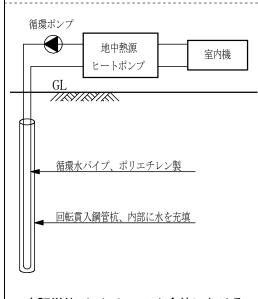
「川崎市 南河原こども文化センター」における地中熱利用空調システム JFE 鋼管株式会社/JFE スチール株式会社

実証番号 052-0901

環境省本技術及びその性能に関して、環境省等による 環境技術保証・認証・認可等を謳うものではありません。 実証事業 WWW.env.go.jp/policy/etv

本実証試験結果報告書の著作権は、環境省に属します。


〇 全体の概要

実証対象技術	「川崎市 南河原こども文化センター」における地中熱利用空調システム
環境技術開発者	JFE鋼管株式会社/JFEスチール株式会社
実 証 単 位	(A)システム全体
実 証 機 関	特定非営利活動法人 地中熱利用促進協会
実証試験期間	平成 21 年 8 月 1 日~平成 22 年 1 月 29 日

1. 実証対象技術の概要(原理)

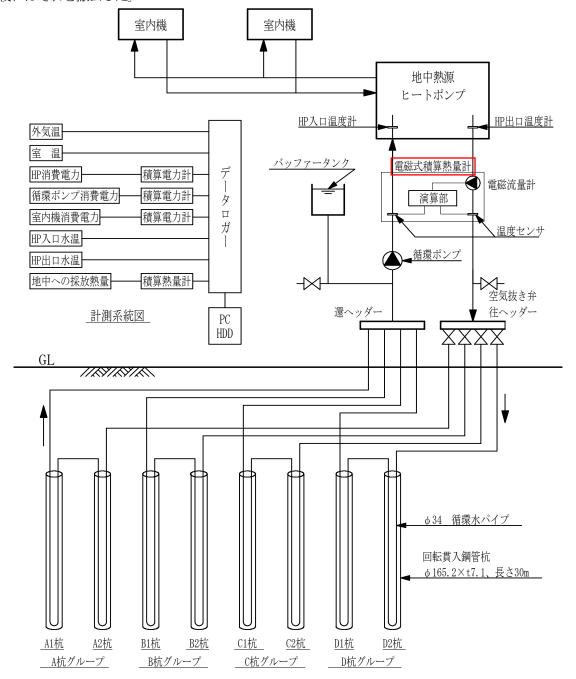
実証単位(A)システム全体における実証対象技術の原理(イメージ図を下図左に示す。)は、以下のとおりである。

- ・地中熱交換器として先端閉塞の回転貫入鋼管杭を利用した地中熱利用空調システムで、基礎杭兼用と 採熱専用杭の2種類がある。本実証対象技術は採熱専用杭である。
- ・鋼管杭内部には水を充填し、その中に熱媒を循環させるポリエチレン樹脂製循環水パイプを挿入し、 地中との熱交換を行う。熱媒として水(不凍液)を使用している。

①地中熱交換器(鋼管杭深さ30m×8本)の埋設位置 ②地中熱源ヒートポンプ

③室内機設置場所(2階集会室)

<u>実証単位(A)システム全体における</u> 実証対象技術が設置された「川崎市 南河原こども 実証対象技術の原理 文化センター」(実証試験実施施設) 外観


実証試験実施施設の概要は以下のとおりである。

施設名(住所)	川崎市 南河原こども文化センター(神奈川県川崎市幸区都町 74 番地 2)
施設の用途	川崎市こども文化センター条例で定められた「こども文化センター」
施設の規模	建築面積 200m²、RC2 階建て
室内機設置場所 (空調した部屋)	2階集会室 80m ² 、天井高さ 3.6m

2. 実証試験の概要

2-1. 実証対象技術の実証試験時におけるシステム全体構成

実証対象技術の実証試験時におけるシステム全体構成を下図に示す。なお、地中熱源ヒートポンプの 熱媒入口出口配管に、積算熱量計(下図では、電磁式積算熱量計と記載。)を設置し、本実証試験終了 後にはそれを撤去した。

実証対象技術の実証試験時におけるシステム全体構成

本実証試験のために設置した積算熱量計の仕様は以下のとおりである。

積算熱量計(所有者及び管理者は実証機関)

