令和元年度環境省委託業務

令和元年度脱炭素社会を支えるプラスチック等

資源循環システム構築実証事業

京都プロセスで製造したアセチル化セルロースナノファイバー

強化バイオ PE の社会実装評価

成果報告書

令和2年3月

京都大学

豊田通商(株)

(株) デンソー

京都市産業技術研究所

東京大学

0

概要

本事業の目的は、自動車用エアコンケースにおいて現行のタルク強化 PP を京都 プロセスで製造したアセチル化 CNF 強化バイオ PE に代替することによる GHG 削減 効果の実証である。今年度は、京都プロセスによる CNF 強化バイオ PE の製造と性 能評価を小スケールおよびスケールアップした実用スケールで行い、現行タルク 強化 PP 材と性能比較して、そのエアコンケースへの適用の可能性を検討した。そ の結果、現行材と同等の機械的特性で、より高い耐熱特性(高荷重下での熱変形温 度)が得られるなど期待を上回る成果が得られた。また、マテリアルリサイクルが 可能な素材であることも明らかとなった。一方で、実大のエアコン部材の成形評 価からは CNF 強化バイオ PE 材の流動性が現行材より劣り、成形品の一部に膨れが 生じること、アセトアルデヒドを主とした VOC が現行材の 10 倍近く発生すること など、課題も明らかとなった。LCA 評価において、アセチル化 CNF 強化 PE 材は、 現行のタルク強化 PP 材に比べ CO₂ 排出量(GHG 排出量) が約半分まで低減できる こと、マテリアルリサイクルを行うと、CO2 排出量がさらに大きく低減できること が示されたことから、次年度は上記の課題を解決し、京都プロセスにより製造す る CNF 強化バイオ PE のエアコンケースへの使用が現行材に比べ GHG の削減に効果 があることを実証したい。

Abstract

The objective of this project is to reduce (GHG) greenhouse gas replacing talc-reinforced polypropylene (PP)which by composites, are currently used for a case of an automotive air conditioner, with acetylated cellulose nanofiber (CNF)-reinforced bio-based polyethylene (PE)composites produced through the Kyoto process. In this fiscal year, CNF-reinforced bio-based PE composites were manufactured through the Kyoto process on industrial а laboratory and an scale. and performance evaluated. Furthermore, their was the potential use of CNF-reinforced bio-based PE composites for a case of an automotive air conditioner was assessed by comparing their performance to that of talc-reinforced PP composites. In this study, some excellent results beyond all expectations were obtained: (1) the CNF-reinforced bio-based PE composites had mechanical properties comparable to talc-reinforced PP composites, and (2)**CNF**-reinforced PE the bio-based composites had better high (i.e., resistance to temperatures higher heat distortion temperature under high-load conditions) than talc-reinforced PP composites. Moreover, the CNF-reinforced bio-based PE was found to be recyclable. On the other hand, some challenges were identified: when a full-scale prototype of an automotive air conditioner was manufactured, (1) the CNF-reinforced bio-based PE composites had inferior flowability to the currently used talc-reinforced PP swollen, composites, which caused part of the product а to get (2)the **CNF**-reinforced PE and bio-based composites emitted about ten times more volatile organic compounds (VOC), which consist primarily of acetaldehyde, than talc-reinforced PP composites.

The results from life cvcle assessment (LCA) indicated that (1)use of the CNF-reinforced bio-based PE composites reduced CO₂ emission (GHG emission) by nearly half, compared to that of talc-reinforced PP composites, and (2) recycled CNF-reinforced bio-based PE reduced CO_2 emission to an even greater degree. In the next fiscal year, we will solve the challenges mentioned above and demonstrate the feasibility of GHG reduction by replacing the currently used talc-reinforced PP composites with CNF-reinforced bio-based PE composites produced through the Kyoto process.

目次

概要	1
Abstract	2
はじめに	5
第1章 セルロースナノファイバーと CNF 強化樹脂材料	7
1.1 セルロースナノファイバー	7
1.2 セルロースナノファイバーの製造	8
1.3 セルロースナノファイバーの用途	10
1.4 セルロースナノファイバーによる樹脂補強	11
1.5 京都プロセス	12
第2章 バイオ PE	15
2.1 バイオ PE の製造プロセス	15
2.2 バイオ PE の誕生	15
2.3 バイオ PE のコストと市場	17
2.4 バイオ PE の環境性評価	
2.5 バイオ PE の生産拡大と低コスト化、環境性能の向上のポテンシャル	23
第3章 自動車用樹脂材料および自動車用ポリプロピレンの特徴と用途	28
3.1 はじめに	
3.2 自動車に使用される樹脂	28
3.3 自動車部材としてのバイオ由来樹脂の利用	32
3.4 CNF 複合樹脂	33
第4章 CNF強化バイオポリエチレン (PE)の試作	
4.1 調査の目的	37
4.2 強化バイオ PE の試作	37
4.3 CNF 強化バイオ PE の評価項目および条件	38
4.4 アセチル度の異なる CNF により強化したバイオ PE の性能評価	39
4.5 CNF とタルクの共添加により強化したバイオ PE の性能評価	44
4.6 本章のまとめ	51
第5章 CNF強化バイオ PE のスケールアップ試作	52
5.1 調査の目的	
5.2 CNF 強化バイオ PE のスケールアップ試作	52
5.3 スケールアップ試作品の評価	53
5.4 本章のまとめ	58
第6章 実装検討:金型を用いたエアコンケース試作と評価	59

6.1 調査の目的	59
6.2 材料評価項目および製品要求特性	59
6.3 材料の評価結果	60
6.4 バイオ PE-CNF10 のエアコンケースの成形成立性確認	66
6.5 本章のまとめ	73
第7章 CNF 強化バイオ PE のライフサイクルアセスメント(LCA)	74
7.1 目的と調査範囲の設定	74
7.2 インベントリ分析	77
7.3 結果および解釈	80
7.4 実機における消費電力測定	82
第8章 令和元年度 CNF 強化バイオ PE 実証事業のまとめ	84
おわりに	85

はじめに

現在、我が国における自動車の生産台数は1000万台/年で推移している。そこに おいて最も多用されているプラスチックがポリプロピレン (PP) である。バンパー

やドアトリム、インパネ、エアコンケースなどに年間70万トンが使用されている。LCA評価に基づくPP のGHGは5kg/kgであり、年間350万トンの温暖化ガ スが我が国において自動車用途で増え続けてい る。この点において、非生分解性のバイオプラス チックとして製造、販売されているバイオPEのGHG は1.26kg/kgと低く、自動車用PPをバイオPEに代替 することで温暖化ガスを毎年262万トン削減する ことが出来る。しかし、バイオPEはPPに比べ耐熱性 に劣り(PPの融点:165°Cに対し高密度PEは129°C)、 また、弾性率が低く(一般にPPの半分)、PPをその ままバイオPEに置き換えることは出来ない。これ に対し、矢野らは石油由来PEにおいて、アセチル 化CNFによる補強で弾性率および耐熱性を大きく 向上させることに成功している。

図1 木材とCNF

さらに、パルプを機械的に解繊してセルロース ビー ホ府と 0m ナノファイバー(図1)とし、それを化学修飾して樹脂を複合化する従来法に対し、 化学変性した乾燥パルプをプラスチックと溶融混練して、パルプのナノ解繊とセ ルロースナノファイバーの樹脂中への均一分散を同時に行えるパルプ直接混練 法(京都プロセス)を開発し(図2)、CNF強化プラスチック製造プロセスを大幅に 簡略化、省エネルギー化することにも成功している。

本実証事業の目的は、自動車用PPのバイオプラスチック代替を目指し、まずは 衝撃強度があまり求められない自動車用エアコンケースにおいて現行のPPを京都 プロセスで製造したアセチル化CNF強化バイオPEに代替することによるGHG削減効 果の実証である。現行のエアコン用タルク強化PPとアセチル化CNF強化バイオPEを 樹脂の耐熱性や強度特性、長期耐久性、実大樹脂成形品の加工性、寸法安定性の観 点から比較検討する。

事業の実施にあたっては(1) 現行タルク強化PP品をCNF強化 バイオPE品に置き換えバイオ 度を上げることによるCO₂排出 削減と(2)CNF補強で強度が向 上したバイオPEを用いること による現行エアコンケースの 薄肉化、それによる樹脂使用量 の削減が期待できる。その一方

図2 京都プロセスの概要

で、(3) CNF補強プロセスの追加によるCO₂排出増大がある。このことから、樹脂品 の性能比較だけでなく、原料木材からエアコンケース製造、廃棄までのCO₂排出量 を京都プロセスを軸としたスケールアップやリサイクルも含めて定量的に評価し、 現行品と比較する。その際、実大エアコン部品を成形し、その特性評価(成形性、 反り等による収率、射出成形サイクル、発泡性能、等)を行い実証の精度をあげる。 最終的には、省CO₂効果を最大限に得られる製造・流通経路やコストおよび流通量 を明らかにし、アセチル化CNF強化バイオPEについて脱炭素社会に向けたビジネス 戦略(プラン)を構築する。

なお、豊田通商はBraskem社が世界で唯一商業生産するバイオPEのアジア/オセ アニアにおける販売提携パートナーであり、その事業企画・技術検証の開発段階 から深く関わってきた。また、デンソーは世界最大の自動車用エアコン製造メー カーである。本事業では、これらの企業とセルロースナノファイバー強化樹脂材 料の開発、社会実装において世界のトップを走る京都大学、京都市産業技術研究 所が、ランニングシューズで商用化実績のある京都プロセスを軸に、東京大学が 行う高精度のLCA評価に基づき、変性CNF強化バイオPEのエアコンケースへの事業 化に向けて共同で実証試験を行うことで、代替素材普及に対する確度を高め、GHG 削減に大きく貢献することを目指している。

第1章 セルロースナノファイバーと CNF 強化樹脂材料

1.1 セルロースナノファイバー

セルロースナノファイバーは、セルロース分子鎖が伸びきり鎖の状態で結晶を 形成している幅4-20nmのナノ繊維である。学術的にはセルロースミクロフィブリ ルあるいはセルロースミクロフィブリル東と呼ばれ、鋼鉄の1/5の軽さで、その7-8倍の強度を有する。線熱膨張係数はガラスの1/50。これは石英ガラスに匹敵する。

木材は、その半分がセルロースナノファイバーである。木材や竹の細胞はセル ロースナノファイバーが鉄筋となりリグニンがコンクリートの役割を果たしてい る(図1-1)。そのコンクリートを取り除いて、細胞一つ一つに解したものが、コ ピー紙などの原料となるパルプである。我が国では、年間2000万トン近い紙用パ ルプが流通しているが、それらはすべてセルロースナノファイバーの集合体であ る。

1950年代、電子顕微鏡の開発によってナノの世界を見ることができるようにな ると、植物細胞壁が均一な結晶性のナノ繊維で出来ていることが知られるように なった。1962年には、そのナノ繊維の結晶弾性率は鋼鉄の2/3の140 GPaであるこ とを京大の桜田グループがX線解析から報告している。さらに、1983年にカナダ、 紙パルプ研究所のPageはパルプを一本引っ張って1.7 GPaの強度(自動車用鋼板の 5倍)があることを明らかにしている。最も高い強度が得られたパルプでは、セル ロースナノファイバーの約7割が配向していることから、セルロースナノファイ バーの強度は、1.7GPaを0.7で除した値、すなわち2.5 GPa以上はあると推測でき る。しかし、その強度特性は材料科学の分野においてはあまり意識されてこなかっ た。

この高強度、高弾性のセルロースナノファイバーを木材などの木質バイオマス から抽出しナノ繊維として利用する研究が盛んになったのはナノテクノロジーが

図 1-1 木材の階層構造

言われだした2000年に入ってからである。したがって、ナノ素材としての研究の 歴史はまだ20年ほどといってよい。しかし、この20年の動きは目覚ましい。軽量、 高強度、低熱膨張といった優れた特性を示すセルロースナノファイバーは、次世 代の大型産業資材あるいはグリーンナノ材料として注目され、2004年以降、論文 発表や特許出願はうなぎ上りに増えている。中心となっているのは、森林資源が 豊かで製紙産業が盛んな北欧、北米、そして日本である。関わる研究機関の数は中 国が最も多い。2011年からは、フィンランド、カナダ、米国の主導で国際標準化の 議論も始まり、まさに、国家レベルでの競争の様相を呈している。

1.2 セルロースナノファイバーの製造

図1-2にパルプのミクロからナ ノまでの構造を示す。木材パルプ など植物系繊維材料からのセル ロースナノファイバー製造につ いて、様々な方法が開発されてい る。数%濃度のパルプスラリーに ついて行う低濃度での解繊技術 としては、高圧ホモジナイザー 法(図1-3)、水中カウンターコリ ジョン法(ACC)法、マイクロフ リュイダイザー法、グラインダー 磨砕法、凍結粉砕法、超音波解繊 法などがある。低濃度での解繊は 均一なナノファイバーを得やす

図 1-2 パルプの構造

いが、解繊効率やその後の脱水プロセスに起因してコスト高である。これに対し 固形分が数十%程度のパルプ・水混合物を出発点とした解繊技術として、二軸混練 機などを用いた強せん断混練法がある。ポリマー存在下での混練によるナノファ イバー化は、ポリマー中への均一フィラー分散を同時に行える可能性があり、複 合材料へのナノファイバー利用において有利である。

セルロースナノファイバーは植物細胞壁の基本物質であり、全ての植物資源が 原料となり得る。これまで木材パルプ以外に、竹、稲ワラ、コットン、バガス(サ トウキビの絞りカス)、ジャガイモやキャッサバのデンプン絞りカス、砂糖ダイコ ン(シュガービート)の絞りカス、あるいはミカンの搾汁カスや焼酎カスといった 農産廃棄物や産業廃棄物についても検討がなされ、いずれの原料からもグライン ダー処理により幅20-50nm程度の均一ナノファイバーが得られている(図1-4)。

セルロースナノファイバーには、酢酸菌などのバクテリアが産出するものもあ る。ナタデココといった方が馴染みがあるかもしれない。身近なデザート食品で ある。植物原料は細胞壁からマトリックス成分を取り除き、機械的解繊によりナ ノファイバーを取り出す必要があるが、バクテリアセルロースではバクテリアが

図1-3 リファイナー処理と高圧ホモジナイザー処理を組み合わせた製紙用ク ラフトパルプの解繊

培養液中でナノファイバーを紡ぎながら移動し、かつ分裂するため、幅50-100nmの セルロースナノファイバーが凝集することなく溶液中に均一に分散したネット ワーク構造体が容易に得られる。

図1-4 様々な原料からグラインダーで製造したセルロースナノファイバー スケールバー:250 nm

1.3 セルロースナノファイバーの用途

セルロースナノファイバー、セルロースナノクリスタル(パルプやセルロース ナノファイバーを高濃度の硫酸で処理して得るセルロース純度の高い結晶性素材) の高比表面積、可食性、軽量・高強度、低熱膨張性、生分解性、生体適合性などの 特徴を活かし様々な用途開発が進められている(図1-5)。

