- ・常設型海底受振ケーブル(OBC)による微小振動、自然地震観測
- ・海底地震計(OBS)による微小振動、自然地震観測
- ・陸上設置地震計による微小振動、自然地震観測

また、上記ベースラインデータを取得し、圧入井掘削時の地下水採取を行った際には、地質モデルを改良し、地化学反応も考慮した CO_2 長期挙動シミュレーションを行う。なお、 CO_2 長期挙動シミュレーションを実施する際には、浸透率分布の地球統計学を利用した感度分析の他、スレショルド圧力の低減を含めた感度分析の実施も検討する。

② 弹性波探查

弾性波を用いたモニタリング手法には、弾性波探査のほかに坑井間の弾性波トモグラフィ探査がある。しかし、本実証試験では貯留層における CO_2 の拡がりが弾性波トモグラフィ探査の測定限界を超えることが想定されるため、同探査は実施せず、2D弾性波探査および3D弾性波探査を実施する。

一般的に、 CO_2 を貯留層内に圧入することによる弾性波速度の減少と振幅の変化を捉えることにより観測時点における CO_2 の分布域を把握することが可能となる。弾性波速度や振幅について圧入前のデータ(ベースラインデータ)を取得し、 CO_2 の圧入開始後に同様の手法で観測を行い、結果を比較することでそれらの変化の把握が可能となる。

また、地下構造を2次元的に把握することを目的に、2 D弾性波探査では、図2.2-14に示すように海底にOBCを直線状に敷設する。2 D弾性波探査の調査位置(OBCを敷設して観測を行う測線位置)は、滝ノ上層T1部層と萌別層砂岩層の両圧入地点直上を通過する直線とする。3 D弾性波探査では、複数のOBCを海底に平行に敷設することで、地下構造を3次元的に把握する。3 D弾性波探査は、2009年の3 D弾性波探査調査結果をベースラインデータとし、CO2の圧入開始以降は2009年の3 D弾性波探査の範囲について定期的に探査を実施する(図2.2-15)。2 D弾性波探査については、ベースラインデータ取得ための探査を圧入前に実施し、圧入開始以降は、3 D弾性波探査実施時期の間を補完する形で探査を実施する。

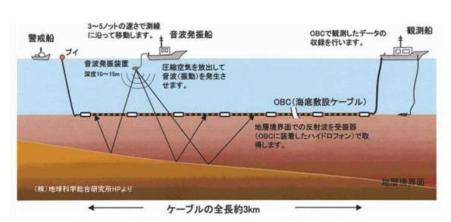


図 2.2-14 弾性波探査作業概念図 (海底敷設ケーブル方式)

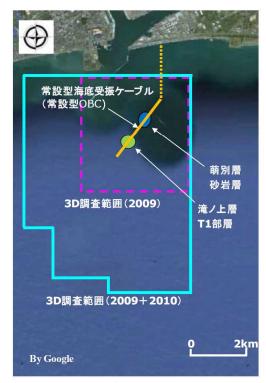


図 2.2-15 2 Dおよび 3 D弾性波探査の調査範囲

③ 微小振動、自然地震のモニタリング

観測井内には複数の3成分受振器(上下動、水平2成分)を、貯留層の直上の海底には OBC(2D弾性波探査と兼用)を、貯留層の直上の海底を含む数ヶ所には高感度の地震 計 (OBSおよび陸上設置地震計)をそれぞれ設置し、微小振動と自然地震の連続観測を 実施する(図 2.2-16、図 2.2-17 参照)。

国内外での研究成果によれば、貯留層近傍において CO_2 の圧入に起因する微小振動が発生する可能性がある。図 2.2-17 に示す配置の観測機器により、萌別層砂岩層と滝ノ上層 T 1 部層において CO_2 の挙動に関連して発生する微小振動を検知し、その振源位置を決定する。特に、滝ノ上層 T 1 部層の圧入予定地点西側約 2km にある断層を十分に観測できるような測定システムを構築する。

また、これらの観測機器により自然地震を観測し、震源位置の決定と地震規模の把握を行い、自然地震が貯留した CO_2 等に与える影響について検証する。自然地震に関しては、防災科学技術研究所のHi-net(図 2. 2-18 参照)の観測データを利用することにより、実証試験地点を含む広い範囲の自然地震の活動を把握することが可能となる。

なお、実証試験計画地点の東方 20~30km には活断層である石狩低地東縁断層帯南部が 分布する。この活断層分布域で発生する自然地震のデータを捕捉する Hi-net 等の既設の地 震観測網があるが、これに加えて、石狩低地東縁断層帯南部などにおける地震活動を把握 できるように地震計の設置を検討する。

以上を含め、必要十分な範囲をカバーし、最適かつ経済的な地震観測網を構築する。 ベースラインデータを取得するために、微小振動と自然地震の連続観測は、圧入開始約 1年前から開始する。

