水質汚濁に係る農薬登録保留基準の設定に関する安全性評価資料 プトルアリン

. 評価対象農薬の概要

1.物質概要

- 1.004 1.004								
化学名	N-sec-ブチル-4	N-sec-ブチル-4-tert-ブチル-2,6-ジニトロアニリン						
分子式	$C_{14}H_{21}N_3O_4$	分子量	295.3	CAS No.	33629-47-9			
構造式	СН ₃ Н ₃ С—С— СН ₃	NO ₂ CH ₃ CH-	−CH ₂ −CH ₃					

2. 作用機構等

ブトルアリンは、ジニトロアニリン系の植物成長調整剤である。その作用機構は、たばこの幼芽部である腋芽部位から吸収され、生長点の細胞分裂を阻害することにより、腋芽の生育を抑制することである。本邦での初回登録は2004年である。

製剤は乳剤が、適用作物はたばこがある。

申請者からの聞き取りによると、製剤の製造に用いられたブトルアリンの原体の国内生産量は、15.1t(平成21年度)、13.6t(平成22年度)であった。

年度は農薬年度

3. 各種物性

ブトルアリンの各種物性は表1のとおりである。

表 1 プトルアリンの物理化学的性状

	固体(微粒子状)、			
外観•臭気	赤黄色	土壌吸着係数	測定不能	
	弱い特異臭			
密度	1.1 g/cm ³ (25)	オクタノール/水	logPow = 4.93(23)	
融点	60	分配係数	$\log Fow = 4.93(23)$	
沸点	253 で分解のため測定不能	生物濃縮性	BCFss = 1,950	
蒸気圧	7.7×10 ⁻⁴ Pa (25)	水溶解度	0.308 mg/L(25)	

.試験結果概要

ブトルアリンの農薬登録申請資料を用いて試験結果の概要を整理した。代謝物/分解物等略称及び検査値等略称は別紙1及び2に示した。

1.動物体内運命試験

SD ラット(一群雌雄各 5 匹)を用い、第 1 群には [フェニル環-14C]標識プトルアリン(以下「フェニル環標識体」という。)を 8 mg/kg 体重(以下「低用量」という)、第 2 群にはフェニル環標識体を 800 mg/kg 体重(以下「高用量」という)でそれぞれ単回経口投与した。また、第 3 群には非標識ブトルアリンを低用量で 14 日間反復経口投与し、15 日目にフェニル環標識体を低用量で単回経口投与(以下「反復低用量」という。)した動物体内運命試験が実施された。

(1)吸収

各投与群における投与放射能の物質収支は表2のとおりである。検体を投与してから7日間以内の尿中(ケージ洗浄液を含む)及び組織中残留放射能の合計より吸収率を算出したところ、38.3~57.7%であった。

なお、胆汁排泄試験((4))において、胆汁中、尿中排泄率(ケージ洗浄液を含む)及びカーカス残留分の合計から算出した吸収率は28.0~28.2%(表6参照)であったことから、投与されたブトルアリンは吸収後腸肝循環を経由して広範に代謝され、尿に排泄されたと考えられる。

			* * * * * * * * * * * * * * * * * * * *					
投与群	性別	尿中 1)	糞中	呼気中	総排	組織中	総回収	吸収率 2)
17 –7 ft	ובוויי	ייןיאנא	共丁	ザメバナ	泄分	残留分	率	(%)
単回低用量	雄	37.7	66.7	0.0	104	0.6	105	38.3
(8 mg/kg 体重)	数	47.3	58.2	0.0	106	0.7	106	54.3
単回高用量	雄	41.6	57.6	0.0	99.2	1.0	100	42.6
(800 mg/kg 体 重)	雌	55.1	40.5	0.0	95.6	2.6	98.2	57.7
反復低用量	雄	39.5	54.9	0.0	94.4	0.7	95.1	40.2
(8 mg/kg 体重)	雌	54.4	45.5	0.0	99.9	0.7	101	55.1
		全体平均	の総回収	(率			101	-

表 2 各投与群における放射能の収支(%TAR:投与後7日間の積算値)

(2)体内分布

各投与群における体内分布は表3のとおりである。

いずれの投与群においても、肝臓及び脂肪組織で比較的高い濃度の分布が認められたものの、低用量の単回投与及び反復投与における残留に差がないことから、組織残留性は低いものと考えられる。高用量では、雌の組織内濃度は雄より2倍以上高かった。これは、雄に比べ、雌の吸収率が10%程度

¹⁾ ケージ洗浄液を含む。

²⁾ 吸収率 = (尿中 + 組織中残留分) × 100

高いにもかかわらず、雌の排泄速度が雄に比べ遅いためであると考えられる。

投与群	性別	組織
単回低用量	雄	血液(0.01) カーカス(0.39) 肝臓(0.10)
(8 mg/kg 体重)	雌	血液(0.02) カーカス(0.54) 内臓脂肪(0.03) 肝臓(0.11)
単回高用量	雄	血液(0.01) カーカス(0.79) 内臓脂肪(0.03) 肝臓(0.11) 皮膚(0.02)
(800 mg/kg 体重)	雌	血液(0.02) カーカス(2.00) 内臓脂肪(0.21) 肝臓(0.22) 筋肉(0.05) 皮膚(0.06)
反復低用量	雄	血液(0.01) カーカス(0.56) 内臓脂肪(0.02) 肝臓(0.02)
(8 mg/kg 体重)	雌	血液(0.01) カーカス(0.56) 内臓脂肪(0.03) 肝臓(0.09)

