FY2018 Results of the Radioactive Material Monitoring in the Water Environment
March 2020 Ministry of the Environment

Contents

Outline	1
Part 1: National Radioactive Material Monitoring in the Water Environment throughout Japan (FY	•
1 Objective and Details	
1.1 Objective	
1.2 Details	
2 Survey Methods and Analysis Methods	
2.1 Survey methods	
2.2 Analysis methods	
3 Results	
3.1 Detection of total β radioactivity and γ-ray emitting radionuclides	
(1) Public water areas	
1) Water	
2) Sediment	
(2) Groundwater	
3.2 Discussion regarding detected radionuclides	
(1) Detection of naturally occurring radionuclides	28
1) Correlation between activity concentrations of K-40 in water samples and seawater	
2) K-40 in sediments	
3) Uranium and thorium series radionuclides in sediment samples	
(2) Detection of artificial radionuclides	34
1) Cs-134 and Cs-137 in water samples from public water areas	34
2) Cs-134 and Cs-137 in sediment samples from public water areas	35
3) Cs-134 and Cs-137 in groundwater	40
3.3 Survey results on seasonal variations	41
Part 2: Radioactive Material Monitoring in the Water Environment in and around Fukushima P (FY2018)	
1 Objective and Details	
7.1 Objective	
1.2 Details	
2 Survey Methods and Analysis Methods	
2.1 Survey methods	
2.2 Analysis methods	49
3 Outlines of the Results	
3.1 Detection of radioactive cesium	
3.2 Detection of radionuclides other than radioactive cesium	
4 Results	
4.1 Radioactive cesium	

4.1 -1 Water	54
(1) Public water areas	54
1) Rivers	54
2) Lakes	54
3) Coastal areas	54
(2) Groundwater	54
4.1-2 Sediment	58
(1) Detection status	58
1) Rivers	58
2) Lakes	58
3) Coastal areas	58
(2) Changes in concentration levels	62
1) Rivers	62
2) Lakes	63
3) Coastal areas	63
(3) Detection of radioactive materials in sediment by location	64
1) Evaluation policy	64
2) Concentration levels in sediment samples from rivers, lakes, and coastal a	areas and their
changes by prefecture	67
2)-1 Rivers	67
2)-2 Lakes	85
2)-3 Coastal areas	101
2)-4 Conclusion	111
4.2 Results (Radionuclides other than radioactive cesium)	120
4.2-1 Radioactive strontium (Sr-90 and Sr-89)	120
(1) Public water areas	120
(2) Groundwater	
4.2-2 Other γ-ray emitting radionuclides	124
Part 3: Other Radioactive Material Monitoring Conducted Nationwide (FY2018)	126
1 Outline of the Monitoring	
1.1 Covered monitoring	126
1.2 Compilation methods	
2 Results	
2.1 Water	129
(1) Inland water	129
(2) Seawater	130
2.2 Sediment	131
(1) Inland water sediment (river sediment)	
(2) Sea sediment	132

Note: In this report,

ND stands for "Not Detectable,"

FY stands for "Fiscal Year," beginning in April and ending in March.

Outline

The following is an outline of the results of monitoring for radioactive material carried out in FY2018 based on the Water Pollution Control Act. Monitoring locations are as shown in Figure 1 and Figure 2.

1. National Radioactive Material Monitoring in the Water Environment throughout Japan (FY2018)

- O Monitoring commenced in FY2014 at 110 public water areas and groundwater locations in 47 prefectures in Japan for the purpose of clarifying the distribution of radioactive materials in those areas nationwide (hereinafter referred to as "Nationwide Monitoring"), in accordance with the Water Pollution Control Act.
- A summary of the results for FY2018 is as follows.

<Overall outline>

• The total β radioactivity and the detected γ -ray emitting nuclides were within the past measurement trends¹. Detection limits differ by nuclide and sampling location, but overall were around 0.001 to 0.1 Bq/L for water and around 1 to 100 Bq/kg for sediment², ("Bq/kg" of sediment indicates "dried sediment" in this report, and the same shall apply to Radioactive Material Monitoring performed in Fukushima Prefecture and the surrounding areas, and other national radioactive material monitoring.).

<Naturally occurring radionuclides>

- There were some locations where the value of K-40 and total β radioactivity were elevated in sediment samples from public water areas, but these levels were thought to have been influenced by natural rocks and soils.
- K-40 and total β radioactivity were detected at higher concentrations in groundwater samples at some locations, but they were thought to have been influenced by natural soils/rocks/ sea water.

<Artificial radionuclides>

- At some public water area monitoring locations, the artificial radionuclides Cs-134 and Cs-137 were detected exceeding their detection limits, but their values were within the past measurement trends.
- O It is appropriate to continue this monitoring from the following fiscal year onwards in order to clarify the distribution of radioactive materials in water environments.

2. Radioactive Material Monitoring in the Water Environment in and around Fukushima Prefecture (FY2018)

O In response to the accident at the Tokyo Electric Power Company's Fukushima Daiichi NPS (hereinafter referred to as the "Fukushima NPS Accident"), monitoring has been conducted continuously since August 2011 at around 600 public water area locations and around 400 groundwater locations in and around

¹ "Within the past measurement trends" means that the results of the latest monitoring survey are evaluated from a technical perspective as not displaying extreme deviation from the results of past similar monitoring surveys.

See Table 3.1-1, Table 3.1-2, and Table 3.1-3 in Part 1 of this report for the details of the detection limits.

Fukushima prefecture for the purpose of clarifying the distribution of the accident-derived radioactive materials in water environments (hereinafter referred to as "Post-Earthquake Monitoring").

○ A summary of the results for FY2018 is as follows.

(1) Radioactive cesium

<Public water areas>

- 1) Water (detection limit: 1 Bq/L for both Cs-134 and Cs-137)
- While several locations showed a positive result for these radionuclides, they were not detectable in other locations.
- 2) Sediment (detection limit: 10 Bq/kg for both Cs-134 and Cs-137)

[Rivers]

• Out of all monitoring locations, the levels of both Cs-134 and Cs-137 were less than 200 Bq/kg at 3/4 of the locations, though they were detected at relatively higher levels at some limited locations, such as those within 20 km of Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant (hereinafter referred to as the "Within 20km"). The average values including past years were 100 Bq/kg or less at approximately half of the monitoring locations, while more than 90% of the other locations showed decreasing trends.

[Lakes]

• Out of all monitoring locations, the levels of both Cs-134 and Cs-137 were less than 3,000 Bq/kg at 3/4 of the locations, though they were detected at relatively high levels at some limited locations, such as those within 20 km of the power plant. The average values including past years were 100 Bq/kg or less at approximately 10% of the monitoring locations, while approximately 30% of the other locations showed fluctuations with approximately 70% of the monitoring locations showing either decreasing or unchanged trends.

[Coastal areas]

• Out of all monitoring locations, the levels of both Cs-134 and Cs-137 were less than 200 Bq/kg at 3/4 of the locations. The average values including past years were 100 Bq/kg or less at approximately 60% of the monitoring locations with over 80% of the other locations showing decreasing trends.

< Groundwater >

 Radioactive cesium was not detected in groundwater at any surveyed locations in FY2018 (detection limit: 1 Bq/L for both Cs-134 and Cs-137).

(2) Radionuclides other than radioactive cesium

- Sr-89: Was not detected at any surveyed groundwater locations.
- Sr-90: Was detected in collected sediment at several public water area locations, but remained at relatively
 low levels; was not detectable in water samples at any surveyed public water areas and at
 groundwater locations.

O Measured activity concentrations have fluctuated at some locations. There is a possibility that this is due to the effects from the Fukushima nuclear accident, but the fluctuations could also be due to slight differences in sampling locations and the properties of individual samples. Therefore, it is appropriate to continue this monitoring on an ongoing basis over the following fiscal years.

3. Other Radioactive Material Monitoring Conducted Nationwide (FY2018)

O The results of the Monitoring of Environmental Radioactivity Levels (hereinafter referred to as "Monitoring of Levels"), which has been conducted by the Nuclear Regulation Authority for the purpose of clarifying the existence or nonexistence of the effects from nuclear facilities, etc., nationwide, were all within the past measurement trends.

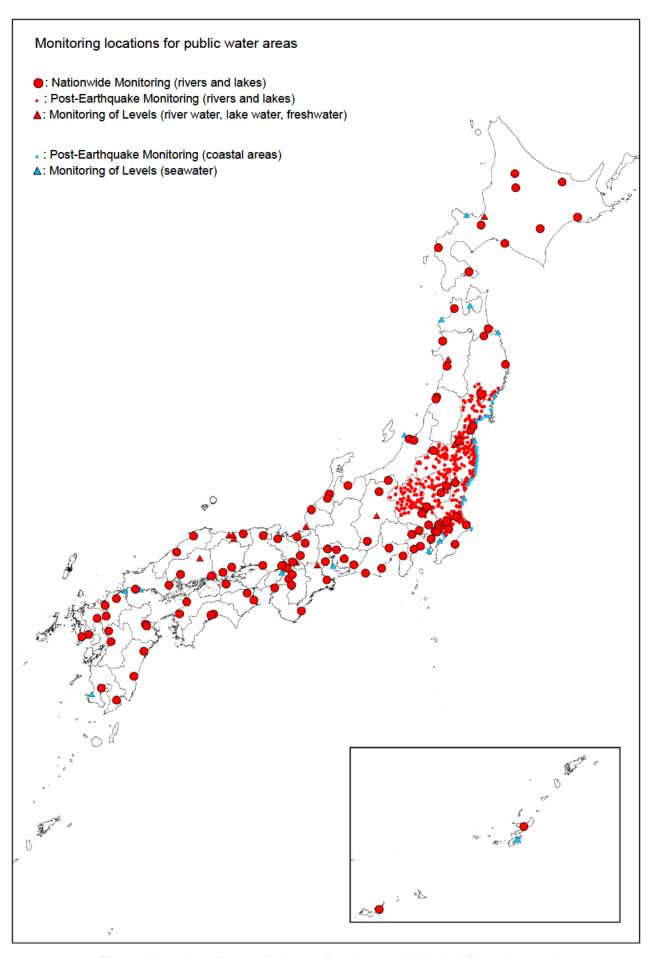


Figure 1 Locations for monitoring radioactive materials (public water areas)

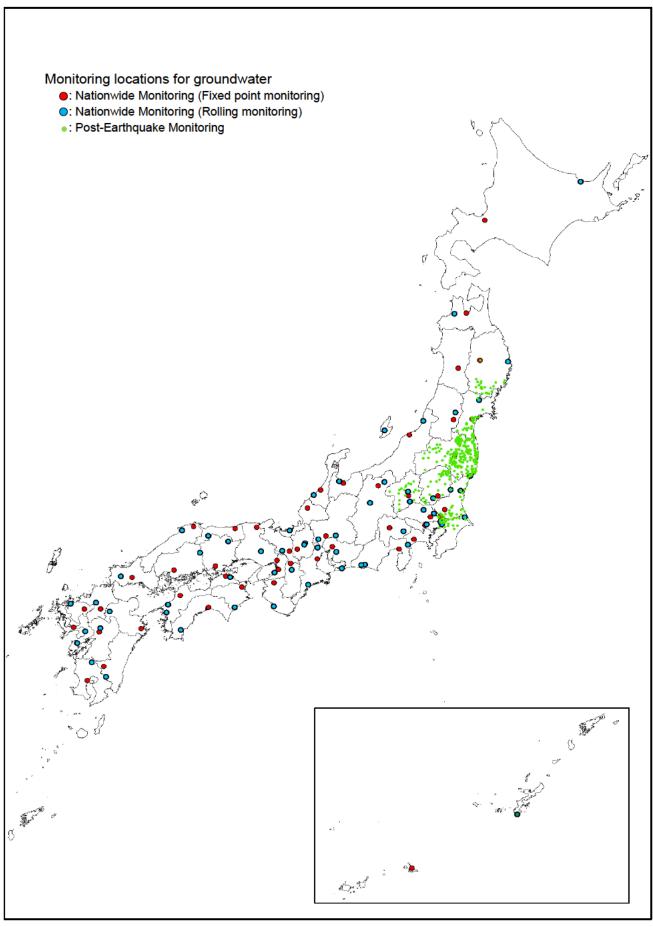


Figure 2 Locations for monitoring radioactive materials (groundwater)

Part 1: National Radioactive Material Monitoring in the Water Environment throughout Japan (FY2018)

1 Objective and Details

1.1 Objective

In response to the Fukushima NPS Accident, during which radioactive materials were discharged causing environmental pollution, the Water Pollution Control Act was amended. It was decided that the Minister of the Environment should monitor pollution caused by radioactive materials in public water areas and groundwater and release the results from the perspective of preserving the health and living environment of the people.

Based on the above, this monitoring aims to clarify the distribution of radioactive materials in public water areas and groundwater nationwide.