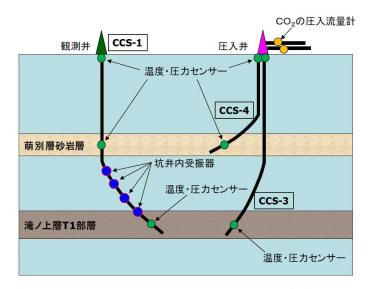
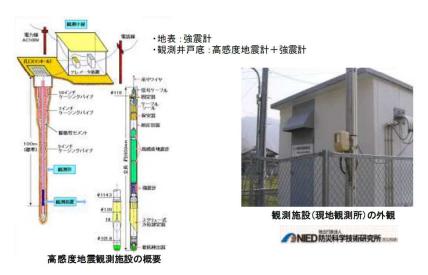



図 2.2-16 圧入井・観測井におけるモニタリング概念図

図 2.2-17 微小振動、自然地震観測機概略配置図

(防災科学研究所の高感度地震観測網 Hi-net: 防災科学技術研究所が運営している地震動の観測システムで、全国に観測点を配置し、緊急地震速報の発信にも活用されている。) 図 2.2-18 陸上設置地震計による自然地震観測システムの事例

(3) 圧入中モニタリング

 ${\rm CO}_2$ 圧入中のモニタリングに関しては、安全に ${\rm CO}_2$ 地中貯留が実施されていることを確認することが最も重要な目的である。圧入中のモニタリングでは、 ${\rm i}$) 圧入した ${\rm CO}_2$ の

挙動を観測し、ii) 貯留層からの CO_2 の漏洩を検知することで、計画通りに CO_2 の圧入および貯留が安全かつ安定的に実施されていることを確認する。また、iii) モニタリングにより得られたデータと CO_2 長期挙動予測シミュレーション結果とを比較して、地質モデルの改良を図る。

また、これらのモニタリングの結果、仮に異常が検知された場合は、2.3 に示す対応を とる。

以下に、圧入中に実施するモニタリング項目を示すとともに、図 2.2-19 にモニタリングの概念図を示す。

- a 連続測定·観測項目
 - ・圧入井坑底における温度・圧力測定
 - ・圧入井坑口における温度・圧力、アニュラス圧力、CO2圧入量測定
 - ・観測井坑底における温度・圧力測定
 - ・観測井坑口における温度・圧力、アニュラス圧力測定
 - ・観測井内における微小振動、自然地震観測
 - ・OBSによる微小振動、自然地震観測
 - ・OBCによる微小振動、自然地震観測
 - ・陸上設置地震計による微小振動、自然地震観測

上記観測井はCCS-1坑を改修するものであるが、より観測精度を高める観点から、必要に応じて追加観測井を掘削する。

b 定期的に実施する項目

- · 2 D 弹性波探查
- · 3 D 弹性波探查

なお、貯留層総合評価の結果をふまえて、弾性波探査の実施時期に関しては、各貯留層の貯留量(累積圧入量)が同探査に適切な量に達した時点から実施する。また、滝ノ上層T1部層と萌別層砂岩層という深度の異なる2層のそれぞれに CO_2 を圧入するため、2層の貯留層における CO_2 の挙動を正確に把握するには、上位層(萌別層砂岩層)に圧入された CO_2 が下位層(滝ノ上層T1部層)からの弾性波の情報に与える影響をシミュレーションし、その結果に基づく適切な圧入ポイントの選定が必要である。

図 2.2-19 圧入中のモニタリング概念図

(4) 圧入後のモニタリング

 CO_2 圧入後(圧入運転終了後)は、引き続き貯留層内における CO_2 の挙動を把握し、安定的に CO_2 が貯留されていることを確認するため、圧入中と同様に以下のモニタリングを実施する。

- ・圧入井坑底における温度・圧力測定
- ・圧入井坑口における温度・圧力、アニュラス圧力測定
- ・観測井坑底における温度・圧力測定
- ・観測井坑口における温度・圧力、アニュラス圧力測定
- ・観測井内における微小振動、自然地震観測
- ・OBSによる微小振動、自然地震観測
- ・OBCによる微小振動、自然地震観測
- ・陸上設置地震計による微小振動、自然地震観測
- · 2 D 弹性波探查
- · 3 D 弹性波探查

なお、実証試験終了後も、海洋汚染防止法の規定に基づきモニタリングを継続する。圧 入井と観測井の廃坑については、その後のモニタリング継続の方法と内容を必要性と有効 性の見地から検討の上、実施の可否を決定する。

2.2.4 海洋系におけるモニタリング計画

(1) モニタリング計画に関する考え方

圧入前のモニタリングは、海洋汚染防止法の規定に基づき、ベースラインとしての海洋環境調査を1年通して行い、 CO_2 漏出を想定した海洋環境への事前影響評価を実施する。また、自然界由来の CO_2 とCCS起因の CO_2 を判別するための同位体比の測定等、追加的な調査項目の実施も検討する。

圧入中のモニタリングは、 CO_2 漏出を想定した海洋環境への事前影響評価をふまえた上で、圧入前に実施したベースライン調査における調査範囲、調査項目、調査頻度等を基本として実施する。

圧入後のモニタリングは、圧入前に実施したベースライン調査における調査範囲、調査 項目、調査頻度等を基本とするが、圧入中におけるモニタリング結果をふまえて、調査範 囲、調査項目、調査頻度等について見直しを行う。

