FY2015 Results of the Radioactive Material Monitoring in the Water Environment

> June 2017 Ministry of the Environment

Outline Part 1: National Radioactive Material Monitoring in the Water Environment in the Whole of	Japan (FY2015)
1 Objective and Details	
1.1 Objective	5
1.2 Details	5
2. Survey Methods and Analysis Methods	
2.1 Survey methods	
2.2 Analysis methods	
3. Results	21
3.1 Detection of total β radioactivity and γ -ray emitting radionuclides	21
(1) Public water areas	21
1) Water	21
2) Sediments	
(2) Groundwater	
3.2 Consideration regarding detected radionuclides	
(1) Detection of naturally occurring radionuclides	
1) Correlation between activity concentrations of K-40 and salinity	
2) Uranium and thorium series radionuclides	
(2) Detection of artificial radionuclides	
1) Cs-134 and Cs-137 in sediments	
2) Cs-134 and Cs-137 in water	
3) Cs-134 and Cs-137 in groundwater	
4) I-131 in water from public water areas	
3.3 Survey to check annual variation	
Part 2: Radioactive Material Monitoring in the Water Environment in and around Fukus	
(FY2015) 1. Objective and Details	
1.1 Objective	
1.2 Details	
2. Survey Methods and Analysis Methods	
2.1 Survey methods	
2.2 Analysis methods	
3. Outline of the Results	
3.1 Detection of radioactive cesium	
3.2 Detection of radionuclides other than radioactive cesium	
4. Results (Radioactive cesium (Cs-134 and Cs-137))	
4.1 Water	
(1) Public water areas	

Contents

	1) Rivers	57
	2) Lakes	57
	3) Coastal areas	57
	(2) Groundwater	57
	4.2 Sediments	62
	(1) Public water areas (rivers)	62
	(2) Public water areas (lakes)	62
	(3) Public water areas (coastal areas)	62
	4.3 Detection of radioactive materials in sediments by location	66
	(1) Evaluation policy	66
	(2) Concentration levels in sediment samples from rivers, lakes, and coastal areas and	their changes
	by prefecture	69
	(2)-1 Rivers	69
	(2)-2 Lakes	94
	(2)-3 Coastal areas	114
	(3) Conclusion	124
5	5. Results (Radionuclides Other than Radioactive Cesium)	133
	5.1 Radioactive strontium (Sr-90 and Sr-89)	133
	(1) Public water areas	133
	(2) Groundwater	136
	5.2 Other γ-ray emitting radionuclides	
	rt 3: Other Radioactive Material Monitoring Conducted Nationwide (FY2015)	
1	I. Outline of the Monitoring	
	1.1 Covered monitoring	140
	1.2 Compilation methods	140
2	2. Results	143
	2.1 Water	143
	(1) Inland water	143
	(2) Seawater	144
	2.2 Sediments	145
	(1) Inland water sediments (river sediments)	145
	(2) Sea sediments	146

Outline

The following show the outline of the results of the FY2015 Monitoring of Radioactive Materials based on the Water Pollution Control Act.

Monitoring locations are as shown in Figure 1 and Figure 2.

1. National Radioactive Material Monitoring in the Water Environment in the Whole of Japan (FY2015)

- Monitoring that was commenced in FY2014 at 110 locations for both public water areas and groundwater in 47 prefectures for the purpose of clarifying the distribution of radioactive materials in those areas nationwide (hereinafter referred to as the "Nationwide Monitoring").
- \circ The total β radioactivity and detected γ-ray emitting radionuclides were within the past measurement trends¹. Lower detection limits differ by nuclide and sampling location, but overall were around 0.001 to 0.1 Bq/L in water, and around 1 to 100 Bq/kg in sediments.²
- \circ There were locations where the value of K-40 and total β were elevated in public water areas and some groundwater, but this was considered to have been influenced by seawater or soil / rocks.
- As for other naturally occurring radionuclides, Ac-228, Bi-212, Bi-214, Pb-210, Pb-212, and Pb-214 were detected in higher concentrations than in past results. However, they were all considered to be in the thorium series or in the uranium series that are generally contained in natural soils and rocks
- At some monitoring locations for public water areas, the artificial radionuclides Cs-134, Cs-137 and I-131 were detected exceeding their detection limits, but their values were within the past measurement trends.
- It is appropriate to continue this monitoring the following fiscal year onward in order to clarify the distribution of radioactive materials in the water environment.

2. Radioactive Material Monitoring in the Water Environment in and around Fukushima Prefecture (FY2015)

- In response to the accident at the Tokyo Electric Power Company's Fukushima Daiichi NPS (hereinafter referred to as the "Fukushima NPS Accident"), monitoring has been conducted continuously since August 2011 at around 600 locations for public water areas and around 400 locations for groundwater in and around Fukushima prefecture for the purpose of clarifying the distribution of the accident-drived radioactive materials in the water environment (hereinafter referred to as the "Post-Earthquake Monitoring")
- A summary of the radioactive cesium measurement results after the commencement of the FY2015 monitoring are as follows.

¹ "Within the past measurement trends" means that the results of the latest monitoring survey are evaluated from a technical perspective as not displaying extreme deviation from the results of past similar monitoring surveys.

² See Table 3.1-1, Table 3.1-2, and Table 3.1-3 of the Part 1 report for the details of lower detection limits.

<Public water areas>

- 1) Water (detection limit: 1 Bq/L for both Cs-134 and Cs-137)
 - At most locations radioactive cesium was not detectable, although several locations showed a positive result for these radionuclides.
- 2) Sediments (detection limit: 10 Bq/kg for both Cs-134 and Cs-137)
 - [Rivers]
 - On the whole, the levels of both Cs-134 and Cs-137 were 300 Bq/kg or less at most locations, though relatively high levels were detected at some limited locations, such as those within the 20 km range. Changes in activity concentrations were observed as a decreasing trend at most locations.
 - [Lakes]
 - On the whole, the levels of both Cs-134 and Cs-137 were 3,000 Bq/kg or less at most locations, though relatively high levels were detected at some limited locations, such as those within the 20 km range. Changes in activity concentrations were observed generally as a decreasing or unchanged trend at most locations except for several locations showing fluctuations.
 - [Coastal areas]
 - On the whole, the levels of both Cs-134 and Cs-137 were 300 Bq/kg or less at most locations. Changes in activity concentrations were observed generally as a decreasing trend at most locations except for several locations showing fluctuations.
- < Groundwater >
 - Radioactive materials were not detectable in groundwater at all surveyed locations in FY2015 (detection limit: 1 Bq/L for both Cs-134 and Cs-137).
- \circ The results concerning radionuclides other than radioactive cesium were as follows:
 - Sr-89: Was not detectable at any surveyed locations for groundwater.
 - Sr-90: Was detected in sediment collected at several locations for public water areas, but basically remained at relatively low levels; Not detectable at any surveyed locations for groundwater
- As measured activity concentrations are considered to fluctuate at some locations due to slight changes in sampling locations and properties, it is appropriate to continue this monitoring in the following fiscal years on an ongoing basis.

3. Other Radioactive Material Monitoring Conducted Nationwide (FY2015)

• The results of the Monitoring of Environmental Radioactivity Levels (hereinafter referred to as the "Monitoring of Levels), which has been conducted by the Nuclear Regulation Authority for the purpose of clarifying the existence or nonexistence of the influence of nuclear facilities, etc. nationwide, were all within the past measurement trends.

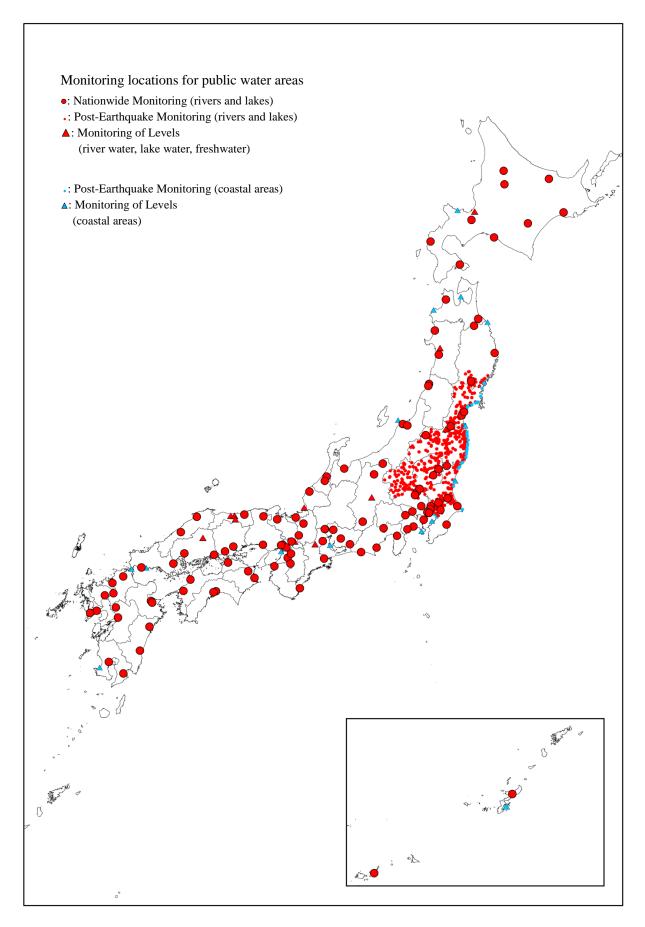


Figure 1 Locations for monitoring of radioactive materials (public water areas)

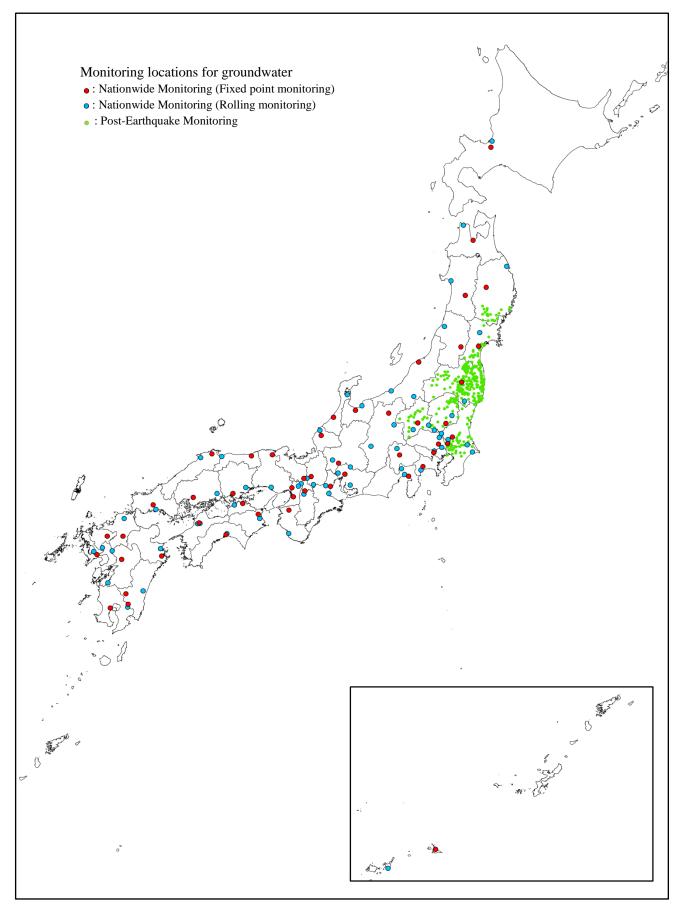


Figure 2 Locations for monitoring of radioactive materials (groundwater)

Part 1: National Radioactive Material Monitoring in the Water Environment in the Whole of Japan (FY2015)

1 Objective and Details

1.1 Objective

In response to the Fukushima NPS Accident, during which radioactive materials were discharged and causing environmental pollution, the Water Pollution Control Act was amended. It was decided that the Minister of the Environment should monitor pollution caused by radioactive materials in public water areas and groundwater and release the results from the perspective of preserving the health and living environment of the people.

Base on the above, this monitoring aims to clarify the distribution of radioactive materials in public water areas and groundwater nationwide.

1.2 Details

(1) Monitoring locations

- Public water areas: 110 locations (rivers: 107 locations; lakes: 3 locations)
- Groundwater: 110 locations

Monitoring locations were selected based on the following policy with a view to ensuring balanced nationwide monitoring (specific locations are as shown in Tables 1.2-2 and 1.2-3 and Figures 1.2-1 and 1.2-2).

(i) Public water areas

- The number of locations per prefecture was decided depending on the area and population, while securing at least one location in each prefecture.
- · Locations within each prefecture were selected based on the following policy:
 - a) Select representative rivers (including lakes) within each prefecture in the same numbers as those of the aforementioned locations in consideration of the area and population in their basins.
 - b) Regarding rivers selected as explained in a), select locations from among those for the monitoring of hazardous materials, etc. conducted under the Water Pollution Control Act, which are selected in consideration of water utilization points. For an individual river, prioritize locations in the lower sections (including lakes located downstream).
 - c) As this monitoring does not aim to clarify the influence of a specific sources, exclude locations close to those subject to the Environmental Monitoring around Nuclear Facilities, etc. (Radiation Monitoring Grants) in principle.
- (ii) Groundwater
 - •Two locations were chosen for each prefecture and one more location was added for each prefecture where the amount of groundwater utilized had been large over the past several years.
 - Locations within each prefecture were selected mainly from those for monitoring of environmental standard items for groundwater, based on the following conditions:
 - a) Select regional representative wells (such as wells built for monitoring or major wells with especially high frequency of use) in consideration of the utilization amount of groundwater from respective

groundwater basins and water veins (hereinafter referred to as "groundwater basins, etc.").

- b) Prioritize wells owned or managed by local governments, etc. in consideration of the convenience of coordination in case any additional survey is required.
- c) Select one location for continuous fixed point monitoring from among the locations selected in the manner above, while taking into account the utilization amount and representativeness in a broader area of the relevant groundwater basin, etc. Other locations are for rolling monitoring (for 5 years in principle).
- d) As this monitoring does not aim to clarify the influence of a specific sources, exclude locations close to those subject to the Environmental Monitoring around Nuclear Facilities, etc. (Radiation Monitoring Grants), in principle.

(2) Targets

- •Public water areas: Water and sediments (for lakes, survey water both at the surface layer and bottom layers) (Additionally, radioactive concentrations in soil and ambient dose rates are to be measured in the surrounding environment (river beds, etc.) near the sampling locations as reference.)
- Groundwater: Water

(Additionally, ambient dose rates are to be measured near the sampling locations as reference.)

(3) Frequencies and periods

• Public water areas: Once a year

However, monitoring was conducted four times a year at two locations (one location in eastern and western Japan, respectively) in order to check any annual variation.

• Groundwater: Fixed point monitoring was conducted once a year, and rolling monitoring was conducted once every five years in principle.

Periods for FY2015 monitoring are as shown in Table 1.2-4.

(4) Conducted analyses

The following analyses were conducted for collected samples.

- Measurement of total β radioactivity concentrations.
- γ-ray spectrometry measurement using a germanium semiconductor detector (all detectable radionuclides, including major naturally occurring radionuclides and artificial radionuclides, were surveyed in principle)

(5) Comparison with the past measurement trends

Obtained values were compared with the past measurement trends, and if any deviation was suspected, the validity of the measured values was rechecked (possibilities of transcription errors or insufficient adjustments of equipment, etc.).

This monitoring has just commenced. Therefore, the results of similar environmental monitoring conducted

so far are to be used for comparison for the time being. Specifically, the results of the Monitoring of Environmental Radioactivity Levels and Monitoring of the Surrounding Environment conducted by the Nuclear Regulation Authority, as well as the results of the Radioactive Material Monitoring in the Water Environment in and around Fukushima Prefecture conducted by the Ministry of the Environment were utilized. When making comparisons, due consideration was given to the possibility that the values of Cs-137 and other accident-derived radionuclides would have increased after the Fukushima NPS Accident.

Essentially, nationwide data for the past two decades were used. Also, with regard to the influence of the Fukushima NPS Accident., considering the influence immediately after it and based on actual measurement, "one year after the accident" was assumed to be a steady state, and therefore, the period from March 11, 2011 to March 10, 2012 was excluded.

(6) Measures to be taken when a value deviating from the past measurement trends was detected

The following measures are to be taken when a value deviating from the past measurement trends was detected (see Figure 1.2-3).

(6)-1 Release of preliminary values

Any value that is suspected to deviate from the past measurement trends should be immediately evaluated professionally by the chair and the deputy chair, and if it is judged highly urgent (when it has been confirmed that the value is highly likely to deviate from the past measurement trends, and additional detailed analyses are considered to be necessary), a preliminary report should be released as promptly as possible.

In such a case, the following related data should be compiled as basic data for professional evaluation. Members of the Evaluation Committee other than the chair and the deputy chair should be informed of the relevant information together with the professional evaluation by the chair and the deputy chair (see Table 1.2-1 for the chair and other committee members).

- (i) Results of the measurement concerning water, sediments and ambient dose rates (results of the measurement of total β radioactivity concentrations and γ -ray spectrometry measurement)
- (ii) Sampling dates, sampling locations (maps, water depth, river width, etc.), sampling methods, and sampling circumstances (photos)
- (iii) Weather data for about one week near the measuring date (the amount of precipitation, in particular)
- (iv) Ambient dose rates measured for the last one month or so in neighboring points
- (v) Changes in past detected values of the relevant radionuclide

(6)-2 Detailed analyses and release of the results

For data for which the preliminary report was released as explained in (6)-1 above, the following detailed analyses are to be conducted and the results should be released.

- Concrete analyses to identify radionuclides (including measurement of individual radionuclides through a radiochemical analysis)
- · Additional measurement in the surrounding areas of the relevant surveyed location

(7) Disclosure of measurement results

The measurement results data are made publicly available on the following Ministry of the Environment website:

http://www.env.go.jp/en/water/rmms/surveys.html

Table 1.2-1 List of members of the Evaluation Committee on Radioactive Material Monitoring in the Water Environment

IIMOTO Takeshi (Deputy chair)	Senior Associate professor, Division for Environment, Health and Safety, the University of Tokyo
ISHII Nobuyoshi	Principal Researcher, Environmental Transfer Parameter Research Team, The Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
TOKUNAGA Tomochika	Professor, Department of Environment Systems, Graduate School of Frontier Sciences, the University of Tokyo
HAYASHI Seiji	Research Group Manager & Head of Environmental Assessment Section, Fukushima Branch, National Institute for Environmental Studies
FUKUSHIMA Takehiko (Chair)	Professor, Doctoral Program in Integrative Environment and Biomass Sciences, Graduate School, University of Tsukuba

		_		Sampling location	
No.	Prefecture	Property	Water area	Location	Municipality
1		River	Ishikari River	Water purification plant intake at Ishikari River in Asahikawa City	Asahikawa City
2		River	Ishikari River	Intake at the Shirakawa water purification plant in Sapporo City	Sapporo City
3		River	Teshio River	Nakashibetsu Bridge (Intake at the Higashiyama water purification plant in Shibetsu City)	Shibetsu City
4	Hokkaido	River	Tokoro River	Kitami City	
5	Prefecture	River	Kushiro River	Intake at the Aikoku water purification plant in Kushiro City	Kushiro City
6		River	Tokachi River	Nantai Bridge	Obihiro City
7		River	Sarugawa River	Sarugawa Bridge (Tomigawa)	Hidaka Town
8		River	Matsukura River	Mitsumori Bridge (Before the confluence with Torasawa River)	Hakodate City
9		River	Shiribeshi- toshibetsu River	Intake at the Kitahiyama simple water plant in Kitahiyama Town	Setana Town
10	Aomori	River	Iwaki River	Tsugaru-ohashi Bridge	Nakadomari Town
11	Prefecture	River	Mabechi River	Shiriuchi Bridge	Hachinohe City
12	Iwate	River	Mabechi River	Fugane Bridge	Ninohe City
13	Prefecture	River	Heigawa River	Miyako Bridge	Miyako City
14		River	Kitakami River	Chitose Bridge	Ichinoseki City
15	Miyagi	River	Abukuma River	Iwanuma (Abukuma Bridge)	Iwanuma City
16 17	Prefecture Akita	River River	Natori River Yoneshiro River	Yuriage-ohashi Bridge	Natori City Noshiro City
17	Prefecture	River	Omono River	Noshiro Bridge Kurose Bridge	Akita City
18	Yamagata	River	Mogami River	Ryou Bridge	Sakata City
20	Prefecture	River	Akagawa River	Shinkawa Bridge	Sakata City
20		River	Agano River	Shingo Dam	Kitakata City
22	Fukushima	River	Abukuma River	Taisho Bridge (Fushiguro)	Date City
23	Prefecture	River	Kujigawa River	Takachihara Bridge	Yamatsuri Town
24	Ibaraki	Lake	Lake Kasumigaura	Center of the lake	Miho Village
25	Prefecture	River	Kokai River	Fumimaki Bridge	Toride City
26	Tochigi	River	Nakagawa River	Shinnaka Bridge	Nakagawa Town
27	Prefecture	River	Kinugawa River	Kinugawa Bridge (Hoshakuji Temple)	Utsunomiya City
28	Gunma Prefecture	River	Tonegawa River	Toneozeki Weir	Chiyoda Town/Gyoda City (Saitama Prefecture)
29	Tielecture	River	Watarase River	Watarase-ohashi Bridge	Tatebayashi City
30		River	Arakawa River	Kuge Bridge	Kumagaya City
31	Saitama	River	Arakawa River	Akigase Intake Weir	Saitama City/ Shiki City
32	Prefecture	River	Edogawa River	Nagareyama Bridge	Nagareyama City (Chiba Prefecture) / Misato City
33	Chiba	River	Tonegawa River	Kakozeki Weir	Tonosho Town
34	Prefecture	River	Ichinomiya River	Nakano Bridge	Ichinomiya Town
35		Lake	Lake Inbanuma	Lower area of water purification plant intake	Sakura City
36 37	Tokyo	River River	Edogawa River Tamagawa River	Shinkatsushika Bridge Haijima raw water supply point	Katsushika City Akishima City
37	Metoropolis	River	Sumida River	Ryogoku Bridge	Chuo City / Sumida City
39		River	Arakawa River	Kyögökü Bildge Kasai Bridge	Koto City / Edogawa City
40		River	Tsurumi River	Rinko Tsurumigawa Bridge	Yokohama City
41	Kanagawa	River	Sagami River	Banyu Bridge	Hiratsuka City
42	Prefecture	River	Sakawa River	Sakawa Bridge	Odawara City
43	Niigata	River	Shinano River	Heisei-ohashi Bridge	Niigata City
44	Prefecture	River	Agano River	Oun Bridge	Niigata City
45	Toyama Prefecture	River	Jinzu River	Hagiura Bridge	Toyama City
46	Ishikawa	River	Saigawa River	Okuwa Bridge	Kanazawa City
47	Prefecture	River	Tedori River	Hakusangoguchi Dike	Hakusan City
48	Fukui	River	Kuzuryu River	Fuseda Bridge	Fukui City
49	Prefecture	River	Kitagawa River	Takatsuka Bridge	Obama City
50	Yamanashi	River	Sagami River	Katsuragawa Bridge	Uenohara City
51	Prefecture	River	Fujikawa River	Nanbu Bridge	Nanbu Town
52	Nagano	River	Shinano River	Ozeki Bridge Kojabi Bridga	Iiyama City
53 54	Prefecture	River	Saigawa River	Koichi Bridge	Nagano City
J4		River	Tenryu River	Tsutsuji Bridge	Iida City

Table 1.2-2 List of locations for the FY2015 Nationwide Monitoring (public water areas) (No. 1)

N	D.C.	D (Sampling location	
No. Prefecture Property			Water area	Location	Municipality
55	Gifu	River	Kisogawa River	Tokai-ohashi Bridge (Naruto)	Kaizu City
56	Prefecture	River	Nagara River	Tokai-ohashi Bridge	Kaizu City
57	Shizuoka	River	Kanogawa River	Kurose Bridge	Numazu City
58	Prefecture	River	Ooi River	Fujimi Bridge	Yaizu City / Yoshida Town
59	Tielecture	River	Tenryu River	Kaketsuka Bridge	Iwata City / Hamamatsu City
60	Aichi	River	Shonai River	Mizuwake Bridge	Nagoya City
61	Prefecture	River	Yahagi River	Iwazutenjin Bridge	Okazaki City / Toyota City
62	Flelectule	River	Toyogawa River	Eshima Bridge	Toyokawa City
63	Mie	River	Suzuka River	Ogura Bridge	Yokkaichi City
64	Prefecture	River	Miyakawa River	Watarai Bridge	Ise City
65	Shiga	River	Adogawa River	Joan Bridge	Takashima City
66	Prefecture	Lake	Lake Biwako	Karasakioki-Chuo	—
67	Varata	River	Yuragawa River	Yuragawa Bridge	Maizuru City
68	Kyoto Prefecture	River	Katsura River	Before the confluence of three tributaries of Katsura River	Oyamazaki Town
69		River	Inagawa River	Gunko Bridge	Itami City (Hyogo prefecture
70	Osaka	River	Yodogawa River	Sugaharashirokita-ohashi Bridge	Osaka City
71	Prefecture	River	Ishikawa River	Takahashi	Tondabayashi City
72		River	Kakogawa River	Kakogawa Bridge	Kakogawa City
73	Hyogo	River	Mukogawa River	Hyakkenbi	Takarazuka City
73	Prefecture	River	Maruyama River	Kaminogo Bridge	Toyooka City
75	Nara	River	Yamato River	Fujii	Oji Town
76	Prefecture	River	Kinokawa River	Okura Bridge	Gojo City
77	Wakayama	River	Kinokawa River	Shinrokkaizeki Weir	Wakayama City
78	Prefecture		Kumano River		Shingu City
79	Tottori	River River	Sendai River	Kumano-ohashi Bridge Gyotoku	Tottori City
80	Prefecture Shimane	River	Hiikawa River	Kandatsu Bridge	Izumo City
80					
81	Prefecture	River	Gonokawa River	Sakurae-ohashi Bridge	Gotsu City
82	Okayama	River	Asahikawa River	Otoite Weir	Okayama City
83	Prefecture	River	Takahashi River	Kasumi Bridg	Kurashiki City
84	Hiroshima	River	Ota River	Water purification plant intake in Hesaka	Hiroshima City
85	Prefecture	River	Ashida River	Kominomi Bridge	Fukuyama City
86	Yamaguchi	River	Nishiki River	Water purification plant intake for the city	Iwakuni City
87	Prefecture	River	Koto River	Suenobu Bridge	Ube City
88	Tokushima	River	Yoshino River	Takase Bridge	Ishii Town
89	Prefecture	River	Nakagawa River	Nakagawa Bridge	Anan City
90	Kagawa Prefecture	River	Dokigawa River	Marugame Bridge	Marugame City
91	Ehime	River	Shigenobu River	Deai Bridge	Matsuyama City
92	Prefecture	River	Hijikawa River	Hijikawa Bridge	Ozu City
93	Kochi	River	Kagami River	Kachuzeki Weir	Kochi City
94	Prefecture	River	Niyodo River	Hatazeki Weir (1) Center of flow	Ino Town
95	Fukuoka	River	Onga River	Hinode Bridge	Nogata City
96	Prefecture	River	Nakagawa River	Shiobara Bridge	Fukuoka City
97 98	Saga	River River	Chikugo River Kasegawa River	Senoshita Kase Bridge	Kurume City Saga City
	Prefecture			č	5.
99	Nagasaki	River	Honmyo River	In front of Tenma Park	Isahaya City
100	Prefecture	River	Uragami River	Ohashizeki Weir	Nagasaki City
101	Kumamoto	River	Kikuchi River	Shiroishi	Nagomi Town
102	Prefecture	River	Midori River	Uesugizeki Weir	Kumamoto City
103	Oita	River	Oita River	Funaichi-ohashi Bridge	Oita City
104	Prefecture	River	Oono River	Shirataki Bridge	Oita City
105	Miyazaki	River	Gokase River	Miwa	Nobeoka City
106	Prefecture	River	Oyodo River	Shinaioi Bridge	Miyazaki City
107	Kagoshima	River	Kotsuki River	Iwasaki Bridge	Kagoshima City
108	Prefecture	River	Kimotsuki River	Matase Bridge	Kanoya City
109	Okinawa	River	Genka River	Water intake	Nago City
110	Prefecture	River	Miyara River	Omoto water intake	Ishigaki City

Table 1.2-2 List of locations for the FY2015 Nationwide Monitoring (public water areas) (No. 2)

No.	Prefecture	Property	Municipality	District	Monitoring method
1	i icicciuie	Groundwater	Sapporo City	Kitasanjonishi,Chuo Ward	Fixed point monitoring
2	Hokkaido Prefecture	Groundwater	Ishikari City	Kitaoyafuru	Rolling monitoring
3		Groundwater	Aomori City	Shinmachi	Fixed point monitoring
4	Aomori Prefecture			Minmayamasukawa	
		Groundwater	Sotogahama Town	,	Rolling monitoring
5	Iwate Prefecture	Groundwater	Morioka City	Motomiya	Fixed point monitoring
6		Groundwater	Kuji City	Osanaicho	Rolling monitoring
7	Miyagi Prefecture	Groundwater	Sendai City	Honcho,Aoba Ward	Fixed point monitoring
8		Groundwater	Osaki City	Furukawaosaki	Rolling monitoring
9	Akita Prefecture			Fixed point monitoring	
10		Groundwater	Katagami City	Showaokubo	Rolling monitoring
11	Yamagata Prefecture	Groundwater	Yamagata City	Hatagomachi	Fixed point monitoring
12		Groundwater	Tsuruoka City	Takarada	Rolling monitoring
13	Fukushima Prefecture	Groundwater	Koriyama City	Asahi	Fixed point monitoring
14		Groundwater	Hanawa Town	Itaniwa	Rolling monitoring
15		Groundwater	Tsukuba City	Kenkyugakuen	Fixed point monitoring
16	Ibaraki Prefecture	Groundwater	Koga City	Komahane	Rolling monitoring
17		Groundwater	Joso City	Sakatemachi	Rolling monitoring
18		Groundwater	Shimotsuke City	Machida	Fixed point monitoring
19	Tochigi Prefecture	Groundwater	Ashikaga City	Omataminamicho	Rolling monitoring
20		Groundwater	Haga Town	Yatsuki	Rolling monitoring
21		Groundwater	Maebashi City	Shikishimacho	Fixed point monitoring
22	Gunma Prefecture	Groundwater	Tatebayashi City	Shiromachi	Rolling monitoring
23		Groundwater	Tomioka City	Tajino	Rolling monitoring
24		Groundwater	Saitama City	Mikura,Minuma Ward	Fixed point monitoring
25	Saitama Prefecture	Groundwater	Kawaguchi City	Higashihongo	Rolling monitoring
26		Groundwater	Kuki City	Yoshiba	Rolling monitoring
27		Groundwater	Kashiwa City	Funato	Fixed point monitoring
28	Chiba Prefecture	Groundwater	Katori City	Sawarai	Rolling monitoring
29		Groundwater	Asahi City	Ro	Rolling monitoring
30		Groundwater	Koganei City	Kajinocho	Fixed point monitoring
31	Tokyo Metoropolis	Groundwater	Nishitokyo City	Yatocho	Rolling monitoring
32		Groundwater	Hadano City	Imaizumi	Fixed point monitoring
33	Kanagawa Prefecture	Groundwater	Odawara City	Renshoji	Rolling monitoring
34		Groundwater	Niigata City	Nagata,Chuo Ward	Fixed point monitoring
35	Niigata Prefecture	Groundwater	Minamiuonuma City	Miya	Rolling monitoring
36	Rigata Frefecture	Groundwater	Joetsu City	Minatocho	Rolling monitoring
37		Groundwater	Toyama City	Funahashikitamachi	Fixed point monitoring
38	Toyama Prefecture	Groundwater	Uozu City		· · ·
			,	Shinjuku	Rolling monitoring
39 40	Ishikawa Prefecture	Groundwater	Hakusan City	Kuramitsu	Fixed point monitoring
-		Groundwater	Nanao City	Hamataka,Tsumugimachi	Rolling monitoring
41	Fukui Prefecture	Groundwater	Fukui City	Ote	Fixed point monitoring
42		Groundwater	Sakai City	Sakaichotako	Rolling monitoring
43	Yamanashi Prefecture	Groundwater	Showa Town	Saijyoshinden	Fixed point monitoring
44		Groundwater	Hokuto City	Akenochoasao	Rolling monitoring
45		Groundwater	Nagano City	Tsurugamidoricho	Fixed point monitoring
46	Nagano Prefecture	Groundwater	Tomi City	Kurakake	Rolling monitoring
47		Groundwater	Kiso Town	Fukushima	Rolling monitoring
48		Groundwater	Gifu City	Kanoshimizucho	Fixed point monitoring
49	Gifu Prefecture	Groundwater	Tajimi City	Maebatacho	Rolling monitoring
50		Groundwater	Ibigawa Town	Kamino	Rolling monitoring
51		Groundwater	Numazu City	Hara	Fixed point monitoring
52	Shizuoka Prefecture	Groundwater	Fuji City	Kunikubo	Rolling monitoring
53		Groundwater	Fujinomiya City	Kamiide	Rolling monitoring
54		Groundwater	Nagoya City	Kawaharatori,Showa Ward	Fixed point monitoring
	1	<i>a i</i>		Nakajimaahanakana	Rolling monitoring
55	Aichi Prefectur	Groundwater	Okazaki City	Nakajimachonakaueno	Roning monitoring

Table 1.2-3 List of locations for the FY2015 Nationwide Monitoring (groundwater) (No. 1)

No.	Prefecture	Property	Municipality	District	Monitoring method
57	Tielectule	Groundwater	Suzuka City	Inoucho	Fixed point monitoring
58	Mie Prefecture	Groundwater	Kameyama City	Taikojicho	Rolling monitoring
59	mie Heicetule	Groundwater	Tsu City	Shiroyama	Rolling monitoring
60		Groundwater	Moriyama City	Miyakecho	Fixed point monitoring
61	Shiga Prefecture	Groundwater	Otsu City	Goryocho	Rolling monitoring
62	Shiga Trefecture	Groundwater	Koka City	Shigarakichonagano	Rolling monitoring
63		Groundwater	Kyoto City	Kamihonnojimaecho,Nakagyo Ward	Fixed point monitoring
64	Kyoto Prefecture	Groundwater	Yawata City	Yawatashinade	Rolling monitoring
65		Groundwater	Sakai City	Daisennakamachi.Sakai Ward	Fixed point monitoring
66	Osaka Prefecture	Groundwater	Takatsuki City	Banda	Rolling monitoring
67		Groundwater	Itami City	Kuchisakai	Fixed point monitoring
68	Hyogo Prefecture	Groundwater	Toyooka City	Saiwaicho	Fixed point monitoring
69	Hyogo Helectule	Groundwater	Kakogawa City	Kakogawachojikemachi	Rolling monitoring
70		Groundwater	Nara City	Sakyo	Fixed point monitoring
70	Nara Prefecture	Groundwater	Yamatokoriyama City	Honjocho	Rolling monitoring
72		Groundwater		Takano	
72	Wakayama Prefecture	Groundwater	Kinokawa City Shirahama Town	Taira	Fixed point monitoring Polling monitoring
73		Groundwater		Saiwaicho	Rolling monitoring
74	Tottori Prefecture		Tottori City		Fixed point monitoring
75 76		Groundwater Groundwater	Yonago City Matawa City	Kuzumo Nishikawatsucho	Rolling monitoring
70	Shimane Prefecture		Matsue City		Fixed point monitoring
77		Groundwater	Izumo City	Himebara	Rolling monitoring
	Okayama Prefecture	Groundwater	Kurashiki City	Fukui	Fixed point monitoring
79		Groundwater	Bizen City	Sakane	Rolling monitoring
80	Hiroshima Prefecture	Groundwater	Hiroshima City	Kamisenocho, Aki Ward	Fixed point monitoring
81		Groundwater	Fukuyama City	Ashidachofukuda	Rolling monitoring
82	Yamaguchi Prefecture	Groundwater	Yamaguchi City	Ouchimihori	Fixed point monitoring
83		Groundwater	Hofu City	Kokuga	Rolling monitoring
84 85	Tokushima Prefecture	Groundwater	Tokushima City	Fudohoncho	Fixed point monitoring
		Groundwater	Komatsushima City	Tauracho	Rolling monitoring
86	Kagawa Prefecture	Groundwater	Takamatsu City	Bancho	Fixed point monitoring
87		Groundwater	Marugame City	Dokichohigashi	Rolling monitoring
88		Groundwater	Matsuyama City	Hiraimachi	Fixed point monitoring
89	Ehime Prefecture	Groundwater	Toon City	Tanokubo	Rolling monitoring
90		Groundwater	Tobe Town	Takooda	Rolling monitoring
91	Kochi Prefecture	Groundwater	Kochi City	Kerako	Fixed point monitoring
92		Groundwater	Nankoku City	Hataeda	Rolling monitoring
93	Fukuoka Prefecture	Groundwater	Kurume City	Tanushimarumachiakinari	Fixed point monitoring
94		Groundwater	Nogata City	Ueki	Rolling monitoring
95	Saga Prefecture	Groundwater	Saga City	Yamatochoniiji	Fixed point monitoring
96	-	Groundwater	Tara Town	Tara	Rolling monitoring
97	Nagasaki Prefecure	Groundwater	Isahaya City	Eidamachi	Fixed point monitoring
98	<u> </u>	Groundwater	Omura City	Morizonomachi	Rolling monitoring
99		Groundwater	Kumamoto City	Suizenji,Chuo Ward	Fixed point monitoring
100	Kumamoto Prefecture	Groundwater	Arao City	Masunaga	Rolling monitoring
101		Groundwater	Minamata City	Kojo	Rolling monitoring
102	Oita Prefecure	Groundwater	Saiki City	Kamioka	Fixed point monitoring
103		Groundwater	Usuki City	Suehiro	Rolling monitoring
104		Groundwater	Miyakonojo City	Minamiyokoichicho	Fixed point monitoring
105	Miyazaki Prefecture	Groundwater	Kobayashi City	Minaminishikata	Fixed point monitoring
106		Groundwater	Saito City	Okadomi	Rolling monitoring
107	Kagoshima Prefecture	Groundwater	Kagoshima City	Tamazatocho	Fixed point monitoring
108	goonna ricicetale	Groundwater	Soo City	Sueyoshichominaminogo	Rolling monitoring
109	Okinawa Prefecture	Groundwater	Miyakojima City	Hirarahigashinakasonezoe	Fixed point monitoring
110		Groundwater	Ishigaki City	Ohama	Rolling monitoring

Table 1.2-3 List of locations for the FY2015 Nationwide Monitoring (groundwater) (No. 2)

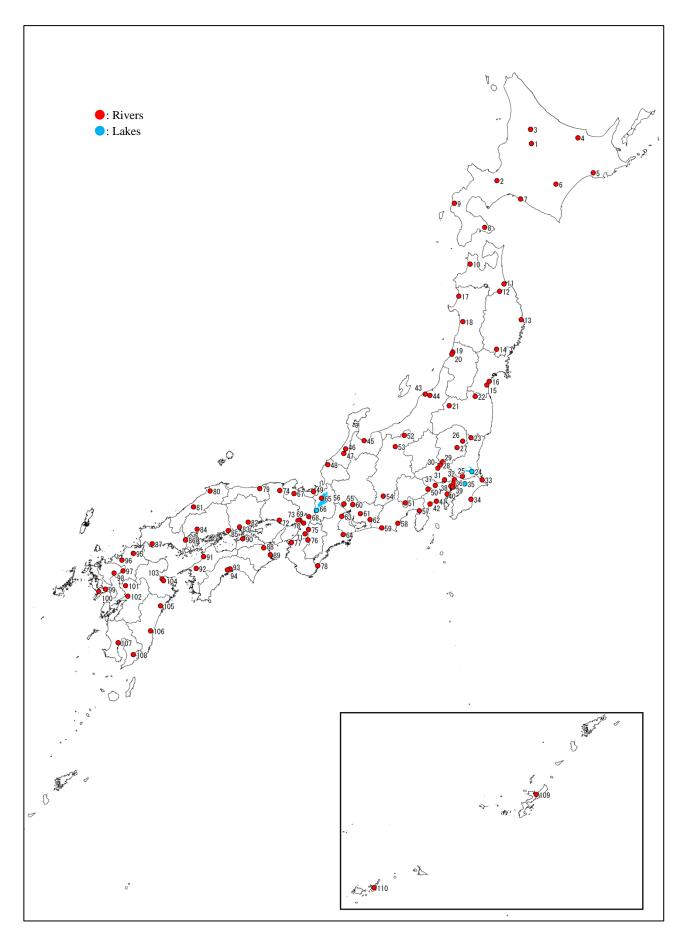


Figure 1.2-1 Map showing locations for the FY2015 Nationwide Monitoring (public water areas)

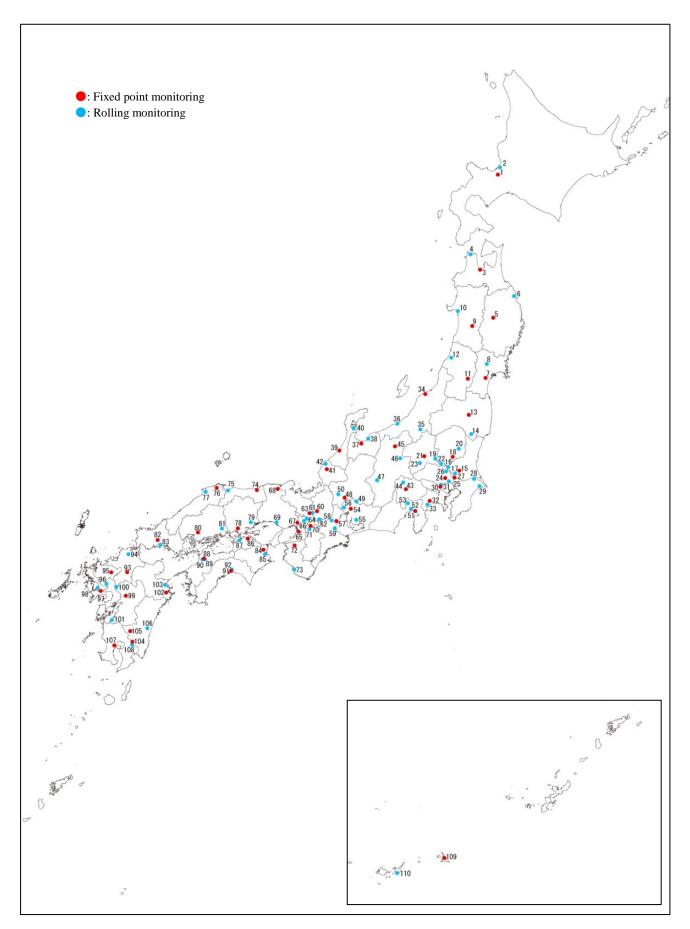


Figure 1.2-2 Map showing locations for the FY2015 Nationwide Monitoring (groundwater)

	Table 1.2-4 Monitoning por	nis and pend		12013)	
		Public w	vater areas	Ground	lwater
Blocks	Prefectures	Number of Locations ^(※1)	Period	Number of locations	Period
Hokkaido block	Hokkaido	9	Oct. 15 to Oct. 22	2	Oct.14to Oct.22
Tohoku block	Aomori, Iwate, Miyagi, Akita, Yamagata and Fukushima	14	Oct. 13 to Oct. 29	12	Oct.13to Oct.29
Kanto block	Ibaraki, Tochigi, Gunma, Saitama, Chiba, Tokyo, Kanagawa, Niigata, Yamanashi and Shizuoka	26 (2)	Oct. 13 to Dec. 8	27	Oct.13to Nov.4
Chubu block	Toyama, Ishikawa, Fukui, Nagano, Gifu, Aichi and Mie	15	Oct. 15 to Nov. 30	18	Oct.14to Nov.9
Kinki block	Shiga, Kyoto, Osaka, Hyogo, Nara and Wakayama	14 (1)	Oct. 14 to Oct. 28	14	Oct.14to Oct.29
Chugoku-Shikoku block	Tottori, Shimane, Okayama, Hiroshima, Yamaguchi, Tokushima, Kagawa, Ehime and Kochi	16	Oct. 14 to Nov. 7	19	Oct.14to Nov.16
Kyushu and Okinawa block	Fukuoka, Saga, Nagasaki, Kumamoto, Oita, Miyazaki, Kagoshima and Okinawa	16	Oct. 13 to Nov. 7	18	Oct.13to Nov.5
Survey to check annual variation	Gunma and Okayama	2	Oct. 13 to Jan. 25	-	-

Table 1.2-4 Monitoring points and period by block (FY2015)

(*1) Numbers in parentheses are those of monitoring locations for lakes and other numbers are those of monitoring locations for rivers.

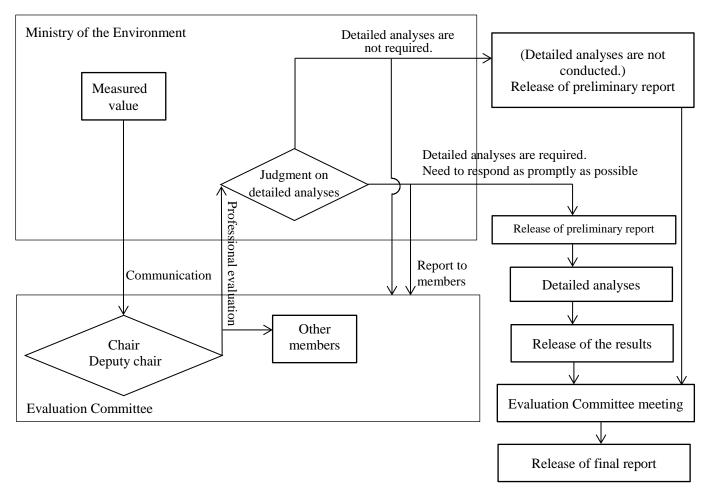


Figure 1.2-3 Procedures for professional evaluation of the results of the Nationwide Monitoring

2. Survey Methods and Analysis Methods

2.1 Survey methods

Samples were collected based on the following guidelines in principle, as outlined below.

- Water Quality Survey Method (September 30, 1971; Notice Kansuikan No. 30 issued by the Director General of the Water Quality Preservation Bureau, Ministry of the Environment)
- Sediment Survey Method (August 8, 2012; Notice Kansuitaisuihatsu No. 120725002 issued by the Director General of the Environmental Management Bureau, Ministry of the Environment)
- Groundwater Quality Survey Method (September 14, 1989; Notice Kansuikan No. 189 issued by the Director General of the Water Quality Preservation Bureau, Ministry of the Environment)
- Environmental Sample Collection Method (1983, Ministry of Education, Culture, Suports, Science and Technology's (hereinafter referred to as "MEXT")'s Radioactivity Measurement Method Series)
- Sample Pretreatment for Instrumental Analysis Using Germanium Semiconductor Detectors (1982, MEXT's Radioactivity Measurement Method Series)

(1) Public water areas

• Water:

Water samples of around 160 L (hydrochloric acid added) and around 2 L (nitric acid added) were collected at the predetermined locations. Out of the 160L (hydrochloric acid added), 80L was used for the γ -ray spectrometry analyses and the remaining 80L was preserved for possible detailed analysis. Out of the 2 L (nitric acid added), 1 L was used for the analyses of total β radioactivity concentrations. Additionally, the transparency (or Secchi disk depth) was measured upon collecting water samples, and if any influence of rainwater was suspected as a result of a comparison with past data or when there seems to be an influence of rainwater in light of the circumstances at locations without any past data where the transparency (or Secchi disk depth) was 50 cm or less, sampling at such locations was judged to be inappropriate.

• Sediments:

Bottom sediment samples of around 6 L were collected at the predetermined points at a depth of around 10 cm from the surface layer by using an Ekman-Birge grab sampler, and 3 L out of the 6 L was used for the γ -ray spectrometry analyses.

• Soil:

Soil samples (around 5 cm in diameter) were collected at a depth of around 5 cm at five points within a 3 to 5 meter square (four vertexes and the diagonal intersection point), or when it is difficult to find an appropriate square to determine such five sampling points, at five points with 3 to 5 meter intervals along a river, and were brought back separately. Samples thus collected at the five points were mixed in equal amounts respectively and were used for analysis.

• Ambient dose rates (soil sampling locations):

Ambient dose rates were measured by installing NaI (Tl) scintillation survey meters at a height of 1 m from the ground surface on both banks of a river (or in the case of a lake, installing a NaI (Tl) scintillation survey meter at one point on lake side) in a manner to face the sampling point of river water (or lake water).

(2) Groundwater

• Water:

Groundwater samples of around 160 L (hydrochloric acid added) and 2 L (nitric acid added) were collected at the predetermined wells, etc. 80 L of the 160 L (hydrochloric acid added) was used for the γ -ray spectrometry analyses and the remaining 80 L was preserved for possible detailed analysis. 1 L of the 2 L (nitric acid added) was used for the analyses of total β radioactivity concentrations.

When collecting water samples, water temperature, transparency, pH, and electrical conductivity are confirmed to remain constant by letting the water pass for several minutes, and changes in the transparency, etc. thereafter were recorded as notes.

• Ambient dose rates:

Ambient dose rates were measured by installing NaI (Tl) scintillation survey meters at a height of 1 m from the ground surface near the relevant wells, etc. in a manner to face the sampling point of groundwater (or the groundwater layer).

2.2 Analysis methods

The measurement of total β radioactivity concentrations and γ -ray spectrometry measurement using a germanium semiconductor detector were conducted by the following methods for public water areas (water, sediments and soil) and groundwater (water). The γ -ray spectrometry measurement covered analyses of all the detectable radionuclides (including artificial radionuclides and major naturally occurring radionuclides) in principle. Detected values were indicated with two significant digits in the unit of "Bq/L" in the case of water samples from public water areas and groundwater samples, and in the unit of "Bq/kg (dry)" in the case of sediment samples from public water areas.

Adopted analysis methods were basically in line with the MEXT's Radioactivity Measurement Method Series, and detection limits were set around 0.001 to 0.01 Bq/L for water samples and around 1 to 30 Bq/kg (dry) for sediment samples. (However these detection limits did not apply to radionuclides with short half-lives or those with extremely low γ -ray emission rates.)

- Measurement of total β radioactivity concentrations: Concentrate and dry up samples, and then conduct measurement using a low-background gas-flow proportional counter.
- γ -ray spectrometry measurement: After proper pretreatment, put samples in a U-8 container or a 2 L Marinelli beaker and conduct measurement using a germanium semiconductor detector; The following 62 types of γ -ray emitting radionuclides (18 naturally occurring radionuclides and 44 artificial radionuclides) were surveyed. The measurement results of γ -ray emitting radionuclides were corrected for attenuation, and reported the figures as radioactivity concentrations as of the time of completing sampling.

radion	occurring uclides nuclides)		Artificial radionuclides (44 radionuclides)								
Ac-228	Ra-224	Ag-108m	Co-58	I-131	Np-239	Te-129m					
Be-7	Ra-226	Ag-110m	Co-60	I-132	Ru-103	Te-132					
Bi-212	Th-227	Am-241	Cr-51	La-140	Ru-106	Y-91					
Bi-214	Th-228	As-74	Cs-134	Mn-54	Sb-124	Y-93					
K-40	Th-231	Ba-140	Cs-136	Mn-56	Sb-125	Zn-63					
Pa-234m	Th-234	Bi-207	Cs-137	Mo-99	Sb-127	Zn-65					
Pb-210	T1-206	Ce-141	Fe-59	Nb-95	Sr-91	Zr-95					
Pb-212	T1-208	Ce-143	Ga-74	Nb-97	Tc-99m	Zr-97					
Pb-214	U-235	Ce-144	Ge-75	Nd-147	Te-129						

Table 2.2-1 Surveyed γ -ray emitting radionuclides

3. Results

The outline of detectable radioactive materials at each monitoring location is as follows.

3.1 Detection of total β radioactivity and γ-ray emitting radionuclides

(1) Public water areas

1) Water

The results of the measurement of total β radioactivity and γ -ray emitting radionuclides in water samples from public water areas are as shown in Table 3.1-1 and Figure 3.1-1.

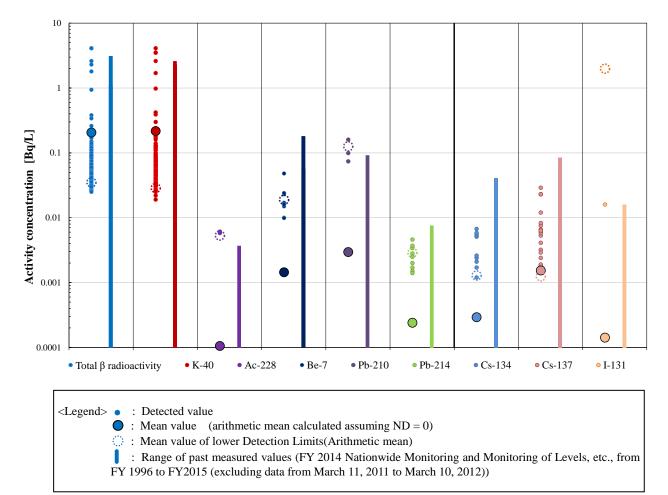
a) Total β radioactivity

The detection rate for total β radioactivity was 92.9% with detected values ranging from not detectable to 4.1 Bq/L. Although the values of samples exceeded the range of past measured values at several locations, all instances were attributable to high K-40 concentrations. Therefore, all of which were within the past measurement trends.

b) γ-ray emitting radionuclides

Eight types of γ -ray emitting radionuclides (five naturally occurring radionuclides and three artificial radionuclides) as shown in Table 3.1-1 and Figure 3.1-1 were detected, while other types of γ -ray emitting radionuclides were not detectable at any of the locations surveyed.

The detection rates of naturally occurring radionuclides were approximately 10% or less, except for K-40, for which the detection rate was approximately 92.0%. K-40 was detected at some locations with the highest concentrations being, at the maximum, higher than the range of past measurement records but such high concentrations were considered to have been caused by the influence of seawater (explained later). At some locations, the detected concentrations of Ac-228 and Pb-210 exceeded the range of past measured values; both are naturally occurring thorium series radionuclides and generally contained in natural soils and rocks. The measured values of other naturally occurring radionuclides all fell within the past measurement trends.


Regarding artificial radionuclides, the detection rates of Cs-134 was 8.0%, Cs-137 was 16.8% and I-131 was 0.9% but detected values of Cs-134 was 0.0067Bq/L or less, Cs-137 was 0.029Bq/L or less and I-131 was 0.016 Bq/L or less: all of which were within the past measurement trends.

					P 44	ne wa		loao					
							М	easured v	Maximum records [Bq/L]				
]	Radionuclides		Number of Number of samples detections		Detection rate[%]	Range			Dete	ction	limits	FY2014 Nationwide monitoring	Monitoring of Levels (*1)
Tot	Total β radioactivity		113	105	92.9	ND	-	4.1	0.024	-	0.29	1.1	3.1
	Naturally	K-40	113	104	92.0	ND	-	4.1	0.015	-	0.084	2.6	2.3
γ-ray		Ac-228	113	2	1.8	ND	-	0.0061	0.0029	_	0.020	0.0037	ND
	lly o	Be-7	113	8	7.1	ND	-	0.048	0.0071	-	0.057	0.057	0.18
emitting	occurring	Pb-210	113	3	2.7	ND	_	0.16	0.051	_	1.4	0.092	No data
	ring	Pb-214	113	10	8.8	ND	-	0.0046	0.0012	-	0.012	0.0076	No data
lionu	А	Cs-134	113	9	8.0	ND	-	0.0067	0.00073	-	0.0046	0.022	0.041
radionuclides	Artificial	Cs-137	113	19	16.8	ND	-	0.029	0.00070	-	0.0049	0.065	0.084
	ial	I-131	113	1	0.9	ND	_	0.016	0.0026	-	51	ND	0.016

Table 3.1-1 Detection of total β radioactivity and γ -ray emitting radionuclides in water samples from

public water areas

(*1) Results of the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment conducted in Japan nationwide FY1996 to FY2015 (excluding data from March 11, 2011 to March 10, 2012)

(*) The vertical axes are logarithmically scaled because the order of magnitude of detected values varies between different radionuclides.

Figure 3.1-1 Detection of total β radioactivity and γ -ray emitting radionuclides in water samples from public water areas

2) Sediments

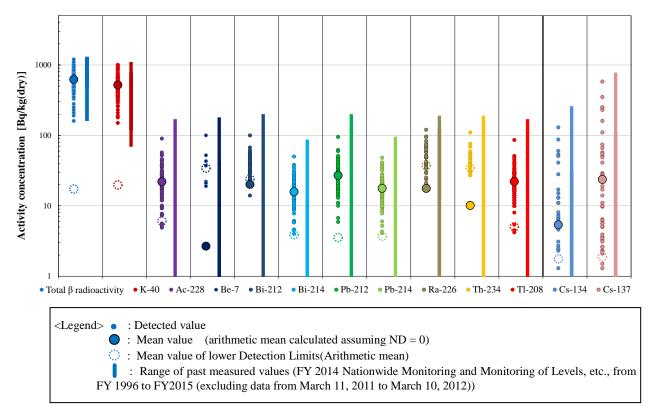
The results of the measurement of total β radioactivity and γ -ray emitting radionuclides in sediment samples from public water areas are as shown in Table 3.1-2 and Figure 3.1-2.

a) Total β radioactivity

Total β radioactivity was detected at all locations surveyed, with detected values ranging from 160 to 1,200 Bq/kg (dry): all of which were within the past measurement trends.

b) γ-ray emitting radionuclides

12 types of γ -ray emitting radionuclides (ten naturally occurring radionuclides and two artificial radionuclides) as shown in Table 3.1-2 and Figure 3.1-2 were detected, while no other types of γ -ray emitting radionuclides were detectable.


The detection rates of the 6 naturally occurring radionuclides other than Be-7, Bi-212, Ra-226, and Th-234 exceeded 95%. Regarding naturally occurring radionuclides, all of which were within the past measurement trends.

Regarding artificial radionuclides, the detection rates of Cs-134 and Cs-137 were 23.6% and 40.0%, but detected values were 130Bq/kg(dry) or less for Cs-134 and 580Bq/kg(dry) or less for Cs-137: all of which were within the past measurement trends.

							Meas	ured valu	es [Bq/kg	(dry)]		Maximum record	rds [Bq/kg(dry)]
1	Radionuclides		Number of samples	Number of detections Detection rate[%]			Range			ection 1	imits	FY2014 Nationwide monitoring	Monitoring of Levels (*1)
Tota	alβra	adioactivity	110	110	100.0	160	-	1,200	15	-	23	1,300	1,300
		K-40	110	110	100.0	150	-	1,000	13	-	63	1,100	780
		Ac-228	110	108	98.2	ND	-	90	3.4	-	10	170	ND
	Naturally	Be-7	110	7	6.4	ND	_	100	10	_	98	180	42
γ-ray		Bi-212	110	61	55.5	ND	-	100	1.8	-	55	200	No data
ay ei		Bi-214	110	109	99.1	ND	_	50	2.1	-	13	87	12
emitting		Pb-212	110	109	99.1	ND	-	95	1.7	-	28	200	No data
	occurring	Pb-214	110	110	100.0	4.1	_	48	1.8	-	13	96	No data
radionuclides	αq	Ra-226	110	37	33.6	ND	_	120	18	-	120	190	122
uclid		Th-234	110	23	20.9	ND	_	110	19	-	100	190	No data
es		Tl-208	110	109	99.1	ND	-	86	2.6	-	18	170	No data
	Arti	Cs-134	110	26	23.6	ND	-	130	0.75	-	6.1	260	31
	Artificial	Cs-137	110	44	40.0	ND	-	580	0.83	-	5.5	780	110

Table 3.1-2 Detection of total β radioactivity and γ -ray emitting radionuclides in sediment samples from public water areas

(*1) Results of the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment conducted in Japan nationwide FY1996 to FY2015 (excluding data from March 11, 2011 to March 10, 2012)

^(*)Details of the detection of Cs-134 and Cs-137 are explained later.

(*) The vertical axes are logarithmically scaled because the order of magnitude of detected values varies between different radionuclides.

Figure 3.1-2 Detection of total β radioactivity and γ -ray emitting radionuclides in sediment samples

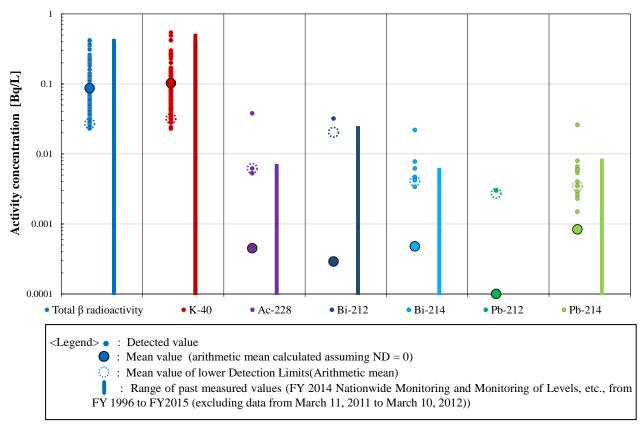
from public water areas

(2) Groundwater

The results of the measurement of total β radioactivity and γ -ray emitting radionuclides in groundwater samples are as shown in Table 3.1-3 and Figure 3.1-3.

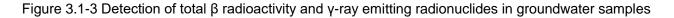
a) Total β radioactivity

The detection rate for total β radioactivity was approximately 86.4%, with detected values ranging from not detectable to 0.42 Bq/L: all of which were within the past measurement trends.


b) γ-ray emitting radionuclides

Six types of γ -ray emitting radionuclides (all naturally occurring radionuclides) as shown in Table 3.1-3 and Figure 3.1-3 were detected, while no other types of γ -ray emitting radionuclides were detectable. Out of these detected γ -ray emitting radionuclides, K-40 was detected at concentration levels slightly exceeding the range of past measurement records but this is a radionuclide generally contained in natural soils and rocks, etc. (explained later). The detected concentrations of Ac-228, Bi-212, Bi-214, Pb-212 and Pb-214 also exceeded the range of past measured values at some locations, but these were all naturally occurring thorium or uranium series radionuclides generally contained in natural soils and rocks. Considering that their past detected values are based on the survey results for very limited regions (Ac-228 detected in five prefectures [Miyagi, Yamagata, Shiga, Osaka and Nagasaki]; Bi-212 only in Niigata Prefecture; Bi-214 in six prefectures [Shizuoka, Toyama, Ishikawa, Aichi, Shiga and Hyogo]; no instances of detection for Pb-212; Pb-214 detected in nine prefectures [Miyagi, Niigata, Aichi, Shiga, Wakayama, Shimane, Hiroshima, Kagawa and Ehime]), it is inferred that the measured values of these radionuclides all fell within the past measurement trends.