表 3 各投与群における放射能の組織内濃度(%TAR;投与7日後)

(3)代謝

各投与群における尿及び糞中代謝物の種類と投与に対する割合は表 4 の とおりである。

尿では、12 個の代謝物が検出され、そのうち U1、U4、U5、U7、U8、 U10、U11 の 7 物質が同定された。検体を投与してから 7 日間以内のこれ らの代謝物の投与量に対する割合は、雌の U5 で最も高く、単回低用量で 11.8%であったが、その他の代謝物についてはいずれも 10%以下であった。 糞中では、親化合物であるブトルアリンが主に検出され、その排泄量は最

大で投与量の 10%を占めた。また、糞中排泄量には雄雌で性差が見られ、 雄が雌より排泄量が大きかった。糞中では親化合物の他には同定可能な代謝 物は認められなかった。

代謝経路としては、吸収されたブトルアリンは体内で N-脱アルキル化さ れ、酸化された後にグルクロン酸抱合される経路が主要なもので、ニトロ基 がアミノ基へと還元され、ついで N-アセチル化された後に環化し、2-メチ ル-ベンズイミダゾールの類似化合物を生成し、グルクロン酸抱合される経 路が次の代謝経路と考えられた。

表 4 尿及び糞中の代謝物の種類と投与量に対する割合 (%TAR: 投与後7日間の積算値)

尿							糞		
投与群	性別	U1	U4	U5	U7	U8	U10	U11	未変化 の親化
		(H)	(A,B,C)	(D)	(I)	(E)	(F)	(G)	合物
単回低用量	雄	0.5	4.1	5.8	2.6	5.0	3.6	0.3	9.5
(8 mg/kg 体重)	雌	0.0	3.5	11.8	5.3	3.8	5.4	1.0	0.0
単回高用量	雄	2.2	1.5	7.9	3.3	3.0	6.1	0.9	7.6
(800 mg/kg 体重)	雌	0.4	2.0	9.8	6.3	3.4	6.8	2.1	3.0
反復低用量	雄	0.8	4.3	7.5	0.0	5.6	4.7	0.5	5.4
(8 mg/kg 体重)	雌	0.7	5.9	9.7	1.3	5.7	9.0	0.8	0.4

^{1) ()}内は代謝物の記号。 U4 で同定された代謝物 3 成分は個別に定量していない。

(4)排泄

尿中及び糞中排泄

各投与群における排泄結果は表5のとおりである。

低用量群では排泄パターンは近似しており、投与された放射能は2日以内に尿及び糞中にほぼ排泄された。一方、高用量群では投与後4日又は5日まで尿及び糞中へ排泄され、低用量群に比べ排泄がやや遅い傾向を示した。投与後7日に、投与された放射能の平均尿中排泄は全投与群で43~48%TAR、平均糞中排泄は49~63%TARの範囲であった。

表 5										
投与群	分析	性別			最終	終投与後	時間(E)		
投与研	対象	生力	0.5	1	2	3	4	5	6	7
	尿 ¹⁾	雄	20.4	32.8	36.5	37.2	37.4	37.5	37.7	37.7
単回低用量	DK '	雌	25.2	40.1	45.4	46.4	46.8	47.1	47.2	47.3
(8 mg/kg 体重)	糞	雄	6.1	48.7	63.6	65.3	65.8	66.1	66.3	66.7
	異	雌	0.1	13.9	51.3	56.4	57.4	57.8	58.1	58.2
	尿	雄	2.7	9.3	32.1	39.1	40.3	40.8	41.0	41.6
単回高用量		雌	2.1	4.1	21.6	40.2	49.7	52.7	53.6	55.1
(800 mg/kg 体重)	糞	雄	3.9	8.5	35.3	51.0	55.5	57.1	57.4	57.6
	兵	雌	1.3	1.4	5.3	16.1	31.7	37.0	39.5	40.5
	E	雄	22.6	34.2	37.9	38.7	39.1	39.2	39.3	39.5
反復低用量 (8 mg/kg 体重)	尿	雌	34.7	48.2	52.7	53.6	54.0	54.2	54.3	54.4
	糞	雄	3.4	29.7	51.5	53.3	54.0	54.5	54.7	54.9
	八	雌	1.3	11.8	42.5	44.2	44.9	45.2	45.4	45.5

表 5 尿中及び糞中排泄率(%TAR;投与後7日間の積算値)

胆汁排泄

SD ラット(一群雌雄各2匹)に胆管カニューレを挿入し、フェニル環標 識体を低用量で単回経口投与した胆汁中排泄試験が実施された。本試験の結 果は表6のとおりである。

表 6 胆汁排泄試験における放射能の収支(%TAR;投与後7日間の積算値)

投与群	性別	尿中 1)	糞中	胆汁 中	消化管内 残留分	カーカス 残留分	総回収率	吸収率 ²⁾ (%)
単回低用量	द隹	3.9	66.0	17.3	6.6	6.9	100.5	28.0
(8 mg/kg 体重)	雌	12.1	69.7	13.4	4.3	2.8	102.2	28.2
	平均	8.0	67.8	15.3	5.4	4.9	101.4	28.1