1.2 Details

(1) Monitoring locations

• Public water areas: 110 locations (rivers: 107 locations; lakes: three locations)

• Groundwater: 110 locations

Monitoring locations were selected based on the following policy with a view to ensuring balanced nationwide monitoring (specific locations are as shown in Tables 1.2-2 and 1.2-3 and Figures 1.2-1 and 1.2-2).

1) Public water areas

- At least one sampling location was selected in each prefecture, and additional locations were added according to the area and population of each prefecture.
- Locations within each prefecture were selected based on the following policy:
 - a) Select representative rivers (including lakes) within each prefecture using the same numbers listed above, taking into account the area and population in their basins.
 - b) Regarding rivers selected as explained in a), select locations from among those monitored for hazardous materials, etc., conducted under the Water Pollution Control Act, selected in consideration of water utilization points. Within a single river, give priority to a location in the lower reaches (including lakes located downstream).
 - c) As this monitoring does not aim to clarify the effects from specific sources, exclude locations close to those subject to Environmental Monitoring around Nuclear Facilities, etc. (Radiation Monitoring Grants) in principle.

2) Groundwater

- Two sampling locations were chosen in each prefecture, and one more location was added for each prefecture in which the amount of groundwater utilized had been large over the past several years.
- Locations within each prefecture were selected from the locations for continuous monitoring of environmental standard items in groundwater based on the following policy, principally.
 - a) Select regional representative wells (such as wells built for monitoring or major wells with an

especially large amount of water utilization) taking into consideration the amount of utilization of groundwater from each groundwater basin and water vein (hereinafter referred to as "groundwater basins, etc.").

- b) Prioritize wells owned or managed by local governments, etc., in consideration of the convenience of coordination in case any additional survey is required.
- c) Select one location for continuous fixed-point monitoring from among the locations selected in the manner above, taking into account that location's level of utilization and the representativeness of that groundwater basin in the wider area. Perform rolling monitoring at the remaining locations (for five years in principle).
- d) As this monitoring does not aim to clarify the effects from specific sources, exclude locations close to those subject to Environmental Monitoring around Nuclear Facilities, etc. (Radiation Monitoring Grants), in principle.

(2) Targets

• Public water areas : Water and sediment (For lakes, water surveys are conducted both at surface layer and

bottom layer.)

(Additionally, as a reference, radioactive concentrations in soil and ambient dose rates around riverbeds, etc., in the environment surrounding the sampling locations

are to be measured.)

• Groundwater : Water

(Additionally, as a reference, ambient dose rates near the sampling locations are to be measured.)

(3) Frequencies and periods

• Public water areas : Once a year

However, monitoring was conducted four times a year at two locations (one location in eastern and western Japan, respectively) in order to check for any seasonal variations.

• Groundwater : Fixed point monitoring was conducted once a year, and rolling monitoring was conducted once every five years for each location in principle.

FY2018 monitoring periods are as shown in Table 1.2-4.

(4) Conducted analyses

The following analyses were conducted for collected samples:

- Measurement of total β radioactivity concentrations.
- γ-ray spectrometry measurement using a germanium semiconductor detector (In principle, all detectable radionuclides, including artificial radionuclides and major naturally occurring radionuclides, were analyzed).

(5) Evaluation of measurement results

The measurement results were evaluated upon the guidance/advice of "Evaluation Committee on the National Radioactive Material Monitoring in the Water Environment for the whole of Japan" (Table 1.2-1) comprised of professionals.

1) Comparison with the past measurement trends

Obtained values were compared with the past measurement trends, and if any deviation was suspected, the validity of the measured values was rechecked (potential number transcription errors, incorrect calibration of equipment, etc.).

Because this monitoring has just commenced, there are no accumulated data for some locations. Therefore, results from similar environmental monitoring surveys conducted so far will be used for comparison for the time being. Specifically, results from the Monitoring of Environmental Radioactivity Levels and Monitoring of the Surrounding Environment conducted by the Nuclear Regulation Authority, as well as the results from the Radioactive Material Monitoring in Water Environments in and around Fukushima Prefecture conducted by the Ministry of the Environment were utilized. When making comparisons, due consideration was given to the possibility that the values of Cs-137 and other accident-derived radionuclides would have increased after the Fukushima NPS Accident.

Essentially, nationwide data for the past two decades were used for comparison. Considering the effects from the Fukushima NPS Accident and informed by actual measurements, "three years after the accident" was assumed to be a steady state, and therefore, data of artificial radionuclides from between Mar 11, 2011 to Mar 10, 2014 were excluded.

2) Measures to be taken when a value deviating from the past measurement trends was detected

The following measures were taken when a value deviating from the past measurement trends was detected (see Figure 1.2-3).

2)-1 Release of preliminary values

Any value that is suspected of deviating from the past measurement trends should be immediately evaluated professionally by the chair and the deputy chair, and if it is judged highly urgent (when it has been confirmed that the value is highly likely to deviate from the past measurement trends, and additional detailed analyses are considered to be necessary), a preliminary report should be released as promptly as possible.

In such a case, the following related data should be compiled as basic data for professional evaluation. Members of the Evaluation Committee other than the chair and the deputy chair should be informed of the relevant information together with the professional evaluation by the chair and the deputy chair (see Table 1.2-1 for the chair and other committee members).

- i) Results of the measurement concerning water and sediment (γ -ray spectrometry and total β radioactivity concentrations), and ambient dose rates
- ii) Sampling dates, sampling locations (maps, water depth, river width, etc.), sampling methods, and sampling circumstances (photos)
- iii) Weather data for about one week close to the measurement date (the amount of precipitation, in particular)

- iv) Ambient dose rates measured for the past month or so at neighboring points
- v) Changes in detected values of a relevant radionuclide compared to the past

2)-2 Detailed analyses and release of the results

For data for which the preliminary report was released as explained in 2)-1 above, the following detailed analyses are to be conducted and the results are to be released.

- Specific analyses to identify radionuclides (including measurement of individual radionuclides through radiochemical analyses)
- Additional measurements in the surrounding areas of the relevant surveyed location

(6) Disclosure of measurement results

The measurement results data are made publicly available on the following Ministry of the Environment website:

http://www.env.go.jp/en/water/rmms/surveys.html

Table 1.2-1 List of members of the Evaluation Committee on the National Radioactive Material Monitoring in the Water Environment for the whole of Japan

IIMOTO Takeshi (Deputy chair)	Professor, Division for Environment, Health and Safety, the University of Tokyo
ISHII Nobuyoshi	Principal Researcher, Environmental Transfer Parameter Research Group, Department of Radioecology and Fukushima Project, Center for Advanced Radiation Emergency Medicine, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology
TOKUNAGA Tomochika	Professor, Department of Environment Systems, Graduate School of Frontier Sciences, the University of Tokyo
HAYASHI Seiji	Research Group Manager & Head of Environmental Assessment Section, Fukushima Branch, National Institute for Environmental Studies
FUKUSHIMA Takehiko (Chair)	Director of the Center, Ibaraki Kasumigaura Environmental Science Center

Table 1.2-2 List of locations for FY2018 Nationwide Monitoring (public water areas) (No. 1)

	0.0 1.2 2 1		1	Transaction wide Monitoring (public	water areas) (110: 1)		
No.	Prefecture	Property	Sampling location Water area Location Municipality				
		-	vvaler area	Location Domestic water intake at Ish kari River in	Municipality		
1		River	Ishikari River	Asahikawa City	Asahikawa City		
				Intake at the Shirakawa water purification			
2		River	Ishikari River	plant in Sapporo City	Sapporo City		
				Nakashibetsu Bridge (Intake at the			
3		River	Teshio River	Higashiyama water purification plant in	Shibetsu City		
				Shibetsu City)	,		
4	Llakkaida	River	Tokoro River	Tadashi Bridge	Kitami City		
5	Hokkaido Prefecture	River	Kushiro River	Intake at the Aikoku water purification plant	Kushiro City		
3	Fielectule	Kivei	Rusillo Rivel	in Kushiro City	Rustillo City		
6		River	Tokachi River	Nantai Bridge	Obihiro City		
7		River	Sarugawa River	Sarugawa Bridge (Tomigawa)	Hidaka Town		
8		River	Matsukura River	Mitsumori Bridge (Before the confluence	Hakodate City		
				with Torasawa River)			
		Б.	Shir beshi-	Intake at the Kitahiyama simple water plant	o . –		
9		River	toshibetsu	in Kitahiyama Town	Setana Town		
10	A	D:	River	•	Nalsadamani Tassa		
10	Aomori	River River	Iwaki River	Tsugaru-ohashi Bridge	Nakadomari Town		
11 12	Prefecture	River	Mabechi River Mabechi River	Shiriuchi Bridge Fugane Bridge	Hachinohe City Ninohe City		
13	lwate	River	Heigawa River	rugane вподе Miyako Bridge	Miyako City		
14	Prefecture	River	Kitakami River	Chitose Bridge	Ichinoseki City		
15	Miyagi	River	Abukuma River	Iwanuma (Abukuma Bridge)	Iwanuma City		
16	Prefecture	River	Natori River	Yuriage-ohashi Bridge	Natori City		
17	Akita	River	Yoneshiro River	Noshiro Bridge	Noshiro City		
18	Prefecture	River	Omono River	Kurose Bridge	Akita City		
19	Yamagata	River	Mogami River	Ryou Bridge	Sakata City		
20	Prefecture	River	Akagawa River	Shinkawa Bridge	Sakata City		
21	Eulerahiasa.	River	Agano River	Shingo Dam	Kitakata City		
22	Fukushima	River	Abukuma River	Taisho Bridge (Fushiguro)	Date City		
23	Prefecture	River	Kujigawa River	Takachihara Bridge	Yamatsuri Town		
24	lbaraki	Lake	Lake Kasumigaura	Center of the lake	Miho Village		
25	Prefecture	River	Kokai River	Fumimaki Bridge	Toride City		
26	Tochigi	River	Nakagawa River	Shinnaka Bridge	Nakagawa Town		
27	Prefecture	River	Kinugawa River	Kinugawa Bridge (Hoshakuji Temple)	Utsunomiya City		
28	Gunma	River	Tonegawa River	Toneozeki Weir	Chiyoda Town / Gyoda City		
	Prefecture				(Saitama Prefecture)		
29		River	Watarase River	Watarase-ohashi Bridge	Tatebayashi City		
30	Saitama	River	Arakawa River	Kuge Bridge	Kumagaya City		
31	Prefecture	River	Arakawa River	Akigase Intake Weir	Saitama City / Shiki City		
32	rielectule	River	Edogawa River	Nagareyama Bridge	Nagareyama City (Chiba Prefecture) / Misato City		
33	Chiba	River	Tonegawa River	Kakozeki Weir	Tonosho Town		
34	Prefecture	River	Ichinomiya River	Nakano Bridge	lchinomiya Town		
35	i iciectule	Lake	Lake Inbanuma	Lower area of water supply intake	Sakura City		
36		River	Edogawa River	Shinkatsushika Bridge	Katsushika City		
37	Tokyo	River	Tamagawa River	Haijima raw water supply point	Akishima City		
38	Metoropolis	River	Sumida River	Ryogoku Bridge	Chuo City / Sumida City		
39		River	Arakawa River	Kasai Bridge	Koto City / Edogawa City		
40	Kanagawa	River	Tsurumi River	Rinko Tsurumigawa Bridge	Yokohama City		
41	Prefecture	River	Sagami River	Banyu Bridge	Hiratsuka City		
42 43	Niigata	River River	Sakawa River Shinano River	Sakawa Bridge Heisei-ohashi Bridge	Odawara City Niigata City		
43	Prefecture	River	Agano River	Oun Bridge	Niigata City Niigata City		
45	Toyama	River	Jinzu River	Hagiura Bridge	Toyama City		
	Prefecture			<u> </u>	, ,		
46	Ishikawa	River	Saigawa River	Okuwa Bridge	Kanazawa City		
47 48	Prefecture Fukui	River River	Tedori River Kuzuryu River	Hakusangoguchi Dike Fuseda Bridge	Hakusan City Fukui City		
48	Prefecture	River	Kuzuryu River Kitagawa River	Fuseda Bridge Takatsuka Bridge	Obama City		
50	Yamanashi	River	Sagami River	Katsuragawa Bridge	Uenohara City		
51	Prefecture	River	Fujikawa River	Nanbu Bridge	Nanbu Town		
52		River	Shinano River	Ozeki Bridge	liyama City		
53	Nagano	River	Saigawa River	Koichi Bridge	Nagano City		
54	Prefecture	River	Tenryu River	Tsutsuji Bridge	lida City		
					•		

Table 1.2-2 List of locations for FY2018 Nationwide Monitoring (public water areas) (No. 2)