図 1-5 セルロースナノファイバー材料の拡がり

可視光波長(400-800nm)に比べ十分に細いセルロースナノファイバーは可視光 の散乱を生じないため、アクリル樹脂、エポキシ樹脂などの透明樹脂を、その透明 性を大きく損なわずに補強できる。得られた複合材料は、高強度で低熱膨張、しか も自由に曲げることができることから(図1-6)、有機ELディスプレーや有機薄膜 太陽電池の透明基板として研究開発が進んでいる。

さらに、ナノファイバー間の空隙をナノレベルにまで小さく制御することで、 セルロースナノファイバーだけで透明な低熱膨張材料(CTE:8.5ppm/K)が得られる。 この材料は、紙の様に折りたたむこともできるが、その表面はプラスチックのよ うに平滑である。大阪大学の能木らは、これらの特徴を活かして、銀ナノワイヤを 塗布した透明導電膜や金属ナノ粒子インクを用いた高導電性配線といった電極材 料の開発や、フレキシブルアンテナ、ペーパー太陽電池・トランジスタアレイと いった有機半導体デバイスの試作を行っている。また、セルロースの絶縁性を利 用した電気抵抗変化記憶メモリ(ReRAM・メモリスタ)やフレキシブル高誘電率材 料の開発にも成功している。

図 1-6 セルロースナノファイバー補強透明材料(左)とそれを基板に用いた 有機 EL 発光素子(右)

TEMPO触媒を用いた酸化処理により幅10nm以下にまで解繊したセルロースナノファイバーのフィルムはそれだけで高い透明性を示す。適度な透湿性を保ちながらPETやPVCの1/100以下の酸素ガス透過性を示すことから、包装容器のコーティング素材として検討されている。

紙の表面平滑化や強度向上、食品・化粧品用添加剤、人工血管や人工腱といった 医療用途、触媒等の担持体、フィルター素材、高断熱エアロゲル、二次電池セパ レータ、スーパーキャパシタへの応用についても研究が進んでいる。細胞壁中の リグニンとセルロースナノファイバーの相互作用や細胞構造を上手く利用するこ とで、より高機能で安価な材料の開発も可能であると思われる。

1.4 セルロースナノファイバーによる樹脂補強

上述の様に、セルロースナノファイバーの利用については様々な検討がなされているが、その中でも、比表面積が大きく、軽量で高強度のセルロースナノファイバー(CNF)には、ポリプロピレンやポリエチレンあるいはナイロンといった自動車用樹脂の補強用フィラーとしても期待が最も大きい。

京都大学では京都市産技研と連携して疎水性の熱可塑性樹脂をセルロースナノ ファイバーで効率的に補強する技術の開発を進めてきた。

NED0 グリーン・サステイナブルケミカルプロセス基盤技術開発(2010-2012 年度)において、セルロースナノファイバー表面に 20 種類の官能基を選択的に導入 し、変性 CNF による PP、HDPE の補強効果を官能基の構造との関係で系統的に評価 した。図 1-7 には HDPE における結果を示す。CNF 表面に導入するアルキル鎖が長 くなると分散性と補強性は向上するが、一方で CNF 表面における HDPE の可塑化が 進む。これに対して、短くても剛直なピバロイル基の導入が高い補強性を示すこ とがわかる。

これらの結果を踏まえ、10%の CNF 添加で HDPE の弾性率を 4.5 倍、引張強度を 2.4 倍にまで向上できる化学変性(ASA 変性)を見出した(図 1-8)。自動車部材 において重要な線熱膨張係数も 248ppm/K から 47ppm/K まで大きく低下できた。

その中で、HDPEで は射出成形後に 樹脂中に均一分 散した変性 CNF の 表面からポリ マーの結晶ラメ ラが成長し、CNF をシシとしたシ シケバブ構造と ポリマーをシシ としたシシケバ ブ構造が形成さ れることを見出 した (図 1-9)。 これは、表面改質 が容易なナノ フィラーとしての CNF の特性を

ンイノーとしての CNF の特性を 活かすことでポリマーの結晶構 造を制御し、より高機能の材料 に変換できることを示すもので ある。同様のシシケバブ構造は 本プロジェクトで開発した高分 子分散剤を CNF 強化樹脂材料に 添加するだけでも得られてい る。

1.5 京都プロセス

一般に、開発品の実用化は製品のコスト/パフォーマンスに大きく依存している。高性能ナノファイバーの集合体であるパルプの価格は50-60円/kgの炭素繊維に対して圧倒的なコスト競繊維に対して圧倒的なコスト競争力を有している。しかしながら、そのパルプを機械的、化学的方法によりナノ解繊すると解繊すると解繊に要する手間や電気代などから製造コストは3000円-1 万円/kgにまで跳ね上がり、その用途が限定されてしまう。経済

図 1-9 CNF 強化 PE 材料で観察されるシ シケバブ構造 (スケールバー: 100nm)

産業省と農水省が共同で策定したロードマップ(2014年3月公表)には、技術開 発を進め、生産規模を拡大し、製造コストを 2020年には 1000円/kg に、さらに 2030年には 400円/kg にまで下げることが目標として掲げられている。

そこで、NED0 リグノ CNF 非可食性植物資源プロジェクト(2013-2019 年度)に おいてパルプの優れたコスト競争力を最終製品にまで保つことを目的に、パルプ を解繊しナノファイバーにしてから樹脂と混ぜるのではなく、セルロースナノ ファイバーの集合体であるパルプを樹脂と直接練ってパルプのナノ解繊とナノ ファイバーの樹脂中への均一分散を行うプロセスを開発した。パルプの状態です べてのセルロースナノファイバー表面を疎水化処理した後、ポリプロピレンやナ イロン 6 といった熱可塑性樹脂と混練すると、セルロースナノファイバーが 10%複 合された状態で樹脂の弾性率や強度は 2-3 倍に向上する。このパルプ直接混練法 を核としたセルロースナノファイバー強化樹脂材料製造法は開発を行った京都大 学および京都市産業技術研究所にちなみ「京都プロセス」と名付け、原料から最終 部品までを俯瞰したリグノ CNF 材料の省エネ型の製造プロセスの構築を進めてい る(図 1-10)。

京都プロセスは大きくは変性パルプの製造と樹脂コンパウンディングに分けら れ、それらが双方向的に連携することでプロセス全体の向上が図られている。変 性パルプには溶融した熱可塑性樹脂との混練時に熱劣化せず(CNFが千切れない)、 かつ、均一にナノレベルまで解れる特性が求められ、その開発には木材微細構造 の樹種依存性や木材構成成分の耐熱性、化学反応性といった木質科学に関する専 門性が不可欠である。

図 1-10 パルプ直接混練法:京都プロセス

このプロセスに基づく、年間1トンのリグノ CNF 強化樹脂を製造するテストプ ラント(将来的には5トン/年にまで拡張可能)を京都大学宇治キャンパス内に建 設し、複数の企業や公的研究機関に向けてテストプラントを用いて製造したサン プルの提供を行っている。これにより、植物由来の高性能ナノ繊維で強化した樹 脂材料の用途開発が大きく進むことが期待される。

<参考文献>

- (1) 矢野浩之(2010) セルロースナノファイバーの製造と利用. 日本エネルギー学 会誌 89(12): 1134-1140
- (2) 矢野浩之(2015) 未来の自動車は植物でつくる. 自動車技術 69(4): 71-76
- (3) 矢野浩之(2015) セルロースナノファイバー材料の社会実装に向けて. 化学経済 62(5):1-5

第2章 バイオ PE

2.1 バイオ PE の製造プロセス

バイオポリエチレン(バイオPE)の製造プロセスは(図2-1)、ブラジルのサトウ キビから砂糖の生産時に発生する廃糖蜜を原料に酵母発酵・蒸留精製を経てエタ ノールを製造し、化学触媒によりエタノールを分子内脱水・精製し高純度エチレ ンモノマーに変換、触媒でエチレンモノマーをつなぎ合わせて(重合)ポリエチレ ンポリマーを合成するものである。バイオPEには大きく分けて高密度PE(HDPE)、直 鎖状低密度PE(LLDPE)、低密度PE(LDPE)の3つの種類があり、重合方法やコモノ マーと言われる副材料により用途に応じた多くのグレードを作ることができる。

図2-1 バイオPEの製造プロセス

2.2 バイオ PE の誕生

バイオPEの誕生は2004年に遡り、当時は石油資源の高騰や枯渇、地球温暖化問題がクローズアップされていた時代である。トヨタグループの商社である豊田通 商㈱は、化石資源を代替し植物からプラスチックを製造することにより石油資源 問題や温暖化問題の解決が図れると考え、南米最大の化学企業のブラスケン 社(Braskem S.A.)に提案し共同開発を始めた。まず初めに取り組んだことは技術 検証であり、小規模実証試験装置(図2-2)をブラスケン社内に設置し2007年にサ トウキビ由来のエタノールを原料とした100%植物由来のカーボンをもつポリエチ レンならびにポリプロピレンの合成に成功した。ポリプロピレンはエチレンをプ ロピレンに変換するエチレンの二量化とメタセシス技術を採用した。

原料エタノール

精製·重合

技術検証の完了後には、環境性を評価する上で重要な CO₂ 削減効果とサトウキビ 栽培の持続可能性調査や、大規模生産技術、製造コスト、市場性の評価を実施し、 2008 年にバイオ PE の事業化が決定した。そして 2011 年 1 月からブラスケン社の

図 2-2 技術検証(2006年)

分子内脱水

トリウンフォ工場で世界初の商業生産(図 2-3)が始まった。生産能力は年産 20 万トンで用途に合わせた様々なグレード(表 2-1)を生産し、日本を始め、ヨーロッ パやアメリカなど様々な地域で利用されている。

図 2-3 ブラスケン社バイオ PE 商業生産プラント

表 2	-1	バイ	才	PE	グ	レー	ド表
-----	----	----	---	----	---	----	----

種類		グレード	密度 (g/cm ³)	MFR (g/10min)							
				190°C 2.16kg	190°C 5.0kg	190°C 21.6kg	梱包	備考	最少ハイ オ度数(%)		
	中空成形		SGF4950	0.956	0.34		28	700kg 25kg		96%	
射出成形 HDPE モノフィラメント		SHA7260	0.955	20			25kg		94%		
	射出成形		SHC7260	0.959	7.2			25kg		94%	
			SGE7252	0.953	2.0			25kg		96%	
	モノフィラメント		SHE150	0.948	1.0			25kg		94%	
	フィ	ルム	SGM9450F	0.952		0.33	<mark>9.3</mark>	700kg 25kg		96%	
LLDPE	フィルム		SLL118	0.916	1.0			25kg		87%	
		フィルム	04	SLL118/21	0.918	1.0			25kg	AB剤、スリップ剤	87%
		C4/C6	SLH118	0.916	1.0			25kg		84%	

種類		グレード	密度 (kg/m゚)	MFR 190°C/2.16kg 添加		梱包	用途例	最少バイ オ度数(%)
吉にナーレター・ゴ		SBC818	918	8.3	兼	700kg 25kg	押出ラミ、射出成型品、MB	95%
LDPE	商圧オートラレーフ	SPB608	915	30.0	兼	25kg	射出成型品	95%
	高圧チューブラー	SBF0323HC	923	0.32	兼	25kg	フィルム(主に重袋用)	<mark>95%</mark>
		STN7006	924	0.6	兼	25kg	フィルム(主に食品用)	95%
		SEB853	923	2.7	兼	25kg	プロ─フィルム	<mark>95%</mark>
		SPB681	922	3.8	兼	25kg	プローフィルム、キャストフィルム	95%

2.3 バイオ PE のコストと市場

バイオ PE は従来の化石資源由来 PE と同じ物性のため、品質問題による導入の 障壁は低いが、コストは 30~50%程度高くなることから(石油ナフサを原料とする 国産 PE 対比)、環境貢献に積極的な企業や自治体による導入が先行してきた。

射出成形によるペットボトルキャップやレジかご、ブロー成形によるボトルや チューブ、フィルム成形によるごみ袋やレジ袋、詰め替えシャンプー容器など幅 広く使われており(図 2-4)、日本では図 2-5の識別マークが用いられている。

図 2-5 バイオマスプラスチックの識別マーク

今後の市場は、令和元年 5 月に政府が策定した「プラスチック資源循環戦略」 において基本原則に Renewable が加わり(3R+Renewable)、2030年までに年間約 200万トンのバイオマスプラスチックを導入する目標が示されたことや、企業の環 境対応が活発化していることで、国内需要は急速に拡大すると見込まれている。 また、パリ協定の実施にともなう世界的な CO₂削減の取り組みとして、欧州や米国 などの需要も大きく伸びることが予測され、ブラスケン社では生産能力を増強す る検討を始めている。

2.4 バイオ PE の環境性評価

2.4.1 原料エタノール製造の環境性

ブラジルのサトウキビ栽培の歴史は長く、現在は約800万haの農地から年間に約6億トンものサトウキビが栽培される。ブラジル農地に占めるサトウキビ栽培地の比率は15%程度である。図2-6に示すように、中南部が主産地で全体の約90%、また北東部が約10%であり、ともにアマゾン熱帯雨林とは2,000~2,500km離れた地域であり、よく誤解されるアマゾン熱帯雨林の破壊とは関係ない。

図 2-6 サトウキビの栽培地域

サトウキビの収穫は、かつては手刈りで行われ収穫作業の邪魔となる葉や 梢頭部を収穫前に焼却し煙害の問題を引き起こしていたが、現在は機械収 穫化が進み煙害もなくなった(図 2-7)。さらに機械による収穫は IOT 技術 が進化し、GPS を利用してほぼ自動で動くようになり、監視のためにオペ レーターが搭乗しているが、今後は無人運転に向かうと思われる。

図 2-7 サトウキビの収穫

ブラジルの砂糖・エタノール工場の生産規模は大きく、1工場で年間に 200~ 500万トン程度の砂糖キビを処理している。日本では鹿児島県・沖縄県でサトウキ ビが栽培されているが、その収穫量は全体で年間 150万トンの規模でありブラジ ルの1工場分に満たない。ブラジル全体では 300以上の工場があり、砂糖を約4,000 万トン、エタノールを約2,600万キロリットル生産している。エタノールは主に ブラジル内の自動車燃料のガソリンの代替として利用され、エタノールとガソリ ンを自由な比率で給油できる FFV 車 (Flexible fuel vehicle)の需要が主流であ り、トヨタ自動車は FFV ハイブリッド車を市場に投入している。

図 2-8 は、砂糖キビ栽培から、砂糖・エタノールができるまでの流れを示した ものである。各工程で様々なバイオマス残渣が大量に発生し、砂糖とエタノール の生産は、茎部の搾りかす(バガス)をエネルギー源として全ての電力と熱を賄う ことができるので CO₂の負荷は極少である。また、効率の高いバイオマスボイラー を持つ工場では大量の余剰電力をグリッドを通して販売しており、ブラジル電力 の CO₂負荷を下げている。

図 2-8 サトウキビ栽培から砂糖・エタノール製造までの流れ

また廃棄物処理の観点では、フィルターケーキは、鶏糞などと混合し好気性発酵し肥料化され、エタノール蒸留廃液(図 2-9)は窒素・リン酸・カリを多く含み、

30 年以上前は河川への放流で環境汚染が問題と なっていたが、現在ではサトウキビ畑の灌漑水・肥 料として散布されることで循環している。さらに、 収穫時に燃やされなくなった葉や梢頭部は畑に残さ れているが、今後は、バイオエネルギーや材料とし ての利用が期待されている。