(2) 圧入前

海洋汚染防止法では圧入前に貯留対象海域のベースライン調査を実施し、 CO_2 漏出を想定した海洋環境への事前影響評価を実施することが義務付けられている。事前影響評価のポイントは、i)妥当性のある CO_2 漏出シナリオの設定、ii)貯留対象海域における海洋環境の現況を把握するためのベースラインの調査、ii)港湾内流況を反映できるモデルの構築、およびiv) $i\sim iii$ をふまえた想定漏出 CO_2 の海水拡散シミュレーション評価とそれに基づく海洋生物への影響評価である。図 2.2-20 に海洋汚染防止法に基づいて実施する事前影響評価に関するフローを示す。

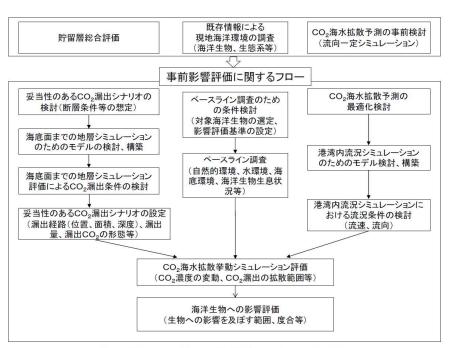


図 2.2-20 海洋環境への事前影響評価に関するフロー

① 妥当性のある CO_2 漏出シナリオの設定

廃坑井等の人造物の破損事故等からの CO_2 の漏出は、各種安全対策等により防止されると考えられることから、 CO_2 漏出シナリオの設定にあたっては、断層からの CO_2 漏出が最も可能性が高いシナリオと想定される。このため、ここでは断層からの CO_2 漏出を想定する

具体的には、「苫小牧地点における貯留層総合評価」に基づき、確認されている断層および存在可能性のある未検出の断層に対する検討、評価を行い、地質構造、堆積層、岩石物性等のデータに基づき、海底面までの地層シミュレーションモデルを検討、構築する。その上で、地層シミュレーション評価により CO_2 漏出条件を検討する。

地層シミュレーション評価の結果に基づき、海底面への漏出経路(位置、面積、深度)、漏出量、漏出 CO_2 の形態等の CO_2 漏出シナリオを設定する。

② ベースライン調査

ベースライン調査は、環境省「特定二酸化炭素ガスの海底下廃棄の許可の申請に係る指針」(以下、「環境省指針」という。)に基づいて実施し、圧入前の貯留対象海域の海洋環境の現況を把握する。

調査範囲は、海洋生物および生態系の広がりならびに事前検討における CO_2 海水拡散予測結果等を考慮して範囲を設定する。

調査項目は、環境省指針に基づいて設定する。

調査頻度は、季節変動を受けると考えられる流況、水環境および海洋生物については4回/年(四季)を原則とし、季節変動を受けにくいと考えられる海底環境等の項目については1回/年とする。また、深さ方向の測点は、温度躍層や密度躍層の季節変動を考慮して選定する。表 2.2-4にベースライン調査の計画概要を示す。

区分		項目	方法	深さ方向の測点	頻度
流況		・流向、流速	係留	表層・底層	4回/年(四季)
	水質	・水温、塩分、温度躍層・密度躍層の有無		表層・中層・底層	(同/年/冊子)
水環境		・CO2濃度指標:全炭酸濃度、アルカリ度 ・水素イオン濃度	採水		4回/年(四季)
		・有害物質の濃度:硫化水素、重金属類		表層·底層	4回/年(四季)
海底環境	底質	・CO ₂ 濃度指標:全炭酸濃度、アルカリ度	採泥	海底	1回/年
		・有害物質の濃度:硫化水素、重金属類	休ル 海底		1回/年
海洋生物		・魚類等遊泳動物の生息状況 ・底生生物の生息状況(石灰質の殻の有無による種を分類)等	採水、ネット、採泥 既存情報	(層別なし)	4回/年(四季) (採泥は1回/年)
生態系		・藻場、干潟、脆弱な生態系 ・重要生物種の産卵場・生育場等	既存情報		1回/1年
海洋の利用等		・レクリエーション、海中公園、漁場、航路 等	既存情報		1回/1年

表 2.2-4 ベースライン調査の計画概要

③ 湾岸内流況を考慮したモデルの構築

ベースライン調査により得られた港湾内の流況を用いて、港湾内流況シミュレーションモデルを検討し、構築する。その上で同シミュレーション結果をふまえて、 CO_2 海水拡散挙動シミュレーションに用いる流況を予測する。

④ CO₂海水拡散挙動シミュレーション

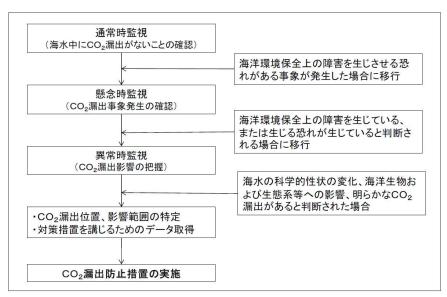
 ${\rm CO}_2$ 海水拡散挙動シミュレーションには、 ${\rm CO}_2$ 漏出シナリオによる漏出経路、漏出量等、ベースライン調査により得られた水環境の現況、港湾内流況シミュレーション結果をふまえて得られた流況を使用する。 ${\rm CO}_2$ 海水拡散挙動シミュレーション結果により ${\rm CO}_2$ 漏出の範囲等を推定する。