							М	easured v	alues [Bq/L	.]		Maximum records [Bq/L]	
	Radionuclides		Number of samples	Number of detections	Detection rate [%]	Range			Detection limits			FY2014 Nationwide monitoring	Monitoring of Levels (*1)
Т	Total β radioactivity		110	95	86.4	ND	-	0.42	0.024	-	0.062	0.44	0.35
γ.		K-40	110	99	90.0	ND	-	0.54	0.016	-	0.080	0.52	0.41
γ-ray ei	Nat	Ac-228	110	3	2.7	ND	-	0.038	0.0037	-	0.014	0.0072	No data
emitting	Naturally	Bi-212	110	1	0.9	ND	-	0.032	0.011	-	0.039	0.025	No data
	occurring	Bi-214	110	7	6.4	ND	-	0.022	0.0023	-	0.0087	0.0063	No data
radionuclides	rring	Pb-212	110	1	0.9	ND	-	0.0030	0.0015	-	0.0069	ND	No data
des		Pb-214	110	16	14.5	ND	-	0.026	0.0015	-	0.0081	0.0086	No data


Table 3.1-3 Detection of total β radioactivity and γ -ray emitting radionuclides in groundwater samples

(*1) Results of the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment conducted in Japan nationwide FY1996 to FY2015 (excluding data from March 11, 2011 to March 10, 2012)

(*) The vertical axes are logarithmically scaled because the order of magnitude of detected values varies between different radionuclides.

(*) Radionuclides shown with no past measured values were either undetectable or had never been measured.

3.2 Consideration regarding detected radionuclides

(1) Detection of naturally occurring radionuclides

1) Correlation between activity concentrations of K-40 and seawater

As explained in 3.1 above, activity concentrations of K-40 were at levels exceeding the range of past measurement records (2.6 Bq/L at the maximum) in water samples collected at some locations in public water areas.

Locations where high concentration level of K-40 was detected were at tidal river, and showed high electrical conductivity (EC) (1,820 mS/m at the maximum). This suggests the influence of the intrusion of seawater. Therefore, a comparison was made using all available data to clarify the correlation between activity concentrations of K-40 and EC (see Figure 3.2-1).

As shown in Figure 3.2-1, a positive correlation was found between them..

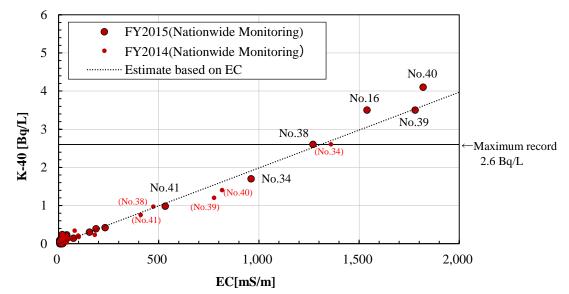
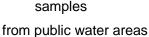



Figure 3.2-1 Correlation between the K-40 concentration and electrical conductivity(EC) in water

In the meantime, according to the results of the Monitoring of Levels, conducted for the 20-year from FY1996 to FY2015 (monitoring of 548 samples collected from 18 prefectures), the average concentration (average) of K-40 was approximately 8.9 Bq/L and the maximum concentration was 14 Bq/L (see Table 3.2-1).

Table 3.2-1 Results of the Monitoring of Levels, etc., concerning K-40 inseawater (*1)

Number of surveys	Number of detections	Detection rate [%]	Average [Bq/L]	Maximum [Bq/L]	
548	521	95.0	8.9	14	

(*1) Results of the Monitoring of Environmental Radioactivity Levels and the Monitoring of the Surrounding Environment conducted in Japan nationwide from FY1996 to FY2015

EC in seawater is generally around 4,500 mS/m, and the estimated activity concentrations of K-40 with possible influence of seawater were obtained by using the following formula based on the measurement results of EC for

the relevant river water.

(Activity concentration of K-	$f K_{-} =$	(Average activity concentration of K-40 in seawater)	\checkmark	(Measured EC in the river water)
40 in river water)			^	(Ordinary values of EC in seawater)

The estimated activity concentrations of K-40 in the river water are indicated with a dashed line (^{...}.) in Figure 3.2-1, and the estimate values were very close to the measured activity concentrations of K-40. Therefore, relatively high activity levels of K-40 measured in the latest monitoring are considered to have been caused by the intrusion of seawater and fall within the past measurement trends.

In the same manner, the correlation between the K-40 concentration and EC was also checked with regard to groundwater samples (see Figure 3.2-2, scales of the vertical and horizontal axes differ from those for Figure 3.2-1). However, no clear correlation was found for groundwater samples. The concentrations of K-40 in groundwater samples from Site No. 94 (Ueki, Nogata City, Fukuoka Pref.: 0.54 Bq/L) slightly exceeded the range of past measured values (maximum value: 0.52 Bq/L). This location is in the areas where the geological conditions are known to have relatively high potassium concentrations in soil(Figure 3.2-3). Accordingly, the K-40 concentration for groundwater samples in the latest monitoring is considered to fall within the past measurement trends.

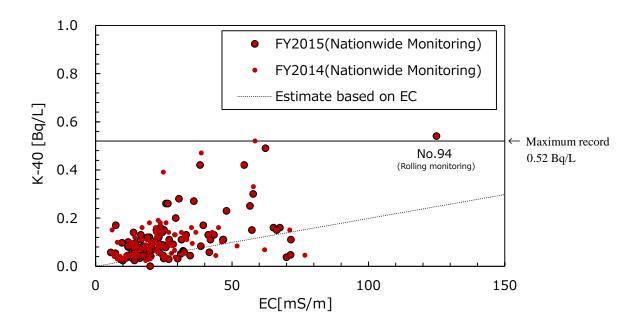
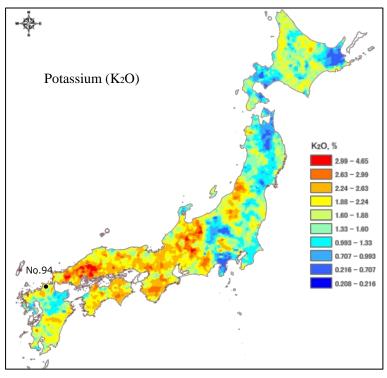
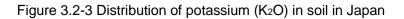




Figure 3.2-2 Correlation between the K-40 concentration and electrical conductivity(EC) in groundwater samples

Reference: Website of the Geological Survey of Japan, AIST https://gbank.gsj.jp/geochemmap/setumei/radiation/setumei-radiation.htm

2) Uranium and thorium series radionuclides

As explained in 3.1 above, uranium and thorium series radionuclides were detected at relatively high concentration levels in sediment samples from public water areas. Such radionuclides were detected as shown in Table 3.2-2.

These naturally occurring radionuclides exist widely within the earth's crust and belong to the same decay series, which implies the existence of some correlations among detected values.

Radionuclides		Number	Number	Detection	Measured values [Bq/kg (dry)]						
		of samples	of detections	rate [%]	Range			Detection limits			
γ-ray emitting		Th-234	110	23	20.9	ND	-	110	19	-	100
	Uranium	Ra-226	110	37	33.6	ND	-	120	18	-	120
	Series	Pb-214	110	110	100.0	4.1	-	48	1.8	-	13
		Bi-214	110	109	99.1	ND	-	50	2.1	-	13
	Thorium series	Ac-228	110	108	98.2	ND	-	90	3.4	-	10
		Pb-212	110	109	99.1	ND	-	95	1.7	-	28
		Bi-212	110	61	55.5	ND	-	100	1.8	-	55
		T1-208	110	109	99.1	ND	-	86	2.6	-	18

Table 3.2-2 Detection of uranium and thorium series naturally occurring radionuclides

Figure 3.2-4 and Figure 3.2-5 show the correlation among uranium series radionuclides and among thorium series radionuclides, respectively, based on the radionuclides with the highest detection rate (with instances of non-detection excluded). Figure 3.2-4 (Upper) reveals that, while uranium series Pb-214 and Th-234 did not correlate well with each other, Ra-226 and Th-234 correlated well with each other (Figure 3.2-4 [Bottom]). Moreover, high correlations were also observed among the other uranium series or among thorium series radionuclides. From this information it can be inferred that the radionuclides of the two series reflected the geology of the locations at which they had been detected.

Note that it is generally accepted that "granite contains larger amounts of naturally occurring radionuclides than other kinds of rocks", and that "natural radiation doses correlate to some extent with uranium and thorium series radionuclides" (both according to the Geological Society of Japan³). For reference, Figure 3.2-6 shows the distribution map of granite in Japan, while Figure 3.2-7 shows the distribution map of natural radiation doses in Japan.

³ http://www.geosociety.jp/hazard/content0058.html

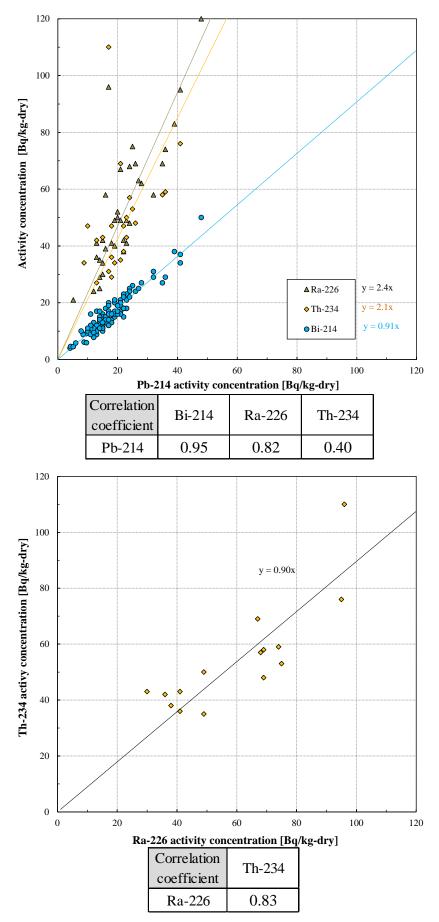


Figure 3.2-4 Correlations among uranium series radionuclides

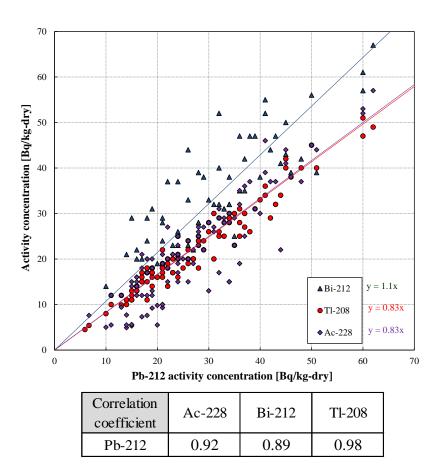


Figure 3.2-5 Correlations among thorium series radionuclides

(*) Reference: Seamless Digital Geological Map of Japan (1:200,000) ® ; AIST website⁴ Figure 3.2-6 Distribution of granite in Japan (parts highlighted in pink in the Figure are locations where granite exists)

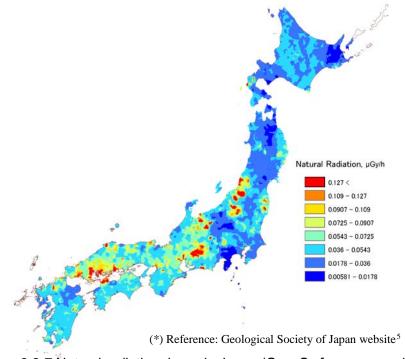


Figure 3.2-7 Natural radiation doses in Japan (Gy = Sv for γ -rays and β -rays)

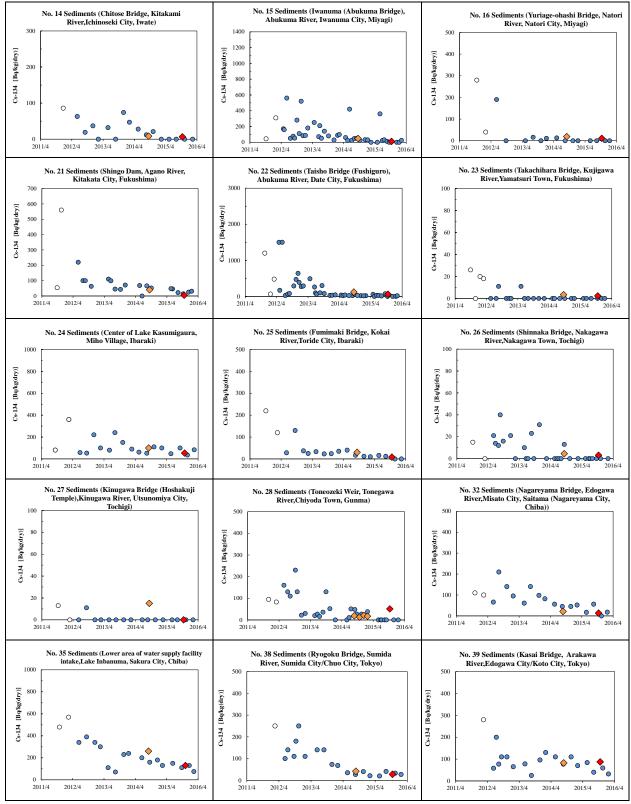
⁴ <u>https://gbank.gsj.jp/seamless/</u>

⁵ <u>http://www.geosociety.jp/hazard/content0058.html</u>

(2) Detection of artificial radionuclides

1) Cs-134 and Cs-137 in sediments

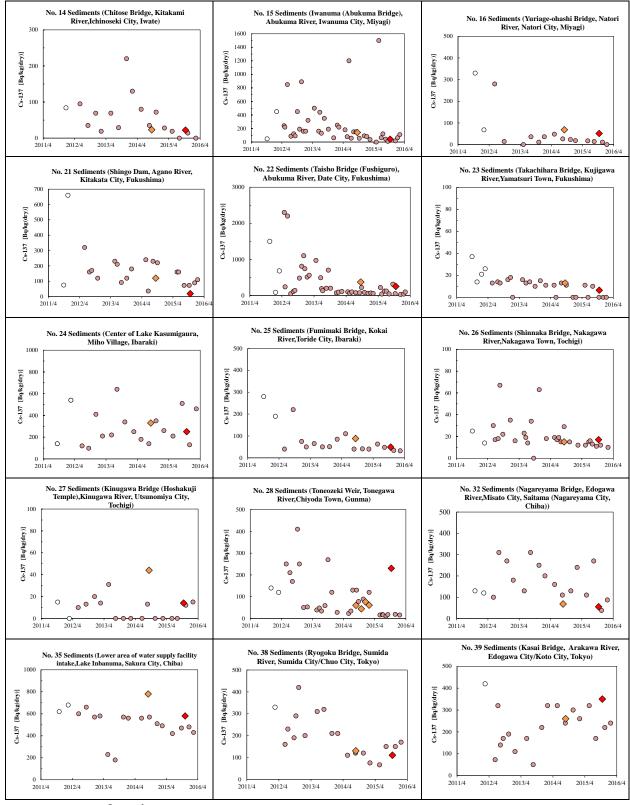
Radioactive cesium was detected in sediment samples from public water areas in Hokkaido, Tohoku, Kanto, Chubu, Kinki, and Kyushu blocks (44 locations in total; both Cs-134 and Cs-137 were detected at 26 locations (all in Tohoku and Kanto Blocks); only Cs-137 detected at 18 locations).


To better understand the concentration levels of the detected radioactive cesium species, the following comparisons were made:

- (i) Regarding locations also surveyed in the Post-Earthquake Monitoring, a direct comparison with the data for the relevant locations obtained through said monitoring
- (ii) Regarding locations that do not fall under the category of (i) above but are in Tokyo Metropolis or other prefectures where the Post-Earthquake Monitoring is conducted, a comparison with data for other locations in said prefectures
- (iii) Regarding locations that do not fall under the categories of (i) and (ii) above, a comparison with the data for areas around the relevant locations obtained through the Post-Earthquake Monitoring
- (iv) Regarding locations where measured values did not exceed the range of past measurement records, a comparison with data obtained through the Monitoring of Environmental Radioactivity Levels, etc.

(i) Comparison with the past Post-Earthquake Monitoring results for the same locations

Regarding locations also surveyed in the Post-Earthquake Monitoring, the measured values in the latestmonitoring were compared with the past measurement records for the same locations (see Figure 3.2-8).


A result of 350 Bq/kg for Cs-137 was detected in a sample from No. 39 but such deviations were considered to be within minor fluctuations in light of the past similar monitoring results, and the results of the latest monitoring were found to be within the past measurement trends.

<Legend>

- FY2015 Nationwide Monitoring results
- ♦: FY2014 Nationwide Monitoring results
- : Post-Earthquake Monitoring results
- O : Post-Earthquake Monitoring results (measurement results from March 11, 2011 to March 10, 2012 excluded from the past measured values used as reference data)

Figure 3.2-8 (1) (i) Comparison with the past Post-Earthquake Monitoring results for the same locations [Cs-134]

<Legend>

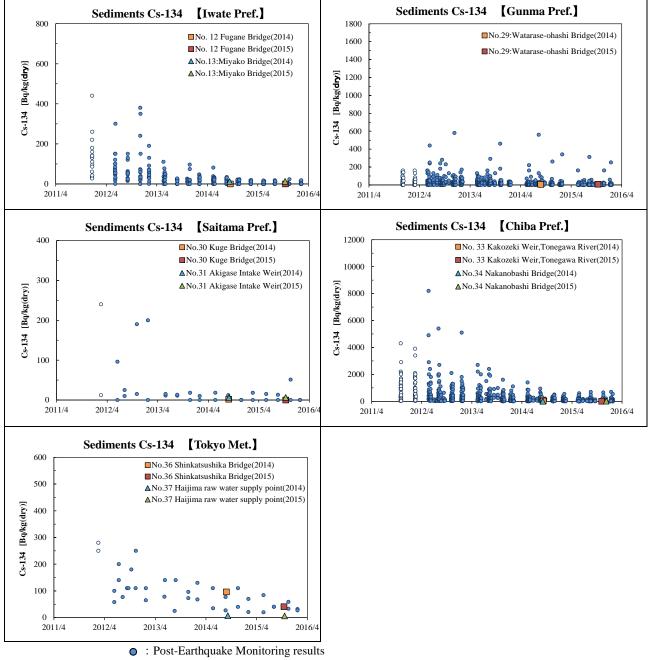
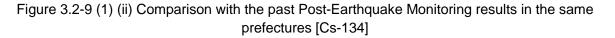
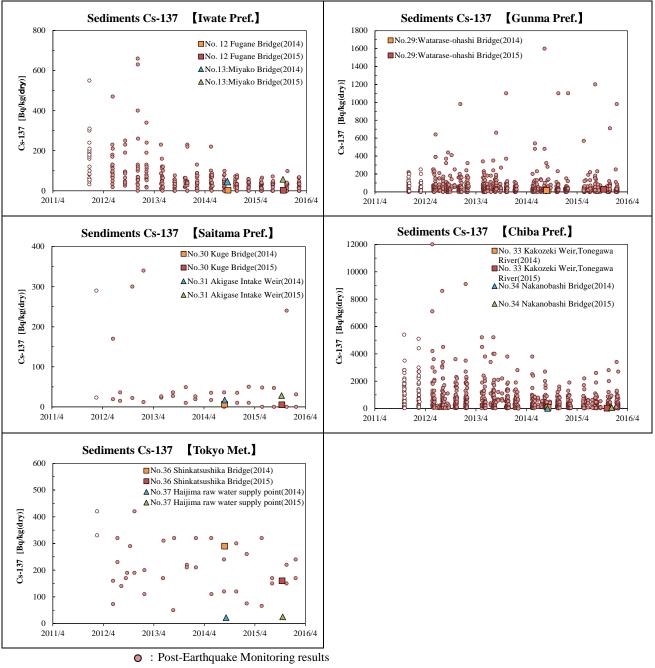

- FY2015 Nationwide Monitoring results
- ♦ : FY2014 Nationwide Monitoring results
- : Post-Earthquake Monitoring results
- O : Post-Earthquake Monitoring results (measurement results from March 11,
- 2011 to March 10, 2012 excluded from the past measured values used as reference data)

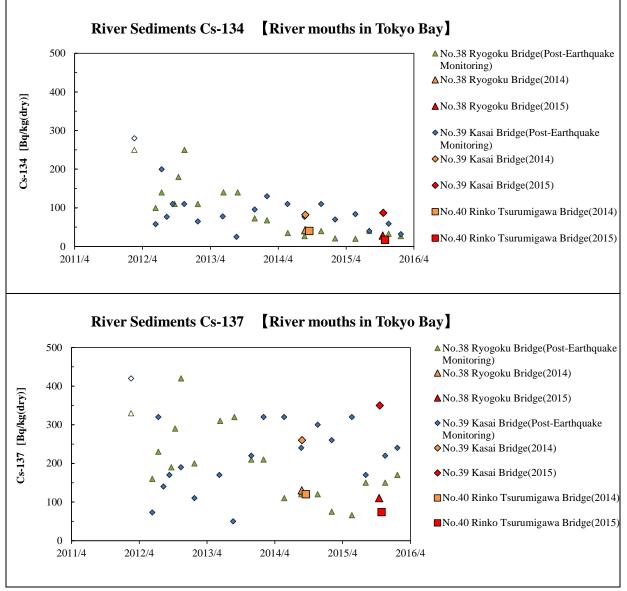
Figure 3.2-8 (2) (i) Comparison with the past Post-Earthquake Monitoring results for the same locations [Cs-137]


(ii) Comparison with the past Post-Earthquake Monitoring results in the same prefectures


Regarding locations that have not been surveyed in the Post-Earthquake Monitoring, the measured values in the latest monitoring were compared with the past Post-Earthquake Monitoring results for locations in the same prefectures (see Figure 3.2-9).

The measured values in the latest monitoring were found to be all within the past measurement trends.

 Post-Earthquake Monitoring results (measurement results from March 11, 2011 to March 10, 2012 excluded from the past measured values used as reference data)



• O : Post-Earthquake Monitoring results (measurement results from March 11, 2011 to March 10, 2012 excluded from the past measured values used as reference data)

Figure 3.2-9 (2) (ii) Comparison with the past Post-Earthquake Monitoring results in the same prefectures [Cs-137]

(iii) Comparison with the past Post-Earthquake Monitoring results for nearby locations

Regarding Location No. 40 (Rinko Tsurumigawa Bridge, Tsurumi River, Yokohama City, Kanagawa Prefecture), it was considered to be appropriate to make a comparison with the past data for nearby locations although the Post-Earthquake Monitoring had not been conducted in Kanagawa Prefecture. Therefore, a comparison was made with the past data for Location No. 38 (Ryogoku Bridge, Sumida River, Chuo City/Sumida City, Tokyo Metropolis) and Location No. 39 (Kasai Bridge, Arakawa River, Koto City/Edogawa City, Tokyo Metropolis), both of which are located at the mouths of the Sumida River and the Arakawa River to Tokyo Bay (see Figure 3.2-10). As a result, it was found that the measured values for Location No. 40 were within the past measurement trends.

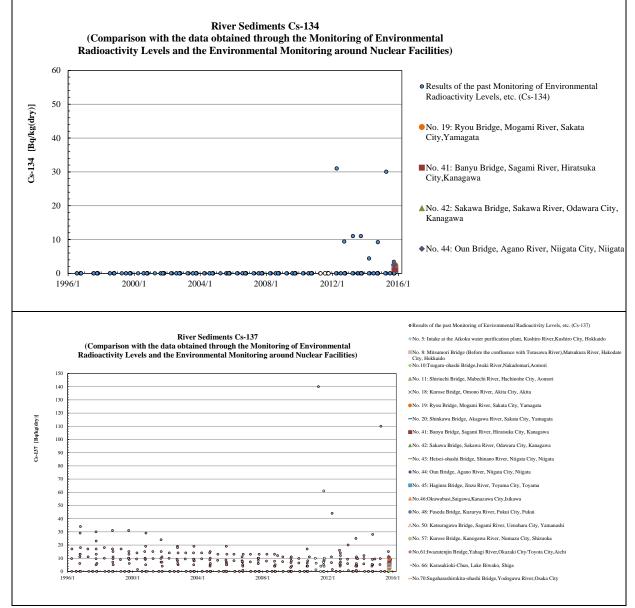

(*) White small diamond and triangle show the measurement results from March 11, 2011 to March 10, 2012, which were excluded from the past measured values used as reference.

Figure 3.2-10 (iii) Comparison with the past Post-Earthquake Monitoring results for nearby locations

(iv) Comparison with the data obtained through the Monitoring of Levels, etc.

Regarding locations where measured values did not exceed the range of past measurement records, the measured values in the latest monitoring were compared with the data obtained through the Monitoring of Levels, etc. to check the concentration levels (see Figure 3.2-11).

Cs-134 and Cs-137 were detected at Location No. 19 (Ryou Bridge, Mogami River, Sakata City, Yamagata Prefecture), Location No. 41 (Banyu Bridge, Sagami River, Hiratsuka City, Kanagawa Prefecture), Location No. 42 (Sakawa Bridge, Sakawa River, Odawara City, Kanagawa Prefecture), and Site No.44 (Oun Bridge, Agano River, Niigata City, Niigata Prefecture). At other locations , only Cs-137 was detected and the measured values all fell within the past measurement trends.

(*) Upper: Cs-134; Bottom: Cs-137

(*) White small circles show the measurement results from March 11, 2011 to March 10, 2012, which were excluded from the past measured values used as reference.

Figure 3.2-11 (iv) Comparison with the data obtained through the Monitoring of Levels, etc.

Regarding locations where both Cs-134 and Cs-137 were detected (all in the Tohoku and Kanto blocks), a good correlation was observed in the activity concentration ratios of Cs-137 and Cs-134. The calculated activity concentration ratio was (Cs-137/Cs-134) approximately 4.3. When assuming that detected Cs-134 and Cs-137 were those discharged due to the Fukushima NPS Accident, this ratio could be found to be close to the theoretical ratio (approx. 4.3) as of November 2015 after the discharge in March 2011 (see Figure 3.2-12). This suggests that Cs-134 and Cs-137 detected in sediment samples collected in the Tohoku and Kanto blocks were derived from the Fukushima NPS Accident.

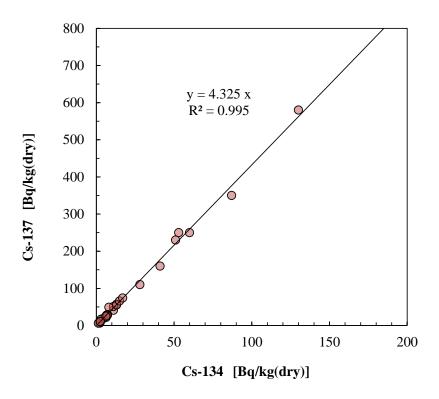


Figure 3.2-12 Concentration ratio (Cs-137/Cs-134) [sediments (public water areas)]

(Reference: Changes over the years in concentration ratios (Cs-137/Cs-134) in consideration of half-life periods)

Radionuclide	Half-life (year)	2011/3	2012/3	2013/3	2014/3	2015/3	2015/11
Cs-134	2.0648	1	0.71	0.51	0.36	0.26	0.21
Cs-137	30.1671	1	0.98	0.96	0.93	0.91	0.90
Cs137,	/Cs134	1	1.37	1.87	2.56	3.50	4.28

(*) The concentration ratio at the time of the latest monitoring (around November 2015) is estimated

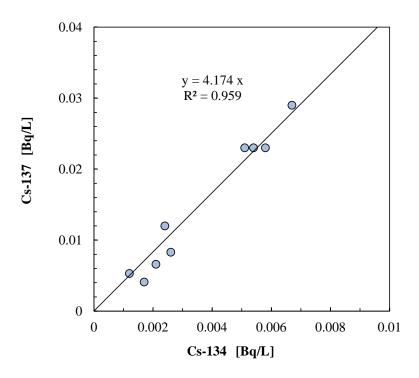
to be approximately 4.3 (highlighted in yellow in the table above).

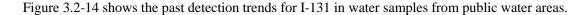
Given these facts, Cs-134 and Cs-137 detected in sediment samples from public water areas were mostly derived from the Fukushima NPS Accident, except for some locations for which causal relations were unclear, but detected values were all within the past measurement trends.

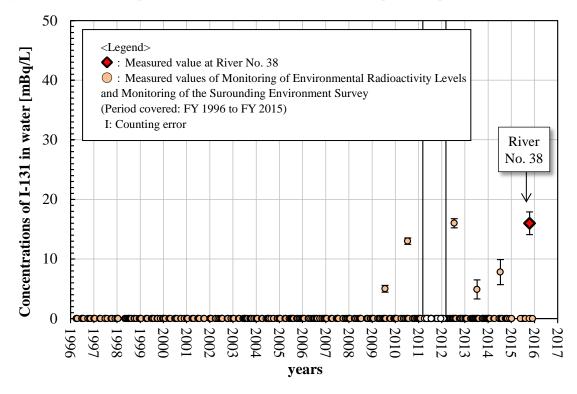
2) Cs-134 and Cs-137 in water

Cs-134 or Cs-137 were detected at 19 out of the 110 locations where water samples from public water areas were collected (a total of 19 locations: both Cs-134 and Cs-137 were detected at 9 locations (all in the Tohoku and Kanto blocks] and only Cs-137 was detected at ten locations). However, the maximum values were 0.0067 Bq/L for Cs-134 and 0.029 Bq/L for Cs-137, both of which were 50% or less of their respective corresponding maximum values in the FY2014 National Radioactive Material Monitoring. Moreover, these values fell within the range of past measured values from the Monitoring of Environmental Radioactivity Levels (0.041 Bq/L max. for Cs-134 and 0.084 Bq/L max. for Cs-137).

Regarding the 9 locations (all in the Tohoku and Kanto blocks) where both Cs-134 and Cs-137 were detected, the concentration ratio (Cs-137/Cs-134) calculated in the same manner as in the case of sediment samples also showed a good correlation. The obtained concentration ratio was approx. 4.2. When assuming that detected Cs-134 and Cs-137 were those discharged due to the Fukushima NPS Accident, this ratio was found to be close to the theoretical ratio (approx. 4.3) as of November 2015 after the discharge in March 2011 (see Figure 3.2-13). This suggests that Cs-134 and Cs-137 detected in water samples collected in the Tohoku and Kanto blocks were derived from the Fukushima NPS Accident.




Figure 3.2-13 Concentration ratio (Cs-137/Cs-134) [Water (public water areas)]


3) Cs-134 and Cs-137 in groundwater

Cs-134 and Cs-137 were not detectable in groundwater samples collected at any of the 110 locations (detection limit: approx. 0.001 to 0.002 Bq/L).

4) I-131 in water from public water areas

I-131 was detected in water samples from one location out of a total of 110 locations in public water areas. Its measured value was 0.016 Bq/L and fell within the past measurement trends, and was within the range of past measurement values (0.016 Bq/L max.) in the Monitoring of Environmental Radioactivity Levels.

Remarks: The measurement results from March 11, 2011, to March 10, 2012 were excluded.

Figure 3.2-14 River No. 38 and past trends in detection [public water areas (water) I-131]

I-131 has a short half-life of eight days. Now, after more than four years since the Fukushima NPS accident, it is considered very unlikely that any I-131 derived from the Fukushima NPS accident will be detected.

Meanwhile, I-131 is used as an oral medicine for the treatment of thyroid cancer and Basedow's disease. It is accepted that the radioactive material (I-131) administered to a patient is evacuated from the body as exhaled breath, urine, feces, sweat, saliva, and breast milk and that the fecal and urinary excrement is treated at sewage treatment works before discharge into rivers.⁶ In disposal facilities for medical radioactive waste, there are outlet concentration limits established for radioactive isotopes contained in waste liquids. When I-131 is the only radioactive isotope species contained in wastewater, it is required that its outlet concentration limit should be a three-month mean of 4×10^{-2} Bq/cm³ (40 Bq/L) or less.⁷

The WHO Guidelines for Drinking Water Quality recommend a guidance level of 10 Bq/L for I-131, assuming a life-long intake; the I-131 concentration detected from River Site No. 38 was a very low value, approximately

⁶ Manual for Proper Use of Internal Radiotherapy Using Radioactive Sodium Iodide (I-131) Capsules, Revised 3rd Edition (Japan Radiological Society, Japanese Society of Nuclear Medicine, Japan Endocrine Society, Japan Thyroid Association, Japan Association of Endocrine Surgeons, Japanese Society of Thyroid Surgery, Japanese Society of Nuclear Medicine Technology), Jul. 10, 2013.

⁷ MHW Ordinance No. 50, Nov. 5, 1948 Ordinance For Enforcement of the Medical Practitioners' Act, Last Revised by MHLW Ordinance No. 151, Sept. 30, 2015, Article 30-26, Para. 1, Appended Table 3 (Re: Article 30-26)

one 600th of the above value (0.016 Bq/L).

3.3 Survey to check annual variation

At two locations⁸ (both in rivers), namely, Location No. 28 (Toneozeki Weir, Tonegawa River, Chiyoda Town, Gunma Prefecture) and Location No. 83 (Kasumi Bridge, Takahashi River, Kurashiki City, Okayama Prefecture), surveys were conducted four times during the period from October 13, 2015 to January 25, 2016.

The two locations had been surveyed four times, respectively, in FY2014 during the period from August 25, 2014 to January 26, 2015. An analysis was performed including the results for FY2014.

Radionuclides were detected as shown in Tables 3.3-1 and Table 3.3-2. Figures 3.3-1 and 3.3-2 show the changes in radionuclides detected in and after FY2014. Tables 3.3-1 and 3.3-2 also show the coefficients of variation⁹ (= sample standard deviation /average) for variations in detected values.

The coefficients of variation in water samples ranged from 13 to 21% for total β radioactivity and K-40, and stood at 32% for Cs-137, respectively.¹⁰

The coefficients of variation in sediment samples ranged from 4.3 to 29% for total β radioactivity and naturally occurring radionuclides (Ac-228, Bi-212, Bi-214, Pb-212, Pb-214, Tl-208, and K-40), and from 48 to 59% for radioactive cesium.

⁸ It was decided to select one location each in eastern and western Japan. All 110 locations were first divided into two for convenience (Locations No. 1 to No. 55 were classified as eastern Japan and Locations No. 56 to No. 110 were classified as western Japan) and the two locations of the median number in respective categories were selected.

⁹ In this summary: coefficient of variation = sample standard deviation divided by the average ; hereinafter the same shall apply.

¹⁰Regarding fluctuations due to, among other things, the number of times of the survey conducted for radioactive materials in the environment, FY2012 survey instances show 12 to 16 % fluctuations in the amount of radioactive cesium contained in riverbed sediments (9 samples collected during the same period). At River Site No. 28 where radioactive cesium was detected, a drop in water transparency probably due to sludge disturbance caused by pleasure boats or winds in the vicinity was observed. Then, the water and bottom sampling points were slightly relocated with recognizable fluctuations in sediment grain-size distribution. Because the changes in sediment grain-size distribution might have affected the concentration of radioactive cesium, the changes in sediment grain-size distribution at River Site No. 28 are graphically summarized in Figure 3.3-3. This has revealed that sediment samples with high clay and silt contents tend to have higher Cs-137 concentrations. Accordingly, it was inferred that the fluctuations in the amount of radioactive cesium in samples from River Site No. 28 had occurred due to the changes in the grain-size distribution in the sediment samples.

	De l'esse l'ése		FY2	2014			FYZ	2015		Coefficient
	Radionuclides	Aug 25	Oct 27	Dec 15	Jan 26	Oct 13	Nov 24	Dec 25	Jan 22	of variation [%]
	Total β radioactivity	0.068	0.12	0.12	0.11	0.090	0.099	0.071	0.10	21
Water	K-40	0.097	0.11	0.078	0.094	0.12	0.11	0.096	0.11	13
[Bq/L]	Cs-134	0.0015	0.0020	< 0.0010	0.0018	< 0.0022	< 0.0014	< 0.0014	< 0.0014	-
	Cs-137	0.0074	0.0072	0.0048	0.0049	0.0029	0.0035	0.0043	0.0052	32
	Total β radioactivity	410	350	350	380	720	460	490	430	27
	K-40	290	330	280	280	290	370	320	320	10
	Ac-228	15	9.8	12	15	23	18	22	20	28
Sediment	Bi-214	<12	11	13	13	14	15	16	12	13
[Bq/kg	Pb-212	18	16	21	16	28	18	16	18	21
(dry)]	Pb-214	11	11	16	11	14	15	17	13	18
	T1-208	16	12	13	14	18	11	15	17	17
	Cs-134	19	13	21	17	51	25	26	21	48
	Cs-137	60	44	76	61	230	110	110	96	59

Table 3.3-1 Detection trends for radioactive materials at the same location[River No. 28]

(*) The coefficients of variation are shown only for radionuclides detected seven times or more.

Figure 3.3-1 Changes in detection trends for radioactive materials at the same location[River No. 28]

	Radionuclides		FY2	014			FYZ	2015		Coefficient
	Radionucides	Aug 30	Oct 28	Dec 15	Jan 26	Oct 16	Nov 30	Dec 22	Jan 25	of variation [%]
	Total β radioactivity	0.046	0.064	0.037	0.038	0.048	0.047	0.041	0.035	21
Water	K-40	0.034	0.045	<0.028	0.034	0.045	0.042	0.038	0.031	15
[Bq/L]	Be-7	< 0.024	0.012	< 0.0073	< 0.0073	< 0.024	<0.018	<0.013	< 0.0085	-
	Pb-212	<0.0019	< 0.0021	<0.0019	0.0013	<0.0019	< 0.0015	< 0.0015	< 0.0014	-
	Total β radioactivity	1000	980	890	920	1000	1000	950	940	4.3
	K-40	870	830	910	770	920	920	840	840	6.1
	Ac-228	13	25	12	19	25	21	29	25	29
	Bi-212	42	34	23	28	28	<33	37	<34	22
Sediment	Bi-214	15	21	17	17	16	19	16	19	11
[Bq/kg (dry)]	Pb-212	28	28	24	27	28	26	26	27	5.2
(dry)]	Pb-214	21	23	19	15	21	20	22	18	13
	Ra-226	50	<42	36	<39	<37	<46	<44	<41	-
	Th-234	<30	<41	30	42	<31	<47	<45	<47	-
	TI-208	25	20	21	25	23	24	15	19	16

Table 3.3-2 Detection trends for radioactive materials at the same location [River No. 83]

(*) The coefficients of variation are shown only for radionuclides detected five times or more.

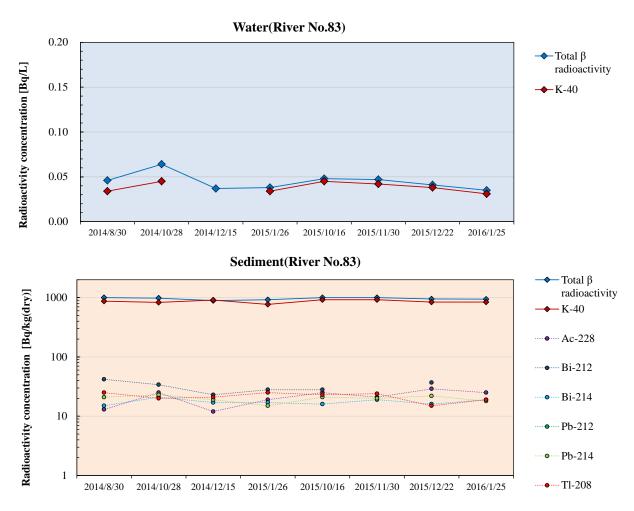


Figure 3.3-2 Changes in detection trends for radioactive materials at the same location[River No. 83]

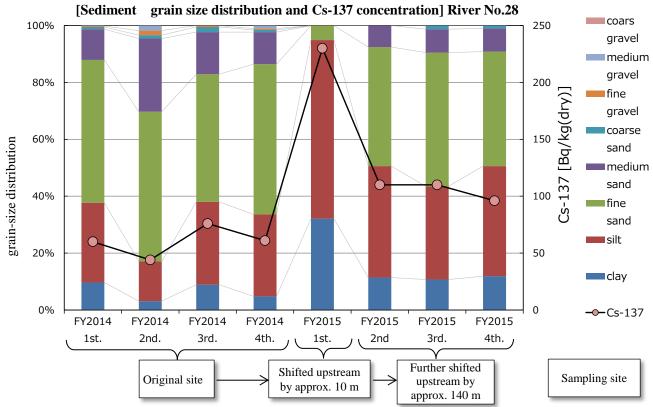


Figure 3.3-3 Changes in sediment grain-size distribution and Cs-137 concentration [River No. 28]

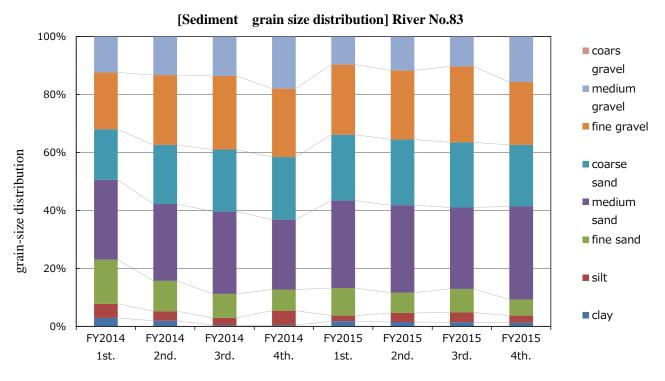


Figure 3.3-4 Changes in sediment grain-size distribution [River No. 83]

Part 2: Radioactive Material Monitoring in the Water Environment in and around Fukushima Prefecture (FY2015)

1. Objective and Details

1.1 Objective

This monitoring was conducted in response to the Fukushima NPS Accident for the purpose of clarifying the distribution of the accident-derived radioactive materials in the water environment.

1.2 Details

(1) Locations

The survey was conducted mainly in the Tohoku and Kanto districts at around 600 locations for public water areas and at around 400 locations for groundwater. Specific locations are as shown in Figure 1.2-1.

(2) Targets

For public water areas (rivers, lakes, and coastal areas), water and sediments were surveyed. Additionally, radioactive concentrations in soil were measured in the surrounding environment (river beds, etc.) near the sampling locations as reference.

Radioactive concentrations in groundwater were also measured.

(3) Frequencies and periods

The monitoring for public water areas was conducted 2 to 10 times a year (varying by location). The monitoring for groundwater was conducted 1 to 4 times a year (varying by location).

(4) Conducted analyses

Primarily, analyses targeting Cs-134 and Cs-137 were conducted.

Additionally, analyses on Sr-89, Sr-90 and other artificial radionuclides were also conducted for some of the collected samples.

(5) Compilation and evaluation of results

The results of the measurement are compiled and released sequentially as preliminary reports on the website of Ministry of the Environment.

This report is the compilation of the overall monitoring results, and the details of individual monitoring surveys are available on the following website.

http://www.env.go.jp/en/water/rmms/surveys.html

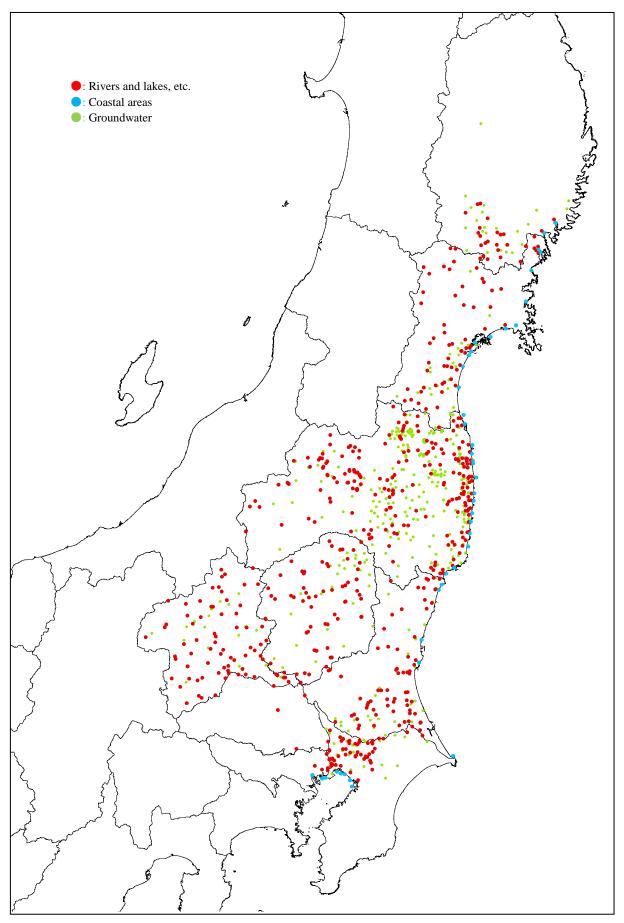


Figure 1.2-1 Map showing locations for the Post-Earthquake Monitoring

2. Survey Methods and Analysis Methods

2.1 Survey methods

Samples were collected at predetermined locations (for public water areas and groundwater) and the following analyses of radioactive materials were conducted.

Samples were collected based on the following guidelines in principle, as outlined below.

- Water Quality Survey Method (September 30, 1971; Notice Kansuikan No. 30 issued by the Director General of the Water Quality Preservation Bureau, Ministry of the Environment)
- Sediment Survey Method (August 8, 2012; Notice Kansuitaisuihatsu No. 120725002 issued by the Director General of the Environmental Management Bureau, Ministry of the Environment)
- Groundwater Quality Survey Method (September 14, 1989; Notice Kansuikan No. 189 issued by the Director General of the Water Quality Preservation Bureau, Ministry of the Environment)
- Environmental Sample Collection Method (1983, MEXT's Radioactivity Measurement Method Series)
- Sample Pretreatment for Instrumental Analysis Using Germanium Semiconductor Detectors (1982, MEXT's Radioactivity Measurement Method Series)

2.2 Analysis methods

The γ -ray spectrometry measurement using a germanium semiconductor detector was conducted for water samples and sediment samples from public water areas and for groundwater samples, primarily targeting Cs-134 and Cs-137.

Additionally, analyses on Sr-89, Sr-90 and other artificial radionuclides were also conducted for some of the collected samples. Detected values were indicated with two significant digits in the unit of "Bq/L" in the case of water samples from public water areas and groundwater samples, and in the unit of "Bq/kg (dry)" in the case of sediment samples from public water areas. The measurement results were corrected for attenuation, and reported figures were activity concentrations as of the time of completing sampling.

Adopted analysis methods were basically in line with the MEXT's Radioactivity Measurement Method Series, and detection limit targets were as shown in the table below.

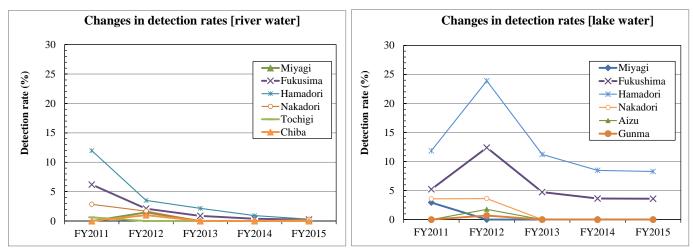
			-	¥
Radionucl	ide	Public water areas (water)	Public water areas (sediments)	Groundwater
Radioactive c (Cs-134 and C		Approx. 1 Bq/L	Approx. 10 Bq/kg (dry)	Approx. 1 Bq/L
Radioactive	Sr-90	_	Approx. 1 Bq/kg (dry) (0.16 to 2.9 Bq/kg (dry))	Approx. 1 Bq/L
strontium	Sr-89	_	_	Approx. 1 Bq/L
Other artifi radionuclide		_	Ag-110m: 7 to 180 Bq/kg (dry) Sb-125: 130 to 330 Bq/kg (dry)	_

Table 2.2-1 Detection limit targets for radionuclides for the Post-Earthquake Monitoring

*1: Vary by type of radionuclides; The above table shows detection limit targets for Ag-110m and Sb-125, which were detected in the monitoring (see Chapter 5.2 of the main text).

3. Outline of the Results

The results of the Post-Earthquake Monitoring conducted in Tokyo Metropolis and other nine prefectures of FY2015 were as outlined below.


3.1 Detection of radioactive cesium

Radioactive cesium (total of Cs-134 and Cs-137) was detected as follows.

(1) Public water areas (water)

In FY2015, radioactive cesium activity concentrations ranged from not detectable to 1.3 Bq/L and had a detection rate of 0.1% in river water samples; from not detectable to 52 Bq/L and with a detection rate of 2.1% in lake water samples; and were not detectable in any coastal area water samples.

Judging from the changes over time since FY2011, all prefectures have shown decreasing trends in the detection rate for river water specimens (9,000 or more in total number of samples) and lake water specimens (5,400 or more in total number of samples). In prefectures other than Fukushima Prefecture, radioactive cesium has not been detected since FY2013 (see Figure 3.1-1). In addition, no survey detected radioactive cesium in coastal area water specimens (2,300 or more in total number of samples).

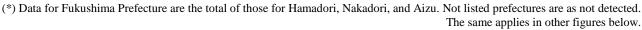


Figure 3.1-1 Changes in detection rates of radioactive cesium in water samples from public water areas (left: rivers; right: lakes)

(2) Groundwater

Radioactive cesium was not detectable in any of the groundwater samples in FY2015.

Judging from the changes over time since FY2011, radioactive cesium has not been detected in groundwater specimens (4,700 or more in total number of samples) since FY2012, except when it was detected in two specimens from Fukushima Prefecture in FY2011 (detected values were 2 Bq/L and 1 Bq/L).

(3) Public water areas (sediments)

1) Overall trends

In FY2015, radioactive cesium activity concentrations ranged from not detectable to 20,100 Bq/kg and were detected with a detection rate of 88.1% in river sediment samples, from not detectable to 920,000 Bq/kg and with a detection rate of 99.1% in lake sediment samples, and from not detectable to 2,950 Bq/kg and at a detection rate of 82.0% in coastal area sediment samples.

2) Situation by location

As radioactive cesium was detected at many locations, the situations in respective locations were compared. Detected concentration levels and their changes were statistically compiled as shown in "4.3 Detection of radioactive materials in sediments by location."

Detected concentration levels were compiled as shown in Table 3.1-1.

Locations belonging to Categories A and B (top 10 percentile of the whole) were in Hamadori District, Fukushima Prefecture as well as in Nakadori District, Fukushima Prefecture, Ibaraki, Gunma, Chiba, and Miyagi Prefectures.

Table 3.1-1 Categorization of detected concentration levels for sediment samples from public water areas(FY2015) (rivers, lakes, and coastal areas)

		D : 1 .1 D						Nur	nber of loc	ations				_	
Category	Percentile (see Figure 4.3-1)	[River sediments] Range [Bq/kg (dry)]	Iwate	Miyagi	1	Fukushima		Ibaraki	Tochigi	Gunma	Chiba	Saitama	Tokyo	Total	
	(500 1 igure 115 1)	[bq/kg (ury)]	Twate	wiiyagi	Hamadori	Nakadori	Aizu	тоагакі	Tochigi	Gunna	Cinoa	Sanama	TOKYO	Number of locations	Percentage
А	Upper 5 percentile	1,077 or more	0	0	11	0	0	2	0	1	5	0	0	19	4.8
в	Upper 5 to 10 percentile	529 ~ 1,077	0	0	9	1	0	2	0	0	8	0	0	20	5.1
С	Upper 10 to 25 percentile	182 ~ 529	0	8	6	14	1	11	1	0	18	0	1	60	15.2
D	Upper 25 to 50 percentile	59 ~ 182	2	14	19	9	7	21	5	9	12	1	1	100	25.3
Е	Lower 50 percentile	59 or less	20	21	8	20	18	17	50	38	4	1	0	197	49.7
	Total		22	43	53	44	26	53	56	48	47	2	2	396	100.0

<Rivers>

<Lakes>

	unco>											
	1	Range					Number o	f locations			_	
Category	Percentile (see Figure 4.3-1)	[Lake sediments]	Miyagi]	Fukushima		Ibaraki	Tochigi	Gunma	Chiba	Total	
	(see 1 igure 4.5 1)	[Bq/kg (dry)]	wiiyagi	Hamadori	Nakadori	Aizu	IUalaki	Tochigi	Guinna	Chiba	Number of locations	Percentage
А	Upper 5 percentile	23,760 or more	0	8	0	0	0	0	0	0	8	4.9
в	Upper 5 to 10 percentile	12,306 ~ 23,760	0	8	0	0	0	0	0	0	8	4.9
С	Upper 10 to 25 percentile	1,969 ~ 12,306	1	11	4	6	1	0	1	1	25	15.2
D	Upper 25 to 50 percentile	624 ~ 1,969	3	10	6	3	4	4	10	1	41	25.0
Е	Lower 50 percentile	624 or less	17	4	2	22	14	4	13	6	82	50.0
	Total	1	21	41	12	31	19	8	24	8	164	100.0

<Coastal areas>

	D (1	Range				Number	of location	ns		
Category	Percentile (see Figure 4.3-1)	[coastal area sediments]	Iwate	Miyagi	Fukushima	Ibaraki	Chiba	Tokyo	Total	
		[Bq/kg (dry)]	Indio	jugi	1 unuorini u	Tourun	emou	Tonyo	Number of location	Percentage
А	Upper 5 percentile	580 or more	0	1	1	0	0	0	2	4.8
в	Upper 5 to 10 percentile	400 ~ 580	0	1	1	0	0	0	2	4.8
С	Upper 10 to 25 percentile	248 ~ 400	0	1	4	0	0	1	6	14.3
D	Upper 25 to 50 percentile	65 ~ 248	0	5	3	0	1	2	11	26.2
Е	Lower 50 percentile	65 or less	2	4	6	5	4	0	21	50.0
	Tota		2	12	15	5	5	3	42	100.0

Changes in detected concentration levels were compiled as shown in Figure 3.1-2, which shows Table 4.3-45 graphically.

At most monitoring locations for rivers, a decreasing trend was observed. For lakes, a decreasing or unchanged trend was generally observed with some locations showing fluctuations. For coastal areas, a decreasing trend was observed at most locations with some locations showing fluctuations.

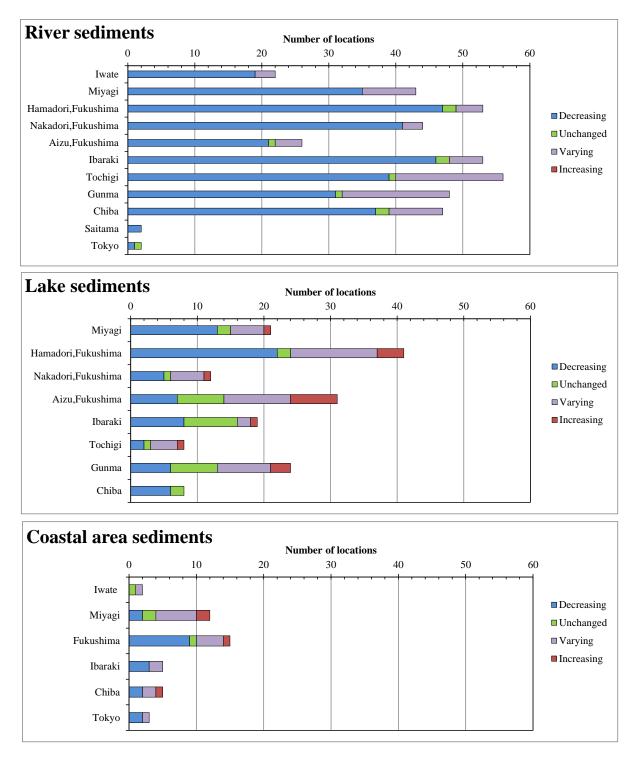


Figure 3.1-2 Changes in detected concentration levels of radioactive materials in sediment samples from public water areas (rivers, lakes, and coastal areas)

3.2 Detection of radionuclides other than radioactive cesium

(1) Sr-89 and Sr-90

As shown by the results, including the past fiscal years, Sr-90 was included in the monitoring surveys conducted from FY2011 to FY2015 for sediment samples (approximately 500 samples in total) from public water areas (rivers, lakes, and coastal areas) and for groundwater samples (approximately 240 specimens in total) (see Figure 3.2-1).

In FY2015, Sr-90 ranged in concentration from not detectable to 1.9 Bq/kg and was detected with a detection rate of 40.9% in river sedmiment samples, from not detectable to 150 Bq/kg and with a detection rate of 97.1% in lake sediment samples, and from not detectable to 0.78 Bq/kg and with a detection rate of 9.4% in coastal area sediment samples.

Sr-89 was not detectable in any of the monitoring surveys conducted for sediment samples from public water areas (a total of 22 samples collected from rivers and lakes in FY2011) and for groundwater samples (a total of approx. 240 samples surveyed from FY2011 to FY2015) (detection limit: 1 Bq/L for water and approximate 2 Bq/kg for sediments).

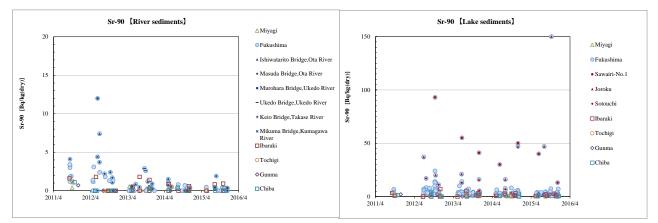


Figure 3.2-1 Detection of Sr-90 in sediment samples from public water areas (left: rivers; right:

lakes)

(2) Other artificial radionuclides

None have been detected since FY 2013.

4. Results (Radioactive cesium (Cs-134 and Cs-137))

4.1 Water

(1) Public water areas

1) Rivers

Detection of radioactive cesium (Cs-134 and Cs-137) in river water samples is as shown in Table 4.1-1 and Figure 4.1-1.

According to the results, including the past fiscal years, most prefectures, have shown decreasing trends in the detection rate since FY2011. In FY2015, radioactive cesium has not been detected in any location other than the Hamadori and Nakadori Districts, Fukushima Prefecture.

Detected values (the total of Cs-134 and Cs-137) have been decreasing since FY2011. The measured values from FY2015 ranged from not detectable to 1.3 Bq/L (detection limit: 1 Bq/L for both Cs-134 and Cs-137).

2) Lakes

Detection of radioactive cesium (Cs-134 and Cs-137) in lake water samples is as shown in Table 4.1-2 and Figure 4.1-2.

According to the results, including the past fiscal years, most prefectures have shown decreasing trends in the detection rate since FY2012. Radioactive cesium has not been detected in any location other than Hamadori District, Fukushima Prefecture since FY2013.

Detected values (the total of Cs-134 and Cs-137) have been decreasing since FY2012. The measured values in FY2015 ranged from not detectable to 52 Bq/L (detection limit: 1 Bq/L for both Cs-134 and Cs-137).

3) Coastal areas

Detection of radioactive cesium (Cs-134 and Cs-137) in coastal area water samples is as shown in Table 4.1-3. According to the results, including the past fiscal years, radioactive cesium has not been detected at any site (detection limit: 1 Bq/L for both Cs-134 and Cs-137).

(2) Groundwater

Detection of radioactive cesium (Cs-134 and Cs-137) in groundwater samples is as shown in Table 4.1-4. According to the results, including the past fiscal years, approximately 4,700 specimens from eight prefectures were surveyed. In FY2011, radioactive cesium was detected at concentrations of 2 Bq/L and 1 Bq/L at two locations (both in Fukushima Prefecture) only, and has not been detected at any location since FY2012.