図 2-9 蒸留廃液の散布

2.4.2 LCA 評価

2011年3月に東京大学、豊田通商、Espaço ECO、Braskem でサトウキビ栽培か らバイオ PE 製造、日本への輸入、日本での廃棄処分までを含めた LCA 評価を行 い、石油由来の PE (Fossil-PE) との比較を行った。図 2-10 に評価した PE のラ イフサイクルシステムを示す。

図 2-10 ライフサイクルシステム

PE には、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)などがある が、ここでは HDPE を想定している。Bio-PE、Fossil-PE ともに資源採掘から樹脂 製造、輸送、単純焼却による廃棄処分までを含むが、成形製品の製造と使用、排出 までのプロセスは、用途が多岐にわたることと両 PE で相違がないことから対象外 とした。機能単位は PE 1 kg の日本での使用とした。

日本国内とヨーロッパにおける PEの平均的な製造原単位を用いたシナリオをシ ナリオ1および2として評価する。そして、サトウキビエタノール由来の PE を用 いたシナリオをシナリオ3として評価し、Fossil-PE と Bio-PE を比較する。Fossil-PE の GHG 排出原単位は、日本およびヨーロッパの業界が報告している平均値^{1,2)}を 参照した。

原料のバイオエタノールは、サトウキビを原料としてブラジル中南部サンパウ ロ州周辺の工場で製造されている。ブラジルにおけるサトウキビの栽培、収穫か らエタノール製造までのインベントリーデータは文献³⁾によった。栽培、収穫のイ ンベントリーについては、土地改変の有無、手刈りもしくは機械刈りによる収穫 か、収穫時のトラッシュ(葉や穂先)を焼却するかどうか(手刈り収穫の場合は必 ず焼却し、機械収穫の場合は両方が存在する)などによって変化する^{3,4)}。本研究 では 2005 年のブラジルの平均的なデータ³⁾を用いた。

エタノール工場から PE 工場まで、PE 工場からブラジルの出荷港であるリオグラ ンデ港まで、リオグランデ港から日本の輸入港の横浜までの輸送方法と輸送距離 は、実際のデータを用いた。エタノールからエチレンの製造プロセスは、実際の工 場の設計データに基づいて決定した。なお、エチレン製造の原料となるエタノー ルは、含水エタノールを使用しているので、燃料使用時のように無水エタノール にする必要がない。エチレン製造後、PE への重合プロセスについては、文献値⁵⁾ を用いた。サトウキビの絞りかすであるバガスの利用も結果に影響する。バガス は燃料として利用可能であり、通常エタノールサイトではこれにより発電を行っ ている。エタノール生産に必要なエネルギーをまかなう以上にバガスを得ること ができ、この余剰バガスは利用される場合とされない場合がある。本研究におけ る評価では、エタノール生産にはバガスを燃料として使用し、余剰バガスおよび 余剰電力も一部有効利用されるとした。PE の使用後の処分は日本における単純焼 却を想定しており、バガスを含め焼却時に排出される CO₂は、サトウキビ栽培時の 吸収量と等しいと仮定した。バックグラウンドデータのうち、ブラジルにおける トラックや燃料、電力はブラジルの文献データ^{3,6)}を用いた。なおブラジルの電力 は水力発電が中心であり、温室効果ガス(GHG)排出原単位は 0.106 kg-CO₂e/kWh と 小さいことが特徴である⁶⁾。そのほかは LCA 日本フォーラムデータベース¹⁾を参照 した。

図 2-11 に GHG 排出量に関するシナリオ評価の結果を示す。シナリオ1が日本、 2がヨーロッパの Fossil-PE の平均値である、シナリオ3が Bio-PE の評価結果で ある。シナリオ1との比較においてバイオ PE は CO₂を 70%、シナリオ2 との比較 において 73%削減できる結果となった。

サトウキビ栽培におけ る CO₂ 吸収により PE 焼却 時の CO₂ 排出を打ち消さ れることが、総 GHG 排出 量の削減に大きく寄与し ていることがわかる。輸 送の影響のうち、ブラジ ルから日本への輸送分 は、無視できない寄与が あるが、PE 製造の寄与に 比べると小さいことがわ かる。ブラジル内の輸送 の寄与はほとんど無い。 余剰バガスおよび余剰電 力を有効利用する効果 は、発電の GHG 排出原単 位が小さいブラジルで あっても大きな寄与があ ることがわかった。

2.4.3 バイオマス度測定

バイオ PE に含まれる炭素の由来は、バイオベース濃度試験規格 ASTM D6866 で 判別することができる。化石由来の炭素は放射性炭素(C14)を含まないので、バイ オマス由来炭素との区別が可能であり、対象物に含まれる放射性炭素(C14)濃度を 測定することによってバイオマス由来炭素の比率が算出可能である。

図 2-12 は、2010 年 11 月に実施した米ベータ・アナリティック社によるバイオ PE に含まれるカーボンの検査結果である。このバイオ PE では 96%のカーボンが植 物由来であると判定された。残りの 4%は石油由来のカーボンであるが、バイオ PE 製造の副原料となるコモノマー分のカーボンと思われる。本測定法の確からしさ を確認するために、故意に石油 PE とバイオ PE を任意の比率で混合したサンプル を数種類作成し測定を依頼したが、その結果の精度は高く信頼できる測定法であ ると確信することができた。

図 2-12 ベータ・アナリティック社(米)によるバイオ PE のカーボンの検査結果

2.5 バイオ PE の生産拡大と低コスト化、環境性能の向上のポテンシャル

地球温暖化問題の深刻化により、バイオマスプラスチックのニーズが世界的に 伸びてゆくと考えられ、生産拡大ポテンシャルを、原料となるサトウキビの栽培 面積拡大余力と収量向上技術の側面から評価した。

2.5.1 ブラジルの砂糖キビ栽培エリアの拡大余力

現在のブラジルの土地利用(図 2-13)におけるサトウキビ栽培の比率は耕作可 能地の 2.4%と小さく、現在のバイオ PE の生産能力 20 万トン/年に必要な土地の 比率では 0.02%に過ぎない。

図 2-13 ブラジルの土地利用

ブラジルにおける砂糖キビ栽培エリアの拡大余力(図 2-14)は、ブラジルの政 府や産業界などで検討され、ブラジルの中南部において現在の約 6 倍にあたる 6 千万へクタール以上と見積られた。これは、主に牧草地からの転換でアマゾン地 域やパンタナール湿地などの保全価値の高い地域を除外している。また、北東部 は、政府が経済振興のために乾燥地域の灌漑整備を進めており農業の拡大が期待 される。

図 2-14 ブラジルの土地利用

2.5.2 高収量作物

近年のゲノム解析・育種技術の進化により、現在のサトウキビの 2~3 倍の収量 が期待できるエネルギーケインやソルガムが開発され(図 2-15)、社会実装が近く なってきた。

図 2-15 高収量作物

エネルギーケインはブラジルの企業や研究機関により開発され、様々なサトウ キビの遺伝子を解析し、糖の生産性や成長力、病気や害虫への耐性などを持つ種 を特定し、交配による品種開発をしている(遺伝子組み換えではない)。現在では 従来のサトウキビの2~3倍の収量(植物全体重量)となる品種が開発されている。 また、サトウキビは株出し方法により栽培され収量は毎年減少するため5年程度 の周期で植替えるが、エネルギーケインは毎年収量が増えるものが確認されてい る。既に一部の地域では商業栽培が始まっており、将来的に増えてゆくと考えら れる。

一方で、高収量ソルガムは、沖縄のベンチャー企業であるアースノート社と東 京大学、名古屋大学などの多くの大学との研究により多くの成果を出している。 ソルガムと稲の遺伝子は近く、日本で蓄積された膨大な稲の遺伝子情報が使える ことが強みになるとのことである。ソルガムは穀物を生産する種が多いが、サト ウキビの代替として糖分を茎にたくさん蓄え、さらに砂糖となる成分(結晶化す る糖分)であるスクロース成分の多い種が開発された。日本国内のみではなく、ア ジア、オーストラリア、中南米など多くの地域でテスト栽培されており、ブラジル においても、サトウキビ並みの糖分比率と、サトウキビの2~3倍の収量となる品 種がいくつか確認されている。また、サトウキビの収穫は1年に一回であるが、 ソルガムは4か月で収穫ができるため、ブラジルなど温暖な地域では、残りの8か 月間を活用し、ソルガムの二期作や大豆などの栽培のローテーションも考えられ、 食料増産とエネルギー増産の両立の可能性もあり、今後の実用化が望まれる。

2.5.3 エタノール増産性

これまでに述べた栽培面積の拡大と高収量作物によるエタノールの増産性を図 2-16 にまとめた。左上の象限は現状の砂糖・エタノール産業、右の象限は栽培エ リアの拡大、下の象限は高収量作物への転換であり、エタノールは5億 KL(現在 の19倍)もの増産ができる計算となり、エタノールを原料とするバイオ PE の増 産ポテンシャルは高いことがわかった(砂糖は需要の上限から1億トンに制限)。 また、バイオメタンは、図2-8の葉・梢頭葉や蒸留廃液などの未利用バイオマス から生産するもので、最大値は年間3.1億トンものポテンシャルを持ち、これは 日本が輸入する全化石エネルギーの熱量に相当する量である。

		現状 栽培エリア 1千万 ha	6倍	栽培エリア 拡大 6千万ha
現 状	砂 糖 +	4,200万トン	\rightarrow	1億トンに制限
サト	エタノール+	2,640万KL	\rightarrow	2億5千万KL
ウセ	外販電力+	487億kWh	\rightarrow	2,480億kWh
Ĕ	バイオメタン	790万トン	\rightarrow	5,400万トン
高	砂 糖 +	7,500万トン	\rightarrow	1億トンに制限
量	エタノール+	4,680万KL	\rightarrow	5億KL
物	外販電力+	660億kWh	\rightarrow	3,000億kWh
換	バイオメタン	3,440万トン	\rightarrow	(3.1億トン)

図 2-16 エタノール生産拡大余力推算

2.5.4 バイオ PE 製造原料と技術の多様化

現在のバイオPEはサトウキビの糖質を原料とするエタノールから製造されているが、将来的には、上記で述べた未利用バイオマスを活用して製造することが可能となると考えられる(図 2-17)。

技術的には嫌気性発酵で葉や蒸留廃液などをバイオガス(メタン+CO₂)に変換 し、メタン+CO₂→メタノール→オレフィンの経路で製造する方法(商業化技術) や直接酸化法でエチレンを生産する方法がある(開発途上技術)。

図 2-17 バイオ PE 製造原料と生産技術の多様化

2.5.5 ネガティブエミッションのバイオマスプラスチックの可能性

バイオスプラスチックの生産・利用と CO₂を地中に固定する CCS や原油を回収する EOR (図 2-18) と組み合わせることで、CO₂の大幅削減が期待できる。

- CCS: CO₂回収・貯留 (Carbon dioxide Capture and Storage)
- ▶ 地中や海底などにCO2を隔離する方法

出典:東洋エンジニアリング

- EOR: 原油増進回収法 (Enhanced Oil Recovery)
- ▶ CO2を圧入し原油を効率的に回収する手法

出典:アメリカDOE

図 2-18 CCS/EOR

図 2-19 に示すように、エタノールの製造では糖質から1モルのエタノールと1 モルの副生 CO₂が発生する。また将来の製法として挙げたメタン発酵では、1モル のメタンに対し0.8 モル程度の副生 CO₂が発生する。これらの副生 CO₂は濃い状態 で発生するため回収は容易であり、CCS/EOR 処理をすれば CO₂を大気中からリバー スできる(ネガティブエミッション化)。さらにプラスチックは、利用後にリユー ス・リサイクルを経て最終的に優良なエネルギーとしても利用できるので、そ の CO₂も回収し CCS/EOR 処理をすれば、さらに多くの CO₂を大気からリバースでき ることになる。言い換えれば、大気中の CO₂を回収するポンプとなるバイオマスを 活用すれば、材料利用→エネルギー利用をしつつ、既に増えてしまった大気中の カーボンを地中にリバースすることが可能になるということである。

図 2-19 ネガエミッションの可能性

ブラジルの研究機関によるCCS/EORの調査では(図2-20)、サトウキビの生産地 とCCS・EORの適正地が重なり、またサントス沖の海底油田地区も適地となってお り日本で回収したCO₂をエネルギー輸送船の帰り便で輸送しCCS/EORができる可能 性がある。

出典 Brazilian Atlas of CO2Capture and Geological Storage https://www.globalccsinstitute.com/archive/hub/publications/190903/brazilian-atlas-co2-capture-geological-storage.pdf

図2-20 ブラジルにおけるCCS/EORの可能性

【参考文献】

1) LCA 日本フォーラム, JLCA-LCA データベース, 2010 年度第3版.

- 2) Plastic Europe, Environmental Product Declarations of the European Plastics Manufacturers, High density polyethylene (HDPE), (2008).
- 3) I. C. Macedo, J. E. A. Seabra, J. Silva, Biomass Bioene. 32,582 (2008).
- 4) J. Fargione, J. Hill, D. Tilman, S. Polasky, P. Hawthorne, Science 319
- 5) Boustead Consulting Ltd., The Boustead Model, version 5.0 (2006).
- 6) 齋藤潔, 電機, 5, 14-19, (2004).