- 1) ケージ洗浄液を含む。
- 2) 吸収率 = (尿中 + 胆汁中 + カーカス残留分) ×100

¹⁾ ケージ洗浄液を含む。

2. 環境中運命試験

フェニル環標識体を用い、各種の環境中運命試験が実施された。本試験の 結果は表7のとおりである。

ブトルアリンは好気的土壌条件下において代謝分解が極めて緩慢であった。水中では暗条件下で加水分解しないものと考えられるが、光照射下においては、速やかに分解した。

試験項目	試	験条件	DT_{50}	主な代謝分解物と 最大検出量 ¹⁾
好気的土壌 中運命試験 [GLP、1994]	砂壌土 (米国 ケンタッキー州 Fayette 郡)	25 、暗条件、 12 ヶ月	1,126 日	K:2.1%TAR (12 ヶ月後)
加水分解		pH4	加水分解しない	
運命試験	緩衝液、25 暗条件、6 ヶ月	pH7	加水分解しない	-
[GLP、1994]	F130110	рН9	加水分解しない	
水中光分解 運命試験 [GLP、1996]	光強度 54.91±0.13 W/m ² 波長 250~800nm	リン酸緩衝液 pH7、25.1 、15 日	7.6 日 ²⁾	K:23.4%TAR (15 日後)
水中光分解 運命試験 [GLP、2003]	光強度 38.7 W/m² 波長 300~400nm	滅菌自然水 (英国・BuryPond, Cambridgeshire) pH8.5、25±2 、4 日	6.6 日 ²⁾	5 物質が検出され たが未同定

表 7 プトルアリンの環境中運命試験の概要

3 . 土壌残留試験[非 GLP、1993 年~1996 年](農薬抄録:16~18)

火山灰壌土及び洪積砂壌土を用いたブトルアリンの土壌残留性試験が実施された。ブトルアリンの推定半減期は表8のとおりである。

	収り フェルノックの工機及由に								
	土壌条件と分析対象物								
試験形態	土壌	分析対象	十 推定半減期 上						
圃場試験	火山灰壌土	ブトルアリン	60 日						
50 倍希釈液、 30ml/株(葉たば こ)	洪積砂壌土	ブトルアリン	44 日						
容器内試験	火山灰壌土	ブトルアリン	38 日						
190 µ g/土壌 50g	洪積砂壌土	ブトルアリン	92 日						

表 8 プトルアリンの土壌残留性

¹⁾ CO₂を除く。

²⁾ 東京春季太陽光換算值

4.毒性試験

(1) 一般薬理試験

ブトルアリンの原体について、SD ラット(0、250、500 及び1,000 mg/kg 体重)及び日本白色種ウサギ (0,0.05,0.5 及び 5 mg/kg 体重)を用いた 一般薬理試験が実施された。本試験の結果は、表9のとおりである。

	表 9	フトルアリン	クの一般	楽埋試験結身	長の概要 ニューニー
試馬	剣の種類	動物種	投与 経路	無作用量 (最少作用量) (mg/kg 体重)	観察された作用
中枢神経系	一般症状 [Irwin 法]	SD ラット (一群雄 4 匹)	経口	500 (1,000)	軽微な縮瞳
循環器系	呼吸数、1 回換気量、血圧、心拍数、心電図波形	日本白色種 ウサギ (一群雄 4 匹)	静脈内	5 ()	検体投与による影響なし
消化器系	腸管輸送能	SD ラット (一群雄 6 匹)	経口	1,000 ()	検体投与による影響なし
腎機能	尿量、尿中電 解質排泄、尿 浸透圧	SD ラット (一群雄 6 匹)	経口	1,000	検体投与による影響なし

(2) 急性毒性試験

ブトルアリンの原体及び製剤について、SD ラットを用いた急性毒性試験 (経口、経皮及び吸入)が実施された。本試験の結果は、表10のとおりで ある。

	表 10 ブトルアリンの	の急性毒性試験	結果の概	要	
検体種別	投与経路/観察期間/投与量 (mg/kg 体重又は mg/m³)	動物種	LD ₅₀ (mg 又は LC ₅	_	実施年
			雄	雌	
	経口/14 日間/700、1,000、 1,200、1,600、2,000	SD ラット (一群雌雄各 5 匹)	1,169.5	1,049.0	1991 年
原体	経皮/14 日間/2,000	SD ラット (一群雌雄各 5 匹)	> 2,000	> 2,000	1993 年
	吸入(エアロゾル)/14 日間 /2,806	SD ラット (一群雌雄各 5 匹)	> 2,806 mg/m ³	> 2,806 mg/m ³	1987 年
製剤	経口/14 日間/2,000	SD ラット (一群雌 5 匹)	-	>2,000	2008年
(34.5% 乳剤)	経皮/14 日間/2,000	SD ラット (一群雌雄各 5 匹)	> 2,000	> 2,000	2008年

(3) 皮膚・眼に対する刺激性及び皮膚感作性試験

ブトルアリンの原体及び製剤について、NZW ウサギを用いた眼刺激性試験及び皮膚刺激性試験並びに Hartley モルモットを用いた皮膚感作性試験が実施された。本試験の結果は表 11 のとおりである。

