変更はあるものの、10年間継続して実施してきた。10年間における調査地点の一覧をエラー！参照元が見つかりません。に、調査地点図をエラー！参照元が見つかりません。示す。平成22～26年度の5年間は、全国7つの調査地点を固定して、同一調査地点で調査を実施した。その後の平成27年度～令和元年度の5年間は、新たに21地点を追加し、全28地点の中から調査地点を毎年変更しながら日本全体をカバーする方針に変更している。これら28地点の中から、毎年10地点を選定して調査を行ってきた。

（2）総合解析に用いるデータ
調査開始年度である平成22年度は3回の調査をしており、第1回目の調査は漂着ごみの蓄積期間が不明であり、2回目、3回目の調査間隔は他の年度に比較して短くなっている。また、平成23年度調査から分類表を変更したこともあり、平成22年度のデータは解析から除くこととした。なお、平成23年度は、平成22年度の第3回調査以降の1年間の量とするため、2回の調査結果を合計して用いることとした。
平成27～29年度の3年間においては、大分類の結果と小分類（品目ごと）の分類結果で重量及び個数の合計が一致しない調査点がある。そこで、両者の合計が5%以上異なる地点は解析に使用しないこととした。
調査時期は、冬季の調査がほとんどであるが、夏季の調査も一部ある。冬季と夏季では同じ海岸であっても漂着状況が大きく異なることから、同列に扱うことは適切ではないと考え、5月～7月の調査結果は解析に使用しないこととした。
また、平成23年度の神栖のデータについては、東日本大震災の影響があることから、除外することとした。
以上のことから、表2.4-2に示す網掛けのデータを除いたデータを総合解析に用いることとした。
<table>
<thead>
<tr>
<th>No.</th>
<th>地点名</th>
<th>H22～H26年度</th>
<th>H27年度</th>
<th>H28年度</th>
<th>H29年度</th>
<th>H30年度</th>
<th>令和元年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>石垣</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>南さつま</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>対馬</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>下関</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>羽咋</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>淡路</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>神栖</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>小名浜</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>富津</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>串本</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>崎町</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>高知</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>福山</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>国東</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>種子島</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>奄美</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>五島</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>遊佐</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>函館</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>稲内</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>根室</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>履屋</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>八丈</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>日南</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>松江</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>紋別</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>岩内</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>深浦</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
図 2.4-1 平成22年〜令和元年度の調査地点図（28地点）
表 2.4-2 総合解析に用いたデータ

<table>
<thead>
<tr>
<th>No.</th>
<th>地点名</th>
<th>H22～H26</th>
<th>H27</th>
<th>H28</th>
<th>H29</th>
<th>H30</th>
<th>R1</th>
<th>海流区分</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>石垣島</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td></td>
<td></td>
<td>黒潮上流</td>
</tr>
<tr>
<td>2</td>
<td>奄美</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>堆子島</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>南さつま</td>
<td>△</td>
<td>◎</td>
<td>◎</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>日南</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>高知</td>
<td>△</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td></td>
<td></td>
<td>黒潮下流</td>
</tr>
<tr>
<td>7</td>
<td>出本</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>八丈島</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>富津</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td>◎</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 五島 ◎ ◎ 対馬暖流上流
2 対馬 ◎ ◎ 対馬暖流下流
3 下関 ◎ ◎ 対馬暖流下流
4 松江 ◎ ◎ ◎ 対馬暖流下流
5 羽咋 ◎ ◎ 対馬暖流下流
6 青佐 ◎ ◎ ◎ 対馬暖流下流
7 深浦 ◎ ◎ 対馬暖流下流
8 塩飽 ◎ ◎ 対馬暖流下流
9 岩内 ◎ ◎ 対馬暖流下流
10 稚内 ◎ ◎ 対馬暖流下流
11 賢別 ◎ ◎ 対馬暖流下流

1 国東 ◎ ◎ 瀬戸内海
2 福山 ◎ ◎ 瀬戸内海
3 淡路 ◎ ◎ 瀬戸内海
4 崖 ◎ ◎ 瀬戸内海

1 根室 ◎ ◎ 親潮流域
2 居屋 ◎ 親潮流域
3 小名浜 ◎ 親潮流域
4 神栖 ◎ 親潮流域

注: 表の上から下へ、海流の上流から下流の順に海流グループごとに記載。
青色背景：黒潮流域
赤色背景：対馬暖流
緑色背景：瀬戸内海（瀬戸内海は、西から東の順に記載）
白色背景：親潮流域
黄色ハイライト：大分類合計と小分類合計の差が5%以上のため使用しない地点
水色ハイライト：5月~7月の調査のため使用しない地点
黄緑色ハイライト：東日本大震災の影響があるためH23年度データを使用しない地点
○:調査実施地点（レジンペレットや破片の分析はしていない）
◎:調査実施地点（レジンペレットの分析も実施した地点）
△:調査地点（レジンペレットが無く、破片の分析に変更した地点）
2.4.3 解析結果