第3章 自動車用樹脂材料および自動車用ポリプロピレンの特徴と用途 3.1 はじめに

自動車には「走る、曲がる、止まる」の基本性能が求められ、数万点からなる部 品・部材により構成されている。環境の観点からは排ガス浄化、二酸化炭素低減、 環境負荷物質低減、リサイクルなどの課題がある。商品性向上の観点では安全性、 快適性、高意匠、情報・通信(つながる)などを考える必要がある。その環境性と 商品性を両立するために、低燃費化、NVH(Noise、Vibration、Harshness、振 動・騒音・乗り心地)低減、信頼性向上が求められている。特に低燃費化(高効率 化)は近年の自動車の電動化、知能化の流れの中でも重要な課題であり、より軽く するための車両軽量化が必要である。自動車を構成する素材は多岐にわたるが、 軽量化のニーズを受けて樹脂材料の割合は増加している(図3-1)¹⁾。現状では平均 してほぼ車両の10重量%の樹脂材料が使用されている。

3.2 自動車に使用される樹脂

自動車に使用される樹脂は下記に示す特徴がある。

- ・比重が小さく軽量である。
- ・成形加工性に優れ、デザインの自由度が大きい。
- ・表面への装飾が可能である。
- ・耐化学薬品性に優れる(例外あり)。
- ・仕上げコストが安価である。
- NVH特性に優れる。
- ・電気絶縁性に優れる。
- ・変性・複合化が容易である。特にフィラーとの組合せや複数の樹脂とのアロイ化

により各種の特性が制御できる。

一方で下記のような短所もある。

・金属と比べ剛性が低い。

・寸法安定性が悪い。

・耐熱性が低い。

・耐久性が不十分なものがある。特に耐水性、耐候性が悪いものがある。

易燃焼性である。

これらの長所、短所を理解したうえで製品設計を行い、規格に合った自動車部 品・部材が実用化されている。具体的な樹脂素材の分類としては汎用プラスチッ ク、エンジニアリングプラスチック(エンプラ)、スーパーエンプラ、熱硬化性樹 脂がある。

汎用プラスチックにはポリプロピレン (PP)、ポリエチレン (PE)、ポリ塩化ビ ニル (PVC)、アクリロニトリル-ブタジエン-スチレン3元ブロック共重合体 (ABS)、 ポリメチルメタクリレート (PMMA) などがある。エンプラとしてはナイロン6 (PA6)、 ナイロン66 (PA66)、ポリブチレンテレフタレート (PBT)、ポリアセタール (POM、 ポリオキシメチレン)、ポリカーボネート (PC)、ポリフェニレンエーテル (PPE) などがある。スーパーエンプラとしてはポリフェニレンスルフィド (PPS) などが 知られている。熱硬化性樹脂としてはポリウレタン (PUR)、不飽和ポリエステ ル (UP)、エポキシ樹脂 (EP) などがある。それらの自動車における使用割合を図 3-2に示す²⁾。PPが最も多く使用されている。

PPはバンパー、バックドア、フェンダーライナー、インストルメントパネル関連 部品(メーターパネル、メーターハウジングなど)、ドアモジュール(ドアトリム など)、ピラー、ハンドルカバー、グローブボックス、スピーカーボックス、ラジ エーターグリル、ランプハウジング、エアコンケース、バッテリーケース、エアク リーナーケース、各種ダクトなどに使用された実績がある。今までの搭載部品例 を図3-3に示した³⁾。

PEの主な用途は燃料タンクである。低温での耐衝撃性に優れたHDPE(高密度ポリ エチレン)が使用されているが、近年はEVOH(エチレン・ビニルアルコール共重合 体)との積層品が使用されている。その他はカーペット、フロアマット、天井、ド アクッション、発泡ダクトなどである。

PVCの用途はインパネ表皮、ドアトリム表皮、ピラーガーニッシュ、ウェザース トリップ、ワイヤーハーネスなどである。

ABSの用途はフロントグリル、ラジエーターグリル、ピラーガーニッシュ、エン ブレム、スポイラー、コンソールボックスなどである。

PMMAの用途はメーターカバー、ストップランプレンズなどである。

PA6、PA66はエアインテークマニホールド、シリンダーヘッドカバー、エンジン カバー、タイミングベルトカバーなどエンジンルーム内部品に多く使用されてい る。

PBTの用途はインストルメントパネル、コネクター、イグニッションコイルなど

である。

POMはフューエルキャップ、各種バルブ、シフトレバーなどに使用されている。 PCの用途はサンルーフ、パノラマルーフ、ヘッドランプレンズ、表示パネルなど がある。

PPEは多くはPSとのアロイとして使用される。フロントフェンダー、ラジエー ターグリル、インストルメントパネルなどに使用されている。

PPSはパワーモジュールユニットへの用途が多い。ECU(エンジン・コントロー ル・ユニット)ケース、センサーのハウジングが代表例である。

PURはシートの緩衝材、インストルメントパネル表皮材などに使用されている。 UPは主としてガラス繊維で補強されたものとしてリアスポイラー、エンジン フードに使用されている。

EPは封止材やプリント基板として使用されている。

図 3-2 各種自動車用プラスチックの 2016 年の需要量(単位:t)²⁾

図3-3 自動車用PP搭載部品³⁾

PPでの大物部材としてはバンパーが挙げられる。トヨタ自動車では1991年に新たに開発したTSOP(トヨタスーパーオレフィンポリマー、初期はTSOP1で現状はTSOP6)を初めて採用し、現在では標準材料としてすべての車種に展開されている。その性能を従来材のTPO(熱可塑性ポリオレフィン)と比較して図3-4に示す。 流動性と曲げ剛性が大幅に向上した材料であることがわかる。

図3-4 TSOPと従来のTPOとの性能比較

3.3 自動車部材としてのバイオ由来樹脂の利用

また一方で軽量化と同時にバイオ由来の樹脂の使用も多く検討されている。初 めてバイオ由来の樹脂が自動車に採用されたのは2003年、トヨタ自動車のラウム である。ポリ乳酸にケナフ繊維を組み合わせてプレス成形することによりスペア タイヤカバーとして使用された(図3-5)。これはカーボンニュートラルな素材で あるという事でLCAの観点から環境負荷低減に寄与できるものである。その後もバ イオ由来樹脂を使用する動きがあり、2009年に発売されたハイブリッド車SAIでは 内装部品の面積全体の60%に採用された。

ナイロン系ではフランスのアルケマ社のナイロン11 (PA11) は、ひまし油から合成した11-アミノウンデカン酸モノマーから得られ、バイオ由来のナイロンである。 またデュポン社のナイロン610はヘキサメチレンジアミン(石油由来)とセバシン酸(ひまし油由来)から製造される植物化度60%のバイオ由来ナイロンである。2009年にはデンソーがラジエータータンクをPA610複合材料で上市した(図3-6)。2018年にはトヨタ紡織と豊田中央研究所がPA11とPPのアロイ化により新規なサラミ構造を有する高耐衝撃性樹脂を開発し、クラウンのドアトリムとして上市した(図3-7)。

石油系樹脂をバイオ由来で製造する検討も多く行われており、ブラジルではさ とうきびから製造されたエタノールを原料にしてポリエチレンが製造されている。 本事業では、このバイオ由来ポリエチレンを用いる。その詳細については前章で 述べた。

図3-5 ポリ乳酸とケナフから製造されたスペアタイヤカバー(2003年)

図3-6 PA610で製造されたラジエータータンク(2009年)

図3-7 ナイロン11/PPアロイで製造されたドアトリム (2018年)

3.4 CNF 複合樹脂

近年、セルロースナノファイバー(CNF)がバイオ由来のフィラーとして注目されている。CNFを疎水化し樹脂にコンパウンドすることで強さ、弾性率、線膨張率、耐熱性などが大幅に性能向上することが見出され、自動車への部品・部材としての評価が進んでいる。

2016年10月から進められているNCV (Nano Cellulose Vehicle) プロジェクトで はPP-CNF、PA6-CNF、PC-CNF、EP-CNF、CNF100%材を使用し、射出成形、プレス成形、 ブロー成形、RTM(Resin Transfer Molding)により各種部品・部材を成形した。例 えば、PA6-CNF複合材料を射出成形することにより、軽量なインテークマニホール ドを試作した(図3-8)。現行品はガラス繊維を30%使用しているが、CNFを15%程度 複合化した材料で検討を行い、10%以上の軽量化効果の可能性を見出した。PP-CNF 複合材料を射出成形することにより、エアコンケースやドアトリム(図3-9)を試 作した。PC-CNF複合材料を射出プレス成形することにより、透明な補強樹脂ガラス の試作を行った。無機ガラスに比べ50%以上の軽量化が確認でき、ルーフパネルと バックウィンドウ(図3-10)を搭載した。CNFをできるだけ使用しかつ走行可能な 最終試作車を作り(図3-11)、昨年度の東京モーターショー(令和元年10月23日-11月4日で開催)に出展した。試作車用部材一覧を図3-12に示した。ドア、樹脂ガ ラス、エンジンフード、リアスポイラー、パケトレフロントカバー、ホイールフィ ン、ルーフサイドレール、フロア部材など13品目に適用した。

以上のように自動車用樹脂材料としてPPが今後とも主要な材料として使用され ていくこと、CNFにより補強された樹脂が自動車用材料として社会実装に向けた検 討が進められていること、さらに石油由来の樹脂がバイオ由来の樹脂に置換可能 なことを示した。

図3-8 エアインテークマニホールド(吸気部品) (PA6-CNF15%)

図3-9 ドアトリム (PP-CNF10%)

図3-10 ルーフパネル(左)とバックウィンドウ(右)

図3-11 最終試作車

図3-12 最終試作車部材一覧

【参考文献】

- 1) プラスチックス 55(6)、114 (2004)
- 2) (㈱シーエムシー・リサーチ

「自動車用プラスチック部品の開発・採用の最新動向 2018」

3) 藤田祐二 「未来材料」p.9 (2005年10月号)

第4章 CNF 強化バイオポリエチレン (PE) の試作

4.1 調査の目的

本章ではエアコンケース用部材開発に向けたラボスケールでの CNF 強化バイオ ポリエチレン(PE) 試作検討結果について述べる。今年度は、バイオ PE に添加す る CNF のアセチル変性度(DS)、CNF の添加量、および CNF とタルクの同時添加が PE の機械的強度および熱特性におよぼす効果を評価し、スケールアップ生産のた めの基礎データを収集した。

4.2 強化バイオ PE の試作

4.2.1 原料および試薬

アセチル変性パルプの調製には下記を用いた。

- ・パルプ(ネバードライ針葉樹未漂白クラフトパルプ)
- •無水酢酸(特級品、和光純薬工業株式会社)
- ・n-メチルピロリドン(特級品、和光純薬工業株式会社)
- ・炭酸水素ナトリウム(特級品、和光純薬工業株式会社)
- ・塩酸水溶液(特級品、33wt%、和光純薬工業株式会社)

CNF 強化バイオ PE の試作には下記を用いた。

- ・バイオ PE (SHA7260、ブラスケム)
- ・マレイン酸変性ポリプロピレン(PMA-H1000P、東洋紡)
- ・タルク(日本タルク株式会社)

4.2.2 アセチル変性パルプの調製

CNF 強化バイオ PE の性能と添加する CNF の DS の関係性の調査を目的とし、CNF の原料となるアセチル変性パルプを下記の手順で調製した。まず真空攪拌装置中 にパルプと n-メチルピロリドンを投入し、減圧条件下、90°C で数時間加熱撹拌 しパルプ中の水分を除去した。ついで、所定量の無水酢酸および炭酸カリウムを 真空攪拌装置中に投入し 70°C で 1 時間撹拌した。その後、反応物をイオン交換水 中に投入し塩酸で中和処理し、イオン交換水およびアセトンでろ過洗浄を行い、 アセチル化パルプを得た。作製したアセチル化パルプは遠心脱水後にバイオ PE と の複合化に用いた。

作製した変性パルプの変性度は赤外分光測定より算出した。測定で得られたスペクトルの1316 cm⁻¹をピークトップとする吸収帯の面積を算出し、変性度既知の 変性パルプを用いて作製した校正曲線を適用し算出した。

以上に基づき、DSの異なる3種の変性パルプ(DS=0.51、0.77、1.21)を作製した。

4.2.3 CNF 強化バイオ PE の作製

CNF 強化バイオ PE は、1.マレイン酸変性ポリプロピレン(MAPP)、CNF および パルプの膨潤剤で構成されるマスターバッチ(MB)の作製、2.CNF が任意の濃度と なるようにバイオ PE 中へ MB の添加、の二段階で作製される。MB は、事前に各原 料と試薬をヘンシェルミキサー(FM10C/1、日本コークス工業株式会社)を用いて事 前混合(2000 rpm、2 min)した後、2 軸押出機(図 4-1 左、テクノベル社製)で 2 度、溶融混練し作製した。この MB をバイオ PE ペレットと混合し、減圧条件で混 練することで、パルプ膨潤剤を除きながら CNF 強化バイオ PE を作製した。なお、 バイオ PE と複合するアセチル化パルプには、実験室で作製したパルプおよび、外 注品(DS=0.9)を目的に応じて利用した。

4.2.4 CNF 強化バイオ PE の成形

作製した CNF 強化バイオ PE は機械的強度および熱特性の評価のために、射出成 形機(図 4-1 右)により、80 mm×10 mm×4 mmの試験片に成形した。

図 4-1 (左)二軸押出機および(右)射出成形機

4.3 CNF 強化バイオ PE の評価項目および条件

作製した CNF 強化バイオ PE の評価は下記の通り行った。

4.3.1 樹脂中の繊維状態観察

溶融混練工程における樹脂中でのパルプの解繊状態は、光学顕微鏡(DFC450C、 LEICA)を用いた偏光観察および蛍光観察で確認した。観察試料は各混練段階での 試料をガラス板に挟み210°Cで30秒ほどプレス後、冷エタノールで急冷し作製し た。また、射出成形品中のパルプの解繊状態は、成形品のスライス片から沸騰キシ レンを用いて樹脂分を除去し、残留繊維を電界放出型走査型電子顕微鏡(JEM-2100F、日本電子株式会社)で観察し評価した。

4.3.2 機械的強度

CNF 強化バイオ PE の曲げ弾性率および破断強度は JIS K7171 に基づき、万能試

験機(AG-X plus、島津製作所)を用いて、試験速度 10 mm/min、圧子半径 5 mm、 支持台半径 2 mm、支店間距離 64 mm として測定した。また、衝撃強度は JIS K 7110 および JIS K 7111-1 に基づき、アイゾット衝撃試験機(東洋精機製作所)お よびシャルピー衝撃試験機(安田精機製作所)を用いて行なった。各衝撃試験では 試験片中央に深さ 2 mm のノッチを切削して評価に用いた。また、アイゾット衝撃 試験では 2.75 J、シャルピー衝撃試験では 2.0 Jの容量のハンマーを用いた。

4.3.3 熱的特性

線熱膨張率(CTE)および荷重たわみ温度(HDT)を評価した。いずれの測定も真空 条件下、70°C で 48 時間アニーリングした試験片を用いた。CTE は熱機械測定装 置(TMA-60、島津製作所)を用いて、1 cm 角に切り出しアニールした射出成形品 を窒素雰囲気下、昇温速度 5°C/min、-30°C から 100°C までの温度範囲で測定し た。一方、HDT は HDT 試験装置(HDT. TESTER 6M-2、東洋精機製作所)を用いて、 昇温速度 120°C/h、0.45 MPa および 1.80 MPa の荷重条件で測定した。

4.4 アセチル度の異なる CNF により強化したバイオ PE の性能評価

バイオ PE の強化に用いる CNF のアセチル変性度と CNF 強化バイオ PE の性能の 相関性を評価するため、アセチル変性度の異なるパルプを用いて試作体を作製し た。試作体は各変性パルプを用いて最終的な含有 CNF 重量が 5wt%、10wt%となるよ うに調製した(表 4-1 参照)。

試作体. パルフ		アセチル変性パルプ ^(a)			МАРР	膨潤剤 ^(b)	バイオ PF	
No.	DS	CNF	Ac	Lig	111111			
1	0.51	5	0.68	0.16	5	$5 \rightarrow 0$	89.16	
2	0.51	10	1.36	0.31	10	$10 \rightarrow 0$	78.33	
3	0 99	5	1.10	0.16	5	$5 \rightarrow 0$	88.74	
4	0.82	10	2.19	0.31	10	$10 \rightarrow 0$	77.50	
5	1 91	5	1.62	0.16	5	$5 \rightarrow 0$	88.22	
6	1.21	10	3.24	0.31	10	$10 \rightarrow 0$	76.45	