	5		Sampling location				
No.	Prefecture	Property	Water area	Location	Municipality		
55	Gifu	River	Kisogawa River	Tokai-ohashi Bridge(Naruto)	Kaizu City		
56	Prefecture	River	Nagara River	Tokai-ohashi Bridge	Kaizu City		
57	01: 1	River	Kanogawa River	Kurose Bridge	Numazu City		
58	Shizuoka	River	Ooi River	Fujimi Bridge	Yaizu City / Yoshida Town		
59	Prefecture	River	Tenryu River	Kaketsuka Bridge	Iwata City / Hamamatsu City		
60	Λ:-b:	River	Shonai River	Mizuwake Bridge	Nagoya City		
61	Aichi Prefecture	River	Yahagi River	lwazutenjin Bridge	Okazaki City / Toyota City		
62	Prefecture	River	Toyogawa River	Eshima Bridge	Toyokawa City		
63	Mie	River	Suzuka River	Ogura Bridge	Yokkaichi City		
64	Prefecture	River	Miyakawa River	Watarai Bridge	lse City		
65	Shiga	River	Adogawa River	Joan Bridge	Takashima City		
66	Prefecture	Lake	Lake Biwako	Karasakioki-Chuo			
67	Kyoto	River	Yuragawa River	Yuragawa Bridge	Maizuru City		
68	Prefecture	River	Katsura River	Before the confluence of three tributaries of	Oyamazaki Town		
00	Fielectule	Kivei	Naisula Nivel	Katsura River	Oyaniazaki 10wii		
69	Osaka	River	Inagawa River	Gunko Bridge	Itami City (Hyogo Prefecture)		
70	Prefecture	River	Yodogawa River	Sugaharashirokita-ohashi Bridge	Osaka City		
71	i iolociule	River	Ish kawa River	Takahashi	Tondabayashi City		
72	Hyogo	River	Kakogawa River	Kakogawa Bridge	Kakogawa City		
73	Prefecture	River	Mukogawa River	Hyakkenbi	Takarazuka City		
74		River	Maruyama River	Kaminogo Bridge	Toyooka City		
75	Nara	River	Yamato River	Fujii	Oji Town		
76	Prefecture	River	Kinokawa River	Okura Bridge	Gojo City		
77	Wakayama	River	Kinokawa River	Shinrokkaizeki Weir	Wakayama City		
78	Prefecture	River	Kumano River	Kumano-ohashi Bridge	Shingu City		
79	Tottori Prefecture	River	Sendai River	Gyotoku	Tottori City		
80	Shimane	River	Hiikawa River	Kandatsu Bridge	Izumo City		
81	Prefecture	River	Gonokawa River	Sakurae-ohashi Bridge	Gotsu City		
82	Okayama	River	Asahikawa River	Otoite Weir	Okayama City		
83	Prefecture	River	Takahashi River	Kasumi Bridge	Kurashiki City		
84	Hiroshima	River	Ota River	Water supply intake in Hesaka	Hiroshima City		
85	Prefecture	River	Ashida River	Kominomi Bridge	Fukuyama City		
86	Yamaguchi	River	Nishiki River	Domestic water intake for the city	lwakuni City		
87	Prefecture	River	Koto River	Suenobu Bridge	Ube City		
88	Tokushima	River	Yoshino River	Takase Bridge	Ishii Town		
89	Prefecture	River	Nakagawa River	Nakagawa Bridge	Anan City		
90	Kagawa Prefecture	River	Dokigawa River	Marugame Bridge	Marugame City		
91	Ehime	River	Shigenobu River	Deai Bridge	Matsuyama City		
92	Prefecture	River	Hijikawa River	Hijikawa Bridge	Ozu City		
93	Kochi	River	Kagami River	Kachuzeki Weir	Kochi City		
94	Prefecture	River	Niyodo River	Hatazeki Weir (1) Center of flow	Ino Town		
95	Fukuoka	River	Onga River	Hinode Bridge	Nogata City		
96	Prefecture	River	Nakagawa River	Shiobara Bridge	Fukuoka City		
97		River	Ch kugo River	Senoshita	Kurume City		
98	Saga Prefecture	River	Kasegawa River	Kase Bridge	Saga City		
99	Nagasaki	River	Honmyo River	In front of Tenma Park	Isahaya City		
100	Prefecture	River	Uragami River	Ohashizeki Weir	Nagasaki City		
101	Kumamoto	River	K kuchi River	Shiroishi	Nagomi Town		
102	Prefecture	River	Midori River	Uesugizeki Weir	Kumamoto City		
103	Oita	River	Oita River	Funaichi-ohashi Bridge	Oita City		
104	Prefecture	River	Oono River	Shirataki Bridge	Oita City		
105	Miyazaki	River	Gokase River	Miwa	Nobeoka City		
106	Prefecture	River	Oyodo River	Shinaioi Bridge	Miyazaki City		
107	Kagoshima	River	Kotsuki River	lwasaki Bridge	Kagoshima City		
108	Prefecture	River	Kimotsuki River	Matase Bridge	Kanoya City		
109	Okinawa	River	Genka River	Water intake	Nago City		
110	Prefecture	River	Miyara River	Omoto water intake	Ishigaki City		

Table 1.2-3 List of locations for FY2018 Nationwide Monitoring (groundwater) (No. 1)

No.	Prefecture	Property	Municipality	District	Monitoring method
1		Groundwater	Sapporo City	Kitasanjonishi, Chuo Ward	Fixed point monitoring
2	Hokkaido Prefecture	Groundwater	Abashiri City	Onnenai	Rolling monitoring
3		Groundwater Aomori City Shinmachi		Shinmachi	Fixed point monitoring
4	Aomori Prefecture	Groundwater	Tsugaru City	Kizukurisuehiro	Rolling monitoring
5		Groundwater	Morioka City	Motomiya	Fixed point monitoring
6	Iwate Prefecture	Groundwater	Miyako City	Shinkawacho	Rolling monitoring
7	Missai Darfastona	Groundwater	Sendai City	Honcho, Aoba Ward	Fixed point monitoring
8	Miyagi Prefecture	Groundwater	Kurihara City	Wakayanagi Kamihataoka	Rolling monitoring
9	ALC D	Groundwater	Daisen City	Niiyaji	Fixed point monitoring
10	Akita Prefecture	Groundwater	Akita City	Kawabematsubuchi	Rolling monitoring
11	. 5	Groundwater	Yamagata City	Hatagomachi	Fixed point monitoring
12	Yamagata Prefecture	Groundwater	Higashine City	Chuo	Rolling monitoring
13	Fukushima	Groundwater	Koriyama City	Asahi	Fixed point monitoring
14	Prefecture	Groundwater	lwaki City	Nishikimachi	Rolling monitoring
15		Groundwater	Tsukuba City	Kenkyugakuen	Fixed point monitoring
16	Ibaraki Prefecture	Groundwater	Kamisu City	Onohara	Rolling monitoring
17		Groundwater	Hitachiota City	Kanaicho	Rolling monitoring
18		Groundwater	Shimotsuke City	Machida	Fixed point monitoring
19	Tochigi Prefecture	Groundwater	Tochigi City	Jonaicho	Rolling monitoring
20	Ü	Groundwater	Motegi Town	lino	Rolling monitoring
21		Groundwater	Maebashi City	Shikishimacho	Fixed point monitoring
22	Gunma Prefecture	Groundwater	Shibukawa City	Akagimachi Takizawa	Rolling monitoring
23		Groundwater	Fujioka City	Tatsuishi	Rolling monitoring
24		Groundwater	Saitama City	Mikura, Minuma Ward	Fixed point monitoring
25	Saitama Prefecture	Groundwater	Kasukabe City	Hiro	Rolling monitoring
26		Groundwater	Konosu City	Mida	Rolling monitoring
27		Groundwater	Kashiwa City	Funato	Fixed point monitoring
28	Chiba Prefecture	Groundwater	Funabashi City	Natsumidai	Rolling monitoring
29		Groundwater	Matsudo City	Tokiwadaira	Rolling monitoring
30		Groundwater	Koganei City	Kajinocho	Fixed point monitoring
31	Tokyo Metoropolis	Groundwater	Nerima City	Sekimachikita	Rolling monitoring
32		Groundwater	Hadano City	lmaizumi	Fixed point monitoring
33	Kanagawa Prefecture	Groundwater	Hakone Town	Kowakudani	Rolling monitoring
34		Groundwater	Niigata City	Nagata, Chuo Ward	Fixed point monitoring
35	Niigata Prefecture	Groundwater	Sado City	Yahata	Rolling monitoring
36	Ü	Groundwater	Murakami City	Matsubaracho	Rolling monitoring
37		Groundwater	Toyama City	Funahashikitamachi	Fixed point monitoring
38	Toyama Prefecture	Groundwater	Imizu City	lmai	Rolling monitoring
39		Groundwater	Hakusan City	Kuramitsu	Fixed point monitoring
40	Ishikawa Prefecture	Groundwater	Komatsu City	Hamasamimachi	Rolling monitoring
41		Groundwater	Fukui City	Ote	Fixed point monitoring
42	Fukui Prefecture	Groundwater	Obama City	Horiyashiki	Rolling monitoring
43	Yamanashi	Groundwater	Showa Town	Saijyoshinden	Fixed point monitoring
44	Prefecture	Groundwater	Tsuru City	Shimoya	Rolling monitoring
45		Groundwater	Nagano City	Tsurugamidoricho	Fixed point monitoring
46	Nagano Prefecture	Groundwater	Nakano City	Chuo	Rolling monitoring
47		Groundwater	Matsumoto City	Chuo	Rolling monitoring
48		Groundwater	Gifu City	Kanoshimizucho	Fixed point monitoring
49	Gifu Prefecture	Groundwater	Yoro Town	Naka	Rolling monitoring
50		Groundwater	Kani City	Imawatari	Rolling monitoring
51		Groundwater	Numazu City	Hara	Fixed point monitoring
52	Shizuoka Prefecture	Groundwater	Iwata City	Mitsuke	Rolling monitoring
53		Groundwater	Hamamatsu City	Kaminishicho, Higashi Ward	Rolling monitoring
54		Groundwater	Nagoya City	Kawaharatori, Showa Ward	Fixed point monitoring
55	Aichi Prefecture	Groundwater	Toyota City	Maebayashicho	Rolling monitoring
56		Groundwater	Tahara City	Okubocho	Rolling monitoring
		2.000110101	· a.i.a.a Oity	2.1.0.00110	igoromig

Table 1.2-3 List of locations for FY2018 Nationwide Monitoring (groundwater) (No. 2)

No.	Prefecture	Property	Municipality	District	Monitoring method
57		Groundwater Suzuka City Inoucho		Fixed point monitoring	
58	Mie Prefecture	Groundwater	Inabe City	Inabecho Kam kasada	Rolling monitoring
59		Groundwater	Kihoku Town	Nagashima	Rolling monitoring
60		Groundwater	Moriyama City	Miyakecho	Fixed point monitoring
61	Shiga Prefecture	Groundwater	Hikone City	Kamiokabecho	Rolling monitoring
62		Groundwater	Higashiomi City Inokocho		Rolling monitoring
63		Groundwater	Kyoto City	Toraishicho, Nakagyo Ward	Fixed point monitoring
64	Kyoto Prefecture	Groundwater	Kameoka City	Amarubecho Wakunari	Rolling monitoring
65		Groundwater	Sakai City	Daisennakamachi, Sakai Ward	Fixed point monitoring
66	Osaka Prefecture	Groundwater	Kishiwada City	Harukidaikokucho	Rolling monitoring
67		Groundwater	Itami City	Kuchisakai	Fixed point monitoring
68	Hyogo Prefecture	Groundwater	Toyooka City	Saiwaicho	Fixed point monitoring
69	, - g	Groundwater	Nishiwaki City	Shimotoda	Rolling monitoring
70		Groundwater	Nara City	Sakyo	Fixed point monitoring
71	Nara Prefecture	Groundwater	Tenri City	Nakayamacho	Rolling monitoring
72	Makayama	Groundwater	Kinokawa City	Takano	<u> </u>
73	Wakayama Prefecture		•		Fixed point monitoring
	1 Telecture	Groundwater	Shirahama Town	Taira	Rolling monitoring
74	Tottori Prefecture	Groundwater	Tottori City	Saiwaicho	Fixed point monitoring
75		Groundwater	Kofu Town	Ebi	Rolling monitoring
76	Shimane Prefecture	Groundwater	Matsue City	Nishikawatsucho	Fixed point monitoring
77		Groundwater	Izumo City	Himebara(1)	Rolling monitoring
78	Okayama Prefecture	Groundwater	Kurashiki City	Fukui	Fixed point monitoring
79		Groundwater	Tsuyama City	Kamocho Tatsuchu	Rolling monitoring
80	Hiroshima Prefecture	Groundwater	Hiroshima City	Kamisenocho, Aki Ward	Fixed point monitoring
81		Groundwater	Shobara City	Tojocho Kushiro	Rolling monitoring
82	Yamaguchi	Groundwater	Yamaguchi City	Ouchimihori	Fixed point monitoring
83	Prefecture	Groundwater	Mine City	Ominecho Nishibun	Rolling monitoring
84	Tokushima Prefecture	Groundwater	Tokushima City	Fudohoncho	Fixed point monitoring
85	Tokustiittia F telectule	Groundwater	Kaiyo Town	Takazono	Rolling monitoring
86	Kagawa Prefecture	Groundwater	Takamatsu City	Bancho	Fixed point monitoring
87	Ragawa Flelectule	Groundwater	Sanuki City	Shido	Rolling monitoring
88		Groundwater	Matsuyama City	Hiraimachi	Fixed point monitoring
89	Ehime Prefecture	Groundwater	Seiyo City	Uwacho Kamimatsuba	Rolling monitoring
90		Groundwater	Ozu City	Shiba	Rolling monitoring
91		Groundwater	Kochi City	Kerako	Fixed point monitoring
92	Kochi Prefecture	Groundwater	Shimanto City	Fuba	Rolling monitoring
93		Groundwater	Kurume City	Tanushimarumachi Akinari	Fixed point monitoring
94	Fukuoka Prefecture	Groundwater	Chikushino City	Yamae	Rolling monitoring
95	_	Groundwater	Saga City	Yamatochoni ji	Fixed point monitoring
96	Saga Prefecture	Groundwater	Imari City	Hatatsucho Koba	Rolling monitoring
97		Groundwater	Isahaya City	Eidamachi	Fixed point monitoring
98	Nagasaki Prefecure	Groundwater	Shimabara City	Uenohara	Rolling monitoring
99		Groundwater	Kumamoto City	Suizenji, Chuo Ward	Fixed point monitoring
100	Kumamoto Prefecture	Groundwater		Saitsumachi	<u> </u>
	Transcribe Freedome		Amakusa City		Rolling monitoring
101		Groundwater	Koshi City	Sakae	Rolling monitoring
102	Oita Prefecure	Groundwater	Saiki City	Kamioka	Fixed point monitoring
103		Groundwater	Hita City	Hidaka	Rolling monitoring
104	Missonald Destants	Groundwater	Miyakonojo City	Minamiyokoichicho	Fixed point monitoring
105	Miyazaki Prefecture	Groundwater	Kobayashi City	Minaminish kata	Fixed point monitoring
106		Groundwater	Miyakonojo City	Minamiyokoichicho	Rolling monitoring
107	Kagoshima	Groundwater	Kagoshima City	Tamazatocho	Fixed point monitoring
108	Prefecture	Groundwater	Isa City	Okuchimemaru	Rolling monitoring
109	Okinawa Prefecture	Groundwater	Miyakojima City	Hirarahigashinakasonezoe	Fixed point monitoring
110		Groundwater	Itoman City	Mabuni	Rolling monitoring