（1）言語表記の分析と海流・風向の影響分析

漂着量や組成の時間変動については、黒潮や対馬暖流など各調査地点の沖合を流れる海流・風向の影響が考えられることから、先の表 2.4-2 に示した海流区分の欄のように区分した。

ペットボトル、キャップ・ふた、浮子による国別割合について、海流区分に分けて、海流の上流から下流にかけての変化傾向を解析した。ペットボトルの例を図 2.4-2 に示した。なお、同じ調査地点の複数年度の調査結果は平均化している。

ペットボトルの図を見ると、黒潮上流では中国の割合が高く、黒潮下流では日本の割合が比較的高くなるものの依然として中国の割合が一定水平である。なお、対馬については全て日本となっているが、これは調査地点が河口部から河川側にあることから、外海から漂着したごみではなく、内陸部から発生したごみが漂着していることによると考えられる。対馬暖流上流域では、韓国と日本の割合が高くなるが、対馬暖流下流域から下流域へと下流に従ってその割合は低くなり、代わりに日本の割合が高くなる。これは、対馬海峡から流入した日本のボトルが、主に風の影響によって対馬暖流上流域に漂着し、数が減少しながらも海流によって対馬暖流下流域に運ばれていることを示唆していると考えられる。中国については、下流域においても韓国ほどの減少はない。これは、中国から流出したボトルは、対馬海峡に到達した時点で既に指数関数的に減少した状態となっており、日本海における流下方向への減少は指数関数の既にテール部分であることから、変化の程度が小さかったためと考えられる。一方で、下流にかけて日本のものの絶対量の減少は見られないことから、日本国内で発生したものは主に風によって漂着し、海流によって下流側に運ばれ、下流側に運ばれる過程で新たな加入がある可能性が示唆された。瀬戸内海は、ほぼ全てが日本のものであった。また、親潮流域でも日本の割合が高いが、中国のものも見られた。

キャップ・ふたの国別割合においても、ペットボトルと同様の国別割合の傾向が見られるが、対馬暖流上流域から下流域にかけての韓国の割合は、ペットボトルほどの顕著な減少は見られない。これは、ペットボトルが海流よりも風の影響を強く受けて運ばれるのに対し、キャップ・ふたが風よりも海流の影響を受けて運ばれるため、主に海流に運ばれるキャップ・ふたの方が風により比較的早期に漂着するペットボトルに比べて、より下流側に運ばれることを示唆しているとも考えられる。

浮子については、黒潮上流域においては、ペットボトルやキャップ・ふたと同様に中国の割合が高いが、対馬暖流流域においても中国の割合がペットボトルやキャップ・ふたに比較して高くになっている。これは、ペットボトルと異なり浮子が主に海域において流出することから、流出場所の違いによる影響とも考えられる。ただし、表記が確認できたサンプル数が少ないことに留意が必要である。

漂流している海洋ごみは、風浪等により一部海岸に漂着するとともに、海流によって下流方向に流されている。そのため、以上の国別割合のグラフでも見られたように流出源からの距離に従って漂着物の組成が徐々に変化し、距離と組成の変化に相関があると想定される。これを確認するため、表 2.4-3 に示す対馬暖流流域における各調査点の累積距離と各調査点の国別割合を用いて回帰分析を行った。その結果を図 2.4-3 に示した。結果は、95％信頼水準において日本は流
下距離とともに増加する正の相関（R²=0.90、P=9.5×10⁻⁵）、韓国は流下距離とともに減少する負の相関（R²=0.92、P=4.2×10⁻⁵）となり、有意な相関が得られた。中国語の割合についても、流下距離とともに減少する負の相関（R²=0.45、P=0.046）となり、95％信頼水準において流下距離との有意な相関が得られたものの、韓国語に比較して決定係数は下がった。また、黒潮についても同様に解析した結果、95％信頼水準において日本語は流下距離とともに増加する正の相関（R²=0.58、P=0.029）、中国語は流下距離とともに減少する負の相関（R²=0.55、P=0.036）となり、有意な相関が得られた。一方韓国語は、95％信頼水準において相関係数（R²=0.26、P=0.11）となり、有意な相関は得られなかった。

（2）漂着量が多い品目

品目ごとの重量及び個数のランキングを行い、そのTOP20について表2.4-4（重量の場合）、表2.4-5（個数の場合）に示した。人工物については、人工物総量に占める割合をあわせて示した。