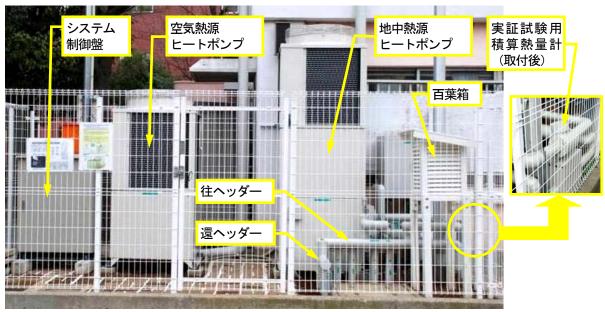
Marine Marine Harris Harris Harris Marine Ma									
製造者	型式	仕様	設置数量	備考					
愛知時計電機	TAV25	計量法特定計量器	1台	実証対象技術に					
株式会社		対象機種		平成21年7月31日取付					

「川崎市 南河原こども文化センター」における地中熱利用空調システム JFE 鋼管株式会社/JFE スチール株式会社

本実証対象技術で使用の地中熱源ヒートポンプは以下のとおりである。

空水冷式ビル用マルチ空調システム(ゼネラルヒートポンプ工業製)

地中熱源 ヒートポンプ* ¹


- ・ZP-XS280-T(10 馬力相当)、冷房能力 28kW/暖房能力 31.5kW
- ・外径寸法 W 890×D 890×H 2,545、
- ・圧縮機2台中1台停止して5馬力として使用

室内機

天井吊形 71 形、2 台使用、冷房 7.1kW/暖房 8.0kW

- *1:環境技術開発者と川崎市の共同研究*2で、冷暖房期間に地中熱源ヒートポンプと同性能の空気熱源ヒートポンプを同期運転し性能を比較したが、比較し評価することは本実証試験では対象外である。また、同期運転した空気熱源ヒートポンプには本実証試験で使用したものと同じ積算熱量計を設置していないため、本実証試験で測定されたデータとは単純比較はできない。
- *2:環境技術開発者と川崎市の共同研究の詳細については、詳細版参考を参照。

地中熱源及び空気熱源ヒートポンプ、そしてシステム制御盤等の設置状況の写真を下に示す。

2-2 実証試験の環境

実証試験の 実施環境	・実施施設:川崎市 南河原こども文化センター(2階集会室を空調) ・システムの適用建物の概要 規模:建築面積 200m²、RC2 階建て 空調対象: 2階集会室(広さ 80m²、天井高さ 3.6m) 実施施設の平面図及び機器配置図を詳細版本編の図 8 及び図 9(拡大図)に示す ・地質環境:地盤柱状図及びN値の分布を詳細版本編の図 10 に示す。 ・地下水の流速・流向: GL-4.8m の細砂層で北東方向に流速毎分 0.1cm 程度の流れ あり。
実証試験時の 使用状況	実証試験機関の施設の使用状況(運転モード、建物内での生活スタイル等) ・こども文化センターの利用時間:月〜土9:30〜21:00、日祝9:30〜18:00 ・空調設備の稼動時間:9:30〜18:00 (土日は稼動せず) ・生活スタイル:空調対象の2階集会室は、上記時間帯において、卓球や体操等のスポーツや映画鑑賞などに適宜使用される。 ・設定温度:冷房期間27℃/暖房期間20℃ (実証試験期間中も同じ設定温度) この設定温度はこども文化センター事務室で手動制御される。
井戸の深さ、 口径等	地中熱交換器としての鋼管杭の寸法等 ・ ϕ 165.2 \times t7.1 \times 深さ 30m、本数 8 本

2-3 実証項目の内容

実証単位(A)の実証項目は、下表のとおりシステム全体及び実証単位(C)で構成される。

実証単位(A)の実証項目								
システム全体の実証項目	実証単位(C)の実証項目							
	地中熱交換部全体の	a. 熱交換井の熱抵抗						
a. システムエネルギー効率 (APF) *1*2	実証項目* ³	b. 土壌部分の熱伝導率						
		c. 流量範囲						
1 次言中間の正性システンテライギー 技術		d. 熱伝導性						
b. 冷房期間の平均システムエネルギー効率 (COP) * ²	熱媒循環部の 実証項目* ⁴	e. 耐熱性						
(CO1)		f. 脆化温度						
		g. 耐腐食性						
c. システム消費電力 (1秒間における消費電力量 [W] を、冷房期		h. 寿命						
(1秒間における信負電力量「W」を、市房州 間中で平均したもの)		i. 腐食性						
		j. 粘性						
	熱媒の実証項目*4	k. 熱容量(比熱)						
d. 冷房期間の地中への排熱量の平均値*2 (1秒間における地中への排熱量 [J] を、冷房	然妹の夫証項日	1. 引火性						
期間中で平均したもの)		m. 毒性						
777119 1 9 9 12 9 27		n. 生分解性/残留性						