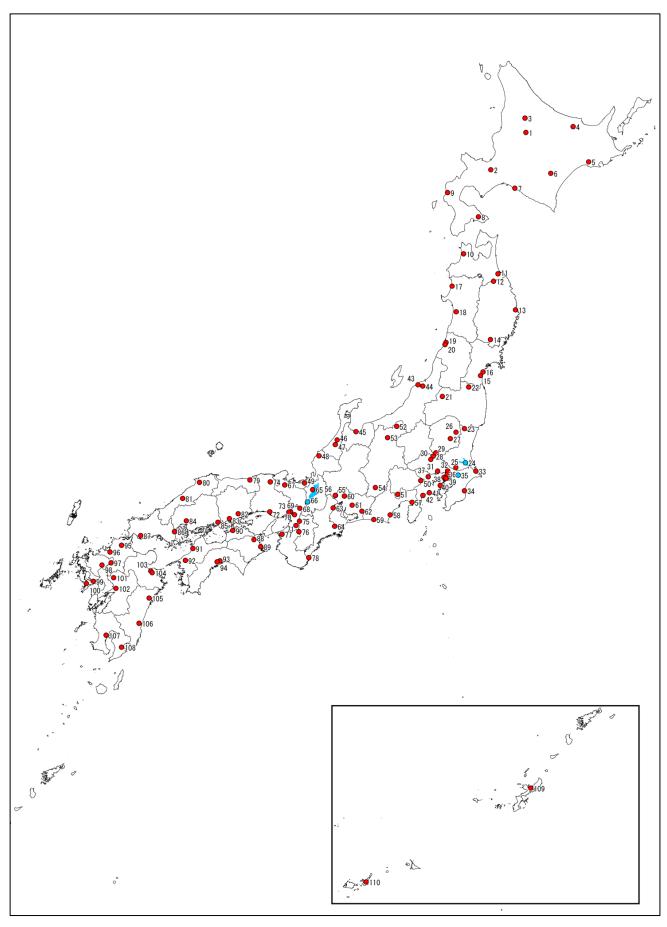


Figure 1.2-1 Map showing locations for FY2018 Nationwide Monitoring (public water areas)

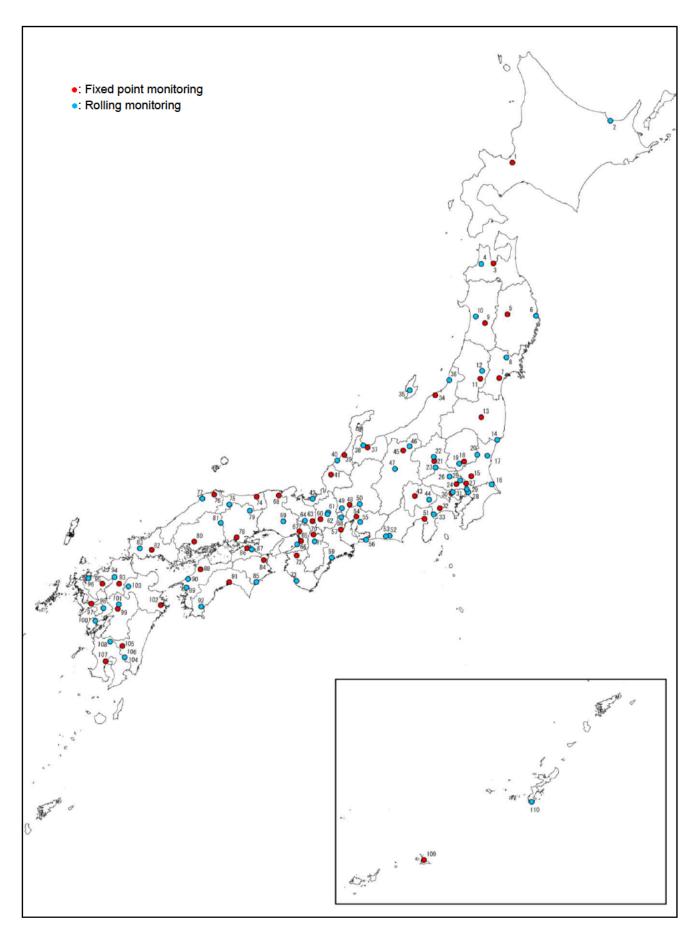


Figure 1.2-2 Map showing locations for FY2018 Nationwide Monitoring (groundwater)

Table 1.2-4 Monitoring points and period by block (FY2018)

		Public w	ater areas	Groundwater	
Blocks	Prefectures	Number of Locations (*1)	Period	Number of locations	Period
Hokkaido block	Hokkaido	9	Aug 21 to Sep 21	2	Aug 20 to Aug 29
Tohoku block	Aomori, Iwate, Miyagi, Akita, Yamagata and Fukushima	14	Aug 20 to Oct 26	12	Aug 20 to Oct 5
Kanto block	Ibaraki, Tochigi, Gunma, Saitama, Chiba, Tokyo, Kanagawa, Niigata, Yamanashi and Shizuoka	26 (2)	Aug 20 to Oct 29	27	Aug 20 to Sep 19, Dec 10 (*2)
Chubu block	Toyama, Ishikawa, Fukui, Nagano, Gifu, Aichi and Mie	15	Aug 20 to Nov 8	18	Aug 20 to Sep 27
Kinki block	Shiga, Kyoto, Osaka, Hyogo, Nara, and Wakayama	14 (1)	Aug 22 to Oct 24	14	Aug 22 to Sep 19
Chugoku-Shikoku Block	Tottori, Shimane, Okayama, Hiroshima, Yamaguchi, Tokushima, Kagawa, Ehime, and Kochi	16	Aug 20 to Oct 19	19	Aug 20 to Oct 19
Kyushu and Okinawa block	Fukuoka, Saga, Nagasaki, Kumamoto, Oita, Miyazaki, Kagoshima, and Okinawa	16	Aug 20 to Sep 20	18	Aug 21 to Oct 9
Survey to check for seasonal variations	Gunma and Okayama	2	May 22 to Jan 18	-	-

^(*1) Numbers in parentheses designate monitoring locations for lakes; plain numbers are for rivers.

^(*2) The groundwater at No.53 was collected on December 10, and collection from other locations was completed by September 19.

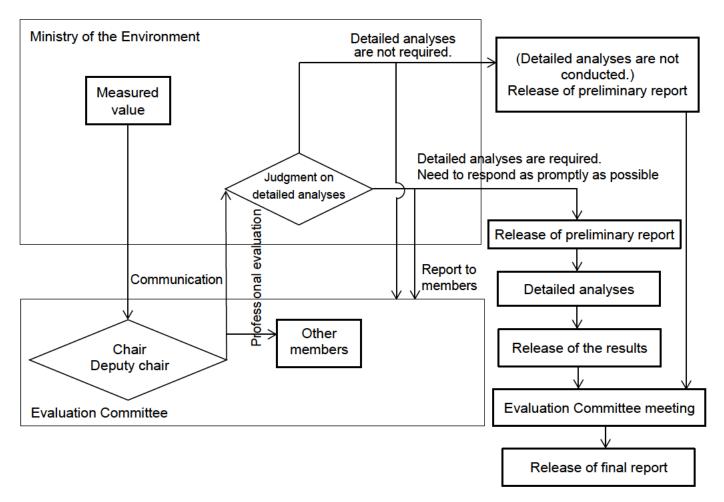


Figure 1.2-3 Procedures for professional evaluation of the results of the Nationwide Monitoring

2 Survey Methods and Analysis Methods

2.1 Survey methods

Samples were collected based on the following guidelines in principle, as outlined below.

- Water Quality Survey Method (Sep 30, 1971; Notice Kansuikan No. 30 issued by the Director General of the Water Quality Preservation Bureau, Ministry of the Environment)
- Sediment Survey Method (Aug 8, 2012; Notice Kansuitaisuihatsu No. 120725002 issued by the Director General of the Environmental Management Bureau, Ministry of the Environment)
- Groundwater Quality Survey Method (Sep 14, 1989; Notice Kansuikan No. 189 issued by the Director General of the Water Quality Preservation Bureau, Ministry of the Environment)
- Environmental Sample Collection Method (1983, Ministry of Education, Culture, Sports Science and Technology (hereinafter referred to as "MEXT")'s Radioactivity Measurement Method Series)
- Sample Pretreatment for Instrumental Analysis Using Germanium Semiconductor Detectors (1982, MEXT's Radioactivity Measurement Method Series)

(1) Public water areas

• Water:

Water samples of around 160 L (hydrochloric acid added) and around 2 L (nitric acid added) were collected at the predetermined points. From the 160 L sample (hydrochloric acid added), 80 L was used for γ -ray spectrometry analyses and the remaining 80 L was preserved for possible detailed analyses. From the 2 L sample (nitric acid added), 1 L was used to measure total β radioactivity concentrations.

Additionally, the transparency (or Secchi disk depth) was measured when collecting water samples, and in the case that transparency was thought to have been affected by rainwater based on comparison to prior measurements, or if there was no past data to compare, the measured transparency was 50 cm or less and it was suspected that rainwater may have influenced transparency, the water was not used as samples.

• Sediment:

Bottom sediment samples of around 6 L were collected at the predetermined points at a depth of around 10 cm from the surface layer by using an Ekman-Birge grab sampler etc., and 3 L out of the 6 L was used for γ -ray spectrometry analyses.

• Soil:

Soil samples (around 5 cm in diameter) were collected at a depth of around 5 cm at five points within a 3 to 5 meter square (four vertexes and the diagonal intersection point), or, when it was difficult to find an appropriate square to determine five such sampling locations, soil from five points at 3 to 5 meter intervals along a river was collected and was brought back separately. Samples thus collected at the five points were mixed in equal amounts respectively and were used for analyses.

• Ambient dose rates (soil sampling locations):

Ambient dose rates were measured by installing NaI (Tl) scintillation survey meters at a height of 1 m

from the ground surface on both banks of a river (or in the case of a lake, installing a NaI (Tl) scintillation survey meter at one point on lake side) so that the meters would face the sampling location of river water (or lake water).

(2) Groundwater

• Water:

Groundwater samples of around 160 L (hydrochloric acid added) and 2 L (nitric acid added) were collected at the predetermined wells, etc., 80 L of the 160 L sample (hydrochloric acid added) was used for γ -ray spectrometry analyses and the remaining 80 L was preserved for possible detailed analyses. 1 L of the 2 L sample (nitric acid added) was used to measure total β radioactivity concentrations.