眼刺激性は、原体及び製剤で、軽度の刺激性が認められた。

皮膚刺激性は原体では認められなかったものの、製剤では中程度の刺激性が認められた。

皮膚感作性は、原体及び製剤のいずれにも認められなかった。

検体 種別	試験の種類 /観察期間	動物種	投与方法/投与量	試験の 結果	実施年
	眼刺激性 /3 日間	NZW ウサギ (一群雄 6 匹)	点眼/0.1 mg	軽度の 刺激性	1991 年
原体	皮膚刺激性 /72 時間	NZW ウサギ (一群雄 6 匹)	貼付 4hr/0.5 g	刺激性 なし	1991年
原体	皮膚感作性 /32 日間	Hartley モルモット (検体群:雄 10 匹 対照群:雄 5 匹)	Buehler 法 感作:75%液 貼付 惹起:75%液 貼付	感作性 なし	1993 年
	眼刺激性 /96 時間	NZW ウサギ (一群雄 3 匹)	点眼/0.1 mL	軽度の 刺激性	2008 年
製剤 (34.5%	皮膚刺激性 /14 日間	NZW ウサギ (一群 3 匹)	貼付/0.5 mL	中程度の 刺激性	2008年
乳剤)	皮膚感作性 /25 日間	Hartley モルモット (検体群:雌雄各 10 匹 対照群:雌雄各 10 匹)		感作性 なし	2007年

表 11 皮膚・眼刺激性及び皮膚感作性試験の概要

(4) 亜急性毒性試験

ブトルアリンの原体について、ラットを用いた亜急性反復経口投与毒性試験及び反復経口投与神経毒性試験が実施された。

90 日間反復経口投与毒性試験及び28 日間回復試験 (ラット)

SD ラット(一群雌雄各 10 匹)を用いた混餌投与(原体:0、10、50及び200 mg/kg 体重/日、平均検体摂取量は表 12 参照)による 90 日間反復経口投与毒性試験が実施された。なお、対照群及び 200mg/kg 体重/日投与群については、投与終了後、28 日間の回復期間が設けられた。

表 12 ラット 90 日間反復経口投与毒性試験の平均検体摂取量

投与量 (mg/kg 体重/日)		10	50	200
検体摂取量	玄隹	10.2	51	202
(mg/kg 体重/日)	雌	10.3	51	202

各投与群において認められた毒性所見は表13のとおりである。

血液生化学的検査では、200 mg/kg 体重/日投与群の雄で塩素及び尿素の低値、200 mg/kg 体重/日投与群の雌でグルコースの低値、カルシウムの高値、50 mg/kg 体重/日投与群の雄で尿素の低値及び塩素の低値が認められたが、いずれも軽度であり、臓器重量、尿検査及び病理組織学的検査に関連が認められなかったため、毒性学的意義は低いものと考えられた。10 mg/kg 体重/日投与群の雄で総蛋白質及びアルブミンの高値が認められたが、用量相関性がなかったことから、偶発的な変化であると考えられた。50 及び 200 mg/kg 体重/日投与群の雌で AST 及び ALT の低値が見られたが、肝臓毒性の指標である増加でないこと、加えて背景データの範囲内であることから、これらの低値の毒性学的意義は低いものと考えられた。

臓器重量については、10 mg/kg 体重/日投与群の雄で肝臓の相対重量の増加が認められたが、用量相関性がないことから、偶発的変化であると考えられた。

肉眼病理検査においては、50 及び 200 mg/kg 体重/日投与群の雌雄で体脂肪の黄変が認められたが、対応する病理組織学的変化も認められなかった。これらの変化は、回復期間終了時には認められなかったため、回復性のある変化であると考えられた。同変化は、検体の色(黄色)に起因した変化と考えられ、毒性学的意義は低いものと考えられた。

本試験において、50 mg/kg 体重/日投与群の雄で体重増加抑制及び総摂餌量の減少が、雌で肝臓重量の増加等が認められたことから、無毒性量は雌雄ともに 10 mg/kg 体重/日(雄:10.2 mg/kg 体重/日、雌:10.3 mg/kg 体重/日)であると考えられた。

表 13 90日間反復経口投与毒性試験(ラット)で認められた毒性所見

投与群	太 隹	雌
200 mg/kg 体重/日	・体重増加抑制 ・赤血球数、ヘモグロビン濃度及びヘマトクリット値の低値 ・GGT、総蛋白、アルブミン、クレアチニンの高値 ・絶対重量(肝臓)、相対重量(肝臓、腎臓)の増加 ・肝臓の小葉中心性肝細胞肥大、甲状腺の濾胞上皮細胞肥大	・体重増加抑制 ・ヘモグロビン濃度、ヘマトクリット 値及び赤血球容積の低値 ・GGT、総蛋白、アルブミン、クレア チニン、総ビリルビンの高値 ・絶対重量(肝臓)、相対重量(肝臓、 腎臓、心臓)の増加 ・肝臓の小葉中心性肝細胞肥大、甲状腺の濾胞上皮細胞肥大、肺胞マクロファージ集簇
50 mg/kg 体重/日	・体重増加抑制、総摂餌量の減少	・ヘモグロビン濃度、ヘマトクリット 値及び赤血球容積の低値 ・絶対重量(腎臓)、相対重量(肝臓、 腎臓、心臓)の増加
10 mg/kg 体重/日	・毒性所見なし	・毒性所見なし