表 4-1 試作体組成重量比

(a)アセチル変性パルプは繊維分(CNF)+アセチル基 (Ac)+リグニン(Lig)で構成されるとして計算

(b)膨潤剤は混練中に脱気除去、マスターバッチ中における重量比→最終組成として表記

4.4.1 樹脂中の繊維状態観察

図 4-2 に CNF 強化バイオ PE 試作体の各混練工程における顕微鏡観察像をまとめた。混練工程の進行に従い、パルプの解繊が進む様子が観察できるが、最終段階においても光学顕微鏡で観察可能な太さの繊維(解繊が不十分な繊維)が多数残存している。またパルプの変性度と解繊の程度に明確な差異は確認できない。

図 4-2 アセチル変性度の異なる CNF で強化した樹脂の偏光顕微鏡観察像 スケールバーは最下段のみ 50 µm、他は 200 µm

4.4.2 機械的強度の評価

図 4-3 に試作体の曲げ試験で得られた応力ひずみ曲線を、表 4-2 には得られた 機械特性をそれぞれ示す。試作体 No.6 (DS=1.21、CNF 含有率 10wt%)においてニー ト樹脂と比較し曲げ弾性率で約 2.5 倍の向上が確認されるなど、CNF の添加に伴う 樹脂の性能向上が確認された。また、アセチル変性度が高く、かつ CNF 添加率が 高いほど曲げ弾性率および曲げ強度が向上し、繊維添加に伴う衝撃強度の低下も 抑制されることが確認された。しかしながら、PP-タルク材料(現行材)の機械特 性には劣る。

図 4-3 アセチル変性度の異なる CNF で強化したバイオ PE の応力-ひずみ曲線

パルプ CNF 曲げ 曲げ 衝擊強度 (kJ/m²) 試作体 変性度 濃度 弹性率 強度 No. シャルピー Izod (DS) (wt%) (MPa) (MPa) ニート 0 1110 22.5 3.61 3.34 0.5 5 17602.13 1 34.3 1.75 2 0.5 102410 46.9 1.66 1.76 3 0.8 5 1610 31.2 2.90 2.83 4 0.8 10240046.1 2.92 2.71 5 2.49 1.2 10265049.5 2.83 5 1810 36.5 1.66 1.97 6 1.2 現行材^(a) 0 3450 56.2 3.52 4.48

表 4-2 アセチル変性度の異なる CNF で強化したバイオ PE の機械強度

(a) PP-タルク材料

4.4.3 CNF 強化樹脂の熱特性

表 4-3 に試作体の線熱膨張率および荷重たわみ温度をまとめた。機械的強度と 同様に、線熱膨張率および荷重たわみ温度についても CNF のアセチル変性度が高 くなるほど性能の改善が確認された。線熱膨張率(10-30°C)についてはニート樹 脂で 132 ppm/K であるのに対し、最もアセチル変性度が小さく CNF 5wt% 添加品 の場合(No. 1)であっても 57 ppm/K まで改善し、アセチル変性度 1.2、CNF 10wt%添 加品の場合(No. 6)では 42 ppm/K まで改善され、PP-タルク材料(現行材)と同等 以上(47 ppm/K)の性能を示した。CNF 添加による特筆すべき点は荷重たわみ温度 の向上である。1.80 MPa の高荷重の条件においてニート樹脂では 47°C であるのに 対し、No.6 で 102°C まで向上するなど繊維添加の効果がはっきりと確認された。 これは現行 PP 品をも上回る。これらの結果は、樹脂との混練過程で解繊された CNF によるネットワークがバイオ PE 内部でしっかりと構築されていることを示唆して いる。また、アセチル変性度が高いほど PE との親和性が向上するために、CNF の アセチル変性度が高いほど、パルプの解繊やネットワークの形成が効率よく行わ れるため、機械的強度や熱特性の向上に寄与したと考えられる。

No.	パルプ 亦姓 庶	CNF 今右家	着 (MD 夫	荷重たわみ 温度 (°C)			
no.	发注度 (DS)	(wt%)	0-100°C	10-30°C	30-50°C	0.45 MPa	1.80 MPa
ニート	-	0	176.8	131.8	174.6	84.3	47.1
1	0.5	5	86.9	86.3	102	114	73.5
2	0.5	10	33.8	56.9	52.5	127.3	94.2
3	0.8	5	79.3	87.2	93.6	116.1	69.2
4	0.8	10	45.6	58.0	55.2	127.1	99.4
5	1.2	5	58.4	74.3	69.6	118.5	83.6
6	1.2	10	15.4	42.2	28.3	127.4	102.4
現行材 ^(a)	-	-	71.4	47.2	73.3	133.5	92.6

表 4-3 アセチル変性度の異なる CNF で強化したバイオ PE の熱特性

(a) PP-タルク材料

図 4-4 アセチル変性度の異なる CNF を添加した試作体の TMA 曲線

図 4-5 アセチル変性度の異なる CNF を添加した試作体の温度-変位曲線 (a)荷重 0.45 MPa、(b)荷重 1.80 MPa

4.5 CNF とタルクの共添加により強化したバイオ PE の性能評価

CNF 強化バイオ PE の曲げ弾性率向上を目的とし、タルクを添加した CNF 強化バ イオ PE を試作した。タルクの添加効果を評価するため、表 4-4 に示した通り 0-15 wt%のタルクを添加した CNF 10wt%含有試作体を作製し性能を評価した。試作に は DS=0.9 のパルプを利用した。また、CNF を含有しないタルク添加バイオ PE も比 較対象として試作した。

試作体 パルプ 恋性度		アセヲ	アセチル変性パルプ ^(a)		MADD	訪週文1(b)	タルカ	バイオ
No.	変性度 (DS)	CNF	Ac	Lig	MAFF	砂相角	9109	PE
7							0	77.28
8							5	72.28
9	0.9	10	2.41	0.31	10	$10 \rightarrow 0$	10	67.28
10							15	62.28
11							20	57.28
12							0	90
13							5	85
14	-		0		10	0	10	80
15							15	75
16							20	70

表 4-4 試作体の組成重量比

(a) アセチル変性パルプは繊維(CNF)+アセチル基(Ac)+リグニン(Lig)で構成されるとして計算
 (b) 膨潤剤は混練中に脱気除去、MB中における重量比→最終組成として表記

4.5.1 樹脂中の繊維状態観察

図 4-6 は試作体 No. 7-No. 11 の各混練工程における樹脂中繊維の光学顕微鏡観察 像である。また、図 4-7 は同じ偏光(上段)と落射蛍光(下段)で同一個所を観察 した像を並べて記載した。落射蛍光で観察することで、偏光観察では確認が難し い細い繊維がコントラストよく観察された。いずれの試験体についても解繊度の 低い太い繊維が残留しており、また、タルクの添加率と解繊度には明確な差異は 確認できなかった。図 4-8 は試作体 No. 7 と No. 10(それぞれタルク添加量 0 wt%、 15 wt%)からキシレンを用いて抽出した繊維の SEM 観察像である。いずれもパル プから解繊された 10-500nm 程度の繊維が観察された。一方で、タルク添加の有無 による解繊度の有意差は光学顕微鏡での観察と同様に確認できない。

図 4-6 各混練工程における試作体中の繊維の偏光顕微鏡観察像 スケールバーは 500 µ m

図 4-7 タルク添加率の異なる CNF 強化バイオ PE の繊維状態観察 スケールバーは 50 µm(上段) 偏光観察像、(下段) 落射蛍光観察像

図 4-8 試作体 No.7, No10 から抽出した繊維の走査型電子顕微鏡観察像 スケールバーは(上段) 20 µm、(下段) 1 µm

4.5.2 機械的強度の評価

表 4-5 には試作体の曲げ試験で得られた機械特性、図 4-9 に試作体の曲げ試験 で得られた応力ひずみ曲線をそれぞれ示す。また、図 4-10 はタルクの添加率に対 して各機械的強度特性をプロットしている。図 4-10 からも明らかなように曲げ弾 性率はタルクの添加とともに一次関数的に向上し、タルクを 10 wt% 添加した CNF 強化バイオ PE (No. 9)において PP-タルク材料(現行材)と同等の 3156 MPa、さら に 20 wt% 添加品では 4000 MPa 近い弾性率が示された(ニート樹脂のほぼ 4 倍)。 また、CNF の有無で曲げ弾性率を比較すると、同じタルク添加率の試作体間では CNF を含むことで曲げ弾性率が 1500 MPa 程度向上している。衝撃強度に関してはいず れの試作体においてもニート樹脂に劣るが、CNF を含まない場合ではタルクの添加 量増加に伴い緩やかに強度低下するのに対し、CNF を含む場合では 15 wt% のタル ク添加までは徐々に改善傾向にある。CNF とタルクが共存することで衝撃強度を改 善させる何らかの効果が生じていると考えられ、条件最適化による更なる性能向 上が期待される。

試作体 No.	CNF 添加率 (wt%)	タルク 添加率 (wt%)	曲げ 弾性率 (MPa)	曲げ強度 (MPa)	Izod 衝撃強度 (kJ/m²)	シャルピー 衝撃強度 (kJ/m²)
ニート	0	0	1110	22.5	3.61	3.34
7		0	2716	48.5	2.54	2.28
8		5	2888	50.4	3.02	2.41
9	10	10	3156	52.5	3.07	2.73
10		15	3554	54.5	3.03	3.35
11		20	3836	55.7	1.75	1.77
12		0	1142	24.6	3.08	3.25
13		5	1376	27.2	2.87	2.30
14	0	10	1554	29.0	2.79	2.33
15		15	1777	29.0	2.69	2.28
16		20	2060	32.4	2.58	2.31
現行材 ^(a)	0	15	3450	56.2	3. 52	4.48

表 4-5 タルク添加率の異なる試作体の機械強度

(a) PP-タルク材料

図 4-9 タルク添加率の異なる試作体の応力-ひずみ曲線

図 4-10 タルク添加率に対する機械特性のプロット タルク添加率対(a)曲げ弾性率、(b)曲げ強度、(c) Izod 衝撃強度、 (d)シャルピー衝撃強度

4.5.3 CNF 強化樹脂の熱特性

表 4-6 に試作体 No.7-No.16 の線熱膨張率および荷重たわみ温度をまとめた。 ニート樹脂の性能と比較すると各試作体の線熱膨張率および荷重たわみ温度のい ずれも大きな改善が確認された。例えば 10-30°C の範囲における線熱膨張率を比 較すると、ニート樹脂では132 ppm/K であるのに対し、タルクのみ15wt% 添加し た試作体(No.15)では 97 ppm/K、CNF 10wt%かつタルク 15wt%を添加した試作体(No. 10) では 54 ppm/K となった。なお、CNF 強化バイオ PE については、タルクの 添加量15wt%の場合で最も低い線熱膨張率が示されているものの、全体的な傾向と してはタルクの添加量が少ないほど、線熱膨張率は小さい傾向がある。荷重たわ み温度に関しても、タルクのみの添加に比べると、CNF とタルクを添加した試作体 の方が優れた性能を示した。ニート樹脂と比較するとタルクのみ添加した試作体 の場合は荷重の大きさにかかわらず最大 10°C 程度の性能向上であったが、CNF と タルクを添加した試作体の場合では、40-50°Cもたわみ温度が上昇した。なお、タ ルクのみ添加した場合では、タルクの添加率の増大にしたがって、たわみ温度が 上昇する傾向があるが、CNF を含む試作体の場合ではそのような傾向はなくほぼ― 定値である。したがって、CNF を含む試作体における荷重たわみ温度および線熱膨 張率の性能改善は、添加したタルクではなく CNF による効果が大きいと考えられ る。

図 4-11 タルク添加率の異なる試作体の TMA 曲線 (a) CNF を含む試作体群、(b) CNF を含まない試作体群

試作体	CNF 沃加索	タルク	線熱膨張臺	率(MD 方向)	(ppm/K)	荷重たわみ	·温度(°C)
No.	(wt%)	(wt%)	0-100°C	線熱膨張率 (MD 方向) (ppm/K))-100°C 10-30°C 30-50 176.8 131.8 174 34.4 55.9 50. 51.5 66.5 63. 48.5 65.0 58. 38.4 54.0 51. 57.6 66.2 66. 111.0 110.5 136. 101.0 99.6 115. 80.4 94.4 107. 100.1 97.4 111. 87.5 97.7 101. 71.4 47.2 73.	30-50°C	0.45 MPa	1.80 MPa
ニート	0	0	176.8	131.8	174.6	84.3	47.1
7	10	0	34.4	55.9	50.1	127.8	101
8	10	5	51.5	66.5	63.9	128.9	101.8
9	10	10	48.5	65.0	58.2	126.3	101.1
10	10	15	38.4	54.0	51.6	128.9	102.8
11	10	20	57.6	66.2	66.6	127.5	100
12	0	0	111.0	110.5	136.0	80.2	58.5
13	0	5	101.0	99.6	115.0	87.0	57.6
14	0	10	80.4	94.4	107.8	90.0	62.3
15	0	15	100.1	97.4	111.4	92.1	64.8
16	0	20	87.5	97.7	101.2	95.5	68.2
現行材 ^(a)	0	15	71.4	47.2	73.3	133.5	92.6

表 4-6 タルク添加率の異なる試作体の熱特性

(a) PP-タルク材料

図 4-13 タルク添加率に対する熱特性のプロット
 (上段) タルク添加率 対 線熱膨張係数
 (下段) タルク添加率 対 荷重たわみ温度

4.6 本章のまとめ

本章では、CNF 強化バイオ PE 開発のための基礎データ収集を目的として、バイ オ PE に添加する CNF のアセチル変性度の効果や、添加する CNF の比率、補助添加 剤としてのタルクの効果を報告した。作製した強化樹脂試作体の評価は、光学顕 微鏡や走査型電子顕微鏡を用いた樹脂中の繊維の解繊状態や分散状態の観察、曲 げ試験および衝撃試験による機械的強度の評価、加熱試験による線熱膨張率およ び荷重たわみ温度の算出を通して行った。今回の検討より、添加する CNF のアセ チル変性度は1程度、添加率は10wt%、CNF と同時にタルクを 15-20wt%添加するこ とで、PP-タルク材料(現行材)と同程度以上の機械的強度(曲げ弾性率 3800 MPa) や、優れた熱特性(HDT 100°C@1.80 MPa)、低線熱膨張性(50ppm/K)をもった強 化バイオ PE を作製できることが確認できた。本結果から、CNF 強化バイオ PE が現 行材の代替品として活用可能であることが十分期待できる。

このように CNF 強化バイオ PE が現行材並みの曲げ弾性率や、非常に優れた熱特 性を示した要因は京都プロセスにおいて解繊した CNF がバイオ PE 中にしっかりと 分散し、ネットワークを形成しているためであると考えられるが、その一方で、今 回作製した試作体中に原料パルプの解繊が十分進行していない数ミクロンの太い 繊維が存在していることも、光学顕微鏡および走査型電子顕微鏡を用いた観察結 果より明らかになっている。今後は、よりパルプ繊維の解繊促進や CNF の分散状 態の改善を検討することで更なる性能向上を目指す。

第5章 CNF 強化バイオ PE のスケールアップ試作

5.1 調査の目的

小スケールでの CNF 強化バイオ PE の試作検討結果に基づき、エアコンケース用 部材製造に向けた CNF 強化バイオ PE のスケールアップ作製を行い、小スケールで 作製した試作体とスケールアップし作製した試作体の性能を比較した。CNF 強化バ イオ PE 試作体のスケールアップは外注により行った。