<Reference>

- Specification and Standards for Food, Food Additives, etc. in Accordance with the Food Sanitation Act (Drinking Water) (Ministry of Health, Labour and Welfare Public Notice No.130, March 15, 2012)
 Radioactive cesium (the total of Cs-134 and Cs-137): 10 Bq/kg
- Reference Values for Radioactive Materials in Tap Water (Management Target for Water Supply Facilities) (March 5, 2012; 0305 Notice No.1 from the Director of the Water Supply Division, Health Service Bureau,

Ministry of Health, Labour and Welfare)

Radioactive cesium (the total of Cs-134 and Cs-137): 10 Bq/kg

		FY	72011			F	Y2012			F	Y2013			F	Y2014			F	72015			Total	
Prefecture	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Range of measured values (Bq/L)
Iwate	18	0	0.0	-	64	0	0.0	-	80	0	0.0	-	80	0	0.0	-	80	0	0.0	-	322	0	-
Yamagata	10	0	0.0	-	0	0	-	-	0	0	-	-	0	0	-	-	0	0	-	-	10	0	-
Miyagi	114	0	0.0	-	204	3	1.5	ND - 6.3	193	0	0.0	-	196	0	0.0	-	196	0	0.0	-	903	3	ND - 6.3
Fukushima	452	28	6.2	ND - 20	854	18	2.1	ND - 4.6	801	7	0.9	ND - 5.5	770	3	0.4	ND - 1.6	819	2	0.2	ND - 1.3	3,696	58	ND - 20
Hamadori	192	23	12.0	ND - 20	342	12	3.5	ND - 4.6	325	7	2.2	ND - 5.5	326	3	0.9	ND - 1.6	330	1	0.3	ND - 1.3	1,515	46	ND - 20
Nakadori	176	5	2.8	ND - 8.0	355	6	1.7	ND - 1.9	322	0	0.0	-	324	0	0.0	-	324	1	0.3	ND - 1.1	1,501	12	ND - 8.0
Aizu	84	0	0.0	-	157	0	0.0	-	154	0	0.0	-	120	0	0.0	-	165	0	0.0	-	680	0	-
Ibaraki	128	0	0.0	-	214	0	0.0	-	212	0	0.0	-	212	0	0.0	-	212	0	0.0	-	978	0	-
Tochigi	161	1	0.6	ND - 1.0	277	0	0.0	-	276	0	0.0	-	274	0	0.0	-	278	0	0.0	-	1,266	1	ND - 1.0
Gunma	90	0	0.0	-	216	0	0.0	-	214	0	0.0	-	210	0	0.0	-	214	0	0.0	-	944	0	-
Saitama	2	0	0.0	-	8	0	0.0	-	8	0	0.0	-	8	0	0.0	-	8	0	0.0	-	34	0	-
Chiba	82	0	0.0	-	202	2	1.0	ND - 1.3	200	0	0.0	-	200	0	0.0	-	200	0	0.0	-	884	2	ND - 1.3
Tokyo	3	0	0.0	-	12	0	0.0	-	8	0	0.0	-	8	0	0.0	-	8	0	0.0	-	39	0	-
Total	1,060	29	2.7	ND - 20	2,051	23	1.1	ND - 6.3	1,992	7	0.4	ND - 5.5	1,958	3	0.2	ND - 1.6	2,015	2	0.1	ND - 1.3	9,076	122	ND - 20

Table 4.1-1 Detection of radioactive cesium in river water samples (by fiscal year)

ND: Not detectable

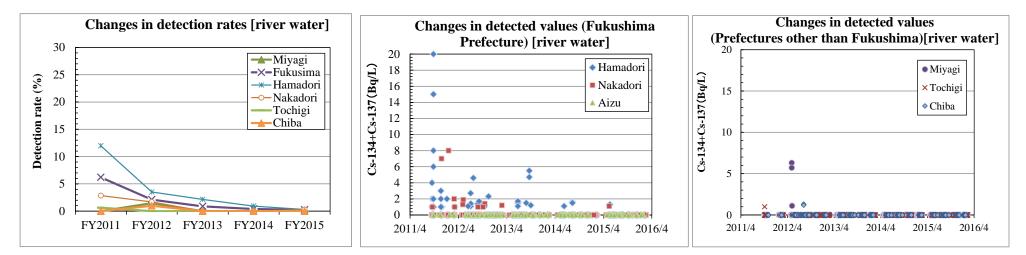


Figure 4.1-1 Detection rates of radioactive cesium in river water samples (left) and changes in detected values (center and right)

	1	F	Y2011		T		T	FY2012				FY2013			1	FY2014			F	Y2015			Total	
Prefecture	Number of samples	Number of detections	Detection	Range of measured va (Bq/L)		Number of samples	Number of detections		Range of measured values (Bq/L)	Number of samples		Detection	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection	Range of measured values (Bq/L)	Number of samples	Number of detections	Range of measured values (Bq/L)
Yamagata	4	0	0.0	-		0	0	-	-	0	0	-	-	0	0	-	-	0	0	-	-	4	0	-
Miyagi	34	1	2.9	ND -	3.0	90	0	0.0	-	118	0	0.0	-	114	0	0.0	-	118	0	0.0	-	474	1	ND - 3.0
Fukushima	211	11	5.2	ND -	27	581	72	12.4	ND - 100	761	36	4.7	ND - 47	799	29	3.6	ND - 34	807	29	3.6	ND - 52	3,159	177	ND - 100
Hamadori	76	9	11.8	ND -	27	272	65	23.9	ND - 100	321	36	11.2	ND - 47	342	29	8.5	ND - 34	350	29	8.3	ND - 52	1,361	168	ND - 100
Nakadori	56	2	3.6	ND -	5.0	83	3	3.6	ND - 1.2	109	0	0.0	-	113	0	0.0	-	115	0	0.0	-	476	5	ND - 5.0
Aizu	79	0	0.0	-		226	4	1.8	ND - 5.1	331	0	0.0	-	344	0	0.0	-	342	0	0.0	-	1,322	4	ND - 5.1
Ibaraki	48	0	0.0	-		93	0	0.0	-	152	0	0.0	-	152	0	0.0	-	149	0	0.0	-	594	0	-
Tochigi	24	0	0.0	-		54	0	0.0	-	62	0	0.0	-	64	0	0.0	-	64	0	0.0	-	268	0	-
Gunma	51	0	0.0	-		144	1	0.7	ND - 1.0	188	0	0.0	-	187	0	0.0	-	192	0	0.0	-	762	1	ND - 1.0
Chiba	32	0	0.0	-		50	0	0.0	-	53	0	0.0	-	50	0	0.0	-	37	0	0.0	-	222	0	-
Total	404	12	3.0	ND -	27	1,012	73	7.2	ND - 100	1,334	36	2.7	ND - 47	1,366	29	2.1	ND - 34	1,367	29	2.1	ND - 52	5,483	179	ND - 100

Table 4.1-2 Detection of radioactive cesium in lake water samples (by fiscal year)

ND: Not detectable

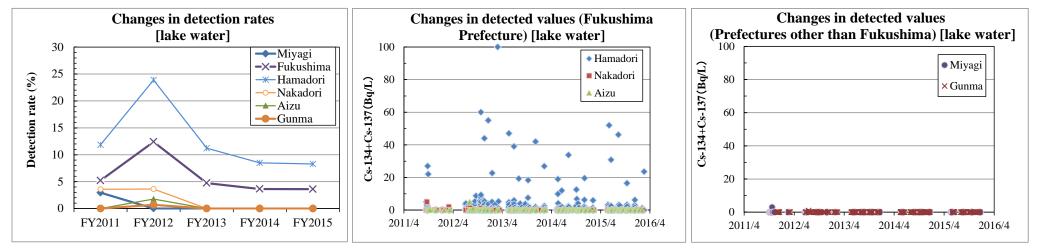


Figure 4.1-2 Detection rates of radioactive cesium in lake water samples (left) and changes in detected values (center and right)

		FY	/2011			F	r2012			F	Y2013			FY	72014			F	r2015			Toal	
Prefecture	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Range of measured values (Bq/L)
Iwate	5	0	0.0	-	8	0	0.0	-	8	0	0.0	-	8	0	0.0	-	8	0	0.0	-	37	0	-
Miyagi	94	0	0.0	-	96	0	0.0	-	102	0	0.0	-	104	0	0.0	-	104	0	0.0	-	500	0	-
Fukushima	116	0	0.0	-	189	0	0.0	-	300	0	0.0	-	300	0	0.0	-	300	0	0.0	-	1,205	0	-
Ibaraki	45	0	0.0	-	62	0	0.0	-	40	0	0.0	-	40	0	0.0	-	40	0	0.0	-	227	0	-
Chiba	0	0	-	-	62	0	0.0	-	46	0	0.0	-	46	0	0.0	-	46	0	0.0	-	200	0	-
Tokyo	0	0	-	-	38	0	0.0	-	36	0	0.0	-	36	0	0.0	-	36	0	0.0	-	146	0	-
Total	260	0	0.0	-	455	0	0.0	-	532	0	0.0	-	534	0	0.0	-	534	0	0.0	-	2,315	0	-

Table 4.1-3 Detection of radioactive cesium in coastal area water samples (by fiscal year)

ND: Not detectable

		FY	2011			F	r2012			FY	2013			FY	2014			FY	2015			Total	
Prefecture	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/L)	Number of samples	Number of detections	Range of measured values (Bq/L)
Iwate	42	0	0.0	-	44	0	0.0	-	44	0	0.0	-	22	0	0.0	-	22	0	0.0	-	174	0	-
Miyagi	79	0	0.0	-	44	0	0.0	-	48	0	0.0	-	24	0	0.0	-	24	0	0.0	-	219	0	-
Yamagata	79	0	0.0	-	0	0	-	-	0	0	-	-	0	0	-	-		0	-	-	79	0	-
Fukushima	540	2	0.4	ND - 2.0	543	0	0.0	-	766	0	0.0	-	771	0	0.0	-	767	0	0.0	-	3,387	2	ND - 2.0
Ibaraki	89	0	0.0	-	54	0	0.0	-	54	0	0.0	-	27	0	0.0	-	27	0	0.0	-	251	0	-
Tochigi	76	0	0.0	-	54	0	0.0	-	54	0	0.0	-	27	0	0.0	-	27	0	0.0	-	238	0	-
Gunma	40	0	0.0	-	40	0	0.0	-	42	0	0.0	-	21	0	0.0	-	21	0	0.0	-	164	0	-
Chiba	54	0	0.0	-	46	0	0.0	-	46	0	0.0	-	23	0	0.0	-	23	0	0.0	-	192	0	-
Total	999	2	0.2	ND - 2.0	825	0	0.0	-	1,054	0	0.0	-	915	0	0.0	-	911	0	0.0	-	4,704	2	ND - 2.0

ND: Not detectable

(*) Detected in FY2011. Both Cs-134 and Cs-137 were detected at one site, and only Cs-137 was detected at another site, at a level of 1 Bq/L (detection limit: 1 Bq/L) (see the main text).

4.2 Sediments

Detection of radioactive cesium in sediment samples from public water areas (rivers, lakes, and coastal areas) were as outlined below.

(1) Public water areas (rivers)

Radioactive cesium (Cs-134 and Cs-137) detected in river sediment samples was as shown in Table 4.2-1 and Figure 4.2-1.

According to the results, including the past fiscal years, the detection rate ranged between 50 and 100%, and has been slightly decreasing over time in many prefectures.

As shown in Figure 4.2-1, more locations are showing lower concentration levels (the total of Cs-134 and Cs-137) and fewer locations are showing higher concentration levels.

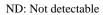
(2) Public water areas (lakes)

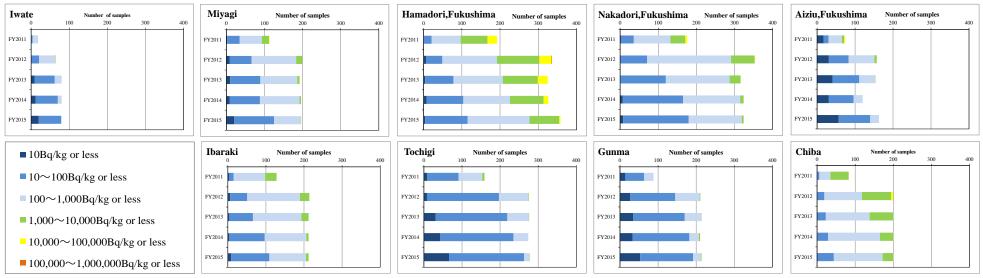
Detection of radioactive cesium (Cs-134 and Cs-137) in lake sediment samples is as shown in Table 4.2-2 and Figure 4.2-2.

According to the results, including the past fiscal years, the detection rate ranged between 83 and 100%. In FY2015, detection rates of 90% or more were observed in all prefectures.

Detected values (the total of Cs-134 and Cs-137) were generally decreasing or unchanged though some locations exhibited fluctuations. In Hamadori District, Fukushima Prefecture, however, radioactive cesium was still detected at concentrations of 100,000 Bq/kg or more in FY2015.

(3) Public water areas (coastal areas)


Detection of radioactive cesium (Cs-134 and Cs-137) in coastal area sediment samples is as shown in Table 4.2-3 and Figure 4.2-3.


According to the results, including the past fiscal years, the detection rate ranged between 40 and 100% and slightly decreased in FY2015, except for Iwate Prefecture with a small number of specimens.

Coastal area locations showed lower detected values (the total of Cs-134 and Cs-137) than those in rivers or lakes. In Fukushima Prefecture, however, radioactive cesium was still detected at concentrations of 1,000 Bq/kg or more in FY2015.

		F	Y2011		FY2012					F	Y2013		FY2014					F	Y2015	Total			
Prefecture	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate (%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Range of measured values (Bq/kg)
Iwate	18	18	100.0	62 - 990	64	63	98.4	ND - 1,040	80	71	88.8	ND - 340	80	68	85.0	ND - 301	80	60	75.0	ND - 121	322	280	ND - 1,040
Yamagata	10	6	60.0	ND - 132	0	0	-	-	0	0	-	-	0	0	-	-	0	0	-	-	10	6	ND - 132
Miyagi	113	111	98.2	ND - 11,100	199	191	96.0	ND - 3,700	192	182	94.8	ND - 2,450	196	187	95.4	ND - 1,620	196	176	89.8	ND - 1,860	896	847	ND - 11,100
Fukushima	441	421	95.5	ND - 92,000	847	808	95.4	ND - 165,000	795	750	94.3	ND - 45,000	770	724	94.0	ND - 24,700	845	776	91.8	ND - 20,100	3,698	3,479	ND - 165,000
Hamadori	192	191	99.5	ND - 92,000	336	329	97.9	ND - 165,000	325	321	98.8	ND - 45,000	326	318	97.5	ND - 24,700	358	354	98.9	ND - 20,100	1,537	1,513	ND - 165,000
Nakadori	176	174	98.9	ND - 30,000	354	353	99.7	ND – 20,000	316	316	100.0	10 - 8,300	324	317	97.8	ND - 3,060	324	316	97.5	ND - 3,270	1,494	1,476	ND - 30,000
Aizu	73	56	76.7	ND - 25,000	157	126	80.3	ND – 2,590	154	113	73.4	ND - 1,410	120	89	74.2	ND – 720	163	106	65.0	ND - 810	667	490	ND - 25,000
Ibaraki	128	125	97.7	ND - 5,800	214	208	97.2	ND - 4,800	212	209	98.6	ND - 4,200	212	208	98.1	ND - 1,640	212	203	95.8	ND - 2,160	978	953	ND - 5,800
Tochigi	159	150	94.3	ND - 4,900	275	267	97.1	ND - 1,780	276	245	88.8	ND - 1,540	274	231	84.3	ND - 820	278	212	76.3	ND - 1,010	1,262	1,105	ND - 4,900
Gunma	88	74	84.1	ND - 410	211	184	87.2	ND - 1,560	214	179	83.6	ND – 1,560	210	177	84.3	ND - 2,160	214	161	75.2	ND - 1,510	937	775	ND - 2,160
Saitama	2	2	100.0	35 - 530	8	8	100.0	12 - 540	8	8	100.0	10 - 67	8	7	87.5	ND - 68	8	4	50.0	ND - 291	34	29	ND - 540
Chiba	83	83	100.0	50 - 9,700	199	199	100.0	17 - 20,200	200	199	99.5	ND - 7,900	200	200	100.0	11 - 5,200	200	199	99.5	ND - 4,100	882	880	ND - 20,200
Tokyo	2	2	100.0	580 - 700	12	12	100.0	131 - 670	8	8	100.0	75 - 460	8	8	100.0	96 - 430	8	8	100.0	86 - 404	38	38	75 - 700
Total	1,044	992	95.0	ND - 92,000	2,029	1,940	95.6	ND - 165,000	1,985	1,851	93.2	ND - 45,000	1,958	1,810	92.4	ND - 24,700	2,041	1,799	88.1	ND - 20,100	9,057	8,392	ND - 165,000

Table 4.2-1 Detection of radioactive cesium in river sediment samples (by fiscal year)

63

Figure 4.2-1 Detection of radioactive cesium in river sediment samples (changes) (Prefectures where only a small number of samples were collected are

Table 4.2-2 Detection of radioactive cesium in lake sediment samples (by fiscal year)	Table 4.2-2 Detection of	radioactive	cesium in	lake	sediment	samples	(by fiscal	year)
---	--------------------------	-------------	-----------	------	----------	---------	------------	-------

		I	FY2011		FY2012				FY2013				FY2014				FY2015				Total		
Prefecture	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Range of measured values (Bq/kg)
Yamagata	2	2	100.0	34 - 470	0	0	-	-	0	0	-	-	0	0	-	-	0	0	-	-	2	2	34 - 470
Miyagi	24	24	100.0	31 - 3,000	58	57	98.3	ND - 9,700	76	76	100.0	18 - 4,200	75	74	98.7	ND - 2,220	76	74	97.4	ND - 4,490	309	305	ND - 9,700
Fukushima	147	141	95.9	ND - 260,000	389	386	99.2	ND - 780,000	501	499	99.6	ND - 460,000	501	496	99.0	ND - 297,000	541	535	98.9	ND - 920,000	2,079	2,057	ND - 920,000
Hamadori	62	62	100.0	45 - 260,000	201	201	100.0	42 - 780,000	239	239	100.0	68 - 460,000	243	243	100.0	18 - 297,000	278	278	100.0	16 - 920,000	1,023	1,023	16 - 920,000
Nakadori	42	41	97.6	ND - 35,000	58	58	100.0	63 - 24,900	77	77	100.0	68 - 11,100	76	74	97.4	ND - 10,900	78	78	100.0	44 - 6,200	331	328	ND - 35,000
Aizu	43	38	88.4	ND - 2,020	130	127	97.7	ND - 10,200	185	183	98.9	ND - 13,400	182	179	98.4	ND – 7,800	185	179	96.8	ND - 12,300	725	706	ND - 13,400
Ibaraki	24	24	100.0	37 - 1,840	48	48	100.0	93 - 1,300	76	75	98.7	ND - 5,400	76	75	98.7	ND - 3,170	73	73	100.0	61 - 3,070	297	295	ND - 5,400
Tochigi	12	10	83.3	ND - 6,700	27	27	100.0	11 - 4,100	31	31	100.0	106 - 5,100	32	32	100.0	134 - 8,700	32	32	100.0	103 - 1,760	134	132	ND - 8,700
Gunma	26	22	84.6	ND - 4,600	72	72	100.0	16 - 4,100	95	95	100.0	21 - 4,300	94	94	100.0	38 - 5,100	96	96	100.0	47 - 4,570	383	379	ND - 5,100
Chiba	16	16	100.0	440 - 7,400	32	32	100.0	460 - 8,200	32	32	100.0	151 - 5,700	32	32	100.0	121 - 5,700	32	32	100.0	187 - 4,240	144	144	121 - 8,200
Total	251	239	95.2	ND - 260,000	626	622	99.4	ND - 780,000	811	808	99.6	ND - 460,000	810	803	99.1	ND - 297,000	850	842	99.1	ND - 920,000	3,348	3,314	ND - 920,000

ND: Not detectable

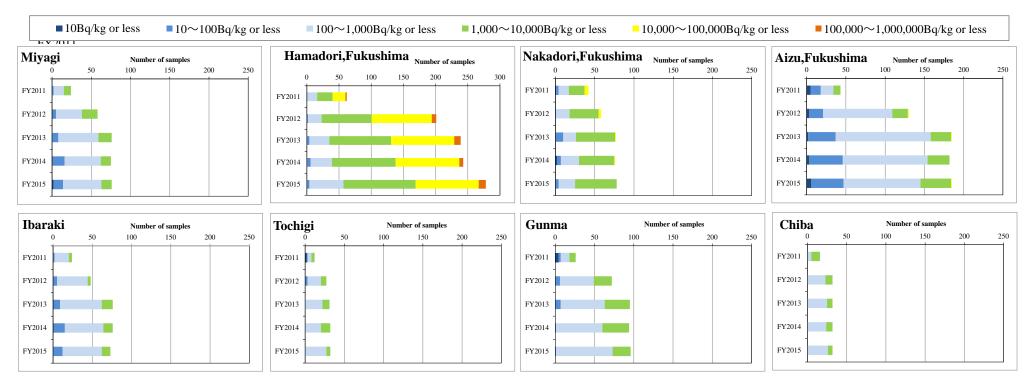


Figure 4.2-2 Detection of radioactive cesium in lake sediment samples (changes) (Yamagata Prefecture where only a small number of samples were collected was omitted.)

		FY2011				FY2012				FY2013				FY2014				FY2015				Total		
Prefecture	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Detection rate(%)	Range of measured values (Bq/kg)	Number of samples	Number of detections	Range of measured values (Bq/kg)	
Iwate	3	0	0.0	ND - 0	4	2	50.0	ND - 39	4	2	50.0	ND - 46	4	2	50.0	ND - 16	4	1	25.0	ND - 10	19	7	ND - 46	
Miyagi	52	34	65.4	ND - 830	48	38	79.2	ND - 1,530	51	47	92.2	ND - 2,040	52	42	80.8	ND - 1,090	52	41	78.8	ND - 910	255	202	ND - 2,040	
Fukushima	80	77	96.3	ND - 1,240	97	93	95.9	ND - 1,110	150	145	96.7	ND - 1,600	150	139	92.7	ND - 830	150	140	93.3	ND - 2,950	627	594	ND - 2,950	
Ibaraki	28	27	96.4	ND - 230	31	17	54.8	ND - 69	20	11	55.0	ND - 67	20	11	55.0	ND - 67	20	8	40.0	ND - 178	119	74	ND - 230	
Chiba	0	0	-	-	31	20	64.5	ND - 134	23	14	60.9	ND - 54	23	14	60.9	ND - 21	23	11	47.8	ND - 315	100	59	ND - 315	
Tokyo	0	0	-	-	19	17	89.5	ND - 780	18	18	100.0	12 - 780	18	17	94.4	ND - 630	18	18	100.0	83 - 410	73	70	ND - 780	
Total	163	138	84.7	ND - 1,240	230	187	81.3	ND - 1,530	266	237	89.1	ND - 2,040	267	225	84.3	ND - 1,090	267	219	82.0	ND - 2,950	1,193	1,006	ND - 2,950	

Table 4.2-3 Detection of radioactive cesium in coastal area sediment samples (by fiscal year)

ND: Not detectable

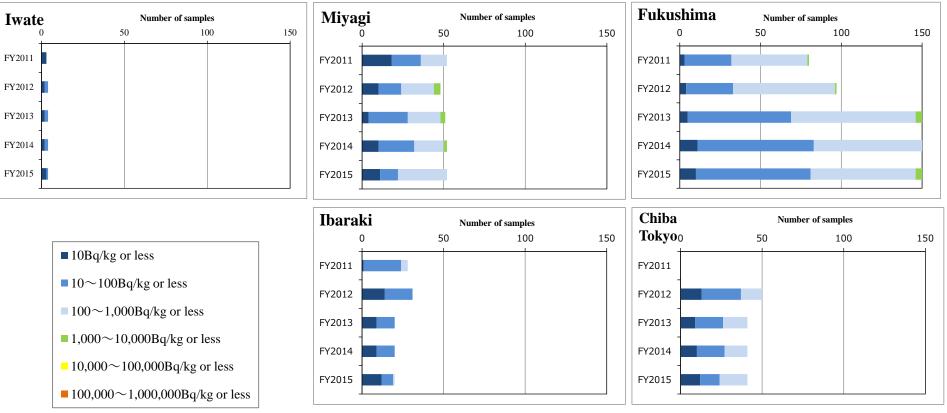


Figure 4.2-3 Detection of radioactive cesium in coastal area sediment samples (changes)

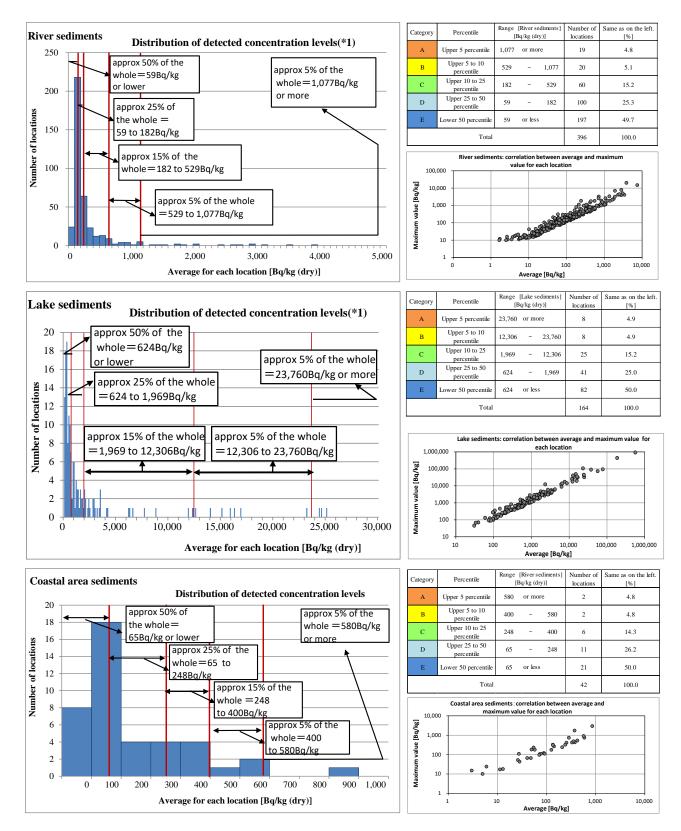
4.3 Detection of radioactive materials in sediments by location

(1) Evaluation policy

Circumstances where radioactive materials were detected were compiled more in detail by sampling location, while separately considering the property such as rivers, lakes and coastal areas.

Circumstances for each location were statistically analyzed from the following two perspectives by using all available data for each location. The evaluation excluded if no longer required after surveyed and Yamagata prefecture, where surveys have not been conducted since FY2012.

1) Detected concentration levels


- i. Obtain the average for each location for FY2015 by using all survey results concerning concentrations of radioactive cesium (the total of Cs-134 and Cs-137) (arithmetic average calculated by assuming not detectable to be zero; hereinafter referred to as the "average for each location").
- ii. Arrange all such averages (separately for samples from rivers, lakes, and coastal areas) in descending order and set the following five categories depending on upper percentile ranges (see Figure 4.3-1).
 - Category A: Upper 5 percentile of the entirety
 - Category B: Upper 5 to 10 percentile of the entirety
 - · Category C: Upper 10 to 25 percentile of the entirety
 - · Category D: Upper 25 to 50 percentile of the entirety
 - Category E: Upper 50 to 100 percentile of the entirety (lower 50 percentile)

(Incidentally, a comparison between the average and the maximum value for each location for FY2015 revealed a good correlation (see right below of Figure 4.3-1). Therefore, considering that the evaluation of the average for each location covers that of large detected values (maximum values) that emerge occasionally, the evaluation was conducted by using only the average for each location.)

2) Changes in detected values

- i. Changes in detected values were categorized based on the following thinking in order to evaluate their changes over the years.
 - Based on visual judgment of graphs that show changes in detected values over the years for each location, those negatively sloped are judged as "decreasing" and those positively sloped are judged as "increasing."
 - (ii) When visual judgment is difficult, a regression analysis is conducted to check the trend. Specifically, when the lower and upper 95% of the slope are both negative, it is judged as "decreasing," and when the lower and upper 95% of the slope are both positive, it is judged as "increasing."
 - (iii) When neither a decreasing nor an increasing trend is clear (either the lower or upper 95% of the slope is negative and the other is positive), coefficient of variation of 0.5 was used as a reference. When a coefficient of variation is less than 0.5, it is judged as "unchanged," and when a coefficient of variation is 0.5 or higher, it is judged as "varying."
- ii. However, data may show fluctuations, depending on minor differences in sampling points or properties of

samples, and it is considered to be too early to make judgments on changes in detected values at this point in time. Even if a certain location is judged to show an increasing trend based on the abovementioned thinking, it is necessary to accumulate further data and conduct careful examination for making a judgment on whether the increasing trend will be continuously observed in the relevant location.

Figure 4.3-1 Categories based on the average for each location (left: picture showing means of categorization; upper right: results of categorization¹¹; lower right correlation between average and maximum value for each location)

*1: locations with values exceeding the maximum one of the horizontal axis are not shown.

¹¹How to set categorization boundary value: The boundary value of the categorization to be in contact is the average value of the minimum value of the upper categorization and the maximum value of the lower categorization.

- (2) Concentration levels in sediment samples from rivers, lakes, and coastal areas and their changes by prefecture
- (2)-1 Rivers
 - 1) Iwate Prefecture

In Iwate Prefecture, surveys were conducted 9 to 17 times from December 2011 to February 2016 for river sediment samples collected at 22 locations (this analysis excludes the survey results at one location where the survey was conducted only in 2011).

Regarding concentration levels of detected values, two locations were categorized into Category D and 20 locations were categorized into Category E (see Table 4.3-1 and Table 4.3-2).

Concentration levels were generally decreasing at 19 locations and were varying at three locations.

Table 4.3-1 Categorization of detected values at respective locations (lwate Prefecture: river sediments)

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	0	(None)
D	Upper 25 to 50 percentile	2	No.4, No.19
Е	Upper 50 to 100 percentile(lower 50%)	20	No.1, No.2, No.3, No.5, No.6, No.7, No.8, No.9, No.10, No.11, No.12, No.13, No.14, No.15, No.16, No.17, No.18, No.20, No.21, No.22

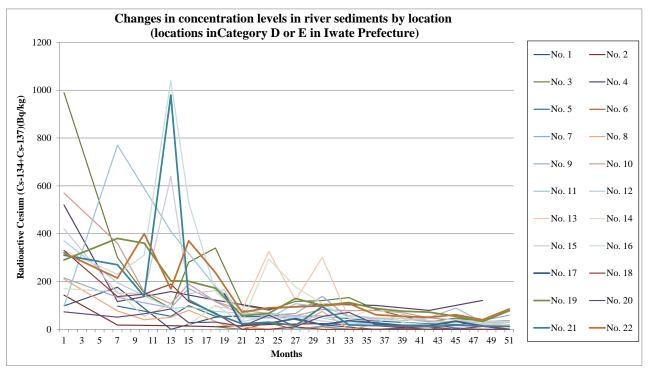


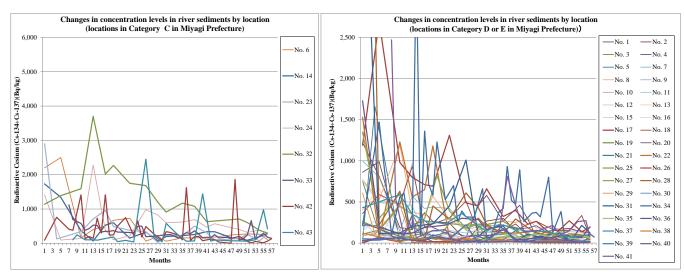
Figure 4.3-2 Changes in concentration levels over the years at respective locations (Iwate Prefecture: river sediments)

			Location											R	iver se	diment	s/Radi	oactive	Cesiu	m (Cs-	134+0	Cs-137)	/Conce	ntrati	on(Bq/l	(*1)										
No.	1	Water area	Location	Municipality				FY20	11									FY2	2012											FY.	2013					
INO.			Location	wunicipaity	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		Sakari River Lower Reaches	Sano Bridge	Ofunato City					98						176						0					51						63				
2		Kesen River	Aneha Bridge	Rikuzentakada City					143						18						15					11						20				
3		Okawa River	Prefectural border with Miyagi	Ichinoseki City					990						300			152			87		281			340			101			80			117	
4		Tsuyagawa River	Chiyogahara Bridge	Ichinoseki City					520						116						158					122						85				
5		Kurosawa River	Kawarada Bridge	Kanegasaki Town											97			76			54		99			54						53				
6		Isawa River	Oago Bridge	Oshu City																						11			0			27			0	
7			Saijin Bridge	Oshu City																						0			0			0			0	
8		Kitakami River	Fuji Bridge	Oshu City					210						77			40			50		80				18		12			0			13	
9		Shiratori River	Shiratori Bridge	Oshu City					215						134			111			90		171				98		61			59			66	
10		Koromo River	Koromogawa Bridge	Hiraizumi Town					570						360			156			107		189			117			79			66			57	
11		Ota River	Hitosuji Bridge	Hiraizumi Town					97						770						410					179			76			46			107	
12	Kita)	Iwai River Middle Reaches	Kamino Bridge	Ichinoseki City					370						195			141			87		93			75			67			63			55	
13	iami R	Iwai River Lower Reaches	Kozenji Bridge	Ichinoseki City																						96			80			326			122	
14	River Sy	Kitakami River	Chitose Bridge(Kozenji)	Ichinoseki City					170						158			54			106		19			101			29			294			177	
15	ystem	Sokei River	Unada Bridge	Ichinoseki City					420						151			150			640		150				166		32			54			52	
16		Sarusawa River	Kannon Bridge	Ichinoseki City					330						230			310			1,040		530			160			48			45			48	
17	Ī	Satetsu River	Oide Bridge	Ichinoseki City																							149		19			25			45	
18	Ī		Kanzaki Bridge	Ichinoseki City					330						137			147			189		116			68			0			0			10	
19		Senmaya River Upper Reaches	Miyata Bridge	Ichinoseki City					290						380			360			203		201			172			57			67			129	
20		Kitakami River	Kitakamigawa Bridge	Ichinoseki City					73						51			65			85		28			30			13			59			12	
21		Kinomi River	Higuchi Bridge	Ichinoseki City					310						270			138			980		123			64			23			30			16	
22		Kinryu River	Tenjin Bridge	Ichinoseki City					320						214			400			169		370			237			72			90			94	
						number mples	321	Detec time		279																										
					*1: Blar	nk cells a	re locat			nples v	vere no	collect	ed. Th	e result	"Not d	etectab	le" is in	dic ated	as "0."																	

Table 4.3-2 Detection of radioactive cesium at respective locations (lwate Prefecture: river sediments)

		Location									River	sedim	ents/R	adioact	ive Ce	sium (C	Cs-134	+Cs-13	37)/Con	centra	tion(B	q/kg)(*	1)						Average of		Coefficient	
No.	Water area	Location	Municipality	4	5	6	7	8	FY2 9	10	11	12	1	2	3	4	5	6	7	8	FY2 9	2015	11	12	1	2	3	Changes	FY2015 (*2)	No.	of variation	Trends (*3)
1	Sakari River Lower Reaches	Sano Bridge	Ofunato City	-	19	0		0	<i>,</i>	10	0			-	5	-	11	0		0		10	0	12		2	5	\sim	5.5	1	1.28	\searrow
2	Kesen River	Aneha Bridge	Rikuzentakada City		24						15						0						35						18	2	1.38	\searrow
3	Okawa River	Prefectural border with Miyagi	Ichinoseki City		120			133			83			55			32			47			32			37		\sim	37	3	1.31	\searrow
4	Tsuyagawa River	Chiyogahara Bridge	Ichinoseki City		105						100						79						121					L	100	4	0.89	/
5	Kurosawa River	Kawarada Bridge	Kanegasaki Town		55						35						23						18					N	21	5	0.49	/
6	Isawa River	Oago Bridge	Oshu City		11			0			0			0			0			0			0			0		A	0	6	2.05	\sim
7	Isawa River	Saijin Bridge	Oshu City		14			0			0			0			0			0			0			0		_/	0	7	3.46	\sim
8	Kitakami River	Fuji Bridge	Oshu City		75			0			21			13			10			0			11			13		~	8.5	8	1.38	/
9	Shiratori River	Shiratori Bridge	Oshu City		138			46			45			46			31			32			37			59		3	40	9	0.63	/
10	Koromo River	Koromogawa Bridge	Hiraizumi Town		83			78			79			70			48			39			34			36		٤	39	10	1.09	/
11	Ota River	Hitosuji Bridge	Hiraizumi Town		93			57			48			36			49			89			30			30		$\sim \sim$	50	11	1.41	\searrow
12	Iwai River Middle Reaches	Kamino Bridge	Ichinoseki City		48			26			27			63			36			29			32			20		~	29	12	1.03	\searrow
13	Iwai River Lower Reaches		Ichinoseki City		301			45			48			46			37			30			24			21		_M	28	13	1.07	\sim
14	Kitakami River	Chitose Bridge(Kozenji)	Ichinoseki City		108			47			93			28			19			0			14			0		-m	8.3	14	0.96	\searrow
15	Sokei River	Unada Bridge	Ichinoseki City		35			20			26			19			18			18			21			15		s.	18	15	1.45	\searrow
16	Sarusawa River	Kannon Bridge	Ichinoseki City		54			49			39			38			55			37			34			34		5	40	16	1.45	\searrow
17	Satetsu River	Oide Bridge	Ichinoseki City		19			36			27			16			16			34			14			0		han	16	17	1.15	>
18		Kanzaki Bridge	Ichinoseki City		0			0			0			0			0			0			0			0		5	0	18	1.62	\searrow
19	Senmaya River Upper Reaches		Ichinoseki City		100			112			87			76			72			54			33			78		$\sim \sim$	59	19	0.74	~
20	Kitakami River	Kitakamigawa Bridge	Ichinoseki City		54			71			20			16			10			0			13			0		~~~	5.8	20	0.79	>
21	Kinomi River	Higuchi Bridge	Ichinoseki City		95			18			16			13			12			17			14			12			14	21	1.88	\searrow
22	Kinryu River	Tenjin Bridge	Ichinoseki City		98			107			61			54			50			61			40			85		M	59	22	0.79	>
				*1: Bla	nk cells	are loc	ations v	where s	amples	were i	not coll	ected. 7	The res	ult "No	detect	able" is	indic at	ed as "O)."				A	в	с	D	Е		27	Average		
				*2: Ari	thmetic	Avera	ge; calci	ulated b	y assu	ming N	D=0; C	olor co	des sho	ow cate	gories (see the	right).															
				*3: Res	sults of	the ana	ılysis of	trends	at resp	ective	locatior	s using	the me	ethod es	plained	on 4.3	(1) 2)	1	Decr	easing	-	≯ Inc	reasing	~	⊶ Ur	ichange	ed.	Varying				

2) Miyagi Prefecture


In Miyagi Prefecture, surveys were conducted 16 to 43 times from October 2011 to February 2016 for river sediment samples collected at 43 locations (this analysis excludes the survey results at 37 locations where the survey was conducted only in 2011).

Regarding concentration levels of detected values, eight locations ware categorized into Category C, 14 locations into Category D, 21 locations into Category E (see Table 4.3-3 and Table 4.3-4).

Concentration levels were generally decreasing at 35 locations and were varying at eight locations.

Table 4.3-3 Categorization of detected values at respective locations (Miyagi Prefecture: river sediments)

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	8	No.6, No.14, No.23, No.24, No.32, No.33, No.42, No.43
D	Upper 25 to 50 percentile	14	No.1, No.2, No.7, No.8, No.17, No.18, No.22, No.27, No.31, No.34, No.35, No.36, No.37, No.41
Е	Upper 50 to 100 percentile(lower 50%)	21	No.3, No.4, No.5, No.9, No.10, No.11, No.12, No.13, No.15, No.16, No.19, No.20, No.21, No.25, No.26, No.28, No.29, No.30, No.38, No.39, No.40

(*) Scales of the vertical axes differ in the left and right figures.

Figure 4.3-3 Changes in concentration levels over the years at respective locations (Miyagi Prefecture: river sediments)

Table 4.3-4 Detection of radioactive cesium at respective locations

				Location											Dheer		nto/Po	فممماله	lve Ceelum ((0194	+01	1977/0		an(Ba/	kal/et)								
. T									FY2011				1		RIVER	aadima	ncuv ros	FY:		08-184	TUF	1877/0	onoentreu		NG(*1)				FY2013				
No.		Water	area	Location	Municipality	8	9	10	11 1	2 1	2	3	4	5	6	7	8	9	10	11	12	1	2 3	4	5	6	7	8	9 10	11	12	1	2 3
1		Shishir	ri River	Kinzan Bridge				210			211	1			100			124		128		86			139			83		99		96	
2				Namiita Bridge				1,220			810	D			189			165		370		262			245			28		186		268	
3				Tateyama-ohashi Bridge	Kesennuma City			750			113	s			56			91		121		56			39			43		51		35	
4		Okaw	a River	Kamiyama Bridge	Accounting City			860			990	0			59			222		271		190			99			65		460		580	
5				Okawa River Estuary				23		1,66	50				0			0		0		0			0			0		0		0	
6		Omose	River	Ozaki Bridge				2,200			2,50	0			159			400		510		670			730			64		194		63	
7			Arima River	Unanda Bridge				1,000			800	D			146			570		420		440			420			173		229		210	
8			Kinryu River	Obata Bridge				770			530	0			1,190			380		340		570			289			165		196		221	
9			Kitakami River	Tome-ohashi Bridge (Tome)				113			98				74			118		199		71			115			22		63		133	
10			Sanhasama River	Doman Bridge (Kurikoma Dam)	Kurihara City			85			132	7			55			260		24		20			25			13		38		45	
11			Nihasama River	Kajiya Bridge				750			490	D			480			450		131					153			123		161		167	
12		Hasama River Area		Hanayama Dam, inflow area				44			60				135			56		0		14			17			0		0		0	
13	Kitakami River	1	Hasama River	Wakayanagi				400			670	0			84			340		104		65			90			71		33		52	
14	System			Yamayoshida Bridge	Tome City			1,730			1,34	40			370			69		530		600			150			327		68		197	
15			Eai River	Todoroki Bridge (Todoroki)				260			77				470			970		89			66		67			85		66			
16		1		Shinborisaihon, entrance	Osaki City			141		Ι	330	D			63			104		18		0			59			37		17		17	
17		Eai River Area	In Furukawa District,Osaki City	Shinborisaihon, entrance				1,190			2,70	10			980			800		710		690			1,310			490		450		660	
18			Dekigawa River	Kogota Bridge	Misato Town			360			590	D			470			930		195		233			305			510		134		133	
19			Eai River	Oikawa Bridge (Tandai)	Wakuya Town /Ishinomaki Town			260			172	2			79			66		37		73			56			41		21		79	
20		Ky	u-Kitakami River	Kadonowaki	Ishinomaki City			240			17:	5			36			49		0		10			0			27		18		26	
21		Narus	e River	Onobashi Bridge (Ono)	Higashi-Matsushima City			0			74				28			41		65		17			19			19		82		44	
22		Sunaos		Tagajozeki Weir				1,530			62				1,230			560		650		1,180			61			215		302		202	
23		Sunaos	hi Kiver	Nenbutsu Bridge	Tagajo City			2,900		12	9				340			710		960		490			380			340		17		255	
24		Teizan-ur (Kyu-sunat	iga Canal ishi River)	Teizan Bridge	Shiogama City/Shichigahama Town/Tazaio City			1,410			95				141			2,280		380		101			218			980		820		600	
25				Nanakita Bridge				109			153	7			450			350		71			43		238			215		230		226	
26	Nanakita		Nanakita River	Fukuda-ohashi Bridge	1			10			60				14			60		17			17		13			12		16		13	
27	River System		Umeda River	Fukuda Bridge	Sendai City			1,350			300	0			600			53		300			820		390			186		233		47	
28			Nanakita River	Takasago Bridge	1			11,100			220	0			630			0		42		450			291			610		430		225	
29			Natori River	Yuriage-ohashi Bridge	Sendai City /Natori City			610		10	8				470			14							0			52		11		47	
30	Natori			Yakushi Bridge				56			47				68			220		73					35		23			17		20	-
31	River System		Masuda River	Koyuma Bridge	Natori City			5,200			116	5	1		124	1		202		221		236		1	450			1,010		81	\square	168	-
32		1		Bishamon Bridge	1		1	1,140			1,39	10	1		1,590			3,700		2,020		2,270		1	1,750			1,680		1,190	\square	910	+
33		1		Hadeniwa Bridge	Marumori Town						1		1,120	690	580	380	430	530	520 330	350	350	370	330	320	1	310 500	500	196	20	3	236	247	259
34			Abukuma River	Marumori Bridge	Marumori Town			220			1,47	10	570	101	560	610	280	162	3,400 90	1,360	710	580	1,230	530	1	700 253	390	320	31	2	660	59	75
35				Higashine Bridge	Kakuda City						1	1	1			1								283	1	301		161	96	+	212	138	-
36			Shiroishi River	Before the confluence with Kawaragosawa River (Sunaoshi Bridge)	Shiroishi City		1	1,730			191	1	1		116	1		123		190				218	1	1	302			286	\square	165	+
37			Saikawa River	Etsubo Bridge	Shiroishi City			430			1	1	1		590	1		350		270				234	1		360			206	\square	146	-
38	Abukuma River	Shiroishi River Aares	Matsukawa River	Miya-ohashi Bridge	Zao Town		1	119			1	1	1		19	1		47		54		66		31	1	1	58			39	\square	10	+
39	System	and relies	Arakawa River	Niragami Bridge	Murata Town/Ogawara Town			33			36		1		68	1		38		32		101		1	47			222		0	\square	27	-
40		1	Shiroishi River	Shirahata Bridge	Shibata Town			32		+	61		1		60	1		32		31		68		+	52			12		31	+	12	+
41				Tsukinoki-ohashi Bridge	Kakuda City/Shibata Town					+			1	2,470 540		88		340	63			154	152	166	1	24		74	88	1	94	84	+
42		1	Abukuma River	Abukuma-ohashi Bridge(Iwanuma)	Iwanuma City/Watari Town			91		76	0		410	380	1,410	136	196	143	730 300	1,410	243	247	500	750	1	231 650	181	490	27	5	91	338	318
43		1		Abukuma River Estuary (Watariohashi	Iwanuma City/Watari Town		1				+	+	1	103 249		104		102	91			187	49	85	1	41		2,450	20	-		580	+
~~		I		Bridge)	Contracting of the second s	Total	number	-	Detectio		-		L	.03 249	L	.04		102	~			107	~	- 03	<u> </u>	L		-,0	20		~		
						of si	unples	852	times	80-																							
						*1: Bla	nk cells i	are loca	tions where	samples	were n	ot collec	ted. The	result "Not de	rtectabl	le" is in	dicated a	as "0."															

(Miyagi Prefecture: river sediments) (No.1)

Table 4.3-4 Detection of radioactive cesium at respective locations (Miyagi Prefecture: river sediments) (No.2)

				Location									Ri	ver sedim	ents/Ra	dioactiv	re Cesiur	n (Cs-134 + C	s-137)/C	oncentr	ation(B	q/kg)(•1)							Average of			
No.		Water	r area	Location	Municipality	4	5	6	7	8	FY20		11	12	1 2	3	4	5	6	7	F 8	Y2015	10	11	12	1	2	3	Changes	FY2015 (*2)	No.	Coefficient of variation	Trends(*3)
1				Kinzan Bridge		-	103	0		71	ŕ	10	93	8	_		-	61			68	<i>,</i>	10	62		73	~	-	~~~~	66	1	0.42	/
2		Shishic	ori River	Namiita Bridge			300			150			231		65	1		164			178			138		127	+			152	2	0.96	<u></u>
3				Tateyama-ohashi Bridge			33			54			60	6	_			27			30			22		46		\		31	3	1.77	<u>`</u>
4		Okaw	a River	Kamiyama Bridge	Kesennuma City		269			-	460		288	7	6			34			62			38		35		1	1. M	42	4	1.02	<u>`</u>
5				Okawa River Estuary		-	0			0			0		0			0			0			0		0		- 1	n	0	5	4.18	~
6		Omose	River	Ozaki Bridge		_	158			158			185		82		_	242			273			266		111		-		223	6	1.39	~
2			Arima River	Unanda Bridge		-	225			152	-	-	145		31	-		156			146	-	-	149		45	-		h	124	7	0.83	~
			Kinryu River	Obata Bridge		-	271			250	-	-	304		84	+		188			119		-	125		103	-		À.	134	8	0.80	~
9			Kitakami River	Tome-ohashi Bridge (Tome)			119			106	-	-	158	1	_			60			27			31		33	-		Am	38	9	0.53	Ŵ
			Sanhasama River	Doman Bridge (Kurikoma Dam)	Kurihara City		40			33	-	-	26	2	_	-		20			27			19		22	-			22	10	1.19	~
10			Nihasama River	Kajiya Bridge	carried cay		124			54	-	-	98	9	_	-		71			44			38		26	-		<u>~</u>	45	10	1.02	~
12		Hasama		Hanayama Dam, inflow area			0			0		-	20	1	_		_				0			15		0	+		A	3.8	12	1.80	~
12	Kitakami	River Area	Hasama River	Hanayama Dam, intiow area Wakayanagi			62			55	-	-	61		2	+		59			36	-		36		26	+	- 1	i hann	3.8	12	1.32	/
13	River		rusama Kiver		Toma Chu		62 225			258	_	_	61 339		37	+	_	59 165	\vdash		_		_				+	-	~				/
14	System			Yamayoshida Bridge	Tome City		-			258 67	_	-	339		_	+	_	37	\vdash		89			191		288	-	-	<u>~~</u>	183	14	1.09	~
15			Eai River	Todoroki Bridge (Todoroki)	0.110		80			-	_	_	-	4	_			13			21	_	_	26		0	_	2	<u> </u>	21	15	1.65	/
16		Eai River		Shinborisaihon, entrance	Osaki City		16			18		-	11 229		0	_	_	13	\vdash		0 271	_		0		12	-	- 1	~~~~	6.3	16	1.69	/
17		Area	District, Osaki City	Shinborisaihon, entrance			324			398 232		_	229 95		65 01	-	_	153		-	271	_		138 336		191	_	- (1.	172	17	0.94	/
18			Dekigawa River	Kogota Bridge	Misato Town						_	_		_		-	_				157	_				78	_	_	~h~	181	18	0.77	1
19			Eai River	Oikawa Bridge (Tandai)	Wakuya Town /Ishinomaki Town		20			19		_	13	1		_	_	33						16		13	_	_	~~~~	20	19	1.12	
20			u-Kitakami River	Kadonowaki	Ishinomaki City		221			171			184	2	_	_	_		21		50	_		70		92	_	_	W.V	58	20	0.96	NM.
21		Narus	e River	Onobashi Bridge (Ono)	Higashi-Matsushima City		40			153		_	53	5	-	_	_	122			17	_		13		74	_	_	~_M	57	21	0.78	₩.
22		Sunaos	ihi River	Tagajozeki Weir	Tagajo City		122			123		_	132	1	_				82	-	110			100		42	_	-	M	84	22	1.22	>
23		Teizan-ur	um Canal	Nenbutsu Bridge	Shiogama City/Shichigahama		225			500		_	307	8	_	_	_		145	_	264	_		71		267	_	1	-	187	23	1.40	
24		(Kyu-sunac	oshi River)	Teizan Bridge	Town/Tagajo City		620			690		_	470		70				403		319			384		283		-		347	24	0.90	NVA.
25			Nanakita River	Nanakita Bridge			264			173			20	1	-				26		63			13		14		-	<u></u>	29	25	0.86	/
26	Nanakita River			Fukuda-ohashi Bridge	Sendai City		18			22			16		D				0		0			0		0		_ /	V	0	26	1.10	1
27	System		Umeda River	Fukuda Bridge			76			71			84	13	24				69		113			64		76)	w_	81	27	1.24	>
28			Nanakita River	Takasago Bridge			114			293			185	13	24				21		30			0		0			h	13	28	3.14	/
29			Natori River	Yuriage-ohashi Bridge	Sendai City /Natori City		61			26			23	1	8				17		14			11		0		- \	1	11	29	1.93	>
30	Natori River			Yakushi Bridge			28			52			27	4	3				26		35			29		21		-	Am	28	30	0.98	1
31	System		Masuda River	Koyama Bridge	Natori City		208			21		_	112	7	_				123		0			215		125			L	116	31	2.48	>
32				Bishamon Bridge			1,170			1,080			630	63	50				710		608			381		300		-	<u>~~</u>	500	32	0.64	/
33				Hadeniwa Bridge	Marumori Town	153	236	312	280	363	272	157		165 23	51 15	5	176	144	199	137	238	660	113		294	177	143		hand	228	33	0.59	$\overline{}$
34			Abukuma River	Marumori Bridge	Marumori Town	380	420	930	520	470	890	262		364 3	73 31	8	800	130	384	27	84	42	69		87	113	73	1	Amer	181	34	1.16	NVV.
35				Higashine Bridge	Kakuda City	122		91		98		46		98 10	08		83		146		60		55		87	58			has	82	35	0.59	/
36			Shiroishi River	Before the confluence with Kawaragosawa River (Sunaoshi Bridge)	Shiroishi City	212				45			46	7	1		61			97				67		198		1		106	36	1.62	1
37			Saikawa River	Etsubo Bridge	Shiroishi City	225				188			137	1	53		136			80				89		102		~	m	102	37	0.61	1
38	Abukuma River	Shiroishi River Aares	a Matsukawa River	Miya-ohashi Bridge	Zao Town	39				13			15	1	4		28			19				15		11			m	18	38	0.80	1
39	System		Arakawa River	Niragami Bridge	Murata Town/Ogawara Town		178			26			26	1	4			16			12			15		17		_	m_	15	39	1.18	NW•
40			Shiroishi River	Shirahata Bridge	Shibata Town		19			20			16	3	7			48			31			0		14			~~~~	23	40	0.60	/
41				Tsukinoki-ohashi Bridge	Kakuda City/Shibata Town	123		810		463		137		145 14	43			214	105		149		261		273	76			han	180	41	1.68	/
42			Abukuma River	Abukuma-ohashi Bridge(Iwanuma)	Iwanuma City/Watari Town	240	101	1,620	82	197	200	77		123 1	11 37			0 1,860	85	151	53	10	54		17	64	134		Mull	243	42	1.23	Ŵ
43				Abukuma River Estuary (Watariohashi Bridge)	Iwanuma City/Watari Town	237		60		70	1	,440		65 9	8			75	71		60		103		980	424		Τ	h	286	43	1.73	λŴ
				·		*1: Bla	nk cells	are locat	ions wh	here sat	nples we	re not o	ollected	. The resi	ult "Not	detectab	e" is indi	cated as "0."						А	в	с	D	Е		104	Average		
						*2: Ari	hmetic .	Average	calcul	ated by	assumin _t	ND=0	; Color	codes sho	ow categ	ories (se	e the righ	t).												·		•	
						3: Res	ults of t	the analy	sis of tr	rends at	respecti	ve loca	tions usi	ng the me	thod exp	dained o	n 4.3(1) 2	2)	~	Decreasi	ing 🚽		Increasi	w ·	~~ I	inchange	. /	we va	arying				

3) Fukushima Prefecture

(i) Hamadori

In Hamadori, Fukushima Prefecture, surveys were conducted 23 to 45 times from September 2011 to February 2016 for river sediment samples collected at 53 locations.

Regarding concentration levels of detected values, 11 locations were categorized into Category A, nine locations into Category B, six locations into Category C, 19 locations into Category D, and eight locations into Category E (see Table 4.3-5 and Table 4.3-6).

Concentration levels were generally decreasing at 47 locations, were unchanged at two locations, and varying at four locations.