⑤ 海洋生物への影響評価

海洋生物への影響評価の対象とすべき海洋生物の選定、海洋生物に影響を与える評価基

準を設定した上で、 CO_2 海水拡散挙動シミュレーションから得られた CO_2 濃度および影響範囲に基づき、評価対象海洋生物への影響度合い等を評価する。

(3) 圧入中


圧入中のモニタリングは、原則としてベースライン調査と同様の調査範囲、調査項目、 調査頻度等により実施することを基本とし、定期的な監視により漏出の有無を確認するた めのデータを取得する。表 2.2-5 に圧入中におけるモニタリングの計画概要を示す。

なお、圧入前における CO_2 の海洋環境への事前影響評価を考慮して、必要に応じて調査範囲、調査項目、調査頻度等の計画を見直す。

深さ方向の測点 項目 区分 方法 頻度 流況 ·流向、流速 係留 表層·底層 4回/年(四季) ・水温、塩分、温度躍層・密度躍層の有無 4回/年(四季) 表層·中層·底層 ·CO2濃度指標:全炭酸濃度、アルカリ度 採水 水素イオン濃度 水環境 有害物質の濃度:硫化水素、重金属類 表層·底層 4回/年(四季) 気泡有無の確認 サイドスキャンソーナー 底層 4回/年(四季) ・CO2濃度指標:全炭酸濃度、アルカリ度 1回/年 海底環境 採泥 海底 質 有害物質の濃度:硫化水素、重金属類 1回/年 採水、ネット、採泥 魚類等游泳動物の生息状況 1回/年 海洋生物 (層別なし) ・底生生物の生息状況(石灰質の殻の有無による種を分類)等 生態系および海洋の利用等 既存情報による調査を1回/5年(廃棄期間)

表 2.2-5 圧入中におけるモニタリングの計画概要

圧入中のモニタリングは、通常時監視、懸念時監視および異常時監視に区分され、海水中への CO_2 漏出の恐れの度合いによってより詳細な監視段階に移行する。図 2.2-21 に環境省指針が定める通常時監視、懸念時監視および異常時監視の移行フローを示す。

(「特定二酸化炭素ガスの海底下廃棄の許可の申請に係る指針」より抜粋) 図 2.2-21 圧入中のモニタリングにおける移行フロー

(4) 圧入後

圧入後のモニタリングでは、圧入中と同様に定期的な監視により CO_2 漏出の有無を確認する。

圧入後のモニタリングは、圧入中のモニタリングと同様に通常時監視、懸念時監視および異常時監視に区分され、海水中への CO_2 漏出の恐れの度合いによってより詳細な監視段階に移行する。

なお、圧入後のモニタリングは、圧入前におけるベースライン調査および圧入中におけるモニタリング結果に加えて、以下の点を考慮して調査範囲、調査項目、調査頻度等の見直しを検討する。

- 1) 環境基準が設定され、実測値が基準値を大きく下回っている項目
- 2) СО。濃度上昇に連動して変動を受ける可能性がない、あるいは極めて低い項目
- 3) CO_2 漏出の検出に適した項目の中、技術のブレークスルーにより経済的、効率的に測定可能となった項目

2.3 異常事態発生時の対応

実証試験の実施にあたっては、以下に例示する保安に関連する法令を遵守し、また、「CCS実証事業の安全な実施にあたって」の内容をふまえ、安全を確保し、事故・災害の発生を未然に防ぐように努める。

- ·海洋汚染防止法
- ・高圧ガス保安法
- · 労働安全衛生法

また、実証試験期間に発生し、CO₂の圧入運転、設備、周辺環境、人命あるいは人の健康等に多大な影響を与える事象である異常事態の発生に備え、圧入作業開始以前に異常事態発生時の対処を準備しておく必要があり、以下に取り組む。

2.3.1 異常事態の想定とその対処方法の確立 (保安規定の策定)

発生が予見される異常事態をリストアップし、それら異常が発生した場合にとるべき措置や異常発生を未然に防ぐために準備する内容を規定し(保安規定)、同規定の中で、保安管理体制の整備、保安に携わる人員の選任とその職務範囲の決定、異常事態の判別方法とその対処方法に関することを取り決める。保安規定及び保安管理体制については、想定外の地震も考慮し対応できるよう、適宜、見直しを行う。

2.3.2 保安設備の設置

遵守すべき関連法令を満たし、策定した保安規定に即した保安設備を設ける。その際は、 異常事態の規模や頻度、影響度を考慮し、必要に応じて遠隔操作が可能な保安設備や、複数のバックアップ設備の設置等の措置を講じる。

2.3.3 保安訓練の実施

異常事態が発生した際に、策定した保安規定に即して関係者が迅速に対応できるように、 定期的に保安訓練を実施する。また、訓練を通じて問題点の抽出および必要な改善措置を とる。