重量の全域合計で見ると、流木や灌木など自然物の順位が高く、次いで木材、漁業系廃棄物（プラスチック製ロープ・ひも、漁網、ブイなど）が多くなっていた。生活系廃棄物では、飲料用ペットボトル（＜2 L）、靴（サンダル、靴底を含む）が多くなっていた。海流区分ごとに見ると、黒潮下流では、ボトルのキャップ・ふた、ビニール袋、プラスチック製食品容器といった生活系廃棄物が上位になっていた。一方で、同じ海流下流である対馬下流では、シートや袋の破片はやや上位であるものの、ボトルのキャップ・ふたや食品容器の順位は高くなかった。また、瀬戸内海では、ボトルのキャップ・ふた、ビニール袋、プラスチック製食品容器のいずれも順位は高くなかった。黒潮下流では電化製品・電子機器、対馬下流ではタイヤ・タイヤのチューブ・ゴムシートといった生活系廃棄物のうち大型物のものが上位となった。

個数の全域合計で見ると、ボトルのキャップ・ふた、飲料用ペットボトル（＜2 L）、プラスチック製食品容器（食器、食品容器、トレイ、調味料容器等）、梱包資材_テープ、プラ食器類（ストロー、フォーク、スプーン、マドラー、ナイフ）といった生活系廃棄物の順位が高くなっていた。海流区分ごとに、ボトルのキャップ・ふたと飲料用ペットボトル（＜2 L）の関係を見ると、黒潮上流、黒潮下流、瀬戸内海ではほぼ同数が確認されたのに対し、対馬上流、対馬下流ではボトルのキャップ・ふたが多く、黒潮下流では飲料用ペットボトル（＜2 L）が多くなっていた。なお、本調査で確認された飲料用ペットボトルは、一般的にふたがついているため、実質上はその数もボトルのキャップ・ふたが確認されていることに留意が必要である。また、黒潮上流、黒潮下流、対馬下流ではビニール袋が上位になっていた。黒潮上流、瀬戸内海、親潮では、発泡スチロール食品容器が上位になっていた。これらは、漂着総量の多い対馬上流で上位にならなかった。なお、本調査で上位に入らなかったのは、飲料用ペットボトル（＜2 L）、プラスチック製食品容器（食器、食品容器、トレイ、調味料容器等）、梱包資材_テープ、プラ食器類（ストロー、フォーク、スプーン、マドラー、ナイフ）といった生活系廃棄物のうち大型物のものが上位となった。

個数について、ICCによる全世界のTOP10、JEANによる調査のTOP20との比較を行った。ICCやJEANの調査結果では、本調査結果とは異なり、たばこの吸い殻・フィルターの順位が高くなっていた。これは、本調査ができるだけ人の立ち入りの少ない調査場所を選定しているのに対し、ICCやJEANではボランティアによる調査であるため、調査地点の特性の違いを反映していると考えられた。また、JEANによる調査では、カキ養殖用マメ管の順位が高くなっていた。これは、ボランティアによる調査の地域的偏在が影響していると考えられた。
図 2.4-2 ペットボトルの国別割合（平成 22 年度〜令和元年度）
表 2.4-3 対馬暖流域のペットボトル国別割合

<table>
<thead>
<tr>
<th>調査地点</th>
<th>流下距離 (km)</th>
<th>調査回数</th>
<th>日本</th>
<th>中国</th>
<th>韓国</th>
<th>ロシア</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>対馬</td>
<td>0</td>
<td>6回</td>
<td>15.9%</td>
<td>28.4%</td>
<td>51.0%</td>
<td>0.2%</td>
<td>4.4%</td>
</tr>
<tr>
<td>下関</td>
<td>155</td>
<td>6回</td>
<td>21.2%</td>
<td>19.1%</td>
<td>57.8%</td>
<td>0.2%</td>
<td>1.7%</td>
</tr>
<tr>
<td>松江</td>
<td>410</td>
<td>3回</td>
<td>37.5%</td>
<td>30.8%</td>
<td>31.7%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>羽咋</td>
<td>785</td>
<td>6回</td>
<td>33.4%</td>
<td>33.4%</td>
<td>28.0%</td>
<td>2.6%</td>
<td>2.6%</td>
</tr>
<tr>
<td>遊佐</td>
<td>1,147</td>
<td>2回</td>
<td>61.0%</td>
<td>22.5%</td>
<td>13.2%</td>
<td>3.3%</td>
<td>0%</td>
</tr>
<tr>
<td>深浦</td>
<td>1,326</td>
<td>2回</td>
<td>54.4%</td>
<td>29.8%</td>
<td>14.0%</td>
<td>0%</td>
<td>1.8%</td>
</tr>
<tr>
<td>岩内</td>
<td>1,597</td>
<td>1回</td>
<td>92.3%</td>
<td>0%</td>
<td>0%</td>
<td>7.7%</td>
<td>0%</td>
</tr>
<tr>
<td>稚内</td>
<td>1,877</td>
<td>3回</td>
<td>81.0%</td>
<td>14.3%</td>
<td>0%</td>
<td>4.8%</td>
<td>0%</td>
</tr>
<tr>
<td>敷別</td>
<td>2,060</td>
<td>1回</td>
<td>85.7%</td>
<td>0%</td>
<td>0%</td>
<td>14.3%</td>
<td>0%</td>
</tr>
</tbody>
</table>