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	11	No.12, No.13, No.14, No.20, No.21, No.23, No.24, No.25, No.27, No.30, No.31
В	Upper 5 to 10 percentile	9	No.3, No.7, No.8, No.9, No.10, No.11, No.17, No.26, No.29
С	Upper 10 to 25 percentile	6	No.2, No.4, No.6, No.15, No.32, No.36
D	Upper 25 to 50 percentile	19	No.1, No.5, No.18, No.19, No.22, No.28, No.33, No.35, No.37, No.38, No.39, No.41, No.44, No.45, No.47, No.48, No.50, No.52, No.53
Е	Upper 50 to 100 percentile(lower 50%)	8	No.16, No.34, No.40, No.42, No.43, No.46, No.49, No.51

Table 4.3-5 Categorization of detected values at respective locations (Hamadori, Fukushima Prefecture: river sediments)

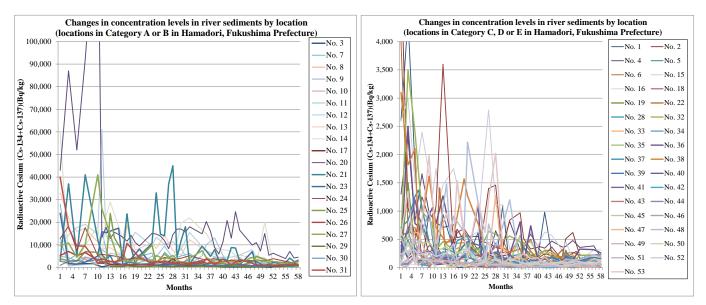


Figure 4.3-4 Changes in concentration levels over the years at respective locations (Hamadori, Fukushima Prefecture: river sediments)

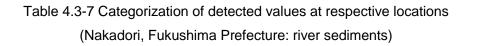
Table 4.3-6 Detection of radioactive cesium at respective locations (Hamadori, Fukushima Prefecture: river sediments) (No.1)

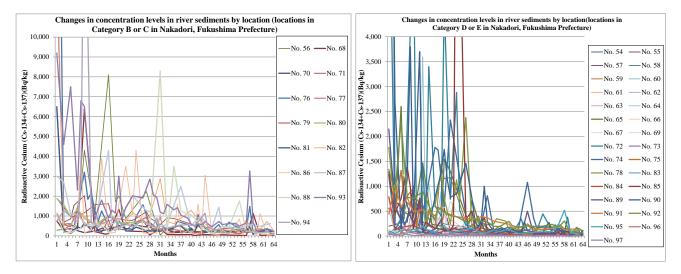
[Location		1											River	sedime	nts/Red	licactiv	e Cesi	um (Ce	-134+Cs-137)	/Conce	ntratio	ı(Ba/ka	(*1)											_
No. Water area	Location	Municipality	L		1	FY20	011					r –		Junel			FY2	012											FY2	013				_	
1 Jizogawa River	Hamahata Bridge	Shinchi Town	8	9 2,600	10	11 4,400	12	1 1,790	2	3 18	4	5 980	6		7 54	8 940	9	10	11 320	12 0	1	2	3	4	5 620	6 95	7	8 151	9	10 0		12 1,100	1	2 3 24	4
1 Jizogawa River	Hamahata Bridge Koizumi Bridge	sament rown	-	2,600		4,400		1,790 580		18 740	_	980 231			54 60	940 142			320 470	0 680	0 480			_	620 235	95 540		151	\vdash	0		261		24 273	-
2 Koizumi River	Kotzumi Bridge Hyakken Bridge	+	-	2,900	-	1,060		580 1,280	_	740 1,700	_	231			40				4/0		480			_	235	540 1,200		1,400		510	_	261 750		840	-
3	· · ·	Soma City	<u> </u>	2,900	-	1,880		1,280	_	1,700		1,570 970			:40 :00	920			1,350 760	1,070 530	1,330			_	1,490 550	1,200		1,040	\vdash	510 650		750 390	-+	840	-
4 Udagawa River 5	Horisaka Bridge	+	-	1,300 240	-	2,300 490		_	100	1,660						710					560 290	0		_				165 84		650 60		390 64	+		_
	Hyakken Bridge			-			_	155	155			109			55	143			84	23		0		_	100	70					_			65	_
6 Manogawa River	Ochiai Bridge	Minamisoma City		4,000		660		710		180		390			10	460			450	430	440				224	380		250		236		490		225	
7	Majima Bridge			28,000		3,400		5,800		3,400			1,820	,	,900	280			500	750	4,400			_	6,400	161		6,800		3,500	_	5,100		6,200	
8	Kusano	litate Village		3,200		1,290		1,800		3,700			1,090	.,.	800	770			1,580	2,670		5,700			630	1,870		1,010		960		510	_	400	_
9 Niida River	Komiya			4,900		4,400		2,800		4,700			3,300	7,9	900	5,400			4,300	2,900		4,800			3,400	1,370		3,300		2,280	1	1,810	2	2,050	
10	Kidouchi Bridge	1		11,200		2,600		1,570		4,200			3,800		2,600	2,800			2,520	2,800	1,850				3,500	2,500		3,040		760		1,560	3	3,600	
11	Sakekawa Bridge	ļ		13,000		610		1,140		1,230			1,530	3,300	3,400	6,300			5,300	3,700	1,070				4,900	4,700		9,500		4,100	٤	8,400		1,420	
12	Ishiwatado Bridge			9,700		14,400		17,600		19,100			14,700	61,000	14,100	11,900			8,700	9,300	15,600				9,500	13,400		10,300		11,300	٤	8,300	1	15,500	
13	Kaminouchi Bridge			33,000		22,000		16,000		17,200			11,300	8,000	8,600	8,700			5,200	18,400	7,700				10,900	8,400		14,300		7,400	4	5,500	1	12,300	
14 Ota River	Masuda Bridge	1		60,000		2,900		2,900		9,700			18,300	3,800	22,800	29,000			12,500	23,400	1,270				2,090	2,520		4,500		2,400	1	19,800	4	21,900	-
15	JR Tetsudo Bridge	Minamisoma City		2,600		3,000		1,510		2,400			1,280	1,750	1,210	1,460			1,750	1,470	510				630	1,460		2,790		1,110	1	1,110		327	
16	Maruyama Bridge	1		230	1	71		48		72		l	121	180	123	92			48	53	45				53	60		84		50		16		36	
17	Shimokawara Bridee	1											1.940		950	1.430			1.080	1,020	1.140				1.270	890		1.310		3,800	-	940		860	٦
17 18 Odaka River	Zencho Bridge	+	-	310	-	720		470		1,250		-	700		090	3,600		-	360	620	690			_	307	460		430	$\left \right $	3,800		325	_	840	_
18 Odaka Kiver		+	<u> </u>	-	-	720			_	1,250					-				-	620 42	690 17			_		-		430	$\left \right $				-+		-
	Hatsukara Bridge			173				260					108	410		78			18						48	19				71		52		20	_
20 Ukedo River	Murohara Bridge	Namie Town	L	43,000	-	87,000		52,000		92,000			165,000		17,800		15,600	14,600	13,400	11,600 14,200	11,000	9,500		_	15,100	14,800		11,900						18,000	_
21	Ukedo Bridge		<u> </u>	3,300	-	37,000		5,000		41,000			12,400	5,600	3,700	5,200	1,370		5,600	23,700 8,400	1,870	5,200		_	10,700	33,000	14,700	14,000	37,000	45,000			18,000	1,510	_
22 Furumichi River	Before the confluence with Takasegawa River(Kodoshimohira,Miyakoji Town)	Tamura City											950	162	1,410		80		165	176	640				231	220		182		171		316			
23 Takase River	Keio Bridge	Namie Town		24,000		1,650		1,460		2,400			5,000	15,800	15,400			17,400	1,370	1,830		8,100			770	860		1,140		1,370		510		520	
24	National Route 6, west	Futaba Town		12,800		18,300		7,400		17,600			5,300	5,	800			4,800	3,700	3,600	4,200				2,500	2,510		4,500		3,600	4	4,100	4	5,200	
Maeda River 25	Nakahama Bridge	Namie Town	1	3,900		2,900		2,700		7,000			6,700	2,900	1,310	23,900	13,100		6,800	2,260	2,310				9,900	2,040		6,000		2,740	1	2,380	2	2,060	
26	National Route 6, west			5,300	1	7,100		5,200		6,600		l	3,200	3,1				1,610	1,070	1,200	1,380				1,070	2,640		1,740		2,280		830	-	1,780	
Kumagawa River 27	Mikuma Bridee	Okuma Town	-	9,600		10,800		4,500		10,200			41,000		,000			2,900	3,500	2,460	3,700				2.850	5,300		3,700	\vdash	5,300		1.870		4.000	-
28	Nabekura Bridge			.,000				.,	_							330		310	270	470		570	242		350	235		239		276		1,870		205	-
29	Sakaigawa Bridee	Kawauchi Village	⊢	-	-				_			-				490		510	440	710 560	-	400		_	550	690		400		340	_	580	_	430	-
29 Tomioka River 30	National Route 6. west		-	930	-	2 800		3 200		2 400			3.600		150		2.530		1 300	2.330	-	400		_		2 580		2 170	\vdash	1 150	-	380	-	430	-
		Tomioka Town	-	,		-1000				-,	_		0,000						.,			-,		_	.,	-,		-,		.,		.,	-	.,	_
31	Kobama Bridge		-	40,000	-	17,600		9,500		9,400			1,940	-,	470		2,530		3,600	10,700		4,300			1,970	2,460		2,730		1,720		2,390		1,390	_
32 Idegawa River	Motogama Bridge Before the confluence with Kidogawa	Naraha Town	<u> </u>	530	-	3,500		2,400		990		<u> </u>	780	3.	20	460			310	340		410			310	370		640		590	_	470		560	_
33 Kawauchi River	Before the confluence with Kidogawa River(Futamata Bridge)	Kawauchi Village														181	290	83	194	142		149			177	224		154		217	_	170		148	
34	Nishiyama Bridge			111		690		139		99			198	٤	81		86		137	130		271			16	38		108		111		67		49	
35 Kidogawa River	Nagatoro Bridge	Naraha Town		400		530		970		670			320	1	21	178			236	280		217			259	390		110		58		117		94	
36	Kidokawa Bridge			200		2,500		780		680			1,060	7	'80	1,270			320	154		192			1,100	218		226		174		210		230	
37 Asami River	Boda Bridge	Hirono Town		710		830		1,260	1,370			450		2	40	230			153	200		183				93	380	128		187		138		169	
38 Ohisa River	Kageiso Bridge			3,100		1,820		2,100	450			1,620		7	10		430		560		1,570	1,270				610	260	235		370		360		273	
39 Kohisa River	Rengo Bridge			380		184		350	240			290		2	02		149		127		400	460				380	204	243		262		191		96	
40	Kasumida Bridge	Iwaki City		460		148		250	123			156		5	52		68		75	92		85				14	57	41		100		17		47	
41 Niida River	Matsuba Bridge	1		580		610		1,200	910			460		1	61		181		151	122		250				195	228	211		430		80		224	
42	Kitanouchi Bridge	Ono Town	1	66		76		206	61			29		1	55	280			172		0	400				31	219	12		42		21		0	
43 Natsui River	Kyudayu Bridge	1		80	1	440		117	400			0			59		116		149		22	14				42	13	0		14	_	36	\neg	10	٦
44	Rokujumai Bridge	1		43		58		210	96			66		3	50		47	-	72		63	72				99	94	65		91		59		45	-
45	Iwaanatsuri Bridge	1	-	620		380		450	430			450			90		370	-	206		330	276				79	164	47		175		80	+	85	-
45 Yoshima River 46	Before the confluence with Natsui River	1	F-	182	-	440		480	237			69			63		246		191	34	48					157	63	163		37	_	17		38	-
		+	-		-													-	191	.34					_	157							-+		_
47 Fujiwara River	Shima Bridge	l	L	64	-	157		630	610			102			26		55	13			46			_	38		96	144		1,280	_	100	_	78	_
48	Minato-ohashi Bridge	Iwaki City		530		239		520	450			1,000			14		1,480	580	910		630	2,220				790	139	770		369		730	1	1,200	
49 Samegawa River	Idosawa Bridge	1		0		30		161	36			238			34										68		278	41		148		48		45	
50	Samegawa Bridge			78		440		91	157			136			0		0		106		16	33			64		109	46		59		58		65	
51 Shitoki River	Komuro Bridge			74		121		122	300			149		1	03		265	78	208	48		96			40		59	52		41		48		41	
52 Binda River	Kobana Bridge	1	Ľ	237		300		310	226			270		1	98		259		420	137		330			134		113	450		132		83		161	
Binda River 53	Binda Bridge	1		570		1,350		66	260			1,980		4	20		960		540	1,540		156			1,180		620	1,210		2,020		349		117	
				number	1,537	Detec	tion	1,513																											٦
				imples nk cells	are locat	tim tions wh		iples we	re not «	collectes	I. The r	esult "	vot detes	ctable"	is indica	ted as "	o."																		
																																			_

Table 4.3-6 Detection of radioactive cesium at respective locations

(Hamadori, F	ukushima	Prefecture:	river	sediments)	(No.2)
--------------	----------	-------------	-------	------------	--------

		Location		1						Ris	er sedim	ents/Ra	lioactive	Cesiur	(Cs-13	4+0	s-137)/(Conce	entratio	on(Ra/k	e)(*1)								Average of	1		
No.	Water area	Location	Munic ipality			6	. 1	8 9	FY2014	11 12					5 6			8		FY20	10	- 1	11	12		2		Changes	FY2015 (*2)	No.	Coefficient of variation	Trends(#3)
1	lizogawa River	Hamahata Bridge	Shinchi Town	4	13	361		8 3	170	980	_	245	3	4	5 70	_		8	9		26		11	20		0	3	1	62	1	1.77	$\overline{}$
2	5	Koizumi Bridge			333	114		181	158	247		214			84 50	_	_	\$20			212		-	221		202		l.	325	2	1.57	<u> </u>
3	Koizumi River	Hyakken Bridge	1	-	970	500	_	560	209	206	_	194			37 30	1	1	189			77			1,840		684		hand	555	3	0.73	$\overline{}$
4		Horisaka Bridge	Soma City		308	390	_	590	382	344	_	470			54 37	_	_	180			357			385		185		1	358	4	0.72	<u> </u>
5	Udagawa River	Hyakken Bridge	1		83	46	1	149	24	28		60		1	7 11	6		64			47			72		141		Astur	86	5	0.91	<u> </u>
6		Ochiai Bridge			560	360	1	500	183	309		300		1	23 25	1	2	268		227	223	155	197	143	113	138			184	6	1.54	$\overline{}$
7	Manogawa River	Majima Bridge	Minamisoma City		2,140	740	3,	650	4,400	1,94	D	3,240		2,5	60 2,0	10	1,	840		86	63	67	103	169	67	84		La mar	705	7	1.52	
8		Kusano			530	420	1,	260	1,130	1,23	D	980		5	80 60	D	1,	170		940	1,010	720		810		467		M	787	8	0.89	
9		Komiya	litate Village		1,270	1,620	3,	.070	3,680	2,050	D	990		2,	10 1,76	50	2,	,610		430	266	368		362		750		mm	1,070	9	0.66	
10	Niida River	Kidouchi Bridge			1,320	1,270	4,	800	2,240	3,36	D	3,350		1,9	00 1,53	80	5	580		440	299	297		585		1,100		human	841	10	0.82	
11		Sakekawa Bridge	1		5,200	10,100	13	8,100	5,300	1,08	D	4,480		2	96 82	D	1,	,610		790	800	640		790		1,320		Linh	883	11	0.94	MÁ
12		Ishiwatado Bridge	1		9,300	7,700	4,	.300	4,600	4,60	D	5,500		7,	00 4,28	80	4,	,230		1,080	890	1,360		1,450		1,450		Am	2,830	12	1.03	1
13		Kaminouchi Bridge	1		8,400	7,400	5,	.900	3,150	2,86	D	5,500		4,3	00 4,13	70	3,	,220		1,280	2,590	1,850		1,830		1,830		Len	2,621	13	0.80	1
14	Dta River	Masuda Bridge	1		16,500	15,000	8,	700	7,800	7,30	D	2,590		7	50 1,19	90	20),100		1,630	2,950	620		2,560		980		man	3,849	14	1.18	
15		JR Tetsudo Bridge	Minamisoma City		480	368		520	381	630		570		3	07 45	5	1	167		254	170	218		314		312		m	275	15	0.81	$\overline{}$
16		Maruyama Bridge	1		27	68		46	53	21		16		2	9 23			0		75	107	63		39		12		um	44	16	0.77	
17		Shimokawara Bridge	1		900	1,020	1	760	830	790		970		5	30 99	D	1		503	540	436	511		740		750		1	631	17	0.63	
18	Ddaka River	Zencho Bridge	1	F	970	510		329	358	220		365	+	-	35 18	5	+		286	167	166	158		138		169		A	176	18	1.16	<u> </u>
19		Hatsukara Bridge	1	F	65	443	_	289	133	21		0			1 30	_		0		23	36	31		13		33		1	59	19	2.00	<u> </u>
20		Murohara Bridge		1	14,900		_	.800 6,0		20,800 13,00	0 24,700	16,500	+		00 11,0	_	_	5,000	5,400		6,300		3,910	7,100	4,220	4,530		A	7,466	20	1.35	×.
21	Ukedo River	Ukedo Bridge	Namie Town		9,400	7,300 4	,900 7.	900 3,1	90 3,690	3,020 8,800	0 8,600	2,810			30 2,60	50 1,3	520 7	730	1,570		2,230		2,210	4,160	2,660	2,530		Muh-	2,330	21	1.17	<u> </u>
22	Furumichi River	Before the confluence with Takasegawa River(Kodoshimohira Miyakoji Town)	Tamura City		111	175	_	95	54	80		103		3	17 16		_	199			123		-	32		69		1.	152	22	1.22	/
23	Takase River	River(Kodoshimohira,Miyakoji Town) Kein Bridge	Namie Town		1 370	1.100		800	660	1.110	n	1 140			00 1 10	10	7	790	_		1.260	_	-	550		800		Man 1	1.917	23	1.52	<u> </u>
24		National Route 6, west	Futaba Town		3,690	3,350		860	2,510	3,210	- -	2,560		2.	80 3,38	20		,890	_		3,900	-	-	2,320		1,460		1	2,805	24	0.83	
24	Maeda River	Nakahama Bridge	Namie Town	-	1,360	3,330	_	560	1.830	1,110	-	690			30 5,00	_	_	,890	_		2,550			1,750		3,140		An	3,068	24	1.07	~
25		National Route 6. west	Namie 1 own	-	3.010	1.880	-	.560	2,360	3,120	-	1.230			30 5,00	_		.000	_		740			960		3,140 910		-1u	828	25	0.77	7
26	Kumagawa River		Okuma Town	-	3,010	4 400	_	400	2,360	3,120	-	1,230			50 58 180 3 70	_	1,	,000	2 230		1 1 50			960		910 2.600		~~~	2.522	26	1.35	>
27		Mikuma Bridge		-	230	339	-	400	2,340	2,69		1,960		.,			-		2,230		.,			1,470		2,600		Ann	2,522			~
28		Nabekura Bridge	Kawauchi Village	-	230 600	3 <i>3</i> 9 500	_	570	430	610	_	366		1	98 21 99 46	_	_	184 393	_		102 700		_	618		690		Mm	560	28 29	0.48	~
30	Tomioka River	Sakaigawa Bridge					-	_						_	_	-	3	593			2 200							Markar				$\sim \sim \sim$
		National Route 6, west	Tomioka Town		2,450	970		990	1,020	1,43		980		8		_		_	660					471		3,370		MARAN	1,362	30	0.50	₩.
31		Kobama Bridge			2,020	3,870	_	220	3,660	1,18	-	3,520			80 76	_		_	1,190		830			1,330		1,350		~	1,223	31	1.60	~
32	ldegawa River	Motogama Bridge Before the confluence with Kidogawa	Naraha Town	_	460	168	_	228	244	297	-	197			59 18	-	_	94			218			222		204			183	32	1.29	~
	Kawauchi River	River(Futamata Bridge)	Kawauchi Village		182	137	_	208	126	171		235			52 21	_	2	231			39			68		59		hund	129	33	0.37	~~~*
34		Nishiyama Bridge			113	78	_	82	100	64		62			5 42	_	_	60			50			24		57		hr	43	34	1.14	\searrow
35	Kidogawa River	Nagatoro Bridge	Naraha Town	_	570	410	_	160	249	252	-	267		-	6 84	-	_	57			109			150		155		m	109	35	0.76	\searrow
36		Kidokawa Bridge		1	810	74	_	740	150	167		83		-	8 19	_	_	132			327			317		259		min_	216	36	1.10	>
37	Asami River	Boda Bridge	Hirono Town	1	77	124	_	87	95	93		93			27	_		139			119			134		109		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	162	37	1.15	>
	Dhisa River	Kageiso Bridge	4	⊢	321	229		286	159	92		182	_		94 25		_	84	_		93			62		58	-	W	125	38	1.19	/
39	Kohisa River	Rengo Bridge	Iwaki City	⊢	112	98		113	130	144		191	_		2 21	~		112	_		126			183		158	<u> </u>	m	147	39	0.50	/
40	Niida River	Kasumida Bridge	4	⊢	0	0	_	12	29	71	_	56			6 20	_	_	26			28			24		19	-	M	22	40	1.26	/
41		Matsuba Bridge	Ono Town	┢	61 10	54 0	_	71	58	41		66 0	-		1 11 1 12	_	_	72	_		56 22	_	_	82 17		46 17	-	· alu	72	41 42	1.16	/
42	Matani Di	Kitanouchi Bridge	Ono Town	┢	10			23	29	42	+	0 20	-		1 12 5 14	_	_	0	_		22 21	_	_	17			-	ML	15	42	1.47	/
43	Natsui River	Kyudayu Bridge Rokujumai Bridge	4	⊢	12 21	11 26		23	12	42		20 109	-		5 14)8 15	_	_	17 63	_		21	_	_	14 223		20 235	-	Mar N	17	43	0.75	
44		Rokujumai Bridge Iwaanatsuri Bridge	4	⊢	21 254	26 53	_	63	56	182	_	109 49	-		08 15 4 66	_	_	63 28			152 69	_	_	223		235 78	-		156 67	44	0.75	144
	Yoshima River		4	⊢		_	_	_	-		+		-	_	_	-	_	_	_			_	_				-	n norman				/
46		Before the confluence with Natsui River	4	⊢	0	50	_	15	20	16		18			7 26	_	_	21			25			26		113		m	40	46	1.23	>
47	Fujiwara River	Shima Bridge	4	⊢	37	22	_	97	102	187		92			2 47	_	_	24			46			148		106	<u> </u>	~_l	66	47	1.62	/VV\
48		Minato-ohashi Bridge	Iwaki City	L	41	159		54	83	20		53		9	6 15	1	1	137			142			219		188		when_	156	48	1.04	>
49	Samegawa River	Idosawa Bridge	1	L	19	0	_	26	18	70		36			2 11		_	24			13			11		12		Mh	14	49	1.22	\searrow
50	5	Samegawa Bridge	1	L	48	71	_	48	68	55		91			8 58	_	_	97			42			87		40		hum	67	50	0.99	\searrow
_	Shitoki River	Komuro Bridge	1	L	14	11		12	25	21		20			5 10	~	_	36			65			22		75		Man	55	51	0.93	\searrow
52	Binda River	Kobana Bridge	4	L	98	81		77	99	100		60		2		_	_	57			85			79		98		~M_	63	52	0.70	\searrow
53		Binda Bridge		<u> </u>	201	246		162	174	63		64		1	12 85		1	120			105			45		145		MM.	102	53	1.13	\searrow
				*1: Bk	nk cells	are locati	ons whe	re sampk	s were not	collected. Th	e result "	Not detec	table" is	indicate	l as "0."								Α	в	с	D	Е		807	Average		1
										0; Color code																						1
				*3: Re	sults of t	the analys	is of tre	nds at res	pective loc	ations using t	he metho	d explaine	d on 4.3	(1)2)		7	⇒ De	screas	ing -	<i>→</i> 1	ncreasin	g ·		unchan	ged	~~~~	Varying					


(ii) Nakadori


In Nakadori, Fukushima Prefecture, surveys were conducted 27 to 47 times from September 2011 to February 2016 for river sediment samples collected at 44 locations.

Regarding concentration levels of detected values, one location was categorized into Category B, 14 locations into Category C, nine locations into Category D, and 20 locations into Category E (see Table 4.3-7 and Table 4.3-8).

Concentration levels were generally decreasing at 41 locations and were vary at three locations.

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	1	No.93
С	Upper 10 to 25 percentile	14	No.56、No.68、No.70、No.71、No.76、No.77、No.79、No.80、No.81、No.82、 No.86、No.87、No.88、No.94
D	Upper 25 to 50 percentile	9	No.59, No.65, No.72, No.74, No.78, No.90, No.91, No.92, No.95
Е	Upper 50 to 100 percentile(lower 50%)	20	No.54、No.55、No.57、No.58、No.60、No.61、No.62、No.63、No.64、No.66、 No.67、No.69、No.73、No.75、No.83、No.84、No.85、No.89、No.96、No.97

(*) Scales of the vertical axes differ in the left and right figures

Figure 4.3-5 Changes in concentration levels over the years at respective locations (Nakadori, Fukushima Prefecture: river sediments)

Table 4.3-8 Detection of radioactive cesium at respective locations (Nakadori, Fukushima Prefecture: river sediments) (No.1)

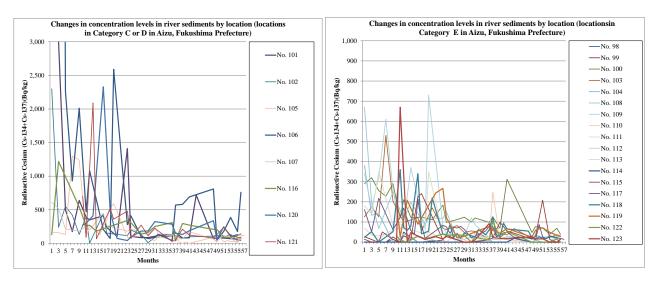
		Location													River :	edime	nts/R:	adioactive Ce	sium (O	Cs-134+Cs-	137)/Concenti	ration(Bq/kg)	(*1)											
No	Water area	Location	Municipality				FY2011											FY2012											FY2013					
140.	water area			8	9	10	11 E	-	2	3	4	5	6	7	8		9	10	11	12	1	2	3		5	6	7	8	9	10	_	12	_	2 3
54	Abukuma River	Habuto Bridge	Nishigo Village		66		81	155		96		262		44				31	49	144	89				51	135		80		14		53	_	25
55		Tamachi-ohashi Bridge	Shirakawa City		200		228	270		280		1,010 46	330	184	56	107		60	85	560	125	180	203	77		113 57	51	46	59	39	3	33 :	53	22
56	Yanta River	Before the confluence with Abukuma River	,		290		330	530		490		4,300		1,050				8,100	1,720	2,010	860			2,	,230	1,630		43		380	2	12	4	234
57	Yashiro River	Yashirogawa Bridge	Tanagura Town		77		108	218	150			870		290				129	300	246				1	170	132		159		135		56		71
58	Kitasu River	Yanagi Bridge	Hirata Village		27		165	66		70		64		65				14	57	19	72				37	40		29		40		11		21
59	Imade River	Nekonaki Bridge			45		47	0		55		680		610				105	1,450	1,150	1,180			1	116	248		42		179		15	1	120
60	Yashiro River	Oji Bridge	Ishikawa Town		35		36	51		52		145		50				55	98	100	98				71	80		46		127		54		54
61		Kawanome Bridge	Tamakawa Village		71		34	37		77		330 105	213	84	53	73		180	450	49	120 130	138		108		57 63	40	31	38	50	1	72 6	59	69
62	Abukuma River	Emochi Bridge	vmage		0		124	390		24		380		193	33()			350	72	48				68	19		13		35		13		17
63		Sukagawa City water	Sukagawa City		72		97	138		126		182		77				83	168	94	108				109	175		113		47		53		51
64	Shakado River	intake point Before the confluence			550		89	124		129		540 41	600	3,600	93	,050		117	890	440	96 85	75		282		107 80	88	51	59	58		_	_	67
65	Sasahara River	with Abukuma River Shinbashi Bridge		\vdash	1.240		260	2.60	480			340 41	000	1 470	10	_	237		200	1 540	1.300		\vdash	_	240	730		102	57	106		14	_	199
	Yatagawa River	Yatagawa Bridge	Koriyama City	\vdash	1,240		200	184	160			236		1,470		-	237 99		81	400	340				85	57		49		66		14 39		61
67	i undgawa Kiver	Funehiki Bridge	Tamura City	\vdash	27	\vdash	119	87	173			250	-	52		-	99 96		133	120	239		\vdash	_	85 132	98		35		69		10	_	75
67	Otakine River	Before the confluence	i antura City	\vdash	750	\vdash	270	8/	1/3	360		6,400		215		-	96 89	108	155	1,340	239		$\left \right $	_	213	98 49		35 370		73		56	_	64
68 69		with Abukuma River Before the confluence	-		750	\vdash	960	_) 1,190	200		6,400	-	215 164		_	89	108		1,340	700		+	_	106	49 96		370 60		50		56	_	87
	Ouse River	with Babagawa River						-	-			183	-			_		209		420	610		$\left \right $	_	-	96 660		_				_	_	
70	Ouse River	Makunouchi Bridge Before the confluence	Koriyama City		1,060		330	360	-					240		_	440							-	450	- 1		241	-	298	-	74	_	178
71		with Abukuma River	-		13,500		690	860	-			2,020 640	690	610		189	_	820 330		360	290 420	550		800	_	241 390	232	224	295	129		_	_	187
72	Abukuma River	Akutsu Bridge After the confluence with	-		7,800		116	350	-			6,000 148	169	1,410	269	3,400		610	400	4,700	740	2,880 520		220	-	197 280	400	233	251	113		_	_	103
73		Ishimuro River			1,210		184	99	122			96		74				50 116		158	63				83	85		42		21		40	_	39
	Gohyaku River	Kamisekishita Bridge Before the confluence	Motomiya City	-	22,000		700	590	230			590		450				1,780 1,730		590	2,330			_	67	130		222		810		34	_	116
75		with Abukuma River			560		450	1,320				960 201	580	89		470		330 114		167	137	150		88	_	157 310	179	59	101	49		_	_	97
	Abukuma River Kuchibuto	Takada Bridge		-	30,000		610	600	440			3,200 1,840	2,160	-,	720	,260		490	268	770	250	268 970		1,570	-	540 285	360	1,020	256	380			30	_
77	River	Kuchibutogawa Bridge	Nihonmatsu City		1,880		1,440	990		950		1,160		1,570				1,620 920			790	780		1,	,210	900		570		900		80		_
78	Utsushi River	Osegawa Bridge			1,780		550	330		670	610	860	640	580	234	530		610	1,260	750	250	1,130 720	1	2,380		191 144	360	154	212	229	2	44 3	50	
79	Mizuhara River	Getouchi Bridge			6,400		570	460		1,410		520		410				980	800	450		620		9	930	430		229		302	3	21		
80	Megami River	Tsurumaki Bridge			1,870		1,570	950		1,340		880		550				1,010	900	650		690		6	580	540		330		410	4	40	1	510
81	Abukuma River	Horai Bridge			6,500		176	171		460	370	660	290	500	242	255		340	440	530	370	330 440		320	1	235 250	259	242	440	318	3	90 5	20 4	490
82	Nigori River	Before the confluence with Omori River			1,160		650	530		1,090		980		590				610	410	300		1,180		e	550	1,030		2,880		740	6	10		
83	Arakawa River	Hinokura Bridge			1,160		270	167		114		139		77	79				45	42		22			61	77		72		22	3	29		38
84	Sukawa River	Sukawa Bridge	Fukushima City		790		137	173		199		216		125				82	74	132		84			87	119		87		44	-	99		
85	Arakawa River	Before the confluence			1,290		460	750	L	1,380	990	142	760	119	280	237		161	145	117	119 220	9,500		340		500 135	85	200	380	122	1	43 1	12	
86	Matsukawa River	with Abukuma River			15,200		400	280		690	4,000	144	330	175	920	8,900		145	173	1,560	3,500	1,070 4,300		149		119 152	137	1,100	277	129	1	37 1,	580 1	105
87	Hattanda River	Hattanda Bridge			3,000		2,700	1,10)	1,090		620		520				4,300 610		750		2,010		1,	,260	1,220		470		570	1,	560	2	,480
88		Totsuna Bridge			1,040		186	167	260					630		Τ	400	170		430		620		1	300	510		8,300		176	3,	500	1,	,250
89	Surikami River	Before the confluence with Abukuma River]		2,150		630	310	830		410	250	640	92	50	86		140	330	96	110 163	131		154		108 157	179	300	124	76		56 .	50	63
90	Abukuma River	Taisho Bridge	Date City		14,200		2,700	153	1	1,160	3,800	410	3,700	73	172	219		770	1,280	1,740 1,130	780	850		,460		750 285	193	297	1,000	280		98 1	23	152
91		Tatenokoshi Bridge	Kawamata Town		440		1,030	590	1	770		490		530				410	590	480		390		_	350	319		390		370		00		+
92	Hirose River	Jizogawara Bridge			1,340		870	2,30)	780		760		890				330 580		480	410	390		:	257	370		296		289	1	97		193
93	Oguni River	Before the confluence	Date City		9,200		4,600	7,50)	2,300	6,800	6,500	2,000	820	1,390	,800		890 1,290	1,150	3,000 880	1,430	2,010		.910	2	,860 2,070	1,930	1,190	1,110	1,590	1.	310 1.	420 1.	,040
94	Hirose River	with Hirose River Before the confluence		\vdash	740		1,280	980	1	710	2,700	20,000	650	650	430	640		720	890	300 590	610	440		790		520 540	910	278	470	360			10 5	550
95	Kurokawa River	with Abukuma River Tochigisakai	Shirakawa City		105		50	114	\vdash	133		82		194	138	_		73		213	56				143	153		65		64		27	_	89
96		Matsuoka Bridee	Tanagura Town	\vdash	39	\vdash	23	48	150			63	-	31	42	_			12	39	43		\vdash	_	11	55		40		12		12	_	18
96 97	Kujigawa River	Takachihara Bridge	Yamatsuri Town		63		14	48	44			13		14	42				12	18	43				27	13		40		12		12	_	18
71		succentinate prioge	a antiatsuri Town	Total m	_		14 Detection					15		14	24				10	10	0				~'	15		14		10		~		
l				of san	nples	1,494	times	1,47	2																									
1				*1: Blan	nk cells	are loca	tions wher	e sample	s were i	not colle	ected. T	'he result "No	t detect	table" is	indicate	ed as "I	0.**																	

Table 4.3-8 Detection of radioactive cesium at respective locations

(Nakadori, Fukushima Prefecture: river sediments) (No.2)

		Location		1							R	iver se	diments/Radio	active	Cesiun	n (Cs-12	54+Cs-137)/C	oncent	ration(Bq/kg)((*1)											
			March 1 and Para						FY2	014											FY2015	5						<i>C</i>	Average of FY2015	No.	Coefficient of	Trends(*3)
INO.	Water area	Location	Municipality	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	Changes	(*2)		variation	
54	Abukuma River	Habuto Bridge	Nishigo Village		36	28		17		23		33	52				29	73		14		22		25	19			Arm	30	54	0.89	>
55		Tamachi-ohashi Bridge	Shirakawa City	40	47	17	54	30	53	24		22	12 36			91	62	79	35	34	61	55		19	18	56		ham	51	55	1.47	\searrow
56	Yanta River	Before the confluence with Abukuma River	onin and with City		243	244		215		279		240	241				339	269		219		271		171	197			M	244	56	1.71	\searrow
57	Yashiro River	Yashirogawa Bridge	Tanagura Town		81	52		71		51		45	51				73	42		36		33		39	107			An	55	57	1.17	1
58	Kitasu River	Yanagi Bridge	Hirata Village		21	17		19		16		0	17				17	16		21		0		18	17			Lun	15	58	0.95	Ĺ
59	made River	Nekonaki Bridge			78	0		139		14		63	203				167	21		11		17		22	154			Am	65	59	1.59	/
60	Yashiro River	Oji Bridge	Ishikawa Town		16	24		24		22		23	78				94	31		31		22		33	13			m.	37	60	0.62	1
61		Kawanome Bridge	Tamakawa Village	15	57	78	18	49	24	58		33	64	58		44	17	24	36	25	22	19		34	19	20		M	26	61	1.08	/
62	Abukuma River	Emochi Bridge			39	12		10		11		12		27			14	12		15		16		32		12		M	17	62	1.51	
63		Sukagawa City water intake	Sukagawa City		37	58		28		11		27		138			59	52		24		72		33		40		AM. N.	47	63	0.59	
64	Shakado River	Before the confluence with		80	66	57	42	18	31	51		26	52	80		62	21	21	65	20	42	35		189	15	15		1	49	64	2.46	/
65	Sasahara River	Abukuma River Shinbashi Bridge		-	75	148		99		114		85	131				135	116		88		66	_	77	74			www	93	65	1.40	/
66	Yatagawa River	Yatagawa Bridge	Koriyama City		49	61		25		17		25	19				19	25		31		25		27	14			~^^	24	66	1.06	~
67		Funehiki Bridge	Tamura City		38	65		53		42		25		112			33	23		25		23	_	29		27	-	An	24	67	0.77	1
67	Otakine River	Punehiki Bridge Before the confluence with	, annia City	\vdash	38 69	65 21		53 64		42 60		25 51	60	112			33 24	22	-	25		28	_	29 40		40	-	I m		67	2.75	1
		Abukuma River Before the confluence with										_						_								-		<u> </u>	212			>
69		Babagawa River		\vdash	90	71		64		66		49	18				93	36		71		24		30		22		LA	46	69	1.47	~
70	Duse River	Makunouchi Bridge Before the confluence with	Koriyama City		390	206		139		237		202	264				210	183		203		270		224		151	<u> </u>	hm	207	70	0.62	<u> </u>
71		Abukuma River		165	263	194	208	186	272	126		180	154	199		191	274	229	430	259	117	194		241	106	102		h	214	71	2.94	/
72	Abukuma River	Akutsu Bridge		101	145	177	146		344 136	114		179	107	444			116 228	78	195	97	150	25		169	138	105		Jun	130	72	2.12	/
73		After the confluence with Ishimuro River			24	38		24		32		33	28				22	29		18		21		20	42				25	73	2.21	/
74	Gohyaku River	Kamisekishita Bridge	Motomiva City		181	134		124		1,080		362	174				186	146		18		107		79	73			L	102	74	3.27	/
75		Before the confluence with Abukuma River	motonnya cuy	58	102	86	91	129	19	48		25	36	30		22	59	101	36	55	67	36		18	29	51		Mr	47	75	1.41	\searrow
76	Abukuma River	Takada Bridge		570	305	229	1,070		387 305	250		570	264	690		480	355	364	1,480	99	332	230		337	315	211			420	76	3.34	1
77	Kuchibuto River	Kuchibutogawa Bridge	Nihonmatsu City		590	470		490		365		283	363				431	158		209		236		199	143			v.	229	77	0.64	
78	Utsushi River	Osegaw a Bridge		300	118	179	134		132 149	246		130	162	122		268	164	228	207	142	156	102		105	144	76		When.	159	78	1.09	
79	Mizuhara River	Getouchi Bridge			169	141		171		268		165		187			106	224		246		167		187		165			183	79	1.89	
80	Megami River	Tsurumaki Bridge			233	317		600		169		200		238			222	204		307		360		259		249		M	267	80	0.73	/
81	- Abukuma River	Horai Bridge		198	341	219	600	310	185	220		278	166	216			256 176	305	442	73	221	146		365	232	173			239	81	2.05	/
82	Nigori River	Before the confluence with			1,290	1.050		720		370		299	322				228	810		208		322	_	720		251		h	423	82	0.73	NM.
	Arakawa River	Omori River Hinokura Bridge			24	15		16		17		23	18				23	16		15		19		13		13		1	17	83	2.31	~
84	Sukawa River	Sukawa Bridge	Fukushima City		33	38		31		75		60	40				40	74		13		22	_	25		25		~	33	84	1.35	/
84		_	a akusimidi City	96	33	38	71	31	71	66		60		61			40 62 51	67	38	87	99	30	_	25 79	35	34	-	~~~~~	58	84		/
	Arakawa River	Before the confluence with Abukuma River							76				67															~_A			3.19	/
86	Matsukawa River			257	167	305	1,590	71	3,060	98		25	287	75			850 34	720	259	183	16	1,120	_	39	31	84	-	unun	334	86	2.23	>
87	Hattanda River	Hattanda Bridge			510	700		910		420		1,440	490				378	510		569		483		580	620			Mr	523	87	0.84	>
88	Surikami River	Totsuna Bridge Before the confluence with			1,050	880		440		94		381		450			1,760	229		206		125	_	158		169		h	441	88	1.86	MA.
89		Before the confluence with Abukuma River		112	52	68	99	58	33	500		44	33	44			64 35	88	117	35	21	29		39	74	38		human	54	89	1.71	>
90	Abukuma River	Taisho Bridge	Date City	135	78	132	100		95 287	110		77	85	71		276	39	148	148	55	380	49		26	39	112		Lee	127	90	2.51	/
91	Hirose River	Tatenokoshi Bridge	Kawamata Town		241	165		168		213		125	130				152	200		129		143		137	135			Aur	149	91	0.64	/
92	mose Kiver	Jizogawara Bridge			297	211		177		207		196		200			237	175		304		59		81		61		1	153	92	1.04	\searrow
93	Oguni River	Before the confluence with Hirose River	Date City	890	580	520	610	560	730	450		730	570	620		630	490	650	3,270	680	251	285		368	288	216		Man	713	93	1.13	\searrow
94	Hirose River	Before the confluence with Abukuma River		560	530	530	710		1,140 246	254		344	153	152		590	394	272	186	258	193	158		210	164	67	1	J., .	249	94	2.97	\searrow
95	Kurokawa River	Tochigisakai	Shirakawa City		138	109		52		71		78	82				92	217		522		63		46	42		1	A second	164	95	0.79	M
96		Matsuoka Bridge	Tanagura Town		0	13		12		22		0	14				0	16		0		0		19	12			ha	7.8	96	1.13	
97	Kujigawa River	Takachihara Bridge	Yamatsuri Town		11	0		13		11		0	0				11	0		10		0		0	0			has	3.5	97	1.06	
				81.01	-		tions		nnler ware e		d 7%		Not detectable"	السواري	stad or					<u> </u>	L	A	в	c	D	Е	-	- Vinne	152			*
																J.						~	Б	C	D	E	I		152	Average	ł	
													ategories (see)																			
				3: Res	sults of	the anal	ysis of t	rends at	respective loc	ations u	sing the	method	l explained on 4	.3(1)2)				ecreasin	ig -	→ In	ic reas in	g ~	~ → U	inc hang	ed	~~	Varying					

(iii) Aizu


In Aizu, Fukushima Prefecture, surveys were conducted 19 to 41 times from September 2011 to February 2016 for river sediment samples collected at 26 locations.

Regarding concentration levels of detected values, one location was categorized into Category C, seven locations into Category D, and 18 locations into Category E (see Table 4.3-9 and Table 4.3-10).

Concentration levels were generally decreasing at 21 locations, were unchanged at one location and fluctuating at four locations.

Table 4.3-9 Categorization of detected values at respective locations (Aizu, Fukushima Prefecture: river sediments)

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	1	No.106
D	Upper 25 to 50 percentile	7	No.101, No.102, No.105, No.107, No.116, No.120, No.121
Е	Upper 50 to 100 percentile(lower 50%)	18	No.98、No.99、No.100、No.103、No.104、No.108、No.109、No.110、No.111、 No.112、No.113、No.114、No.115、No.117、No.118、No.119、No.122、No.123

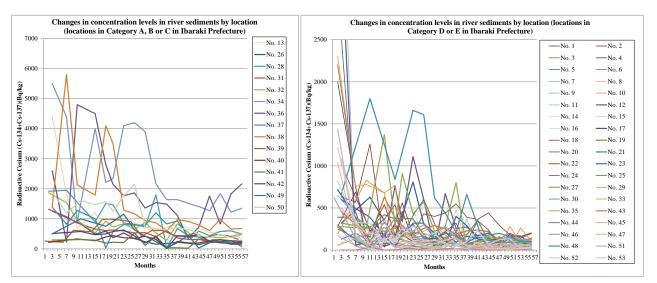
(*) Scales of the vertical axes differ in the left and right figures.

Figure 4.3-6 Changes in concentration levels over the years at respective locations (Aizu, Fukushima Prefecture: river sediments)

Table 4.3-10 Detection of radioactive cesium at respective locations (Aizu, Fukushima Prefecture: river sediments)

		Location												Rive	r sedime	nts/Radi	ioactive C	Cesium (Cs-134	1+Cs-1	137)/Co	nceptr	ation(Bq/ko)/	*1)										
No.	Water area	Location	Municipality		1		FY20										FY2012										1	_	FY2013	_					
98			Minamiaizu	8	9	10	11 0	12	1	2 3	_	4 5	6	7	8 50	9	10	0	12		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
98 99	Agano River	Tajima Bridge Okawa Bridge	Town		27		13		0	(26	-	0	0			0	0						10	0		0		0		0			
100		Takimi Bridge			290		320		256	22	_	290		120	211		123	0	124			111			184	98		112		124		100	120		
101	Yukawa River	Shinyukawa Bridge	Aizuwakamatsu City		8,700		3,000		500	17	-	640	-	390	350			410	236			104	_		1,410	105		84		87		106	117		
102		Before the confluence with Agano River			2,300		240		550	42	20	132		400	0			440	153						114	199		132		10		89			
103	Miyakawa River	Saikuna Bridge			126		175		126	53	10	203		133	99			122	55			170			69	62		82		48		56	53		
104	Agano River	Miyako Bridge	Aizubange Town		380		134		142			0		17	42			0	0			11			0	0		0		0		0	0		
105	Nippashi River	Minami-ohashi Bridge	Kitakata City		167		158		130	1,3	00	1,24	0	101	270	1	73 132	263	350	530	590	480			88	92	108 105	103	87	70		41	109	85	
106	Kyu-yukawa River	Awanomiya Bridge	Yugawa Village		13,000		25,000	:	2,260	93	0	2,01	-	470	1,080			207		72	2,590				279	410		103		72		88	139		
107	Kyu-miyakawa River	Josuke Bridge	Aizubange Town		610		520		216			18	-	257	202			450	265						181	219		161		131		236	142		
108	Fatsuki River	Ohashi			670		199		67			250	-	157	112	_	198	-		86	121				118	152		17		14		25	26		
109		Shimokawara Bridge	Kitakata City		340		169		320	61	0	260	-	66	87		370			67	730				80	40		39		28		121	87		
110	Nigori River	Nigorigawa Bridge Yamazaki Bridge			69 180		36 139	_	30 350		-	57	-	71 90	28 82		61	24		16 40	51 350				41	0 43		47		10 0		0	48	_	
112		Aoyagi Bridge	Minamiaizu		0		0		0	(,	0		0	0		01	0	0	40	350	0			0	0		0		0		0		_	
112	nagawa River	Kurosawa Bridge	Town Tadami Town		0		0		10	4	_	0	+	0	0	+		0			0	-	_		0	0		0		0		0			
114		Nishitani Bridge	Kaneyama Town		0		0		┥		+	0	1	0	0	+	0	+		0	0				0	0		0		0		0	0		\square
115	Fadami River	Fuji Bridge	Aizubange Town		14		0		0	51	╈	13	1	0	32	+	12	226	241	1					12	36		11		0		0			
116	Agano River	Shingo Dam	Kitakata City		129		1,220				╈	540		260	270		183			1					340	309		137		163		251			
117	Sukawa River	Sukawano			161		52		218			61		123	169		58 39	213	86	1	18				83	76	44 73	70	78	63		21			
_	Nagase River	Kogane Bridge			24		52		0		T	52		360	71	59	78	340	42	47	55	220			40	35	87 23	42	19	45		32	24	62	
119	Fakahashi River	Shinbashi Bridge	Inawashiro Town										190	26		208		89					244		267	122		23		29					
-	Koguro River	Umeno Bridge											270	300		410		2,330		-	80	73			42	94		183		184		324			
121	Hishinuma River	Sekido District											700	90	1	2,090	67			520	360				480	74		272		115		223			
122	Funatsu River Haragawa	Funatsu Bridge	Koriyama City Aizuwakamatsu									_	32	10		0		31		17	21				40	33		36		34		0	24		
123	River	Estuary, front	City	Total r			Dete						0	670		0	47			1	13		27		16	28		12		0		0	11		
		Location	1								Rive	r sedime	nts/Radi	oactive	Cesium	(Cs-134	I+Cs-137	/)/Conce	ntratio										Average	of		Coef	ficient		
No.	Water area	Location	Municipality	4	5	6	7	8	FY 9	2014	Rive:	r sedime	_	_	Cesium 3 4	_	1+Cs-137	7)/Conce 7	ntratio	on(Bq/k FY2	015	11	12	1	2	3	Changes	- /	Average FY201 (*2)	5	No.		fficient of iation	Trend	ds(*3)
No. 98			Municipality Minamiaizu Town	-	5	6	7	8		2014			_	_		_	6	7)/Conce 7		FY2		11	12 0	1	2	3	Changes	,	FY201	5	No. 98	var	of	Trend	ds(*3)
No. 98 99	Water area Agano River	Location		-	-	-	7	-		10		12	_	_		5	6	7)/Conce 7	8	FY2	015 10	11		1 0 0	2	3	Changes 		FY201 (*2)	5		var 3	of iation	Trend	ls(*3)
_		Location Tajima Bridge		-	0	0	7	0		10 0		12	_	_		0	6	7)/Conce	8 0	FY2	015 10 0	11	0		2	3	Changes M M M		FY201 (*2) 0	5	98	var 3	of iation .97	Trend:	ls(*3)
99 100		Location Tajima Bridge Okawa Bridge	Minamiaizu Town	-	0	0	7	0		10 0 0		12	_	_		5 0 0	6 0 0	7)/Conce 7	8 0 0	FY2	015 10 0	11	0	0	2	3	A. Mi		FY201 (*2) 0	5	98 99	var 3 2 0	of iation 1.97	Trend:	is(*3)
99 100	Agano River	Location Tajima Bridge Okawa Bridge Takimi Bridge	Minamiaizu Town	-	0 0 98	0 0 126 159	-	0 0 69		10 0 312		12 0 0	_	_		5 0 0 48	6 0 0 77 81	7)/Conce 7	8 0 0 70	FY2	015 10 0 39	11	0 0 69	0 39	2	3	A. Mi		FY201 (*2) 0 57	5	98 99 100	var 3 2 0 2	of iation 97 55 60	Trend:	is(*3)
99 100 101 102	Agano River	Location Tajima Bridge Okawa Bridge Takimi Bridge Shinyukawa Bridge Before the confluence with Agano River	Minamiaizu Town Aizuwakamatsu City	-	0 0 98 131	0 0 126 159	-	0 0 69 80		10 0 312 82		12 0 0	_	_		0 0 48 71	6 0 0 77 81	7)/Conce	8 0 0 70 78	FY2	015 10 0 39 70	11	0 0 69 63	0 39 68	2	3	A. Mi		FY201 (*2) 0 0 57 72	5	98 99 100 101	var 3 2 0 2 1	of iation 1.97 1.55 1.60 1.57	Trend:	Is(*3)
99 100 101 102 103	Agano River Yukawa River	Location Tajima Bridge Okawa Bridge Takimi Bridge Shinyukawa Bridge Before the confluence with Agano River	Minamiaizu Town	-	0 0 98 131 109	0 0 126 159 114	-	0 0 69 80 72		10 0 312 82 97		12 0 0 720	_	_		5 0 0 48 71 108	6 0 0 77 81 122	7)/Conce 7	8 0 70 78 89	FY2	015 10 0 39 70 134	11	0 69 63 37	0 39 68 42	2	3	A. Mi		FY201 (*2) 0 0 57 72 89	5	98 99 100 101 102	var 3 2 0 2 1 1	of iation 	Trend:	
99 100 101 102 103 104 105	Agano River Yukawa River Miyakawa River Agano River Nippashi River	Location Tajima Bridge Okawa Bridge Takimi Bridge Shinyukawa Bridge Before the confluence with Agano River Saikuna Bridge	Minamiaizu Town Aizuwakamatsu City	-	0 98 131 109 16 11	0 0 126 159 114 72	-	0 0 69 80 72 41		10 0 312 82 97 36		12 0 720 67	_	_		5 0 48 71 108 19 0	6 0 77 81 122 15 10	7 7 89	8 0 70 78 89 15	FY2	015 10 0 39 70 134 23	11	0 69 63 37 37	0 39 68 42 31	2	3	A. Mi		FY201 (*2) 0 0 57 72 89 23	5	98 99 100 101 102 103	var 3 2 0 2 1 1 1 2	of iation 	Trend:	
99 100 101 102 103 104 105	Agano River Yukawa River Miyakawa River Agano River Nippashi River Kyu-yukawa River	Location Tujima Bridge Okawa Bridge Takimi Bridge Shinyukawa Bridge Before the confluence with Agano River Saikuna Bridge Mityako Bridge	Minaminizu Town Aizuwakamatsu City Aizubange Town		0 98 131 109 16 11	0 0 126 159 114 72 0	20	0 0 69 80 72 41 0	9	10 0 312 82 97 36 0		12 0 720 67	_	_	3 4	5 0 48 71 108 19 0	6 0 77 81 122 15 10 19	7	8 0 70 78 89 15 0	FY20	015 10 0 39 70 134 23 0		0 69 63 37 37 0	0 39 68 42 31 0		3	A. Mi		FY201 (*2) 0 57 72 89 23 1.7	5	98 99 100 101 102 103 104	var 3 2 0 0 2 1 1 1 2 1 1 2 1	of iation 	Trend:	ds(*3) / / / / / / / / / /
99 100 101 102 103 104 105 106	Agano River Yukawa River Miyakawa River Agano River Nippashi River Kyu-yukawa	Location Tajina Bridge Okawa Bridge Takimi Bridge Shinyukawa Bridge With Agano River Sakuna Bridge Miyako Bridge Miyako Bridge	Minamiaizu Town Aizuwakamatsu City Aizubange Town Kitakata City		0 98 131 109 16 11 46	0 0 126 159 114 72 0 92 570	20	0 0 69 80 72 41 0 0	9	10 0 312 82 97 36 0 0		12 0 720 67	_	_	3 4	5 0 48 71 108 19 0 7 70	6 0 77 81 122 15 10 19	7	8 0 70 78 89 15 0 24	FY20	015 10 0 39 70 134 23 0 27	11	0 69 63 37 37 0 31	0 39 68 42 31 0 115		3	A. Mi		FY201 (*2) 0 57 72 89 23 1.7 61	5	98 99 100 101 102 103 104 105	var 3 2 2 0 0 0 0 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	of iation 3.97 2.55 2.55 2.57 2.80 2.11 2.81 2.81 2.52	Trend	
99 100 101 102 103 104 105 106	Agano River Yukawa River Miyakawa River Agano River Nippashi River Kyu-ryukawa River	Location Tajima Bridge Okawa Bridge Takimi Bridge Shinyukawa Bridge Before the confluence with Agano River Sakuna Bridge Miyako Bridge Minami-ohashi Bridge Awanomiya Bridge	Minamiaizu Town Aizuwakamatsu City Aizubange Town Kitakata City Yugawa Village		0 98 131 109 16 11 46 40	0 0 126 159 114 72 0 92 570	20	0 0 69 80 72 41 0 0 580	9	10 0 312 82 97 36 0 690		12 0 720 67	_	_	3 4	5 0 0 48 71 108 19 0 0 0 7 70 810 810 810 810 811	6 0 77 81 15 10 19 51 33 35	7	8 0 70 78 89 15 0 24 179	FY20	015 10 0 39 70 134 23 0 27 386		0 69 63 37 37 0 31 177	0 39 68 42 31 0 115 760		3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		FY201 (*2) 0 0 57 72 89 89 23 1.7 61 394	5	98 99 100 101 102 103 104 105 106	var 3 2 2 0 0 0 2 2 2 1 1 1 1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	of iation 	Trend	K K K K K K K K K K K (3)
99 100 101 102 103 104 105 106 107 108 109	Agano River Yukawa River Miyakawa River Agano River Nippashi River Kyu-yukawa River Kyu-uniyakawa River	Location Tajima Bridge Okawa Bridge Takimi Bridge Shinyukawa Bridge Before the confluence With Agano River Saikuna Bridge Miyako Bridge Minami-ohashi Bridge Awanomiya Bridge Josuke Bridge	Minamiaizu Town Aizuwakamatsu City Aizubange Town Kitakata City Yugawa Village		0 0 98 98 131 109 16 11 14 46 40 134 26 23	0 0 126 159 114 72 0 92 92 92 570 64 29 14	20	0 0 69 80 72 41 0 0 580 68 16 11	9	10 0 312 82 97 36 0 690 172 27 21		12 0 720 67	_	_	3 4	5 0 0 48 71 108 19 0 0 7 7 0 810 63 18 117	6 0 77 81 122 15 10 19 51 33 35 32	7	8 0 70 78 89 15 0 24 179 119 24 19	FY20	10 10 0 0 39 70 134 23 0 27 386 79 28 0		0 69 63 37 37 0 31 177 0 24 31	0 39 68 42 31 0 115 760 88 14 26		3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		FY201 (*2) 0 0 57 72 89 23 1.7 61 394 64 24 24 24	5	98 99 100 101 102 103 104 105 106 107 108 109	var 3 2 2 0 0 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	of iation i.97 i.55 i.60 i.57 i.80 i.11 i.81 i.61 i.78 i.61 i.78 i.41 i.37	Trends	KKKKKKKKKKKKKKKKK
99 100 101 102 103 104 105 106 107 108 109 110	Agano River Yukawa River Miyakawa River Nipashi River Kyu-yukawa Kyu-mjyakawa River Tatsuki River	Location Tajima Bridge Okawa Bridge Takimi Bridge Before the conflaence with Agano River Sakuna Bridge Miyako Bridge Minami-ohashi Bridge Josuke Bridge Josuke Bridge Ohashi Shimokawara Bridge	Minumiaizu Town Aizuwakamatsu City Aizubange Town Kinakata City Yugawa Village Aizubange Town		0 0 0 98 98 131 109 16 11 11 46 40 134 26 23 23 10	0 0 0 126 159 159 114 72 0 92 570 64 29 14 249 249	20	0 0 69 80 72 41 0 0 580 68 68 16 11	9	10 0 312 82 97 36 0 690 172 27 21 12		12 0 720 67	_	_	3 4	5 0 0 48 71 108 19 0 7 70 8100 63 18 17 0	6 0 77 81 122 15 10 19 51 33 35 32 0	7	8 0 70 78 89 15 0 24 179 119 24 9 0	FY20	10 10 0 0 39 70 134 23 0 27 386 79 28 0 0		0 69 63 37 37 0 31 177 0 24 31 0	0 39 68 42 31 0 115 760 88 88 14 26 0		3			FY2010 (*2) 0 0 57 72 89 23 1.7 61 394 61 394 61 24 24 24 21 0	5	98 99 100 101 102 103 104 105 106 107 108 109 110	var 3 2 2 0 0 0 1 1 1 1 2 2 2 2 2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	of iation	Trend:	- K K K K K K K K K K K K K K
999 100 101 102 103 104 105 106 107 108 109 110 111	Agano River Yukawa River Miyakawa River Agano River Nippashi River Kyu-yukawa River Kyu-uniyakawa River	Location Tajima Bridge Okawa Bridge Takimi Bridge Before the confluence with Agano Kiver Sakuma Bridge Minami-ohashi Bridge Awanomiya Bridge Josake Bridge Olnshi Shimokawara Bridge Yamazaki Bridge	Minamiaiza Town Aizawakamatsu City Aizawakamatsu City Aizawakange Town Kitakata City Kitakata City	71	0 0 0 98 98 131 109 16 11 11 46 40 134 26 23 10 25 25	0 0 126 126 159 114 72 0 92 570 64 29 14 249 0 0	20	0 0 69 80 72 41 0 0 580 68 16 11 16 0	9	10 0 0 312 82 97 36 0 0 690 1122 27 21 12 0 0		12 0 720 67	_	_	3 4	5 0 0 0 48 71 108 19 0 0 7 70 810 63 18 17 0 0 0 0	6 0 77 81 122 15 10 19 51 33 35 32 0 0	7	8 0 70 78 89 15 0 24 179 24 19 24 9 0 0 0	FY20	015 10 0 39 70 134 23 0 27 386 79 28 0 0 0		0 69 63 37 37 0 31 177 0 24 31 0 0 0	0 39 68 42 31 0 115 760 88 14 26 0 0		3			FY201 (*2) 0 0 57 72 89 23 1.7 61 394 64 24 24 24	5	98 99 100 101 102 103 104 105 106 107 108 109 111	var 3 2 2 0 0 0 1 1 1 1 2 2 2 2 2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	of iation i.97 i.55 i.60 i.57 i.80 i.11 i.81 i.61 i.78 i.61 i.78 i.41 i.37		- K K K K K K K K K K K K K K
999 100 101 102 103 104 105 106 107 108 109 110 111 112	Agano River Yukawa River Miyakawa River Nipashi River Kyu-yukawa Kyu-mjyakawa River Tatsuki River	Location Tajima Bridge Okawa Bridge Takimi Bridge Before the confluence with Agano Kiver Saikuma Bridge Miyako Bridge Minami-ohashi Bridge Awanomiya Bridge Josuke Bridge Ohashi Shimokawara Bridge Nigorigawa Bridge Yamazaki Bridge	Minumiaizu Town Aizuwakamatsu City Aizuwakamatsu City Aizuhange Town Kitakata City Yugawa Village Kitakata City Minumiaizu Town	71	0 0 0 0 98 98 131 109 16 11 11 46 40 134 134 26 23 10 25 0	0 0 126 126 159 114 72 0 92 92 92 570 64 29 14 249 0 0	20	0 69 80 72 41 0 580 68 16 11 16 0 0	9	10 0 0 312 82 97 36 0 0 690 172 27 21 12 0 0		12 0 720 67	_	_	3 4	5 0 0 0 48 71 108 108 19 0 0 810 63 18 17 0 0 0 0 0	6 0 0 77 81 122 15 10 19 51 33 35 32 0 0 0 0 0 0	7	8 0 70 78 89 15 0 24 119 24 19 0 0 0	FY20	015 10 0 39 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 0		0 69 63 37 0 31 1777 0 24 31 0 0 0 0 0 0	0 39 68 42 31 0 115 760 88 88 14 26 0		3			FY2010 (*2) 0 57 72 89 23 61 394 61 394 64 24 21 21 0 0 0 0	5	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112	var 3 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	of isation 3.97 3.55 4.60 3.57 3.80 3.57 3.80 3.57 3.80 3.52 3.61 3.77 3.62 3.64 3.7 3.7		- K K K K K K K K K K K K K K
999 100 101 102 103 104 105 106 107 108 109 110 111 112 113	Agano River Yukawa River Miyakawa River Agano River Nippashi River Kyu-miyakawa River Tatsuki River Nigori River	Location Tajima Bridge Okawa Bridge Takimi Bridge Before the confluence with Agno River Sakuma Bridge Miyako Bridge Miyako Bridge Josuke Bridge Ohashi Shimokawara Bridge Yamazaki Bridge	Minumiara Town Azarwakamatsu Cray Azarwakamatsu Cray Azaruhange Town Katakata Cray Yugawa Village Azaruhange Town Katakata Cray Minumiara Town Tadami Town	71	0 0 0 0 988 131 109 16 11 14 46 40 134 26 23 23 100 25 0 0	0 0 126 126 159 159 114 72 0 0 92 570 570 64 29 14 249 0 0 0	20	0 0 69 80 72 41 0 580 68 16 11 16 0 0 0 0	9	10 0 312 82 97 36 0 0 690 172 27 21 12 0 0 0		12 0 720 720 67 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	_	3 4	5 0 0 48 71 108 19 0 7 70 810 63 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 77 81 122 15 10 19 51 33 32 0 0 0 0 0 0 0 0 0 0	7	8 0 70 78 89 15 0 24 179 119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FY20	015 10 0 39 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 69 63 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0	0 39 68 42 31 0 115 760 88 88 14 26 0 0 0		3			FY2010 (*2) 0 77 72 89 23 23 1.7 61 394 64 24 24 24 21 0 0 0 0 0 0	5	98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113	var 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	of isation 		<u> </u>
999 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	Agano River Yukawa River Miyakawa River Agano River Nippashi River Kyu-miyakawa River Tatsuki River Nigori River	Location Tajima Bridge Okawa Bridge Takimi Bridge Before the confluence with Agano River Sakuna Bridge Miyako Bridge Miyako Bridge Awanomiya Bridge Ohashi Shimokawara Bridge Yamazaki Bridge Kurosawa Bridge Nishitani Bridge	Minamiaizu Town Aizuwakamatsu City Aizubange Town Kitakata City Yugawa Village Aizubange Town Kitakata City Minamiaizu Town Tadami Town Kaneyama Town	71	0 0 98 98 131 109 16 11 46 40 134 26 23 10 25 0 0 0	0 0 126 159 114 72 0 92 92 570 64 29 14 249 0 0 0 0	20	0 0 69 80 72 41 0 580 68 16 11 16 0 0 0 0 0 0 0 0 0 0 0 0 0	9	10 0 312 82 97 36 0 0 172 27 21 12 0 0 0 0 0 0 0 0 0 0		12 0 720 67	_	_	3 4	5 0 48 71 108 19 0 7 70 810 63 18 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 77 81 122 15 10 19 51 33 35 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	8 0 0 70 78 89 15 0 24 179 119 24 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FY20	10 10 0 39 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 69 63 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 0 0	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 0		3			FY200 (*2) 0 0 77 72 89 23 23 1.7 61 394 64 24 21 0 0 0 0 0 0 0 0 0 0 0	5	98 99 100 101 102 103 104 105 106 107 108 109 111 112 113 114	var 3 3 2 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	of iation i.97 i.55 i.60 i.57 i.80 i.57 i.81 i.52 i.61 i.52 i.61 i.37 i.62 i.64 i.37 i.62 i.64 i.62 i.63 i.62 i.63 i.63 i.63 i.64 i.65 i.65 i.65 i.60 i.57 i.65 i.60 i.57 i.65 i.60 i.61 i.62 i.62 i.63 i.63 i.63 i.64 i.64 i.65 i.65 i.65 i.64 i.65 i.65 i.65 i.64 i.64 i.65 i.65 i.65 i.65 i.65 i.65 i.65 i.65		<u> </u>
999 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	Agano River Yukawa River Miyakawa River Kiya-pulakawa River Ciya-pulakawa River Tatsuki River Inagawa River Tadami River	Location Tajima Bridge Okawa Bridge Takimi Bridge Shinyukawa Bridge Before the confluence with Agano River Sakuma Bridge Minami ohasha Bridge Awanomiya Bridge Ohashi Shimokawara Bridge Yamazaki Bridge Kurosawa Bridge Fuji Bridge	Minamiaizu Town Aizuwakamatsu City Aizuhange Town Kitakata City Yuguwa Village Aizuhange Town Kitakata City Minamiaizu Town Tadami Town Kaneyama Town Aizuhange Town	71	0 0 98 98 131 109 16 40 134 46 26 23 23 23 10 25 0 0 0 0 13 13	0 0 1266 159 159 159 114 72 0 0 92 570 64 29 14 249 0 0 0 0 0 0 0 0 21 21	20	0 0 69 80 72 41 0 580 68 16 11 16 0 0 0 0 0 0 99	9	10 0 312 82 97 36 0 0 690 1172 27 21 12 0 0 0 56		12 0 720 720 67 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	_	3 4	5 0 48 71 108 19 0 0 19 0 19 0 19 0 10 8100 63 18 17 0 0 0 0 0 0 0 0 0 15	6 0 77 81 122 15 10 19 51 33 35 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29	7	8 0 0 70 78 89 15 0 24 179 119 24 19 0	FY20	DIS 10 0 0 39 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 3		0 69 63 37 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 0 0 0 0 0	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 0 0 0 0		3			FY201 (*2) 0 57 72 89 23 1.7 61 394 64 24 24 24 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0		98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	var 3 3 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	of iation i.97 i.55 i.60 i.57 i.80 i.11 i.81 i.52 i.61 i.78 i.61 i.78 i.62 i.64 i.62 i.64 i.97 i.00 i.63		<u> </u>
999 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	Agano River Yukawa River Miyakawa River Agano River Kyu-yukawa Kiver Kyu-yukawa Kiver Tatsuki River Inagawa River Tadami River Tadami River	Location Tajima Bridge Okawa Bridge Shinyukawa Bridge Before the confluence with Agano River Sakuna Bridge Miyako Bridge Awanomiya Bridge Josuke Bridge Ohashi Shimokawara Bridge Yamazaki Bridge Kurosawa Bridge Nishtani Bridge Fuji Bridge Shingo Dam	Minamiaizu Town Aizuwakamatsu City Aizubange Town Kitakata City Yugawa Village Aizubange Town Kitakata City Minamiaizu Town Tadami Town Kaneyama Town	A	0 0 98 131 109 16 11 11 46 40 134 26 23 10 26 23 0 0 0 0 0 0 0 0 308 308	0 0 126 159 159 114 72 0 92 570 64 29 14 249 0 0 0 0 0 0 0 0 0 36	20	0 0 69 80 72 41 0 580 68 16 11 16 0 0 0 0 99 296	9	10 0 312 82 97 36 0 690 172 27 21 12 0 0 0 56 272		12 0 0 720 67 0 1 0 1 <td>_</td> <td>_</td> <td></td> <td>5 0 48 71 108 19 0 7 70 810 63 18 17 10 63 18 107 0</td> <td>6 0 0 77 81 122 15 10 19 51 33 35 32 0</td> <td>89</td> <td>8 0 0 70 78 89 15 0 24 179 119 24 0 <td< td=""><td>FY20 9 42</td><td>10 10 0 0 39 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 10 13 87</td><td></td><td>0 0 69 63 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 0 0</td><td>0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 0 141</td><td>119</td><td>3</td><td></td><td></td><td>FY2010 (*2) 0 0 57 72 89 23 61 394 64 64 64 24 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td><td>98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116</td><td>var var 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>of iation .97 .55 .60 .57 .80 .11 .81 .52 .61 .78 .62 .64 .64 .97 .00 .63 .93</td><td></td><td><u> </u></td></td<></td>	_	_		5 0 48 71 108 19 0 7 70 810 63 18 17 10 63 18 107 0	6 0 0 77 81 122 15 10 19 51 33 35 32 0	89	8 0 0 70 78 89 15 0 24 179 119 24 0 <td< td=""><td>FY20 9 42</td><td>10 10 0 0 39 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 10 13 87</td><td></td><td>0 0 69 63 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 0 0</td><td>0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 0 141</td><td>119</td><td>3</td><td></td><td></td><td>FY2010 (*2) 0 0 57 72 89 23 61 394 64 64 64 24 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td><td>98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116</td><td>var var 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>of iation .97 .55 .60 .57 .80 .11 .81 .52 .61 .78 .62 .64 .64 .97 .00 .63 .93</td><td></td><td><u> </u></td></td<>	FY20 9 42	10 10 0 0 39 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 10 13 87		0 0 69 63 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 0 0	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 0 141	119	3			FY2010 (*2) 0 0 57 72 89 23 61 394 64 64 64 24 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	var var 2 2 2 2 2 2 2 2 2 2 2 2 2	of iation .97 .55 .60 .57 .80 .11 .81 .52 .61 .78 .62 .64 .64 .97 .00 .63 .93		<u> </u>
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	Agano River Yukawa River Miyakawa River Agano River Kyu-yukawa Kiver Kyu-yukawa Kiver Tatsuki River Inagawa River Tadami River Tadami River Sukawa River	Location Tajima Bridge Okawa Bridge Shinyukawa Bridge Before the confluence with Agano River Sakuna Bridge Miyako Bridge Awanoniya Bridge Josuke Bridge Ohashi Shimokawara Bridge Yamazaki Bridge Kurosawa Bridge Nigorigawa Bridge Shingo Dam	Minamiaizu Town Aizuwakamatsu City Aizuhange Town Kitakata City Yuguwa Village Aizuhange Town Kitakata City Minamiaizu Town Tadami Town Kaneyama Town Aizuhange Town	1 71 71 1 1 1 55	0 0 98 98 131 109 16 11 14 46 134 26 23 23 10 25 0 0 0 0 0 0 308 308	0 0 126 126 159 114 72 0 92 570 64 29 14 249 0 0 0 0 0 0 0 0 36 78	20 20	0 0 69 80 72 41 0 580 68 16 11 16 0 0 0 0 0 99 296 34	9 18 18 46	10 0 312 82 97 36 0 690 172 27 21 12 0 0 0 56 272 50		12 0 720 720 67 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	_		5 0 48 71 108 19 0 7 70 8100 63 18 17 0 <	6 0 0 77 81 122 15 10 19 51 33 35 32 0 <t< td=""><td>7 89 89 89 89 89 89 89 89 89 87</td><td>8 0 70 78 89 15 0 24 179 119 24 19 0 1208 95</td><td>FY20 9 42 17</td><td>10 10 0 39 39 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 0 0 0 0 13 32</td><td></td><td>0 69 63 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 114</td><td>0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 0 0 0 0</td><td></td><td>3</td><td></td><td></td><td>FY2010 (*2) 0 0 77 89 23 89 23 61 394 61 394 64 24 24 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 142</td><td></td><td>98 99 100 101 102 103 104 105 106 107 108 109 110 112 113 114 115 116 117</td><td>var var var var var var var var var var</td><td>of iation .97 .55 .60 .57 .80 .57 .57 .57 .57 .57 .57 .57 .57 .57 .57</td><td></td><td><u> </u></td></t<>	7 89 89 89 89 89 89 89 89 89 87	8 0 70 78 89 15 0 24 179 119 24 19 0 1208 95	FY20 9 42 17	10 10 0 39 39 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 0 0 0 0 13 32		0 69 63 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 114	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 0 0 0 0		3			FY2010 (*2) 0 0 77 89 23 89 23 61 394 61 394 64 24 24 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 142		98 99 100 101 102 103 104 105 106 107 108 109 110 112 113 114 115 116 117	var	of iation .97 .55 .60 .57 .80 .57 .57 .57 .57 .57 .57 .57 .57 .57 .57		<u> </u>
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	Agano River Yukawa River Miyakawa River Agano River Kyu-yukawa Kiver Kyu-yukawa Kiver Yatsuki River Tatsuki River Inagawa River Tadami River Tadami River Sukawa River Sukawa River	Location Tajima Bridge Okawa Bridge Shinyulawa Bridge Shinyulawa Bridge Before the confluence with Agano River Saikuna Bridge Myako Bridge Myako Bridge Joseke Bridge Ohashi Shinokawara Bridge Nigorigawa Bridge Yamazaki Bridge Nayagi Bridge Kurosawa Bridge Nigorigawa Bridge Shinokawaro Kurosawa Bridge Shingo Dam Sukawano Kogane Bridge	Minaminizu Town Azzuwakamatsu Ciry Azubange Town Kitakata Ciry Yugawa Village Azinhange Town Kitakata Ciry Minaminizu Town Tadami Town Kanyama Town Kitakata Ciry	a	0 0 98 98 131 109 16 11 46 40 40 40 134 26 23 23 10 25 0 0 0 0 133 308 79 61	0 0 126 159 114 72 0 92 570 64 29 92 14 249 0 0 0 0 0 0 0 0 21 36 78 125	20 20	0 0 69 80 72 41 0 580 68 16 11 16 0 134 26	9	10 0 312 82 97 36 0 0 600 172 27 21 12 0 0 0 56 272 50 65		12 0 0 720 67 0 0 0 10 11 12 13 14 15 15 16 17 18 19 19	_	_		5 0 48 71 108 19 0 810 63 18 17 0 63 18 17 0 15 208 5	6 0 0 0 0 1	89	8 0 70 78 89 15 0 24 179 119 24 19 0 0 0 24 19 0 0 0 24 19 0 24 19 0 24 19 0 24 19 0 20 208 95 27 200	FY20 9 42	10 10 0 39 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 32 29		0 69 63 37 0 31 1777 0 24 31 0 0 0 0 0 0 0 0 114 20	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 141 18	119	3			FY201 (*2) 0 0 72 89 23 72 89 23 72 89 4 394 64 24 24 24 24 24 0 0 0 0 0 0 0 0 0 0 0 0		98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	var var 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 0 0 0 0	of iation .97 .55 .60 57 57 80 11 52 61 52 61 52 61 57 62 64 64 64 64 64 64 63 69 63 69 65 64 		<u> </u>
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	Agano River Yukawa River Miyakawa River Agano River Kyu-yukawa Kiver Kyu-yukawa Kiver Tatsuki River Tatsuki River Inagawa River Tadami River Tadami River Sukawa River Sukawa River Takahashi River	Location Tajima Bridge Okawa Bridge Shinyulawa Bridge Shinyulawa Bridge Before the confluence with Agano River Saikuna Bridge Myako Bridge Myako Bridge Myako Bridge Joake Bridge Joake Bridge Ohashi Shinokawara Bridge Yanazaki Bridge Nigorigawa Bridge Yanazaki Bridge Nigorigawa Bridge Shinokawara Bridge Shinokawara Bridge Fuji Bridge Shingo Dam Sukawano Kogane Bridge Shinbashi Bridge	Minamiaizu Town Aizuwakamatsu City Aizuhange Town Kitakata City Yuguwa Village Aizuhange Town Kitakata City Minamiaizu Town Tadami Town Kaneyama Town Aizuhange Town	a	0 0 98 98 1311 109 16 11 11 16 134 26 23 23 100 25 0 0 0 0 0 0 133 308 79 61 78 78	0 0 126 126 159 159 114 72 0 92 570 64 29 14 14 249 0 0 0 0 0 0 0 36 78 78 59 59	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 0 69 80 72 41 0 580 68 16 11 16 0 134 26 44	9	10 0 312 82 97 36 0 0 600 172 27 21 12 0 0 0 0 56 272 50 65 67		12 0 0 720 67 0 0 0 10 11 12 13 14 15 15 16 17 18 19 19	_	_		5 0 0 48 71 108 19 0 7 70 8100 63 18 17 0 15 15 16 17 10	6 0 0 0 0 1	7 89 89 89 89 89 89 89 89 89 88 87	8 0 70 78 89 15 0 24 179 24 19 0 0 0 0 0 0 0 0 208 95 27 20 71	FY20 9 42 17	10 10 0 39 70 134 23 0 23 386 79 28 0 0 0 0 0 0 0 0 0 0 0 0 13 87 32 29 49		0 69 63 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 114 20 34	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 0 141	119	3			FY201 (*2) 0 0 72 89 23 72 89 23 72 89 23 4 24 23 24 24 24 24 20 0 0 0 0 0 0 0 0 0 0 0 0		98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	var	of iation 97 .55 .60 .57 .80 .11 .52 .61 .78 .61 .78 .61 .78 .61 .78 .61 .78 .62 .64 .78 .62 .64 .62 .64 .62 .62 .62 .62 .62 .62 .62 .62 .62 .62		<u> </u>
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	Agano River Yukawa River Miyakawa River Agano River Kyu-yukawa Kiver Kyu-yukawa Kiver Tatsuki River Tatsuki River Inagawa River Tadami River Tadami River Sukawa River Takahashi River Takahashi River	Location Tajima Bridge Okawa Bridge Shiruyukawa Bridge Before the confluence with Agano River Saikuna Bridge Miyako Bridge Minami-ohashi Bridge Josake Bridge Okashi Shimokawara Bridge Nanzaki Bridge Nanzaki Bridge Nanzaki Bridge Nanzaki Bridge Shimoka Bridge Shingo Dam Sukawano Kogane Bridge Shingo Lam	Minaminizu Town Azzuwakamatsu Ciry Azubange Town Kitakata Ciry Yugawa Village Azinhange Town Kitakata Ciry Minaminizu Town Tadami Town Kanyama Town Kitakata Ciry	a	0 0 98 98 1311 109 16 11 11 14 46 40 134 26 23 23 100 0 00 0 01 0 02 0 03 308 79 61 78 284	0 0 126 159 114 72 0 92 570 64 29 14 249 0 0 0 0 0 0 126 127 36 78 125 59 149	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 69 80 72 41 0 580 68 16 11 16 0 0 0 0 0 0 0 0 0 0 0 0 0 296 34 26 44 133	9	10 0 312 82 97 36 0 690 172 21 12 0 0 0 690 722 21 12 0 0 0 56 272 50 65 67 188		12 0 0 720 67 0 0 0 10 11 12 13 14 15 15 16 17 18 19 19	_	_		5 0 0 48 71 108 19 0 7 70 8100 63 18 17 7 0 63 18 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 2088 2028 215 2337	6 0 77 81 122 15 10 9 33 35 32 0 12 14 59 58	7 89 89 89 89 89 89 89 89 89 87	8 0 70 78 89 15 0 24 179 24 19 0 0 0 0 0 0 0 0 0 0 0 208 95 27 20 71 245	FY20 9 42 17	10 10 0 39 70 134 23 0 23 386 79 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 87 32 29 49 103		0 0 69 63 37 0 31 177 0 24 31 0 24 31 0 0 0 0 0 0 0 0 114 20 34 130	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 141 18 28	119	3			FY201 (*2) 0 0 0 7 7 2 89 2 3 1.7 6 1 394 6 4 2 3 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	var	of iation 97 .55 .60 .57 .80 .11 .52 .61 .78 .61 .78 .61 .78 .61 .78 .62 .64 .77 .62 .64 .77 .62 .64 .63 .62 .63 .62 .63 .63 .62 .63 .63 .62 .63 .64 .64 .65 .65 .65 .66 .65 .66 .66 .65 .66 .66		<u> </u>
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	Agano River Yukawa River Miyakawa River Agano River Kyu-yukawa Kiver Kyu-yukawa Kiver Tatsuki River Tatsuki River Tatsuki River Tadami River Tadami River Tadami River Sukawa River Takahashi River Takahashi River Fakahashi River Hishinuma River	Location Tajima Bridge Okawa Bridge Shiruyukawa Bridge Shiruyukawa Bridge Sakuna Bridge Gano River Sakuna Bridge Myako Bridge Myako Bridge Joseke Bridge Joseke Bridge Ohashi Shimokawara Bridge Nigorigawa Bridge Nigorigawa Bridge Nanzaki Bridge Nigorigawa Bridge Shinokawara Bridge Shinokawara Bridge Fuji Bridge Shingo Dam Sukawano Kogane Bridge Shinbashi Bridge Shinbashi Bridge Shinbashi Bridge Shinbashi Bridge Shinbashi Bridge Shinbashi Bridge Chano Bridge Shinbashi Bridge Shin	Minamiaizu Town Aizuwakamatsu City Aizuwakamatsu City Yugawa Vilage Aizuhange Town Kitakata City Minamiaizu Town Tadami Town Kansyama Town Kitakata City Inawashiro Town	a	0 0 98 98 131 109 16 11 46 40 134 26 23 10 25 23 100 0 01 0 02 0 03 0 04 134 134 10 133 308 79 61 78 284 28 28	0 0 1266 159 114 72 0 92 570 64 29 14 249 0 0 0 0 0 0 0 0 121 36 78 59 149 56	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 69 80 72 41 0 580 580 68 16 11 16 0 133 211	9	10 0 0 312 82 97 36 0 0 172 27 21 12 0 0 0 56 272 50 65 67 188 122 2		12 0 0 720 67 0 0 0 10 11 12 13 14 15 15 16 17 18 19 19	_	_		5 0 0 0 10 11 108 19 0 7 70 810 13 14 108 109 0 63 18 17 70 63 18 17 0 15 15 15 16 12	6 0 77 81 122 15 10 11 12 15 10 11 12 13 33 35 32 0 12 14 58 130	7 89 89 89 89 89 89 89 89 89 87	8 0 70 78 89 15 0 24 179 24 19 0 0 0 0 0 0 0 0 0 0 0 0 10 2208 71 245 238	FY20 9 42 17	JDD 10 0 0 39 339 38 70 134 23 0 23 0 23 0 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 13 32 29 49 103 119 119		0 69 63 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 0 0 114 130 89	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 0 141 18 28 87	119				FY201 (*2) (*2) (*2) (*2) (*2) (*2) (*2) (*2)		98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	var var 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	of iation .97 .55 .60 .57 .80 .11 .52 .52 .61 .52 .61 .52 .62 .64 .64 .78 .62 .64 .64 .64 .64 .64 .63 .697 .63 .60 .63 .63 .63 .63 .63 .63 .63 .63 .63 .63		V V V V V V SSV 5 V SV V V V V V V V V V
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	Agano River Yukawa River Miyakawa River Agano River Kyu-yukawa Kiver Kyu-yukawa Kiver Tatsuki River Tatsuki River Tatsuki River Tadami River Tadami River Tadami River Sukawa River Takahashi River Koguro River Hishinuma River Funatsu River	Location Takini Pidge Okawa Bridge Shiruyukawa Bridge Shiruyukawa Bridge Sakuna Bridge Gano River Sakuna Bridge Miyako Bridge Miyako Bridge Josake Bridge Josake Bridge Josake Bridge Okashi Shinokawara Bridge Yanazaki Bridge Nigorigawa Bridge Yanazaki Bridge Nigorigawa Bridge Shinokawara Bridge Shi	Minamiaizu Town Aizuwakamatsu Giy Aizuhange Town Kitakata City Yugawa Village Aizuhange Town Kitakata City Minamiaizu Town Kanayama Town	a	0 0 98 131 109 98 131 109 16 40 11 11 12 26 23 10 25 23 100 0 0 0 0 0 0 0 308 79 61 78 284 28 10 10	0 0 126 1 159 1 72 0 92 570 64 29 14 29 14 249 0 0 0 0 0 0 366 78 78 125 59 149 56 104	20 20 20 20 20 27 37	0 69 80 72 41 0 580 68 16 11 16 0 0 0 99 296 34 26 41 23	9 18 18 46	10 0 312 82 97 36 0 122 23 600 172 21 12 0 0 0 0 0 0 0 0 0 0 0 0 56 272 50 65 67 188 122 52		12 0 0 720 67 0 0 0 10 11 12 13 14 15 15 16 17 18 19 19	_	_		5 0 0 48 71 108 19 0 7 700 8100 63 63 63 63 63 63 63 63 63 63 63 63 64 7 70 7 70 7 <	6 0 77 81 122 15 10 11 12 15 10 11 12 13 33 35 32 0 12 14 59 58 130	7 89 89 89 89 89 89 89 89 89 87	8 0 70 78 89 15 0 24 179 24 19 0 0 0 0 0 0 0 0 0 0 0 0 0 208 95 27 200 71 245 0	FY20 9 42 17	JDD 10 0 0 39 339 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 29 49 103 119 0		0 69 63 37 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 0 0 0 0 1114 120 34 130 89 16	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 141 18 28 87 0	119	3			FY2010 (*2) (*2) (*2) (*2) (*2) (*2) (*2) (*2)		98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	var 3 3 2 0 0 1	of iation .97 .55 .60 .57 .80 .11 .52 .53 .61 .52 .61 .52 .61 .78 .62 .64 .78 .62 .64 .64 .78 .62 .64 .64 .78 .62 .63 .60 .63 .63 .60 .63 .65 .60 .65 .55 .60 .60 .55 .55 .60 .60 .55 .55 .55 .60 .60 .55 .55 .55 .60 .60 .55 .55 .55 .60 .60 .55 .55 .55 .60 .60 .55 .55 .55 .60 .60 .55 .55 .55 .60 .60 .55 .55 .55 .60 .60 .55 .55 .55 .60 .60 .55 .55 .55 .55 .55 .55 .55 .55 .55 .5		<u> </u>
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	Agano River Yukawa River Miyakawa River Agano River Kyu-yukawa Kiver Kyu-yukawa Kiver Tatsuki River Tatsuki River Tatsuki River Tadami River Tadami River Tadami River Sukawa River Takahashi River Takahashi River Fakahashi River Hishinuma River	Location Takini Pidge Okawa Bridge Shiruyukawa Bridge Shiruyukawa Bridge Sakuna Bridge Gano River Sakuna Bridge Miyako Bridge Miyako Bridge Josake Bridge Josake Bridge Josake Bridge Okashi Shinokawara Bridge Yanazaki Bridge Nigorigawa Bridge Yanazaki Bridge Nigorigawa Bridge Shinokawara Bridge Shi	Minamiaizu Town Aizuwakamatsu City Aizuwakamatsu City Yugawa Vilage Aizuhange Town Kitakata City Minamiaizu Town Tadami Town Kansyama Town Kitakata City Inawashiro Town	a	0 0 98 98 131 109 16 11 46 40 134 26 23 10 25 23 100 0 01 0 02 0 03 0 04 134 134 10 133 308 79 61 78 284 28 28	0 0 1266 159 114 72 0 92 570 64 29 14 249 0 0 0 0 0 0 0 0 0 121 36 78 59 149 56	20 20 20 20 20 27 37	0 69 80 72 41 0 580 580 68 16 11 16 0 133 211	9 18 18 46	10 0 0 312 82 97 36 0 0 172 27 21 12 0 0 0 56 272 50 65 67 188 122 2		12 0 0 720 67 0 0 0 10 11 12 13 14 15 15 16 17 18 19 19	_	_		5 0 0 0 10 11 108 19 0 7 70 810 13 14 108 109 0 63 18 17 70 63 18 17 0 15 15 15 16 12	6 0 77 81 122 15 10 11 12 15 10 11 12 13 33 35 32 0 12 14 59 58 130	7 89 89 89 89 89 89 89 89 89 87	8 0 70 78 89 15 0 24 179 24 19 0 0 0 0 0 0 0 0 0 0 0 0 10 2208 71 245 238	FY20 9 42 17	JDD S 10 0 0 0 39 0 339 70 0 134 23 0 227 386 79 28 0 0 0 0 0 0 0 0 0 0 13 87 32 29 49 103 119		0 0 69 63 37 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 0 0 0 0 1114 130 89 16 0	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 0 141 18 28 87	119				FY201 (*2) (*2) (*2) (*2) (*2) (*2) (*2) (*2)		98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	var 3 3 2 0 0 1	of iation .97 .55 .60 .57 .80 .11 .52 .52 .61 .52 .61 .52 .61 .78 .62 .64 .64 .77 .62 .64 .64 .64 .64 .64 .64 .63 .697 .63 .697 .63 .60 .63 .65 .65 .60 .60 .65 .55 .60 .60 .60 .65 .55 .60 .60 .60 .65 .55 .60 .60 .60 .60 .60 .65 .57 .60 .60 .60 .60 .65 .57 .60 .60 .60 .60 .60 .65 .57 .60 .60 .60 .60 .60 .60 .60 .60 .60 .60		V V V V V V SSV 5 V SV V V V V V V V V V
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	Agano River Yukawa River Miyakawa River Agano River Kyu-yukawa Kiver Kyu-yukawa Kiver Tatsuki River Tatsuki River Tatsuki River Tadami River Tadami River Tadami River Sukawa River Takahashi River Koguro River Hishinuma River Funatsu River	Location Takini Pidge Okawa Bridge Shiruyukawa Bridge Shiruyukawa Bridge Sakuna Bridge Gano River Sakuna Bridge Miyako Bridge Miyako Bridge Josake Bridge Josake Bridge Josake Bridge Okashi Shinokawara Bridge Yanazaki Bridge Nigorigawa Bridge Yanazaki Bridge Nigorigawa Bridge Shinokawara Bridge Shi	Minamiaizu Town Aizuwakamatsu City Aizubange Town Kitakata City Yugawa Vilage Aizubange Town Kitakata City Minamiaizu Town Katayama Town Kitakata City Inawashiro Town Kitakata City Inawashiro Town	A	0 0 98 131 109 16 11 11 14 46 40 134 26 23 100 25 0 0 0 0 0 0 133 308 308 799 61 78 284 28 10 92	0 0 126 159 159 114 126 0 92 570 570 64 299 2 0 0 0 0 0 0 0 0 0 36 78 125 59 149 104 56 104 22	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 69 80 72 41 0 580 68 16 11 16 0 0 0 99 296 34 26 44 133 211 23 19	9 18 18 46 94	10 0 312 82 97 36 0 122 23 600 172 21 12 0 0 0 0 0 0 0 0 0 0 0 0 56 272 50 65 67 188 122 52		12 0 0 720 67 0 10 10 11 12 13 14 15 24 12 24 12 24 13 24 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 10 11 12 13 14 15 16 17 18 19 10 10 10 11 12 <			3 4 	5 0 0 48 71 108 19 0 7 70 810 63 18 17 0 63 18 177 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 208 201 21 22 237	6 0 77 81 122 131 10 19 51 33 34 35 32 0 11 0 12 130 0 131	7 89 89 89 89 89 89 89 89 89 87	8 0 70 78 89 15 0 24 179 24 19 0 0 0 0 0 0 0 0 0 0 0 0 0 208 95 27 200 71 245 0	FY20 9 42 17	JDD 10 0 0 39 339 70 134 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 29 49 103 119 0		0 69 63 37 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 0 0 0 0 1114 120 34 130 89 16	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 141 18 28 87 0	119	3			FY2010 (*2) (*2) (*2) (*2) (*2) (*2) (*2) (*2)		98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	var 3 3 2 0 0 1	of iation .97 .55 .60 .57 .80 .11 .52 .53 .61 .52 .61 .52 .61 .78 .62 .64 .78 .62 .64 .64 .78 .62 .64 .64 .78 .62 .63 .60 .63 .63 .60 .63 .65 .60 .65 .55 .60 .60 .55 .55 .60 .60 .55 .55 .55 .60 .60 .55 .55 .55 .55 .55 .55 .55 .55 .55 .5		V V V V V V SSV 5 V SV V V V V V V V V V
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	Agano River Yukawa River Miyakawa River Agano River Kyu-yukawa Kiver Kyu-yukawa Kiver Tatsuki River Tatsuki River Tatsuki River Tadami River Tadami River Tadami River Sukawa River Takahashi River Koguro River Hishinuma River Funatsu River	Location Takini Pidge Okawa Bridge Shiruyukawa Bridge Shiruyukawa Bridge Sakuna Bridge Gano River Sakuna Bridge Miyako Bridge Miyako Bridge Josake Bridge Josake Bridge Josake Bridge Okashi Shinokawara Bridge Yanazaki Bridge Nigorigawa Bridge Yanazaki Bridge Nigorigawa Bridge Shinokawara Bridge Shi	Minamiaizu Town Aizuwakamatsu City Aizubange Town Kitakata City Yugawa Vilage Aizubange Town Kitakata City Minamiaizu Town Katayama Town Kitakata City Inawashiro Town Kitakata City Inawashiro Town	a	0 0 98 131 109 16 11 109 16 40 11 14 26 23 100 25 0 0 0 0 0 0 0 0 133 308 79 61 78 284 10 92 kank celle 92	0 0 126 159 114 72 0 92 570 64 29 570 14 29 14 29 14 29 14 20 14 20 14 20 14 20 0 0 0 0 0 0 125 36 78 125 59 149 56 104 22 ts are loo ts are loo 22 ts are loo 56	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 0 69 80 72 41 0 580 68 16 11 16 0 133 19 where st	9 18 18 46 94 46 94 46 94 46 94 46 94 46 94	10 0 312 82 97 36 0 6 0 6 0 6 0 6 77 36 6 6 7 12 0 52 17 122 52 17		12 0 1 720 67 67 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2	3 4	5 0 48 71 108 110 107 70 70 810 71 70 70 810 117 70 70 810 10 10 117 118 117 110 110 1111 <	6 0 77 81 122 131 10 19 51 33 34 35 32 0 11 0 12 130 0 1310	7 89 89 89 89 89 89 87 26	8 0 0 70 78 89 15 0 24 179 24 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 0 0 0 0 10 10 10 11 12 12 13 14	FY20 9 42 42 17 18	IODIS 10 0 0 39 39 39 134 3 0 23 0 27 386 79 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 87 32 29 49 103 119 0 0		0 0 69 63 37 0 31 177 0 24 31 0 0 0 0 0 0 0 0 0 0 0 0 0	0 39 68 42 31 0 115 760 88 14 26 0 0 0 0 0 141 18 28 87 0 14 C	119 14 D				FY2010 (*2) (*2) (*2) (*2) (*2) (*2) (*2) (*2)		98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	var 3 3 2 0 0 1	of iation .97 .55 .60 .57 .80 .11 .52 .53 .61 .52 .61 .52 .61 .78 .62 .64 .78 .62 .64 .64 .78 .62 .64 .64 .78 .62 .63 .60 .63 .63 .60 .63 .65 .60 .65 .55 .60 .60 .55 .55 .60 .60 .55 .55 .55 .60 .60 .55 .55 .55 .55 .55 .55 .55 .55 .55 .5		V V V V V V SSV 5 V SV V V V V V V V V V