28 日間反復経口投与神経毒性試験及び 14 日間回復試験 (ラット)

SD ラット(一群雌雄各 10 匹)を用いた混餌(原体:0、150、550 及び 2,000 ppm、平均検体摂取量は表 14 参照)投与による 28 日間反復経口投与神経毒性試験が実施された。なお、対照群及び 2,000 ppm 投与群については、投与終了後、14 日間の回復期間が設けられた。

表 14 ラット 28 日間反復経口投与神経毒性試験の平均検体摂取量

投与量(ppm)		150	550	2,000
検体摂取量 雄		14	51	193
(mg/kg 体重/日)	雌	15	59	197

各投与群において認められた毒性所見は表15のとおりである。

血液学的検査では、2,000 ppm 投与群の雌において、リンパ球の減少を伴った白血球数の減少が認められたが、背景データの範囲内であり、毒性学的意義は低いものと考えられた。

血液生化学的検査では、投与30日に解剖した550 ppm 投与群の雄(5匹/群)で、コレステロールの軽度な増加が認められたが、投与29日に解剖した同群(5匹/群)ではコレステロールの増加は認められていない。またこの増加は背景データの範囲内であり、対応する病理組織学的所見は認められなかった。以上の結果を踏まえ、投与30日に解剖した550 ppm 投与群の雄で観察された軽度なコレステロールの増加は、悪影響ではないと考えられた。投与30日に解剖した対照群におけるコレステロールの値が低く、ばらつきが少なかったことも、この増加に関連している可能性がある。

肉眼病理検査においては、550 ppm 及び2,000 ppm 投与群の雌で脂肪

組織の黄化が認められたが、これは検体の色(黄色)に起因した変化と考えられ、毒性学的意義は低いものと考えられた。

本試験において、神経行動障害や神経病理学的変化は最高用量の2,000ppm 投与群(雄:193 mg/kg体重/日、雌:197 mg/kg体重/日)を含むいずれの用量においても認められなかった。

本試験において、2,000 ppm 投与群の雄で体重増加抑制、血漿中コレステロールの高値及び肝細胞の肥大が認められ、雌で血漿中コレステロールの高値及び肝細胞の肥大が認められたことから、無毒性量は、雌雄ともに550 ppm (雄:51 mg/kg 体重/日、雌:59 mg/kg 体重/日)であると考えられた。神経毒性は認められなかった。

表 15 28日間反復経口投与神経毒性試験(ラット)で認められた毒性所見

投与群	広 隹	雌
2,000 ppm	・体重増加抑制 ・コレステロールの高値 ・肝細胞肥大の発生頻度の増加	・コレステロールの高値 ・肝細胞肥大の発生頻度の増加
550 ppm	・毒性所見なし	・毒性所見なし
150 ppm	・毒性所見なし	・毒性所見なし

(5) 生殖発生毒性試験

ブトルアリンの原体について、ラットを用いた3世代繁殖毒性試験、ラット及びウサギを用いた催奇形性試験が実施された。

3世代繁殖試験 (ラット)(参考データ)

SD ラット(一群雄10匹、雌20匹)を用いた混餌投与(原体:0、100、300及び1,000ppm、平均検体摂取量は表16参照)による3世代繁殖試験が実施された。

表 16 3世代繁殖試験(ラット)の平均検体摂取量(mg/kg体重/日)

用量(ppm)		100	300	1000	
	EO	雄	5	15	50
	F0	雌	5	15	50
文日 禾九 州勿	F1	雄	5	15	50
親動物	FI	雌	5	15	50
	F2	雄	5	15	50
	ГΖ	雌	5	15	50
	F1		5	15	50
児動物	F2		5	15	50
	F3		5	15	50

 申請者が WHO の換算率を用いて算出した。換算率は 1 ppm が 0.05mg/kg 体重/日である。 各投与群において認められた毒性所見は表17のとおりである。

親動物については、100 ppm 投与群では F1 雄又は F2 雌世代で体重増加抑制が見られたが、用量相関性がないことから、投与の影響ではないと考えられた。また、300 ppm 投与群で F0 世代の雄親動物の体重増加抑制、1,000 ppm 投与群で全ての世代の雄親動物、F1 及び F2 世代の雌親動物に体重増加抑制が認められたことから、無毒性量は、雄親動物では 100 ppm (5 mg/kg 体重/日)、雌親動物では 300 ppm (15 mg/kg 体重/日)であると考えられた。

児動物については、1000 ppm 投与群において、F3 児を除くすべての世代の生後 21 日産児の体重が対照群と比較して低下している。統計学的有意差はみられないものの、いずれの世代においても共通して体重増加の抑制傾向が認められることから、本剤投与の影響と考えられる。

また、300 ppm 投与群の F3 児の生後 4 日生存率、1,000 ppm 投与群のすべての世代の児動物の生後 4 日生存率が低下したことから、児動物の無毒性量は 100 ppm (5 mg/kg 体重/日) であると考えられた。