図 2.4-3 流下距離と国別割合の相関（対馬暖流域）
表 2.4-4 重量ランキング

<table>
<thead>
<tr>
<th>No.</th>
<th>品目</th>
<th>重量</th>
<th>割合</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>流木（径10cm以上、又は、長さ1m以上）</td>
<td>8,576</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>灌木（植物片、及び径10cm未満かつ長さ1m未満の流木を含む。）</td>
<td>6,396</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>木材（物流用パレット、木炭等含む）</td>
<td>6,248</td>
<td>32.9%</td>
</tr>
<tr>
<td>4</td>
<td>プラスチック製ロープ・ひも</td>
<td>3,628</td>
<td>19.1%</td>
</tr>
<tr>
<td>5</td>
<td>銀箔プラスチック破片</td>
<td>1,700</td>
<td>9.0%</td>
</tr>
<tr>
<td>6</td>
<td>漁網</td>
<td>1,189</td>
<td>6.3%</td>
</tr>
<tr>
<td>7</td>
<td>飲料用（ペットボトル）<2L</td>
<td>798</td>
<td>4.2%</td>
</tr>
<tr>
<td>8</td>
<td>発泡スチロール製フロート・ブイ</td>
<td>732</td>
<td>3.9%</td>
</tr>
<tr>
<td>9</td>
<td>ブイ</td>
<td>668</td>
<td>3.5%</td>
</tr>
<tr>
<td>10</td>
<td>漁具_アナゴ筒（フタ、筒）</td>
<td>643</td>
<td>3.4%</td>
</tr>
<tr>
<td>11</td>
<td>漁具_サンダル、靴底含む</td>
<td>219</td>
<td>1.2%</td>
</tr>
<tr>
<td>12</td>
<td>ガラス製_食品容器</td>
<td>219</td>
<td>1.2%</td>
</tr>
<tr>
<td>13</td>
<td>その他のブラボトル類<2L</td>
<td>214</td>
<td>1.1%</td>
</tr>
<tr>
<td>14</td>
<td>その他のブラボトル<2L</td>
<td>211</td>
<td>1.1%</td>
</tr>
<tr>
<td>15</td>
<td>発泡スチロールの破片</td>
<td>186</td>
<td>1.0%</td>
</tr>
<tr>
<td>16</td>
<td>その他の漁具</td>
<td>184</td>
<td>1.0%</td>
</tr>
<tr>
<td>17</td>
<td>ボトルのキャップ、ふた</td>
<td>126</td>
<td>0.7%</td>
</tr>
<tr>
<td>18</td>
<td>ウレタン</td>
<td>121</td>
<td>0.6%</td>
</tr>
<tr>
<td>19</td>
<td>シートや袋の破片</td>
<td>104</td>
<td>0.5%</td>
</tr>
<tr>
<td>20</td>
<td>飲料用（ペットボトル）>=2L</td>
<td>103</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

表 2.4-5 個数ランキング

<table>
<thead>
<tr>
<th>No.</th>
<th>品目</th>
<th>個数</th>
<th>割合</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ボトルのキャップ、ふた</td>
<td>24,916</td>
<td>17.6%</td>
</tr>
<tr>
<td>2</td>
<td>プラスチック製ロープ・ひも</td>
<td>23,388</td>
<td>16.6%</td>
</tr>
<tr>
<td>3</td>
<td>木材（物流用パレット、木炭等含む）</td>
<td>13,024</td>
<td>9.2%</td>
</tr>
<tr>
<td>4</td>
<td>飲料用（ペットボトル）<2L</td>
<td>9,687</td>
<td>6.9%</td>
</tr>
<tr>
<td>5</td>
<td>その他の漁具</td>
<td>9,464</td>
<td>6.7%</td>
</tr>
<tr>
<td>6</td>
<td>食品容器（食器、食品容器、トレイ、調味料容器等）</td>
<td>5,681</td>
<td>4.0%</td>
</tr>
<tr>
<td>7</td>
<td>染包資材、テープ（押透しバンド、ビニールテープ）</td>
<td>5,071</td>
<td>3.7%</td>
</tr>
<tr>
<td>8</td>
<td>ウレタン</td>
<td>4,904</td>
<td>3.5%</td>
</tr>
<tr>
<td>9</td>
<td>プラ食器類_ストロー、フォーク、スプーン、マドラー、ナイフ</td>
<td>4,904</td>
<td>3.5%</td>
</tr>
<tr>
<td>10</td>
<td>流木（径10cm以上、又は、長さ1m以上）</td>
<td>4,869</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ブイ</td>
<td>4,489</td>
<td>3.2%</td>
</tr>
<tr>
<td>12</td>
<td>ポリ袋（不透明&透明）</td>
<td>3,980</td>
<td>2.8%</td>
</tr>
<tr>
<td>13</td>
<td>その他のブラボトル<2L</td>
<td>3,956</td>
<td>2.8%</td>
</tr>
<tr>
<td>14</td>
<td>漁具_アナゴ筒（フタ、筒）</td>
<td>3,240</td>
<td>2.3%</td>
</tr>
<tr>
<td>15</td>
<td>灌木（植物片、及び径10cm未満かつ長さ1m未満の流木を含む。）</td>
<td>3,096</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>発泡スチロール食器</td>
<td>2,776</td>
<td>2.0%</td>
</tr>
<tr>
<td>17</td>
<td>ライター</td>
<td>2,403</td>
<td>1.7%</td>
</tr>
<tr>
<td>18</td>
<td>飲料用（ペットボトル）>=2L</td>
<td>1,686</td>
<td>1.2%</td>
</tr>
<tr>
<td>19</td>
<td>靴（サンダル、靴底含む）</td>
<td>1,664</td>
<td>1.2%</td>
</tr>
<tr>
<td>20</td>
<td>カキ養殖用まめ管</td>
<td>1,563</td>
<td>1.1%</td>
</tr>
</tbody>
</table>
3. マイクロプラスチックによる生態系影響把握調査