4) Ibaraki Prefecture


In Ibaraki Prefecture, surveys were conducted 15 to 21 times from August 2011 to February 2016 for river sediment samples collected at 53 locations (this analysis excludes the survey results at 39 locations where the survey was conducted only in 2011).

Regarding concentration levels of detected values, two locations ware categorized into Category A, two locations into Category B, 11 locations into Category C, 21 locations into Category D, and 17 locations into Category E (see Table 4.3-11 and Table 4.3-12).

Concentration levels were generally decreasing at 46 locations, were unchanged at two locations and fluctuating at five locations.

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	2	No.34, No.36
В	Upper 5 to 10 percentile	2	No.28、No.38
С	Upper 10 to 25 percentile		No.13, No.26, No.31, No.32, No.37, No.39, No.40, No.41, No.42, No.49, No.50
D	Upper 25 to 50 percentile	21	No.1, No.2, No.7, No.14, No.17, No.18, No.19, No.20, No.21, No.22, No.23, No.24, No.25, No.27, No.29, No.30, No.33, No.46, No.48, No.51, No.52
Е	Upper 50 to 100 percentile(lower 50%)	17	No.3、No.4、No.5、No.6、No.8、No.9、No.10、No.11、No12、No.15、No.16、 No.35、No.43、No.44、No.45、No.47、No.53

Table 4.3-11 Categorization of detected values at respective locations
(Ibaraki Prefecture: river sediments)

(*) Scales of the vertical axes differ in the left and right figures.

Figure 4.3-7 Changes in concentration levels over the years at respective locations (Ibaraki Prefecture: river sediments)

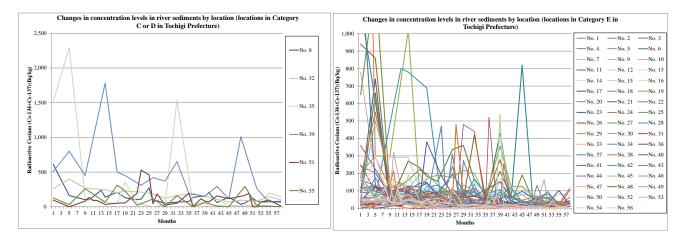
Table 4.3-12 Detection of radioactive cesium at respective locations (Ibaraki Prefecture: river sediments) (No.1)

			Lo	ocation											R	liver sedime	nts/Ra	idioact	ive Ces	sium (Cs-13	1+Cs-137)/C	oncent	ration(Bq/k;	g)(*1)										
No		Water area		Location	Municipality				FY201	-									FY2012	-								FY.	2013					-
			-		······	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10 11		2	3 4	5	6	7	8	9	10	11	12	1	2	3
1			Satone River	Yamagoya Bridge			2,000					760			166				121		153		105	97			81			52			49	
2				Murayama Bridge	Kitaibaraki City		710					450			125				540		176	460		126			116			187			128	
3			Hanazono River	Kurabeishi			250					144			102				42		88	66		36			45			91			94	
4	Tagagawa	River System	ranazono ravei	Isonare Bridge			300					103			53				76		68	50		50			38			47			89	
5				Sakae Bridge	Takahagi City		3,100					310			101				50		87	14		42			21			30			73	
6			Okita River	Sakai Bridge	Kitaibaraki City		2,200					750			109				103		310	186		101			68			98			83	
7			Hananuki River	Shinhananuki Bridge	Takahagi City		650					400			248				82		82	102		135			115			140			101	_
8				Yamagata	Hitachiomiya City		1.040					157			62				0		10	111		60			94			45			20	
9	Kujigawa I	River System	Kujigawa River		Hitachi City/Tokai		· · ·					44			-	0	0					135		-			-			92			0	
-		-		Sakaki Bridge	Village Hitachiomiya		290			_					11	0	0	0	161		156			55			111							
10				Noguchi	City/Shirosato Town		169		_	_		52			13				163		88	13		11			15			18			12	
11		Nakagawa	Nakagawa River	Shimokunii	Mito City		5,500					78			16				128		116	246		101			131			76			249	
12		River Area		Katsuta Bridge	Mito City/Hitachinaka City		4,400					60			86	34	330	176	114		760	340		1,110			600			13			670	
13	Nakagawa			Yanagisawa Bridge	Hitachinaka City			4,400				1,810			690				1,200		510	890		1,110			880			700			560	
14	River		Hinumamae River	Nagaoka Bridge				460								158					109			510			90			226			193	
15	System		Hinuma River	Takahashi	Ibaraki Town			84	Т	T	Π	Π	Т	Τ		270					57]		19	$ \top$		39			16		Π	18	
16		Hinumagawa River Area	Kansei River	Kansei Bridge				167								92					139			159			82			79			86	
17			Daiya River	Oya Bridge	Hokota City			320						t		630					143			810			310			204			68	
18			Hinuma River	Hinuma Bridge	Mito City/Oarai Town			630				570				1,260			36		330	560		190			430			400			440	
19		-	Hokota River	Asahi Bridge		-	390		-			390	+			270			420		370	380		370	\vdash		182			68			73	—
20			Tomoe River	Shintomoegawa Bridge	Hokota City		280		-+			690	+			220			370	\vdash	540	159		410	\vdash		600			314			87	_
20									-			0,0				108	-	-							$\left \right $									-
-			Taiyo River	Tazuka Bridge			720		-+	_			-+	_			-	-	330	\vdash	159	172		320	$\left - \right $		320			136			198	
22		Kitaura River Area	Takeda River	Uchijuku-ohashi Bridge				460		_	_					152			630		380	230		177			260			291			254	
23		, neu	Yamada River	Nioroshi Bridge	Namegata City			600								390			174		35	190		304			143			137			217	
24			Kurakawa River	Kurakawa Bridge				1,020								239			187		290	183		98			100			105			222	
25			Gantsu River	JA Yokohashi Bridge				320								260			223		264	166		211			195			164			151	
26			Nagare River	Suhoi Bridge	Kashima City			1,260								830			490		590	370		530			340			236			156	
27			Sonobe River	Sonobeshin Bridge	Omitama City		280								260				1,370		290	910		430			570			223			281	
28			Sanno River	Tokoro Bridge	Omitama City		1,920					1,950			1,550				900		1,510	1,470		860			820			730			1,800	
29			Koise River	Heiwa Bridge	Ishioka City		194								830				680		770	210		153			135			116			101	_
30			Kajinashi River	Kamishuku Bridge	Namegata City		270								42				197		172	226		154			163			97			120	
31			Hishiki River	Hishiki Bridge			1,320					1,070			860				660		610	630		600			530			540			405	
32			Ichinose River	Kawanaka Bridge	Kasumigaura City		1,870				_	1,540		_	950				530		920	730		840			650			880		_	530	
33			Sakai River	Sakai Bridge/National Route			2,300			_	_	760			780				680		112	160		160			224			296		_	178	
34		Kasumigaura River Area	Shinkawa River	354 Shinten Bridge	Tsuchiura City		2,300	5,500				4,400			900				4,000		2,210	2,340		4,100			4,200			3,900			2,170	
_					Tsuchiura			5,500							_																			
35	Tonegawa		Sakura River	Eiri Bridge	City/Tsukuba City		58					136			62				270		213	128		76			52			39			126	
36	River System		Bizen River	Bizengawa Bridge	Tsuchiura City	L		2,600				228		_	4,800			<u> </u>	4,500	\square	2,800	2,150		1,770			1,860			1,360			1,540	
37			Hanamuro River	Shinwa Bridge				1,390				820		_	1,280				1,000		29	570		810			790			790			1,200	
38			Seimei River	Katsuhashi Bridge	Ami Town			1,420				5,800			2,130				1,790		4,100	3,500		1,290			1,170			940			870	
39			Onogawa River	Okuhara-ohashi Bridge	Ryugasaki City/Ushiku City		260					220			620				570		980	990		960			910			420			620	
40			Shintone River	Shintone Bridge	Inashiki City		220								330				270		400	440		370			350			420			318	
41		Hitachitonega	Yorokoshi River	Horinouchi Bridge				290								310			290		196	222		210			530			117			430	_
42		wa River Area	Maekawa River	Ayame Bridge	Itako City			510						1		580			470		500	580		630			430			200			400	
43				Kawashima Bridge	Chikusei City			0				0				32			0		0	14		18			0	-		0			16	
43		Kinugawa	Kinugawa River	Takishita Bridge	Moriya City			130		+	_	202	-+	+		100 40	119	11	196	\vdash	380	289		187			83			113		_	133	_
44		River Area	m		analiya City		-	1.080	-+	-	_	202	+	+		100 40	119		196	\vdash	24	289 54		35	$\left \right $		83 40			36		_	52	_
45 46			Tagawa River	Tagawa Bridge	Chikusei City	- 20	-	1,080	-+	_			-+	-			-			\vdash				-	$\left \right $					_		_		
			Kokai River	Kuroko Bridge		620						142	_	-		213			269	\square	153	262		226			300			186			275	
47		Kokaigawa		Fumimaki Bridge	Toride City	L		500				310				68	<u> </u>	<u> </u>	350	\square	112	75		98			73			75			120	
48		River Area	Yatagawa River	Maruyama Bridge				660								1,800					840			1,660			1,610			620			440	
49			Nishiyata River	Sakaimatsu Bridge	Tsukuba City			500								1,000					750			1,160			630			420			244	
50			Inari River	Oguki Bridge				1,900				1,190				1,610			1,470		1,580	1,250		1,770			2,150			720			680	
51				Kurihashi Bridge	Koga City		1,440					159				52 48	42	18	123		39	22		109			55			23			26	
52		Tonegawa River Area	Tonegawa River	Fukawa	Tone Town		820					330			_1	320			95		122	\Box		290			171			202			62	_
53				Sawara	Inashiki City		1,220					330			195	202	181	39	140		133	256		117			101			115			88	
						Total nu		938	Detect	ion	914								· I			•												
						sam *1: Blar			time ions wh		_	were n	ot colle	ted T	he rees	ult "Not detec	table"	is indi-	ated as	"0."														
						sodi								1	- 1034			uk																
1																																		

Table 4.3-12 Detection of radioactive cesium at respective locations (Ibaraki Prefecture: river sediments) (No.2)

			Lo	cation								Ri	ver see	limen	ts/Radi	oactiv	e Cesi	ium (C	s-134-	+Cs-I	137)/C	oncent	ration(1	3q/kg)(*1)							0.001	
No.		Water area		Location	Municipality	4	5	6	7	8	FY201	4		12		2	2	4	5	6	7		FY20)15		12	2	2	Changes	Average of FY2015 (%2)	No.	Coefficient of variation	Trends(*3)
1				Yamagoya Bridge		4	55	0	_	8 44	9.	_	66	12	_	23	3	4	160	0	/	36	9	-	67	12 .	83	-		87	1	2.06	\sim
2			Satone River	Murayama Bridge	-		137			81		_	234		-	137			96			88			87		43	-	Mun	79	2	0.87	~
3				Kurabeishi	Kitaibaraki City		56			89			60			21			45			52			44		41		\	46	3	0.70	<u>`</u>
-	Tagagawa	River System	Hanazono River	Isonare Bridge	1		54		_	57			_	112	-	155	_		20			12		-	34	-	41	-	1	27	4	0.87	~
5				Sakae Bridge	Takahagi City		12		_	0			92		-	11	_		67			0			0		19	-	1000	22	5	3.22	~
6			Okita River	Sakai Bridge	Kitaibaraki City		50		_	50		-	_	24	-	61			81			34			49		52	-	<u> </u>	54	6	2.11	~
7			Hananuki River	Shinhananuki Bridge	Takahagi City		141	-	_	108			182		-	151	_		101			86		_	88	-	75	-	~	88	7	0.87	~
8				Yamagata	Hitachiomiya City		16	_	_	24		-	102	_	-	15	_		20			15		-	18	-	18	-	\	18	8	2.48	~
9	Kujigawa I	River System	Kujigawa River	Sakaki Bridge	Hitachi City/Tokai	_	49		-	18		-	14	_	-	14	_		23			15			63	-	42	-	<u> </u>	36	9	1.20	~
10				Noguchi	Village Hitachiomiya		15	_	_	10		_	14	_	_	0	_		0			13		-	14	-	42	_		10	10	1.48	~
10			Noboosuo Biror	Shimokunii	City/Shirosato Town Mito City		73		_	369		_	62	_	_	142			33			31			91	_	12	_	V	42	10	3.07	~
12		Nakagawa River Area	Nakagawa River		Mito City/Hitachinaka		258		_	274		-	170	-	-		_		116			17		-	_	-	-	_		40		-	~
12				Katsuta Bridge	City		-	_	_	-		_		_	-	202						-		-	16	_	12	-	L		12	2.04	~
	Nakagawa		Nakamaru River Hinumamae	Yanagisawa Bridge	Hitachinaka City		730	_	-	310		-	700	_	-	680	_		540			580			660	_	308	-		522	13	0.93	~
14 15	River System		River	Nagaoka Bridge			312		-	188		-	61	+	-	126	_		88		-	37		-+	62	_	51	-	M	60	14	0.82	
-		Hinumagawa	Hinuma River	Takahashi	Ibaraki Town		480		_	55		_	16	-	-	13	_		17		-	13	\vdash	-+	0	+	12	-		11	15	1.76	<u> </u>
16		River Area	Kansei River	Kansei Bridge			51	_	_	24		_	113	+	_	31			25			118	$\mid \mid$	-	35	+	25	-	~~~~	51	16	0.61	~
17			Daiya River	Oya Bridge	Hokota City		400	+	_	290		-	137	\rightarrow	-	77			99			156	$\mid \mid$	-	160	+	202	-	~~	154	17	0.79	~
18			Hinuma River	Hinuma Bridge	Mito City/Oarai Town		550		_	890		-	364	_	-	442			298			179		_	169	_	56	-	-m-	176	18	0.68	~
19			Hokota River	Asahi Bridge	4		163		_	182		_	352		-	113			147			118		-	113		89	-	~ Vh	117	19	0.56	~
20			Tomoe River	Shintomoegawa Bridge	Hokota City		156		_	99		-	348		-	242			57			67			73	_	106	_	mr	76	20	0.72	>
21			Taiyo River	Tazuka Bridge			174		_	93		_	154		_	141			69			140		_	166		75	-	~~~~	113	21	0.76	/
22		Kitaura River	Takeda River	Uchijuku-ohashi Bridge			190		4	228			238			220			116			143			124		130)	~~~_	128	22	0.54	1
23		Area	Yamada River	Nioroshi Bridge	Namegata City		92		1	165			135			114			77			186			85		144	1	Vin	123	23	0.73	\searrow
24			Kurakawa River	Kurakawa Bridge			319			58			117			121			131			202			141		195	7	Lan	168	24	0.99	>
25			Gantsu River	JA Yokohashi Bridge			185			77			110			122				93		95			122		83		~~~~	98	25	0.43	>
26			Nagare River	Suhoi Bridge	Kashima City		182		4	219			188			144			225			248			157		158	3	m	197	26	0.80	\searrow
27			Sonobe River	Sonobeshin Bridge	Omitomo Citu		800			11				97		162			132			146			90		97		M	116	27	1.00	1
28			Sanno River	Tokoro Bridge	Omitama City		31		e	580				368		590			441			580			600		497	7	~h~	530	28	0.61	1
29			Koise River	Heiwa Bridge	Ishioka City		263			34				31		70			27			40			262		103	3	~~	108	29	1.11	~
30			Kajinashi River	Kamishuku Bridge	Namegata City		57			88				55		68			90			92			94		65		\sim	85	30	0.55	1
31			Hishiki River	Hishiki Bridge			610		3	364				301		324			214			305			275		252	2	~~~	262	31	0.54	~
32			Ichinose River	Kawanaka Bridge	Kasumigaura City		284		٤	330				460		382			409			367			416		495	5	~~~	422	32	0.57	1
33		Kasumigaura	Sakai River	Sakai Bridge/National Rout 354	2		70			37				46		80			35			281			82		147	7	5	136	33	1.52	$\overline{\}$
34		River Area	Shinkawa River	Shinten Bridge	Tsuchiura City		1,640		1,	640			1	,480	1	,410			1,270			1,840		1	,220		1,35	10	W~	1,420	34	0.56	~
35			Sakura River	Eiri Bridge	Tsuchiura City/Tsukuba City		73			79			21			37			28			28			75		53		An	46	35	0.77	1
36	Tonegawa River		Bizen River	Bizengawa Bridge			1,490		1,	110			350			720			1,760			830		1	,830		2,16	i0		1,645	36	0.65	MÁ
37	System		Hanamuro River	Shinwa Bridge	Tsuchiura City		830		ç	930			432			396			256			311			197		208	3	Nr.	243	37	0.59	<u> </u>
38			Seimei River	Katsuhashi Bridge	Ami Town		610		9	970			920			790			610			980			660		680)	A	733	38	0.88	<u> </u>
39			Onogawa River	Okuhara-ohashi Bridge	Ryugasaki City/Ushiku		610		_	150		-	432		_	520			371			476		-	443		319	-	~~~~	402	39	0.43	~~*
40			Shintone River	Shintone Bridge	City Inashiki City		11	+	_	249	+	_	199	+	_	194		-		300	\vdash	299	\vdash	-	255	+	258	_		278	40	0.36	~~~
40		Hitachitonega		Horinouchi Bridge			34		_	36		_	22	+	-	329				262	1	235	\vdash	-	190	+	234	_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	226	40	0.50	
41		wa River Area	Maekawa River		Itako City		16		_	130	-	-	409	-	-	473			251	202	<u> </u>	202	\vdash		190	+	209	_	~~~~	212	41	0.38	/ ٧ ٧ •
42		.ures Aired	mackawa Rivêr	Ayame Bridge Kawachima Bridge	Chikusei City		16	+	_	20		_	409	+	_	0			0		-	0	\vdash	+	0	+	0	-	Δ	0	42	1.55	<u> </u>
43		Kinugawa	Kinugawa River	Kawashima Bridge Takishita Bridge			213	+	_	20 75	+	_	56	+	-	0 90	_		74		-	103		-	18	+	29	-			43	0.73	
		River Area	m		Moriya City		-	_	_	-		_	-	+	-	-					\vdash	-	\vdash		_	+	-	-	1 mm	56			<u>M</u>
45 46			Tagawa River	Tagawa Bridge	Chikusei City		65	+	_	16	_	-	17	+	-	16	_		26		-	0	\vdash	_	26	+	22	-	<u> </u>	19	45	2.40	~
			Kokai River	Kuroko Bridge	m 11 01		131	+	_	13		-	23	_	-	76	_		128		-	150		_	132	+	103	-	m	128	46	0.72	~
47		Kokaigawa		Fumimaki Bridge	Toride City		150	_	_	57		+	53	+	-	50	_		79			60		-	34	-	32	-	×~~~	51	47	1.00	/
48		River Area		Maruyama Bridge	L		212	+	_	560		+		171	_	177			200		-	158		-	103	+	107	_	~~~~	142	48	0.95	~
49			Nishiyata River	Sakaimatsu Bridge	Tsukuba City		37	+	_	208		_	450		_	30			206		-	237		-	275	+	82	-	~~~~	200	49	0.82	>
50			Inari River	Oguki Bridge			640	_	-	10		_		610	-	460			370			486		-	368	_	464	_	~~~~~	422	50	0.58	~
51		Tonacon		Kurihashi Bridge	Koga City		149		_	42		_	20		-	29			50		<u> </u>	72		-	43		79	-	L	61	51	2.42	\searrow
52		Tonegawa River Area	Tonegawa River		Tone Town		57		_	100		_	236		_	65			123		L	134			14	\perp	26	-	m	74	52	1.02	>
53				Sawara	Inashiki City		11		_	14		_	90			15			14		I	26			13		37		~~~~	23	53	1.63	\searrow
						*1: Blar	ik cells	are loca	ions v	here :	samples	were	not col	lec ted.	The re	sult "N	lot det	ectable	" is ind	licated	l as "0.				А	в	D	Е	2 ·	200	Average		
						*2: Arit	hmetic .	Average	calcu	lated I	by assur	ning N	ID=0; 0	Color c	odes sl	how ca	itegori	es (see	the rig	ht).											_		
						*3: Res	ults of t	he analy	sis of	trends	at respo	ective	locatio	ns usir	g the n	nethod	explai	ned on	4.3(1)	2)	`	3	Decreasi	1g -	≯ lı	creasing	~	→ U	inchanged 📈	Varying			
														_														_					

5) Tochigi Prefecture


In Tochigi Prefecture, surveys were conducted 15 to 30 times from October 2011 to February 2016 at 56 locations (rivers) in public water areas (this analysis excludes the survey results at 49 locations where the survey was conducted only in 2011).

Regarding concentration levels of detected values, one location was categorized into Category C, five locations were categorized into Category D and 50 locations were categorized into Category E (see Table 4.3-13 and Table 4.3-14).

Concentration levels were generally decreasing at 39 locations, were unchanged at one location and fluctuating at 16 locations.

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	1	No.39
D	Upper 25 to 50 percentile	5	No8, No.32, No.35, No.51, No.55
E	Upper 50 to 100 percentile(lower 50%)	50	No.1, No.2, No.3, No.4, No.5, No.6, No.7, No.9, No.10, No.11, No.12, No.13, No.14, No.15, No.16, No.17, No.18, No.19, No.20, No.21, No.22, No.23, No.24, No.25, No.26, No.27, No.28, No.29, No.30, No.31, No.33, No.34, No.36, No.37, No.38, No.40, No.41, No.42, No.43, No.44, No.45, No.46, No.47, No.48, No.49, No.50, No.52, No.53, No.54, No.56

Table 4.3-13 Categorization of detected values at respective locations (Tochigi Prefecture: river sediments)

(*) Scales of the vertical axes differ in the left and right figures.

Figure 4.3-8 Changes in concentration levels over the years at respective locations

(Tochigi Prefecture: river sediments)

Table 4.3-14 Detection of radioactive cesium at respective locations

_			Location										River	edime	nts/Radioacti	ive Ceri	ium (C	s-134+	Cs-J 374	Concert	ration/P	(kg)(*1)								
			Location					FY201	ı				River s	ume	nts/Radioacti FY2		.ani (C	-1.34+	ca-13/)	concent	auon(Be	r*8/(*1)				FY2013				
		Water area		Location	Municipality	8 9	10	11		2	3 4	5	6	7	8	<u> </u>	10	п	12 1	2	3	4 5	6	7	8	-		11 12	2 1	2
				Ikuyobashishita			90			96					42	93			19	15		13			12			14		23
			Nakagawa River	Komei Bridge	Nasushiobara City		250			97			139			78		4	43	64		51			97		\neg	38		36
			Takaomata River	Takaomata Bridge			650			1,290			89			162		2	21	197		133			76	$\uparrow \uparrow$	+	79	1	116
			Yukawa River	Yukawa Bridge	Nasu Town		240			204			79			75			54	73		95			73			50	1	43
			Nakagawa River	Kamikuroiso	Nasushiobara		101		-	116			64 87		44 72	109		_	59	16		91	49	28	-			74	+	11
			Yosasa River	Yosasa Bridge	City/Nasumachi		1.160	\vdash		610			73	\vdash		120		_	21	79	+	78		+	105			85	+	90
			Kurokawa River	Shinden Bridge	Nasu Town		64			500		+	175			105			94	128	+	10	104		90	-		80	+	74
			Yosasa River	Sninden Bridge Kawada Bridge			610	\vdash	-	162		+	102 102		189 239	105		_	94 109	128		103	104	274	-			50	+	67
			-		-		57			83	_				54 34	102			53	58	_	_		42	-	-		33	+-	49
			Nakagawa River	Kurobane	-		-												_	_	_	59	61	_		-			+-	
			Matsuba River	Tributary	Otawara City		780		_	199			75 320		114 115	62		-	82	69	_	68	36	80	-	-		132	+-	106
			Sabigawa River	Udagawa Bridge	4		32			660			34			270		_	34	183		154			336			360		162
Naka	agawa River	System	Momura River	Momuranaka Bridge			114			196			290			290			20	105		137			87		_	107	\perp	143
				Yunohara	Nasushiobara City		83			100					84	98		4	58	36			72	56				42		
			Hokigawa River	Sekiba Bridge	. and an and and any		126			101			76			81		4	32	193			111		64			67		88
			angawa Kiver	Iwai Bridge	0		16			50			66			79			52	93		55		Ι	53			51		19
				Hokigawa Bridge	Otawara City		165			89			30 72		54 34	52		:	52	53		17	21	46	18	11		36		25
			Nakagawa River	Shinnaka Bridge			40			14			51 31		30 107	38		3	56	16		33	19	14	57	0	1	94		18
			Mumogawa River	Kosei Bridge	Nakagawa Town		28			26		1	12 12	14	14	34		4	43	30		31	22	20	19	16	+	14	1	15
				Saikachi Bridge	Shioya Town		198			300			300			1,020		_	02	168		191			176			217	+	201
			Arakawa River	Renjo Bridge	Sakura City		0	\vdash		33			32	\vdash		44		_	15	33	+	63		+	0		_	12	+	14
				Tanaka Bridge	Yaita City		1.440			130		+	78			127			22	143	+	85		+	195		_	12	+	72
			Uchikawa River			\vdash						+	82						_	-	-+			+				_	+	-
				Asahi Bridge	Sakura City	- -	18	\vdash	-	77	_	+	-	4-		114			01	82	+	94		-	100			72	+	68
			Arakawa River	Mukada Bridge	Nasu Karasuyama City	\vdash	90	\vdash	_	740	-+	+	11 12	49	30	84	_		75	99	+	84	27	30				19	+	35
	r		Egawa River	Tributary			162			130			58 85	52	51	58		-	56	63		45	18	84			_	480	—	440
			Kinugawa River	Kawaji Daiichi Power Station, front	1		19			40					36	75			19	45			38		33			71		17
			Yunishi River	Maesawa Bridge	1		25								10	0				0			13		0			0		12
			Ojika River	Tributary			37			32					36	18			16	15	T		14		240)	_T	17		35
			Kinugawa River	Kosagoe	1		55			63					800	780				690			35		59			47		23
			Itaana River	Tributary	Nikko City		4,900			290			120		146	113	91	91 1	36				75 8	1 94	86	43	\neg	73		1
			Yukawa River	Tributary	1		118			\square					63	60			14	72			0	1	0			11	+	137
			Daiya River	Shinkyo Bridge	1		47	\vdash		123			58			37			54	38	+		75	+	21	+		33	+	15
			Shidobuchi River	Sujichigai Bridge	1		260	\vdash	+	400	+	+	270	\vdash		245		_	103	226	+		212	+	182	-		123	+	162
			Daiya River		+		13	\vdash	-	400			45		24	69	15	-	57	13			16 1	5 0	15	-		125	+	102
			-	Kaishin Bridge (Harigai)	Shimo T	\vdash	20	\vdash		45	_	+	45		24	69 109			_	42	+	_	470 1	_	-		_	274	+	97
	Kinugawa	River System	Kinugawa River Nishi-Kinugawa	Sanuki	Shioya Town	\vdash		\vdash	_	_		+		\vdash	29		18		74	_	+	-	4/0 1.	54 IS4	_	┨			+	_
			River	Nishi-Kinugawa Bridge	Utsunomiya City		1,520	\vdash	_	2,290		+	126			65	_		45	360		56		_	0	++	-	31	+-	1,540
			Kinugawa River	Kinugawabashi Bridge(Hoshakuji Temple)			28			0			10			24		:	20	14		31			0			0		0
				Daidoizumi Bridge	Mooka City		0			12			24			30		4	42	51	T	0			10		Ţ	11		0
			Egawa River	Tributary	Shimotsuke City		175			550			137 214	56	62	58		4	19	88		41	30	34	17	480		70		51
				Nikko City Hall, front	N711 67		510			800			450			1,780		5	00	450			310		420	1		370		650
iegawa			Akabori River	Kiwadajima	Nikko City		117			125			104			93		4	40	380			187		78	$\uparrow \uparrow$	+	61	1	69
tiver /stem			Tagawa River	Ozobashi Bridge	1		62	\vdash		57			28 69	104	28	101		1	42	150	\neg	64	23	18	13	36	+	17	+	35
			Kamagawa River	Tsukushi Bridge	Utsunomiya City		182	\vdash		65	-		99			78		_	58	123	+	133			27	-		50	+	169
				Meiji Bridge	Kaminokawa		10	\vdash		10			122			101		-	18	29	+	32	1	+	31	-	-	76	+	41
			Tagawa River	Yanabashi Bridee	Town Oyama City		360	\vdash	+	223		+	86			128			73	69	-+	66			43	-		104	+	96
				Kaijima Bridge	Kanuma City		109	\vdash	_	93		+	11			46	-		30	09		19		-	4.5	++		15	+	90
			Kurokawa River				_	\vdash				+						_	_	-		_		+	-	++		_	+	-
				Onari Bridge	Mibu Town		56	\vdash	-	38		+	75			32		_	15	0	+	13		+	0	++		0	+	17
		Omoi River Area	Oashi River	Akaishi Bridge	Kanuma City		10		_	14			15			0			11	11		0		+	0	+ +		0	+	0
			Koyabu River	Koyabu Bridge			940		_	860			42			65			56	65		46			36	-		49	—	420
			Omoi River	Tamotsu Bridge	Tochigi City		30	\square	_				12						10				0		115	-		0	+	0
	Watarase			Otome-ohashi Bridge	Oyama City		186			40			154 34	106	27	191			46	0		62	13	15	-	-	_	0		0
	River Area	Uzuma River Area	Uzuma River	Uzuma Bridge	Tochigi City		95			0			82 135	89	89	34		:	52	56		192	530	460	44	186		26		50
				Watarasegawa River intake weir at Sori Power Station	Nikko City		63	ΙT		34			36	20	38	55	53	T	34	27	T	18	19	32	54	$ \top$	20	15		21
							26		-	48			34			80		-	36	46	+	50		+	28	+	+	16	+	15
		Watarase Bium Anno	Watarase River		Ashikaga City		-	\vdash	-		+	+		\vdash					_	-	+	_		+	-	-			+	0
		Kiver Area			Tatabase 1107	\vdash	-		-			+					_			-	-+	-		+	-	-			+	-
						\vdash	-	\vdash				+		1.000			_		_	_		_		-	-	-			+	160
		l		Shinkai Bridge	I ochigi City	Tetal	-	D		57			43 164	127	46	45		4	10	36		29	34	30	16	13		19		22
						Total number of samples	r 1,213	Detecti times	on 1,061																					
	Watarase River Area	Area		Otome-ohashi Bridge Uzuma Bridge	Oyama City Tochigi City Nikko City	Total number of samples	186 95 63 26 71 128 48	Detecti	ion 1.061	0			154 34 82 135 36	89	89	34	53	3	46 52	56		192	13 530	460	101 9 44 54 28 0 112	1 186 186 2	53	0 26		

Table 4.3-14 Detection of radioactive cesium at respective locations (Tochigi Prefecture: river sediments) (No.2)

_				Location		1								iver s	ediments/	Radioad	ctive Ces	ium (C	Cs-134	Cs-137)/C	oncent		(Bq/kg)(*1)						Average of		Coefficient	
No.		v	Water area		Location	Municipality	4	5	6	7	8	FY2014	10	11	12	2	3	4	5	6	7		FY2015 9 10	11	12 1	2		hanges	FY2015 (*2)	No.	of variation	Trends(*3)
1					Ikuyobashishita		-	2	18	<i>,</i>	8 26	7	10	12	12		3	*	11	U	,	8	7 10	0	** 1	21	, M		12	1	1.01	<u> </u>
2				Nakagawa River	Komei Bridge	Nasushiobara City	-	24			20			45	_	19		_	17			21		11		16			16	2	0.99	~
-				Tahanana Di	-		-				24			45 25	\vdash	19	-	_	47			82	\vdash	31		41	A	~~~~		3	1.59	~
3				Takaomata River	Takaomata Bridge	Nasu Town	-	52								_	-					_		-		_	1	~~~	50			~
4				Yukawa River	Yukawa Bridge	Nasushiobara		62			49			25		43	-		30			15		17		64	~	\sim	32	4	0.83	~
5				Nakagawa River	Kamikuroiso	City/Nasumachi		102	58	83	45	90		44		24	-		47	131	32	59	66	24		29		nnmh	55	5	0.50	~~~*
6				Yosasa River	Yosasa Bridge	Nasu Town		24			430			55		820	-		19			17		19		17	7	$-\Lambda$	18	6	1.51	M
7				Kurokawa River	Shinden Bridge			68			90			62		77	7		75			60		35		30	~~~		50	7	0.95	/
8				Yosasa River	Kawada Bridge			75	134	152	146	206		61		137	7		36	54	123	82	68	71		80		1 m	73	8	0.79	>
9				Nakagawa River	Kurobane			26	38	63	23	31		19		25	;		23	15	18	21	29	23		19	~^	~~~~	21	9	0.53	\searrow
10				Matsuba River	Tributary	Otawara City		19	73	61	59	80		96		79	č		30	24	165	29	40	30		27	6	~~~	49	10	1.30	1
11				Sabigawa River	Udagawa Bridge				66		212			67		46	5		14			30		23		24	M	5	23	11	1.04	1
12				Momura River	Momuranaka Bridge				83			110		106		125	5		21			35		82		77		~~~	54	12	0.58	\searrow
13	Nakag	awa River S	System		Yunohara				12		16			11						0		32		24		32	\sim	~ ~	22	13	0.69	/
14					Sekiba Bridge	Nasushiobara City			60		410			75		100	6		74			49		39		34	_	~h	49	14	0.83	M
15				Hokigawa River	Iwai Bridge				14			204		12		15			18			23		13		17		. 1	18	15	0.98	N/N
16					Hokigawa Bridge	Otawara City		11	17	22	15	24		11		17	-		0	13	45	12	10	13		14	-	~~/	15	16	0.97	· · · ·
10				Nalasana D'			-	11	17	19	15	42		11		17	-		12	15	45	12	10	13		14		when	15	10	0.97	~
17				Nakagawa River	Shinnaka Bridge	Nakagawa Town	<u> </u>		17	19	-	42		15	\vdash	_	-	_		0				-		_		4				~
18				Mumogawa River	Kosei Bridge	a	-	16	11	18	0	20			\vdash	15	-		13	J	17	0	14	14		12		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	18	0.55	->
19				Arakawa River	Saikachi Bridge	Shioya Town	 	65			355			125	\vdash	120	-		71			55	\vdash	14		26			42	19	1.09	/
20					Renjo Bridge	Sakura City	<u> </u>	13			0			13		11	_		0			17	\vdash	0		0	~	~~~~	4.3	20	1.07	>
21				Uchikawa River	Tanaka Bridge	Yaita City		105			152			63		97	-		59			32	\vdash	26		43	5		40	21	1.87	
22					Asahi Bridge	Sakura City		54			279			19		33			35			38		29		32			34	22	0.81	\sim
23				Arakawa River	Mukada Bridge	Nasu Karasuyama		16	10	20	39	73		12		21	1		0	15	12	12	12	11		0	Λ_		8.9	23	2.22	/
24				Egawa River	Tributary	City		21	520	36	28	255		20		18	5		14	16	12	21	0	12		105	· · ·	ML	26	24	1.45	$\wedge \wedge \wedge$
25				Kinugawa River	Kawaji Daiichi Power Station, front			21			13			17		13	5		18			0		24		16	~^\	Am	15	25	0.69	\searrow
26				Yunishi River	Maesawa Bridge			0			11			21					0			14		0		13		ληλί	6.8	26	1.08	NVA.
27				Ojika River	Tributary			11			14			20		11			0			21		0		0		A	5.3	27	1.80	
28				Kinugawa River	Kosagoe			66			73			118		36	5		33			95		14		16	7	1	40	28	1.58	NV.
29				Itaana River	Tributary	Nikko City		62	41	72	53	75		55		47	-		62	63	41	34	23	25		116	-	~~~~	52	29	3.62	<u> </u>
20				Yukawa River	Tributary	-		0		12	10	15		0					02	0		0		17		0		1	4.3	30	1.31	~
30											_									0				-		_		VL_				~
31				Daiya River	Shinkyo Bridge			12			20			17		20			14			15		11		13	~	n	13	31	0.83	>
32				Shidobuchi River	Sujichigai Bridge	-			189		150			108		67	-		95			81		146		100	- 11	\sim	106	32	0.47	>
33				Daiya River	Kaishin Bridge (Harigai)				24 11	13	0	12		0		0			19	11	18	15	11	0		20		4-2-4	13	33	0.95	>
34		Kinugawa F		Kinugawa River	Sanuki	Shioya Town			14 0	0	0	20		0		19			13	0	25	12	0	17		19	~~	M	12	34	1.59	MM
35		5		Nishi-Kinugawa River	Nishi-Kinugawa Bridge	Utsunomiya City			32		69			108		18	8		14			25		196		149	1		96	35	1.82	>
36					Kinugawabashi Bridge(Hoshakuji Temple)	orsunonnya City			0		13			0		0				0		0		12		15		٩., /	6.8	36	1.17	$\sim \sim$
37				Kinugawa River	Daidoizumi Bridge	Mooka City			22		95			43		0				0		0		11		13		ι Λ	6.0	37	1.23	\sim
38				Egawa River	Tributary	Shimotsuke City		38	46	13	20	0		19		11			21	45	18	40	31	40		17	Á	1	30	38	1.54	<u> </u>
39				-	Nikko City Hall, front	-		191			150			293		113	-		1.010			262		72		64	~^		352	39	0.88	<u> </u>
40 To	iegawa			Akabori River	Kiwadajima	Nikko City	⊢	48			41			26		25			23			29		102		20		N.	44	40	0.99	<u>,</u>
1	kiver /stem			Tagawa River	Ozobashi Bridge	1	-	48 20	12	27	41	13		14		16	-		10	14	14	12	0	102		11	~	\sim	10	40	1.04	$\overline{}$
41 0.				Tagawa River Kamagawa River	Tsukushi Bridge	Utsunomiya City	⊢	81		~'	12			56		40			35			25		14		18	-	nA	23	41	0.66	~
_				samingawa River	-	Kaminokawa	-				_		$\left \right $		\vdash	-	-					_	\vdash	-	_	_	~	· v · C				<u> </u>
43				Tagawa River	Meiji Bridge	Town		0			17			14	\vdash	0			0			0	$\left \cdot \right $	0		19		-^	4.8	43	1.24	~
44	┝				Yanabashi Bridge	Oyama City		42			57			74		27	-		51			63	\vdash	12		22	~	~~~~	37	44	0.93	~
45				Kurokawa River	Kaijima Bridge	Kanuma City	<u> </u>	10			14			0		0	-		0			0		0		0	h	~~	0	45	1.68	~
46					Onari Bridge	Mibu Town			0		0			0		0	_		0			0		0		0	\sim	~~	0	46	1.64	>
47			Omoi River	Oashi River	Akaishi Bridge	Kanuma City		0			0			18		0			0			0		10		0	\sim	\square	2.5	47	1.34	$\wedge \wedge \wedge$
48			Area	Koyabu River	Koyabu Bridge			60			29			19		18	8		19			13		14		13			15	48	1.87	\searrow
49			[Omoi River	Tamotsu Bridge	Tochigi City			0		0			0		0			0			0		0		0	~~	Λ	0	49	1.97	$\wedge \wedge \wedge$
50		Watarase		GINOI KIVET	Otome-ohashi Bridge	Oyama City	L	15	43	65	540	0		0		0			19	0	14	0	0	0		0	~~	m_	4.7	50	1.85	\sim
51		River Area	Uzuma River Area	Uzuma River	Uzuma Bridge	Tochigi City	1	195	0	115	82	69		157		110	6			163 195	0	0	67	98	1	13		how	77	51	1.07	NVA.
51 52		ľ			Watarasegawa River intake	Nikko City	1	15	90	18	15	13		18		28			11	13	13	23	23	15		0	2.4	1.	14	52	0.68	-
					weir at Sori Power Station		\vdash	0		-	_				\vdash	14	_		\vdash	0	-	_	\vdash		_	_		- 200				
53 54			Watarase	Watarase River	Hajika Bridge	Ashikaga City	-	0			15			0		_	_		\vdash			0		0		21	~~~	·~~~	5.3	53	0.94	~
			River Area	++ atarase River	Nakabashi Bridge				10		0			0	\vdash	0	-		\vdash	0		0	\vdash	0		0	<u> </u>	<u> </u>	0	54	2.53	
55					Watarase-ohashi Bridge	Tatebayashi City	<u> </u>		0		59			12		0	-			295		14	\vdash	10		0		MA	80	55	1.16	NVA.
56					Shinkai Bridge	Tochigi City			17 11	77	16	24			18	11				0 12	0	0	42	0		17	_/_	-hr	10	56	1.06	\searrow
							*1: Bk	ink cell	s are locations	s where	e samp	les weri	e not co	llected	d. The rest	it "Not	detectable	" is inc	dicated a	1s "0."				А	вс	D	Е		32	Average		
							*2: Ar	ithmeti	Average; ca	lculated	by as	uming	ND=0;	Color	codes sho	w categ	ories (see	the rig	ght).													
							3- R#	sults ~	the analysis	of tree-	ls at re	spp-tiv	e locari	ans ur	ing the me	thod err	plained on	4.3(1)	(2)	\rightarrow	Decrea	using	→ Inc	reasing	~~	.inc hane	ed 👭	Varying				
														- 48	at			(1)				-		-								

6) Gunma Prefecture

In Gunma Prefecture, surveys were conducted 10 to 30 times from November 2011 to January 2016 at 48 locations (rivers) in public water areas (this analysis excludes the survey results at eight locations where the survey was conducted only in 2011).