 CO_2 圧入中に想定される異常事態としては、主に以下が挙げられる。異常事態が発生した際には、図 2.3-1 に示す対応が求められる。ここに示した手順と関係法令をふまえて保安規定を策定する必要がある。その際は、想定される異常事態の内容を十分に検討し、より具体的な対策・措置を盛り込むことが必要である。

- CO2の大規模な漏洩、漏出
- 大規模な地震、津波の発生

・関係施設の事故や火災の発生

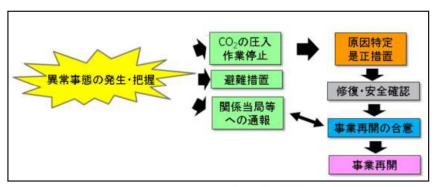


図 2.3-1 異常事態発生時の基本的対応

実証試験実施中に異常事態が発生・検知された場合は、CO2の漏出を回避するために、CO2圧入作業を直ちに中断する。その上で、人的被害の回避のための避難や設備に対する被害拡大防止の措置(火災時の消火活動等)を講ずる。また、同時に関係当局等に対して異常事態発生の通報を行い、周辺環境への影響拡大を防止する。

異常事態への対処終了後は、被害状況の把握、異常事態の原因特定、関係当局への情報 提供を行い、必要な修復を実施する。修復後は、安全確認を十分に行い、関係当局等との 間で試験再開に関する合意を得たのち、試験を再開する。

第3章 まとめ

3.1 実証試験計画の概要

3.1.1 CCSトータルシステム

- ・ CO_2 排出源: 苫小牧地点近傍の CO_2 排出源の内、技術的に比較的容易に CO_2 を分離・回収でき、かつ実証試験に対する協力が得られる 2 τ 所の製油所の水素製造装置 (D1-1 基地、D2 基地)を排出源とする。 CO_2 回収量はD1-1 基地が年間 $10\sim20$ 万トン程度、D2 基地が年間最大 5 万トン程度で、合計年間 $15\sim25$ 万トン程度 (排出源の操業状況等による)である。
- ・ CO_2 分離・回収 (D1-2基地): D1-1基地で水素製造装置から排出される CO_2 含有プロセスガスをD0基地に隣接するD1-2基地まで、2.5km の配管により移送し、 CO_2 を分離・回収する。
- ・ CO_2 液化・輸送(D2基地):D2基地では既分離の CO_2 を回収・液化し、13.3トン積タンクローリー計 6 台により、D0基地内の受け入れ設備まで約 80km 輸送する。
- ・ CO_2 圧入: DO 基地で 2 ϕ 所の排出源より輸送された CO_2 を受け入れ、海底下の 2 層の貯留層に対してそれぞれの圧入井(傾斜井)により CO_2 を圧入・貯留する。

3.1.2 圧入計画

貯留層は、沿岸域海底下の新第三紀の構造性帯水層である滝ノ上層T1部層(深度 2,400~3,000m) および非構造性帯水層である萌別層砂岩層(深度 1,100~1,200m) である。

滝ノ上層T1部層に対する圧入井(CCS-3)は、垂直深度 2,789m、水平偏距 4,103 m、垂直深度 2,789m、掘削長 5,570m、最大傾斜角 70° である。萌別層砂岩層に対する 圧入井(CCS-4)は、垂直深度 1,169m、水平偏距 2,911m、掘削長 3,520m、最大傾斜角 86° であり、いずれも高傾斜坑井あるいは大偏距(ERD)の坑井となる。

基本圧入計画は以下の通り。

- 1) 滝ノ上層T1部層
 - · 圧入期間: 3.5年
 - ・圧入レート:10万トン/年以上
 - ・圧入圧力:(坑口)最大 23MPa 程度、(坑底)最大 44MPa 程度
- 2) 萌別層砂岩層
 - · 圧入期間: 3.5年
 - ・圧入レート:5万トン/年以上

・圧入圧力: (坑口) 最大 10MPa 程度、(坑底) 最大 15MPa 程度

3.1.3 モニタリング

モニタリングの目的は以下に示す5項目であり、これらの目的に応じてモニタリングの項目、期間、頻度を設定している。

- 1) CO2の漏出、貯留層圧力等の異常の検知(貯留層モニタリング)
- 2) 圧入されたСО2の貯留層内での挙動把握(貯留層モニタリング)
- 3) モニタリングにより得られたデータをもとに貯留層モデルの更新、 CO_2 の挙動予測シミュレーションの精度向上(貯留層モニタリング)
- 4) CO2の圧入と微小振動の関連性検証(微小振動、自然地震モニタリング)
- 5) 海水中へのCO2漏出の検知(海洋系モニタリング)

 CO_2 の圧入前は、ベースラインデータの取得のために、2D弾性波探査、3D弾性波探査、微小振動、自然地震観測および海洋環境調査を実施する。

CO₂の圧入中・圧入後は、2D弾性波探査、3D弾性波探査、海洋環境調査を定期的に 実施するとともに、微小振動、自然地震観測と圧入井および観測井での温度・圧力の連続 測定・観測を継続する。

3.1.4 実施工程

EPC (設計・調達・建設) 期間約3.5年、設備運転・圧入期間3.5年、圧入後モニタリング期間2.5年を基本とし、わが国がCCS実用化の目標としている2020年までに試験を完了する。