- *1: APF: Annual Performance Factor の略。システムエネルギー効率(COP)の年間平均値を表す。実証 試験要領(第1版)で示す APF は、厳密な年間平均値ではなく、年度毎の環境技術実証事業の運営上、 実証試験期間(最大7~8ヶ月程度)の平均値として定義している。
- *2:技術の性能の高さは「システムエネルギー効率 (APF 及び COP)」で評価され、この値が当該技術の性能の高さを必ずしも示すものでない。ヒートアイランド抑制に関する性能は、「冷房期間の平均システムエネルギー効率 (COP)」と「冷房期間の地中への排熱量平均値」の両値で評価される。
- *3:地中熱交換器部全体のサーマルレスポンス試験を行い、測定されたデータから算出する項目であるが、システム全体として施設がすでに完成しているため、サーマルレスポンス試験を本実証試験では行うことができない。そこで、実証試験要領(第 1 版)の8ページ【既存データ活用の特例措置】に定める条件を満たすかを検討した上で、既存の測定結果を転用した。
- *4:性能を証明する書類の写しを提出する項目であるが、性能の証明の担保として、その製造物の規格または製造業者の品質管理システム等を確認した。性能を証明する書類の写しは、詳細版添付資料参照。

【地中熱交換部全体の実証項目における既存データ活用の検討及び判断結果】

既存データとして提出された報告書のサーマルレスポンス試験は、環境技術開発者がジオシステム株式会社に観測及び報告書作成を平成 20 年 10 月に実施させたものである。本サーマルレスポンス試験の測定方法(初期温度測定の間隔、測定周期及び測定期間等)については以下の通りであり、実証試験要領(第 1 版) 28 ページに規定の【測定方法】 *5 により得られたもので、本実証試験要領(第 1 版)を満足しているので、妥当性・信頼性があると判断し、測定結果を転用した。

初期温度測定間隔	1m 間隔
測定周期	1分間隔
測定期間	8日間:10月20日16時5分~10月25日9時22分
その他備考	参考データとして熱電対を8個追加

^{*5:}講座「地中熱利用ヒートポンプシステム」温度応答試験の実施と解析; 九州大学大学院工学研究院 藤井光、日本地熱学会誌 第28巻 第2号 (2006) 準拠。

2-4 実証試験結果

システム全体の実証項目(熱的性能)

項目	結果	条件・備考
システムエネルギー効率(APF)* ¹ [—] (室内機を除く)	3.9	実証試験期間(8月~9 月の冷房試験期間及び 12月~1月の暖房試験期間のうち、空調システム 稼働日*2)において算出したAPF
システムエネルギー効率 (APF) *1 [—] (室内機を含む)	3.8	同上
冷房期間の平均システムエネルギー効率 (COP) *1 [—] (室内機を除く)	7.1	8月~9月の冷房試験期間のうち、空調システム 稼働日*2の COP
冷房期間の平均システムエネルギー効率 (COP) *1 [—] (室内機を含む)	6.5	同上
システム消費電力平均値[W]	2602	実証試験期間内の稼働時間における平均値
冷房期間の地中への排熱量平均値*1 [kW]	9.27	8月~9月の稼働時間における平均値

^{*1:}前ページの表に記載のシステム全体の実証項目参照。

地中熱交換部全体の実証項目(熱的性能)【既存データ活用の特例措置適用】

項目	結果	条件・備考
a. 地中熱交換井の熱抵抗[m·K/W]	0.074	既存データとして提出されたサーマルレスポンス試験の報告書*2から転用。
b. 土壌部分の熱伝導率 [W/ (m・K)]	1.70	同上

^{*2:} 本実証試験の申請前の平成20年10月20日~10月25日に実施されたサーマルレスポンス試験の報告書。前述の検討の上、測定結果を転用。詳細は、詳細版付録を参照。