5.2 CNF 強化バイオ PE のスケールアップ試作

下記にスケールアップ試作で利用した2軸押出混練機のスペックと、小スケール試作で利用した2軸押出混練機のスペックを記載した。

実験用2軸押出混練機(小スケール試作) スクリュー直径:15 mm 生産速度:約0.3 kg/h

大型2軸押出混練機(スケールアップ) スクリュー直径:42 mm 生産速度:約20 kg/h

図 5-1 大型二軸押出混練機(左)全体、(右)吐出口

スケールアップして生産を行う試作体の組成条件は、小スケールでの試作において PP-タルク材料 (現行材) に近い性能が確認されている第4章に記載の試作体 No.10 に準じ、60 kg 作製した(試作体 No.17)。また、作製した強化樹脂は第4章と同様の手法で射出成形し、性能評価を行った。

表 5-1 試作体組成重量比

試作体	パルプ	アセチル変性パルプ ^(a)			MADD	訪调刻 ^(b)	タルク	バイオ
No.	DS	CNF	Ac	Lig	MAPP	应相用		PE
10	0.90	10	2.41	0.31	10	10→0	15	62.28
17	0.79	10	2.05	0.31	10	10→0	15	62.64

(a)アセチル変性パルプは繊維分(CNF)+アセチル基 (Ac)+リグニン(Lig)で構成されるとして計算

(b)膨潤剤は混練中に脱気除去、マスターバッチ中における重量比→最終組成として表記

5.3 スケールアップ試作品の評価

5.3.1 バイオ PE 中の繊維の観察

図 5-2 は、光学顕微鏡を用いた試作体の偏光および位相差観察像である。スケー ルアップして作製した場合(試作体 No. 17)と小スケールで試作した場合を比較す ると、繊維の解繊状態や分散状態に違いは見られず、光学顕微鏡レベルでの観察 ではスケールアップによるネガティブな影響はないと考えられる。

図 5-2 樹脂中の繊維の光学顕微鏡観察像 (a)、(b)はスケールバー 200 µm、他は 50 µm、(a)-(d)は偏光観察、(e)、(f) は位相差観察像、(c)と(e)、(d)と(f)はサンプルの同一個所

5.3.2 機械的強度の評価

スケールアップし作製した試作体、小スケールで作製した試作体、非強化バイ オPE(ニート)、PP-タルク材料(現行材)の機械的強度の評価結果を表 5-2 にま とめた。また図 5-3 には曲げ試験で得られた応力ひずみ曲線を示した。小スケー ルで試作した試作体 No.10 (CNF を 10wt%、 タルクを 15wt% 添加した強化バイオ PE)は PP-タルク材料(現行材)とほぼ同等の性能である曲げ弾性率 3554 MPa、 曲 げ強度 54.5 MPa を示している。これに対して、試作体 No.10 と同等の組成でス ケールアップし試作した No.17 では曲げ弾性率 3411 MPa、曲げ強度 53.7 MPa と、 調製スケールに関わらずほぼ等しい性能が確認されている。従って本手法は社会 実装のための大量生産にも十分適用可能であることが示唆された。

•••							
試作体 No.	パルプ DS	CNF 添加量 (wt%)	タルク 添加量 (wt%)	曲げ 弾性率 (MPa)	曲げ 強度 (MPa)	Izod 強度 (kJ/m²)	シャルピー 強度 (kJ/m²)
ニート	_	0	0	1108	22.5	3.61	3.34
10	0.90	10	15	3554	54.5	3.03	3.35
17	0.79	10	15	3411	53.7	2.77	2.50
現行材 ^(a)	-	0	15	3450	56.2	3.52	4.48

表 5-2 各樹脂の機械的強度

(a) PP-タルク材料

図 5-3 各樹脂の曲げ-ひずみ曲線

5.3.3 熱特性の評価

スケールアップし作製した試作体、小スケールで作製した試作体、非強化バイ オPE(ニート)、PP-タルク材料(現行材)の熱特性(MD 方向の線熱膨張率、荷重 たわみ温度)の評価結果を表 5-3 にまとめた。また図 5-4 は各樹脂の TMA 曲線、 図 5-5 は HDT 測定で得られた たわみ温度曲線である。第4章でも述べた通り、小 スケールで作製した CNF 強化バイオ PE はニート樹脂と比較し大幅な性能向上が確 認されている。特に高荷重(1.80MPa)での荷重たわみ温度ではニート樹脂と比較 し 50°C 以上向上している。また、PP-タルク材料(現行材)と比較すると同等以上 の性能を示した。スケールアップして作成した No. 17 では、線熱膨張率が小スケー ルで作製した No. 10 と比べ、やや大きくなったが(例えば 10-30°C の範囲におい て No. 10 では 54 ppm/K に対し、No. 17 では 64ppm/K)、荷重たわみ温度はほぼ等 しい(例えば荷重 0.45 MPa において No. 10 では 128.9°C に対し、No. 17 では 127.2 °C)。以上の結果は、機械的強度の評価結果と同様に、本手法によって CNF 強化バ イオ PE のスケールアップ生産が可能であることを示している。

試作体	パルプ CNF パルプ 添加量		タルク	線熱膨	線熱膨張率(MD 方向) (ppm/ K)			加重たわみ 温度 (°C)	
No.	DS	(wt%)	(wt%)	0-100 °C	10-30 °С	30-50 °С	0.45 MPa	1.80 MPa	
ニート	-	0	0	176.8	131.8	174.6	84.3	47.1	
10	0.90	10	15	38.4	54.0	51.6	128.9	102.8	
17	0.79	10	15	53.7	63.9	68.0	127.2	97.6	
現行材 ^(a)	_	0	15	71.4	47.2	73.3	133.5	92.6	

表 5-3 各種樹脂の熱特性

(a) PP-タルク材料

図 5-4 各樹脂の TMA 曲線

図 5-5 各樹脂の温度-たわみ曲線 (a)荷重 0.45 MPa、(b)荷重 1.80 MPa

5.3.6 マテリアルリサイクル性

マテリアルリサイクル、ケミカルリサイクルおよびサーマルリサイクルによる プラスチックスの有効利用は新しい社会システムとして注目されているサーキュ ラーエコノミーにおける重要課題である。セルロースナノファイバーは、繊維幅 がナノレベルのため、アスペクト比を考えると、数ミクロンの長さがあれば補強 用繊維としては十分であると考えられる。このことから、樹脂成形体を数ミリの サイズまで粉砕してもセルロースナノファイバーの長さ方向への切断はほとんど 無く、マテリアルリサイクル可能な材料であると考えられる。特に、PPや HDPE と いったオレフィン系樹脂は加工温度がセルロースの熱変性温度より十分に低く、 溶融混練時の熱劣化が少ないと考えられる。セルロースナノファイバーは焼却も 容易で残灰も少なく、最終的にはサーマルリサイクルできることから、環境負荷 の少ない材料といえる。今後、社会的関心が、CO₂排出の少ない、持続型資源に基 づく材料に対してますます向いていく行くことを考えると、マテリアルリサイク ルが容易であることはセルロースナノファイバーの重要な特性といえる。このこ とから、京都プロセスで大量に製造した CNF 強化バイオ PE についてマテリアルリ サイクル性を評価した。結果を図 5-6 に示す。

射出成形後(RO)の試験片を粉砕し(R1)、混練後(R2)に、再度、粉砕(R3) し、混練を行った。この工程ごとに、射出成形で、都度、サンプルを成形し曲げ弾 性率、曲げ強度、衝撃強度を評価した。比較としてガラス繊維強化 PP(GP20/PP)、 アセチル化 CNF 強化 PP(AcCNF10/PP)の結果も示している。なお、AcCNF10は 10wt% のアセチル化 CNF を添加したことを、GP20は 20wt%のガラス繊維を添加したこと を示している。また、BioPE+PA はマスターバッチ製造に解繊助剤として PA6 を用 いていることを示している。

ガラス繊維強化材料は、リサイクルを繰り返すと弾性率、強度共に低下することがわかる。特に、強度低下が顕著である。同様の傾向は衝撃特性でも見られる。 これに対して、CNF 強化 PP では、リサイクルによる弾性率、強度は認められない。 一方、本事業で大量製造した CNF 強化バイオ PE は曲げ弾性率で最大 20%程度、曲 げ強度で最大 10%程度低下した。PA6 をマスターバッチに使用した材料では 200°C を越える温度で混練をしているが、バイオ PE とアセチル化 CNF で製造している材 料は 200°C を越えておらず、混練時の熱劣化の影響は考えにくい。比較として示 した CNF 強化 PP 材料は実験室の装置も用い、小規模で製造していることを考える と、スケールアップをして試作を行った際の混練過程で膨潤薬剤が残留している 可能性がある。次年度は、混練時に完全に膨潤剤を除去する様、混練過程での改良 が必要といえる。

R1:粉砕→R2:混練→R3:粉砕→R4:混練

図 5-6 マテリアルリサイクルにおける強度特性変化

5.4 本章のまとめ

本章では、CNF 強化バイオ PE の社会実装を見据えたスケールアップ試作の検討 結果について報告した。小スケールでの試作結果に基づき決定したバイオ PE の強 化条件(CNF のアセチル変性度 1.0 程度、CFN10%、 タルク 15wt%)をもとに、生産 速度 20 kg/h で 60 kg を生産した強化樹脂は小スケールで試作した場合と同等の 機械的強度および熱特性を示し、CNF 強化バイオ PE の社会実装に向けた大量生産 が可能であることが確認できた。また、CNF 強化バイオ PE は、マテリアルリサイ クル可能な素材であることを示すことができた。

第6章 実装検討:金型を用いたエアコンケース試作と評価

6.1 調査の目的

植物原料からなるバイオポリエチレン(PE)とセルロースナノファイバー(CNF) からなるオールバイオ材料(添加剤を除く)を用いた試験片の特性評価およびエ アコンケースの試作を行い、エアコンケースに要求される特性(成形性、面剛性、 VOC 等)の評価を実施した。

6.2 材料評価項目および製品要求特性

表 6-1 に材料評価項目および製品要求特性を示す。エアコンケースにおける主 要な要求特性は大型・薄肉・複雑形状を成形できる成形性および面剛性に影響す る曲げ弾性率である。また植物由来性の CNF 材料の特徴から、臭気・揮発性有機 化合物(VOC)の量や法規遵守の観点からの燃焼性は変化点の大きさから最優先で 評価すべき特性である。本年度は材料評価項目のうち流動性(溶融粘度)、曲げ弾 性率および VOC について評価を行った。燃焼性については上記 3 つの要求特性を 満足した後に評価することとした。

材料評価項目	製品要求特性	要求値 (考え方)
流動性(溶融粘度)	成形性	現行PP-タルク材同等レベル
曲げ弾性率	面剛性	現行PP-タルク材同等レベル
VOC	VOC	現行PP-タルク材同等レベル
燃焼性	FNVSS適合	現行PP-タルク材同等レベル

表 6-1 材料評価項目および製品要求特性

また評価には植物由来原料を用いたバイオ PE に 10wt%の CNF を配合したバイオ PE-CNF 10% (HS1911-11) (以後、PE-CNF10 と称する)、バイオ PE に 10wt%の CNF と 20wt%の PA6 を配合したバイオ PE+PA6-CNF 10% (HS1911-12) (以後、PE+PA6-CNF10 と称する)の2種類を用いた(表 6-2)。

表 6-2 評価材料

材料	サンプルロット	特記
バイオPE-CNF10%	HS1911-11	_
バイオPE+PA6-CNF10%	HS1911-12	PA6を20wt%配合

6.3 材料の評価結果

6.3.1 流動性(溶融粘度)評価

材料組成が射出成形時の流動性に与える影響を明らかにするため、樹脂材料の 溶融粘度を評価した。評価にはキャピラリーレオメーター(東洋精機製作所製 キャピログラフ-1D)を用い、表 6-3の評価条件で実施した。

表 6-3 流動性(溶融粘度)評価条件

項目	詳細						
試験装置	キャピラリーレオメーター(東洋精機製作所製 キャピログラフ1D)						
試験温度	180, 190, 200, 210℃						
押出速度	1~500mm/min						
ノズル	L=30mm, D=1mm, 流入角度=180度						
材料前処理	80℃×10H, 真空乾燥						

バイオ PE-CNF10 およびバイオ PE+PA6-CNF10 は現行材料である PP-タルクより も高い粘度(せん断速度:1200sec⁻¹)を示した。また実施者にてエアコンケースで の成形実績のある PP-CNF10 よりも高い粘度を示した。一方で、樹脂温度を 10°C 高 くした 200°C とすると PE-CNF10 材料の粘度は PP-CNF10 と同等レベルまで低下で きることが分かった(図 6-1)。10°C 樹脂温度を上げることで PE-CNF10 は PP-CNF10 に近い溶融粘度にできることから、エアコンケースが成形できる可能性は十分に あると考えられる。そこでエアコンケース成形トライには本材料を用いることと した。しかしながら後述する VOC 低減の観点からは成形樹脂温度の低下が求めら れることから、一層の流動性改良が必要と考える。流動性改良の手法には PE の低 分子量化などが挙げられる。一方で PE+PA6-CNF10 は PP-CNF10 の 2 倍近くの高粘 度を示しており、このままでは成形できる可能性は低いと考えられる。原因とし て PP よりも融点の高い PA6 の併用が挙げられる。図 6-2 には DSC 法による融点の 測定結果を示すが、PA6 の融解ピークが 220°C 付近に確認できることから、成形温 度では PA6 は未溶融の状態であり、そのため粘度が高くなっていると考えられる 以後は PE-CNF 材料に対象を絞り評価を行った。

図 6-1 流動性(溶融粘度)評価結果

図 6-2 PE-CNF10 および PE+PA6-CNF10 の DSC チャート

6.3.2曲げ弾性率評価

PE-CNF10の成形時の樹脂流れと直角方向(TD方向)の曲げ弾性率を明らかにするため、平板状の試験片(縦150mm×横150mm×厚2mm、図6-3)を射出成形にて作成し、切削にて曲げ試験片(縦130mm×横10mm×厚2mm)を得た(図6-4)。結果を以下に示す。

図 6-3 平板試験片形状

図 6-4 曲げ試験片形状

図 6-5 に示すように、TD 方向における曲げ弾性率は PP-タルク材が 3.0GPa であ るのに対し 2.2GPa であった。曲げ弾性率が狙いを下回った要因として、パルプの 解繊・分散が不十分であったことが考えられる。図 6-6 に SEM 観察結果を示すが、 数十µm サイズのパルプも認められ、PE 中へのパルプの解繊・分散が不十分であっ たことが確認できた。これより補強効果の高いナノサイズの CNF の存在量が少な いため、期待した補強効果が発現しなかったものと思われる。また TMA 法による 成形時の樹脂の流れ方向(MD 方向)および流れと直角方向(TD 方向)の線膨張係 数評価結果を図 6-7 に示すが、MD および TD の線膨張係数において差があること から成形時の樹脂の流れにより、CNF が流れ方向に配向した結果、TD 方向の弾性 率が低くなったと考えられる。