3.2 実証試験成果の活用性、実用展開

本実証試験は、2 ヶ所の製油所の水素製造装置から CO_2 を分離・回収、輸送し、2 層の海底下帯水層に圧入する実証試験である。わが国で初となる分離・回収から輸送、圧入、貯留までのCCSトータルシステムでの大規模実証試験であることから、事業を通じて種々の技術的課題、安全性に関する課題等を検証し、将来のCCSの実用展開及び技術開発に貢献する。さらに、システム全体および個々の要素のコスト構造を明らかにし、それぞれの最適化を検討することにより、将来のCCS実施にかかるコスト低減に資するデータを提供する。

以下、要素毎に成果の活用可能性について示す。

3.2.1 技術的成果の活用可能性

(1) 分離 • 回収

高分圧 CO_2 下での省エネルギー型 CO_2 分離・回収プロセスを実証し、将来の石油精製、アンモニア製造、天然ガス精製、LNG製造、IGCCなどにおけるCCSのトータルシステム構築のための資とする。具体的には、以下が考えられる。

- 1) 省エネルギー型プロセスの分離・回収エネルギーを実測、解析することにより、エネルギーの削減手法を検討する。国際的な基準の制定状況も加味して、将来のCCSトータルシステムの最適化に向けた資料として活用する。
- 2) 実証設備の設計および運転実績をふまえ、実用設備のプロセス性能や長期運転性を 確保するための設備設計等に関する基本的な考え方をまとめる。

(2) 輸送

国内最大規模(5万トン/年)の車両輸送システムを運用することで、大規模液化輸送に係る管理手法をまとめ、将来の複数分散小規模排出源を集約したCCSシステムのための基礎データとして活用とする。

圧入基地の検討の過程では、圧入基地の設置場所を分離・回収基地から港湾を横断した地点とするケースについて、気体 ${\rm CO_2}$ の輸送パイプラインの概略設計を行い、パイプラインの敷設に係る技術的課題を検討した。結果的には、本実証試験計画では、圧入基地を分離・回収基地に隣接して設置することとし、パイプラインは敷設しないこととした。パイプラインは、将来の実用化段階における沿岸工業地域、港湾地域での ${\rm CCS}$ トータルシステムのためには必要不可欠な設備であり、更なる検討・検証が必要であるが、本検討結果はその基礎資料となる。

(3) 圧入

複数の排出源からの受け入れ、統合管理および圧入に関する技術の実証成果は、将来の複数排出源の統合管理によるCCSトータルシステムの実用化に向けた基礎資料となる。また、沿岸部にある陸上基地から沿岸海底下の貯留層 $\sim CO_2$ を圧入する際に必要となる大偏距坑井掘削技術(ERD)の実証成果は、わが国沿岸部における将来の大規模 CO_2 圧入のための基礎技術となる。

(4) 貯留・モニタリング

沿岸海底下の複数の帯水層貯留層に年間 15~25 万トンの CO $_2$ を安全かつ安定的に貯留できることの実証と、圧入時、圧入後の CO $_2$ の挙動を観測することによる貯留層の管理技

術の実証成果は、わが国における将来の沿岸域大規模 CO_2 地中貯留の基礎技術となる。また、モニタリングの内容、結果等の本実証試験に関する情報については広く提供し、CCSに対する国民の理解促進および社会的受容性の確保ならびに科学的知見の蓄積やCSSを含む関連技術の発展に役立てる。

3.2.2 将来の法制度化へ向けて

2020 年以降の実用化段階においては、民間事業者が商業ベースでCCSを実施することが可能になると考えられる。このため、本実証試験を通して得られる知見等を基に、必要に応じてCCSを実施する際に必要な法制度等を検討し整備する。