When collecting water samples, it was confirmed that water temperature, transparency, pH, and electrical conductivity remained constant by allowing the water to pass for several minutes, and changes in the transparency, etc., thereafter were recorded as notes.

• Ambient dose rates:

Ambient dose rates were measured by installing NaI (Tl) scintillation survey meters at a height of 1 m from the ground surface outdoors near the relevant wells, etc., so that they would face the sampling location of groundwater (or the groundwater layer).

2.2 Analysis methods

For public water areas (water and sediment) and groundwater (water), total β radioactivity concentrations and γ -ray spectrometry with a germanium semiconductor detector were conducted using the methods below. As a general rule, the γ -ray spectrometry measurement covered all detectable radionuclides (including artificial radionuclides and naturally occurring radionuclides). Measurements were described to two significant digits, and the unit of measurements were "Bq/L" for water samples from public water areas and groundwater samples, and "Bq/kg (dry weight)" for sediment samples from public water areas, respectively.

The adopted analysis methods were essentially in line with the MEXT's Radioactivity Measurement Method Series, and detection limits were set around 0.001 to 0.01 Bq/L for water samples and around 1 to 30 Bq/kg for sediment samples. (However, these detection limits did not apply to radionuclides with short half-lives or those with extremely low γ -ray emission rates.)

- Measurement of total β radioactivity concentrations: The samples were concentrated and dried, and then measurements were taken using a low-background gas-flow proportional counter.
- γ -ray spectrometry measurement: After proper pretreatment, the samples were placed in a U-8 container or a 2L Marinelli beaker and measured using a germanium semiconductor detector. The following 62 types of γ -ray emitting radionuclides (18 naturally occurring radionuclides and 44 artificial radionuclides) were surveyed. The measured results of γ -ray emitting radionuclides were corrected for attenuation, and figures were reported as activity concentration after sampling.

Table 2.2-1 Surveyed γ -ray emitting radionuclides

radion	occurring uclides nuclides)			cial radionud 4 radionuclide		
Ac-228	Ra-224	Ag-108m	Co-58	I-131	Np-239	Te-129m
Be-7	Ra-226	Ag-110m	Co-60	I-132	Ru-103	Te-132
Bi-212	Th-227	Am-241	Cr-51	La-140	Ru-106	Y-91
Bi-214	Th-228	As-74	Cs-134	Mn-54	Sb-124	Y-93
K-40	Th-231	Ba-140	Cs-136	Mn-56	Sb-125	Zn-63
Pa-234m	Th-234	Bi-207	Cs-137	Mo-99	Sb-127	Zn-65
Pb-210	TI-206	Ce-141	Fe-59	Nb-95	Sr-91	Zr-95
Pb-212	TI-208	Ce-143	Ga-74	Nb-97	Tc-99m	Zr-97
Pb-214	U-235	Ce-144	Ge-75	Nd-147	Te-129	

3 Results

An outline of detectable radioactive materials at each monitoring location is as follows.

3.1 Detection of total β radioactivity and γ-ray emitting radionuclides

(1) Public water areas

1) Water

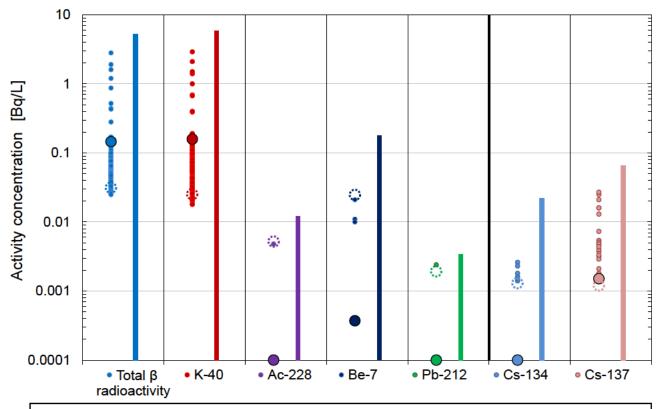
The results of the measurements of total β radioactivity and γ -ray emitting radionuclides in water samples from public water areas are as shown in Table 3.1-1 and Figure 3.1-1.

i) Total β radioactivity

The detection rate for total radioactivity was 92.0% with detected values ranging from not detectable to 2.8 Bq/L; they were all within the past measurement trends.

ii) γ-ray emitting radionuclides

As shown in Table 3.1-1 and Figure 3.1-1, six types of γ -ray emitting radionuclides (four naturally occurring radionuclides and two artificial radionuclides) were detected, while other types of γ -ray emitting radionuclides were not detectable at any of the locations surveyed.


The detection rates of naturally occurring radionuclides were 3% or less, except for K-40, for which the detection rate was 95.6%. All of the measured values of naturally occurring radionuclides were within the past measurement trends.

Regarding artificial radionuclides, the detection rate was 5.3% for Cs-134 and 16.8% for Cs-137, while the nuclide concentration of Cs-134 was 0.0026 Bq/L or less, Cs-137 was 0.027 Bq/L or less: all of which were within the past measurement trends.

Table 3.1-1 Detection of total β radioactivity and γ-ray emitting radionuclides in water samples from public water areas

						Measure	d values [Bq/L]	Maximum re	cords [Bq/L]
F	Radionu	ıclides	Number of samples	Number of detections	Detection rate [%]	Range Detection limits		Nationwide monitoring (FY2014-FY2017)	Monitoring of Levels (*1)
Tot	alβrad	lioactivity	113	104	92.0	ND - 2.8	0.022 - 0.22	5.2	0.24
es	тing	K-40	113	108	95.6	ND - 2.9	0.012 - 0.087	5.8	2.3
radionuclides	occurring	Ac-228	113	1	0.9	ND - 0.0048	0.0028 - 0.020	0.012	0.0037
radio	Naturally	Be-7	113	3	2.7	ND - 0.021	0.0074 - 0.082	0.057	0.18
emitting	Nat	Pb-212	113	1	0.9	ND - 0.0024	0.0009 - 0.0081	0.0034	No data
γ-ray en	Artificial	Cs-134	113	6	5.3	ND - 0.0026	0.0008 - 0.0046	0.022	0.015
<u>-</u>	Artif	Cs-137	113	19	16.8	ND - 0.027	0.0007 - 0.0043	0.065	0.041

(*1) Results of the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment conducted in Japan nationwide from FY1999 to FY2018 (excluding data of artificial radionuclides from Mar 11, 2011 to Mar 10, 2014)

<Legend> . : Detected value

- : Mean value (arithmetic mean calculated assuming ND = 0)
- : Mean value of detection limits (Arithmetic mean)
- : Range of the past measurement values (Nationwide Monitoring from FY2014 to FY2017, and Monitoring of Levels, etc., from FY1999 to FY2018 (excluding data of artificial radionuclides from Mar 11, 2011 to Mar 10, 2014))

Figure 3.1-1 Detection of total β radioactivity and γ-ray emitting radionuclides in water samples from public water areas

^(*) The vertical axis is logarithmically scaled because the magnitude of detected values varies widely depending on the type of radionuclide.

2) Sediment

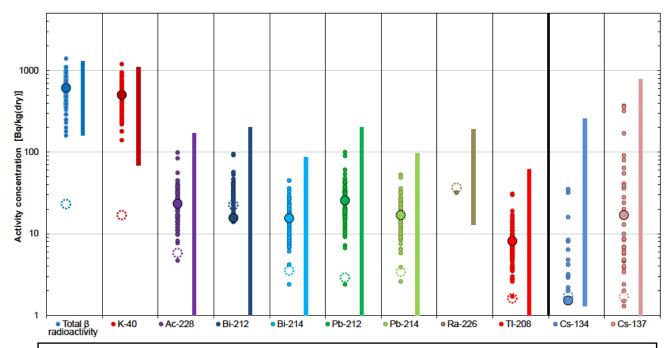
The results for total β radioactivity and γ -ray emitting radionuclides in sediment samples from public water areas are as shown in Table 3.1-2 and Figure 3.1-2.

i) Total β radioactivity

Total β radioactivity was detected at all locations surveyed, with detected values ranging from 160 to 1,400 Bq/kg: some of which exceeded the range of the past measurement records, however, they were all attributable to naturally occurring radionuclides and considered to be within the past measurement trends.

ii) y-ray emitting radionuclides

As shown in Table 3.1-2 and Figure 3.1-2, 10 types of γ -ray emitting radionuclides (eight naturally occurring radionuclides and two artificial radionuclides) were detected, while no other types of γ -ray emitting radionuclides were detectable.


The detection rates of the six naturally occurring radionuclides other than Bi-212, and Ra-226 exceeded 95%. K-40 exceeded the range of the past measurement records at some locations; however, K-40 is generally contained in natural soils and rocks: the values were all considered to be within the past measurement trends (described later).

As for artificial radionuclides, the detection rates of Cs-134 and Cs-137 were 13.6% and 33.6% respectively, while detected values were 35 Bq/kg or less for Cs-134 and 370 Bq/kg or less for Cs-137: all of which were within the past measurement trends.

Table 3.1-2 Detection of total β radioactivity and γ-ray emitting radionuclides in sediment samples from public water areas

		Number			Measured values [Bq/kg (dry)]					Maximum records [Bq/kg(dry)]			
R	Radionuclides		of samples	detections	Detection rate [%]	Range		Detection limits		limits	Nationwide monitoring (FY2014-FY2017)	Monitoring of Levels (*1)	
Tota	Total β radioactivity		110	110	100	160	-	1,400	14	-	36	1,300	1,300
	Naturally occurring	K-40	110	110	100	140	-	1,200	9.5	-	31	1,100	800
ses		Ac-228	110	109	99.1	ND	-	99	3.2	-	9.8	170	ND
radionuclides		Bi-212	110	51	46.4	ND	_	95	11	-	40	200	No data
ion		Bi-214	110	110	100	2.4	-	45	1.9	-	7.8	87	ND
		Pb-212	110	110	100	2.4	_	100	1.6	-	6.3	200	No data
tting		Pb-214	110	110	100	2.6	-	53	1.7	-	8.4	96	No data
γ-ray emitting		Ra-226	110	1	0.9	ND	-	32	18	-	170	190	122
		TI-208	110	109	99.1	ND	-	31	0.83	-	3.1	61	No data
7	Artificial	Cs-134	110	15	13.6	ND	_	35	0.89	-	3.5	260	30
	Artii	Cs-137	110	37	33.6	ND	-	370	0.78	-	3.3	780	110

(*1) Results of the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment studies conducted in Japan nationwide from FY1999 to FY2018 (excluding data of artificial radionuclides from Mar 11, 2011 to Mar 10, 2014)

Detected value <Legend> .:

- : Mean value (arithmetic mean calculated assuming ND = 0)
- : Mean value of detection limits (Arithmetic mean)
- : Range of the past measurement values (Nationwide Monitoring from FY2014 to FY2017, and Monitoring of Levels, etc., from FY1999 to FY2018 (excluding data of artificial radionuclides from Mar 11, 2011 to Mar 10, 2014))

Figure 3.1-2 Detection of total β radioactivity and γ-ray emitting radionuclides in sediment samples from public water areas

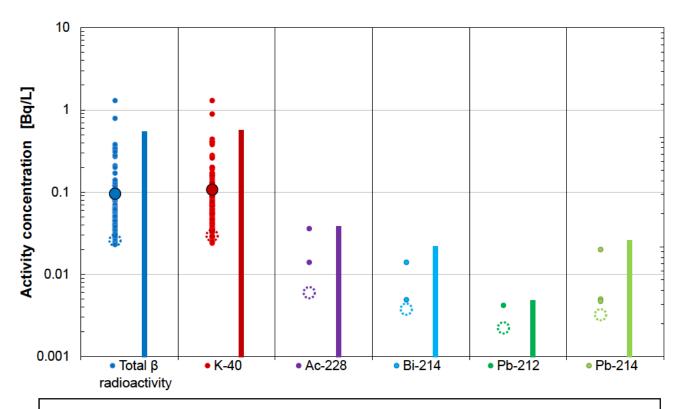
^(*) Details of the detection of Cs-134 and Cs-137 are explained later.
(*) The vertical axis is logarithmically scaled because the magnitude of detected values varies widely with the type of radionuclide.

(2) Groundwater

The measurement results for total β radioactivity and γ -ray emitting radionuclides in groundwater samples are as shown in Table 3.1-3 and Figure 3.1-3.

i) Total β radioactivity

The detection rate of total β radioactivity was 90.0% with detected values ranging from not detectable to 1.3 Bq/L: some of which exceeded the range of the past measurement records, however, they were all attributable to K-40 (naturally occurring radionuclide) and considered to be within the past measurement trends.


ii) γ-ray emitting radionuclides

Five types of γ -ray emitting radionuclides (all naturally occurring radionuclides), as shown in Table 3.1-3 and Figure 3.1-3, were detected, while no other types of γ -ray emitting radionuclides were detected. The detection rate was less than 3% except for the detection rate of K-40 which was 85.5%. K-40 exceeded the range of the past measurement records at some locations, however, K-40 is generally contained in natural soils, rocks, and seawater, etc., and considered to be within the past measurement trends (described later).

