

注)図中の数字は、現時点の知見をもとに各種の仮定に基づいて試算したものであり、参考である。

図 5.3 播磨灘北東部海域における物質循環イメージ

表 5.3 現時点での各モデル地域における物質循環の特徴

			1
物質循環の検討項目	気仙沼湾		
	流入負荷:N/P=5.1 (全窒素 / 全リンの比、S56 年)	流入負荷:N/P=13.2(全窒素/全リンの比、2カ年の平均)	流入負荷 (加古川
	海域平均:N/P=4.1 (DIN/DIPの比)	海域平均:N/P=9.7 (DIN/DIPの比)	流入負荷(大規模
負荷量および海域の N/P 比(制限栄養塩)			海域 (St.2 加古川)
	レッドフィールド比 N/P:7 (重量比) からみると <u>「窒素」によって生産</u>	レッドフィールド比 N/P:7 (重量比)からみると <u>「リン」によって生産</u>	海域 (St.10 沖合」
	<u>が制限されている海域</u> と考えられる。	<u>が制限されている海域</u> と考えられる。	レッドフィール
	(流入負荷の N/P 比について、近年は変化している可能性が考えられる)		が制限されている
陸域からの流入負荷と	流入負荷:0.76tonN/日、0.15 tonP/日(S56年)	流入負荷:83 tonN/日、6.3tonP/日(2 カ年の平均)	
	溶出負荷:0~1.5 (0.75)tonN/日、0~0.34(0.17) tonP/日	溶出負荷:0~60 (30)tonN/日、0~12 (6)tonP/日	
低泥からの浴出貝何の	平均的には、流入負荷と溶出負荷は同程度の可能性がある。	平均的には、リンについては流入負荷と溶出負荷は同程度の可能性があ	
関係	(なお、比較する値の年次が異なることに留意が必要)		
	漁獲:0.08tonN/日(H16年)/ 流入負荷:0.76tonN/日(S56年)	トレントン	海面養殖による漁
	漁獲:0.01tonP/日(H16年)/流入負荷:0.15tonP/日(S56年)	アサリ漁獲: 0.02tonP/日(近年の平均) / 流入負荷: 6.3tonP/日(2カ年平均)	(海面養殖による)
流入負荷に対する漁獲	漁獲による取り上げ量は、N 流入負荷量の約 11%、P 流入負荷量の約	アサリ漁獲による取り上げ量は、N 流入負荷量の約 0.2%、P 流入負荷	海面養殖による
の割合	7%に相当する(カキとワカメでおよそ半分ずつ)	日本の約0.3%に相当する	約 11%) に相当す
	(なお、比較する値の年次が異なることに留意が必要)	<u></u>	集計出来ていない。
	TON 沈降量:17~ 54 mgN/m ² /日	TON 沈降量:34~119 mgN/m²/日	
	N の溶出量: 0~101 mgN/m²/日	Nの溶出量: 0~100 mgN/m ² /日	
	TOP 沈降量: 2~ 8 mgP/m ² /日 *溶出速度については、地域検討	TOP 沈隆量: 5~ 17 mgP/m ² /日	
	Pの溶出量: -10~ 22 mgP/m ² /日 指摘がされている	Pの溶出量: 0~ 20 mgP/m ² /日	

	TON 沈降量 54 17 32		
	Nの溶出量 52 17 79	うたうする。 (なお 沈降有機物は概わ植物プランクトンと仮定して TOC 沈降量と	
有機物の沈降と底泥か		(なら、がに中国の時間には低低を置かりフラントンと低足して、100%に中型と	
らの溶出の関係	TOP 沈 路景 7.8 2.4 6		
	湾奥における窒素・リン溶出量は沈降量よりも多く、 <u>局所的に低質が悪</u>		
	化している可能性が考えられる。		
	(なお、沈降有機物は概ね植物フランクトンと仮定して、TOC 沈降量と		
	レッドフィールド比から沈降量を推定した。C/N:5.9、C/P:41(重量比))		
	気仙沼湾地域における物質循環の特徴として、以下のことが考えられる。	三河湾地域における物質循環の特徴として、以下のことが考えられる。 	播磨灘北東部海域
	制限栄養塩:気仙沼湾地域における基礎生産は、主に「窒素」によって制	制限栄養塩:三河湾地域における基礎生産は、主に「リン」によって制限	る。
	限されている可能性が考えられる。	されている可能性が考えられる。	制限栄養塩:播磨激
	流入負荷と溶出負荷の関係:流入負荷と溶出負荷は同程度の可能性が考え	流入負荷と溶出負荷の関係:窒素については溶出負荷よりも流入負荷が多	れていると考え
地域における物質循環	られる。	い可能性があり、リンについては流入負荷と溶出負荷は同程度の可能性	入負荷は窒素に
の特徴	流入負荷に対する漁獲の割合:漁獲による取上げ量が、流入負荷量の 10%	が考えられる。	素が少ない。潮波
	程度に相当する。流入負荷、溶出負荷のほか船倉排水による負荷、外海	流入負荷に対する漁獲の割合:アサリ漁獲量は、N 流入負荷量の約0.2%、	把握するととも
	からの負荷など想定される多様な栄養塩供給源については、現時点では	P 流入負荷量の約 0.3%に相当する。アサリ漁獲以外の漁業を含めると	しているかを把
	不明。	どの程度となるか現時点では不明。	流入負荷に対する
	有機物の沈降と溶出の関係:有機物の堆積により局所的に底質が悪化して	有機物の沈降と溶出の関係:底泥への沈降量が溶出量と同程度かやや多	荷量(加古川由新
	いる可能性が考えられる。	く、底泥へ堆積する傾向にあることが考えられる。	

