水質汚濁に係る農薬登録保留基準の改正に関する資料

メトコナゾール

本剤については、食品安全委員会の食品健康影響評価の結果に基づき、第 31 回農薬小委員会(平成 24 年 9 月 7 日)の審議を経て、平成 25 年 2 月 6 日付けで水質汚濁に係る農薬登録保留基準値(以下「水濁基準値」という)を 0.1 mg/L として設定したものであるが、その後、本剤に係る食品健康影響評価が見直され、ADI の値が引き下げられたことから、今般水濁基準値の見直しを行う。

. 評価対象農薬の概要

1.物質概要

· 1051MX						
化学名 (IUPAC)	(1 R S , 5 R S ; 1 R S , 5 S R) - 5 - (4 - クロロベンジル) - 2 , 2 - ジメチル - 1 - (1 H - 1 , 2 , 4 - トリアゾール - 1 - イルメチル) シクロペンタノール					
分子式	C ₁₇ H ₂₂ ClN ₃ O 分子量 319.8 CAS NO. 125			5116-23-6		
構造式	(+)-メトコナ	CH ₂	構造式 H ₃ C, H ₃ C (-)	HO CH ₂ —N -メトコナゾールー (1 <i>S</i> , 5 <i>R</i>)	cis	存在比
H ₃ C H ₃					-trans	10~20%

<注>メトコナゾールはcis 体とtrans 体が存在し、それぞれ光学異性体が存在するが、以下単に「メトコナゾール」と表した場合はcis 体ラセミ体とtrans 体ラセミ体の混合物を指す。

2.作用機構等

メトコナゾールは、トリアゾール系殺菌剤であり、その作用機構は菌類のエルゴステロール生合成阻害である。

本邦での初回登録は2006年である。

製剤は粉剤、水和剤及び乳剤が、適用作物は、麦、果樹、野菜及び芝がある。 原体の国内生産量は、221.7 t (平成24年度)、263.9 t (平成25年度)、232.4 t (平成26年度)であった。

年度は農薬年度(前年10月~当該年9月)、出典:農薬要覧-2015-((社)日本植物防疫協会)

3 . 各種物性等

· 口(至10)工 ()			
外観・臭気	cis 体、trans 体: 白色固体粉末、薬品臭 (20)	土壌吸着係数	cis 体: $K_{F}^{ads}_{OC} = 360 - 1,200 \ (25)$ trans 体: $K_{F}^{ads}_{OC} = 740 - 1,300 \ (25)$
融点	cis 体: 111.6 - 113.2 trans 体: 115.4 - 115.9	オクタノール / 水分配係数	cis 体: logPow = 3.89 (25) trans 体: logPow = 3.93(25)
沸点	cis 体:388 で分解のため 測定不能 trans 体:399 で分解の ため測定不能	生物濃縮性	メトコナゾール: BCFss=120 (0.4 mg/L) BCFss=110 (0.04 mg/L)
蒸気圧	cis 体:< 1.04×10^{-5} Pa (20±1) trans 体:< 1.96×10^{-6} Pa (20±1)	密度	cis 体、trans 体: 1.0 g/cm³ (20)
加水分解性	半減期 cis 体、trans 体: 1 年以上 (25 ; pH4、7、9)	水溶解度	cis 体:16.4 mg/L(20) trans 体:11.9 mg/L(20)
水中光分解性	半減期 メトコナゾール:28.7 日((滅菌精製水、pH7.05、25 (滅菌自然水、pH8.08、25 cis 体: 25.9 日(東京春季太陽光換 (滅菌精製水、pH 7.05、25 26.3 日(東京春季太陽光換 (滅菌自然水、pH8.08、25 trans 体: 34.2 日(東京春季太陽光換 (滅菌精製水、pH7.05、25 31.2 日(東京春季太陽光換 (滅菌自然水、pH8.08、25	5.2±0.2 、43.1 5.2±0.2 、43.1 算 143.6 日) 5.2±0.2 、43.1 算 145.8 日) 5.2±0.2 、43.1 算 189.6 日) 5.2±0.2 、43.1	W/m ² 、300 - 400 nm) W/m ² 、300 - 400 nm) W/m ² 、300 - 400 nm) W/m ² 、300 - 400 nm) W/m ² 、300 - 400 nm)

. 安全性評価

一日摂取許容量 (ADI) 0.02 mg/kg 体重/日

食品安全委員会は、平成 26 年 11 月 18 日付けで、メトコナゾールの ADI を 0.02 mg/kg 体重/日と設定する食品健康影響評価の結果を厚生労働省に通知した。