Table 3.1-3 Detection of total β radioactivity and γ-ray emitting radionuclides in groundwater samples

Radionuclides				Number of detections		Measure	ed values [Bq/L]	Maximum records [Bq/L]	
			Number of samples			Range	Detection limits	Nationwide Monitoring (FY2014 - FY2017)	Monitoring of Levels (*1)
Tot	Total β radioactivity		110	99	90.0	ND - 1.3	0.022 - 0.071	0.54	No data
lides	ing	K-40	110	94	85.5	ND - 1.3	0.013 - 0.075	0.56	0.28
emitting radionuclides	lly occurring	Ac-228	110	2	1.8	ND - 0.036	0.0030 - 0.015	0.038	No data
ng rac		Bi-214	110	2	1.8	ND - 0.014	0.0020 - 0.0088	0.022	No data
y-ray emitti	Naturally	Pb-212	110	1	0.9	ND - 0.004	0.0012 - 0.0064	0.0048	No data
	ž	Pb-214	110	3	2.7	ND - 0.020	0.0018 - 0.0079	0.026	No data

(*1) Results of the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment conducted in Japan nationwide from FY1999 to FY2018

<Legend> . : Detected value

• : Mean value (arithmetic mean calculated assuming ND = 0)

: Mean value of detection limits (Arithmetic mean)

: Range of the past measurement values (Nationwide Monitoring from FY2014 to FY2017, and Monitoring of Levels, etc., from FY1999 to FY2018)

(*) The vertical axis is logarithmically scaled because the magnitude of detected values varies widely with the type of radionuclide.

Figure 3.1-3 Detection of total β radioactivity and γ -ray emitting radionuclides in groundwater samples

3.2 Discussion regarding detected radionuclides

(1) Detection of naturally occurring radionuclides

1) Correlation between activity concentrations of K-40 in water samples and seawater

As explained in 3.1 above, activity concentrations of K-40 detected in water samples collected in public water areas were all within the past measurement trends. All the locations where relatively high concentrations of K-40 were detected were located in the tide zone and the electrical conductivity (EC) was high (1,600 mS/m at the maximum). Therefore, seawater inflow is a concern as a cause for these high concentrations and a comparison was made using all available data to clarify the correlation between activity concentrations of K-40 and EC (see Figure 3.2-1).

As shown in Figure 3.2-1, a positive correlation was found between them.

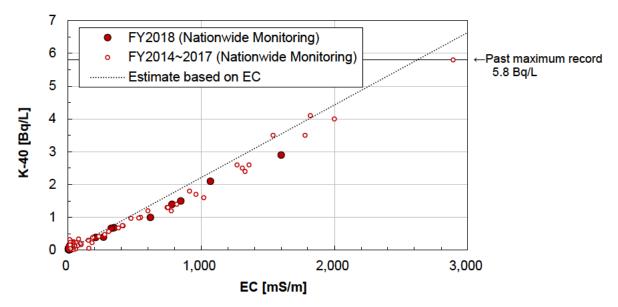


Figure 3.2-1 Correlation between K-40 concentrations and electrical conductivity (EC) in water samples from public water areas

On the other hand, according to the results of the Monitoring of Levels, conducted for 20 years from FY1999 to FY2018 (monitoring of 959 samples collected from 19 prefectures), the average concentration (arithmetic mean) of K-40 was approximately 9.9 Bq/L and the maximum concentration was 15 Bq/L (see Table 3.2-1).

Table 3.2-1 Results of the Monitoring of Levels, etc., concerning K-40 in seawater (*1)

Number of surveys	Number of detections	Detection rate [%]	Average [Bq/L]	Maximum [Bq/L]
959	924	96.4	9.9	15

^(*1) Results of the Monitoring of Levels and the Monitoring of the Surrounding Environment conducted in Japan nationwide from FY1999 to FY2018

EC of seawater is generally around 4,500 mS/m, and the estimated activity concentrations of K-40 with the possible effects from seawater were obtained by using the following formula based on the measurement results of EC for the relevant river water.

The estimated activity concentrations of K-40 in the river water are indicated with a dotted line (.....) in Figure 3.2-1, and the estimated values fall in line extremely well with the measured activity concentrations of K-40. Therefore, the high activity levels of K-40 obtained in the latest measurements are considered to have been caused by the intrusion of seawater.

Since the concentrations of K-40 in groundwater samples exceeded the range of the past measurement records at two locations (No. 17 and No. 66), the correlation between K-40 concentration and EC was assessed using all available data in the same manner as the case of the public water areas (see Figure 3.2-2, scales of the vertical and horizontal axes differ from those for Figure 3.2-1). Overall, no clear correlation between K-40 concentration and EC was found. However, for No. 66, it was considered to be affected by seawater judging from the environment of the collection point and the exceedingly high EC compared to other sampling locations.

For No. 17, although K-40 showed a relatively high value regardless of its low EC, it was well in line with the estimated value of K-40³ calculated from the K (stable) concentration measured for verification, and it was confirmed that there was no problem in the measurement. The K (stable) concentration was also within the range of nationwide surveys of groundwater⁴.

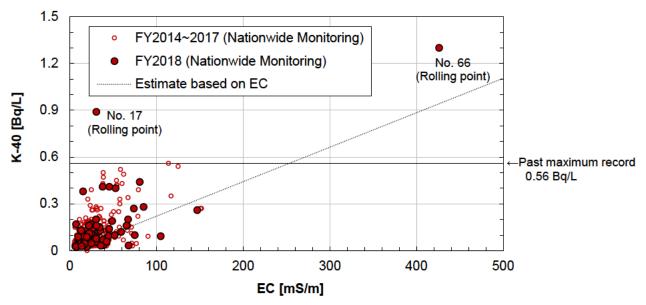
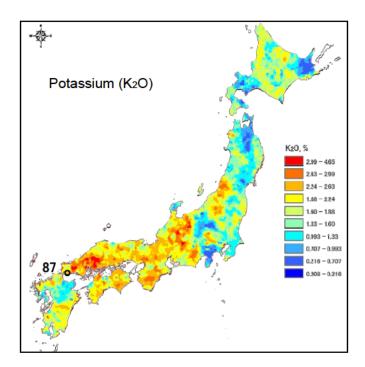


Figure 3.2-2 Correlation between the K-40 concentration and electrical conductivity (EC) in groundwater Sample

³ K-40 has a very long half-life of 1.28 × 10⁹ years and is known to be present in 0.0117% of natural potassium. The K-40


concentration can be estimated by calculation based on its K (stable) concentration.

4 The K (stable) concentrations ranged from 0.17 to 33.95 mg/L in nationwide surveys of groundwater (Source: National

⁴ The K (stable) concentrations ranged from 0.17 to 33.95 mg/L in nationwide surveys of groundwater (Source: National Institute of Agro-Environmental Sciences, Material No. 20 "Survey Data on Groundwater Quality in Rural Areas (1986-1993)" by National Institute of Agro-Environmental Sciences, Ministry of Agriculture, Forestry and Fisheries (March 1997).

2) K-40 in sediments

In public water sediment, activity concentrations of K-40 exceeded the range of the past measurement records at one site (No. 87). Potassium (K₂O) is an element contained in the earth's crust. As shown in Figure 3.2-3, No. 87 is located in an area with relatively high potassium concentrations.

Reference: Website of the Geological Survey of Japan, AIST https://gbank.gsj.jp/qeochemmap/setumei/radiation/setumei-radiation.htm

Figure 3.2-3 Distribution of potassium (K2O) in soil in Japan

3) Uranium and thorium series radionuclides in sediment samples

As explained in 3.1(1)2) above, uranium and thorium series radionuclides were detected at relatively high concentration levels in sediment samples from public water areas. The detection status is shown in Table 3.2-2.

Table 3.2-2 Detection of uranium and thorium series naturally occurring radionuclides

			Number of	Number of	Detection	Measured values [Bq/kg(dry)]			
Radionuclides			samples	detections	rate [%]	Range	Detection limit		
y-ray emitting radionuclides	Uranium series	Ra-226	110	1	0.9	ND - 32	18 - 170		
		Pb-214	110	110	100	2.6 - 53	1.7 - 8.4		
		Bi-214	110	110	100	2.4 - 45	1.9 - 7.8		
	Thorium Series	Ac-228	110	109	99.1	ND - 99	3.2 - 9.8		
		Pb-212	110	110	100	2.4 - 100	1.6 - 6.3		
		Bi-212	110	51	46.4	ND - 95	11 - 40		
\ -		TI-208	110	109	99.1	ND - 31	0.83 - 3.1		

These naturally occurring radionuclides exist widely within the earth's crust and the past monitoring has confirmed high correlations among the series.

Figure 3.2-4 and Figure 3.2-5 show the correlation among uranium series radionuclides and among thorium series radionuclides detected at the monitoring for FY2018 (These are plotted out based on radionuclides with high detection rate (uranium series: Pb-214 and thorium series: Pb-212) with instances of non-detection excluded).

Figure 3.2-4 and Figure 3.2-5 reveal high correlations among uranium series or among thorium series radionuclides.

<Note>

The tendency shown in the radionuclides of the two series are considered to be reflected in the geology of the locations at which they had been detected.

It is generally accepted that granite contains larger amounts of naturally occurring radionuclides than other kinds of rocks and that natural radiation doses correlate to some extent with uranium and thorium series radionuclides (both according to the Geological Society of Japan⁵).

For reference, Figure 3.2-6 shows the distribution map of granite in Japan, while Figure 3.2-7 shows the distribution map of natural radiation doses in Japan.

-

⁵ http://www.geosociety.jp/hazard/content0058 html

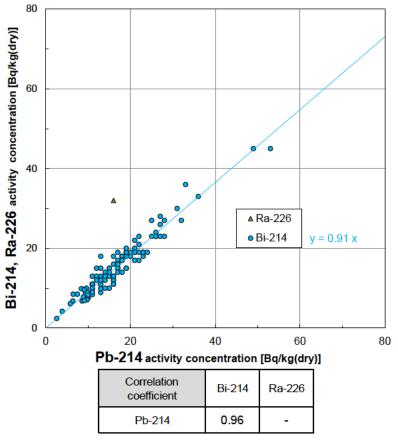


Figure 3.2-4 Correlations among uranium series radionuclides

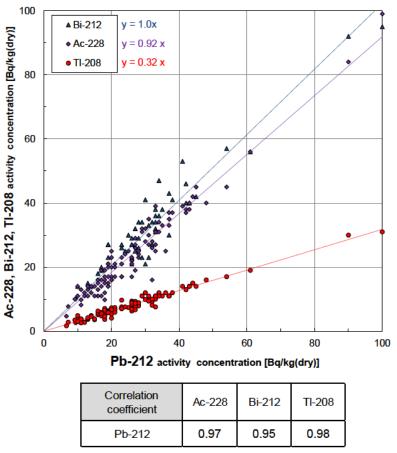


Figure 3.2-5 Correlations among thorium series radionuclides

(*) Reference: Seamless Digital Geological Map of Japan (1:200,000) ®; AIST website⁶ Figure 3.2-6 Distribution of granite in Japan (Parts highlighted in pink in the Figure are locations where granite exists.)

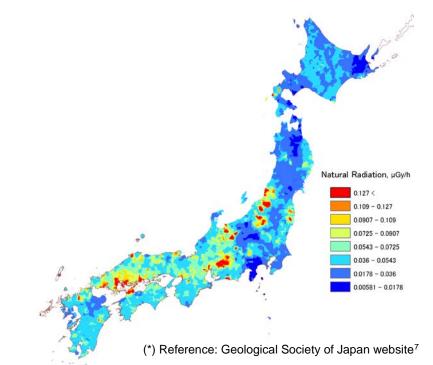


Figure 3.2-7 Natural radiation doses in Japan (Gy = Sv for γ -rays and β -rays)

⁶ https://gbank.gsj.jp/seamless/

⁷ http://www.geosociety.jp/hazard/content0058 html

(2) Detection of artificial radionuclides

1) Cs-134 and Cs-137 in water samples from public water areas

Radioactive cesium was detected in water samples from public water areas in Tohoku and Kanto blocks (19 locations in total; both Cs-134 and Cs-137 were detected at six locations; only Cs-137 was detected at 13 locations).

As for the six locations where both Cs-134 and Cs137 were detected (all in Tohoku and Kanto blocks), concentration ratio was tested as a reference. The results showed a good correlation between them and the calculated activity concentration ratio was approximately 10.5. Assuming that detected Cs-134 and Cs-137 are those discharged due to the Fukushima NPS Accident in March 2011, this ratio fell in line extremely well with the theoretical ratio (approx. 10.5) as of September 2018 (see Figure 3.2-8). This suggests that Cs-134 and Cs-137 detected in the Tohoku and Kanto blocks were indeed derived from the Fukushima NPS Accident.