3.1 宮
海岸に漂着、及び海洋に漂流するマイクロプラスチックは、プラスチックの製造過程で添加された化学物質及び漂流中に海水から吸着した POPs 等の疎水性有機汚染物質が含まれており、これらの化学物質による生態系への影響が懸念されている。本調査では、採集したマイクロプラスチックからこれらの化学物質の抽出・分析を行い、日本沿岸海域の POPs 等による汚染状況を把握することを目的とした。

3.2 調査方法

3.2.1 採集方法
漂着マイクロプラスチックは、レジンペレットの場合は適度に黄変したもの、プラスチック片の場合は 5mm 以下の破片を色に偏りがないように、それぞれ 100 個程度採集した。漂流マイクロプラスチックは海上で目合い 350mm のニューストンネットを用いて、約 2-3 ノットで 20 分の曳網を行い、採集した。

3.2.2 分析方法
難燃性の付与・劣化防止等の目的で製造時にプラスチックに添加された「プラスチック含有物質」として、ポリ臭素化ジフェニルエーテル（以下、「PBDEs」という。）、ベンゾトリアゾール系紫外線吸収剤（以下、「BTs」という。）、ベンゾフェノン系紫外線吸収剤（以下、「BPs」という。）を分析対象とした。海洋を漂流している最中に海水から吸着した「プラスチック吸着物質」そして PCBs を分析対象とした。
これらの物質は、シリカゲルクロマトグラフィーによって精製・分画した後、PCBs はガスクロマトグラフ/イオントラップ型質量分析装置（GC-ITMS）、PBDEs はガスクロマトグラフ/電子捕獲型検出器（GC-ECD）、紫外線吸収剤（BTs、BPs）はガスクロマトグラフタンデム質量分析計（GC-MS/MS）にて同定定量を行った。

3.3 漂着ごみによる生態系影響把握調査（令和元年度）

3.3.1 結果
漂着 MP の分析結果を表 3.3-1 に、漂流 MP の分析結果を表 3.3-2 に示す。
表 3.3-1 漂着 MP 中の化学物質の濃度

<table>
<thead>
<tr>
<th>地点</th>
<th>試料</th>
<th>化学物質の濃度（ng/g-plastic）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ΣPCBs</td>
</tr>
<tr>
<td>稚内</td>
<td>破片</td>
<td>9.2</td>
</tr>
<tr>
<td>函館</td>
<td>破片</td>
<td>53</td>
</tr>
<tr>
<td>深浦</td>
<td>レジンペレット</td>
<td>26</td>
</tr>
<tr>
<td>高知</td>
<td>破片</td>
<td>247</td>
</tr>
<tr>
<td>羽咋</td>
<td>レジンペレット</td>
<td>20</td>
</tr>
<tr>
<td>八丈</td>
<td>レジンペレット</td>
<td>15</td>
</tr>
<tr>
<td>淡路</td>
<td>レジンペレット</td>
<td>394</td>
</tr>
<tr>
<td>松江</td>
<td>レジンペレット</td>
<td>20</td>
</tr>
<tr>
<td>下関</td>
<td>レジンペレット</td>
<td>49</td>
</tr>
<tr>
<td>奄美</td>
<td>レジンペレット</td>
<td>6.3</td>
</tr>
</tbody>
</table>