熱媒循環部*3の実証項目(性能を証明する書類の写しからの転用)

項目	結果													
									DR-11	. (外径	2/肉厚	比1	1のパイプ)	
海正		流量	(G.P.M)		1	2	3	4	5	6	8			
c. 週正 流量 (上限		流量	(L/min)		3.8	7.6	11.4	15.1	18.9	22.7	30.3	熱ヒートポン		トポンプ協
		流速 (m/s)			0.11	0.21	0.32	0.43	0.53	0.64	0.86	会) のテキス の転記であり		
下限)					0.07	0.36	0.71	1.16	1.73	2.38	3.92			の実測値で
	出	典 Clos	sed-Loop/	Groun	d-Sour	ce He	at Pu	mp Sy	stem	s Insta	allatio	n G	uide (IGSH	PA)
i d. 暑	· 素材の熱伝導率 0.39 [W/m·K] 項目 e. 耐熱性 軟化点温度: 126℃						₹ : 126°C							
f. 脆	桅化温度 <-70℃ 項目 g. 耐腐食性 記載なし 項目				1	h. 寿命	記載なし							
	適正 流量 上限 下限)	道正 流量 上限 下限) 出 d. 素材 f. 脆化	ASTM 排呼び径: 流量 流量 上限 下限) 長さ 損失が 出典 Clos	ASTM 規格ポリエ呼び径: 1 inch、流量 (G.P.M)流量 (L/min)流速 (m/s) 長さ 100m 当損失水頭 (ml 出典 Closed-Loop/ d. 素材の熱伝導率 f. 脆化温度 <-70℃	ASTM 規格ポリエチレン呼び径: 1 inch、内径: 1 流量 (G.P.M) 流量 (L/min) 流速 (m/s) 長さ 100m 当たりの損失水頭 (mH ₂ O) 出典 Closed-Loop/Ground d. 素材の熱伝導率 0.39 f. 脆化温度 <-70℃ 耳	ASTM 規格ポリエチレン(PE3 呼び径:1 inch、内径:1.077ir 流量(G.P.M) 1 流量(L/min) 3.8 流速(m/s) 0.11 長さ 100m 当たりの損失水頭(mH ₂ O) 0.07 出典 Closed・Loop/Ground・Sour d. 素材の熱伝導率 0.39 [W/r f. 脆化温度 <-70℃ 項目	ASTM 規格ポリエチレン(PE3408) 呼び径:1 inch、内径:1.077inch(流量(G.P.M) 1 2 流量(L/min) 3.8 7.6 流速(m/s) 0.11 0.21 長さ 100m 当たりの 10.07 0.36 出典 Closed・Loop/Ground・Source He は d. 素材の熱伝導率 0.39 [W/m・K] f. 脆化温度 <-70℃ 項目 g. 而	ASTM 規格ポリエチレン(PE3408)パイス呼び径:1 inch、内径:1.077inch(27.4n 流量(G.P.M) 1 2 3 流量(L/min) 3.8 7.6 11.4 流速(m/s) 0.11 0.21 0.32 長さ 100m 当たりの 損失水頭(mH2O) 0.07 0.36 0.71 出典 Closed・Loop/Ground・Source Heat Put d. 素材の熱伝導率 0.39 [W/m・K] f. 脆化温度 <-70℃ 項目 g. 