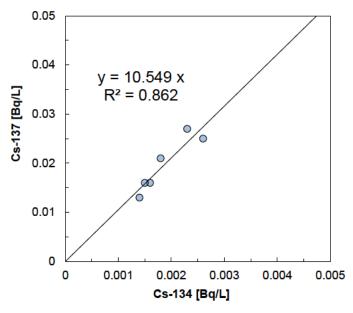


Figure 3.2-8 Concentration ratios (Cs-137/Cs-134) [Water (public water areas)]

(Reference: Changes in concentration ratios (Cs-137/Cs-134) over time, accounting for half-life periods)

Radionuclide	Half-life (year)	2011/3 2013/3 2015/3		2017/3	2018/9		
Cs-134	2.0648	1	0.51	0.26	0.13	0.08	
Cs-137	30.1671	1	0.96	0.91	0.87	0.84	
Cs137/	Cs134	1	1.87	3.50	6.54	10.5	

^(*) The concentration ratio at the time of the latest monitoring (around September 2018) is estimated to be approximately 10.5 (highlighted in yellow in the table above).

2) Cs-134 and Cs-137 in sediment samples from public water areas

Radioactive cesium was detected in sediment samples from public water areas in Hokkaido, Tohoku, Kanto, Chubu, and Kinki blocks (37 locations in total; both Cs-134 and Cs-137 were detected at 15 locations (all in Tohoku and Kanto Blocks); only Cs-137 was detected at 22 locations).

For locations that have not been surveyed by Post-Earthquake Monitoring, radioactive cesium species were also detected. Therefore, to better clarify the concentration levels of the detected radioactive cesium species in such locations, the following comparisons were made:

- (i) Among the above-mentioned, for the same locations within the same prefectures where Post-Earthquake Monitoring is carried out, a comparison between data was carried out.
- (ii) For locations where Post-Earthquake Monitoring is not conducted for the same locations within the same prefectures, collected data was compared to data from nearby locations obtained via Post-Earthquake Monitoring.
- (iii) For locations where Post-Earthquake Monitoring is not conducted nearby, collected data was compared with data obtained through the Monitoring of Levels and other reports.

i) Comparison with past Post-Earthquake Monitoring results within the same prefectures

Regarding locations where Post-Earthquake Monitoring is conducted within the same prefectures (excluding locations where the Monitoring has been conducted at the same points), the measured values in the latest monitoring were compared with the past measurement records for the same locations (see Figure 3.2-9).

Measured values from the latest monitoring were found to be within the past measurement trends.

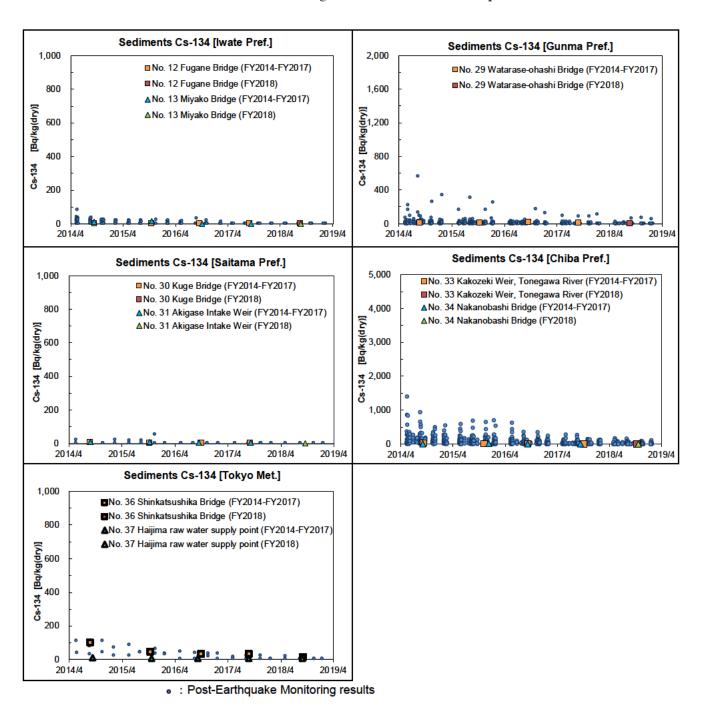
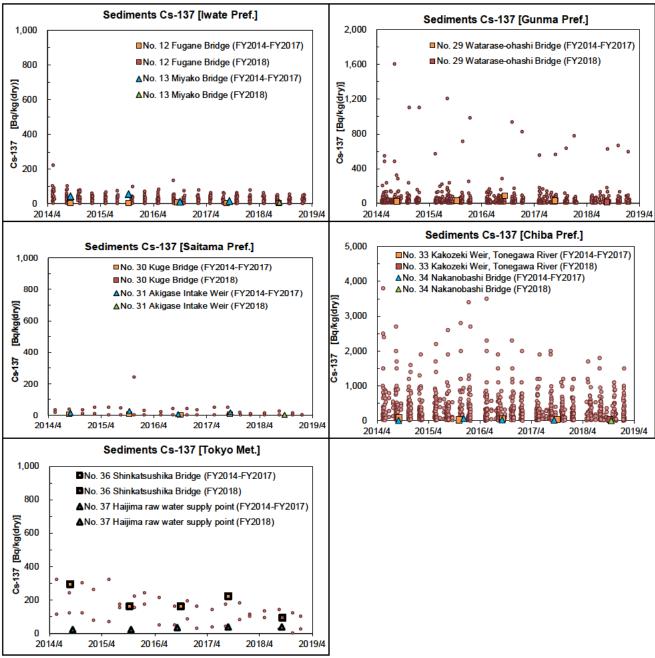



Figure 3.2-9 (1) (i) Comparison with past Post-Earthquake Monitoring results within the same prefectures [Cs-134]

. : Post-Earthquake Monitoring results

Figure 3.2-9 (2) (i) Comparison with past Post-Earthquake Monitoring results within the same prefectures [Cs-137]

ii) Comparison with past Post-Earthquake Monitoring results for nearby locations

Regarding Location No. 40 (Rinko Tsurumigawa Bridge, Tsurumi River, Yokohama City, Kanagawa Prefecture), it was considered reasonable to make a comparison with the past data for nearby locations although Post-Earthquake Monitoring had not been conducted in Kanagawa Prefecture. Therefore, a comparison was made with the past data for Location No. 38 (Ryogoku Bridge, Sumida River, Chuo City/Sumida City, Tokyo Metropolis) and Location No. 39 (Kasai Bridge, Arakawa River, Koto City/Edogawa City, Tokyo Metropolis), both of which are located at the mouths of the Sumida River and the Arakawa River to Tokyo Bay (see Figure 3.2-10). As a result, it was found that the measured values for Location No. 40 were within the past measurement trends.

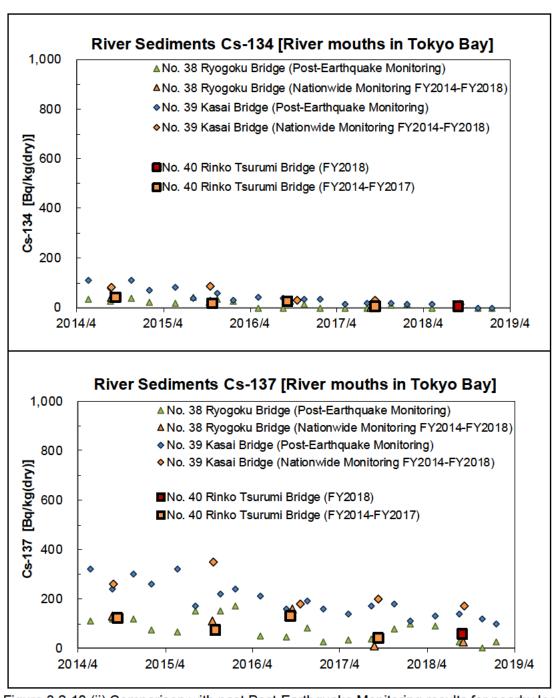


Figure 3.2-10 (ii) Comparison with past Post-Earthquake Monitoring results for nearby locations

iii) Comparison with the data obtained from the Monitoring of Levels, etc.

For locations where Post-Earthquake Monitoring has not been conducted nearby, a comparison with the results of the Monitoring of Levels was performed in order to evaluate their concentration levels (see Figure 3.2-11).

At 14 locations, only Cs-137 was detected and the measured values all fell within the past measurement trends.

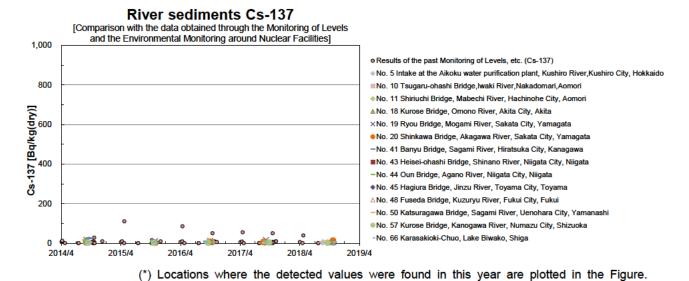


Figure 3.2-11 (iii) Comparison with the data obtained through the Monitoring of Levels

As a reference, concentration ratios were evaluated in the same manner as the case of the water samples for 15 locations where (all in the Tohoku and Kanto blocks) both Cs-137 and Cs-134 were detected. As a result, a good correlation was confirmed. The calculated activity concentration ratio was approximately 10.3 (Cs-137/Cs-134). Assuming that detected Cs-134 and Cs-137 are those discharged due to the Fukushima NPS Accident in March 2011, this ratio should be approximately equal to the theoretical ratio (approx. 10.5) as of September 2018 (see Figure 3.2-12). This suggests that Cs-134 and Cs-137 detected in sediment samples collected in the Tohoku and Kanto blocks were indeed derived from the Fukushima NPS Accident.

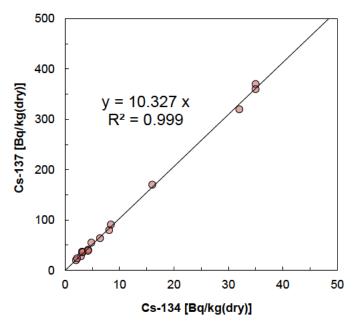


Figure 3.2-12 Concentration ratio (Cs-137/Cs-134) [Sediment (public water areas)]

(Reference: Changes in concentration ratios (Cs-137/Cs-134) over time, accounting for half-life periods)

Radionuclide	Half-life (year)	2011/3	2013/3	2015/3	2017/3	2018/9
Cs-134	2.0648	1	0.51	0.26	0.13	80.0
Cs-137	30.1671	1	0.96	0.91	0.87	0.84
Cs137/	Cs134	1	1.87	3.50	6.54	10.5

(*) The concentration ratio at the time of the latest monitoring (around September 2018) is estimated to be approximately 10.5 (highlighted in yellow in the table above).

Given these facts, Cs-134 and Cs-137 detected in sediment samples from public water areas (excluding the case in which only Cs-137 was detected) were mostly considered to be derived from the Fukushima NPS Accident, but the detected values were all within the past measurement trends.

3) Cs-134 and Cs-137 in groundwater

Cs-134 and Cs-137 were not detected in groundwater samples collected at any of the 110 locations (detection limit: approx. 0.001 to 0.002 Bq/L).

3.3 Survey results on seasonal variations

For survey results on seasonal variations of radionuclides values, at two locations⁸ (both in rivers), namely, Location No. 28 (Toneozeki Weir, Tonegawa River, Chiyoda Town, Gunma Prefecture) and Location No. 83 (Kasumi Bridge, Takahashi River, Kurashiki City, Okayama Prefecture), surveys were conducted four times during the period from May 22, 2018 to Jan 18, 2019. These two locations had been previously surveyed four times each from FY2014 to FY2017, and the current analysis includes the results from those prior years.

Radionuclides were detected as shown in Table 3.3-1 and Table 3.3-2. Figure 3.3-1 and 3.3-2 show the changes in radionuclides detected since FY2014. Table 3.3-1 and Table 3.3-2 also show the coefficients of variation⁹ (= sample standard deviation /average) indicating for the fluctuations in detected values.

The coefficients of variation in water samples ranged from 17% to 25% for total β radioactivity and K-40, and stood at 40% for Cs-137, respectively.

The coefficients of variation in sediment samples ranged from 6.4% to 27% for total β radioactivity and naturally occurring radionuclides (Ac-228, Bi-212, Bi-214, Pb-212, Pb-214, Tl-208, and K-40), and for artificial nuclides, 74% for Cs-134, 58% for Cs-137¹⁰.