本試験の検査項目において繁殖能に対する影響は認められなかったが、 繁殖への影響を評価するための毒性指標等が十分でないため、参考データ として扱った。

投与群			投与群		
			100 ppm	300 ppm	1000 ppm
	EO	雄	・毒性所見なし	・体重増加抑制	・体重増加抑制
	F0	雌	・毒性所見なし	・毒性所見なし	・毒性所見なし
☆日壬七十分	T7.1	雄	・毒性所見なし	・毒性所見なし	・体重増加抑制
親動物	F1	雌	・毒性所見なし	・毒性所見なし	・体重増加抑制
	Eo	雄	・毒性所見なし	・毒性所見なし	・体重増加抑制
	F2	雌	・毒性所見なし	・毒性所見なし	・体重増加抑制
	F	1	・毒性所見なし	・毒性所見なし	・生存率の低下 ・体重増加抑制
児動物	F2 F3		・毒性所見なし	・毒性所見なし	・生存率の低下 ・体重増加抑制
			・毒性所見なし	・生存率の低下	・生存率の低下 ・体重増加抑制

表 17 3世代繁殖試験(ラット)で認められた毒性所見

催奇形性試験 (ラット)

SD ラット(一群雌 25 匹)に妊娠 6 日~15 日の 10 日間、強制経口(原体:0、500、1,250 及び 2,000 mg/kg 体重/日)投与して催奇形性試験が実施された。

各投与群において認められた毒性所見は表18のとおりである。

母動物では、500 mg/kg 体重/日投与群で摂餌量が妊娠 6 日から 10 日まで減少したが、その後は対照群と同等であったため、毒性学的意義は低いものと考えられた。また、母動物では、すべての投与群において、体表面、

尿、糞の黄変及び膣出血が認められた。さらにすべての投与群で摂餌量の減少がみられた。

胎児については、1,250及び2,000 mg/kg 体重/日投与群で体重の低値が認められた。またいずれの投与群においても骨化遅延が認められた。本試験は、胎児の骨格異常の「重度異常」、「軽度異常」及び「変異」と分類した異常所見に、いずれも「不完全骨化」、「骨化欠如」が含まれるなど異常及び変異の基準が極めて曖昧であること、また、同腹効果を考慮した統計解析が実施されていないことという問題点はあるものの、これらの解析を再実施しても、本試験における無毒性量の評価及び催奇形性の有無の評価は変わらないと考えられることから、本試験は評価可能と判断した。

本試験において、母動物では、いずれの投与群においても体重の増加抑制傾向を伴う摂餌量の減少がみられた。胎児では、いずれの投与群においても骨化遅延が認められた。従って本試験における無毒性量は、母動物、胎児のいずれも 500 mg/kg 体重/日未満であると考えられた。なお、催奇形性は認められなかった。

投与群	母動物	胎児
2,000 mg/kg 体重/日	・死亡 ・流産 ・膣出血 ・摂餌量の減少 ・体重増加抑制	・体重の低値 ・胸骨分節・胸椎体・後肢左右中足骨・後頭骨不完全骨化 ・胸骨分節・胸椎体・仙椎体・尾椎体・尾椎弓・ 尾椎骨化欠如 ・頚椎体・前肢左右指節骨過剰骨化
1,250 mg/kg 体重/日	・流産 ・膣出血 ・摂餌量の減少 ・体重増加抑制	・体重の低値 ・胸骨分節・胸椎体・後肢左右中足骨・後頭骨不 完全骨化 ・胸骨分節・胸椎体・尾椎弓・尾椎骨化欠如 ・頚椎体・前肢左右指節骨過剰骨化
500 mg/kg 体重/日	・出血性膣消耗 ・摂餌量の減少 ・体重増加抑制	・胸骨分節・胸椎体・前肢左右中手骨・後頭骨不 完全骨化 ・胸骨分節・胸椎体・尾椎弓骨化欠如 ・頚椎体過剰骨化

表 18 催奇形性試験 (ラット) で認められた毒性所見

催奇形性試験 (ラット)[GLP、1987年]

SD ラット(一群雌 25 匹)の妊娠 6 日~15 日の 10 日間、強制経口(原体:0及び 50 mg/kg 体重/日)投与した催奇形性試験が実施された。

各投与群において認められた毒性所見は表19のとおりである。

母動物では、死亡動物はなく、投与に起因した流産例もみられなかった。 体重及び摂餌量に影響はみられなかった。さらに着床及び胚の生存性にも 影響はみられなかった。

胎児では、対照群、投与群に椎骨、胸骨などの骨化遅延がみられたが、 その発現頻度には両群間に統計学的有意差はなく、さらに投与群の発現頻 度はいずれも背景データの範囲内であった。本試験は、胎児の骨格異常の「重度異常」、「軽度異常」及び「変異」と分類した異常所見に、いずれも「不完全骨化」、「骨化欠如」が含まれるなど異常及び変異の基準が極めて曖昧であること、また、同腹効果を考慮した統計解析が実施されていないことという問題点はあるものの、これらの解析を再実施しても、本試験における無毒性量の評価及び催奇形性の有無の評価は変わらないと考えられることから、本試験を評価可能と判断した。

本試験において、母動物及び胎児で毒性所見が認められなかったことから、本試験における無毒性量は、母動物及び胎児ともに 50 mg/kg 体重/日であると考えられた。

催奇形性は認められなかった。

表 19 催奇形性試験 (ラット)で認められた毒性所見

投与群	母動物	胎児
50 mg/kg 体重/日	・毒性所見なし	・毒性所見なし

催奇形性試験 (ウサギ)