耐腐食	ASTM 規格ポリエチレン(PE3408)パイプの Simulation in Microsoft (PE3408)パイプの Simulation in Microsoft (PE3408) パイプの Simulation in Microsof	ASTM 規格ポリエチレン(PE3408)パイプの SDR-11呼び径:1 inch、内径:1.077inch(27.4mm) 流量(G.P.M) 1 2 3 4 5 流量(L/min) 3.8 7.6 11.4 15.1 18.9 流速(m/s) 0.11 0.21 0.32 0.43 0.53 長さ 100m 当たりの損失水頭(mH2O) 0.07 0.36 0.71 1.16 1.73 出典 Closed・Loop/Ground・Source Heat Pump Systems d. 素材の熱伝導率 0.39 [W/m・K] 項目 e.f. 脆化温度 <-70℃ 項目 g. 耐腐食性 記載	ASTM 規格ポリエチレン(PE3408)パイプの SDR-11(外径呼び径:1 inch、内径:1.077inch(27.4mm) 流量(G.P.M) 1 2 3 4 5 6 流量(L/min) 3.8 7.6 11.4 15.1 18.9 22.7 流速(m/s) 0.11 0.21 0.32 0.43 0.53 0.64 長さ 100m 当たりの損失水頭(mH2O) 0.07 0.36 0.71 1.16 1.73 2.38 出典 Closed・Loop/Ground・Source Heat Pump Systems Instant d.素材の熱伝導率 0.39 [W/m・K] 項目 e. 耐熱 f. 脆化温度 <-70℃ 項目 g. 耐腐食性 記載なし	ASTM 規格ポリエチレン(PE3408)パイプの SDR-11(外径/肉厚呼び径:1 inch、内径:1.077inch(27.4mm) 流量(G.P.M) 1 2 3 4 5 6 8 流量(L/min) 3.8 7.6 11.4 15.1 18.9 22.7 30.3 流速(m/s) 0.11 0.21 0.32 0.43 0.53 0.64 0.86 長さ 100m 当たりの損失水頭(mH₂O) 0.07 0.36 0.71 1.16 1.73 2.38 3.92 出典 Closed・Loop/Ground・Source Heat Pump Systems Installation d.素材の熱伝導率 0.39 [W/m・K] 項目 e. 耐熱性 f. 脆化温度 <-70℃ 項目 g. 耐腐食性 記載なし 項目	ASTM 規格ポリエチレン(PE3408)パイプの SDR-11(外径/肉厚比 1 呼び径:1 inch、内径:1.077inch(27.4mm) 流量(G.P.M) 1 2 3 4 5 6 8 流量(L/min) 3.8 7.6 11.4 15.1 18.9 22.7 30.3 流速(m/s) 0.11 0.21 0.32 0.43 0.53 0.64 0.86 長さ 100m 当たりの損失水頭(mH2O) 0.07 0.36 0.71 1.16 1.73 2.38 3.92 出典 Closed・Loop/Ground・Source Heat Pump Systems Installation Godd 表材の熱伝導率 0.39 [W/m・K] 項目 e. 耐熱性 f. 脆化温度 <-70℃ 項目 g. 耐腐食性 記載なし 項目	ASTM 規格ポリエチレン(PE3408)パイプの SDR-11(外径/肉厚比 11 のパイプ)呼び径: 1 inch、内径: 1.077inch(27.4mm)