<LOQ: < limit of quantitation の略。定量限界以下。

表 3.3-2 漂流 MP 中の化学物質の濃度

<table>
<thead>
<tr>
<th>地点</th>
<th>化学物質の濃度（ng/g-plastic）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΣPCBs</td>
</tr>
<tr>
<td>石狩湾</td>
<td>3.0</td>
</tr>
<tr>
<td>東シナ海</td>
<td>4.8</td>
</tr>
<tr>
<td>東京湾</td>
<td>17</td>
</tr>
<tr>
<td>玄界灘</td>
<td>48</td>
</tr>
</tbody>
</table>

n. d.: not detected の略。不検出

<LOQ: < limit of quantitation の略。定量限界以下。

3.3.2 考察

（1）PCBs

漂着 MP においては、淡路及び高知で PCBs が比較的高濃度で検出された（それぞれ 394 ng/g-plastics、247 ng/g-plastics）。

漂流 MP においては、玄界灘で最も高濃度の PCBs が検出されたが（48 ng/g-plastics）、いずれの地点でも 50ng/g-plastics 以下であり、濃度レベルは低かった。（PCBs の考察については、「3.3.2 総合解析結果」を参照。）

（2）PBDEs

漂着 MP においては、稚内及び函館で PBDEs が比較的高濃度で検出された（それぞれ 81 ng/g-plastics、89 ng/g-plastics）。稚内及び函館はレジンペレットが採集できず破片状のマイクロプラスチックを分析に供したこと、また BDE209 が組成の多くを占めたことから、もとの製品中に添加された Deca BDE 製剤が破片中に残留している可能性が考えられた。

漂流 MP においては、東シナ海で高濃度の PBDEs が検出され、石狩湾においても比較的高濃度の PBDEs が検出された。これら 2 地点は高臭素 BDEs が組成の多くを占め、製品に添加された PBDEs が残留していると考えられた。（PBDEs の考察については、「3.3.2 総合解析結果」を参照。）

（3）BTs

漂着 MP においては、BTs は高知で突出して高濃度で検出され（1671 ng/g-plastics）、UV327 が組成の多くを占めた。高知はレジンペレットが採集できず破片状のマイクロプラスチックを分析に供したことから、もとの製品中に添加された UV327 が残留していると考えられた。

漂流 MP においては、石狩湾で突出して高濃度の BTs（UV326 のみ）が検出され（92920 ng/g-plastics）、もとの製品中に添加された UV326 が残留していると考えられた。

（4）BPs

漂着 MP においては、BPs は高知で突出して高濃度で検出され、BP12 が組成の多くを占めた。高知はレジンペレットが採集できず破片状のマイクロプラスチックを分析に供したことから、もとの製品中に添加された紫外線吸収剤が残留している可能性が考えられた。また、同様に破片状のマイクロプラスチックを分析に供した稚内及び函館においても、高知よりも低濃度であるが、BP12 が検出された。一方、レジンペレット中から BP12 は検出されず、BP3 も下関・奄美以外では検出されなかった。

なお、漂流 MP からは、BPs は検出されなかった。
3.4総合解析結果（平成26年度～令和元年度）

本業務では平成26年度より漂着MP、平成27年度より漂流MPに含まれる化学物質の調査を実施してきた。本報告書では、平成26年度～令和元年度のすべての年度で測定したPCBs、PBDEsの結果をとりまとめた。調査地点を図3.4-1及び図3.4-2に示す。
図 3.4-1 調査地点（漂着マイクロプラスチック）
図 3.4-2 調査地点（漂流マイクロプラスチック）
3.4.1結果
マイクロプラスチック中のPCBs濃度を図3.4-3に、PBDEs濃度を図3.4-4に示す。これらの図表においては、IPWのデータ整理方法に基づき、濃度を5区分（～10 ng/g、10～50 ng/g、50～200 ng/g、200～500 ng/g、500 ng/g）に色分けし、濃度レベルを表した。
図 3.4-3 マイクロプラスチック中の PCBs 濃度

（5 粒 1 組のレジンペレットを分析した平成 30 年度の八丈、岬、日南、南さつまのデータは参考値とし、図 3.4-3 からは除いた。）
図 3.4-4 マイクロプラスチック中の PBDEs 濃度

（5 粒 1 組のレジンペレットを分析した平成 30 年度の八丈、岬、日南、南さつまのデータは参考値とし、図 3.4-4 からは除いた。）
3.4.2考察

（1）PCBs

工業活動が盛んで、MP 中濃度も高い地域
PCBs 濃度は東京湾、相模湾、大阪湾の漂着 MP で高い傾向にあった（図 3.4-3）。これらの地域は、かねてから工業活動が盛んであることから、過去に排出された PCBs が高レベルに残留していると考えられる。なお、東京湾に面する金谷・富津及び大阪湾に面する淡路は、工業活動が少ない地域ではあるが高濃度の PCBs が検出された。湾内には工業活動が盛んな地域が多く、PCBs を高濃度に吸着したレジンペレットが、湾内の工業活動が少ない地域にまで均質に存在していることが示唆された。