Regarding concentration levels of detected values, one location was categorized into Category A, nine locations into Category D, and 38 locations into Category E (see Table 4.3-15 and Table 4.3-16).

Concentration levels were generally decreasing at 31 locations, were unchanged at one location and fluctuating at 16 locations.

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	1	No.47
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	0	(None)
D	Upper 25 to 50 percentile	9	No.1, No.4, No.15, No.27, No.32, No.39, No.41, No.44, No.48
Е	Upper 50 to 100 percentile(lower 50%)	38	No.2, No.3, No.5, No.6, No.7, No.8, No.9, No.10, No.11, No.12, No.13, No.14, No.16, No.17, No.18, No.19, No.20, No.21, No.22, No.23, No.24, No.25, No.26, No.28, No.29, No.30, No.31, No.33, No.34, No.35, No.36, No.37, No.38, No.40, No.42, No.43, No.45, No.46

Table 4.3-15 Categorization of detected values at respective locations (Gunma Prefecture: river sediments)

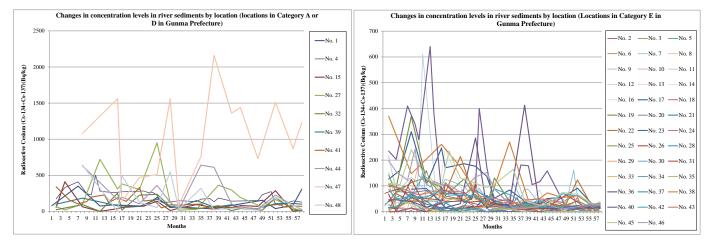


Figure 4.3-9 Changes in concentration levels over the years at respective locations

(Gunma Prefecture: river sediments)

		Los	ation											1	River	ediments/F		ive Cesium (Cs-134	+ Cs-13	7)/Con	centrati	ion(Be	/kg)(*))								_
	Water :	area	Location	Munic ipality				FY20			_						FY2								-1	1	-		2013		. 		
	-				8	9	10	11	12	1 :	2	3 4	5 350	6	7	8	9 74	10	11 90	12	1	2 3	3 .	4 5		7	8	_	9 10	52			2
		Tonegawa River	Hirose Bridge								_														72	-	19	_				61	
			Tsukiyono Bridge	Minakami Town				71		8	7		102		37	55 54	-		68	_	71				70 46	47	_	_	40	60		36	
		Akaya River	Kosode Bridge					24			_	92	68			-	42		40	-	13				39		60	-		13		90	_
		Sakura River	In Ooaza Yachi	Kawaba Village					173	3	30		410		244	227 500	279		259	2	71				282 260	263	3 22	!2 1	126	129		147	
			Kirinoki Bridge	Katashina Village					38			63	38				159		31						46		15	7		17		34	
		Katashina River	Tonemachitakatoya	Numata City					10			15	0		10	0 15	0		0						10 10	0	0	J	0	0		0	_
			Futae Bridge	. tunnin City				30		5	1		39		86	96 154	47		74	1	26				99 80	95	74	4 9	92	39		34	
	Tonegawa	Agatsuma River	Shinto Bridge	Naganohara Town					0	2	4		11			187			95		0				0		0	,		0		0	
	River Area	Shirasuna River	Shuttatsu Bridge	Nakanojo Town					12								12								0		12	2		0		0	
		Agatsuma River	Downstream of Azuma Bridge	Higashi-Agatsuma Town					0		D		11		22	0 14	14		10		0			0	0	0	12	2	0	0		0	
		Nakuta River	Tonoda Bridge	Takayama Village					215	7	3			133			81		85	:	83				68		93	3		60		38	-
		Agatsuma River	Agatsuma Bridge	-					153	_	3		53	19	37	170 610			0		11		+	1	34	95	-	_	56	46	\vdash	10	-
		Tonegawa River	Taisho Bridge	Shibukawa City					39	3	_		31	49	15	56 69			30		50		+	4		65	_	_	16	15	\vdash	20	-
		Takizawa River	Shintakizawa Bridge	Shibukawa					206	9	-			80	-		50		48		45	+	+		65	-	48	_		24	\vdash	39	-
		- annaw d River	Gunma-ohashi Bridge	City/Yoshioka Town Maebashi City					55	_	10			64			0		3		53	+	+	_	73	+-	14	_		12	\vdash	43	-
		Tonegawa River	5						55	4	_			64 44			43		$\left \right $		53 39	_	+	_	73 64	+	14	_	_	0	\vdash	43	_
			Fukushima Bridge	Tamamura Town						2	-									-			+	+		-					\vdash		_
		Nagai River	Kamigonda Bridge	Takasaki City					126	-	-	160		310			107				70		+		186	-	17	_	_	137		52	_
		Karasu River	Karasugawa Bridge						77		_	88		52			51		$ \square$		39				41	-	30	_		19		19	
		Usui River	Nakase Bridge	Annaka City					106	9	4			370			120			_	63				127		57	_		19		131	_
			Hanataka Bridge	Takasaki City					38	7	8			74			82			40	51				47		68	8		12		0	
		Kabura River	Tadakawa Bridge	Shimonita Town					17	1	1			56			29			15	17			0			13	3		0		0	
		Rabara Rever	Kaburagawa Bridge	Takasaki City/Fujioka City					0	6	19			42			38			91	73			21	4		49	ə		50		22	
		Ogawa River	Kinzan Bridge	Kanra Town										87			90			36	13			1			16	6		63		36	
negawa	Karasu River Area	Nanmoku River	Ozawa Bridge	Nanmoku Village										68			10			18	0			1			21	1		0		11	
River ystem		Someya River	Yakushi Bridge	Shinto Village					142	7	3			113			133			67	53				47		67	7		24		35	
		Inogawa River	Kamakura Bridge	Takasaki City					68		D			125			12			11	0				23		19	9		23		39	
		Karasu River	Iwakura Bridge	Takasaki City/Tamamura Town					67	1	9			101			720			310 3	80			30	2	1	95	50		122		16	
		Kanna River	Shinkaname Bridge	Ueno Village										37			0			16	0			1	i .			-		0			-
		Kanna River	Morito Bridge	Kanna Town					0		D			0			0			0	0			c				-		0	-		-
		Kanna River	Tobukyo Bridge	Fujioka City/Kamikawa					0		_			0			0				0			0				+		0	-		-
		Kanna River	Kannagawa Bridge	Town Kamisato Town					0					14			0				07				36			-	_	42	-		-
		Tonegawa River	Bando-ohashi Bridge	Honjo City					22	4	_	_		93			0				17		_	22			23		_	42		53	_
		Akagishirakawa	5	anaijo City						_	-	_		93 40								_	+	- 22	-	+	-	_					_
		River	In Shimohosoi Town						108	1	_						78				41		+		63	+	15	_	_	18		13	_
		Momonoki River	Utsuboi Bridge	Maebashi City					27	_	5			75			14		$ \mid$		0		+	_	0	-	16	_		0		13	_
	Tonegawa	Arato River	Okuhara Bridge						0	4							13				0		_	_	0	-	0	_		26		10	_
	River Area	Kasukawa River	Hozumi Bridge						46	4	_	_		39			18			-	16		_	3		-	28	_		15		29	
		Hirose River	Nakajima Bridge	Isesaki City					15	1	7			68			41				35			C			83			57		45	_
		Hayakawa River	Hayakawa Bridge						370					147						261				17	3		82	2		25	\square	95	_
			Maejima Bridge	Ota City					99					183						77				7			16	i9		67		56	
		Tonegawa River	Tone-ozeki Weir	Chiyoda Town /Gyoda City					235	20	03		410		340	280		640 380		72	83			5	75	50	95	5 4	100	172		28	_
		Koguro River	Kayano Bridge	Kiryu City					340			158	103		136	198		228 120		187	1	39		33	0 143	15	11	.3 4	48	90		87	
			Takatsudo	Midori City					86	5	0			60			56	•		84		64		6			61	1		36		89	
		Watarase River	Intake for Akaiwayosui water channel	Kiryu City					98	9	16		82		69	66		74 80		76	t	81		7	65	90	78	8 1	62	53	\square	52	-
	Watarase	Tatara River	Ejiri Bridge	Oura Town						+	╈			630					\square	164 1	97		+	10		t	36	_		126	\square	26	-
	River Area		Kannon Bridge	Kiryu City					110	+		104		240			128			100		35	+	13		1	11	_		94		107	-
		Kiryu River	Sakai Bridge	Kiryu City/Ashikaga					198		55		122		243	140	\vdash	95 118	\vdash	105	_	04	+	7		+	13	_		152	\vdash	88	-
		Tsuruuda River	Lake Jonuma	City Tatebavashi City						-	-			1080	-+-		+				41		+	47		+	51	_		1560	\vdash	92	-
		Yatagawa River	Togoda Bridge	Meiwa Town/Itakura						+	+	_		640			+				190	_	+	12		+	51	_		550		28	-
	I	alagawa Kiver	r ogoda in idge	Town	Total m	umber		Detec	tion	+				040						0 4	.70			12	· I	1	5	<u> </u>		530		20	_
					of san		214	tim		61																							

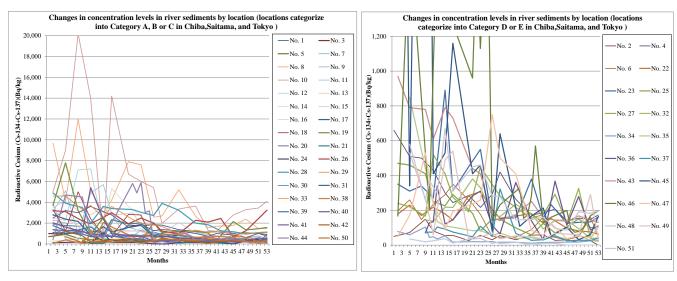
Table 4.3-16 Detection of radioactive cesium at respective locations (Gunma Prefecture: river sediments) (No.1)

							(Juni			1010	.0	-u	0.		01	00				0)	(110	. ~	,									
			Los	ation								1	River se	diments/I	Radioac	tive Ce	ium (C	s-134-	+Cs-137)/C	oncent	tration									Average of FY2015		Coefficient	
No.		Water a	irea	Location	Municipality	4	c	6	7		FY2014	10	11	12 1	2	3	4	6	6	2		FY2015 9	10	11	12		2	2	Changes	FY2015 (*2)	No.	of variation	Trends(*3)
1				Hirose Bridge		4	5	42	/	8 34	9	10	83	12 1	2	3	4	2	154	/	38	9	10	84	12	307	2	, /		146	1	0.85	NVA.
2			Tonegawa River	Tsukivono Bridge	Minakami Town			33 55	25	50	23		38	51	-			27	15	18	18	15		19	_	22		-	The	19	2	0.54	····
3			Akaya River	Kosode Bridge				16		17	20		19	24	_			25	15	10	10	1.5		13	_	13		_	M	16	3	0.79	~
4			Sakura River	In Ooaza Yachi	Kawaba Village		135	169	179	132	185		141					150	231	273	100	85		144	_	128		_	K-mh	159	4	0.44	~
5			CORGEN REPORT	Kirinoki Bridge	Katashina Village		155	107	,	13	100		17		-			150	2,51	213	15	65		14	_	120		-	Λ	16	5	1.05	~
6			Katashina River	Tonemachitakatoya	reaction and things		42	0	0	0	0		0		-			21	47	58	10	0		0	_	0		_		10	6	1.76	NM.
7			Annonin Kitti	Futae Bridge	Numata City	_	54	110	53	89	85		30	36	-			53	31	161	59	19		18	_	24		1	Mal	52	7	0.56	
,			Agatsuma River	Shinto Bridge	Naganohara Town		34	38	55	27	80		0	10	_			0	31	101	10	19		10	_	24		~	N	7.5	8	2.01	
0		Tonegawa River Area	Shirasuna River	Shuttatsu Bridge	Nakanojo Town			10		0			0	0	_	-		0			0			0	_	19	-	4		4.8	9	1.45	 ₩
2			Agatsuma River	Downstream of Azuma	Higashi-Agatsuma		0	0	0	0	11		0	0	-	-		0	0	0	0	0		0	_	0				4.0	7	1.45	////
10			Agatsuma River	Bridge Tonoda Bridge	Town Takayama Village		0	19	U	15			17	21	_			19	U	0	17	0		20	_	25		-6	<u>hu</u>	20	10	0.87	1
11			Agatsuma River	Agatsuma Bridge	i akayama vuage		0	26	11	15	0		17	17	-			0	0	0	0	12		0	_	0		-	1	1.7	12	2.30	/
12			5	5	Shibukawa City										_	-									_	_	_	5.0	A				\sim
13			Tonegawa River	Taisho Bridge	Shibukawa		25	20	14	12	15		35	53	_	-		12	11	15	14	0		12	_	16	_	~	~L~	11	13	0.86	////
14			Takizawa River	Shintakizawa Bridge	City/Yoshioka Town	\vdash	23 93			15			24 50	22	-	-		42			20 286		\vdash	18	-+	42 14	+	- 1	June -	31	14	1.04	/
15			Tonegawa River	Gunma-ohashi Bridge	Maebashi City	\vdash				52 0			50 85	80		-							\vdash	0		_		- (^	m.		15	1.22	\sim
16				Fukushima Bridge	Tamamura Town		57							-	-			37			11				_	35		L L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	21	16	0.84	1004
17			Nagai River	Kamigonda Bridge	Takasaki City	\vdash	84			42			31	51	_	-		55			91	<u> </u>	-	28	_	31	_	- (m	51	17	0.70	/
18			Karasu River	Karasugawa Bridge				26		13			11	35	_	-		22			23			11		0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14	18	0.69	>
19			Usui River	Nakase Bridge	Annaka City			17		27			26	22	-			20			42			14		13		1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22	19	1.12	>
20				Hanataka Bridge	Takasaki City		0			0			13	0	_			13			15			0		12		- 1	-M	10	20	0.99	1
21			Kabura River	Tadakawa Bridge	Shimonita Town Takasaki City/Fujioka		17			12			0	0	_			0			0			0		0	_	/	\sim	0	21	1.39	>>
22				Kaburagawa Bridge	City		24			23			27	43				0			123			17		0		~	~~~^	35	22	1.04	MM.
23		Karasu	Ogawa River	Kinzan Bridge	Kanra Town			13		37			18	18	-			10			11			23		13			L.	14	23	0.85	>>
24 1	onegawa River	River Area	Nanmoku River	Ozawa Bridge	Nanmoku Village		0			13			0	0	_			0			0			0		0			hm	0	24	1.79	>>
25	System		Someya River	Yakushi Bridge	Shinto Village		23			20			20	17	_			23			19			29		21		V	~	23	25	0.79	>
26			Inogawa River	Kamakura Bridge	Takasaki City		46			10			12	14				0			11			0		0		V	L	2.8	26	1.36	~
27			Karasu River	Iwakura Bridge	Takasaki City/Tamamura Town		29				362		296	19	2				60		164			48		0		_	M_{\sim}	68	27	1.12	\sim
28			Kanna River	Shinkaname Bridge	Ueno Village		17						0					0						0					m_	0	28	1.47	/
29			Kanna River	Morito Bridge	Kanna Town		13						0					0						0				_		0	29	3.46	MM.
30			Kanna River	Tobukyo Bridge	Fujioka City/Kamikawa Town		0						0						14					0				_	$\Lambda_{}$	7.0	30	2.67	\sim
31			Kanna River	Kannagawa Bridge	Kamisato Town		16						0						65					0				_	\mathcal{N}	33	31	1.26	\sim
32			Tonegawa River	Bando-ohashi Bridge	Honjo City		33				79		11	39					16		192			23		10		/	Min	60	32	1.09	\sim
33			Akagishirakawa River	In Shimohosoi Town			25			47			15	10				20			11			0		32		L	m	16	33	0.83	/
34			Momonoki River	Utsuboi Bridge	Maebashi City		19			16			17	15				14			0			10		0		1	h	6.0	34	1.12	1
35			Arato River	Okuhara Bridge			10			0			10	0				0			0			0		0		1	M	0	35	1.87	>
36		Tonegawa River Area	Kasukawa River	Hozumi Bridge			28			413			11	13				12			23			13		20		_	M	17	36	1.78	\sim
37			Hirose River	Nakajima Bridge	Isesaki City		19			32			17	18				18			24		L	21		15			w~~	20	37	0.76	M
38			Hayakawa River	Hayakawa Bridge			270				45		51	73				55			62			22		30			~~~	42	38	0.90	/
39			- ayunan a Kiter	Maejima Bridge	Ota City		150			58			91	44				36			107			109		100	T	/	$\sim \sim$	88	39	0.47	~~*
40		L	Tonegawa River	Tone-ozeki Weir	Chiyoda Town /Gyoda City		23	45	181		178 105		116	15	8				16 18	16	11	18		19		16		J	L.	16	40	1.05	\searrow
41			Koguro River	Kayano Bridge	Kiryu City			102 72	41	26	61		56	57				36	76	87		97 57		74		70		1	\sim	71	41	0.67	1
42			Watarase River	Takatsudo	Midori City			60		23			45	27				69				59		16		27		L	~~~	43	42	0.40	\searrow
43			•• manase Kiver	Intake for Akaiwayosui water channel	Kiryu City			35 35	20	46	46		49	47				36	22	35	55	15		26		29			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	31	43	0.42	\searrow
44		Watarase	Tatara River	Ejiri Bridge	Oura Town			640		610			101	64				31			225			86		19			w.	90	44	1.00	\mathcal{M}
45		River Area		Kannon Bridge	Kiryu City			164		43			25	27				74			67			29		36		J	~~~	52	45	0.63	\searrow
46			Kiryu River	Sakai Bridge	Kiryu City/Ashikaga City			14		12			22	26				11			19			32		25		2	~~	22	46	0.74	1
47			Tsuruuda River	Lake Jonuma	Tatebayashi City			760		2160			1360	144	0			730			1510			870		1230			ww	1,085	47	0.57	\sim
48			Yatagawa River	Togoda Bridge	Meiwa Town/Itakura Town			320		22			40	48				14			192			82		33		1	Why	80	48	1.24	>
						*1: Bla	nk cell	s are locations	when	e sample	es were not c	ollecter	d. The r	esult "Not	detectal	ole" is in	dicated	as "0."					•	А	в	с	D	Е		55	Average		
								: Average; cal																								•	
						*3: Re	sults of	f the analysis of	of tren	ds at res	pective locat	ions us	ing the	method exp	plained (on 4.3(1	(2)	-	Decreas	ing	->	Increasing	~~	 Unch 	anged	~	✓ Varyir	ng					
L																																	

Table 4.3-16 Detection of radioactive cesium at respective locations

(Gunma Prefecture: river sediments) (No.2)

7) Chiba and Saitama Prefectures and Tokyo Metropolis


In Chiba and Saitama Prefectures and Tokyo Metropolis, surveys were conducted 16 to 29 times from October 2011 to January 2016 at 51 locations (rivers) in public water areas (47 locations in Chiba Prefecture, two locations in Saitama Prefecture, and two locations in Tokyo Metropolis).

Regarding concentration levels of detected values, five locations were categorized into Category A, eight locations into Category B, 19 locations into Category C, 14 locations into Category D, and five locations into Category E (see Table 4.3-17 and Table 4.3-18).

Concentration levels were generally decreasing at 40 locations, were unchanged at three locations and fluctuating at eight locations.

Table 4.3-17 Categorization of detected values at respective locations (Chiba and Saitama Prefectures and Tokyo Metropolis: river sediments)

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	5	No.8, No.10, No.19, No.26, No.28
В	Upper 5 to 10 percentile	8	No.1, No.7, No.11, No.12, No.13, No.15, No.20, No.29
С	Upper 10 to 25 percentile	19	No.3, No.5, No.9, No.14, No.16, No.17, No.18, No.21, No.24, No.30, No.31, No.33, No.38, No.39, No.40, No.41, No.42, No.44, No.50
D	Upper 25 to 50 percentile	14	No.4, No.6, No.22, No.23, No.25, No.27, No.32, No.36, No.43, No.45, No.46, No.47, No.49, No.51
E	Upper 50 to 100 percentile(lower 50%)	5	No.2, No.34, No.35, No.37, No.48

(*) Scales of the vertical axes differ in the left and right figures.

Figure 4.3-10 Changes in concentration levels over the years at respective locations (Chiba and Saitama Prefectures and Tokyo Metropolis: river sediments)

Table 4.3-18 Detection of radioactive cesium at respective locations (Chiba and Saitama Prefectures and Tokyo Metropolis: river sediments) (No.1)

			Location			1								River	edimen	its/Radie	active Ca	sium (Cs.	134+Cs-1	37)/Cope	ntration(Bg/kg)(*1)								
					1				FY201	1		T					FY2012			,		4-6/(-				FY	2013				+
No.	Prefecture		Water area	Location	Munic ipality	8	9	10			2 3	4	5	6	7	8	9 1) 11	12	2	3	4 5	6	7	8	9		11	12 1	2	3
1				Fukama-ohashi Bridge					1.910		.780			1.660		1.190		1.200	5	10		1.8	10		1.750			1.840	1.81	10	
2			Shogen River	Shinbei Bridge	Inzai City /Sakae Town			50			72			149		81		54	5	6		26			56			31	55	5	
-				Intake at Maeshinden Water				1,000	-		950	-		1,230		850		310	4	_		42	_		210			320	420	_	
3		Tonegawa River		Purification Plant	ł			_	_		_	_		1,230		_		_				_	_	_	-	\vdash	_	_		_	
4		System	Nagato River	Nagato Bridge	Sakae Town			660			510		500			430		300	2	_		28	_		217			291	420	_	
5				Fujimi Bridge				700			920		550			390		480	4	10		39)		370			340	370	0	
6			Ryudai River	Ryumatsuno Bridge	Narita City				197		260		147			234		290	3:	50			236		177			49	45	j.	
7			Nekona River	Shinkawa Floodgate	Nalita City				2,300	2	,010		910			1,620		640	1,0	80			720		1,330		ſ	1,020	910	0	
8			Ohori River	Kitakashiwa Bridge	Kashiwa City				9,700	4	100		12,000			5,100		3,000	4,3	.00		7,9	10		7,600	\square	:	2,560	2,65	.90	
9				Sanno Bridge, under	Kamagaya City				3,900		440		390			2,140		900	7	10		1,6	0		1,250			930	820	20	+ +
-			Otsu River	Kaminuma Bridge					5,000	_	,000		20,200			14,000	-	380		200		6,7	-		6,000	\vdash		5,400	1,97	_	+
10				-	Kashiwa City			_				-					_	_					_	-	_	⊢				_	+
11		Feeder rivers of Lake Teganuma	Someiriotoshi	Someishinbashi Bridge					3,100	5	100	_	990			4,900	_	5,700	2,9	00		30	5		430			1,310	1,15	30	4
12		-		Downstream of Karuizawasakai Bridge	Kamagaya City /Shiroi City				2,500	2	260		7,100			7,200		1,300	1,4	30		92			820			460	460	io.	
			Kanayamaotoshi	-					2 200		400		1 800			1 270	_	1 330	13			1.2			1.170	+ +	\rightarrow	750	710	-	+
13				Nauchi Bridge	Shiroi City				2,200	-		_	-1000			.,		-10.00				-,	~			\vdash					4
14			Kamenari River	Kamenari Bridge	Inzai City			256			360		600			560		1,620	5,3			3,6	10		2,680			162	222	_	
15			Igusasuiro Channel	Downstream of Igusasuiro Channel	Kamagaya City				3,500		,100		3,200			2,800		3,500	2,7	_			2,980		1,890			800	970		
16			Futae River	Tomigaya Bridge	Funabashi City /Shiroi City	LI	_ [2,700	3	,300		1,640	_]	LĪ	1,760		1,150	1,4	60	ΓĹ	1,1:	i0	L	1,480	LΙ		760	760	a	1
17			Kanzaki River	Kanzaki Bridge	Yachiyo City /Inzai City				2,800	2	,380		2,170			830		1,650	1,1	50		1,5	10		1,790			680	670	0	
18			Kanno River	Kanno Bridge	-		-		3,300		,250	1	5,000			2,410		880	7.			2,8	ю	1	2,780			126	58	_	+
10			Inba Discharge Channel(Upper		Yachiyo City	\vdash	-		-		800	+	3,200			910	-	2,530	1,3	-	+	20	-	\vdash	231			2,030			+
19		Feeder rivers of Lake	reaches)	Yachiyo Bridge					3,700			_									\vdash		_	1		\square		_	1,08	_	+
20		Inbanuma	Teguri River	Mumei Bridge	Sakura City				2,500	3	,200		3,000			3,600		3,100	2,1	80		1,6	20		1,900		2	1,280	1,39	90	
21			Moroto River	Moroto Bridge	Inzai City				1,760	1	,290		1,340			1,640		850	2,3	30	ΙT	1,9	0	1	2,020	ΗT	. Τ	810	1,01	10	
22			Kashima River	Iwatomi Bridge					178		230		170			218		179	1	14		28	1		307	\square		205	154	4	
23			Takasaki River	Rvuto Bridge	Sakura City				350		310		340			270		890	3	10		45)		550			143	_	154	4
24			Kashima River	Kashima Bridre					130		149		173	-		126		1.080	1	12			149		127			12		0	+
24	Chiba								470		460		173				_			_					81	\vdash			<u> </u>	_	+
	Prefecture		Inbasuiro Channel	Tsurumaki Bridge	Inzai City Nagareyama City/Noda									410		250		226	2	_			182		-	-		150	149	_	
26			Toneunga Canal	Unga Bridge	City				3,200		100			2,210		1,950		2,550		00		1,9	_		2,480			2,000	1,24	_	\perp
27			Edogawa River	Nagareyama Bridge	Nagareyama City/Misato City				240		220			166		520		410	2	15		19			450			348	283	2	
28			Sakagawa River	Benten Bridge					4,900	3	,900			3,500		1,990		3,600	3,4	00			3,300		3,040		2	2,730	3,90	00	
29			Shinsaka River	Sakane Bridge	Matsudo City				4,600	4	,600			3,300		3,700		2,520	3,6	00			2,350		1,950	\square	1	1,820	1,68	80	
30				Shinkatsushika Bridge	Matsudo City/Katsushika				1,360		.010			1.120		1.110		740	7	10			890		820			1,150	920	0	+
31				Ichikawa Bridge	City									290		64	-	73	3				258		206			250	28	_	++
				-	Ichikawa City/Edogawa City				-					145		137		218	_				380		330				16		+
32			Edogawa River	Vicinity of Keiyo Road													_		2				380			\square		175			+
33				Gyotokukadozeki Weir (upperreaches)										350	420	1,140	300	190	3	70			660	550	580	960	1,020	420	330	0	
34				Shingyotokubashi Bridge	Ichikawa City				78		59			104	44	48	35	53	1	7			20		19			20	12	2	
											850	-			_		136	109	1	_			83	-	84	\vdash		56	70	_	+
35		Edogawa River System		Edogawa Floodgate, down	Ichikawa City/Edogawa						\$50									-								***	_	_	+
36			Kyu-Edogawa River	8 km Point to the estuary	City									71	128	134	340	121	1	15			283		310			112	65	6	
37			,	Imai Bridge			T		T					70	75	73	104	92	7	5	ΙT		48	1	108	ΙT	, Т	50	32	3	
38				Urayasu Bridge	Urayasu City/Edogawa				75		380	1		70	71	1,360	580	2,050	1,0	40			700	380	700	850	810	440	940	.0	
30			Mamagawa River	Nemoto Floodgate	c.ay'		-		1.100	<u> </u>	050	+		960		700		700	7	50	+		480	\vdash	480		\rightarrow	222	295	5	+
37			Mamagawa River	-		\vdash	-	_	2 020		610	+		960	\vdash	5 400		2 390	9		+		480	\vdash	480	⊢┤		770	29:	-	+
40				Suwada Bridge Before the confluence with	Ichikawa City	\vdash						+		.,			_	-40.70			++			1		⊢					+
41			Haruki River	Before the confidence with Kokubu River					1,380	1	.270			1,210		930		840	7	90	\square		730	1	710			304	305	9	+
42			Hasen-okashiwa River	Downstream of	Kamagaya City/Ichikawa				710		220	1		800		153		189	1			44	,	1	350			178	56		
			Contraction of the second second	Nakazawashinbashi Bridge	City									2000				,							3.50					-	
43			Okashiwa River	Sengen Bridge					970		790			780		610		790	7.	80			440	Γ	410			158	14	4	
44			Mamagawa River	Mitomae Bridge	Ichikawa City				430	4	,700	1		4,500		920		580	2,0	20			5,800	4,900	5,900	3,010	3,180	138	34	1	
45		Ebigawa River		Yachiyo Bridge	Funabashi City				6,400		340	1		6,000		410		530	1,1	60			410	1	460		\rightarrow	80	640		+ +
Ĥ		Inba Discharge										+									+	_	-	1							++
46		Channel (lower reaches)		Shinhanamigawa Bridge	Chiba City				167	1	,770	1		530	208	1,020 1	,730	2,900	1,2	.70			960	1,640	1,130	1,680	1,590	146	233	2	
47		reacnes) Miyako River		Miyako Bridge	C.ny	\vdash		-	50		171	+		530	\vdash	241	-	91	1	12	+		238	\vdash	259	\vdash	\rightarrow	750	500	n .	+
+1			Arakawa River Middle						~~			+						-		_	+		_	\vdash		\vdash	\rightarrow			_	+
48	Saitama		Reaches	Onari Bridge	Konosu City						35	1		19		25		37		2	\square	34	-	L	38	\square	\rightarrow	10	19	_	\downarrow
49	Prefecture	Arakawa River	Arakawa River Lower Reaches	Sasame Bridge	Toda City						530			266		61		490	5	10		41		L	49			67	36	š	
50	Tokyo	System		Kasai Bridge	Koto City /Edogawa City						700			131	520	217	280	300	1	15			248		75			316	450	0	
51	Metropolis		Sumida River	Ryogoku Bridge	Chuo City						580	1		260	370		300 47	0 670	3	10			450	1	460			283	278	.'8	
Н			1		1	Total nu		954	Detect															· · ·	<u>لــــــــــــــــــــــــــــــــــــ</u>						
						sam			time	2																					
						*1: Blank	cells are l	loc ation	s where	samples were no	t collected	. The rest	ilt "Not e	detec tab	ole" is in	dicated a	s "0."														ł
L																															
-																															

			(Chiba a	nd Saita		100	510	1169	a	iu	10	JNJ	0	IVIE	JU	op	UII	5. 1	100	ΞI	260	IIII	iei	ns,	<i>(</i>)	۷U.Z				
			Location	-								River	sedime	nts/Radio	active	Cesium (O	3-134 + 0	Cs+137)/C	oncent	ration(l	Bq/kg)(*1)						Average of		0.001	
No.	Prefecture	-	Water area	Location	Municipality		_			F 8	Y2014	10 11	12	1	2		4 5				FY2015 9 10		12	_		Changes	FY2015 (*2)	No.	Coefficient of variation	Trends(*3)
-			1	Fukama, ohashi Briday		4	5	6	7	8	9	10 11	_	1 170	2	3 .	4 5	6	7	8	9 10	11		1 2	2 3	~~~	998		0.29	<hr/>
1			Shogen River	Fukama-ohashi Bridge Shinbei Bridge	Inzai City /Sakae Town		1,370 31		\vdash	1,210 57	+	1,1:		1,170	27	\vdash	1,010	"		1,070		25	\vdash	910 0	_	Λ.		2	0.29	/
2				Shinbei Bridge Intake at Maeshinden Water			31			-	+	39	_	+		\vdash	30 431	+		18 438		25 389	\vdash		+	F~~	18 417	2		~
3		Tonegawa River		Purification Plant						229	_		_		178		_	_				-		411		~~~~			0.63	/
4		Tonegawa River System	Nagato River	Nagato Bridge	Sakae Town		263			173	_	18	_		207		138	-		155		148		173		~~~	154	4	0.51	1
5				Fujimi Bridge			283			248	_	25			258		167			206		182		183			185	5	0.52	>
6			Ryudai River	Ryumatsuno Bridge	Narita City		46			89	_	16	-	48			31	-		48		161		44		~~~	71	6	0.69	/
7			Nekona River	Shinkawa Floodgate			920			1,160	_	58	_	221			880			640		760		508		www	697	7	0.52	~
8			Ohori River	Kitakashiwa Bridge	Kashiwa City		5,200			2,660		1,55	_	1,700			1,78	0		2,380		1,480		,470		m	1,778	8	0.73	~
9			Otsu River	Sanno Bridge, under	Kamagaya City			1,120		610		68	_	470			385			471		460		432		w~~	437	9	0.88	~
10				Kaminuma Bridge	Kashiwa City		3,360			3,640		1,25	_	1,220			2,79			3,290		3,450		,100		1/	3,408	10	0.90	~
11		Feeder rivers of Lake Teganuma	Someiriotoshi	Someishinbashi Bridge			1,100			1,160		90	D	790			640			510		510		605		1/	566	11	0.99	~
12		-		Downstream of Karuizawasaka Bridge	ii Kamagaya City /Shiroi City		440			440		44		305			510			469		660		560		A	550	12	1.35	~
13			Kanayamaotoshi	Nauchi Bridge	Shiroi City		129			510		51		392			590			600		518		534		~	561	13	0.64	<u> </u>
14			Kamenari River	Kamenari Bridare	Inzai City		265			390		41		419			750			519		363		302		~~~~	484	14	1.35	Ŵ
15			Igusasuiro Channel	Downstream of Igusasuiro	Kamagaya City		2.070			1.050		74			750		1.11			920		1.080		.060		~~~~	1.043	15	0.59	<u> </u>
16			Futae River	Channel Tomigaya Bridge	Funabashi City /Shiroi		2,010	730		640	-	60	_	456	730		459	_		510		439		447		1	464	16	0.72	~
17			Kanzaki River	Kanzaki Bridge	City Yachiyo City /Inzai City		850	150	\vdash	550	+	45	_	309	_	\vdash	403	_	$\left \right $	411		439		97	+	m	332	10	0.72	1
10			Kanzaki Kiver Kanno River	Kanzaki Bridge	carmyo cay /man cay		265		\vdash	620	+	45	_	540		\vdash	403	-		262		105		900	+	N.c.	366	17	1.10	<u> </u>
18			Kanno River Inba Discharge Channel(Upper		Yachiyo City						+		-	-		\vdash	_	-						-	+	in the second se				~
19		Feeder rivers of Lake	reaches)	Tal injo ta lage			1,220			1,220		1,05	-	352			2,15	0		1,350		1,460		,580	_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,635	19	0.95	>
20		Inbanuma	Teguri River	Mumei Bridge	Sakura City		1,250			1,000		79		1,000		\vdash	860	-		610		1,010		740	_		805	20	0.57	>
21			Moroto River	Moroto Bridge	Inzai City		540			420		23	_	408			354			300		208		511		m	343	21	0.69	1
22			Kashima River	Iwatomi Bridge			167			181		12	_	153			98			81		76		63		~~~~	80	22	0.40	1
23			Takasaki River	Ryuto Bridge	Sakura City		157			380		15	5	232			125			131		133		161		m	138	23	0.67	1
24	Chiba		Kashima River	Kashima Bridge			132			139		12	D	126			13			266		404		79			191	24	1.29	NW.
25	Prefecture		Inbasuiro Channel	Tsurumaki Bridge	Inzai City		99			58		12	5		70		104			151		100		107		2~~~~	116	25	0.68	/
26			Toneunga Canal	Unga Bridge	Nagareyama City/Noda City		980			2,270		2,10	10		2,450		690			1,260		2,440	3	,240		~~~~	1,908	26	0.35	~~~*
27			Edogawa River	Nagareyama Bridge	Nagareyama City/Misato City		216			155		17:	5		292		127			326		38		105		~~~	149	27	0.50	~~~*
28			Sakagawa River	Benten Bridge	Matsudo City		3,240			2,000		1,84	10		1,260		1,17	0		970		1,070	1	,140		~	1,088	28	0.46	1
29			Shinsaka River	Sakane Bridge	Matsudo City		990			1,330		1,10	10		1,200		880			1,000			1,140 1	,070		~~~~	1,023	29	0.59	1
30				Shinkatsushika Bridge	Matsudo City/Katsushika City		630			670		57	D I		490		508			510		306		340		~~	416	30	0.39	1
31				Ichikawa Bridge	Ichikawa City/Edogawa		92			219		17	1		114		231			242		278		580		y~~	333	31	0.54	MM.
32			Edogawa River	Vicinity of Keiyo Road	City		235			180		93			142		144			95		38		41		~~	80	32	0.54	1
33				Gyotokukadozeki Weir			520	390	500	400	680	54			490		630	790	289	610	21	43		67		In	350	33	0.56	NM.
				(upperreaches)	Ichikawa City		16					15			16		_			18		25		27		Л.	22	34	0.76	<u> </u>
34				Shingyotokubashi Bridge						11	_		-				17	-				-				. M				~ ~
35		Edogawa River System		Edogawa Floodgate, down	Ichikawa City/Edogawa		38			42		31	_		50		35			57		26		22		-	35	35	1.78	~
36			Kyu-Edogawa River	8 km Point to the estuary	City		360			139		30			368		114			279		87		110		M	148	36	0.63	NM.
37				Imai Bridge			67			27		31			54		25			28		27		39		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30	37	0.93	MM.
38				Urayasu Bridge	Urayasu City/Edogawa City		920	840	680	590	650	79	D I		700		650	740	760	539	660	29		322		~~~	529	38	0.64	NW.
39			Mamagawa River	Nemoto Floodgate			279			335		29	D		255		214			207		232		214		~~	217	39	0.64	1
40			Kokubu River	Suwada Bridge	Ichikawa City		520			530		40	5		430		304			293		570		437		~	401	40	1.09	/
41			Haruki River	Before the confluence with Kokubu River			306			321		28	5		277		210			242		198		281	1	~	233	41	0.68	1
H				Downstream of	Kamagaya City/Ichikawa						1							1				1.				Δ				>
42			Hasen-okashiwa River	Nakazawashinbashi Bridge	City		323			215		56	1		277		328			196		261		267	1	im	263	42	0.78	
43			Okashiwa River	Sengen Bridge			175			251	T	15	5		144		137			168		143		131	1	~	145	43	0.75	~
44			Mamagawa River	Mitomae Bridge	Ichikawa City		295	1,060	730	314	411	67	0		460		640	487	440	196	137	178		176		лΛ.	322	44	1.23	
45		Ebigawa River		Yachiyo Bridge	Funabashi City			108		167		21	3	52			102			31		61		165	1	V.	90	45	2.00	$\overline{}$
		Inba Discharge	l		1								-												1					
46		Channel (lower reaches)		Shinhanamigawa Bridge	Chiba City			329 154	174	284	570	13		160			199	96	74	79	95	169		197		NUL	130	46	1.09	
47		Miyako River		Miyako Bridge			410			85		56		125			37			53		42		107		M	60	47	0.93	ŴŴ
48	Saitama		Arakawa River Middle Reaches	Onari Bridge	Konosu City		17			0	Т	10	T		10		0			0		0		0	Т	M	0	48	0.89	1
49	Prefecture	Arakawa River	Arakawa River Lower Reaches	Sasame Bridge	Toda City		53			48	1	35			68		63	1		60		291		31		W.		49	1.17	
50	Tokyo	Arakawa River System		Kasai Bridge	Koto City /Edogawa City		430			317	+	41	_		330	\vdash	404			210		279		272	+	hom	291	50	0.45	~~~
51	Tokyo Metropolis		Sumida River	Ryogoku Bridge	Chuo City		145			147	+	10	_		96	\vdash	86	+		191		183		197	+	m	164	51	0.56	<u> </u>
		1	1	> 00e		*1. Df		and be and be								1	-			- / 4	1			с г	рЕ	- ~ ~	478			~
								are locations w									a as "0."					- A	в	- I	, Е		478	Average		
								Average; calcu																						
						*3: Res	ults of the	he analysis of	trends at	respecti	ve locati	ons using	the meth	od explai	ied on 4	4.3(1)2)			1	Decre	easing 🦯	✓ Incr	zasing	~~ • 1	Inchange	d 💦 Vary	ing			

Table 4.3-18 Detection of radioactive cesium at respective locations (Chiba and Saitama Prefectures and Tokyo Metropolis: river sediments) (No.2)

(2)-2 Lakes

1) Miyagi Prefecture

In Miyagi Prefecture, surveys were conducted 9 to 17 times from October 2011 to December 2015 for lake sediment samples collected at 21 locations.

Regarding concentration levels of detected values, one location was categorized into Category C, three locations were categorized into Category D and 17 locations were categorized into Category E (see Table 4.3-19 and Table 4.3-20).

Concentration levels were generally decreasing at 13 locations, were unchanged at two locations, were fluctuating at five locations, and generally increasing at one location.

Table 4.3-19 Categorization of detected values at respective locations (Miyagi Prefecture: lake sediments)

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	1	No.16
D	Upper 25 to 50 percentile	3	No.9, No.13, No.17
Е	Upper 50 to 100 percentile(lower 50%)	17	No.1, No.2, No.3, No.4, No.5, No.6, No.7, No.8, No.10, No.11, No.12, No.14, No.15, No.18, No.19, No.20, No.21

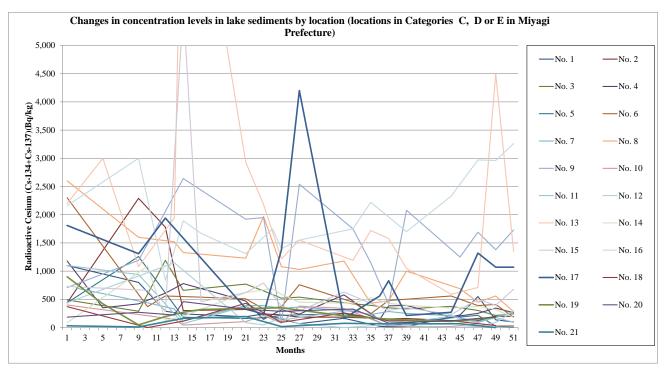


Figure 4.3-11 Changes in concentration levels over the years at respective locations (Miyagi Prefecture: lake sediments)

		Location												L	ake Se	diment	s/Radi	oactive	Cesiu	m (Cs-1	34+C	s-137)/	Concer	ntratio	ı(Bq/k	g)(*1)										
No.	Water		Location	Municipality				FY2011										FY2	2012											FY2	.013					
INO.	water	area	Location	Municipanty	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		Kurikoma Dam	Dam site	Kurihara City			1,100								800			290		242							193		241		154		69			
2		Hanayama Dam	Dam site	Kininara City			440								2,290			1,780		300							320		243		225		184			
3	Kitakami River System	Narugo Dam	Dam site				490								290			1,190		660							770		650		520		540			
4		Lake Naganuma	Dam site	Osaki City			1,180			3	350				420			610		780							470		146		318		238			
5		Shukunosawatameike Pond	Pond exit	Kurihara City			440								1,260					183							161		176		216		225			_
6		Futatsuishi Dam	Dam site				2,300									370		560		550							510		331		369		760			
7	Naruse River System	Urushizawa Dam	Dam site	Kami Town				700								440			330	115							390		390		343		364		-	
8		Minamikawa Dam	Dam site	Taiwa Town			2,600								1,600				1,520	1,330							1,230		1,970		1,080		1,030		-	
9	Sunaoshi River System	Sonoseki Dam	Dam site	Rifu Town			710								1,190					2,640							1,920		1,950		88		2,540		-	
10	Nanakita River System	Nanakita Dam	Dam site				400								232				148	44							107		213		80		380			_
11	Marutazawatameike Pond		Pond exit				1,100								940					69							380		222		129		181			_
12		Okura Dam	Dam site	Sendai City			440												1,150								88		47		175		68			_
13	Lake Amanuma		Lake exit				2,200			3,	,000,				1,080				1,940	9,700							2,930		2,180		1,220		1,550		-	_
14	Natori River System	Kamafusa Dam	Dam site	Kawasaki Town			85									1,090		126		204							620			690	590		450		-	
15		Kawarago Dam	Dam site	Shiroishi City			730									660		280		5,700		460					620		790		380		297		-	_
16	Abukuma River System	Shichikashuku Dam	Dam site	Shichikashuku Town			2,160								3,000			840		1,890		1,670					1,310			1,750	1,400		1,550		-	
17	Lake Bagyunuma		Lake exit	Shiroishi City			1,810								1,310			1,940									340		231		1,380		4,200			_
18	Abukuma River System	Murata Dam	Dam site	Murata Town			370									0				115							430				92				-	
19	Kitakami River System	Lake Izunuma	Lake exit	Tome City			900			4	420				48			195		270		320					340				350					
20	Natori River System	Tarumizu Dam	Dam site	Natori City			185								270				222	460							326				288					
21	Naruse River System	Miyatoko Dam	Dam site	Taiwa Town			31								12					163							195				18			_	-	-
		1			Total nu	umber of uples	309	Detection times	^m 3	305										L				L						I			l	l		
l					*1: Blank	c cells are	loc ation	s where s	amples	were n	iot coll	ected.	The res	ult "No	ot detec	table" is	indica	ted as "	0."																	

Table 4.3-20 Detection of radioactive cesium at respective locations (Miyagi Prefecture: lake sediments)

		Location										Lak	e Sed	iments	/Radio	nctive (esium	(Cs-13-	I+Cs-	137)/Co	oncenti	ration(H	(kg)	*1)						Average of		coefficient	
No.	Water	- anaa	Location	Municipality						FY2	2014											FY2	015						Changes	FY2015	No.	of	Trends (*3)
140.	water	aica	Docation	stunic ipanty	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	Changes	(*2)		variation	
1		Kurikoma Dam	Dam site	Kurihara City		164				23	14		18						224		550		137		100				~~~~	253	1	1.12	/
2		Hanayama Dam	Dam site			185			168		153		161					124			123		204		196				Λ_{-}	162	2	1.43	/
3	Kitakami River System	Narugo Dam	Dam site	Osaki City			420		394		350		331					375			304		214		244					284	3	0.51	/
4		Lake Naganuma	Dam site	Column Cary		580				141	384		392					185			252		346		263				L	262	4	0.63	\nearrow
5		Shukunosawatameike Pond			164		19		76					173			218		24		10				<u> </u>	106	5	1.26	Ļ				
Fund 450 245 480 560															390		410		182					386	6	0.89	Ļ						
7	Naruse River System	Kami Town														195	7	0.46	Ļ														
8		Minamikawa Dam	Dam site	Taiwa Town		1,180			432		476		1,000						690		451		560		282				~~~	496	8	0.58	Ļ
9	Sunaoshi River System	Sonoseki Dam	Dam site	Rifu Town			1,750		1,150		415		2,080						1,250		1,690		1,380		1,730				~~~	1,513	9	0.48	~~*
10	Nanakita River System	Nanakita Dam	Dam site			340				91	33		20					18			70		32		37				M	39	10	0.94	\checkmark
	Marutazawatameike Pond		Pond exit	Sendai City			313			165	109		94					199			90		179		94				2	141	11	1.10	Ĺ
12	Natori River System	Okura Dam	Dam site	Sendar City		0				41	46		35					0			20		89		288				\sim	99	12	1.72	Ļ
13	Lake Amanuma		Lake exit				1,190		1,720		1,580		1,050					590			710		4,490		1,350				~~~	1,785	13	0.95	Ļ
14	Natori River System	Kamafusa Dam	Dam site	Kawasaki Town			430		530		431		395					345			377		319		180				An	305	14	0.58	\sim
15		Kawarago Dam	Dam site	Shiroishi City		630			430		306		352					231			500		396		680					452	15	1.61	$\wedge \wedge \wedge$
16	Abukuma River System	Shichikashuku Dam	Dam site	Shichikashuku Town			1,750		2,220		1,960		1,700					2,330			2,970		2,960		3,260				~~~~	2,880	16	0.33	~
17	Lake Bagyunuma		Lake exit	Shiroishi City		160				560	830		215					270			1,320		1,070		1,070				~~~~	933	17	0.93	\sim
18	Abukuma River System	Murata Dam	Dam site	Murata Town		259					121							121					36						\sim	79	18	0.87	\sim
19	Kitakami River System	Lake Izunuma	Lake exit	Tome City		208					149							108					181							145	19	0.76	1
20	Natori River System	Tarumizu Dam	Dam site	Natori City			329				79							121					190						~~	156	20	0.45	~~~*
21	Naruse River System	Miyatoko Dam	Dam site	Taiwa Town		75					66								67				0						5	34	21	0.97	\sim
					*1: Bb	ink cells	s are loc	ations w	here sa	amples	were n	ot collec	ted. T	he resul	t "Not	letec tab	le" is in	dicated	as "0."					A	в	с	D	Е		510	Average		
					*2: Ari	ithmetic	Averag	e; calcu	lated by	y assun	aing NI	0=0; Co	lor cod	es shov	v categ	ories (se	e the ri	ght).											-		•		
					*3: Re	sults of	the anal	lysis of I	trends :	at respe	ctive k	cations	using	he met	hod exp	dained o	n 4.3(1) 2)	~	Dec	reasing		≯ Inc	reasing	-	~ + ∪	inc hang	ed	Varying				

2) Fukushima Prefecture

(i) Hamadori

In Hamadori, Fukushima Prefecture, surveys were conducted 13 to 44 times from September 2011 to February 2016 for lake sediment samples collected at 41 locations.

Regarding concentration levels of detected values, eight locations were categorized into Category A, eight locations into Category B, 11 locations into Category C, 10 locations into Category D, and four locations into Category E (see Table 4.3-21 and Table 4.3-22).

Concentration levels were generally decreasing at 22 locations, were unchanged at two locations, fluctuating at 13 locations, and generally increasing at four locations.