図 6-6 PE-CNF10 のパルプ解繊・分散状態

社会実装に向けては曲げ弾性率の向上が必要だが、その手段としては、パルプの解繊・分散の改良による CNF 量の増量が挙げられる。加えて、他フィラーとの 併用や、構造面では板厚アップによる剛性アップや CNF の異方性低減が挙げられる。

6.3.3 VOC

PE-CNF10 が VOC 発生量に与える影響を明らかにするため、曲げ弾性率評価と同様に平板状の試験片(縦150 mm×横150 mm×厚2 mm)を射出成形にて作製し、成形直後における VOC を評価した。評価は 80mm×100mm の試験片を 65°C、2 時間加熱処理し、発生したガス成分を GC/MS にて分析した。得られたチャートの面積から各成分の発生量を算出した。また成形樹脂温度が VOC 発生に与える影響を明らかにするため、成形樹脂温を 190°C から 180°C に低下させて試験片を作製し、上記と同様に VOC を評価した。

PE-CNF 材料の成形品は VOC を多く含み、アセトアルデヒドは PP-タルク材の約 10 倍発生することが分かった(図 6-8)。また成形樹脂温度を 10°C 低下させること で VOC 発生量は低下し、アセトアルデヒドについては約 20%減少した(図 6-9)。

図 6-8 PP-タルクと PP-CNF10 の VOC 発生量

図 6-9 PP-CNF10 の成形温度と VOC 発生量の関係

PE-CNF10の成形品からは多量の VOC 発生が確認された要因として成形時の熱履 歴やせん断ストレスにより、CNF 中のセルロース構造や PE 樹脂との親和性付与の ための化学修飾部の劣化による VOC の生成が考えられる。成形樹脂温を 10°C 下低 下させた際には上記のうち熱ストレスが低減されたことで、劣化が抑制され、VOC 発生量が抑制されたと考えられる。

VOC 低減にむけては、CNF の耐熱性改良及び成形樹脂温度の低減による対策が必要である。

6.4 バイオ PE-CNF10 のエアコンケースの成形成立性確認

6.4.1 成形成立性の検証

試験片を用いた評価結果から PE-CNF10 は現行の PP-タルク材よりも粘度が高い ことが判明したため、成形不良(ショート部生成など)や CNF の配向の影響によ る寸法変化の異方性(反り)が懸念される。本年度はエアコンケース部品のうち、 ブロワケース(アッパー)を用いて(図 6-11)、"成形性"や"反り"への影響に ついての検証を行った。現行の PP-タルクを PE-CNF10 との比較材料として用い、 成形テストは PP-CNF10 での成形実績がある樹脂温度 190°C で行った。結果を以下 に示す。

図 6-10 エアコンケース全体図

図 6-11 ブロワケース (アッパー)

6.4.1 成形性

PE-CNF10 は粘度が高く成形不良(ショート部生成など)を発生する可能性があるため、現行の成形温度190°Cで射出速度を変化させて成形性の改善を検討した。 その結果、以下のことを確認できた。

- ・PP-タルク(現行材)と同じ条件で PE-CNF10 で成形するとショートが発生した。(表 6-4 条件①、図 6-12)
- ・PE-CNF10 でも射出速度を高くすると、ショートがなく製品形状の成形が可能 なことを確認した。(表 6-4 条件②、図 6-13)
- ・PE-CNF10を物理発泡を用いて成形したが、射出ピーク圧はほとんど変化しなかった。(表 6-4条件③、図 6-15)
- PP-タルク材は同一成形条件で射出ピーク圧は半分以下であった。(96 MPa vs.
 186 MPa)

表	6-4	成形テス	F	条	'牛
1	0 1	12/1///////		<u>/\ </u>	

	条件 No.	成形 方法	ガス種	ガス量	射出温度	射出t°-り圧	射出速度 (最大値)	成形可否
				[wt%]	[℃]	[MPa]	[mm/s]	
PE- CNF10	1	ソリッド成形	-	-	190	186	50	(4-eć) ×
	2	ソリッド成形	-	-	190	186	70	O(ショートなし)
	3	発泡成形	CO ₂	2	190	181	75	O(ショートなし)
PP- タルク	4	ソリッド成形	-	-	190	96	50	○(ショートなし)
	5	発泡成形	CO ₂	2	190	133	160	○(ショートなし)

側面視

◯ :ショ−ト発生部位

図 6-12 成形条件①のサンプル外観

条件④

図 6-13 サンプル外観 左:条件②、右:条件④

図 6-14 通常成形(ソリッド)時の射出波形

6.4.3 VOC

製品サンプルでも VOC の評価を行った。表 6-4 における条件②の評価結果を図 6-16 に示すが、試験片の結果と同様に VOC 量は多く、アセトアルデヒド量につい ては 0.10 μ g/g(試験片: 0.08 μ g/g)と PP-タルクの 0.01 μ g/gに比べて約 10 倍以上発生していることが分かった。

図 6-16 製品成形サンプルの VOC 発生量

PE-CNF10を用いた場合、射出速度を上げることで成形性は改良し、ショート部のないブロワケース(アッパー)を作成することができた。ただし、エアコンケース部品にはブロワケース(アッパー)よりも大型形状部品や薄肉・複雑形状部品があるため、エアコンケース部品すべての成形性を満足するには型構造や成形条件の改良に加え、材料面の成形性向上(低粘度化など)が必要と考える。

また、得られたブロワケース(アッパー)からも多量の VOC の発生が確認できた。成形面の VOC 低減手法としては、より低い樹脂温度での成形が挙げられる。しかしながら、射出ピーク圧が高く、設備能力上これ以上の低温成形は困難であった。VOC 低減の観点からも PE-CNF10 の低粘度化が必要と考える。

6.4.4 発泡成形時の後膨れ

製品の軽量化は走行時まで考慮したトータルのLCAを改良する上で重要である。 製品の軽量化として発泡成形は有効な手法の1つであるが、エアコンケースの量 産工程はハイサイクル工程であり成形時の冷却時間が非常に短いことから、発泡 成形時には後膨れと呼ばれる外観不良が懸念される。後膨れは金型から製品を取 り出した後に製品表面が膨れてしまう現状であるが、これは樹脂内部に溶融した ガスの発泡圧力が樹脂強度よりも大きくなるために発生する。試験片評価から PE-CNF10 は PP-タルク(現行材)と比べ曲げ弾性率が低いことから後膨れがしや すいと考えられるため、後膨れへの影響について検証した。

表 6-5 成形テスト条件

	成形方法	ガス種	ガス量	射出温度	金型温度	
			[wt%]	[℃]	[°C]	
PE-CNF10	発泡成形	C O 2	2	190	40	
PP-タルク	発泡成形	CO ₂	2	190	40	

PP-タルクに対し PE-CNF10 で成形したものでは後膨れがやや発生しやすく、冷却時間を 35 秒から 40 秒への延長が必要であった。後膨れ発生有無の境界となる 製品表面温度は PP-タルクで 90°C 前後、PE-CNF10 で 80°C 前後であった。以下に、 冷却時間を変化させた際の後膨れの発生状況を示す。

(PP-タルクは図 6-17~図 6-22、PE-CNF10 は図 6-23~図 6-25)

表 6-6 冷却時間による後膨れ発生状況

	冷却時間[sec]							
	10	15	20	25	30	35	40	
PE-CNF10	_	_	_	_	×	×	0	
PP-タルク	×	×	×	×	×	0	_	

<判定> 〇: 膨れ無、×: 膨れまたは内部圧力による白化有り

冷却時間10秒

"膨れ"の発生あり

図 6-17 現在材_冷却 10 秒

冷却時間12秒

"膨れ"の発生あり

図 6-18 現在材_冷却 12 秒

冷却時間20秒

"膨れ"の発生あり図 6-19 PP-タルク_冷却 20 秒

"膨れ"の発生あり図 6-20 PP-タルク_冷却 25 秒

"膨れ"の発生あり図 6-21 PP-タルク_冷却 30 秒

"膨れ"の発生なし 図 6-22 PP-タルク_冷却 35 秒
冷却時間30秒

"膨れ"の発生あり図 6-23 PE-CNF10_冷却 30 秒

冷却時間35秒

"膨れ"の発生あり図 6-24 PE-CNF10_冷却 35 秒

"膨れ"の発生なし図 6-25 PE-CNF10_冷却 40 秒

冷却時間40秒

PP-タルク(現行材)と PE-CNF10 の比較では製品形状の同一部位で後膨れが発生しており、形状的要因による熱のこもりが原因と考えられるため、冷却構造の 観点から改良を進める。一方で、当初の想定通り、PE-CNF10 は曲げ弾性率が低い ことで後膨れしやすかったと考えられることから材料面においても弾性率を向上 させる物性改良が必要と考える。

6.4.5 反り

試験片評価から PE-CNF10 は CNF の配向による異方性を示すことから製品形状で は成形後の反りが懸念される(図 6-26)。成形サンプルの形状測定を行い、反り の発生状況を評価中である(20 年度に詳細報告を実施予定)。

図 6-26 PE-CNF10 の寸法測定サンプル

6.5 本章のまとめ

PE-CNF10%材料については成形性の支配因子である溶融粘度は 10°C 上げること でエアコンケースで実績のある PP-CNF10%材料と同等レベルにすることができ、エ アコンケースを作製することが可能であった。機械物性の要求特性である曲げ弾 性率(TD 方向)は2.2 GPaであり、現行の PP-タルク材料(3.0 GPa)より低かっ た。CNF の更なる解繊・分散性向上に加え、CNF 量の増量等を検討していく。 PE-CNF10%材料の揮発性有機化合物(VOC)の量は、現行材料の約 10 倍であったた め、CNF(化学修飾部を含む)の耐熱性向上及び成形温度の低減を検討していく。 PE-CNF10%を用いた製品の成形では、射出速度を上げる必要があったものの、 ショート部のない製品を作製することができた。ただし、エアコンケース部品に はさらに大型形状部品や薄肉・複雑形状部品があるため、型構造や成形条件改良 に加え、材料面の成形性改良(低粘度化など)が必要と考える。

第7章 CNF 強化バイオ PE のライフサイクルアセスメント(LCA)

7.1 目的と調査範囲の設定

7.1.1 調査の目的

CNF 強化バイオ PE はその原材料がすべて植物由来であり、従来の化石資源由来 PP 系素材を代替することで脱化石資源および脱炭素化への寄与が期待される。た だし、その製造プロセスにはエネルギーや資源が投入されており、ライフサイク ル全体で脱炭素化が達成されうることを確認することが必要である。また、CO2排 出量削減を達成可能な条件の特定や、より低排出な製造プロセスおよびサプライ チェーンを設計することも重要である。

上記の要件を考慮しながらライフサイクルアセスメント(LCA)に基づき CO₂ 排 出量を評価する。特に、現状においては、CNF 強化バイオ PE はパイロットスケー ルでの製造が行われている段階であり、今後の技術開発によるエネルギー効率や 資源消費効率などの改善の可能性も考慮して評価を実施する。

7.1.2 機能単位

CNF 強化バイオ PE の主な適用先として本プロジェクトでは自動車部品を対象と する。LCA における機能単位は「自動車部品として必要な機能を満たす」こととす る。令和元年度は、CNF 強化バイオ PE による試作の対象であるエアコンケースを 評価対象製品とした。比較対象は従来製品であるタルク強化 PP を材料としたエア コンケースとする。

ここで、LCA において材料間比較をする場合には質量を基準とした比較が行われ ることも多いが、タルク強化 PP 製品と CNF 強化バイオ PE 製品の比較において は、CNF との複合化による軽量化と強靭化の効果により、自動車部材として要求さ れる機能を満たすために必要となる樹脂の質量を低減できる可能性があるため、 自動車部材 1 基あたりでの比較が必要となる。一方で、単位質量あたりでの評価 は、他の自動車部材や、他分野の製品の評価のために汎用的に活用できる基礎的 データとして重要であるため、基準フローを下記の2 通り設定することとした。

(1) 樹脂 1kg あたり

(2) 自動車部材1基あたり(令和元年度はエアコンケース)

初年度においては、様々な配合比の CNF 強化バイオ PE 樹脂および、これを用い たテストピースやエアコンケースを試作し、物性評価を進めており、適用する配 合比を模索している段階であるため、令和元年度においては「(1) 樹脂 1kg あた り」の評価を行うこととする。自動車部材として要求される機能を満たすために 必要な樹脂量が特定された段階で「(2) 自動車部材1 基あたり」の評価も実施す る。併せて、LCA から得られる知見に基づいて、逆算的に温室効果ガス排出削減を 達成可能な物性および樹脂量を明らかにしていくアプローチも必要と考えられ、 各参画機関で相互にフィードバックを行いながら試作と評価を進めることも検討 していく。

7.1.3 システムバウンダリ

図 7-1 に本プロジェクトで評価対象とする従来材料(タルク強化 PP)および新 規材料(CNF 強化バイオ PE)による成形品のライフサイクルフローを示す。

図 7-1 従来材料(タルク強化 PP)および新規材料(CNF 強化バイオ PE) による成形品のライフサイクルフロー

図の左側が従来材料であるタルク強化 PP を素材とした成形品のライフサイクル フローであり、化石由来 PP およびタルクの製造プロセスを含む。右側が開発対象 である変性 CNF 強化バイオ PE を素材とした成形品のライフサイクルフローであ り、バイオ PE および変性パルプの製造プロセスを含む。変性パルプは混練の過程 でバイオ PE 中に分散しながら解繊され、CNF となる。従来材料、新規材料ともに 混練プロセスでは、フィラーを比較的高濃度に含んだマスターバッチ(MB) 混練を 経る場合があり、その場合は成形に用いる濃度まで基材樹脂によって調製を行う 希釈プロセスが追加される。MB 混練も希釈も機械的機構はほぼ同じであり、同一の装置で行う場合もある。

上記のようにして製造された複合樹脂ペレットを用いて、成形プロセスによっ て部品もしくは製品が製造される。例えばエアコンケースでは射出成形が適用さ れる。自動車部品の場合、これらが車体に組み立てられ、使用される。一定期間の 使用(自動車の場合は走行)、回収を経て、廃棄される。従来材料、新規材料とも にリサイクルシステムは確立されていないが、リサイクルが可能となった場合の 効果も検討対象とする。

7.1.4 評価指標

本事業の目的に基づき、温室効果ガス(GHG)排出量(CO₂等量)を評価指標とする。エネルギー起源 CO₂と非エネルギー起源 CO₂をそれぞれ定量化し、特にエネル ギー起源 CO₂の削減が可能であることを検証する。

7.1.5 素材代替による影響の考慮

タルク強化 PP を CNF 強化バイオ PE によって代替することで、原料調達から素 材生産までは材料自体が異なるので、製造プロセス自体も異なるものとなるが、 下流の各ライフサイクルステージにおいても以下のような影響が考えられる。

- (1) 両製品間の混練・成形工程における消費エネルギーや生産性の差異
- (2) 新規材料の軽量化・強靭化効果が得られる場合の使用段階への影響
- (3) リサイクル特性の違い