^{*3:}ジオシステム株式会社が輸入・販売の「高密度ポリエチレン製U字管」*4で、Standard Pipe & Supply 社 (所在地:512 Indiana Ave, Wichita Falls, TX 76301, U.S.A.、TEL:1-940-767-5712) が製造し、製品名 (サイズ呼称) は、STANDARD (25A) である。

 $^{*^2}$: 冷房試験期間平成 21 年 8 月 1 日~平成 21 年 9 月 30 日から、空調停止日及び地中熱源ヒートポンプの停止日と稼働しなかった日を除いた日。

^{*4:} 熱循環部(U字管及び継ぎ手)は、それぞれ米国規格 ASTM D3035(外径が制御されるポリエチレンパイプの標準仕様)、継ぎ手は ASTM D2683(外径が制御されるポリエチレンパイプのための継ぎ手の標準仕様)、ASTM F1055(外径が制御されるポリエチレンパイプのための継ぎ手の融着タイプの標準仕様)を準拠していることを確認した。よって、提出された添付資料のデータを実証項目に転用した。詳細は、詳細版添付資料を参照。

熱媒*1の実証項目(性能を証明する書類の写しからの転用)

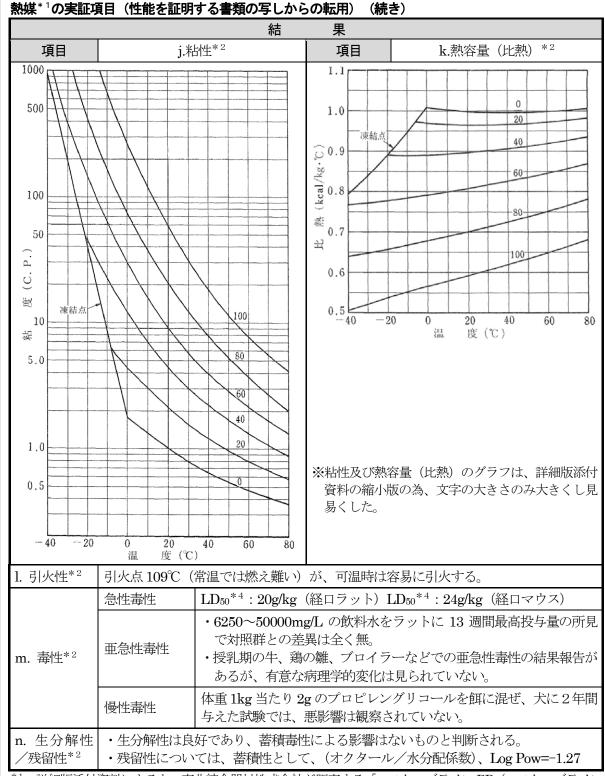
項目				結 果* ³				
	試験方法	JIS K 223	34(不凍液	b) に準拠。各金属間はポリエチレンスペーサーで絶縁。				
	条件	濃度	-20℃	スーパー50vol%, (レギュラー67vol%)				
			室温 スーパー30vol%, (レギュラー40vol%)					
			88°C スーパー30vol%, (レギュラー40vol%)					
		通気量	100ml/min (-20℃の場合、通気なし)					
		時間	336hr					
		X. SIL Y		腐食量 (mg/cm²)				

希釈液 水道水希釈 JIS 調合水希釈 温度 試験片 -20℃ -20°C +88℃ RT+88℃ RT-0.04-0.02-0.02-0.03銅 -0.05-0.02-0.01 ± 0.00 -0.02-0.01-0.01-0.02黄 銅 钃 -0.01+0.01-0.00-0.01-0.00-0.02+0.01-0.01+0.03鋳 鉄 -0.01+0.00-0.00ステンレス (SUS304) -0.00+0.01-0.01-0.01 ± 0.00 -0.00-0.02+0.03亜 鉛 ± 0.00 +0.12+0.17+0.19

長期腐食試験

i.

腐食


性 *2

試験方法	JIS K 2234(不凍液)に準拠。各金属間はポリエチレンスペーサーで絶縁。							
条件	濃度	スーパー30vol%, (レギュラー40vol%)						
	温度	88°C						
	通気量	100ml/min						
	時間	1000, 3000, 5000hr						

	腐	食 量 (mg	g/cm²)
試験片	1000hr	3000hr	5000hr
銅	-0.04	-0.06	-0.15
黄 銅	-0.02	-0.07	-0.14
鋼	-0.01	-0.04	-0.15
鋳 鉄	-0.00	+0.03	-0.17
ステンレス (SUS30)4) +0.00	+0.00	+0.00
亜 鉛	-0.03	-0.16	-0.24

- *1 :詳細版添付資料によると、東北綜合器材株式会社が販売する「エスケーブライン PP(エスケーブライン SKAF-2L, 10L, 18L)」であり、ショーワ株式会社 *2 が製造する「ショウブライン PP」の物性データと同じである。
- *2:ショーワ株式会社にて、品質マネジメントシステムの国際規格 ISO9001:2000 JSQA712 の認証を取得。 そしてショーワ株式会社の本社・工場において、環境マネジメントシステムの国際規格 ISO14001:2004 JSAE846 の認証を取得していることを確認した。よって、熱媒の製造者が作成した物性データ及び製品 安全シートのデータを実証項目に転用した。
- *3:結果の記載内容は、詳細版添付資料からの転用であり、意味が変わらない程度に簡潔にした。

「川崎市 南河原こども文化センター」における地中熱利用空調システム JFE 鋼管株式会社/JFE スチール株式会社

- *1 :詳細版添付資料によると、東北綜合器材株式会社が販売する「エスケーブライン PP(エスケーブライン SKAF-2L, 10L, 18L)」であり、ショーワ株式会社 *2 が製造する「ショウブライン PP」の物性データと同じである。
- *2:ショーワ株式会社にて、品質マネジメントシステムの国際規格 ISO9001:2000 JSQA712 の認証を取得。 そしてショーワ株式会社の本社・工場において、環境マネジメントシステムの国際規格 ISO14001:2004 JSAE846 の認証を取得していることを確認した。よって、熱媒の製造者が作成した物性データ及び製品 安全シートのデータを実証項目に転用した。
- *3:結果の記載内容は、詳細版添付資料からの転用であり、意味が変わらない程度に簡潔にした。
- *4: 半数の動物が死ぬ体重 1kg 当たりの経口摂取量。