Table 4.3-21 Categorization of detected values at respective locations (Hamadori, Fukushima Prefecture: lake sediments)

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	8	No.4, No.6, No.9, No.10, No.20, No.22, No.24, No.25
В	Upper 5 to 10 percentile	8	No.3, No.5, No.7, No.18, No.21, No.27, No.29, No.30
С	Upper 10 to 25 percentile	11	No.1, No.11, No.13, No.15, No.16, No.26, No.31, No.32, No.33, No.35, No.36
D	Upper 25 to 50 percentile	10	No.8, No.14, No.17, No.23, No.28, No.34, No.38, No.39, No.40, No.41
Е	Upper 50 to 100 percentile(lower 50%)	4	No.2, No.12, No.19, No.37

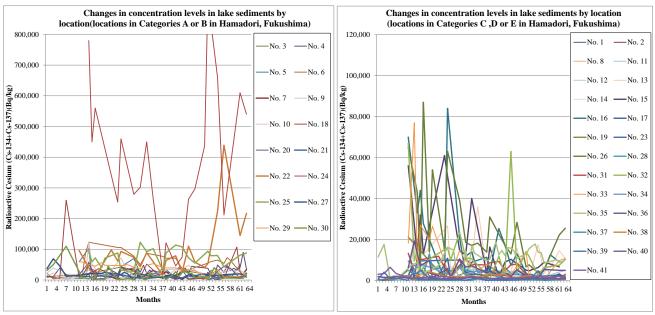


Figure 4.3-12 Changes in concentration levels over the years at respective locations (Hamadori, Fukushima Prefecture: lake sediments)

	Location													1	Lake S	edimer			e Cesium (Cs-	134+0	Cs-137)/Conce	ntratior	(Bq/k	g)(*1)									
w	ater area	Location				FY20			- 1									2012						-		7		2013					
	m 1 -	Shinchi Town	8	9 140	10	11 129		1	2	3 209	4	5	6	7 5,100	8	9	10 1,580	11 4,400	12 6,300	1 2,180	2	3 1,560	4	5	6 4,300	7	8 2,650	9	10 3,700	11	12 4,400	1	2
Soso (farm pond)	Takei	Shinem Town						-		209				5,100	_		1,580	4,400	0,300	2,180		1,500			350	370							
-	Uchizawa	Soma City		250		45		_	2,140																		530	<u> </u>	340		277		25
Matsugabo Dam	(Lake Utagawa)			22,000		3,600		,500																	42,000	26,200	20,900		10,800		15,400		16,8
Mano Dam Soso		4		9,900		11,500	3	9,000		17,400					8,800	14,400	-	-	1,270 21,800		9,400 38,000			19,800		5,000 17,500		-				32,800	13,5
(farm pond) Ganbe Dam	Ainosawa	4												59,000			-	8,100	15,500					19,400	43,000		70,000		22,700		14,200		_
Reservoir		litate Village		8,200		12,200									18,000	87,000			-					106,000	106,000	-	78,000		50,000		87,000		_
Soso (farm pond)	Fugane Dam	4												12,000			20,500		26,500					2,540	41,000		32,000		4,100		19,900		30,5
(tarin ponu) Takanokura Dan	Sasatoge													4,700			4,000		2,760					8,200	1,030		7,500		5,100		6,600		
Reservoir Yokokawa Dam		4		22,000		39,000	_	0,000		1,560					12,400		-	-							7,300	9,800	13,200		960		26,800		23,4
Reservoir		Minamisoma		13,800		23,000	4	,500		3,500				_	25,900		-	53,000		2,900	2,020				72,000	29,300	12,500	\square	24,300		12,300		_
	Tarayachi	City												420	7,600	20,500	-	·			6,400								\vdash	$ \rightarrow$			
	Takeshiyachi	4				\square												1,340	1,240	790					550 1,180		600	\square	410	$ \rightarrow $	520		60
	Ryugasaku														47,000		1,080	17,400	12,500						26,600 6,600		6,600	\square	7,400		8,000		36,0
Soso (farm pond)	Uwatashiro	Kawamata Town				Ц								4,200			5,100	690	820		L			380	1,060		780	\square	311	$ \rightarrow$	140		L
	Koakuto	Namie Town												56,000			13,000	32,000	13,000					61,000	51,000		14,600		12,500		40,000		L
	Yosouchi	litate Village												70,000			33,000	44,000	27,700					520	84,000		20,700		3,030		8,900		
	Myobusaku No. 2	Minamisoma City												2,240	5,800	1,180	830	5,100				2,250			10,800 1,750		6,400		11,800		14,000		4,0
Ogaki Dam		Namie Town		13,100		8,400	5	,100	:	260,000				8,200	13,600		51,000	35,000	30,000 37,000					8,100	2,800	4,500	9,300	8,300	13,100	11,000	9,300	10,000	,
	Uenokawa	Katsurao Village												21,200					-					1,100	3,600		6,400		2,420		3,050		
Soso	Heigoiri	litate Village												17,600			56,000	34,000	2,790					9,900	31,000		39,000		9,400		52,000		
(farm pond)	Mekurasawa No. 2	Namie Town												11,700			11,400	7,900	12,100	13,200	11,500			14,800	17,400		8,300		6,300		5,200		
	Joroku	Name Town												96,000			40,000	23,800	10,000			98,000		62,000	93,000		74,000		43,000		89,000		
Furumichigawa Power Plant Dan		Tamura City													7,600	1,580	11,000	9,500						9,800		9,900	10,000		3,200		2,980		3,1
Soso(farm pond)	Sawairi No. 1	Futaba Town															780,000	450,000	560,000					254,000	460,000		279,000		302,000		450,000		266,
	Suzunai No. 4	Okuma Town															91,000	59,000	72,000	40,000	71,000			88,000	32,000		27,700		123,000		92,000		102,
	Nishihaguro	Futaba Town												65,000			43,000	5,200	87,000	13,900	54,000			15,100	63,000		39,000		18,500		17,100		18,2
Sakashita Dam		Okuma Town		37,000		69,000	4	5,000		11,800				15,100	17,600		20,600	20,700	20,100	21,900	24,600				17,700 25,000	20,700	350		18,800		15,300		
Soso	Atamamori 2	Okuma Town												9,400			6,300	5,700	2,790	13,000	5,900			5,700	3,900		7,000		4,900		4,500		
(farm pond)	Yonomori	Tomioka Town												62,000		54,000		47,000	45,000	57,000	48,000				47,000	50,000	42,000		36,000		48,000		53,
Takikawa Dam		Kawauchi Village		31,000		50,000	8	0,000		110,000				28,000	7,600		4,100	8,600	760 630	690	850 45,000			990	1,320	4,700	2,320	30,400	17,300	2,130	930	25,500) 11,8
	Takinosawa	Tomioka Town												13,200		4,700		10,300	10,300		<u> </u>	11,800			4,100 2,060		7,400		10,500		7,800		
Soso(farm pond)	Kamisigeoka No. 1													67,000		9,500	14,800	4,200		10,400					16,000 9,800		23,400		11,000		10,600		
	Shimoshigeoka	Naraha Town												18,100		77,000	8,400	27,000		20,100	26,400				4,900 2,660		14,600		9,500		7,900		5,1
Komachi Dam		Ono Town		1,730		1,460									2,480		7,500	8,200							3,100	2,790	6,300		2,860		3,700		4,8
Kido Dam				11,400		17,600		810		290					7,400		8,700	2,290	4,700 4,200			7,200			16,200	14,800 4,200	820	3,900	14,300	5,400	16,800	13,300	,
Soso(farm pond)	Otsutsumi	Naraha Town												6,200		19,300	13,200	7,200		9,700	1,450				5,700 1,470		10,500		6,500		7,100		Γ
Iwaki(farm pond) Shinike			310		540		830	510					1,780	500		132	1							89	78	112		68		111		75
Kodama Dam Re Kodama)	servoir (Lake	1				1,360		600	,710						2,280	213	3,200	960		4,000	3,800				1,740	2,020	1,730		1,770		2,300		1,7
Iwaki (farm pond)	Kanoritsutsumishita	Iwaki City		600		4,000		820	,200					48	2,800		3,600	5,000		990	1,240				170	500	510		82		730		1,3
(farm pond) Takashiba Dam I Takashiba)	Reservoir (Lake	1		1,940		1,430	1	,410		1,920					800	1,070	790	690		700	710			790		870	880		1,050	\neg	1,530		1,1
Takashiba) Shitoki Dam Res	ervoir	1		3,000		3,300		,400		3,300					930	980	1,120	1,310		1,690	1,400			1,820		1,120	1,200		1,270		2,000		1,3
			total nu	ц <u>і — і</u>	-												L	1		1 · · ·	1	1					1	<u>لىمى</u>	المنا				<u> </u>

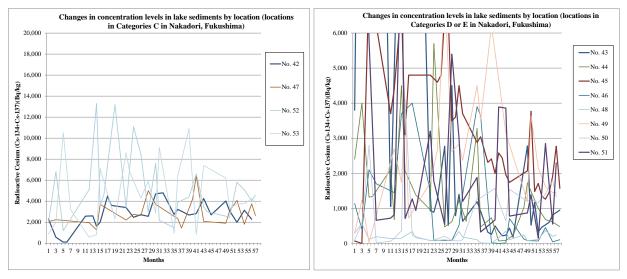
Table 4.3-22 Detection of radioactive cesium at respective locations

(Hamadori, Fukushima Prefecture: lake sediments) (No.1)

Table 4.3-22 Detection of radioactive cesium at respective locations	
(Hamadori, Fukushima Prefecture: lake sediments) (No.2)	

		Location)	Lake S	edimen	ts/Radi	oactive	Cesium	(Cs-134	+Cs-I	37)/Con	central	tion(Be	y/kg)(*1)									Avera	e of		coefficient	
No.	Wa	ter area	Location	4	5	6	7	8	FY2014	10	11	12	1	2	2	4	5	6		7	8	0	FY20		10		11	12		2 3	Changes	FY2 (*)	15	No.	of variation	Trends (*3)
1		Takei	Shinchi Town	4	5,200	4,800	/	8 3,530	9	2,830		2,740	1	2,730	3	4	2		1,750	/	8 1,810	9		2,3	-			2,650		2 3	Mw~	2,2	0	1	0.60	MA
2	Soso (farm pond)	Uchizawa			390	222		307		213		282		239					540		250			1,0				446		650	N	51	_	2	0.96	<u>/vv</u>
3	Matsugabo Dam (L	ake Utagawa)	Soma City		36,900	10,400		17,200		25,100		28,800						16,900 3	31,400	1	11,700	_		15,	.000			11,100		14,800	hu	16,8	17	3	0.64	₩,
4	Mano Dam				20,400	27,200	17,600	12,400	41,000	31,700	38,300	21,100	45,000	42,700				38,400 1	17,800	12,000 4	49,000		24,900	47,200	29,700	38,100	32,100	40,800	90,000	35,600	MAM	37,5	67	4	0.61	~
5	Soso (farm pond)	Ainosawa	t		28,700	33,900		7,200		33,000		3,530					10,400	334	4		8,400		13,600	16,200	6,700			49,500			Lin	/ 15,0	19	5	0.95	NM.
6	Ganbe Dam Reservoir		litate Village		77,000	71,000		71,000		36,800		32,800						55,000 e	60,000	e	\$5,000		54,000	73,000	64,000)		26,100			Sm	56,7	29	6	0.51	\sim
7	Soso	Fugane Dum	1		17,800	26,900		3,610		33,000		22,400		14,100			1,930	17,5	00	2	20,100		10,300	10,100	11,200)		6,100		34,200	- AWW	13,5	29	7	0.60	ŴŴ
8	(farm pond)	Sasatoge	1		1,090	2,960		3,090		3,390		980					1,920	670	D		384		650	1,610	455			477			Mry	88	I I	8	0.83	~
	Takanokura Dam Reservoir				27,200	33,900		35,100		24,200		35,200					20,400	22,8	00	1	19,200		28,700	26,400	32,400)		29,800		20,800	Wm	25,0	63	9	0.44	~
	Yokokawa Dam Reservoir				22,900	11,900		34,700		35,700		48,000		32,200			1,240	8,50	00	2	27,500		43,400	34,300	35,900)		19,500		24,500	In	24,3	55	10	0.91	MM
11		Tarayachi	Minamisoma City														4,040	1,18	80		770		3,760	5,500	2,700			4,100		4,860	1	3,3	i4	11	0.96	1
12		Takeshiyachi			1,240	294		293		1,080		265		225			820	460	6		247		49	343	34			258		111	WW.	29	I .	12	0.71	1
13		Ryugasaku			3,670	16,300		1,590		2,410		4,140		15,600			900	1,39	90	1	17,400		3,550	6,300	6,300			14,500		10,800	nh	7,6	13	13	1.00	$\wedge \wedge \wedge$
14	Soso (farm pond)	Uwatashiro	Kawamata Town		165	193		190		226		660						402	1,270		1,840			3	49			16			1	77	5	14	1.39	\searrow
15		Koakuto	Namie Town		3,260	16,300		1,530		8,900		10,300					5,000	4,69	90		6,300			8,9	900			6,600			M.	6,2	18	15	0.99	/
16		Yosouchi	litate Village		11,300	4,000		25,300		17,300		7,300		13,000			3,430	2,66	s0		2,010		5,070	8,600	12,500)		9,000			Vm	6,1	u –	16	1.17	\searrow
17		Myobusaku No. 2	Minamisoma City		4,900	6,800		4,080		3,760		2,460		5,000			2,010	1,51	10		1,840		1,360	294	1,360			3,150		1,060	Mm	1,5	3	17	0.87	\sim
18	Ogaki Dam		Namie Town			6,000	10,100	6,800	6,100	740	8,900	2,440	3,090				6,300	25,3	00	2,890	1,400			5,5	500		107,000	26,900	14,700	18,500	A	_{ر 23,1}	66	18	2.06	\searrow
19		Uenokawa	Katsurao Village		2,580	2,450		2,030		1,070		810		710				500	620		252			5	25	-		335		690	h	48	,	19	1.73	\searrow
20	Saso	Heigoiri	litate Village		4,200	12,600		1,910		7,700		10,800						7,600	5,000	2	28,700		44,500	41,300	38,700)		6,000			LA.	\ 24,5	43	20	0.81	\sim
21	(farm pond)	Mekurasawa No. 2	Namie Town		10,000	9,700		9,700		6,500		16,800		8,300			10,800	20,1	00		5,300			10,				5,500	:	21,800	~~~	r√ 12,3	67	21	0.41	~~~*
22		Joroku			16,000	64,000		79,000		25,600		110,000		58,000			41,100	53,0			223,000			439				145,000		217,000	~~~~	186,	_	22	1.00	~
23	Furumichigawa Power Plant Dam		Tamura City		1,620	2,830		3,750		87		161							2,830	-	860				98			336		1,320	Thy.	1,4	_	23	0.94	
	Soso(farm pond)	Sawairi No. 1	Futaba Town		20,500	121,000		46,000		74,000		263,000		297,000			437,000	920,0	-	-	560,000			212				610,000		540,000	~~~~	563,		24	0.63	NW
25		Suzunai No. 4	Okuma Town		31,600	88,000		114,000		108,000		72,000		55,000				94,000	_	_	30,000			43,				81,000		\$8,000	w/w	77,6	_	25	0.36	~~~*
26		Nishihaguro	Futaba Town		13,800	31,000		22,600		17,200		12,900		28,300			6,600	7,60		-	3,730			5,4				22,200		25,500	Wm	11,8		26	0.82	/
	Sakashita Dam		Okuma Town		7,200	14,800		14,700		2,600		17,100		14,300			19,600	13,8			14,800				.500			19,800		9,500	han	15,8		27	0.66	~
28 29	Soso (farm pond)	Atamamori 2	m · i m		4,100	4,200		1,160		6,300		3,470	_	3,620			1,280	730		-	910			1,0				202		2,030	Vm	1,12		28	0.70	/
	Takikawa Dam	Yonomori	Tomioka Town Kawauchi Villare		41,000	39,000 1,740	16.300	39,900 27,100	10.000	31,600	20,400	32,800	21.000	30,900 7,400			12,700 9,400	8,20		40.400 2	35,200	4,760		9,3			6 200	12,400 6,300		19,600	Λ	L 16,2		29 30	0.41	/
30	I akikawa Dam	Takinosawa	Kawaucni viiage		7 500	8,600	16,300	9 300	10,200	4 800	30,400	7 600	21,900	7,400			2,930	68			2 760	4,700		0,3			6,200	870		3 010	Wh	2.0		30	0.59	/
31	Soso(farm pond)	Kamisigeoka No. 1		-	2,940	590	-	9,300		2,370		63,000	_	3,890			14,100	11,7		_	2,520	_		6,3				7,400		10,300	1.1	8,7		31	1.21	\overline{M}
32	(Shimoshireoka	Naraha Town		7,600	7,600		2,410		5,300		2.600	_	7,100			14,100	2,60		-	1,600				50			9,700		10,300	L	6,5	_	32	1.21	<u>, , , , , , , , , , , , , , , , , , , </u>
	Komachi Dam		Ono Town	-		3,320 3,650	-	1,880		3,100		1,690					.,	1,200			2,320			2,1			-	448			Sm	1,5	_	34	0.64	1
_	Kido Dam				9,500	10,300	18,700	12,500	14,600	12,200	16,000	15,700	14,400	10,800			12,900	15,5	00	17,800 1		13,600		8,4	400		10,100	8,700	9,400		1 AM	- 12,2	44	35	0.50	~
36	Soso(farm pond)	Otsutsumi	Naraha Town		3,650	4,500		2,390		2,370		1,840		5,300			2,280	1,87	70	-	1,200			5,3	340			4,890		4,890	ha.	3,4		36	0.77	
-	Iwaki(farm pond)	Shinike			18	141		380		610				304				-	288	-	139			1				257		377	A	24	_	37	1.03	<u>_</u>
		rvoir (Lake Kodama)	t		2,340	3,190		2,520		2,790		1,290		1,480				2,430	1,040		2,120			7	50			670		679	Ann	1,2	_	38	0.52	\tilde{M}
	Iwaki (farm pond)	Kanoritsutsumishita	Iwaki City		32	92		53		80		150		140		-			1,730		4,700			1	72			2,240		1,200	M.	1,7		39	1.18	NM.
40	(tarm pond) Takashiba Dam Res Takashiba)	servoir (Lake	İ		1,050	860		720		780		950		990					1,010		700			9	00			710		900	1	~ 83		40	0.34	<u> </u>
	Takasniba) Shitoki Dam Reserv	voir	1		1,230	900		1,110		1,200		1,220		1,130				1,460	1,310		1,960			1,5	590			1,980		1,510	1	1,6	5	41	0.64	1
F				*1: Blar	nk cells a	re locations wh	ere sam	ples we	e not co	ollected.	The res	alt "Not	detecta	ble" is it	ndicated	as "0."											А	в	с	DE		29,4	29	Average		
1				*2: Arit	hmetic A	verage; calcula	ted by a	ssuming	ND=0;	Color c	odes sh	w cateş	gories (r	ee the r	ight).																-					
1				*3: Res	ults of th	e analysis of tr	ends at :	respectiv	e locati	ons usin	g the m	thod ex	plained	on 4.3(1	1)2)		~	Decreas	sing	<i>→</i> 1	ncreasir	ıg -	→ Ur	1c hang	ed	~~	arying									

(ii) Nakadori


In Nakadori, Fukushima Prefecture, surveys were conducted 21 to 36 times from September 2011 to February 2016 for lake sediment samples collected at 12 locations.

Regarding concentration levels of detected values, four locations were categorized into Category C, six locations into Category D, and two locations into Category E (see Table 4.3-23 and Table 4.3-24).

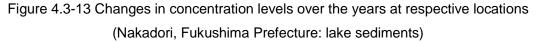

Concentration levels were generally decreasing at five locations, were unchanged at one location, fluctuating at five locations, and generally increasing at one location.

Table 4.3-23 Categorization of detected values at respective locations

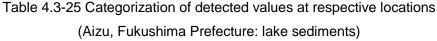
Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	4	No.42, No.47, No.52, No.53
D	Upper 25 to 50 percentile	6	No.43, No.44, No.45, No.49, No.50, No.51
Е	Upper 50 to 100 percentile(lower 50%)	2	No.46, No.48

(*) Scales of the vertical axes differ in the left and right figures.

Table 4.3-24 Detection of radioactive cesium at respective locations

 $(Nakadori,\,Fukushima\,\,Prefecture:\,lake\,\,sediments)$

	Location					(Lak	e Sedi	ments	Radio:	active	Cesiur	n (Cs-	134+	Cs-137)/Conc	entra	ion(Bq	/kg)(*	1)									
No.	Water area	Location				FY20		. 1	. 1					_		FY2								_			_	FY:	<u> </u>						
42	Surikamigawa Dam	Fukushima	8	9 2,300	10	11 570	12	1	2	3	4	5	6	7 2,580	8	9 2.600	10 1,600	11 2.020	12	1	2 3,600	3	4	5		5 100	7 2,470	8 2,720	9	10 2,560	11	12 4,700	1	2	3
43	Reservoir Lake Handanuma	City Kori Town		3,800		21,900		35,000						1,050			7,400								930	890	1.260	2,770	520	4,500			630		
	(farm pond) Oike Pond (farm pond)	Motomiya City	,	2,400		4,000		1,320	1,340					2,110	680	.,	4,500				1,380				960	5,700		470		620		1,220		630	
	Miharu Dam	Miharu Town		69		0		7,500						3,700	4,400		6,800									300	4,600 4,800		6,500				3,700		
	Hounokusa (farm pond)	Koriyama City		1,140		400		2,100		1,700				5,700	1,450		3,700	5,100		4,000					1,460		4,000	83	0,500	88			1,400		
47	Lake Hatori	Tenei Village		2,060		2,240		-		-					1,950		1,270	3,700		-						210	2,750	2,630		5,000		3,700			
	Hirodaira (farm pond)	Sukagawa City	,	290		570		119		191				139	133			217		340	163				88	75		106		69		340	179		
49	Sengosawa Dam Reservoir	Ishikawa Town		300		1,240		17							2,700		1,740	3,800	720						1,1	/40	2,670	7,300		2,620		2,830	2,370		
50	Watariike Pond (farm pond)	Yabuki Town		102		550		2,800		17				63	144		360	4,100		222					75	99		202		88		68	107		
51	Izumikawa (farm pond)	Shirakawa City	y	11,300	,	14,200		5,800		660				720	820		8,900	710		1,270	940				3,200	1,770		540		5,400		3,000	1,200		
52	Hokkawa Dam	Nishigo Village		1,920		6,800		1,210							5,100		13,300	3,600	4,600			13,200			3,4	100	11,100	8,500		2,970		7,600	2,180		
53	Lake Nanko	Shirakawa City	y	900		1,980		10,500		3,200					580		820	7,100				2,300			8,600	6,800		4,300		5,900		2,870	9,100		
			-	amples ink cells	78 are loca	tim tions w	-	78 amples	were r	iot coll	ected.	The re	sult "N	ot detec	table"	is indic	ated as	"0."																	
	Location								I	ake S	edimer	nts/Rad	ioactiv	e Cesiu	ım (Cs	-134+	Cs-137)/Conc	centrati	ion(Bq	/kg)(*	1)										т			
No.	Water area	Location	4	5	6	7	8	FY201-		11	12	1	2	3	4	5	6		_	FY	2015	10 1	1 1	, ,	2	2	Change	s	Averag FY20 (*2	15	No.		efficient of ariation	Inc	ends 93)
42		Fukushima City	-	-	3,220		2,690		2,820		4,250		2,700	5	-	-	,020 3,	-		990	-	140	2,2				Vrm	Mr.	2,90	14	42	(0.45	/	~
43	Lake Handanuma (farm pond)	Kori Town	1,	190	920	317	257	500	346	216	233	437	176			2,	,780 5	520 1,	170 3	35 4	64 5	29 60	00 8	0	95	D	Mr.		906	5	43	:	2.03		\checkmark
44	Oike Pond (farm pond)	Motomiya City	3,	280	470		730		71		85		226		1	,020	1,730)	1,0	000	6	80	6	0	47	9	Wh	~	920)	44	(0.93	/	\checkmark
45	Miharu Dam I	Miharu Town	2,	880	3,040	2,310	2,410	1,990	2,580	2,440	1,960	1,740				2,	,070 3,	770 1,	480 1,7	710 1,	340 1,	260 1,4	150 1,9	10 2,7	70 1,5	70	Mr	r	1,93	3	45	(0.58	/	Ĺ
46	Hounokusa (farm pond) 1	Koriyama City	3,	900	3,640		18		0		13	710				123	81		6	58	4	54	4	4	10	7	M	s.	140	5	46	,	1.25	<u> </u>	>
47	Lake Hatori	Tenei Village		2,3	40 1,440			4,200	6,400		2,080					1,	,900 3,	070	4,0	080	1,	810	3,7	50 2,6	40		-M	L,	2,87	5	47	(0.44	~	~
48	-	Sukagawa City	1	04	16		0		159		351	107				244	75		1	13	3	68	2	01 24	5	_	his	W	208	3	48	(0.68	N	\wedge
49	Sengosawa Dam Reservoir	Ishikawa Town	4,	500	3,500		6,200		4,700		3,140					1.	,200 3,	640		160		620	+	50 1,4		\downarrow	N	V	1,92	0	49	(0.66	N	\mathbb{N}
_		Yabuki Town		_	1,300			1,570	1,210		640	1,540						260		160		420	_	00 1,3	-	_		v~1	1,36		50	_	1.05	N	M
		Shirakawa City	_	880	326	-	-	670	3,890		3,860	780		_			_	390		53		850	_	62 2,30	_	+	Um	n,4	1,35		51		1.21		>
		Nishigo Village			3,900	-	4,400		6,600		3,480	2,990					.570 2,	_		800		080		50 4,5	_	+	M	5	4,08		52		0.65	/V	V¥
53	Lake Nanko S	Shirakawa City		cells are	6,400	ns where	10,900 e samp	les we	840	ollecto	7,400	result "	Not dat	sctable"	je indi		,200 3,	320	3,7	730	3,	770	4,2	50 3,87		Е	1.MM	P	4,19		53 Averag	_	0.66	1/V	M
1		~	1: Dank	cens are	o locatioi	15 WHEF	e samp	ws wer	e not c	onected	1. 1 HC I	csuit "	NUL UCLI	octable.	12 IIII)	cateu as	· U.					1		, L	U D	r.		1	1,90		averag	,e			
		٠	2: Arith	metic Av	erage; c	alculate	d by as:	suming	ND=0;	; Color	codes	show c	ategoria	es (see 1	he righ												4	L							


(iii) Aizu

In Aizu, Fukushima Prefecture, surveys were conducted 14 to 40 times from September 2011 to February 2016 for lake sediment samples collected at 31 locations.

Regarding concentration levels of detected values, six locations were categorized into Category C, three locations were categorized into Category D and 22 locations were categorized into Category E (see Table 4.3-25 and Table 4.3-26).

Concentration levels were generally decreasing at seven locations, unchanged at seven locations, fluctuating at 10 locations, and generally increasing at seven locations.

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	6	No.55, No.56, No.58, No.59, No.60, No.78
D	Upper 25 to 50 percentile	3	No.54、No.57、No.74
Е	Upper 50 to 100 percentile(lower 50%)	22	No.61、No.62、No.63、No.64、No.65、No.66、No.67、No.68、No.69、No.70、 No.71、No.72、No.73、No.75、No.76、No.77、No.79、No.80、No.81、No.82、 No.83、No.84

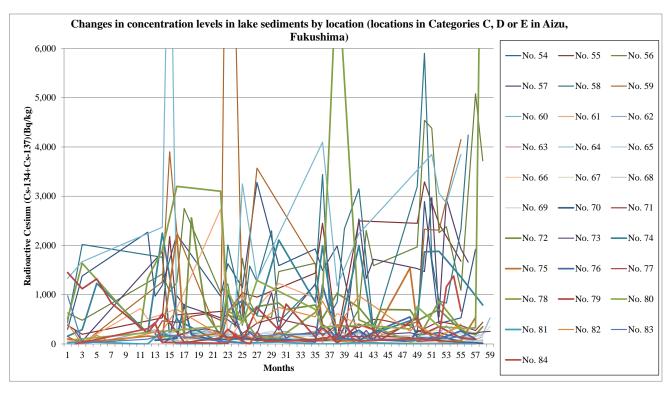


Figure 4.3-14 Changes in concentration levels over the years at respective locations (Aizu, Fukushima Prefecture: lake sediments)

		Location													Lake	Sedime	nts/Rad	lioactive	Cesim	m (Cs-	134+0	's-137)	/Conce	ntratio	n(Ra/kø)(*1)										
							FY20	011										FY2012													FY2013					
No.	Wate	er area	Location	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10		11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
54	Nicchu Dam		Kitakata City		298		1,380									2,270	970	1,19	0	2,220						970	1,630		1,140		3,280		1,590			
55	Lake Sohara				380		196											530	2,180	590						660	650		1,040		950					
56	Lake Hibara		Kitashiobara Village		630		480											1,420	1,060	1,250	2,750					1,040	1,220	342	1,740	850	570	540	1,470			
57	Lake Onogawa					270	57											1,870	111	980	780					530	490	380	870	86	210	1,040	282			
58	Lake Akimoto		Inawashiro Town		440		2,020											1,760	177	540	219					214	2,010	1,340	380	1,580	1,270	2,300	450			
59	Lake Bishamonnuma		Kitashiobara		150		0											1,260	3,900	2,260						82	13,400		570		3,570					
60	Lake Oguninuma		Village		1,330		1,670											2,370	10,200	310							198	620	3,250		1,300					
61	Aizu(farm pond)	Lake Onuma	Nishiaizu Town		61		28								720	510		600)	720						2,740	59		480		740		1,230			
62		Center	Aizuwakamatsu City		0		0		44		93						286	133	3	76	33	126		122		190	178	229	86	103	215	99	237	256	199	
63		Takahashi River Estuary															86	154	ı I	270	166	128		284		171	300		130		147		153	139		
64		Oguro River Estuary															200	76		179	114	127		245		110	84		163		130		114	126		
65		Tenjinhama Beach	Inawashiro Town														111	110)	99	132	135				208	122		80		157		105	83		
66		Hishinuma River Estuary															83	108	3	39	96	89		68		85	50		57		82		60	15		
67	Taba Taana bia	Intake of Asakasosui															126	118	3	115	251	108		116		236	249	172	123	241	194	263	216	222	152	
68	Lake Inawashiro	Hamajihama Beach															235	203	3	240	169	242		221		194	162		151		205		228			
69		Funatsu Port	Koriyama City														223	213	3	186	370	182		223		186	141		187		107		138	160		
70		Offshore of Funatsu River Estuary	Konyama City														74	86		118	800	186		116		88	97		107		92		70			
71		Seishogahama Beach	1														220	470)	440	460	560		610		480	620		211		420		550	470		
72		Haragawa River Estuary	Aizuwakamatsu City														390	151	1	168	215	2,560		610		176	590		470		760		830	700		
73		Koishigahama Floodgate	Inawashiro Town														206	22		161	209	263		306		241	133	144	134	228	111	133	361	114	195	
74	Higashiyama Dam Reservoi	r	Aizuwakamatsu City		157		290		1,230							220		2,25	i0	490						24	680		880		600		2,110		-	-
75		Center			100		59		63		84					160		138	3	2,210	120					219	90		191		62		221			
		Midpoint between the	1																																	
76	Lake Numazawa	center of the lake and off the estuary	Kaneyama Town																							146	1,030		118		77		103			
77		Offshore of Maenosawa River Estuary]																							144	139		134		79		54			
78	Aizu (farm pond)		Aizumisato Town		510		1,640								310	1,330		1,91	0	3,200						3,100	660		540		142		117			
79	Okawa Dam Reservoir		Aizuwakamatsu City		1,450		1,120		1,320		830					218		610)	242	35	44	69			120	297		49		740		286	810		-
80	Tagokura Reservoir					90										229										360	1,090		410		1,290					
81	Minamiaizu (farm pond)	Fukui	Tadami Town		22		47								0	0		270)	0						0	70		12		28		39			
82	Tajima Dam Reservoir (Lake Funehana)		Minamiaizu Town		410		0		177		34					207		270)	700						175	630		1,000		420		740			
83	Okutadami Reservoir		Tadami Town		980		18									97		190)								38	24	34	259	160	180				
84	Lake Ozenuma		Hinoemata Village			0										310	430	34									13	202	51	0	242 57					
				total nu sam		725	Deter		706																											
					k cells ar	re locati			oles wer	e not ce	ollected	l. The r	esult "N	ot detec	table" i	s indic a	ted as "I	0."																		
_																																				

Table 4.3-26 Detection of radioactive cesium at respective locations (Aizu, Fukushima Prefecture: lake sediments) (No.1)

	Location Lake Sediments/Radioactive Cesium (Cs-134+Cs-137)/Concentration(Bq/kg)(*1)																																
No	Water	r area	Location						FY2014													FY2015							Changes	Average of FY2015	No.	coefficient of	Trends (*3)
	Nicchu Dam			4	5	6 1.490	7	8 1.990	9	10 43	11	12	1	2	3	4	5	180	<u> </u>	7	8 413	9	10 530	11	12	1	2	3	nhu	(*2)		variation	A A A
-	Nacchu Dam Lake Sohara		Kitakata City		1,930 1,440	2,450		1,990		43								2,450	2,890 3,290		413 2,440		5.30		1,920					1,187	54 55	0.63	M.
	Lake Hibara		Kitashiobara		1,440	2,450	196	373	192		2,300	1,590					-	1,970	4,540	4,380		2,380	1,080	3,070	5,080	3,720			14	3,166	56	0.72	~
-	Lake Onogawa		Village		1,220	309	168	97	62		1,330	-						1,530	1,470	2,970		2,950			5,080	3,720			1.H	1.866	57	0.81	~
-	Lake Akimoto		Inawashiro Town		1,200	3,440	590	850	2,340		1,710							3,190	5,900	1,720		830	2,330	4,240					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2,726	58	0.83	~
-	Lake Bishamonnuma		Kitashiobara		1,620	400		140		11								452	2,330		2,310		4,150						J.	2,311	59	1.50	NM.
60	Lake Oguninuma		Village			4,100	2,670	1,180		2,240										3,850	3,060	2,860	3,850						Im	3,405	60	0.87	NW.
61	Aizu(farm pond)	Lake Onuma	Nishiaizu Town		930	129		620		385							0	1	17		172		351		0				h	108	61	1.20	NV.
62		Center	Aizuwakamatsu City		149	29	114	63	319	97	119	194	67	193			81	1	59	214	212	372	87	102	156	198	530		North	211	62	0.68	~
63		Takahashi River Estuary			261	291		142		233		195	98				97	ç	99		86		155		93	141			MM	112	63	0.41	~~*
64		Oguro River Estuary			90	99		95		96		110	88				75	٤	85		75		89		78	65			Mr.	78	64	0.39	1
65		Tenjinhama Beach	Inawashiro Town		198	99		106		201		47	148				83	1	11		62		95		39	92			M	74	65	0.41	~~*
66		Hishinuma River Estuary			39	47		49		25		47	23				28	3	27		28		25		30	45			m	31	66	0.51	1
67		Intake of Asakasosui			182	91	255	247	201	160	170	248	440	103			162	2	11	262	278	156	225	272	211	178	359		mult	231	67	0.36	~
68	Lake Inawashiro	Hamajihama Beach			189	189		151		206		213	161				175	1	38		152		149		156	176			*~~~~	158	68	0.17	~~~*
69		Funatsu Port	Koriyama City		192	382		101		141		224	109				174	1	46		244		202		221	123			tulu	185	69	0.37	~~*
70		Offshore of Funatsu River Estuary			87	74		91		278		73	79				54	2	73		166		42		22	13			hr	95	70	1.19	1
71		Seishogahama Beach			344	174		387		331		500	490				370	2	41		455		374		272	438			mm	358	71	0.30	~~*
72		Haragawa River Estuary	Aizuwakamatsu City		790	520		1,030		740		379	700				690	4	69		700		279		188	348			hom	446	72	0.80	1
73		Koishigahama Floodgate	Inawashiro Town		226	389	303	30	363	109	274	89	257	200			229	1	93	211	235	190	121	205	219	246	256		ruther	211	73	0.42	~~*
74	Higashiyama Dam Reservoi	r	Aizuwakamatsu City		850	1,990		18		2,000		214						520	1,870		1,880		1,360			790			NW	1,284	74	0.79	M
75		Center			57	127		58		70		197					1,540	3	72		45		60		537				_h_r	511	75	1.77	NM.
76	Lake Numazawa	Midpoint between the center of the lake and off the estuary	Kaneyama Town		37	1,200		129		74		237					550	1	30		101		265		100				Uh	229	76	1.26	M
77		Offshore of Maenosawa River Estuary			98	118		163		148		163					131	4	53		72		26		15				Š	59	77	0.48	~~~
78	Aizu (farm pond)		Aizumisato Town		640	970		7,800		490					1		41	1	19		870		308		327	12,300			~~~	2,321	78	1.68	NM.
79	Okawa Dam Reservoir		Aizuwakamatsu City		139	344		14		400		298	90					526	218		350		124		89				him	261	79	1.00	1
80	Tagokura Reservoir				700	343		360			378						303	7	60		351			310					M	431	80	0.68	MM.
81	Minamiaizu (farm pond)	Fukui	Tadami Town		0	0		0		30							0		0		0		10		0				Jon	2	81	2.30	1
82	Tajima Dam Reservoir (Lake Funehana)		Minaminizu Town		550	870		333		980							260	3	84		134		404						MM	296	82	0.69	\sim
83	Okutadami Reservoir	nalami Reservoir Talami Toren 20 20 23 14 86 27 101 2 10 2 10 2 10 1 10 1 10 1 10 1																															
84	Lake Ozenuma		Hinoemata Village			70	160	117	550 122	59								1	12	70	160	1,160 1,380	670						ral	592	84	1.36	~
				*1: Bla	nk cells	are loca	ations w	here sar	nples were not	collect	ed. The	result '	Not det	ectable	" is indi	cated as	s "0."							А	в	с	D	Е		824	Average		
									assuming ND:									-> P-	- result -		≯ I			hanned	~		ina	_					
		*3: Results of the analysis of trends at respective locations using the method explained out.3(1) 2) 💦 Decremaing 🛹 Lacraming 🛶 Ukchanged 🗚 Varying																															

Table 4.3-26 Detection of radioactive cesium at respective locations (Aizu, Fukushima Prefecture: lake sediments) (No.2)

3) Ibaraki Prefecture

In Ibaraki Prefecture, surveys were conducted 9 to 18 times from September 2011 to February 2016 for lake sediment samples collected at 19 locations.

Regarding concentration levels of detected values, one location was categorized into Category C, four locations into Category D, and 14 locations into Category E (see Table 4.3-27 and Table 4.3-28).

Concentration levels were generally decreasing at eight locations, were unchanged at eight locations, fluctuating at two locations, and generally increasing at one location.

Table 4.3-27 Categorization of detected values at respective locations

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	1	No.13
D	Upper 25 to 50 percentile	4	No.12, No.14, No.15, No.16
Е	Upper 50 to 100 percentile(lower 50%)	14	No.1、No.2、No.3、No.4、No.5、No.6、No.7、No.8、No.9、No.10、No.11、No.17、 No.18、No.19

(Ibaraki Prefecture: lake sediments)

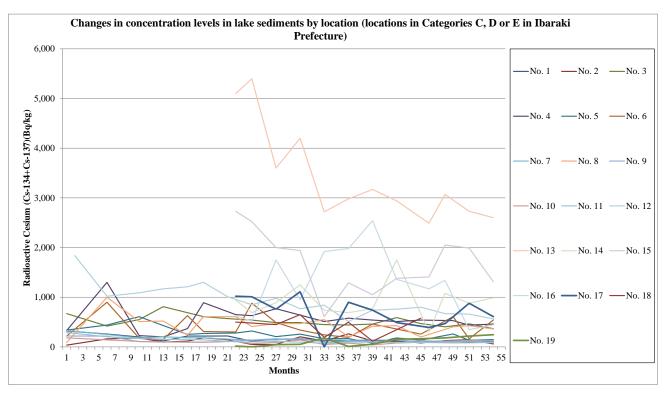


Figure 4.3-15 Changes in concentration levels over the years at respective locations (Ibaraki Prefecture: lake sediments)

							(It	bar	ak	i P	ref	ec	tur	e:	lak	ke s	sec	nit	ner	nts)	1) (1	N٥.	1)												
		Location										I	Lake S	Sedime	ents/R	adioa			n (Cs-	134+0	Cs-13'	7)/Cor	icentr	ation(Bq/kg)(*1)				_				_	
No.	Wat	er area	Location	8	9	10	FY20	12	1	2	3	4	5	6	7	8	FY2 9	012 10	11	12	1	2	3	4	5	6	7	8	FY2 9	2013 10	11	12	1	2	3
1		Hiroura			320					260				200			122			219		219			221			114			155			165	
2	Hinuma	Miyamae	Ibaraki Town		37					162				179			98			118		184			146			49			49			204	
3		Oyazawa			670					420				550			810			690		610			570			540			490			490	
4		Offshore of Tamatsukuri	Namegata City		330					1,300				228			201			370		890				650		630			770			640	
5	Lake	Offshore of Kakeuma	Ami Town		340					440				610			430			252		270				280		320			208			257	
6	Kasumigaura	Center	Miho Village	330 250 183 202 186 183 150 139																	490			340											
7																		138																	
8	I ako Kitaura	Offshore of As Namegata (try 90 1,000 510 520 180 180 150 190 164 Offshore of Kamaya Namegata (try 90 1,000 510 520 239 610 610 410 470 100															470																		
8 Kamaya City 90 1,000 510 520 239 610 610 410 470 9 Lake Kitaura Jingu Bridge 220 217 106 103 93 95 121 136 139 139																172																			
10	Lake Stiture Lake Stiture Lake Stiture Lake Stotnasakara Lake Stotnasakara <thlake stotnasakara<<="" td=""><td>141</td><td></td></thlake>															141																			
11	Lake Solomaskaura 184 143 110 97 102 93 113 66 91 141 Biver River Version															98																			
12	Lake Ushikunuma	Center of Lake Ushikunuma	Ryugasaki City			1,840				1,020				1,090			1,170			1,210		1,300			1,010			850			980			770	
13	Mizunuma Dam		Kitaibaraki City																							5,100		5,400			3,600			4,200	
14	Koyama Dam		Takahagi																							940		690			890			1,250	
15	Hananuki Dam		City																							2,730		2,520			2,000			1,940	
16	Jyuou Dam	Center	Hitachi City																							620		520			1,750			950	
17	Ryuji Dam		Hitachiota City																							1,020		1,010			760			1,110	
18	Fujiigawa Dam		Shirosato Town																							500		480			450			650	
19	Iida Dam		Kasama City																							18		0			45			53	
				of sa	umber mples ank cell:	297 s are le	Dete tin ocatior	nes	295 re sam	ples w	ere no	ot colle	cted. '	The re	sult "N	vot det	ectabl	e" is ii	ndicate	ed as "I	0."														

Table 4.3-28 Detection of radioactive cesium at respective locations

No Horizon Lacking Uncase Provins No officing Interplay 1 Image Imagee			Location								L	ike Se	diment	s/Rad	ioactiv	e Cesi	ium (C	s-134	+Cs-1	37)/C	oncent	ration	(Bq/kg)(*1)						Average of		coefficient	
Image: biology Image	No	Wat	er area	Location						FY2	2014											FY2	015						Changes	FY2015	No.	of	Trends (*3)
2 Numa Numa <t< td=""><td></td><td></td><td>1</td><td></td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>11</td><td>12</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>11</td><td>12</td><td>1</td><td>2</td><td>3</td><td></td><td>(-2)</td><td></td><td>varation</td><td></td></t<>			1		4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		(-2)		varation	
1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0	1		Hiroura			136			111			136			94			101			99			95			99		V~~_	99	1	0.42	\searrow
4 0	2	Hinuma	Miyamae			119			264			120			119			80			128			146			61		~M~	104	2	0.47	~~~*
i Tunistical Cy Sol <	3		Oyazaw a			450			442			460			590			470			405			465			367		\sim	427	3	0.22	\swarrow
5 Lac Kanma Ami Tom 165 168 78 162 177 261 132 177 0 177 0 177 0 177 0 177 0 177 0 177 0 177 0 177 0 177 0 177 0 177 0 177 0 177 0 177 0 177 0 177 0 177 0 178 0 177 0 178 0 0 168 0 168 0 168 0 168 0 168 0 168 0 168 0 168 0 168 0 168 0 168 0 168 <td>4</td> <td></td> <td></td> <td></td> <td></td> <td>510</td> <td></td> <td></td> <td>580</td> <td></td> <td></td> <td>540</td> <td></td> <td></td> <td>510</td> <td></td> <td></td> <td>540</td> <td></td> <td></td> <td></td> <td>530</td> <td></td> <td>439</td> <td></td> <td></td> <td>461</td> <td></td> <td>A~~~</td> <td>493</td> <td>4</td> <td>0.45</td> <td>~~~</td>	4					510			580			540			510			540				530		439			461		A~~~	493	4	0.45	~~~
6 Cater Mao Value 22 192 400 300 277 600 165 543 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	5	Lake		Ami Town		165			168			78			182			137				261		132			147		m	169	5	0.51	\checkmark
1 01580c or A/A Cay 1/3	6	Kasumigaura	Center	Miho Village		242			192			460			360			257				610		165			543		MM	394	6	0.58	$\bigwedge \! \bigwedge$
s Lak Kitaran Kamaya Ciy S20 A15 416 429 200 400 427 501 ////////////////////////////////////	7	/ Offshore of Aso City 143 154 159 138 108 121 8 Offshore of Namegata 550 203 416 479 200 405															133			124		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	122	7	0.33	\checkmark							
9 1ingu Bridge Boromsskarra 1ingu Bridge Boromsskarra 1ingu Bridge Handel 1ingu Bridge 	8	Lake Kitaura Offshore of Kumaya Namegata City 550 203 416 429 200 405 427 361 Approx															\sim	348	8	0.46	~~~												
10 Lak La	9	Kamaya City 550 203 410 429 200 405 427 361 7 % Lake Kitaura jingu Bridge 99 107 115 86 128 102 118 117 117															\sum	116	9	0.31	~~~												
11 Ikiu Kaniu Cây 74 97 95 91 91 1 80 82 91 91 60 82 91	10	Lake Stomasakura Hako City 49 76 42 79 94 89 115 81															~~~	95	10	0.35	1												
12 Ushkumuma Ushkumuma Cig 840 510 740 760 800 670 660 565 674 12 0.34 5 13 Mizunuma Dum Kalabaraki 2,720 2,980 3,170 2940 12490 3070 2730 2600 565 7 674 12 0.34 5 14 Koyama Dam Takahagi 740 690 770 1750 302 1080 880 990 7 813 14 0.39 5 15 Hananuki Dam Takahagi 740 690 770 1750 302 1080 880 990 7 813 14 0.39 5 16 Jyou Dam Center Hachick 1,920 1,980 2,540 1360 1170 1340 346 445 7 825 16 0.55 7 17 Ryuj Dam Center Hachick 193 498 117 346 580 1310 445 7 588 17 0.46 <td< td=""><td>11</td><td>Hitachitone River</td><td colspan="15">Lake Sotonasakaura 49 76 42 79 94 89 115 81</td><td>}</td><td>86</td><td>11</td><td>0.44</td><td>\checkmark</td></td<>	11	Hitachitone River	Lake Sotonasakaura 49 76 42 79 94 89 115 81															}	86	11	0.44	\checkmark											
13 Mizmum Jam Ciy 2.720 2.980 3.170 240 240 300 2720 200 2.723 13 0.29 300 14 Koyma Dam Takingi 740 690 770 1750 302 1080 880 990 770 813 14 0.39 307 300 130 1310 130 16 0.37 307 300 1990 1310 1310 16 0.37 307 307 300 1990 1310 16 0.50 15 0.37 307 300 1990 1410 2050 1990 1310 16 0.50 10	12		Ikisu Kumisu City 74 97 95 91 91 80 82 91 akc Center of Lake Ryugasaki 0.0 5.0 7.0 7.0 0.00 7.0															L	674	12	0.34	\checkmark											
15 Hananuki Dam 16 Jyou Dam Center Hanki Clay 1,920 1,050 1360 1410 2050 1900 1310 1,600 15 0.37 ~ 16 Jyou Dam Center Hanchi Clay 1,920 1,980 2,540 1360 1170 1340 346 445 M 825 16 0.56 M 17 Ryuj Dam Hanchi Clay 1,920 1,980 2,540 360 391 469 880 610 M 588 17 0.46 ~ 18 Fujigawa Dam Mana 193 498 117 346 580 1 1 0 900 740 490 182 218 2 0 0 908 0	13	Mizunuma Dam				2,720			2,980			3,170			2940				2490		3070			2730			2600		h	2,723	13	0.29	\checkmark
15 Hananuki Dam - 610 1,290 1,050 1380 1410 2050 1990 1310 - 1,600 15 0.37 ~ 16 Jyuou Dam Center Hinachi Cay 1,920 1,980 2,540 1360 1170 1340 346 445 . . 825 16 0.56 . . 17 Ryuji Dam Hinachi Cay 0 900 740 490 391 469 880 610 .	14	Koyama Dam		Takahagi		740			690			770			1750				302		1080			880			990		M	813	14	0.39	~~~*
Hachioa 0 900 740 490 10 391 469 880 610 M 588 17 0.46 A 18 Fujigawa Dam 193 193 498 117 346 580 1 1 0	15	Hananuki Dam		City		610			1,290			1,050			1380				1410		2050			1990			1310		\sim	1,690	15	0.37	~~~*
17 Reignava Dam Cig 0 900 740 450 331 469 880 610 V O 388 17 0.40 ~~ 18 Fujigava Dam 193 498 117 346 580 1 1 1 341 469 182 182 1 1 1 1 1 346 165 165 182 218 246 1 1 0.40 ~~ 19 Ida Dam 180 11 155 156 165 182 218 246 1 203 19 0.80 1 *1: Bank cells are locations where samples were not collected. The result "Not detectable" is indicated as "0." A B C D E	16	Jyuou Dam	Center	Hitachi City		1,920			1,980			2,540			1360				1170		1340			346			445		M	825	16	0.56	$\bigwedge \!\!\! \bigwedge$
I own I own <th< td=""><td>17</td><td>Ryuji Dam</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>900</td><td></td><td></td><td>740</td><td></td><td></td><td>490</td><td></td><td></td><td></td><td>391</td><td></td><td>469</td><td></td><td></td><td>880</td><td></td><td></td><td>610</td><td></td><td>10</td><td>588</td><td>17</td><td>0.46</td><td>~~~</td></th<>	17	Ryuji Dam				0			900			740			490				391		469			880			610		10	588	17	0.46	~~~
19 14a Dam City 180 11 55 156 165 182 218 246 N 203 19 0.80 *1: Blank cells are locations where samples were not collected. The result "Not detectable" is indicated as "0." A B C D E	18	Fujiigawa Dam]			193			498			117			346			580											Ŵ	580	18	0.41	~~~
	19	Iida Dam				180			11			55			156			165			182			218			246		N	203	19	0.80	~
*2: Arithmetic Average; calculated by assuming ND=0; Color codes show categories (see the right).		•	•		*1: Bk	ank cel	ls are le	ocation	s when	re samp	ples we	ere not	collecte	ed. The	e result	"Not	detecta	ole" is	indicat	ed as '	0."			А	в	с	D	Е					
					*2: Ar	rithmeti	c Aver	age; ca	ilculate	d by as	ssumin	g ND=	0; Colo	r code	s show	categ	ories (s	ee the	right).										•				
*3: Results of the analysis of trends at respective locations using the method explained on 4.3(1) 2) 💙 Decreasing 🛹 Increasing 🛶 Unchanged 👭 Varying					*3: Re	esults o	f the a	nalysis	of trer	ıds at r	especti	ive loca	tions u	sing th	e meth	od exp	lained	on 4.3	(1) 2)	~	3	Decrea	ising	~	Incr	easing	~	~ ≁ U	Inchanged /	Varying			

Table 4.3-28 Detection of radioactive cesium at respective locations (Ibaraki Prefecture: lake sediments) (No.2)

106

4) Tochigi Prefecture

In Tochigi Prefecture, surveys were conducted 14 to 18 times from October 2011 to December 2015 for lake sediment samples collected at eight locations.

Regarding concentration levels of detected values, four locations ware categorized into Category D, and four locations into Category E (see Table 4.3-29 and Table 4.3-30).

Concentration levels were generally decreasing at two locations, were unchanged at one location, fluctuating at four locations, and generally increasing at one location.

Table 4.3-29 Categorization of detected values at respective locations

(Tochigi Prefecture	: lake sediments)	
	1 ooningi 1 norootaro		

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	0	(None)
D	Upper 25 to 50 percentile	4	No.1, No.2, No.4, No.7
Е	Upper 50 to 100 percentile(lower 50%)	4	No.3, No.5, No.6, No.8

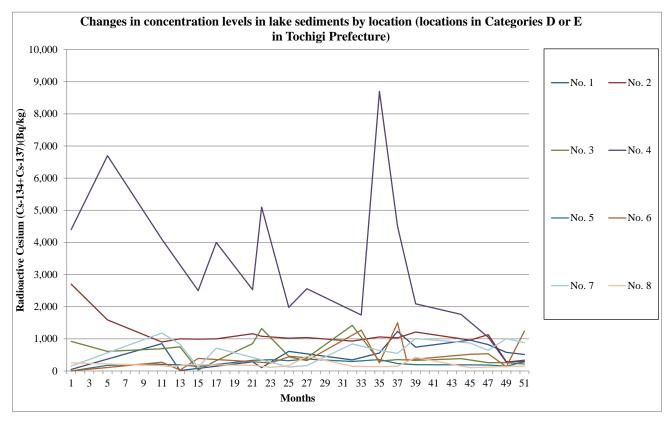


Figure 4.3-16 Changes in concentration levels over the years at respective locations (Tochigi Prefecture: lake sediments)

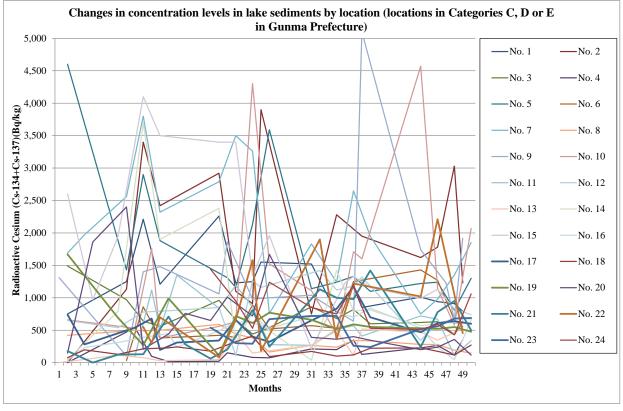
Table 4.3-30 Detection of radioactive cesium at respective locations (Tochigi Prefecture: lake

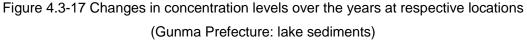
sec	JIII	iei	ILS/	

		Location											La	ike Se	dimer	nts/Ra	dioac	tive C	esium	n (Cs-	134+	Cs-13	7)/Co	ncentr	ration	(Bq/k	g)(*1)									
N	Water area	Location		Municipality				FY20	11									FY2	2012											FY2	2013					
140	water area	Location		wunicipanty	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		Miyama Dam Reservoir	Center	Nasushiobar			48										850		11								284	106			610					
2		Shiobara Dam Reservoir	Center	a City			2,700				1,590						900		1,000		990		1,000				1,160	1,080)		1,020		1,040			
3		Kawaji Dam Reservoir	Center				920				610						690		750		25		320				850	1,320)		460		410			
4		Ikari Dam Reservoir	Center				4,400				6,700						4,100		3,300		2,500		4,000				2,530	5,100)		1,980		2,560			
5		Kawamata Dam Reservoir	Center	Nikko City			0				176					212			190		140						330		350		321		370			
6		Lake Yuno	Center				0										270		28		390						286		248		440		320			
7		Lake Chuzenji	Center				153										1,180		830		115		710				420		270		122		168			
8	Watarase River System	Watarase Reservoir	Center	Tochigi City			251										165	134		197							177		113		164		460			
	System total number of samples 134 Detection 132																																			
														ected.	The re	esult "	Not de	etectal	ole" is	indica	ated a	s "0."														

		Location									Lal	ce Sec	liment	s/Rad	ioactiv	re Ces	ium ((Cs-134	+Cs	-137)/0	Concer	ntratio	on(Bq	kg)(*)	1)					Average of		coefficient	
No.	Water area	Location		Municipality			1	1		FY2	<u> </u>											FY	2015				1	1	Changes	FY2015 (*2)	No.	of	Trends (*3)
					4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		(2)		variation	
1		Miyama Dam Reservoir	Center	Nasushiobara		343			560		1,230		740						960		820		580		514				wh	719	1	0.66	/
2		Shiobara Dam Reservoir	Center	City		930			1,060		1,030		1,210						960		1,130		290		290				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	668	2	0.46	1
3	Kawaji Dam Reservoir Center 1,420 307 355 330 I 382 257 261 215 V/V/L															M	279	3	0.69	\sim													
4	Karvaji Dam Reservor Center 1,4.0 307 355 3.0 3.2 2.57 2.61 2.15 4.10 Bari Dam Reservor Center 1,740 8,700 4,500 2,090 1,760 1,050 2.75 3.33														~~~	855	4	0.68	1														
5		Kawamata Dam Reservoir	Center	Nikko City		293			354		232		196					191			185		147		285				~~~~	202	5	0.42	~
6		Lake Yuno	Center				1,270)	250		1,500	339							520		535		132		1,240)			m	607	6	0.93	$\wedge \wedge \wedge$
7		Lake Chuzenji	Center			840			640		550		1,010						870		640		1,01)	880				$\sim\sim$	850	7	0.57	$\sim\sim$
8	Watarase River System	Watarase Reservoir	Center	Tochigi City		146			134		144		421						103		123		137		148				$\sim \mathcal{M}$	128	8	0.56	$\wedge \wedge \wedge$
					°1: Bla	ank ce	lls are	locatio	ns whe	re sam	ples w	ere no	t collec	ted. T	he res	ult "No	ot detec	table"	is ind	icated	as "0."			A	в	с	D	Е		538	Average		
					*2: Ar	ithmet	ic Ave	erage; c	alculate	ed by a	issumir	ig ND	=0; Co	lor coc	les sho	ow cat	egories	(see t	he rigl	ıt).									-			-	
					*3: Re	sults o	of the	analysis	of trea	nds at	respect	ive loc	ations	using	the me	ethod e	xplaine	ed on 4	.3(1)	2)	1	. Do	creasi	ng -	~	Increa	ising	~	 Unchanged 	∧∧ ∧ Varying	3		

5) Gunma Prefecture


In Gunma Prefecture, surveys were conducted 12 to 18 times from November 2011 to December 2015 for lake sediment samples collected at 24 locations.


Regarding concentration levels of detected values, one location was categorized into Category C, 10 locations were categorized into Category D and 13 locations were categorized into Category E (see Table 4.3-31 and Table 4.3-32).

Concentration levels were generally decreasing at six locations, were unchanged at seven locations, fluctuating at eight locations, and generally increasing at three locations.

Table 4.3-31 Categorization of detected values at respective locations (Gunma Prefecture: lake sediments)

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	1	No.10
D	Upper 25 to 50 percentile	10	No.1, No.2, No.5, No.6, No.7, No.9, No.14, No.15, No.22, No.24
Е	Upper 50 to 100 percentile(lower 50%)	13	No.3, No.4, No.8, No.11, No.12, No.13, No.16, No.17, No.18, No.19, No.20, No.21, No.23

[Leastin												s	edi					- Card		1244	7- 127	6		- (P -	a)(*	•									
Ne	Weter eres	Location		Municipality					FY2	011					La	ke Sed	imen	ts/Radi	ioactiv	re Cesi FY201	um (Cs 2	-134+0	./s-137)	/Conce	ntratio	n(Bq/	/kg)(*	1)			FY2	013					
No.	Water area	Location	1	Municipality		8	9	10) 11	1	2	1	2	3	4 :	5 6	5	7	8	9	10 1	1 12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		Lake Okutone (Yagisawa Dam)	Center							75	50						1.	,250	2	,210	1,2	10						2,260)	1,230		1,250	1,550				
2		Lake Naramata (Naramata Dam)	Center	Minakami Town			_			()						1	,130	3	,400	2,4	20				_		2,920		1,100		910	3,900				
3		Lake Dogen (Sudagai Dam)	Center	1						1,4	190						ç	70		540	56	0						960		660		440		540	_		
4		Lake Marunuma (Marunuma Dam)	Center	Katashina Village						()							5	540	4	98	16						21	151			81		74		-	_
5	Tonegawa River	Lake Fujiwara	Center	Minakami Town						4.6	500						1	,430	2	,900	1,8	80							1,310	1,160		2,130		3,590		-	
-		(Fujiwara Dam) Lake Tanbara			+			+		-,.	,00	-	+	_		-	-	_	_	_	_	-							1,510				⊢			+	
6		(Tanbara Dam)	Center	Numata City	_			_	_	_	_	_	_	_			-	33	-	860	38			_				420		390		890	\vdash	520		—	
7		Lake Akaya (Aimata Dam)	Center	Minakami Town						1,6	590	1,	,970				2	,560	3	,800	2,3	20						2,790		3,500		3,260		760		_	
8		Lake Sonohara (Sonohara Dam)	Center	Numata City						42	20							5	500	490	50	0						590		440		380		164			
9		Lake Akagionuma	Center	Maebashi City					1,31	0							1	04	1	,400	1,4	80						1,060	1,860			980		1,000			
10		Lake Okushima (Shimagawa Dam)	Center							66	50							5	530	1,	760 38	0						560		630		4,300		1,520	_		
11	Agatsuma River	Lake Shimako	Center	Nakanojo Town	F			1									+		94	1	120 51	0	1,350	,				840		1,190		860		278		-	-
	Area	(Nakanojo Dam) Lake Tashiro			-			-	-			-	-	_		-			_	-	120 51	-	-	-			-							2.10	-	+	
12		(Kazawa Dam)	Center	Tsumagoi Village	_					65	50	_	_			54	-		_	780		800						850		110		1,260	1,160	\rightarrow			
13		Lake Haruna	Center	Takasaki City/Higashi- Agatsuma Town				-	0	1						11	4			76	3)						47		460		148	Щ	$ \rightarrow$	$ \downarrow$	$ \rightarrow $	
14		Lake Kirizumi (Kirizumi Dam)	Center	Annaka City	L					4	9					79	0		3	,700	1,9	00						2,380		310		770		490			
15		Lake Usui (Sakamoto Dam)	Center	, wildka City	Γ				Τ	2,6	500	T	Τ	970		1,9	50	Τ	4	,100	3,5	DO						3,400		3,400		1,340		1,960	Τ	T	
16	Karasu River	Lake Arafune	Center	Shimonita Town	T			1	1	3	7	2	233			31	0		:	390	+	450	239	1				490		630		620		530	1	+	
17		(Dodairagawa Dam) Lake Oshio	Center	Tomioka City	+			+	+	74	-	-	280			+	+		540		80 19		310	\vdash			-	340		660	\vdash	400	\square	320	\neg	+	
		(Oshio Dam) Lake Kanna		Fujioka City/Kamikawa	+			+	+	-	_	-	_			+	+	-	_	_	- 19	-		-	\vdash		 	540	\vdash				⊢┤		+	+	_
18		(Shimokubo Dam)	Center	Town	+			_	+	7	5	1	197			12	+		_	213	+	228	242	_			178	_		320		410	\vdash	93	\dashv	+	_
19		Lake Hebikami (Shiozawa Dam)	Center	Kanna Town						1,6	570					69	0		:	270		990						111		720	Ц	610	Ш	770	\square		
20	Watarase River	Lake Kusaki (Kusaki Dam)	Center	Midori City						14	17		1	,860			2	,400	:	207		440		760			650		1,010			720		1,670			
21	Area	Lake Umeda (Kiryugawa Dam)	Center	Kiryu City						17	79			0		12	23			129		710		280			62		203			810		245			
22	Nakatsu River	Lake Nozori	Center	Nakanojo Town																550 3	00 70	0						82		660		1,580	181				
23		(Nozori Dam) Lake Jonuma	Center	-					-				-				-										540			301		291		670	-	-	
	Watarase River Area			Tatebayashi City	-			_		_	_	_	_	_			-			_				-									⊢			—	
24		Lake Tataranuma	Center				mber of		D	tectio	_																1,44			950		530		1,240			
		Location			*1	: Blank	cells ar	e locat			L				ed. The r							on(Bq/i	(*1)							А	verage (of		coeffic	icient		
No.	Water area	Location		Municipality	4	5	6	7		FY20	014 10	11	12	1	2	3	4	5	6	7 1		2015 10	11	12	1	2	3	Cha	nges		FY2015 (*2)		No.	of variat		Trend (*3)	
1		Lake Okutone	Center		4	1,520	0	,	760		1,170	850	12		2	3 .	•	-	.010		40	910	790	12		2	5	м	~	_	913	-	1	0.3	38	~~	
2		(Yagisawa Dam) Lake Naramata	Center 1	Minakami Town		750			2,280	-	2,060	1,950						-	,620		780	3,030	1,230					M	1~	Л	1,915	-	2	0.5	-	NV!	7
-		(Naramata Dam) Lake Dogen					_	_		-		.,	(00				+	-	-			-		-	-	-		<u>-</u>	ŵ.						_		
3		(Sudagai Dam) Lake Marunuma	Center			860		-	680	-	820	_	600				+	-	520		30	431	630	_		_	-	1	~	~	578	-	3	0.3	-	<u></u>	4
4		(Marunuma Dam)	Center	Katashina Village		211			201	_	349	127					_	_	227	24		118	352					<u> </u>	N	1	241		4	0.8	.2	NV!	*
5	Tonegawa River	(Fujiwara Dam)	Center	Minakami Town		1,140		1	1,240	1	1,330		1,100					1,:	,220	1,2	240	810		1,300				~	~	~	1,143		5	0.5	i9	\geq	*
6		Lake Tanbara (Tanbara Dam)	Center	Numata City		570			530	1	1,250							1,4	,430	1,2	270	660	550					\sim	S	l	978		6	0.5	j 7	~	7
7		Lake Akaya (Aimata Dam)	Center	Minakami Town		1,830		1	1,240	4	2,650		1,950					7	750	91	80	1,350		1,850			,	N	m	/	1,233		7	0.4	15	~~~	•
8		Lake Sonohara (Sonohara Dam)	Center	Numata City		266			237		342		336					2	281	2	79	193		146			4	-	~	~	225		8	0.3	38		*
9			Center 1	Maebashi City		1,040	Ħ	1	790		640	5,100			ΓŤ	+	╡	1,"	,740	\uparrow	1,23	0 660	1,920	1	\uparrow	\uparrow	1	~~			1,388		9	0.7	19		Ł
10		Lake Okushima	Center			1,110	+	-	438	-	1,710				\vdash	+	╉		,570	1	140	580		2,070	+	+		. 1		i	2,090		10	0.8		<u> </u>	_
11	Agatsuma River	Lake Shimako		Nakanojo Town				_		-		_	_	-	\vdash	+	+	_	-			-	\vdash	-	+	+	÷	-1-	~	V.					-	<u> </u>	
-	Area	(Nakanojo Dam) Lake Tashiro	Center			266		-	510	_		410	_	-	\vdash	+	+	-	120		70	107		339	+	+	+	1	~	V	459	4	11	0.6			_
12		(Kazawa Dam)		Fsumagoi Village			1,420	_	1,120	-	1,180				\vdash	+	+	_	343		10	620	580		_			~	1		538		12	0.4	-	~~	
13		Lake Haruna	Center	Fakasaki City/Higashi- Agatsuma Town		266			490		112	520			\square	\perp		4	170	34	46	460	650					<u></u>	Ν	~	482		13	0.7	7		1
14		Lake Kirizumi (Kirizumi Dam)	Center	Annaka City		38		1	1,420		800		810					5	570	61	00	680		670				A	\sim	_	630		14	0.9	15	/	4
15		Lake Usui (Sakamoto Dam)	Center		_	215	[[_ [1	,230	1,330		1,160			_		9	990	1,1	130	830	$\lfloor floor$	740			1	\sim	~	~	923		15	0.6		/	
16	Karasu River	Lake Arafune (Dodairagawa Dam)	Center	Shimonita Town		710			770		700		840			╈	T	5	530	23	37	47		660				$^{\sim}$	~~	V	369		16	0.5	52	\mathbb{N}	1
17		Lake Oshio (Oshio Dam)	Center	Fomioka City		650		+	830		1,170		700		$ \uparrow $	+	┥	4	168	6	10	640		600	+	+	1	1_^	Л	1	580		17	0.4		~~	
18		Lake Kanna	Contor	Fujioka City/Kamikawa		173	\vdash	-	100	-	119		222			+	+		226		75	118		272		+		2	6-		198		18	0.4	-	~~~	
10		(Shimokubo Dam) Lake Hebikami		Fown				-	_	-	-		-	-	\vdash	+	+	_	530	_		-	\vdash	-	+	+	-		~~	-						NV!	
		(Shiozawa Dam)		Kanna Town		660	\vdash	-	520	-	590		550		$\left \cdot \right $	+	+	_	_	5:	_	548		476	+	+	+	<u>vv</u>	~~	~	519		19	0.5		<u>/ v v i</u>	-
20	Watarase River Area	(Kusaki Dam)		Midori City		390			361	-	400		345		\square				200	2:		357		115			1	m	~	~	227		20	0.9	_	_	4
21	лиса	Lake Umeda (Kiryugawa Dam)	Center	Kiryu City			1,130	1	1,000		980		1,420					2	240	71	80	950	\square	500				N	M	^	618		21	0.8		_	7
22	Nakatsu River	Lake Nozori (Nozori Dam)	Center	Nakanojo Town		L	1,900		358	1	1,220							1,	,020	2,2	210	1,050	454					N	M	1	1,184		22	0.7	15	Ś	¥
23	Watarase River	Lake Jonuma	Center			720		T	720	Τ	260		241		ΙT	T	T	5	518	51	50	680		688	T	T	T	V	N		612		23	0.3	37	~~	•]
24	Area	Lake Tataranuma	Center	Fatebayashi City		850			750		1,200		530			1	T	5	510	5	20	429		1,060					M	-1	647	T	24	0.4	10	~~	
F					*1: Bk	ank cel	ls are loc	ations	where	sampl	les we	re not	collect	ed. Th	ie result "	Not det	ec tabl	e" is ind	dicated	as "0."	- I	1	A	в	с	D	Е			T	778	A	werage				
															es show c															-				1			
					*3: Re	esults o	f the an:	ilysis o	of trends	s at re	spectiv	ve loca	tions 1	ising t	he metho	d explai	ned or	n 4.3(1)) 2)		>	Decreas	ing	~	Increasi	ng	~	Unch	anged	~	∿ • Vary	ing					

Table 4.3-32 Detection of radioactive cesium at respective locations (Gunma Prefecture: lake

6) Chiba Prefecture

In Chiba Prefecture, surveys were conducted 18 times from November 2011 to February 2016 for lake sediment samples collected at eight locations.