NZW ウサギ(一群雌 16 匹)に妊娠 7 日~19 日の 13 日間、毎日一回 強制経口(原体:0、15、45 及び135 mg/kg 体重/日)投与して、催奇形 性試験が実施された。

各投与群において認められた毒性所見は表20のとおりである。

母動物では、135 mg/kg 体重/日投与群の 1 例に流産がみられたが、いずれの投与群においても体重及び摂餌量に影響はみられず、また、着床及び胚の生存性にも変化は認められなかった。

胎児では135 mg/kg 体重/日投与群において体重の低値がみられた。また、いずれの群においても骨化遅延が観察されたが、その発現頻度には群間に差は認められなかった。また、足の関節彎曲がいずれの投与群においても観察されているが、その発現頻度に対照群との統計学的有意差はなく、毒性学的意義は低いものと考えられた。

本試験においては、135 mg/kg 体重/日投与群で母動物に流産が、胎児に体重低値がみられたことから、無毒性量は、母動物及び胎児ともに 45 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。

表 20 催奇形性試験(ウサギ)で認められた毒性所見

投与群	母動物	胎児
135 mg/kg 体重/日	・流産1例	・平均胎児体重減少
45 mg/kg 体重/日	・毒性所見なし	・毒性所見なし
15 mg/kg 体重/日	・毒性所見なし	・毒性所見なし

(6) 遺伝毒性試験

ブトルアリンの原体について、細菌を用いた復帰突然変異試験、チャイニーズハムスター卵巣細胞を用いた *in vitro* 染色体異常試験及びマウス骨髄細胞を用いた *in vivo* 小核試験が実施された。本試験の結果は表 21 のとおりである。

細菌を用いた復帰変異試験では、1986年の試験(原体の純度 97.45%)では代謝活性化系の存在下のサルモネラ菌 TA100株において、 $5000 \sim 10000$ μ g/plate の高用量で突然変異コロニー数に弱い増加が認められた。しかし、2000年に実施された試験(原体の純度 99.51%)では TA100株も含め陰性であり結果の再現性が見られなかった。原体中の不純物に起因した可能性は考えられるが、ブトルアリンに復帰突然変異誘発性はないと評価した。また、染色体異常に関しても in vitro 試験、in vivo 試験共に陰性であり、ブトルアリンの遺伝毒性はないものと考えられた。

表 21 プトルアリンの遺伝毒性試験の概要

検体 種類	試験の種類	供試動物・細菌	処理濃度・ 投与量	結果	実施年
		Salmonella typhimurium (TA100、TA1535、 TA98 、TA1537 、	1.0 ~ 10,000 µg/plate (+/ - S9-Mix ¹⁾)	弱陽性 (TA100:+S9-Mix)	1986 年
原体	復帰 突然変異 試験	Salmonella typhimurium (TA100、TA1535、 TA98、TA1537) Escherichia coli (WP2/pKM101 、 WP2uvrA/pKM101)	50 ~ 5,000 µg/plate (+/ - S9-Mix)	陰性	2000年
	染色体 異常試験 (in vitro)	チャイニーズハム スター卵巣細胞 (CHO-WBL)	25.2 ~ 101.0 μg/mL (- S9-Mix) 25.0 ~ 100.0 μg/mL (+S9-Mix)	陰性	1988 年
	小核試験 (<i>in vivo</i>)	Swiss マウス (雌雄 各 5 匹)	200~800 mg/kg 体重 ×2 回(経口投与)	陰性	2001年

1) S9-Mix: ラットの肝臓から調製した薬物代謝酵素系

. 総合評価

ラットを用いたフェニル環標識体投与による動物体内運命試験の結果、経口投与されたブトルアリンの吸収率は、およそ 50%と算出され、腸肝循環の関与が示唆された。体内では、肝臓及び脂肪組織に多く分布したが、低用量の単回投与及び反復投与における残留に差がないことから、組織残留性は低いものと考えられた。代謝物は、主に胆汁を経由して、腸肝循環の後、尿及び糞中に排泄されると考えられた。主な代謝経路は、(1)N-脱アルキル化、(2)ニトロ基の還元と N-アセチル化であった。

各種毒性試験結果から、ブトルアリン投与における影響は、主に肝臓に認められた。神経毒性、催奇形性及び遺伝毒性は認められなかった。

各種試験結果から、ばく露評価対象物質をブトルアリン(親化合物のみ)と設定した。

各毒性試験における無毒性量、最小毒性量及び最小毒性量で認められた所見 を表 22 に示す。

表 22 各試験における無毒性量及び最小毒性量

動物種	試験	無毒性量・(最小毒性量) (mg/kg 体重/日) 最小毒性量で認められた所見	国内外での評価 無毒性量 (mg/kg 体重/日)
ラット	90 日間 反復経口投 与毒性試験	雄 : 10.2 (51) 雌 : 10.3 (51) 雄 :・体重増加抑制、総摂餌量の減少 雌 :・ヘモグロビン濃度、ヘマトク リット値及び赤血球容積の低値 ・絶対重量(腎臓)、相対重量(肝 臓、腎臓、心臓)の増加	EPA、EC:10
ラット	28 日間 反復経口投 与神経毒性 試験	雄 : 51 (193) 雌 : 59 (197) 雄 : ・体重増加抑制 ・コレステロールの高値 ・肝細胞肥大の発生頻度の増加 雌 : ・コレステロールの高値 ・肝細胞肥大の発生頻度の増加	EC: 雄:51 雌:59