播磨灘北東部

) : N/P=15.3(全窒素/全リンの比) 事業場):N/P=25.6(全窒素/全リンの比) |河口上層、下層): N/P=5.4、N/P=3.8 (DIN/DIPの比) 上層、下層)): N/P=3.8、N/P=3.4(DIN/DIPの比) ・ド比 N/P:7(重量比)からみると「窒素」によって生産 海域と考えられる。

獲: 1.2tonN/日 / 流入負荷: 25.3tonN/日 漁獲:0.1tonP/日/流入負荷: 0.9tonP/日) 取り上げ量は、N流入負荷量の約5%(P流入負荷量の する (なお、リンの流入負荷量は全ての事業場排水は)

における物質循環の特徴として、以下のことが考えられ

灘北東部海域の基礎生産は主に「窒素」によって制限さ られる。播磨灘北東部海域においては、河川等からの流 富んだものであるが、海域においてはそれとは異なり窒 流の速い本地域においては、河川水の影響範囲について に、海域において栄養塩類がどのように形態変化し循環 握することが考えられる。

漁獲の割合:海面養殖による取り上げ量は、N 流入負 |来及び事業場排水の合計値)の約5%に相当する

6.参考:ベースモデルの構築(中間報告)

今年度は各地域に適用できる汎用的なベースモデルとして、三河湾を対象にモデルの構築 を行っているところである。以下に、現時点でのモデルによる計算結果を示す。

なお、現在、再現精度の向上を進めているところであり、最終的な結果でないことに留意 されたい。

6-1 流動モデル

6-1-1 計算条件

1) 淡水流入条件

図 6.1 に一級河川からの淡水流入量及びその他の面源系・点源系などの淡水流入量について示す。

図 6.1 淡水流入条件(左:2001年度、右:2006年度)

2) 水温・塩分境界条件

湾口における水温・塩分の境界条件は愛知県水産試験場が実施した海洋速報(沿岸域の定 線観測データ)を利用し、鉛直方向及び時間方向に補間して設定した(図 6.2 参照)。

図 6.2 代表的な境界格子における水温・塩分の設定値(左:2001年度、右:2006年度)

6-1-2 計算結果

1) 流れ

比較に用いる流れの実測値には、運輸省第五港湾建設局が三河湾全域で実施した調査結果¹ を用いる。観測点を図 6-1.3 に、各測点の観測層を表 6-1.1 に示す。

図 6-1.3 運輸省第五港湾建設局による調査地点

測点	夏季(1978年7-8月)		冬季(1977年12月)				
	水深	観測層	水深	観測層			
St.1	7.8	上、下	7.0	上、中			
St.2	9.8	上、下	10.0	上、中、下			
St.3	14.5	上、中、下	12.5	上、中			
St.4	10.2	上、下	11.0	中、下			
St.5	21.3	上、中、下	22.0	中、下			
St.6	13.0	上、中、下	16.0	中、下			
St.7	21.8	上、中、下	20.5	中、下			
St.8	15.0	上、中、下	16.3	中、下			
St.9	10.9	上、中、下	14.0	中、下			
St.10	21.3	上、中、下	18.0	中、下			
St.11	15.8	上、中、下	-	-			
St.12	18.3	上、中、下	-	-			
St.13	13.1	上、中、下	-	-			
St.14	16.9	上、中、下	-	-			
夏季:[上:海面下 2m]、[中:海面下 6m]、[下:底上 2m]							
冬季:[上:海面下 1m]、[中:海面下 5m]、[下:底上 2m]							

表 6-1.1 各測点の観測層

¹運輸省第五港湾建設局(1979):伊勢湾水理模型実験場報告 No.15 Mar.1979 三河湾流況調查

(1) 潮流楕円

図 6-1.4 および図 6-1.5 に、St.1、3、5 における 2001 年度の夏季および冬季における主要 4 分潮の潮流楕円の比較を示す。

各分潮の潮流楕円について、計算値と観測値をくらべると、楕円の大きさや長軸の方向が 概ね一致しており、計算値は観測値の傾向を表現していると考えられ、良好な再現性が得ら れている。

図 6-1.4(1) 2001 年度夏季における潮流楕円の比較図(St.1およびSt.3)

図 6-1.4(2) 2001 年度夏季における潮流楕円の比較図(St.5)

図 6-1.5(1) 2001 年度冬季における潮流楕円の比較図(St.1およびSt.3)

図 6-1.5(3) 2001 年度冬季における潮流楕円の比較図(St.5)