技術・システム検討WG 検討事項のまとめ

〇災害廃棄物の処理計画策定手順の提示(H26年度成果の活用)

■ ○災害廃棄物処理の進捗管理手法の提案

的 〇土砂系混合物の処理方法の整理、処理計画策定手順の提示

〇大規模災害を想定した各種検討(処理フロー、仮置場計画等)

【成果1】「災害廃棄物の処理フロー」、処理施設の「基本ユニット」の作成

【「災害廃棄物の処理フロー」を策定】

〇 地域特性、廃棄物性状等に応じ組み替えて活用

【処理事例を基に、処理施設の「基本ユニット」を作成】

_							
	基本	ユニット	加田広奈地	面積 (ha/Unit)	施設能力		
I	区分	タイプ	<u> </u>		廃棄物比重	処理量(t/日)	
	Α	固定式	混合物	4.0	0.4~1.6	300~1,200	
	Α	移動式	此口彻	4.5		140~ 570	
	В	固定式	コンクリート系混合物	5.0	1.1~1.6	1,700~2,500	
	В	移動式		2.5		240~ 360	
	С	移動式	木質系混合物	2.5	0.2~0.6	120~ 360	

> 1 D D D D D D D D D D D D D D D D D D
処理期間の設定
諸条件の設定
必要セット数の算出
仮置場候補地の選定
レイアウト検討
「基本ユニット」を活用 した処理施設及び 仮置場の検討フロー

災害廃棄物量の推計

【成果3】土砂系混合物の「処理フロー」、「処理技術」の整理

【東日本大震災における津波堆積物処理の調査、技術情報の分析】

- 16処理区(日建連、全産連加盟企業)にアンケート調査
- ○津波体積物の性状、処理施設、受入基準等の分析・整理を実施
- 土砂系混合物の整理(津波堆積物、農地堆積物、ふるい下等に区分)

【土砂系混合物の「処理技術」、「処理フロー」の整理】

- アンケート調査結果を基に処理技術を分析し、処理フローを集約
- 〇目的別に「改質・調整オプションフロー」を整理 ※料性・含水変低減、不溶化、洗浄、セイント原料化の
- ※粘性・含水率低減、不溶化、洗浄、セメント原料化の4つの目的
- 各改質・調整オプションフローに関する情報を整理 ※内容(改質材の種類等)、種類・特徴、注意点や課題等を整理

【「機材情報」の整理】

〇 作業工程毎に、使用する機材情報(寸法、処理能力等)を整理

- ★ ○災害廃棄物の処理フローの検討、処理施設の検討
- **討** 〇廃棄物の区分の整理、計量ポイントの検討
- **内** 〇東日本大震災における津波堆積物処理フローの整理
 - ○首都直下地震を想定した処理施設、仮置場、輸送手段の検討

【成果2】進捗管理に係る「管理点」、「集計方法」、「廃棄物区分」等の整理

【東日本大震災における進捗管理の実態を調査(アンケート等)】

- 〇 廃棄物の区分状況、フロー上の計量箇所、計量値の集計方法等
- 〇 進捗管理上、留意すべき事項の整理

【進捗管理の「管理点(計量ポイント)」、「集計方法」の整理】

- 2種類の「計量ポイント(必須、推奨)」、各管理点の「計量項目」を設定
- 各計量値を用いた進捗管理項目、管理データの「集計式」を整理

【集計すべき「廃棄物区分」の整理】

- 国、発注自治体、処理事業者間で共有する廃棄物の区分の整理
- 東日本大震災を基に、搬入時及び搬出時について整理

【成果4】首都直下地震を想定した処理施設能力、仮置場配置、運搬能力の検討

【検討条件の整理、検討モデルの策定】

○ 都心南部直下地震(冬夕・風速8m/s)、災害廃棄物量約5,700万トン

【試算結果(例)】

「基本ユニット」を活用した処理施設、二次仮置場の検討

=						
ユニット		基本	仮置場面積(ha)		候補地面積(ha)	
区分	<u> </u>	ユニット数 (Unit)			処分場 跡地	都市 公園
		(01110)			تا - ارس	455
Α	混合物	124	496			
В	コンクリート系混合物	44	220	754	390	4,900
С	木質系混合物	15	38			

鉄道用コンテナ 搬出状況

広域輸送量の検討

/ 	<u>~~~ // </u>			
区分	広域搬出量	輸送量	コンテナ数	備考
鉄道	%5220 L \ .	6,700トン/日	1,550基/日	16列車/日
船舶	約330万トン	44,750トン/週	約3,400基/週	船舶数66隻

499型コンテナ船 (20ftコンテナ×48基)

まとめ

〇東日本大震災の事例を基に、「災害廃棄物の処理フロー」、「基本ユニット」、「進捗管理方法」及び「混合物処理」について示した 〔今後の展望〕:災害廃棄物の処理フロー等の検討成果を活用して、処理計画を作成するための手順、検討の流れなどの整理等

今後の展望 〇首都直下地震を想定した検討において、必要な処理能力を持つ施設、運搬、広域搬出について規模感を把握することができた 〔今後の展望〕:検討条件(処理フロー、処理期間、仮置場配置、運搬ルート等)の精緻化や、南海トラフ地震を想定した検討への展開等