2-5 実証対象技術の地中熱交換器としての先端閉塞の回転貫入鋼管杭の施工時及び設置後の写真

先端閉塞の回転貫入鋼管杭(Φ165.2)の施工状況 (GL-30m まで設置)

先端閉塞の回転貫入鋼管杭の頭部にコンクリート 製桝を設置し、鋼管杭内部に循環水パイプ (ポリエチレン製) を挿入

3. まとめ

実証単位 (A) の本実証対象技術は、地中熱交換井から室内の設備システムまでを含めた、地中熱利用システムに関わる技術全体であり、実証試験では、実使用状態の建物で地中熱を利用した冷暖房を行い、冷房期間の平均システムエネルギー効率 (COP)、ヒートポンプ消費電力平均値、及び冷房期間の地中への排熱量平均値を求めた。

- ①冷房期間の平均システムエネルギー効率(COP)は、昨今の業務用空冷式ヒートポンプの空調システムと比較して高い値 *1 だった。
- ②空冷式ヒートポンプの排熱は大気で行われることに対し、本実証対象技術のシステムでは排熱は地中で行われたことが確認された。

以上2点から、ヒートアイランドの抑制効果を示すデータが取得できたといえる。

以上、これらの結果は、本実証事業の目指す実証項目を満たしており、この実証試験によりヒートアイランド対策技術としての環境保全効果をデータとして示すことができた。

*1: 高効率と言われているもので、冷房時のCOPが4~6のものが、インターネットの検索上で見受けられる。

「川崎市 南河原こども文化センター」における地中熱利用空調システム ${
m JFE}$ 鋼管株式会社 ${
m JFE}$ スチール株式会社

実証対象技術の参考情報

本ページに示された情報は、全て環境技術開発者が自らの責任において申請したものであり、環境省及び実証機関は、内容に関して一切の責任を負いません。

〇実証対象技術の概要(参考情報)

○大皿/ 3 3 2 円 0 7 帆安		(> 3111100				
項目		環境技術開発者 記入欄				
製品名		「川崎市 南河原こども文化センター」における地中熱利用空調システム				
製造(販売)企業名		J F E鋼管株式会社				
連絡先	TEL/FAX	TEL 03-5298-0101 FAX 03-5298-0102				
	Web アドレス	http://www.jfe-wp.co.jp/				
	E-mail	y-sugie@jfe-wp.co.jp				
設置条件		地中熱交換器として先端閉塞の回転貫入鋼管杭を利用した地中熱利用空調システム。実証試験では採熱専用杭を使用。 鋼管杭内部には水を充填し、その中に熱媒を循環させるポリエチレン樹脂製循環水パイプを挿入し、地中との熱交換を行う。熱媒として水(不凍液)を使用。				
メンテナンスの必要 性・コスト・耐候性・ 製品寿命等		地中熱交換井に使われている鋼管には水が充填されているが、腐食は 10 年に 0.1mm であり、問題はない。				
施工性		地中熱交換用鋼管杭は、回転貫入鋼管杭であり、比較的軟弱な地層に適している。 30mの坑井を1日に3~4本貫入可能であるため、施工性がよい。				
技術上の特徴		地中熱交換井に先端閉塞回転貫入鋼管杭を使用することで (1)環境保全・循環型社会対応工法・掘削残土が出ない ・杭施工時に上下滞水層を結合することがなく、かつ泥水を使用しないので地下水を汚染しない。また、地上の工事環境も良好である。 ・低騒音、低振動で施工できる。 ・鋼管杭は逆回転することにより、引抜き、現状復帰、リユース、リサイクルが可能である。 ・現状復帰が容易である。 (2)地中熱交換井の低コスト化が図れる ・建築基礎杭との兼用で、さらに低コスト化(初期投資の低減)が図れる。 ・工期を短縮できる。 ・浅い深度で高効率の採放熱が見込める。 (3)高い熱交換率 ・杭内部に水を充填し、水の対流を利用するので熱交換効率が高い。				
コスト概算		今回の実証試験における材料費、工事費、設備費の概算は700万円。(実験 用設備は別途)実際のコストは現場条件(基礎杭兼用等)や土質条件により異 なる。				

○その他環境技術開発者からの情報(参考情報)

特になし。			