汚染レベルが低いことが予想されるが MP 中濃度が比較的高い地点
汚染レベルが低いことが予想されるが MP 中濃度が比較的高い地点（ここでは 50 ng/g-plastics 以上とした）としては、稚内（H28 のみ）、函館、十勝、八丈（H30 のみ）、串本、隠岐、高知、今治、国東、日南が挙げられる。
本調査では IPW の方法に基づき、レジンペレット間の濃度のばらつきの影響を受けにくくするため、レジンペレットを 5 粒×5 組で分析し、5 組の中央値を各地点の濃度としているが、稚内、隠岐、今治では、他試料よりも比較的高濃度の試料を 1~2 試料含んでいた。地域的な汚染源がないような離島や遠隔地で散発的に高い PCBs を含むレジンペレット及びマイクロプラスチックが観測される場は先行研究でも報告されており、これはマイクロプラスチックの輸送経路や輸送速度が様々であることと、吸着速度が遅いことにより説明される1,2。つまり、稚内、隠岐、今治で散発的に高濃度の PCBs が検出されたことは、PCBs 濃度が高い都市水域で PCBs を高濃度に吸着したレジンペレットが、PCBs が吸着しないままに急速に運ばれてきた可能性を示唆している。また、破片中から比較的高濃度の PCBs が検出された函館及び高知に関しても同様の可能性が考えられる。

濃度レベルが大きく変動した地域
複数年調査を実施した地点のうち、濃度が大きく低下した（濃度レベルが 2 段階低下した）地域は、岬（H27→H30）、稚内（H28→H30）であった。また、濃度が大きく上昇した（濃度レベルが 2 段階上昇）地域は、淡路（H26→H29、R01）、高知（H27→R01）であった。また、濃度が上昇し、低下した地域は八丈（H29→H30→R01）であった。
岬（H27）、八丈（H29, R01）は 5 粒×5 組のレジンペレットを分析したのに対し、岬（H30）、

八丈（H30）は十分量のレジンペレットを採集できなかったため、5粒×1組の分析だった。岬（H30）、八丈（H30）は実際の汚染レベルが変化したわけではなく、偶然濃度が低い・高いレジンペレットを採集・分析した可能性がある。IPWでは、5粒×5組の分析をするよう手法を統一していることから、本調査においては5粒×1組の分析結果は参考値として扱うべきであると考えられる。

淡路については上述のとおり、大阪湾内には工業活動が盛んな地域が多く、PCBsを高濃度に吸着したレジンペレットが、淡路のように湾内の工業活動が少ない地域にまで均質に存在している可能性がある。

（2）PBDEs
PBDEsは、近年までプラスチック添加剤として使用されており、一般にレジンペレット等の材料を成形加工する前に添加される。
本調査の結果、都市の大きさ・工業活動等から予想される汚染レベルやPCBs濃度の高低に関わらず、漂流MP（破片）から散発的に高濃度で検出された（図3.4-4）。MP中PBDEs濃度範囲の地点数分布を整理すると、漂着MP（主にレジンペレット、一部破片も含む）は比較的低濃度である一方、漂流MP（破片）からは低濃度～高濃度の様々な濃度範囲で検出されることが分かる（図3.4-5）。これは、漂着MPは主にレジンペレット（原料）であることに対し、漂流MPは破片（製品）であることが影響していると考えられる。

図3.4-5 MP中PBDEs濃度範囲の地点数分布
漂流 MP から PBDEs が散発的に高濃度で検出されることは Yeo et al., 2020 でも報告されている。Yeo らの研究では、漂流 MP 中 PCBs が高濃度であった東京湾や相模湾では PBDEs もある程度高濃度で検出され、散発的に高濃度の PBDEs が検出された（東京湾において 1786, 535, 498 ng/g）。また、工業活動の少ない地域の沖合（rural offshore）や遠隔地においても PBDEs が高濃度で検出された（東シナ海において 490 ng/g, 富山湾において 256 ng/g, 沖ノ鳥島において 50 ng/g）。これらの地点では、高臭素 BDE（特に Deca BDE）が大きな割合を占めたことから、製品に添加された Deca BDE 製剤（9, 10 臭素 BDE が主成分）が破片に残存していると考えられた。一方、東京湾や相模湾は、工業活動の少ない地域や離島などの遠隔地よりも低臭素 BDE の割合が高く、これは過去の Penta BDE 製剤（4, 5 臭素 BDE が主成分）・Octa BDE 製剤（6-10 臭素 BDE が主成分）の製造、または Deca BDE の分解産物に由来すると考えられた。

本調査結果についても Yeo et al., 2020 と同様に PBDEs の組成を整理した（図3.4-6）。その結果、汚染レベルが低いと予想されるが PBDEs 濃度が 50 ng/g-plastics 以上の地点（福井沖、噴火湾、淵潭海峡、日本海北部、沖ノ鳥島、対馬南西沖、東シナ海）は高臭素 BDEs が大きな割合を占めた（組成のデータがない富山湾を除く）。これは、製品に添加された Deca BDE 製剤に由来すると考えられ、破片状 MP の化学的リスクを示唆した。

