
PCB廃棄物処理に関する 経緯と現状

PCBとは

◆ PCB(Polychlorinated biphenyl:ポリ塩化ビフェニル) ビフェニルの水素が1~10個の塩素に置換した化 合物の総称。

◆ 電気絶縁性等の性質により、主として、絶縁油、 熱 媒体、感圧複写紙に使用されていた。

PCBの有害性①

PCB の有害性(難分解性、高濃縮性、移動性)

- ◆ 環境中で分解されにくい(難分解性)
- ◆ 脂溶性で生物濃縮率が高い(<u>生物蓄積性・濃縮性</u>)
 - ~食物連鎖などで生物の体内に濃縮しやすい
- ◆ 揮発性で大気経由の移動がある(<u>揮散・移動性</u>)

- 水、底質や生物など広範囲に残留
- 周辺でPCBを使用していない極地の人・野生生物、遠洋の魚介類等にもPCB 汚染が拡大

PCBの有害性②

PCB の有害性(毒性)

- ◆ 毒物や劇物に相当する強い急性毒性はないが、長期間の摂取により体内に蓄積
- ◆ ヒトについては、目やに、まぶたの膨張、爪や口腔粘膜の色素沈着・黒化、 座瘡様の発疹(ニキビ)、 肝臓肥大と機能不全 等 が報告されている。

コプラナーPCB

- ◆ 209種類のPCBの異性体のうちの12種類の総称。
- ◆ ダイオキシン類の一つと位置づけられている。

不純物としてのPCDF(ポリ塩化ジベンゾフラン)

- ◆ PCB製品に含まれている場合が多い。
- ◆ ダイオキシン類の一つと位置づけられている。

- カネミ油症は、PCBとPCDFによる複合的な中毒
- なお、母乳中のPCB濃度は、最も高かった1970年と比べて、1990年代では1/5に低下(大阪府調査)

PCBの基準

大気の基準

•一般環境(暫定)

 $0.5 \mu g/m^3$

・排ガス(暫定)

0.1mg/m³(平均、焼却)

水質の基準

·公共用水域

ND $(0.5\mu g/l)$

•排水

0.003 mg/l

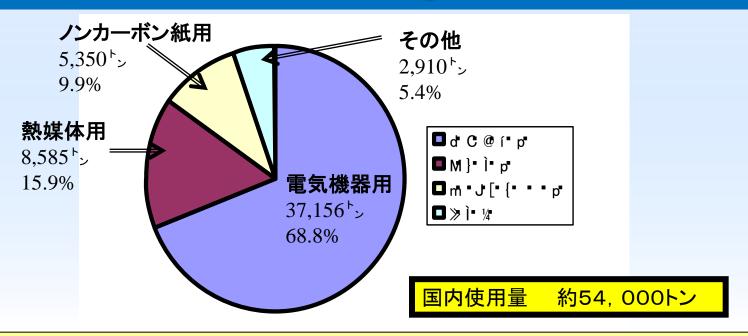
土壌の基準

検液中に検出されないこと

作業環境基準

(労働者が継続的に曝露しても健康上の影響が見られない濃度)

•作業環境基準 0.01mg/m3


※ダイオキシン類: 2.5pg-TEQ/m³(作業環境における管理すべき濃度)

PCBの用途①

用。途	製品例・使用場所
絶縁油 トランス用	工場・ビル・学校・病院・鉄道車両・船舶等の高低圧トランス、高低圧コンデ
コンデンサ用	ンサ、リアクトル、配電用柱上トランス、蛍光灯・水銀灯等の安定器、家電用
	コンデンサ(カラーテレビ、エアコン、電子レンジ)
熱媒体(加熱と冷却)	各種化学工業・食品工業・合成樹脂工業等の諸工場における加熱と冷却、
	船舶の燃料油予熱、集中暖房、パネルヒーター
潤滑油	高温用潤滑油、油圧オイル、真空ポンプ油、切削油、極圧添加剤
可塑剤 絶縁用	電線の被覆・絶縁テープ
難燃用	ポリエステル樹脂、ポリエチレン樹脂、ゴム等に混合
その他	接着剤、ニス・ワックス、アスファルトに混合
感圧複写紙	ノーカーボン紙(溶媒)、電子式複写紙
塗料・印刷インキ	難燃性塗料、耐蝕性塗料、耐薬品性塗料、耐水性塗料、印刷インキ
その他	紙等のコーティング、シーラント、陶器ガラス器の彩色、農薬の効力延長剤、
	石油添加剤

[※]それぞれの機器にPCBが含まれているかどうかは、銘板に載っている型式や製造年月日をもとに各メーカーに確認が必要。

PCBの用途②

- PCBは1972年(昭和47年)に、製造中止、回収の指示
- 1974年(昭和49年)に、
 - 労働安全衛生法 : <u>特定化学物質第1類物質</u>に指定
 - 化学物質の審査及び製造等の規制に関する法律:<u>第1種特定化学物質</u>に指定され、製造、輸入、新規使用が原則禁止されている。

PCB廃棄物の経緯①

PCB 製造開始·中止~PCB廃棄物特別措置法制定

1954年(昭和29年)	PCBの国内製造開始
1968年(昭和43年)	カネミ油症事件発生、PCBの毒性が社会問題化
1972年(昭和47年)	行政指導(通産省)により製造中止、回収等の指示

11,000台 が紛失 (平成10年厚 生省調査) 約30年間、民間事業者による処理施設立地が試みられるが、すべて失敗(39力所で施設立地を断念)

2001年 ストックホルム条約(PoPs条約)の締結 平成40年までのPCB廃棄物処理を求められている

2001(平成13年)

PCB廃棄物の適正な処理の推進に関する特別措置法の制定

環境事業団法の改正

PCB廃棄物の経緯②

2001年(H13)

PCB廃棄物の適正な処理の推進に関する特別措置法の制定

環境事業団法の改正

処理施設の整備に着手

2004年(H16)

日本環境安全事業株式会社(JESCO)の発足 (環境事業団から引継ぎ)

高圧トランス・コンデンサ等

2004年 (H16)	JESCO北九州事業所の操業開始 処理着手
2005年 (H17)	JESCO豊田事業所、東京事業所の操 業開始
2006年 (H18)	JESCO大阪事業所の操業開始
2008年 (H20)	JESCO北海道事業所の操業開始
	中中思答, 汪沈姗

安定器等∙汚染物

2009年
(H21)JESCO北九州事業所のプラズマ溶融
炉操業開始処理着手

微量PCB汚染廃電気機器等

2002年 (H14)	微量のPCBに汚染された絶縁油を含むものが存在することが判明
2003年	低濃度PCB汚染物対策検討会
~2005年	環境
2007年	中央環境審議会 微量PCB混入廃重電機器の 処理に関する専門委員会 無害化処理認定制度にPCB
~2009年 (H21)	無害化処理認定制度にPCB 処理を追加
2010年 (H22)	無害化処理認定制度に基づく大臣認 定(第1号) 処理着手

C