動物種	試験	無毒性量・(最小毒性量) (mg/kg 体重/日) 最小毒性量で認められた所見	国内外での評価 無毒性量 (mg/kg 体重/日)
ラット	催 奇形 性 試 験	母動物 : <500 (500) 胎児 : <500 (500) 母動物 :・出血性膣消耗 ・摂餌量の減少 ・体重増加抑制 胎児 :・胸骨分節・胸椎体・前肢左右中 手骨・後頭骨不完全骨化 ・胸骨分節・胸椎体・尾椎弓骨化 欠如 ・頚椎体過剰骨化 催奇形性なし	EPA: 母動物: < 500 胎児: < 500 EC: 母動物: 500 胎児: < 500
ラット	催 奇形 性 試 験	母動物 : 50() 胎児 : 50() 母動物 : - 胎児 : - 催奇形性なし	EPA、EC: 母動物:50 胎 児:50
ウサギ	催奇形性試 験	母動物 : 45 (135) 胎 児 : 45 (135) 母動物 :・流産 胎児 :・体重減少 催奇形性なし	EPA: 母動物:8.2 胎 児:8.2 EC: 母動物:6.65 胎 児:<6.65

各試験で得られた無毒性量の最小値は、ラットを用いた 90 日間反復経口投与 毒性試験の雄で 10.2mg/kg 体重/日であったことから、当該試験を非食用一日摂取許容量(非食用 ADI)の根拠とすることが適切であると考えられる。

以上の結果を踏まえ、ブトルアリンに対する非食用 ADI を次のように評価する。

非食用 ADI	0.010mg/kg 体重/日		
設定根拠試験	90 日間反復経口投与毒性試験		
動物種	ラット		
期間	90 日間		
投与方法	混餌経口		
無毒性量	10.2 mg/kg 体重/日		
	1,000		
安全係数	種間差 10、個人差 10、データ不足 10(慢性毒性・ 発がん性試験及び非げっ歯類の毒性試験が実施されていない。生殖発生毒性試験の内容が十分でない。)		

なお、海外での評価情況は以下のとおりである。

国・地域	評価機関	評価結果		
米国	EPA (参照 1)	毒性評価は行っているが、ADI 及び RfD は		
	(1998)	設定してい	設定していない。	
オースト	Australian Government	ADI	0.2 mg/kg 体重/日	
ラリア	Department of Health and	設定根拠	無毒性量:15 mg/ kg 体重/日	
	Ageing (参照 2)	放化饭炒	ウサギ催奇形性試験	
EU		ADI	0.003 mg/kg 体重/日	
	EC Draft Assessment Report	設定根拠	最小毒性量:6.65 mg/ kg 体重/日	
	(DAR) (参照 3)		安全係数:2,000	
			ウサギ催奇形性試験	

<別紙1> 代謝物/分解物等略称

記号	化学名	
P(ブトルアリン)	N-sec-ブチル-4-tert-ブチル-2,6-ジニトロアニリン	
A (U4a)	2-アミノ-5-tert-ブチル-3-ニトロアセトアニリド	
B (U4b)	2-メチル-5(6)-tert-ブチル-7(4)-アミノベンズイミダゾール	
C (U4c)	2-メチル-5(6)-tert-ブチル-7(4)-アセチルベンズイミダゾール	
D (U5)	2-メチル-5(6)-[1-(1-カルボキシ-1-メチル)エチル]-7(4)-ニトロベンズイ ミダゾール	
E(U8)	2-メチル-5(6)-[2-(1-ヒドロキシ-2-メチル)プロピル]-7(4)-ニトロベンズ イミダゾール	
F (U10)	2-メチル-2(4-アミノ-3,5-ジニトロフェニル)プロピオン酸	
G (U11)	2-メチル-2(4-アミノ-3,5-ジニトロフェニル)プロパノール	
H(U1)	2-メチル-2(4-アミノ-3,5-ジニトロフェニル)プロピオン酸-極性抱合体	
I (U7)	2-メチル-2(4-アミノ-3,5-ジニトロフェニル)プロパノール-グルクロン 酸抱合体	
J (B10)	2-メチル-5(6)-tert-ブチル-7(4)-アセチルベンズイミダゾール-グルクロ ン酸抱合体	
K (B11)	4-tert-ブチル-2,6-ジニトロアニリン	

<別紙 2> 検査値等略称

略称	名 称
ADI	一日摂取許容量
ALT	アラニンアミノトランスフェラーゼ
AST	アスパラギン酸アミノトランスフェラーゼ
¹⁴ C	放射性同位体である炭素 14
DT ₅₀	土壌中半減期
GGT	ガンマグルタミルトランスペプチダーゼ
GLP	Good Laboratory Practice
In vivo	生体内
In vitro	生体外
LC_{50}	50%致死濃度
LD_{50}	50%致死量
logPow	オクタノール/水分配係数
NZW	ニュージーランドホワイト
ppm	parts per million
SD	Sprague-Dawley
TAR	総投与(処理)放射能

<参照>

- 1. EPA Reregistration Eligibility Decision (RED) Butralin (1998)
- 2. Australian Government Department of Health and Ageing ADI list (2010)
- 3. EC Draft Assessment Report (DAR) Butralin (2006)