用語集

	用語 アニュラス アミンリポイラー アンチサージシステム 逸泥 遠心式圧縮機	ケーシングとチュービングあるいはケーシングとケーシングの間の環状の間隙。 CO2分離回収過程で、CO2を吸収したアミン溶液からCO2を取り出すために熱を加えるためのボイラー。 圧縮機における必要最低限の流量を確保するシステム。圧縮機流量の低下により、流量、圧力、回転速度が周期的に大きく変動して、正常な運転が不能となる事態を回避する。 坑井内の泥水が地層に流出し、坑内に戻らない状態。 ターボ型の圧縮機のうち外周部に吐出することで圧力を与える形式。 地下1,000m以上の深部にある帯水層に含まれる地層水は、一般に塩分濃度が高		
	アミンリボイラー アンチサージシステム 逸泥 遠心式圧縮機 塩水帯水層	CO ₂ 分離回収過程で、CO ₂ を吸収したアミン溶液からCO ₂ を取り出すために熱を加えるためのポイラー。 圧縮機における必要最低限の流量を確保するシステム。圧縮機流量の低下により、流量、圧力、回転速度が周期的に大きく変動して、正常な運転が不能となる事態を回避する。 坑井内の泥水が地層に流出し、坑内に戻らない状態。 ターボ型の圧縮機のうち外周部に吐出することで圧力を与える形式。 地下1,000m以上の深部にある帯水層に含まれる地層水は、一般に塩分濃度が高		
-	逸泥 遠心式圧縮機 塩水帯水層	り、流量、圧力、回転速度が周期的に大きく変動して、正常な運転が不能となる事態を回避する。 坑井内の泥水が地層に流出し、坑内に戻らない状態。 ターボ型の圧縮機のうち外周部に吐出することで圧力を与える形式。 地下1,000m以上の深部にある帯水層に含まれる地層水は、一般に塩分濃度が高		
i	遠心式圧縮機 塩水帯水層	ターボ型の圧縮機のうち外周部に吐出することで圧力を与える形式。 地下1,000m以上の深部にある帯水層に含まれる地層水は、一般に塩分濃度が高		
	塩水帯水層	地下1,000m以上の深部にある帯水層に含まれる地層水は、一般に塩分濃度が高		
:				
		地下1,000m以上の深部にある帯水層に含まれる地層水は、一般に塩分濃度が高いことから、飲料用あるいは工業用地下水を含む帯水層と区別するための呼称。		
:	オイルフリーターボ式圧縮機	潤滑に油分を用いないターボ型圧縮機。		
:	往復動式圧縮機	容積型圧縮機のうち、ピストンの往復運動による容積変化で圧縮する形式。		
	温度躍層	海洋中の水温は、一般に深さと共に減少していくが、その鉛直勾配が特に大きな 層。		
カ行	回転式圧縮機	容積型圧縮機のうち、回転するピストンとシリンダーの組合せで圧縮する形式。		
į	海底受振ケーブル(OBC)	地震計およびデータ転送装置を内蔵した海底に設置するケーブルで、Ocean Bottom Cable の略。長期間設置用に開発されたものは、常設型OBCとよばれ、長 期間にわたる地震動のモニタリングに適している。		
į	海底地震計(OBS)	海底に設置できるように設計された地震計。Ocean Bottom Seismographの略。		
	化学吸収法式	CO ₂ を分離回収する方法の一つで、吸収剤との化学反応によりCO ₂ を分離する方式。		
	活性アミン法	化学吸収法の吸収溶剤に、 $1\sim3$ 級アミンと CO_2 吸収促進剤との組み合わせを用いる方法。		
:	坑跡デザイン	傾斜井において掘削作業をスムースに行うために、坑井の最適な軌跡(坑跡)を設計する。		
1	傾斜井	掘削ターゲットの位置が坑口位置から水平方向に離れている場合、坑井をある深度から曲げてターゲットへ向けて掘削される角度を持った坑井。		
	ケーシング(CSG)	坑井掘削時に坑壁を保護するために設置する鉄製のパイプ。Casingの略。		
	構造性帯水層	本書では、伏せたお椀のような封じ込め構造(背斜構造)をなし、上位に浸透性の 低い遮蔽層を伴う帯水層をいう。		
i	港湾内流況シミュレーション	本書では、港や湾などの海岸や海底の形態を考慮して海水の流れを予測し、万が一、CO ₂ が海水中へ漏出した場合のCO ₂ の拡散をシミュレーションする技術のことをいう。		
サ行	サージ	圧縮機等で流量をしぼって運転した際に、振動と騒音を起こし、流量、圧力、回転速度が変動する現象。		
I	軸流式圧縮機	ターボ型の圧縮機のうち吸いこみと吐出する方向が同一方向の形式。		
,	シフト反応	一酸化炭素と水蒸気から二酸化炭素と水素を生成する反応。一酸化炭素含有ガスから水素を製造する場合、この反応を利用して触媒存在下で水蒸気を添加し、副生する二酸化炭素を分離することにより、水素を得る。		
,	シンセティックベースマッド	坑井を掘削する際に利用する泥水の1種で、潤滑効果などの特性を高めた合成有機化合物を用いた泥水。Synthetic Base Mudの略。(他にはWBM:Water Base Mud、OBM: Oil Base Mudがある)		
	スクリュー式の冷凍機	冷媒を昇圧するための回転軸がネジ状の形態である冷凍機。		
	セメンチング	ケーシング降下後に地層とケーシングの間隙にセメントを充填させる作業。		
	増角率	傾斜井の掘削における掘削深度あたりの傾斜の増加率のこと。通常は30m当たりの傾斜角度の増加分で表す。		
	操業管理技術	本書では、貯留層に対して、圧入時・圧入後の ${ m CO}_2$ 挙動を観測し、圧力とレートを的確に制御しながら圧入・貯留する技術の意。		