なお、この値はウサギを用いた発生毒性試験における無毒性量 $2 \, \text{mg/kg}$ 体重/日を安全係数 $100 \, \text{で除して設定された}$ 。

. 水質汚濁予測濃度(水濁 PEC)

1.製剤の種類及び適用農作物等

農薬登録情報提供システム((独)農林水産消費安全技術センター)によれば、本 農薬は製剤として粉剤、水和剤及び乳剤があり、適用農作物等として麦、果樹、野菜 及び芝がある。

2. 水濁 PEC の算出

(1) 非水田使用時の水濁 PEC (第1段階)

非水田使用時において、PEC が最も高くなる使用方法(下表左欄)について、第 1 段階の PEC を算出する。算出に当たっては、農薬取締法テストガイドラインに 準拠して下表右欄のパラメーターを用いた。

PEC 算出に関する使用方法		各パラメーターの値		
適用農作物等	芝	I: 単回・単位面積当たりの有効成分量 (有効成分 g /ha) (左欄の最大使用量に、有効成分濃度を 乗じた上で、単位を調整した値(製剤の 密度は 1g/mL として算出))	667	
剤 型	20%水和剤	N _{app} :総使用回数(回)	6	
当該剤の単回・単位 面積当たり最大使 用量 算出値	333mL/10a	D _{river} :河川ドリフト率(%)	0.2	
	(1500~2000 倍希釈した薬液 を 1m ² 当たり 0.5L 使用)	Z _{river} :河川ドリフト面積(ha)	0.11	
地上防除/航空防除 の別	地上防除	Ru:畑地からの農薬流出率(%)	0.02	
使用方法	散布	A_p :農薬使用面積(ha)	37.5	
総使用回数	6 回	Fu:施用方法による農薬流出補正係数	1	

(2)水濁 PEC 算出結果

使用場面	水濁 PEC (mg/L)		
水田使用時	適用なし		
非水田使用時(第1段階)	0.00005484		
うち地表流出寄与分	0.00005461		
うち河川ドリフト寄与分	0.00000023		
合 計1)	0.00005484 ÷ <u>0.000055 (mg/L)</u>		

. 総 合 評 価

1.水質汚濁に係る登録保留基準値

登録保留基準値		0.05 mg/L		
以下の算出式により登録保留基準値を算出した。1)				
0.02 (mg/kg 体重/日)	< 53.3 (kg) × 0	1 / 2(L/人/日)	= 0.053(mg/L)	
ADI	平均体重 10%	配分 飲料水摂取量		

¹⁾ 登録保留基準値は、体重を 53.3kg、飲用水を 1日 2L、有効数字は 1 桁 (ADI の有効数字桁数) とし、2 桁目を切り捨てて算出した。

<参考> 水質に関する基準値等

(旧)水質汚濁に係る農薬登録保留基準 1)	なし
水質要監視項目 2)	なし
水質管理目標設定項目 3)	なし
ゴルフ場暫定指導指針4)	なし
WHO飲料水水質ガイドライン 5)	なし

¹⁾ 平成 17 年 8 月 3 日改正前の「農薬取締法第 3 条第 1 項第 4 号から第 7 号までに掲げる場合に該当するかどうかの基準を定める等の件」(昭和 46 年 3 月 2 日農林省告示 346 号)第 4 号に基づき設定された基準値。

2.リスク評価

水濁 PEC は 0.000055 mg/L であり、登録保留基準値 0.05 mg/L を超えないことを確認した。

(参考)食品経由の農薬理論最大一日摂取量と対 ADI 比

農薬理論最大一日摂取量 (mg/人/日)	対 ADI 比 (%)	
0.1088	9.9	

出典: 平成 27 年 3 月 25 日開催の薬事・食品衛生審議会食品衛生分科会資料

<検討経緯>

平成 24 年 9 月 7 日 中央環境審議会土壌農薬部会農薬小委員会(第 31 回) 平成 28 年 1 月 15 日 中央環境審議会土壌農薬部会農薬小委員会(第 49 回)

²⁾ 水質汚濁に係る要監視項目として、直ちに環境基準とはせず、引き続き知見の集積に努めるべきとされた物質に係る指針値。

³⁾ 水道法に基づく水質基準とするには至らないが、水道水質管理上留意すべき項目として設定された物質に係る目標値。

^{4)「}ゴルフ場で使用される農薬による水質汚濁の防止に係る暫定指導指針の一部改定について」(平成22年9月29日付け環水大土第100929001号環境省水・大気環境局長通知)において設定された指針値。

⁵⁾ Guidelines for drinking-water quality, fourth edition