The reason why the coefficients of variation of radioactive cesium in sediment samples are relatively higher than those in naturally occurring radionuclides is considered to have been associated with the fact that naturally occurring radionuclides are generally contained in minerals, while radioactive cesium is adsorbed in them. Further, Cs-134 has a half-life of approximately two years and physically attenuates faster than Cs-137 (half-life: approximately 30 years). Therefore, the coefficients of variation of Cs-134 are larger than those of Cs-137.

For reference, sediment grain size distribution and Cs-137 concentration change for Location No. 28 are shown in Figure 3.3-3.

Continuous monitoring conducted four times each year at two locations is necessary to clarify variations in the environment.

_

⁸ It was decided that one location each would be selected in eastern and western Japan. To make the selection, all 110 locations were first divided into two areas for convenience (Locations No. 1 to No. 55 were classified as eastern Japan and Locations No. 56 to No. 110 were classified as western Japan) and the middle number in each area was selected.

⁹ In this report: coefficient of variation = sample standard deviation divided by the average; hereinafter the same shall apply.

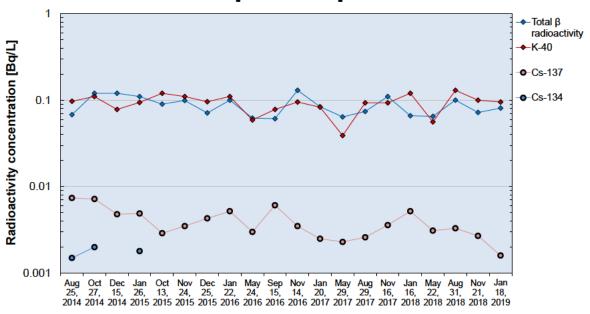

Regarding variations due to, among other things, the number of times of the survey conducted for radioactive materials in the environment FY2012 survey instances show 12 to 16% variations in the amount of radioactive cesium contained in riverbed sediment (nine samples collected during the same period). At River Site No. 28 where radioactive cesium was detected, a drop in water transparency probably due to sludge disturbance caused by pleasure boats or winds in the vicinity was observed. Then, the water and bottom sampling points were slightly relocated due to that those points were made off-limits, with recognizable variations in sediment grain-size distribution. Because the changes in sediment grain-size distribution might have affected the concentration of radioactive cesium, the changes in sediment grain-size distribution and Cs-137 concentration at River Site No. 28 are graphically summarized in Figure 3.3-3. This has revealed that sediment samples with high clay and silt contents tend to have higher Cs-137 concentrations. Accordingly, it was inferred that the variation in the amount of radioactive cesium in samples from River Site No. 28 had occurred due to the changes in the grain-size distribution in the sediment samples. In addition, the monitoring during the flood season recognized an increase in clay and silt ratio as well as periodic changes which would have been declining over time towards the next year's flood season. The same shall apply to Cs-137 concentration.

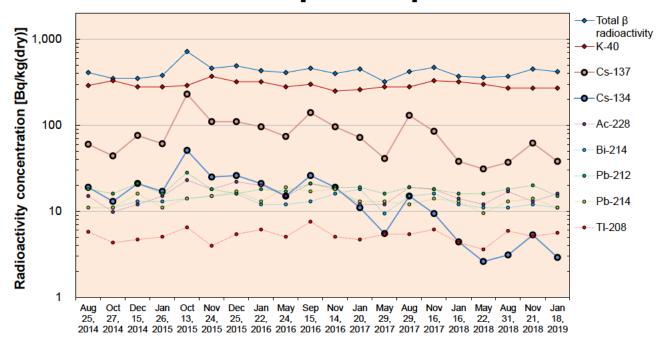
Table 3.3-1 Detection trends for radioactive materials at the same location [River No. 28]

No.28		Water	[Bq/L]		Sediment [Bq/kg(dry)]										
Radionuclides	Total β radioactivity	K-40	Cs-134	Cs-137	Total β radioactivity	K-40	Ac-228	Be-7	Bi-212	Bi-214	Pb-212	Pb-214	TI-208	Cs-134	Cs-137
Aug 25, 2014	0.068	0.097	0.0015	0.0074	410	290	15	<24	<32	<12	18	11	5.8	19	60
Oct 27, 2014	0.12	0.11	0.0020	0.0072	350	330	9.8	<36	<17	11	16	11	4.3	13	44
Dec 15, 2014	0.12	0.078	<0.0010	0.0048	350	280	12	<38	<28	13	21	16	4.7	21	76
Jan 26, 2015	0.11	0 094	0.0018	0.0049	380	280	15	<25	<23	13	16	11	5.0	17	61
Oct 13, 2015	0.090	0.12	<0.0022	0.0029	720	290	23	<76	<46	14	28	14	6.5	51	230
Nov 24, 2015	0.099	0.11	<0.0014	0.0035	460	370	18	<68	<30	15	18	15	4.0	25	110
Dec 25, 2015	0.071	0 096	<0.0014	0.0043	490	320	22	<44	<21	16	16	17	5.4	26	110
Jan 22, 2016	0.10	0.11	<0.0014	0.0052	430	320	20	<28	<23	12	18	13	6.1	21	96
May 24, 2016	0.062	0 059	<0.0014	0.0030	410	280	15	<54	37	12	17	19	5.0	15	74
Sep 15, 2016	0.061	0 078	<0.0014	0.0061	460	300	21	59	29	13	21	17	7.6	26	140
Nov 14, 2016	0.13	0 095	<0.0017	0.0035	400	250	18	<66	<30	16	19	18	5.0	19	96
Jan 20, 2017	0.084	0.083	<0.0013	0.0025	450	260	12	<29	<30	18	19	13	4.7	11	72
May 29, 2017	0.064	0.039	<0.0011	0.0023	320	280	12	<22	<19	9.4	16	13	5.4	5.5	41
Aug 29, 2017	0.074	0.093	<0.0014	0.0026	420	280	19	80	<27	15	19	12	5.4	15	130
Nov 16, 2017	0.11	0.093	<0.0014	0.0036	470	330	18	<49	<22	16	18	14	6.1	9.4	85
Jan 16, 2018	0.066	0.12	<0.0015	0.0052	370	320	14	<25	<29	12	16	13	4.3	4.4	38
May 22, 2018	0.065	0.056	<0.0014	0.0031	360	300	12	<100	<25	11	16	9.5	3.6	2.6	31
Aug 31, 2018	0.10	0.13	<0.0015	0.0033	370	270	17	<96	<29	11	18	13	5.9	3.1	37
Nov 21, 2018	0 072	0.10	<0.0013	0.0027	450	270	13	<56	<24	12	20	14	5.1	5.3	62
Jan 18, 2019	0 081	0.095	<0.0012	0.0016	420	270	16	<26	<23	11	15	11	5.6	2.9	38
Coefficient of variation	25 %	24 %	-	40 %	20 %	9.9 %	23 %	-	-	17 %	16 %	19 %	17 %	74 %	58 %

^(*) The coefficients of variation are shown only for radionuclides detected five times or more.

Water [River No. 28]

Sediment [River No. 28]



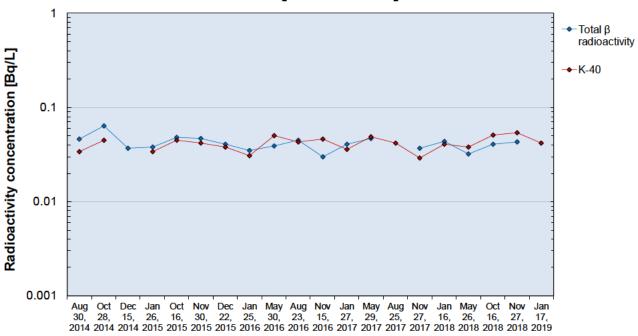

Figure 3.3-1 Changes in detection trends for radioactive materials at the same location [River No. 28]

Table 3.3-2 Detection trends for radioactive materials at the same location [River No. 83]

No.83		Water	[Bq/L]		Sediment [Bq/kg(dry)]									
Radiocuclides	Total β radioactivity	K-40	Be-7	Pb-212	Total β radioactivity	K-40	Ac-228	Bi-212	Bi-214	Pb-212	Pb-214	Ra-226	Th-234	TI-208
Aug 30, 2014	0.046	0.034	<0.024	<0.0019	1,000	870	13	42	15	28	21	50	<30	9.0
Oct 28, 2014	0.064	0.045	0.012	<0.0021	980	830	25	34	21	28	23	<42	<41	7.2
Dec 15, 2014	0.037	<0.028	<0.0073	<0.0019	890	910	12	23	17	24	19	36	30	7.6
Jan 26, 2015	0.038	0.034	<0.0073	0.0013	920	770	19	28	17	27	15	<39	42	9.0
Oct 16, 2015	0.048	0.045	<0.024	<0.0019	1,000	920	25	28	16	28	21	<37	<31	8.3
Nov 30, 2015	0.047	0.042	<0.018	<0.0015	1,000	920	21	<33	19	26	20	<46	<47	8.6
Dec 22, 2015	0.041	0.038	<0.013	<0.0015	950	840	29	37	16	26	22	<44	<45	5.4
Jan 25, 2016	0.035	0.031	<0.0085	<0.0014	940	840	25	<34	19	27	18	<41	<47	6.8
May 30, 2016	0.039	0.050	<0.011	<0.0017	930	840	17	<35	19	24	24	<42	<160	8.3
Aug 23, 2016	0.045	0.043	<0.040	<0.0015	1,100	900	18	34	14	21	16	<38	<140	7.6
Nov 15, 2016	0.030	0.046	<0.022	<0.0015	940	840	24	<28	18	22	17	<42	<150	7.6
Jan 27, 2017	0.041	0.036	<0.0078	<0.0014	990	840	15	<29	14	23	17	<39	<140	6.1
May 29, 2017	0.047	0.049	<0.0089	<0.0013	990	850	19	27	16	20	16	<38	<140	7.9
Aug 25, 2017	<0.024	0.042	<0.029	<0.0014	960	850	19	28	15	23	19	<31	<72	6.5
Nov 27, 2017	0.037	0.029	<0.016	<0.0013	950	790	28	30	19	28	24	<36	<80	9.7
Jan 16, 2018	0.044	0.041	<0.0093	<0.0016	960	860	27	<33	22	31	18	<44	<160	7.6
May 26, 2018	0.032	0.038	<0.029	<0.0014	930	800	32	<29	17	29	20	<48	<150	8.5
Oct 16, 2018	0.041	0.051	<0.018	<0.0013	860	710	31	36	23	34	28	<170	<78	11
Nov 27, 2018	0.043	0.054	<0.012	<0.0012	850	640	30	34	17	29	21	<45	<150	9.2
Jan 17, 2019	<0.024	0.042	<0.0076	<0.0012	840	670	30	40	21	32	24	<48	<160	8.2
Coefficient of variation	18 %	17 %	-	-	6.4 %	9.3 %	27 %	17 %	15 %	14 %	17 %	-	-	16 %

^(*) The coefficients of variation are shown only for radionuclides detected five times or more.

Water [River No. 83]

Sediment [River No. 83]

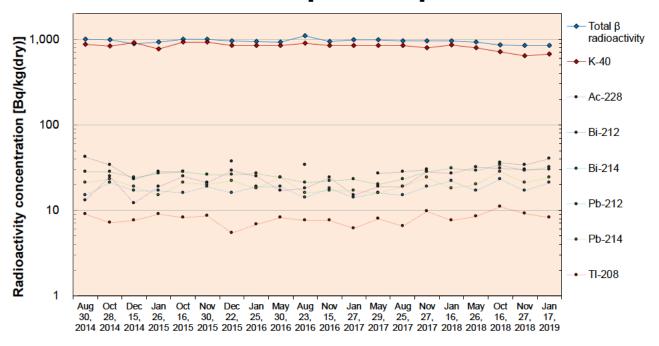


Figure 3.3-2 Changes in detection trends for radioactive materials at the same location [River No. 83]

Sediment grain size distribution and Cs-137 concentration (River No.28)

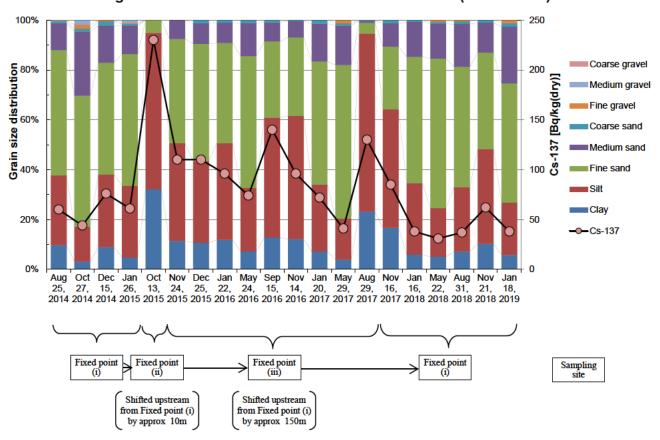


Figure 3.3-3 Changes in sediment grain size distribution and Cs-137 concentration [River No. 28]