用語集-1

五十音	用語	説明	
タ行	帯水層	水を通しやすい地層で、孔隙や割れ目が地下水で飽和されたもの。	
	大偏距(ERD)坑井	一般に水平偏距と垂直深度の比が2以上の坑井。ERDはExtended Reach Drilling の略。	
	ターボ型圧縮機	圧縮機のうち、回転する翼型状の羽根によって気体に運動エネルギーを与えて圧力を加えるタイプ。	
	弾性波探査	地表や海中で振動(弾性波)を発生させ、地下の地層境界ではね返ってくる弾性波を計測することにより、地下の地質構造を知る手法のこと。反射法(弾性波)探査とも呼ばれる。	
	弾性波トモグラフィ	X線CTなどと同様な原理を利用した断層撮像法の一種で、弾性波を用いて地層の断面や物性を把握する手法。一般的には、P波の初動走時データが用いられる。	
	地質モデル	複雑な地下深部の地質状況を、単純化し模式化したものをいう。 問題にしている現象に対して必要なパラメーターを設定しシミュレーションを実施す る。そこから得られる結果を利用して、現象の把握、解決、予測を行う。	
	チュービング	坑井で地下の石油やガスを地上まで導く、あるいはCO2を地下に圧入するために、ケーシング内に設置される小口径のパイプ。	
	チリングクーラー	水分を凝縮分離等の目的で使用される、冷却水より低温の冷媒を用いた冷却器。	
	継手	パイプ類をつなぎ合わせるネジ部。	
	低圧フラッシュドラム(LPFD)	再生のために別途に低圧塔を設置し、減圧による吸収液からのCO2放散効果と、 再生塔からの熱を活用するシステム。LPFDはLow Pressure Flash Drumの略。	
	泥水比重	坑井掘削において、堀屑の除去や坑壁の安定の保持ために使用する泥水の比重。	
	ドラグ	坑井掘削時にパイプ類を坑井内へ降下または坑井内から引き上げる場合にパイプ と坑壁との間に発生する摩擦力。	
	ドリルパイプ	掘削時に、ビットに回転を伝達し、また、泥水を坑底まで送る掘削作業用のパイプ。	
	トルク	坑井掘削時に回転しているパイプ類と坑壁との間に発生する摩擦等によって生じる 回転方向の力。	
ハ行	パッカー	ケーシングとチュービングの間の環状の間隙を閉塞する装置。	
	非構造性帯水層	本書では、伏せたお椀のような明確な封じ込め構造を形成しないが、上位に浸透性 の低い遮蔽層を伴う帯水層をいう。	
	微小振動	荷重をかけたり、流体を圧入することにより、地層内で生ずる可能性のある極めて 徴小な振動。	
	ブースターポンプ	圧力を高めるために中継用に用いるポンプ。	
	物理検層	坑井掘削時に、各種のセンサーや測定器を坑内に降下させ、種々の物理量を測定する調査方法。	
	フレアスタック	プラントの運転時に発生する可燃性ガスを含んだ余剰ガスを、安全弁等を通して受入れ、燃焼処理する保安設備。	
	ベースライン	CO ₂ 圧入前の状態のデータのこと(Baseline)。ベースラインデータは圧入後のデータと比較することにより変化を知ることができるため、モニタリングでの基準データとなる。	
マ行	密度躍層	海水の密度は深さと共に増大していくが、その鉛直勾配の大きな層。	
ヤ行	遊離水	セメント硬化時に分離してくる、セメントの水和反応に必要とされる以外の水。	
	容積型圧縮機	圧縮機のうち、気体の占める空間の体積変化によって圧力を加えるタイプ。	
ラ行	漏洩	本書では、貯留対象とする貯留層からの移動をいう。	
	漏出	本書では、地中から大気または海洋への移動をいう。	

用語集-2

五十音	用語	説明	
英数	втс	API規格(American Petroleum Institute)の代表的なネジ Butress Thread Couplingの略	
	ccs	CO2の回収と貯留のこと。Carbon dioxide Capture and Storageの略。	
	CO ₂ 海水拡散シミュレーション	本書では、 $万が一、CO_2$ が海水中へ漏出した場合の CO_2 の拡散をシミュレーションする技術。	
	CO2挙動モニタリング	帯水層に貯留されたCO2の動きや拡がりの観測。	
	CO ₂ 濃度指標	海水中のCO₂濃度を直接測定できないことから、換算するために測定する全炭酸濃度、pH、全アルカリ度など。	
	CO ₂ 分離・回収	石炭ガス化ガス・化学合成ガス・天然ガスなどから、製品不純物としてのCO₂を分離して大気に放散する方法を分離と呼ぶ。帯水層にCO₂を貯留するには、これらのガスや燃焼排ガスからCO₂を分離して更に貯留用に回収する工程を分離・回収としう。	
	IGCC	石炭や重質油などを原料としたガス化複合サイクル発電のこと。Integrated Gasification Combined Cycleの略。	
	KOP	傾斜井を掘削する時に、坑井を曲げ始める深度。Kick Off Pointの略。	
	MD	坑井の掘削深度。Measured Depthの略。	
	PJ	Premium Jointの略。	
	Premium Jt	油井用ケーシングに使われるAPI規格(American Petroleum Institute)以外にあたる特殊なネジの総称。プレミアムジョイント。	
	PSA	物理吸着を利用して目的ガス中の不純物を除去する方式。Pressure Swing Adsorptionの略。水素製造装置等で用いる。	
	SGP	配管用炭素鋼管。Steel Gas Pipeの略。	
	TD	坑井の坑底深度。Total Depthの略。	
	TVD	傾斜井の場合の垂直深度のこと。True Vertical Depthの略。	
	VVVF	電圧と周波数を可変に制御できる電源。Variable Voltage Variable Frequencyの 略。	

用語集-3