概念図を図 7-2 に示し、各論点に関して以下に詳細を述べる。

図 7-2 素材代替による下流ライフサイクルステージへの影響

- (1) タルク強化 PP と CNF 強化バイオ PE では、粘度などの物性が異なり、混練や成 形工程において、両製品間で消費エネルギーや生産性(例えば生産速度)に差 がある可能性がある。また、混練、成形の両プロセスにおいて、樹脂を加熱し 流動可能な状態にしながら操作を行う。その温度条件が異なる場合、例えばよ り高温の条件では、ヒーターによる消費エネルギーは増加しうるが、流動性が 高くなることによってトルクが下がり、モーター動力による消費エネルギーが 低減される可能性もある。
- (2) CNFの特長である軽量性と樹脂強化の程度によって、使用段階の CO₂ 排出量に も削減効果が得られる可能性がある。強靭化が達成される場合、部材の薄肉化 によって樹脂使用量そのものを減らすことができる。さらに、軽量化が達成さ れる場合、自動車部材であれば走行時の燃費改善効果も得られ、燃料消費量の 削減による CO₂ 排出削減効果も期待できる。
- (3) アセチル化変性パルプの混練による CNF 強化 PE は、テストピースでの実験で は溶融と成形を繰り返しても強度特性の劣化が起きにくいことが確認できて いる。これは化石由来 PE を基材とした複合樹脂での実験結果であるが、バイ オ PE でも同様の効果が得られることを確認する必要がある。また、現状では 部材から部材へのリサイクルシステムはほとんど存在しないが、これが可能と なった場合の効果についても検討する。

これらの事項は部材試作と物性評価を通して明らかにしていく必要がある。初 年度はデータ収集が可能な範囲に限りがあるため、まずは仮定に基づく初期的な 試算を行い、各要素による効果を検討する。

7.2 インベントリ分析

7.2.1 インベントリデータの収集

図 7-1 に示したように、タルク強化 PP はタルクと化石資源由来 PP を材料と し、CNF 強化バイオ PE は変性パルプとバイオ PE を材料として製造される。これら の材料のインベントリについては市販の LCI データベースおよび既往の文献から データを得ることができた。表 7-1 に各材料のインベントリデータ入手元の一覧 を示す。

評価対象	材料	データ入手元
タルク強化 PP	化石由来 PP	LCI データベース IDEA version 2.2, 産業技 術総合研究所, 産業環境管理協会 ¹⁾

表 7-1 各材料のインベントリデータ入手元

	タルク	LCI データベース IDEA version 2.2, 産業技 術総合研究所,産業環境管理協会 ¹⁾
CNF 強化 バイオ PE	バイオ PE	Kikuchi, Y., Hirao, M., Narita, K., Sugiyama, E., Oliveira, S., Chapman, S., Arakaki, M. M., Cappra, C. M.; <i>J. Chem. Eng. Japan</i> , 46 (4), 319-325 (2013) ²⁾
	変性パルプ	平成30年度環境省委託業務「セルロースナノ ファイバー活用製品の性能評価事業委託業 務(社会実装に向けた CNF 材料の導入実証・ 評価・検証~自動車分野~)」(2018) ³⁾

化石由来 PP およびタルクは一般的に普及している材料であり、LCI データベース IDEA¹¹から各 1kg の材料製造にかかるインベントリを抽出した。

バイオ PE は第2章にも記載の通り、本プロジェクトで材料として使用してい るブラスケン社製バイオ PE について過去に LCA が行われている²⁰。土地利用変化、 余剰バイオマスのエネルギー利用、トラッシュ焼却などについて複数シナリオ の CO₂排出量を比較しているが、ここでは試算としてブラジルの平均的な条件に基 づいて算出された値を採用した。変性パルプについては、既往の環境省事業³⁾にお いて京都プロセスへの適用を前提とした評価が行われている。変性パルプの原材 料には、入手のしやすさや技術の成熟度を考慮して製紙パルプを想定しており、 製紙工場のプロセスモデル 4)を用いてインベントリが推算されている。アセチル 化に関しては、実験室的な製法から工業的な製法へのスケールアップを想定し、 プロセスシミュレーションに基づいたインベントリ推算が行われている。実験室 的製法では n-メチルピロリドン (NMP) が溶媒として用いられているが、量産プロ セスでは削減または回避したい物質であるため、反応物である無水酢酸を量論比 よりも大幅に多く投入することで溶媒としても機能させることを検討している。 未反応の無水酢酸やセルロース中の水分との反応によって副生する酢酸を蒸留に よって分離し、プロセス内再利用や外販を行えるようにしている(図 7-3)。未反 応無水酢酸および副生酢酸の回収の方法及び程度によって、無水酢酸消費量や消 費エネルギーが変動しうるが(図 7-4)、今回は CNF 強化バイオ PE の導入による CO。 削減のポテンシャルを評価するため、C0。排出量が最小となるケース (図中 Case3) の値を採用した。

混練および成形にかかる消費エネルギーは、令和元年度は既往の環境省事業の 報告書³⁾から抽出した値を用いることとしたが、令和2年度には実測値に基づい た評価を行う計画である。

図 7-3 アセチル化プロセスのスケールアップ(既報³⁾に基づき作成)

図 7-4 未反応無水酢酸および副生酢酸の回収と再利用による CO₂排出削減効果(既報³⁾に基づき作成)

以上のように収集した各材料の製造プロセスおよびそれらの混練プロセスのインベントリデータを使用し、強化樹脂におけるフィラーの配合率を設定することで、強化樹脂1kg生産にかかるインベントリおよび CO2 排出量を計算した。

7.3 結果および解釈

強化樹脂 1kg あたりのライフサイクル CO₂ 排出量(LC-CO2)の試算結果を図 7-5 に示す。タルクの配合率は現行製品に基づき、20wt%とした。CNF の配合率は、その影響を比較できるように 20wt%と 10wt%の場合を仮定した。

この結果はエネルギー起源および非エネルギー起源の合計 LC-CO2 で表示をして いるが、タルク、PP、CNF、バイオ PE の各材料の製造プロセスおよび混練プロセス による CO₂ 排出は全てエネルギー起源である。製造、混練以外に関しては、化石 PP の排出分は石油由来であることからエネルギー起源 CO₂ にカウントされ、バイオ PE と CNF の排出分は非エネルギー起源であるが、吸収分と相殺される。以上から、 エネルギー起源と非エネルギー起源の合計 LC-CO2 とエネルギー起源 LC-CO2 は結 果的に同じ値となる。

この試算では、タルク強化 PP に対し、CNF 強化バイオ PE の LC-CO2 は、CNF 配 合率 20wt%の場合で 46%削減、10wt%の場合で 54%削減になると計算された。CNF の 製造時 CO₂ 排出原単位はバイオ PE よりも大きいため、CNF 配合率が低いほうが低 排出であることがわかる。物性値の要求を満たす範囲で CNF 配合率を低く抑えた ほうが、単位質量あたりの LC-CO2 の面では有利になると言える。ただし、CNF の 添加による強度や軽量性の向上によって自動車部材一個あたりでの樹脂使用量を 低減できる可能性もあり、一概に CNF 量を押さえたほうが良いとは判断できない。 これらの関係性の分析については令和 2 年度の検討事項とする。

図 7-5 強化樹脂 1kg あたりの LC-C02 試算結果

次に、エアコンケースー個あたりの製造に必要となる樹脂質量が、タルク強化 PP と CNF 強化バイオ PE で同じであると仮定した場合の、部材 1kg あたりの LC-CO2 試算結果を図 7-6 に示す。機能単位の設定の項で述べたように、機能等価である 部材 1 個あたりの評価を目指すが、開発される製品の重量が現状では確定してい ないため、1kg の部材を想定した試算を行った。CNF 配合率は 10wt%の場合を想定 した。

また、ここでは部品から部品へのリサイクルが可能となることを想定し、参考 値としてリサイクル品 LC-CO2 の試算を行った。市販 LCI データベース¹⁾上の「再 生プラスチックペレット」のデータを参照した。このデータには廃プラスチック の回収と溶融、ペレット化までが含まれており、想定されるリサイクルシステム に近いと判断した。ペレットから製品への成形プロセスは新規品の製造と同等で あると仮定した。

図 7-6 成形品およびリサイクル品の LC-C02 試算結果

この試算においてはリサイクル品のLC-CO2は新規品の1/3程度となると試算され、リサイクルの有効性が示唆される結果となった。ただし、この試算には、上記の通り、回収および再成形に多くの仮定を含んでいることに留意する必要がある。 リサイクルシステムの構築にかかる負荷も計上していない。また CNF 強化バイオ PE の樹脂製造までの評価においても検討すべき事項が残されている。混練プロセ スと成形プロセスは可能な限り実測値を採用した評価に置き換えていく計画であ る。また、変性 CNF 製造におけるアセチル化の DS は、参照した報告書で対象とし ていた PA6 (ポリアミド 6) との混練を前提としたものであり、PE との混練に最適 な DS で反応させた場合には反応する無水酢酸の量が異なることや反応時間が異な ることが想定され、その条件に合わせたインベントリを再計算することが望まし い。

リサイクルにおける CO₂の排出および固定の解釈についても引き続き検討が必要である。図 7-6 では燃焼による CO₂排出量と、植物原料の成長時 CO₂吸収量は新規品に全て配分した形で表記している。実際の時間軸に沿って配分をするのであれば、焼却時の CO₂排出はリサイクル後に発生するものであり、リサイクル側に配分するという解釈も可能である。n 回のリサイクルが可能である場合に、植物原料による CO2 吸収を新規品に、焼却時 CO₂排出を n 回目のリサイクルにそれぞれ配分した場合の概念図を図 7-7 に示す。さらに、これらを n+1 回の製造および使用に対して均等に配分するという解釈も可能である。これらについては、既往のプラスチックリサイクルの LCA 事例の調査などを通して、配分方法を検討していく予定である。

図 7-7 複数回リサイクルにおける吸収時 CO₂と焼却時 CO₂の配分の例

7.4 実機における消費電力測定

7.4.1 コンパウンドメーカーにおける CNF 強化バイオ PE の混練装置の消費電力測定

2019 年 11 月 20 日に、コンパウンドメーカーにおける混練装置での消費電力測 定を実施した。部材成形に実際に使用する CNF 強化バイオ PE のペレット製造を対 象とした。測定機器にはクランプ式のパワーメーターを使用し、ロガーにて 1 秒 ごとの消費電力を記録した。後述の実験室規模の装置よりも吐出量が大きく、両 者を比較することでスケールアップ効果も検討できると考えられる。測定データ の分析を進めており、次年度に実施する LCA に反映する予定である。 7.4.2 実験室規模の混練プロセスにおけるタルク強化 PP と CNF 強化バイオ PE の 比較

2020 年 2 月 20 日に、京都市産業技術研究所に設置されている混練装置を用い て、タルク強化 PP と CNF 強化バイオ PE の混練を行い、それぞれの消費電力を測 定した。7.4.1 と同様に、測定機器にはクランプ式のパワーメーターを使用し、ロ ガーにて 1 秒ごとの消費電力を記録した。これにより、従来材料と新規材料での 混練プロセスにおける消費エネルギーの差異を明らかにする。測定データの分析 を進めており、次年度に実施する LCA に反映する予定である。

7.5 本章のまとめ

以上のように、従来材料であるタルク強化 PP と新規材料である CNF 強化バイオ PE について、令和元年度は入手可能なデータに基づいて LC-C02 の試算を行った。 植物由来材料への転換による LC-C02 の削減効果が期待できる試算値となった。次 年度では、部品試作および物性評価の結果を反映し、軽量化や強靭化の効果を考 慮した LCA を実施する。これらに向けた基礎的な検討を行うことができた。

また、実測値に基づく LCA の実施に向けて、実機調査と消費電力測定を行った。 この測定結果からタルク強化 PP と CNF 強化バイオ PE の物性による加工性の違い が LC-CO2 に及ぼす影響を明らかにしていく。

リサイクルによる LC-CO2 削減効果に関しても初期的な試算を行った。部品から 部品へのリサイクルを実現するためには社会的なリサイクルシステムの構築が必 要となるが、LC-CO2 削減効果が期待される。併せて、原料植物が吸収した炭素の 固定期間を長期化できるメリットもあり、複数回リサイクルをした場合の LC-CO2 の算定方法についても検討を続ける。

<参考文献>

- 1) LCI データベース IDEA version 2.2, 産業技術総合研究所, 産業環境管理協 会
- 2) Kikuchi, Y., Hirao, M., Narita, K., Sugiyama, E., Oliveira, S., Chapman, S., Arakaki, M. M., Cappra, C. M.; *Journal* of Chemical Engineering Japan, 46 (4), 319-325 (2013)
- 3) 平成 30 年度環境省委託業務「セルロースナノファイバー活用製品の性能評価 事業委託業務(社会実装に向けた CNF 材料の導入実証・評価・検証~自動車 分野~)」(2018)
- 4) Naofumi Miyata, Yasunori Kikuchi, Masahiko Hirao, Proceedings on the 9th International Conference on EcoBalance (2010)

第8章 令和元年度 CNF 強化バイオ PE 実証事業のまとめ

令和元年12月9日、令和2年1月24日、2月10日に開催の全体会議におい て、第4章~第7章で報告の内容を議論し、今後の材料設計に伴い必要となるバ イオPEグレード情報の整理、流通量、コストに関する予測、バイオPEの市場予 測を踏まえ、アセチル化 CNF 強化バイオ PE 樹脂のコスト試算を行い、エアコン ケース用樹脂品としての性能とコストについて検討した。その結果、自動車では カーエアコンが有望な用途であることを確認するとともに、カーエアコン以外の 用途として、エアクリーナケース、ドアトリム、メーターパネル・ハウジング、 ランプハウジングにおいて現 PP 樹脂材料を CNF 補強バイオ PE 材料に置き換えら れる可能性があることを見出した。それを踏まえ、次年度は自動車用エアコン ケースに加えエアクリーナケースにおいて現行のタルク添加 PP 材料を京都プロ セスで製造したアセチル化 CNF 強化バイオ PE に代替することによる GHG 削減効 果の実証を行うこととした。

おわりに

今年度は、事業初年度として京都プロセスによる CNF 強化バイオ PE の製造と 性能評価を小スケールおよびスケールアップした実用スケールで行い、現行タル ク強化 PP 材と性能比較して、そのエアコンケースへの適用の可能性を検討し た。その結果、現行材と同等の機械的特性で、より高い耐熱特性が得られるなど 期待を上回る成果が得られた。また、マテリアルリサイクルが可能な素材である ことも明らかとなった。一方で、実大のエアコン部材の成形評価からは CNF 強化 バイオ PE 材の流動性が現行材より劣り、成形品の一部に膨れが生じること、ア セトアルデヒドを主とした VOC が現行材の 10 倍近く発生することなど、課題も 明らかとなった。LCA 評価において、アセチル化 CNF 強化 PE 材は、現行のタルク 強化 PP 材に比べ CO₂排出量(GHG 排出量)が約半分まで低減できること、マテリ アルリサイクルを行うと、CO₂排出量がさらに大きく低減できることが示された ことから、次年度は上記の課題を解決し、京都プロセスにより製造する CNF 強化 バイオ PE が現行材に比べ GHG の削減に効果があることを実証したい。