一方、汚染レベルが高いと予想され PBDEs 濃度が 50 ng/g-plastics 以上の地点（東京湾多摩川沖 St1, 相模湾）では、低臭素 BDEs が大きな割合を占める地点と高臭素 BDEs が大きな割合を占める地点の両方があった。これらの地域では、製品に添加された PBDEs を含む MP が環境中に存在することに加え、過去の Penta・Octa BDE 製剤の製造、または Deca BDE の分解産物による污染があることが示唆された。

図3.4-6 漂流マイクロプラスチック中PBDEs组成

A: 污染レベルが高いと予想され、
漂流MPHPBDEsが50 ng/g-plastics以上の地点
B: 污染レベルが低いと予想されるが、
漂流MPHPBDEsが50 ng/g-plastics以上の地点
C: 污染レベルが高いと予想されるが、
漂流MPHPBDEsが50 ng/g-plastics以下の地点
D: 污染レベルが低いと予想され、
漂流MPHPBDEsが50 ng/g-plastics以下の地点
4. モニタリング調査ガイドラインの修正

4.1 目的

全国の漂着ごみの組成及びそれらの量並びに時間変化を把握することが求められていると\し、環境省のモニタリング調査が補完可能な、自治体によるモニタリング調査のためのガイドラインを昨年度作成した。本ガイドラインは、環境省のモニタリング調査内容を必要に応じて簡素化し、地方自治体担当者が実施可能な漂着ごみモニタリング方法を検討した上で作成したものである。

本年度は、昨年度作成したガイドラインについて、調査意義の理解の促進と、自治体においてより実用性が高いものとすることを目的に更新を行った。

4.2 方法

昨年度作成したガイドラインについて、以下の観点から更新を行うこととした。

- 地方自治体からの意見の反映
- 国際的な動向の反映
- 調査時期・調査地点の選定に資する参考情報の充実
- 調査データの解析に資する情報の記載の充実
- 調査結果の分析・施策への反映例の提示

4.3 更新内容

4.3.1 地方自治体からの意見の反映

本年度の漂着ごみの種類・組成等に係るモニタリング調査時に、当該自治体からガイドラインに対する意見をヒアリングした。得られた主な意見を以下に示す。

（1）調査範囲及び調査時期に関するご意見

- 回収があまりなされていない地点は選定が難しい。調査の継続も困難と予想される。調査場所や時期の設定は、ガイドラインに準拠できない可能性がある。
- 特に離島では人員の確保や処理の問題など特有の課題がある。
- 調査地点や時期の条件について、漂着ごみが多い地点や時期としているが、中長期的に考えると地元の理解や協力、調査者の安全確保が必要なため、最小の条件ではなく基本条件とし、その他の状況も認めてほしい。
- 自治体の回収したごみの処理費用負担に配慮して、調査対象物や調査対象とする海岸の長さを検討してほしい。
- NPEC の手法で継続的に行ってきているため、環境省の調査と兼ねることができるように、NPEC と同様に 10m×10m を希望する。

（2）分類に関するご意見

- 自然物を調査対象から外してほしい。
- アナゴ筒やカキ養殖用など漁具の種類となると判断が難しい。
- 環境省調査においても半数は自然物であるが、自然物を細分化しない理由はあるのか。ヨシ・アンなどは漁港に堆積し、渔船が出航できないなどの問題にも繋がっており、重量のある流木についても、底引き網の破損に繋がるなどの弊害も聴取している。
4.3.2 国内外の動向の反映
下記に示すモニタリング調査のガイドラインを考慮し、主に河口から離す距離や、海岸の奥行き方向の調査範囲の設定について、ガイドラインに追記した。

- GESAMP (2019) Guidelines for the monitoring and assessment of plastic litter in the ocean
- （公財）環日本海環境協力センター(2019) 「海辺の漂着物調査（2019年度）マニュアル」

4.3.3 調査時期・調査地点の選定に資する参考情報の充実
調査時期・調査地点の選定において、合理的に行えるようにするため、調査時期や調査地点の選定に関する記載の充実を図り、参考となる以下の情報の図表類を追加した。

- 「漂着ごみの量の季節変化」の説明に図を追加
- 河口から離す距離の目安を追加

4.3.4 調査データの解析に資する情報の記載の充実
調査データの解析に資する情報として、以下の情報の記載欄をデータシートに追加した。

- 清掃活動状況
- 台風・豪雨の状況
- 海岸の奥行き方向の調査範囲

4.3.5 調査成果の向上、分析・施策への反映例の提示
自治体における調査成果の向上を図るため、国別割合の調査内容を追加した。また、調査結果を施策に反映するための分析手法の例として、以下の解析例を追加した。

- 組成割合
- ランキング表
- 国別割合