Regarding concentration levels of detected values, one location was categorized into Category C, one location into Category D, and six locations into Category E (see Table 4.3-33 and Table 4.3-34).

Concentration levels were generally decreasing at six locations and were unchanged at two locations.

Table 4.3-33 Categorization of detected values at respective locations

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	1	No.4
D	Upper 25 to 50 percentile	1	No.3
Е	Upper 50 to 100 percentile(lower 50%)	6	No.1, No.2, No.5, No.6, No.7, No.8

(Chiba Prefecture: lake sediments)

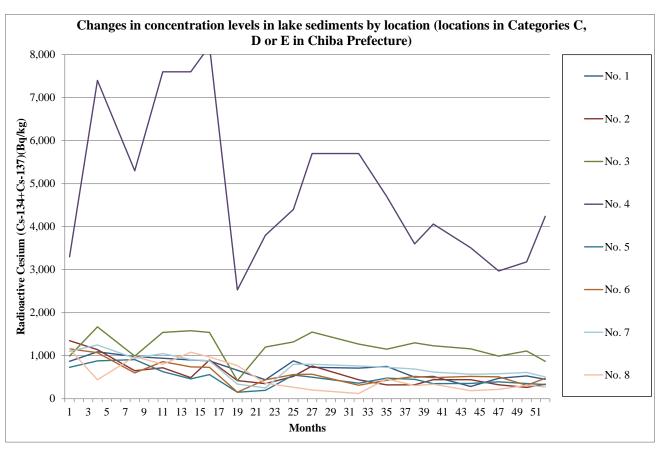


Figure 4.3-18 Changes in concentration levels over the years at respective locations

(Chiba Prefecture: lake sediments)

Table 4.3-34 Detection of radioactive cesium at respective locations (Chiba Prefecture: lake sediments)

1		Location												Lake	Sediı	nents/	Radio	active	Cesiu	m (Cs-	134+	Cs-13	7)/Co	ncenti	ation	(Bq/kg)	(*1)								
No.		Location	Municipality					FY2	2011									FY	2012										F	Y2013	;				
140.		Location	Municipanty	·	8	9	10	11	12	1	2	1	3 4	4 5	e	7	8	9	10	11	12	1	2	3	4	5	6	7 8	9	10) 1	11	12 1	. 2	2 3
1		Fusashita	Inzai City					870)		1,09) 0			98	0		940			900		880			660		44)		88	80	73	0	
2	Lake	Shimoteganuma Chuo	ilizai City					1,35	0		1,14	40			65	0		720			490		900			420		34)		52	20	76	60	
3	Teganuma	^a Teganuma Chuo	Abiko City/Kashiwa					990)		1,67	70			99	0		1,540)		1,580		1,540			420		1,20	0		1,3	320	1,5	50	
4		Nedoshita	City/Kasiliwa City					3,30	0		7,40	00			5,3	DO		7,600)		7,600		8,200			2,530		3,80	0		4,4	400	5,7	00	
5		Kita-Inbanuma Chu	Inzai City/Nari City	ita				730)		88	0			91	0		630			460		560			151		19	5		55	50	50	0	
6	Lake	Ipponmatsushita	Inzai City					1,16	0		1,07	70			60	0		860			740		730			152		44)		50	60	57	'0	
Lake Lake <thlake< th=""> Lake Lake <thl< td=""><td>0</td><td></td></thl<></thlake<>															0																				
Image: Normal Section (Normal Section (Normation (Normat Section (Normal Section (Normal Section (Normal Sect																																			
L	of samples 144 times 144 *1: Blank cells are locations where samples were not collected. The result "Not detectable" is indicated as "0." *1: Blank cells are locations Location Location Average of locations *1: Plank cells																																		
1	Location Lake Sediments/Radioactive Cesium (Cs-134+Cs-137)/Concentration(Bq/kg)(*1) Average of EVOL4 EVOL5 No. coefficient Trend																																		
No	50. Location Municipality FY2014 FY2015 Chances (#) No. coefficient Tree of variation (*3														rends (*3)																				
No.	No. Location Municipality FY2014 FY2015 FY2015 FY2015 Changes No. Coefficient of variation Ten (*3)																																		
1		Location Fusashita	Municipality Inzai City	4	5	710	7	8	9 750	014	11	12 500	1	2 520			5 2	5 7		FY 9 474	2015		12 530	-	151	3	Changes		FY20 (*2) 435	15	1		of variatio		
1	Lake Teganuma	Location Fusashita Shimoteganuma Chuo		4	5	710 440	,	8	9 750 320	014	11	12 500 325	1	2 520 443			5 2	5 7 83 41		FY 9 474 324	2015		12 530 264		151 338	3			FY20 (*2) 435 342	15	1	·. (0.33 0.54	n /	(*3)
1 2 3	Lake Teganuma	Location Fusashita Shimoteganuma Chuo Teganuma Chuo		4	5	710 440 1,270		8	9 750 320 1,150	014	11	12 500 325 1,300	1	2 520 443 1,230			5 2	5 7 83 41 60		FY 9 474 324 990	2015	11	12 530 264 1,110		151 338 370	3			FY20: (*2) 435 342 1,03:	15	1 2 3	i. (0.33 0.54 0.25	n / / /	(*3)
1 2 3 4		Location Fusashita Shimoteganuma Chuo Teganuma Chuo Nedoshita	Inzai City Abiko City/Kashiwa City	4	5	710 440 1,270 5,700		8	9 750 320 1,150 4,700	014	11	12 500 325 1,300 3,600	1	2 520 443 1,230 4,060			5 2 4 1,1 3,5	5 7 33 41 60 510		FY 9 474 324 990 2,970	2015	11	12 530 264 1,110 3,180	4	151 338 370 240	3	Changes		FY20: (*2) 435 342 1,03: 3,47:	15 3 5	1 2 3 4	·. (0.33 0.54 0.25 0.37	n / / /	(*3)
1 2 3 4 5		Location Fusashita Shimoteganuma Chuo Teganuma Chuo Nedoshita Kita-Inbanuma Chuo	Inzai City Abiko City/Kashiwa City Inzai City/Narita City	4	5	710 440 1,270 5,700 360		8	9 750 320 1,150 4,700 480	014	11	12 500 325 1,300 3,600 450	1	2 520 443 1,230 4,060 350			5 2 4 1,1 3,4 3	5 7 33 41 60 55 55		FY 9 474 324 990 2,970 391	2015	11	12 530 264 1,110 3,180 354	4	151 338 370 240 328	3	Changes		FY20: (*2) 435 342 1,03: 3,47: 357	3 5	1 2 3 4 5	. (0.33 0.54 0.25 0.37 0.43	n / / /	(*3)
1 2 3 4	Lake	Location Fusashita Shimoteganuma Chuo Teganuma Chuo Nedoshita Kita-Inbanuma Chuo Ipponmatsushita	Inzai City Abiko City/Kashiwa City Inzai City/Narita	4	5	710 440 1,270 5,700		8	9 750 320 1,150 4,700	014	11	12 500 325 1,300 3,600	1	2 520 443 1,230 4,060			5 2 4 1,1 3,4 3	5 7 33 41 60 510		FY 9 474 324 990 2,970	2015	11	12 530 264 1,110 3,180	4	151 338 370 240	3	Changes		FY20: (*2) 435 342 1,03: 3,47:	3 5	1 2 3 4	. (0.33 0.54 0.25 0.37	n / / /	(*3)
1 2 3 4 5	Teganuma	Location Fusashita Shimoteganuma Chuo Teganuma Chuo Nedoshita Kita-Inbanuma Chuo	Inzai City Abiko City/Kashiwa City Inzai City/Narita City	4	5	710 440 1,270 5,700 360		8	9 750 320 1,150 4,700 480 430 730	014	11	12 500 325 1,300 450 520 690	1	2 520 443 1,230 4,060 350			5 22 4 1,1 3,5 5	5 7 33 41 60 55 55		FY 9 474 324 990 2,970 391	2015	11	12 530 264 1,110 3,180 354	4	151 338 370 240 328	3	Changes		FY20: (*2) 435 342 1,03: 3,47: 357	15 3 5	1 2 3 4 5	. (0.33 0.54 0.25 0.37 0.43	n / / /	(*3)
1 2 3 4 5	Lake	Location Fusashita Shimoteganuma Chuo Teganuma Chuo Nedoshita Kita-Inbanuma Chuo Ipponmatsushita Lower area of Josuido	Inzai City Abiko City/Kashiwa City Inzai City/Narita City Inzai City	4	5	710 440 1,270 5,700 360 313		8	9 750 320 1,150 4,700 480 430	014	11	12 500 325 1,300 3,600 450 520	1	2 520 443 1,230 4,060 350 490			5 22 44 1,1 3,4 33 55 57	5 7 33 41 60 510 55 20		FY 9 474 324 990 2,970 391 509	2015	11	12 530 264 1,110 3,180 354 313	4	151 338 370 240 328 473	3			FY20: (*2) 435 342 1,03: 3,47: 357 454	15 3 5	1 2 3 4 5 6	. (0.33 0.54 0.25 0.37 0.43 0.44	n / / /	(*3)
1 2 3 4 5 6 7	Lake	Location Fusashita Shimoteganuma Chuo Teganuma Chuo Nedoshita Kita-Inbanuma Chuo Ipponmatsushita Lower area of Josuido water intake	Inzai City Abiko City/Kashiwa City Inzai City/Narita City Inzai City Sakura City Yachiyo City			710 440 1,270 5,700 360 313 760 121			9 750 320 1,150 4,700 480 430 730 460	10		12 500 325 1,300 3,600 450 520 690 304		2 520 443 1,230 4,060 350 490 620 338	3	4	5 (1) 22 44 1,1,1 3,3,3 3,3 3,3 5,5 5 5 5 1	5 7 83 41 60 55 20 70	8	FY 9 474 324 990 2,970 391 509 580 216	2015	11	12 530 264 1,110 3,180 354 313 610	4	 151 338 370 240 328 473 505 273 	3	Changes		FY20 (*2) 435 342 1,03 3,47 357 454 566	3	1 2 3 4 5 6 7		0.33 0.54 0.25 0.37 0.43 0.44 0.35	n / / /	(*3)
1 2 3 4 5 6 7	Lake	Location Fusashita Shimoteganuma Chuo Teganuma Chuo Nedoshita Kita-Inbanuma Chuo Ipponmatsushita Lower area of Josuido water intake	Inzai City Ahiko City/Kashiwa City Inzai City/Narita City Inzai City Sakura City Yachiyo City	*1: Bis	ank ce	710 440 1,270 5,700 360 313 760 121	location	ns whe	9 750 320 1,150 4,700 480 430 730 460 ere sam	10 10 uples w	11	12 500 325 1,300 3,600 450 520 690 304 t colles	1	2 520 443 1,230 4,060 350 490 620 338	3	4	5 2 4 4 1,1 3,3,3 5.5 5 1 1 1 1 1 1	5 7 33	8	FY 9 474 324 990 2,970 391 509 580 216	2015	11 	12 530 264 1,110 354 313 610 312	4 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	 151 338 370 240 328 473 505 273 	3 { / 2 2 { / 2 2 3			FY20 (*2) 435 342 1,03 3,47 357 454 566 247	33	1 2 3 4 5 6 7 8		0.33 0.54 0.25 0.37 0.43 0.44 0.35	n / / /	(*3)

(2)-3 Coastal areas

1) Iwate Prefecture

In Iwate Prefecture, surveys were conducted 9 times from January 2012 to November 2015 for coastal area sediment samples collected at two locations.

Regarding concentration levels of detected values, both two locations were categorized into Category E (see Table 4.3-35 and Table 4.3-36).

Concentration levels were generally unchanged at one location and fluctuating at one location.

Table 4.3-35 Categorization of detected values at respective locations

(Iwate	Prefecture:	coastal	area	sediments')
	ivvalo	1 101001010.	oouolui	aiou	ocumento	,

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	0	(None)
D	Upper 25 to 50 percentile	0	(None)
Е	Upper 50 to 100 percentile(lower 50%)	2	No.1, No.2

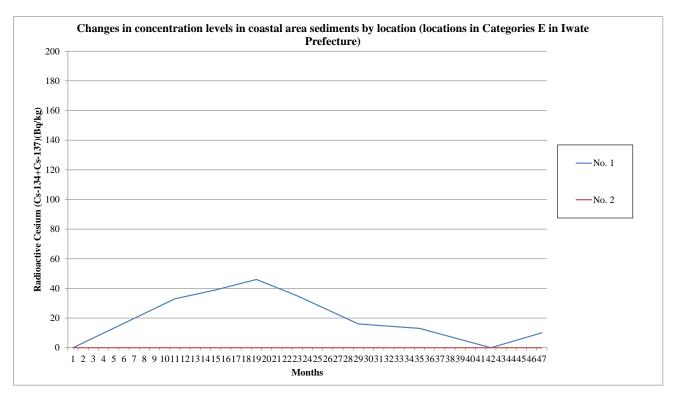


Figure 4.3-19 Changes in concentration levels over the years at respective locations (Iwate Prefecture: coastal area sediments)

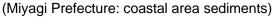
Table 4.3-36 Detection of radioactive cesium at respective locations (Iwate Prefecture: coastal area sediments)

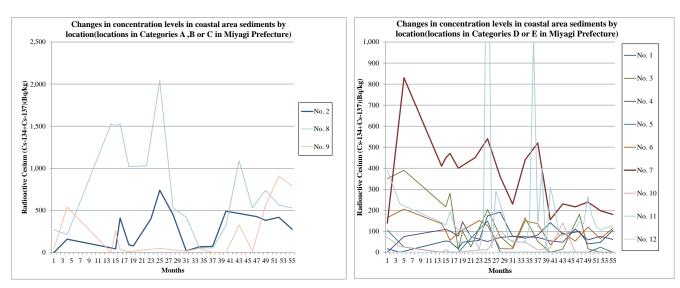
	Location											Coast	al are	a sedi	ment	s/Rad	ioactiv	e Ces	ium (C	Cs-134	+Cs-I	137)/C	oncent	ration	(Bq/k	g)(*1)									
No.	Location					FY20	11										FY20)12											Fy2	2013					
INO.	Location	8		9	10	11	12	1	2	3	4	5	e	5	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Ofunato Bay (A)							0											33				39				46				35				
2	Hirota Bay							0											0			0					0				0				
		total s	numb imple		18	Dete tin	ction nes	7																											
		*1: Bl	ink c	ells an	e locati	ions wl	here sa	mples	were r	iot coll	ected.	l'he re	sult "l	Not de	tectab	le" is i	ndicate	ed as "	0."																
	Location							Coas	tal are	a sedir	nents/	Radio	active	Cesiu	m (Cs	-134+	Cs-13	7)/Cor	icentra	ation(B	q/kg)(*	*1)						4	verage	of					
No.	Location						Fy2	014											FY	/2015						Cha			FY2015		No.		ficient	Tren (*3	
NO.	Location	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	Cha	nges		(*2)			01 11	ii kition	(<i>"</i>
1	Ofunato Bay (A)		16						13							0					10					\langle	ſ	/	5.0		1	0	.81	\mathcal{M}	Λ,
2	Hirota Bay		0						0							0					0							_	0		2		-	\sim	•
		*1: Blan	c cell	s are lo	cations	where	sampl	es wer	e not co	ollected	. The r	esult "	Not de	tectabl	e" is ir	ndic ate	d as "0	."			А	в	с	D	Е				3	1	Average				

*2: Arithmetic Average; calculated by assuming ND=0; Color codes show categories (see the right).

*3: Results of the analysis of trends at respective locations using the method explained on 4.3(1) 2) 💙 Decreasing 🛹 Increasing 🗸 Unchanged 🛝 Varying

2) Miyagi Prefecture


In Miyagi Prefecture, surveys were conducted 9 to 37 times from October 2011 to February 2016 for coastal area sediment samples collected at 12 locations (excluding the 28 locations surveyed only in 2011 from the analysis herein).


Regarding concentration levels of detected values, one location was categorized into Category A, one location into Category B, one location into Category C, five locations into Category D, and four locations into Category E (see Table 4.3-37 and Table 4.3-38).

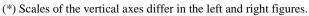

Concentration levels were generally decreasing at two locations, were unchanged at two locations, fluctuating at six locations, and generally increasing at two locations.

Table 4.3-37 Categorization of detected values at respective locations (Minute Detected values at respective locations)

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	1	No.8
В	Upper 5 to 10 percentile	1	No.9
С	Upper 10 to 25 percentile	1	No.2
D	Upper 25 to 50 percentile	5	No.1, No.4, No.6, No.7, No.11
Е	Upper 50 to 100 percentile(lower 50%)	4	No.3, No.5, No.10, No.12

Figure 4.3-20 Changes in concentration levels over the years at respective locations (Miyagi Prefecture: coastal area sediments)

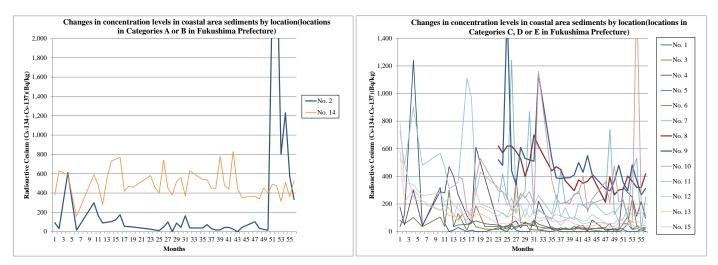
Table 4.3-38 Detection of radioactive cesium at respective locations

(Miyagi Prefecture:	coastal	area	sediments)
(init)agi i totootato.	oouolui	aiou	oounnonito/

	Locatio	on										C	oastal	area s	edime	nts/Ra	dioacti	ve Ce	sium (Cs-134+Cs	-137)/0	Concer	tratio	n(Bq/k	g)(*1)									
	_					FY20	011										FY201	2										FY201	3					
No.	Loc	ation	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Kesennuma Bay (B)	Offshore of Hachigasaki			17			0											54	50	16	48				57	174			191			76	
2	Kesennuma Bay (C)	Offshore of Oshimakita			0			158											44	410	91	78				400	740			450			19	
3	All other neighboring sea areas	Oppa Bay (Jyusanhama Beach)			350				390										216	281	12	101		26			203			76			23	
4	Neighboring sea area of Ishinomaki (C)	Lake Mangokuura, M-6 (center)			0				75										109	101	77	145		74			51			71			76	
5		Offshore of Kitakami River Estuary			105				25									0	0	0	0					109	148			0			0	
6	Neighboring sea area of Ishinomaki (C)	Offshore of Naruse			165				205									136	101	56	93					151	128			17			16	
7	Matsushima Bay (B)	Nishihama Beach			139				830									410	450	470	400				450		540			360			229	
8	Neighboring sea area of Sendai Port(A)	Naiko Inner Port, 4-Nai			270			213										1,530	1,500	1,530	1,020				1,030		2,040)		530			420	
9	Neighboring sea area of Sendai Port (B)	Gamo-3			44			540										0	258	33	10				35		50			31			19	
10	All other neighboring sea areas	Ido-5			71			28										0	12	0	0				10		12			102			48	
11	Offshore of Abukuma River Estuary				390			230										142	128	193 131	103	115			61	13 108	2,030) 21	290		170	62	55	
12	Offshore of Tsuyagawa River Estuary				0														0		0					0				0				
				mber of ples	226	Dete tin	ection nes	187																										
			*1: Blar	ık cells a	ire loca	ations v	where s	amples	were	not co	llected	The r	esult "l	Not de	tectable	e" is in	dicated	as "0.'																

	Locatio	n							Coas	tal are	a sedi	ments	/Radio	active	Cesiu	m (Cs	134+	Cs-13	7)/Cor	centr	ation(I	Bq/kg)	(*1)					Average of			_
No.	Loca	tion						FY2	2014											FY.	2015						Changes	FY2015	No.	coefficient of variation	Trends (*3)
140.	LOCA		4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	Changes	(*2)			
1	Kesennuma Bay (B)	Offshore of Hachigasaki		67			82			141			87				99		40			47			105		_~~	73	1	0.69	~
2	Kesennuma Bay (C)	Offshore of Oshimakita		68			72			490			464				426		382			418			277		~~	376	2	0.77	$\wedge \wedge \wedge$
3		Oppa Bay (Jyusanhama Beach)		163			52			0			15				181		17			0			0		m	50	3	1.09	1
4	Neighboring sea area of Ishinomaki (C)	Lake Mangokuura, M-6 (center)		74			71			54			48			110			59			76			61		An	77	4	0.41	~~~*
5		Offshore of Kitakami River Estuary		0			0			0			0			0			0			24			0			6.0	5	2.03	MM
6	Neighboring sea area of Ishinomaki (C)	Offshore of Naruse		149			136			36			93			53			120			65			115		\sim	88	6	0.52	\mathbb{N}
7	Matsushima Bay (B)	Nishihama Beach		440			520			155			230			216			239			198			180		$\sim\sim\sim$	208	7	0.50	/
8	Neighboring sea area of Sendai Port(A)	Naiko Inner Port, 4-Nai		55			54			322			1,090			530			740			563			530		$\sim\sim\sim$	591	8	0.74	$\wedge \wedge \downarrow$
9	Neighboring sea area of Sendai Port (B)	Gamo-3		49			0			0			327			15			560			910			790		n	569	9	1.45	~
10	All other neighboring sea areas	Ido-5		49			11			21			140			0			0			0			0		~~~	0	10	1.43	\mathbb{N}
11	Offshore of Abukuma River Estuary			45	126	1,020	118	400	0	311	226	86	80			113	144	135	265	171	124	104	116	119	129		h	142	11	1.61	\mathbb{N}
12	Offshore of Tsuyagawa River Estuary			0						0							0					0						0	12		~~~*
			*1: Bk	ink cel	ls are l	location	ns whe	re samj	ples we	ere not	collect	ed. Th	e result	"Not o	letec ta	ble" is	indicat	ed as '	ʻ0."			А	в	с	D	Е		182	Average		
			*2: Ar	ithmet	ic Aver	rage; c	alc ulate	d by as	ssumin	g ND=	0; Cok	or code	s show	categ	ories (s	ee the	right).										-			-	
			*3: Re	sults o	f the a	nalysis	of trea	ıds at r	especti	ive loca	utions u	ising tl	ne meth	nod exp	lained	on 4.3	(1) 2)		~	ı د	Decreas	sing	\rightarrow	Incre	easing	~	↔ Unchanged	∧ √√ Varying			

3) Fukushima Prefecture


In Fukushima Prefecture, surveys were conducted 30 to 43 times from October 2011 to February 2016 for coastal area sediment samples collected at 15 locations (this analysis excludes the survey results at eight locations where the survey was conducted only once in 2011).

Regarding concentration levels of detected values, one location was categorized into Category A, one location into Category B, four locations into Category C, three locations into Category D, and six locations into Category E (see Table 4.3-39 and Table 4.3-40).

Concentration levels were generally decreasing at nine locations, were generally unchanged at one location, were fluctuating at four locations, and generally increasing at one location.

Table 4.3-39 Categorization of detected values at respective locations (Fukushima Prefecture: coastal area sediments)

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	1	No.2
В	Upper 5 to 10 percentile	1	No.14
С	Upper 10 to 25 percentile	4	No.7, No.8, No.9, No.10
D	Upper 25 to 50 percentile	3	No.4、No.11、No.15
Е	Upper 50 to 100 percentile(lower 50%)	6	No.1, No.3, No.5, No.6, No.12, No.13

Figure 4.3-21 Changes in concentration levels over the years at respective locations (Fukushima Prefecture: coastal area sediments)

Table 4.3-40 Detection of radioactive cesium at respective locations

	1	Location											Coast	al are	a sedir	nents/	Radio	active C	esiun	n (Cs-	134+	Cs-137)/Conc	entra	ion(B	q/kg)(*1)										
No.		Location				FY20)11										FY2	2012												l	FY201	3					
INO.		Location	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11		12	1	1	2	3	4	5	6		7	8	9	10	11	12	1	2	3
1	Neighboring sea area of Soso	Approx. 2,000 m offshore of Tsurushihama Fishing Port			35	123		1,240		38				320	62	0	11	30		0	11	()	0			28	12	0	44	10	0	0	0	81	11	
2	Matsukawaura sea area	Around center of Fishing Right Area-1 in Matsukawaura sea area			94	32		610		15				300	164	90		105	123	175	55	53	48				26	18	11	48	101	0	89	45	164	39	
3	Neighboring sea area of Soso	Approx. 2,000 m offshore of Manogawa River			81	57		102		36				106	38	300	36	131	I	11	91	3	5	19			15	36	17	55	23	48	61	16	13	11	
	Neighboring sea area of	Approx. 1,000 m offshore of Niida River			177	49		300		44				290	280	470	400	268	3	114	67	61	10				51	33	38	61	79	27	70	48	43	221	
5	Haramachi City	Approx. 1,000 m offshore of Ota River															36	48		53		7	8	57			47	14	38	15	38	47	44	51	81	54	
6		Approx. 1,000 m offshore of Odaka River																88	127	50	59	18	37	37			38	31	44	39	380	64	64	59	45	35	
7	Neighboring sea area of	Approx. 2,000 m offshore of Ukedo River																									214	420	234	1,240	187	243	294	870	133	152	
8	Soso District	Approx. 1,000 m offshore of Kumagawa River																									620	570	620	620	580	530	400	500	700	620	
9		Approx. 1,000 m offshore of Tomioka River																									520	480	1,600	440	340	610	530	520	510	1,140	
10	Neighboring sea area of Naraha Town	Approx. 1,000 m offshore of Kidogawa River																400	380	154	113	380	530				295	290	251	154	191	278	243	290	198	1,160	
11	Approx. 1,000 m offsho	e of Asami River Estuary			730	480		900		480				570	470	310	330	360)	1,110	970	277	430				320	290	190	241	143	272	254	202	192	262	
12	Approx. 1,000 m offsho	e of Ohisa River Estuary			520	490		246		205				153	196	170	102	213	3	54	80	290	200				149	131	102	125	96	75	167	100	155	161	
13		Approx. 1,500 m offshore of Natsui River			590	211		310		223				156	159	113	133	74		150	86	125	132				55	60	55	63	47	57	49	53	90	76	
14	Onahama Port	Approx. 400 m north of Nishibouhatei No. 2			380	630		590		156				590	480	280	550	730)	770	420	470	460				580	460	400	740	450	380	520	560	370	630	
15	Joban coastal sea area	Approx. 1,000 m offshore of Binda River			800	360		340		260				280	214	249	193	167	7	77	168	169	184				112	139	108	189	129	200	104	205	122	98	
			of sa	number mples	583	tir	ection nes	553																													
			*1: Bla	ink cells	are los	cations	where	sampl	es wen	e not c	ollecte	d. The	e result	"Not c	letectal	ble" is	indica	ted as "0	."																		

(Fukushima Prefecture: coastal area sediments)

		Location							Cos	istal ai	rea sed	iments	s/Radio	active	Cesiur	n (Cs-	134+0	Cs-137)/Conc	entrati	ion(Bq	kg)(*1)					Average of			
No.		Location						FY2	<u> </u>											-	2015						Changes	FY2015 (*2)	No.	coefficient of variation	Trends (*3)
	Neighboring sea area of	Approx. 2,000 m offshore of	4	5	6	7	8	9	10	0	12	1	2	3	4	5	6	7	8	9	10	0	12	1	2	3	1	3.0	1	3.96	/
-	Soso Matsukawaura sea area	Tsurushihama Fishing Port Around center of Fishing Right Area-1		38	73	32	17	19	43	45	26	0	44	_		103	35	23	16	2.460	2.950	800	1.230	570	333		/h	852	2	2.29	~
	Neighboring sea area of	in Matsukawaura sea area Approx. 2,000 m offshore of						-		-		-			_												mP				<
	Soso	Manogawa River		35	18	17	20	17	10	31	24	17	12			0	13	13	12	58	109	16	22	13	18		Manh	27	3	1.21	1
	weighboring sea area or	Approx. 1,000 m offshore of Niida River		13	20	12	27	18	22	41	43	0	85			10	15	20	17	322	284	251	112	218	95		Mar	134	4	1.13	\sim
5	Haramachi City	Approx. 1,000 m offshore of Ota River		24	22	18	17	15	38	21	26	26	24			20	18	17	19	22	52	17	39	25	33		Mu	26	5	0.52	1
6		Approx. 1,000 m offshore of Odaka River		20	18	28	22	18	22	21	16	10	21			31	59	0	12	62	58	232	46	26	20		1 Lund	55	6	1.25	\sim
7	Neighboring sea area of	Approx. 2,000 m offshore of Ukedo River		90	182	440	205	230	263	293	194	163	206			239	740	127	174	231	104	440	532	13	251		Much	285	7	0.84	\sim
8		Approx. 1,000 m offshore of Kumagawa River		440	470	450	368	333	297	374	350	365	403			213	397	267	301	308	402	365	321	319	418		Nor	331	8	0.29	Ĺ
9		Approx. 1,000 m offshore of Tomioka River		530	388	385	390	390	410	500	430	550	417			311	295	367	480	354	297	484	372	265	313		han	354	9	0.54	/
	Neighboring sea area of Naraha Town	Approx. 1,000 m offshore of Kidogawa River		370	240	201	215	203	274	275	404	144	234			361	206	477	217	219	95	67	1,740	224	118		nhw	372	10	0.95	\sim
11	Approx. 1,000 m offshore	of Asami River Estuary		127	268	105	173	100	88	205	188	209	219			123	132	150	72	92	175	118	124	137	134		When	126	11	0.81	Ĺ
12	Approx. 1,000 m offshore	of Ohisa River Estuary		75	76	43	84	101	105	76	55	64	65			66	33	38	63	56	55	50	31	45	43		Lun	48	12	0.84	1
		Approx. 1,500 m offshore of Natsui River		101	80	70	89	78	54	50	35	45	44			60	37	25	31	48	47	35	24	32	66		han	41	13	1.01	/
14		Approx. 400 m north of Nishibouhatei No. 2		540	540	450	450	780	480	440	830	449	354			368	340	452	399	490	477	312	508	361	530		WWWW	424	14	0.28	~~*
15	Joban coastal sea area	Approx. 1,000 m offshore of Binda River		104	124	114	102	96	108	88	75	84	125			62	60	58	96	75	84	62	74	64	79		have	71	15	0.82	1
					s are lo													"0."				A	в	с	D	Е		210	Average		
			*2: Ari	ithmetic	e Avera	ge; cak	culated	by assi	iming N	ND=0; 0	Color c	odes sl	now ca	egories	(see th	ne right).														
			*3: Re	sults of	f the an	alysis o	f trend	s at res	pective	locatio	ns usin _i	g the n	nethod	explaine	d on 4.	3(1) 2	~	⊾ De	creasin	ıg –	→ 1	ncreasi	ng	~~•	Uncha	nged	Varying				

4) Ibaraki Prefecture

In Ibaraki Prefecture, surveys were conducted 19 to 21 times from October 2011 to February 2016 for coastal area sediment samples collected at five locations.

Regarding concentration levels of detected values, all five locations were categorized into Category E (see Table 4.3-41 and Table 4.3-42).

Concentration levels were generally decreasing at three locations and were generally varying at two locations.

 Table 4.3-41 Categorization of detected values at respective locations

 (Ibaraki Prefecture: coastal area sediments)

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	0	(None)
D	Upper 25 to 50 percentile	0	(None)
Е	Upper 50 to 100 percentile(lower 50%)	5	No.1, No.2, No.3, No.4, No.5

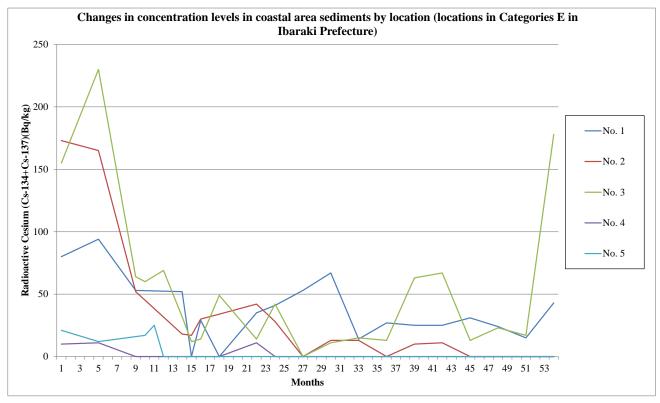


Figure 4.3-22 Changes in concentration levels over the years at respective locations (Ibaraki Prefecture: coastal area sediments)

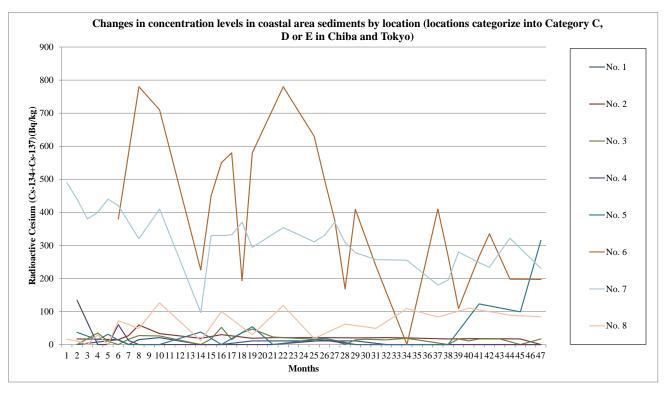
Table 4.3-42 Detection of radioactive cesium at respective locations

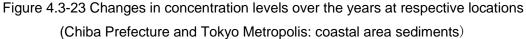
	Location										Coast	al are:	a sedin	ients/l	Radio	active	Cesiur	n (Cs-	134+	Cs-137)/Conc	entra	ion(Be	q/kg)(*	⊧1)									
No.	Location				FY20	11										FY201	2											FY2	2013					
140.	Location	8	9	10	11	12	1	2	3	4	5	6		7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Offshore of Satone River Estuary			80				94				53					52	0	29		0				35		41			53			67	
2	Offshore of Okita River Estuary			173				165				52					18	17	30		34				42		28			0			13	
	Offshore of Momiya River/Kujigawa River Estuaries			155				230				64	6	0	69		32	12	14		49				14		42			0			11	
4	Neighboring water body of Ken-o Offshore of Nakagawa River			10				11				0	()	0		0	0	0		0				11		0			0			0	
5	Offshore of Tonegawa River Estuary			21				12					17	25	0		0	0	0			0			0		0			0			0	
		total nur sam		101		ection nes	57																											
		*1: Blan	k cells a	re locat	tions w	here s	amples	were 1	not coll	ected.	The re	sult "N	ot dete	ctable"	is ind	icated a	ıs "0."																	

(Ibaraki Prefecture: coastal area sediments)

	Location							Coas	tal are	a sedi	ments	Radio	active	Cesiu	n (Cs-	134+	Cs-137)/Con	centra	tion(B	q/kg)(*1)					Average of			
No.	Location						FY.	2014											FY2	2015						C 1	FY2015	No.	coefficient of variation	Trends (*3)
INO.	Location	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	Changes	(*2)			(=)
1	Offshore of Satone River Estuary		14			27			25			25			31			24			15			43		\sim	28	1	0.67	\sim
2	Offshore of Okita River Estuary		13			0			10			11			0			0			0			0		2	0	2	1.59	~
	Offshore of Momiya River/Kujigawa River Estuaries		15			13			63			67			13			23			17			178		5	58	3	1.13	\mathcal{M}
	Neighboring water body of Ken-o Offshore of Nakagawa River		0			0			0			0			0			0			0			0		1.	0	4	2.51	/
5	Offshore of Tonegawa River Estuary		0			0			0			0				0			0		0			0		Ч	0	5	2.20	\searrow
		*1: B	lank cel	ls are l	ocation	is whe	re sam	ples w	ere not	collect	ted. Th	e resul	t "Not	detecta	ıble" is	indic a	ted as '	°0."			А	в	с	D	Е		17	Average		
		*2: A	rithmet	ic Aver	age; ca	ulculate	ed by a	ssumin	g ND=	0; Col	or code	es shov	v categ	ories (see the	right).														
		*3: R	esults o	f the a	nalysis	of tre	nds at i	respect	ive loc	ations	using t	he metl	10d exp	plained	on 4.3	(1) 2)	~	3 1	Decrea	sing	~>	Incre	asing	~	→ U	nchanged 🔨	Varying			
		*3: R	esults o	of the a	nalysis	of tre	nds at i	respect	ive loc	ations	using t	he meth	10d exp	plained	on 4.3	(1) 2)		1	Decrea	sing	1	Incre	asing	~	- U	nchanged 🔨	Varying Varying			

5) Chiba Prefecture and Tokyo Metropolis


In Chiba Prefecture and Tokyo Metropolis, surveys were conducted 17 to 29 times from May 2012 to February 2016 for coastal area sediment samples collected at eight locations in total.


Regarding concentration levels of detected values, one location was categorized into Category C, three locations were categorized into Category D and four locations were categorized into Category E (see Table 4.3-43 and Table 4.3-44).

Concentration levels were generally decreasing at four locations, were fluctuating at three locations, and increasing at one location.

Table 4.3-43 Categorization of detected values at respective locations(Chiba Prefecture and Tokyo Metropolis: coastal area sediments)

Category	Percentile (percentile in all detected values)	Number of locations	Locations
А	Upper 5 percentile	0	(None)
В	Upper 5 to 10 percentile	0	(None)
С	Upper 10 to 25 percentile	1	No.6
D	Upper 25 to 50 percentile	3	No.5, No.7, No.8
Е	Upper 50 to 100 percentile(lower 50%)	4	No.1, No.2, No.3, No.4

Table 4.3-44 Detection of radioactive cesium at respective locations

(Chiba Prefecture and Tokyo Metropolis: coastal area sediments)

		Location									Coa	stal a	rea se	dime	nts/Ra	dioac	tive (Cesiur	n (Cs-	134+	Cs-13	7)/Co	ncent	ration	(Bq/k	g)(*1)									
No	Prefecture	L	ocation		-		FY201	1									FY2	2012											FY	2013					
		-		8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1			Offshore of Yorogawa River Estuary											0				15	0	15		21				0		0			11		11		
2			Offshore of Miyako River Estuary											17				15	27	59		33				19		30			19		21		
3	Chiba Prefecture		Offshore of Inbanuma Discharge Channel											0		35	10	0	16	27		26				0	17	52	15	36	47		23		
4		Approx. 1 km offshore of Ebigawa River Estuary	Coastal area of Keiyo Port											134		0	0	60	12	0		0				0		0			0		0	\square	
5		Approx. 1 km offshore of Edogawa River Estuary	(Ebigawa River Estuary)											37		14	31	13	0	0		0				38		0			54		0	Π	
6		Approx. 1 km offshore of Kyu-Edogawa River Estuary	Offshore of Kyu-Edogawa River Estuary															380		780		710				226	450	550	580	193	580			780	
7	Tokyo Metropolis		Offshore of Arakawa River/Kyu- Edogawa River Estuaries										490	440	380	400	440	420		320		410				97	330	330	332	370	294			354	
8		Southwestern area of Toyosu Wharf	Offshore of Sumida River Estuary										16	11	0	29	0	72		49		126				12		100			30			118	
				total nu sam	mber of ples	173		ection nes	129																										
				*1: Blan	k cells ar	e locati	ons who	ere sam	ples w	ere no	t colle	cted. T	he res	ult "N	lot det	ectabl	le" is i	indica	ited as	"0."															

		I	ation							Co	astal a	irea sed	liments/	Radioa	ctive (Cesium	(Cs-1	34 + Cs	-137)/	Concent	ation(Bq/kg	(*1)					Average of			
No	Prefec	11 IVA	Location						FY.	2014										FY	2014						Changes	FY2015	No.	coefficient of variation	Trends (*3)
140	. Tieree	ture	Location	4	5	6	7	8	9	10	11	12	1	2 3	4	5	6	7	8	9	1	0 1	1 1	2 1	2	3	Changes	(*2)			
1		Tokyo Bay 7	Offshore of Yorogawa River Estuary			11			11			0		D			0			0			0		0		$\Lambda \neg _$	0	1	1.30	\sim
2		Tokyo Bay 5	Offshore of Miyako River Estuar	y		21			20			21	2	0			17			18			1	7	0		A	13	2	0.54	1
3	Chit Prefec		ahari Offshore of Inbanuma Discharge Channel			14	11	0	14	16		14	1	9			0	17	11	17	1	7	0		17		Mm	11	3	0.80	$\bigwedge \!\!\! \bigwedge$
4		Approx. 1 km offshor Ebigawa River Estuar	of Coastal area of Keiyo Port (Ebig:	wa		13			0			0		D			0			0			0		0		1	0	4	2.84	1
5		Approx. 1 km offshor Edogawa River Estuar	of River Estuary)			19			0			0		D			0			123			9	9	315	5	~~~~^J	134	5	1.93	1
6		Approx. 1 km offshor Edogawa River Estuar	of Kyu- Offshore of Kyu-Edogawa River Estuary		63	0 500	375	168	409		237			D		410	267	109		266 3	35	1	98		195	7	MAN	255	6	0.55	1
7	Tok Metrop		Offshore of Arakawa River/Kyu- Edogawa River Estuaries		31	1 330	370	309	278		257		2	55		180	195	280		248 2	34	3	22		230)	Nor	241	7	0.27	/
8		Southwestern area of Wharf	oyosu Offshore of Sumida River Estuar	y	18			62			49		10	09		83			110			8	9		84		MM	92	8	0.72	\sim
				*1:1	Blank o	cells are	locatio	ns wh	ere san	nples w	ere not	t collect	ed. The	result "	Not det	ectable'	is ind	icated a	as "0."			4	ч і	s c	D	Е		93	Average		
				*2: 4	Arithm	etic Ave	rage; c	alculat	ted by	assumi	ng ND:	=0; Cok	or codes	show c	ategori	es (see	the rig	ht).									-				
				*3:1	Results	s of the	analysi	s of tre	ends at	respec	tive loc	cations u	asing the	method	l explai	ned on	4.3(1)	2) `	>	Decreasi	ng -	~	Increa	sing	~~	Unc	hanged 📈	Varying			

(3) Conclusion

Concentration levels of detected values for sediment samples from public water areas (rivers, lakes, and coastal areas) from FY2011 to FY2015 and their changes shown so far are summarized as follows (see Figure 4.3-24 and Table 4.3-45).

1) Concentration levels of detected values

Rivers

Within all surveyed locations (396 locations in total), the number of locations categorized into Category A or B, which fall under the upper 10%, was the largest in Hamadori in Fukushima Prefecture (20 locations). Such locations were also found in Nakadori, Fukushima Prefecture, Ibaraki Prefecture, Gunma Prefecture and Chiba Prefecture.

Lakes

Among all the locations (164 locations), locations categorized into Category A or B were found in Hamadori in Fukushima Prefecture.

• Coastal areas

Among all locations (42 locations), locations categorized into Category A or B were found in Miyagi and Fukushima Prefectures.

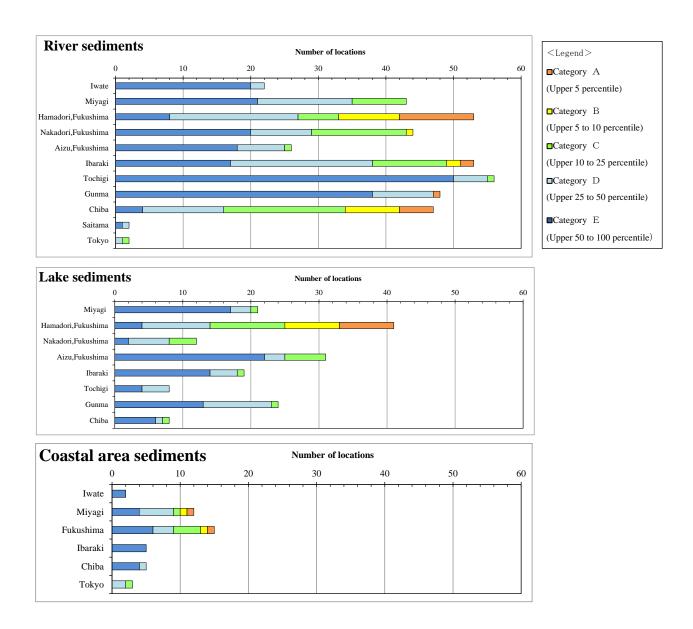


Figure 4.3-24 Categorization by concentration levels of detected values for sediment samples

(upper: rivers; middle: lakes; lower: coastal areas)

(* Figure 4.3-24 shows the aforementioned Table 3.1-1 graphically.)

2) Changes in detected values

Rivers

A decreasing trend was observed at most locations.

Lakes

Detected values were generally decreasing or unchanged at most locations but some locations showed fluctuations.

· Coastal areas

A decreasing trend was observed at most locations except for some locations showing fluctuations.

Table 4.3-45 Changes in detected values for sediment samples from public water areas (rivers, lakes, and coastal areas)

<Rivers>

						Nu	nber of loca	tions				_	
Trends				Fukushima								Te	otal
	Iwate	Miyagi	Hamadori	Nakadori	Aizu	Ibaraki	Tochigi	Gunma	Chiba	Saitama	Tokyo	Number of locations	Percentage
Decreasing	19	35	47	41	21	46	39	31	37	2	1	319	80.6
Unchanged	0	0	2	0	1	2	1	1	2	0	1	10	2.5
Varying	3	8	4	3	4	5	16	16	8	0	0	67	16.9
Increasing	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Total	22	43	53	44	26	53	56	48	47	2	2	396	100.0

<Lakes>

					Number o	f locations				
Trends			Fukushima						Тс	otal
	Miyagi	Hamadori	Nakadori	Aizu	Ibaraki	Tochigi	Gunma	Chiba	Number of locations	Percentage
Decreasing	13	22	5	7	8	2	6	6	69	42.1
Unchanged	2	2	1	7	8	1	7	2	30	18.3
Varying	5	13	5	10	2	4	8	0	47	28.7
Increasing	1	4	1	7	1	1	3	0	18	11.0
Total	21	41	12	31	19	8	24	8	164	100.0

<Coastal areas>

				Number o	f locations			
Trends								otal
	Iwate	Miyagi	Fukushima	Ibaraki	Chiba	Tokyo	Number of locations	Percentage
Decreasing	0	2	9	3	2	2	18	42.9
Unchanged	1	2	1	0	0	0	4	9.5
Varying	1	6	4	2	2	1	16	38.1
Increasing	0	2	1	0	1	0	4	9.5
Total	2	12	15	5	5	3	42	100.0

3) Summary by prefecture

Concentration levels of detected values and their changes are summarized by prefecture as follows (see Figures 4.3-25 to 4.3-27).

- (i) Iwate Prefecture
- Surveyed locations for rivers were the 22 locations categorized into Category D or E. A decreasing trend was observed at most locations.
- Surveyed locations for coastal areas were all two locations categorized into Category E. An unchanged trend was observed at most locations except for several locations showing fluctuations.
- (ii) Miyagi Prefecture
 - Surveyed locations for rivers were over 80% categorized into Category D or E, among the 43 locations, some locations in the lower reaches were Category C. A decreasing trend was observed at most locations.
 - Surveyed locations for lakes were almost all categorized into Category D or E, among the 21 locations, only one location categorized into Category C. Concentration levels were generally decreasing or unchanged at most locations.
 - Surveyed locations for coastal areas were three-quarters of all locations categorized into Category D or E, among the 12 locations, one categorized into Category A, another into Category B, and yet another into Category C. There was a location categorized into Category A in the Sendai Port. Concentration levels were fluctuating at many locations and the other locations shown mixture of each trend.
- (iii) Hamadori, Fukushima Prefecture
 - Approximately 50% of the 53 surveyed locations for rivers were categorized into Category A, B or C. Many of the locations categorized into Category A or B were found near or northwest to Fukushima Daiichi NPS, while the locations categorized into Category C were seen in the northern and southern parts of the district. A decreasing trend was observed at most locations.
 - Approximately 70% of the 41 surveyed locations for lakes were categorized into Category A, B or C. Many
 of the locations categorized into Category A or B were found northwest to Fukushima Daiichi NPS. A
 decreasing or unchanged trend was observed generally at most locations except for several locations
 showing fluctuations.
 - 60% of the 15 surveyed locations for coastal areas were categorized into Category D or E and the rest were categorized into Category A, B, or C. The one location categorized into Category A was seen in the Matsukawaura. A decreasing trend was observed generally at most locations except for several locations showing fluctuations.
- (iv) Nakadori, Fukushima Prefecture
 - Approximately 70% of the 44 surveyed locations for rivers were categorized into Category D or E and the rest were categorized into Category B or C. The locations categorized into Category B or C were found from the center of the Abukuma River to the northern part. A decreasing trend was observed at most locations.
 - Eight of the 12 surveyed locations for lakes were categorized into Category D or E and the rest four locations were categorized into Category C. The locations categorized into Category C were seen in the upper and

lower reaches of the Abukuma River basin. A decreasing trend was observed at most locations except for several locations showing fluctuations.

- (v) Aizu, Fukushima Prefecture
 - One of the 26 surveyed location for rivers was categorized into Category C and all the remaining locations were categorized into Category D or E. A decreasing trend was observed at most locations.
 - Six of the 31 surveyed locations for lakes were categorized into Category C and over 80% of the locations were categorized into Category D or E. Concentration levels were fluctuations at many locations and the other locations showed mixture of each trend.
- (vi) Ibaraki Prefecture
 - Over 70% of the 53 surveyed locations for rivers were categorized into Category D or E and the rest were categorized into Category A, B, or C. The locations categorized into Category A or B were found in rivers flowing into Lake Kasumigaura. A decreasing trend was observed at most locations.
 - One of the 19 surveyed location for lakes was categorized into Category C in the northern part of the prefecture and the remaining locations were categorized into Category D or E. A decreasing or unchanged trend was observed at most locations.
 - Surveyed locations for coastal areas were all the categorized into Category E. A decreasing trend was observed generally at most locations except for several locations showing fluctuations.
- (vii) Tochigi Prefecture
 - One of the 56 surveyed locations for rivers was categorized into Category C and the remaining locations were categorized into Category D or E. A decreasing trend was observed generally at most locations except for several locations showing fluctuations.
 - All eight locations for lakes were categorized into Category D or E. Concentration levels were fluctuating at many locations and the other locations showing mixture of each trend.
- (viii) Gunma Prefecture
 - One of the 48 surveyed locations for rivers was categorized into Category A in the lower reach of the Watarase River basin and all remaining locations were categorized into Category D or E. A decreasing trend was observed generally at most locations except for several locations showing fluctuations.
 - One of the 24 surveyed locations for lakes was categorized into Category C and all remaining locations were categorized into Category D or E. Concentration levels were fluctuating at many locations and other locations showing mixture of each trend.
- (ix) Chiba and Saitama Prefectures and Tokyo Metropolis
 - Over 60% of the 51 surveyed locations for rivers were categorized into Category A, B, or C. The locations categorized into Category A or B were found in rivers flowing into Lake Teganuma or Lake Inbanuma, the Edogawa River system, and a part of the Tonegawa River system. A decreasing trend was observed at most locations.
 - One of the eight surveyed locations for lakes was categorized into Category C in Lake Teganuma and all the remaining locations were categorized into Category D or E. A decreasing trend was observed at most locations.

• One of the eight surveyed location for lake was categorized into Category C at the mouth of the Kyuedogawa River and all remaining locations were categorized into Category D or E. A decreasing trend was observed at most locations except for several locations showing fluctuations.

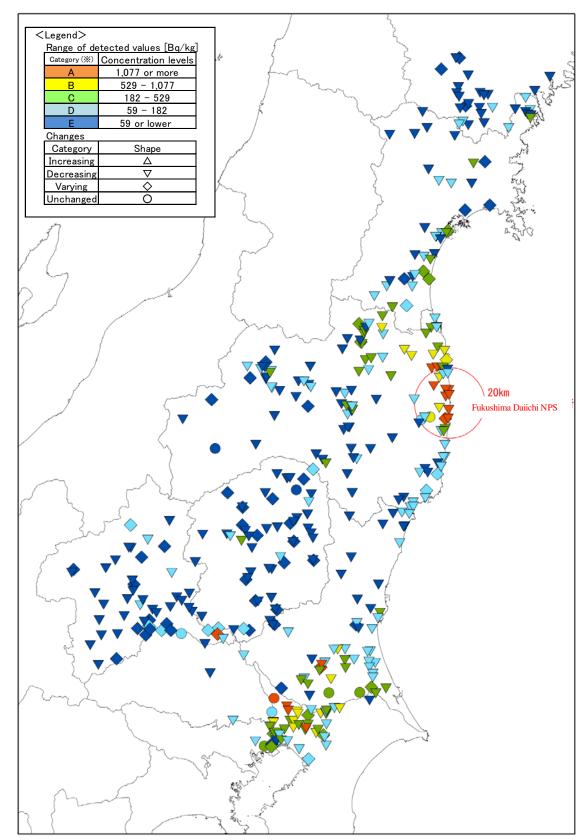


Figure 4.3-25 Categorization of and changes in concentration levels for river sediment samples from public water areas

(*) Categories A to E show relative concentration levels for river sediment samples and cannot be compared with those for lake sediment samples or coastal area sediment samples.

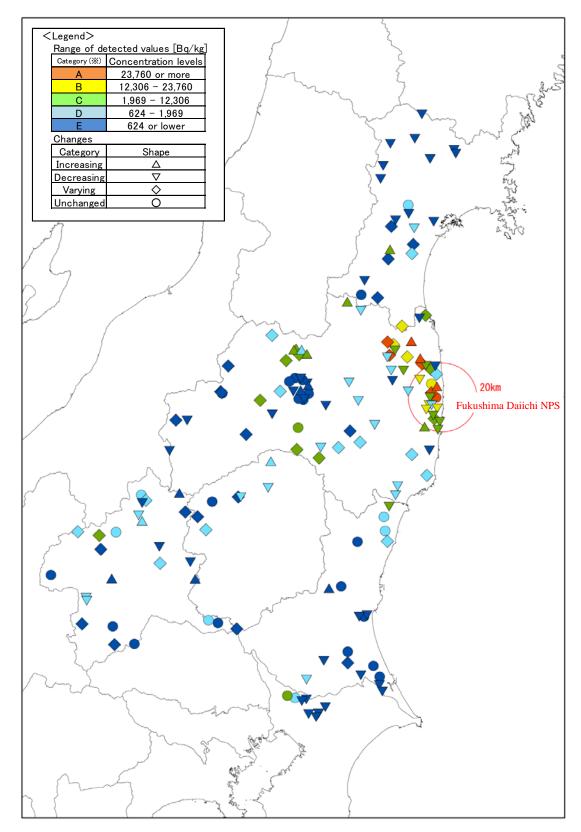


Figure 4.3-26 Categorization of and changes in concentration levels for lake sediment samples from public water areas

(*) Categories A to E show relative concentration levels for lake sediment samples and cannot be compared with those for river sediment samples or coastal area sediment samples.

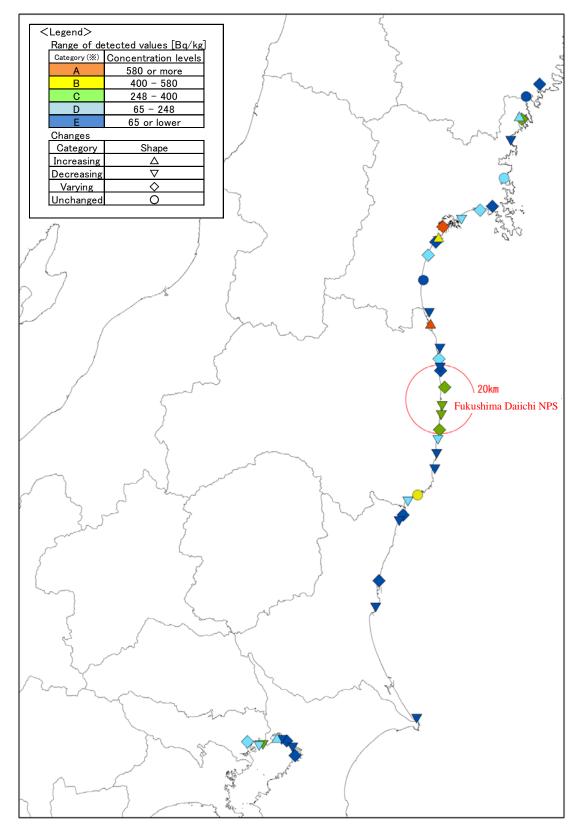


Figure 4.3-27 Categorization of and changes in concentration levels for coastal area sediment samples

from public water areas

(*) Categories A to E show relative concentration levels for coastal area sediment samples and cannot be compared with those for river sediment samples or lake sediment samples.

5. Results (Radionuclides Other than Radioactive Cesium)

- 5.1 Radioactive strontium (Sr-90 and Sr-89)
- (1) Public water areas
- 1) Outline

In principle, radioactive strontium was measured at locations with where the radioactive cesium concentrations in sediments were high. Sediment samples from public water areas (rivers, lakes, and coastal areas) were surveyed for Sr-90 from FY2011 to FY2015, and those from public water areas (rivers and lakes) for Sr-89 in FY2011, respectively. The status of the survey and the summary of the results are as shown in Table 5.1-1 (detection limits: approx. 1 Bq/kg (dry) for Sr-90 and approx. 2 Bq/kg (dry) for Sr-89).

Sr-90 was detected as detailed are as shown in 2).

A survey of Sr-89 was conducted with regard to 22 samples (13 river sediment samples and nine lake sediment samples) only in FY2011 but Sr-89 was not detectable in any of these samples.

2) Detection of Sr-90 in sediment samples

(i) River sediments

Sr-90 was detected in nine of the 22 river sediments specimens surveyed in FY2015 (detection rate: 40.9%). Except for Fukushima Prefecture, detected values were less than 1 Bq/kg (dry) (see Table 5.1-1).

Sr-90 was continuously detected since FY2011 at some locations in the Ota River and the Ukedo River in Fukushima Prefecture, but detected values gradually decreased to fall below 2 Bq/kg (dry) in FY2014 (see Figure 5.1-1).

(ii) Lake sediments

In FY2015, the 68 lake sediments specimens were surveyed for Sr-90; from the 66 of these specimens, Sr-90 was detected (detection rate: 97.1%) (see Table 5.1-1). Sr-90 has been detected until FY2015 in each prefecture surveyed. When reviewed site by site, detected values have been at relatively low levels and within the range of FY2015 measured values from not detectable to 150 Bq/kg (dry) (see Figure 5.1-1).

(iii) Coastal area sediments

In FY2015, the 32 coastal area sediment specimens were surveyed; from three specimens from Fukushima Prefecture, Sr-90 was detected (detection rate: 9.4%) (see Table 5.1-1). Measured values ranged from not detectable to 0.78 Bq/kg (dry), which were lower than those obtained from rivers and lakes.

Table 5.1-1 Detection of Sr-90 and Sr-89 in sediment samples from public water areas (rivers, lakes, and coastal areas)

O Sr-90

			F	Y2011			F	Y2012			F	Y2013			F	Y2014			F	Y2015			Total	
Property	Prefecture	Number of samples	Number of detections	Detection rate(%)	Range of measured values [Bq/kg(dry)]	Number of samples	Number of detections	Detection rate(%)	Range of measured values [Bq/kg(dry)]	Number of samples	Number of detections	Detection rate(%)	Range of measured values [Bq/kg(dry)]	Number of samples	Number of detections	Detection rate(%)	Range of measured values [Bq/kg(dry)]	Number of samples	Number of detections	Detection rate(%)	Range of measured values [Bq/kg(dry)]	Number of samples	Number of detections	Range of measured values [Bq/kg(dry)]
	Miyagi	2	2	100.0	0.40 - 1.1	7	1	14.3	ND - 1.2	5	3	60.0	ND - 0.56	4	3	75.0	ND - 0.52	2	0	-	-	20	9	ND - 1.2
	Fukushima	7	7	100.0	1.2 - 4.1	25	15	60.0	ND - 12	16	10	62.5	ND - 2.9	14	9	64.3	ND - 1.5	10	5	50.0	ND - 1.9	72	46	ND - 12
	Ibaraki	1	1	100.0	1.6 - 1.6	4	1	25.0	ND - 1.8	6	4	66.7	ND - 1.8	6	2	33.3	ND - 0.89	4	2	50.0	ND - 0.92	21	10	ND - 1.8
Rivers	Tochigi	1	1	100.0	1.3 - 1.3	2	0	-	-	2	1	50.0	ND - 0.23	2	1	50.0	ND - 0.53	1	0	-	-	8	3	ND - 1.3
	Gunma	1	1	100.0	0.70 - 0.70	2	0	-	-	2	1	50.0	ND - 0.44	1	0	-	-	0	0	-	-	6	2	ND - 0.70
	Chiba	1	1	100.0	1.1 - 1.1	4	0	-	-	4	2	50.0	ND - 0.49	4	1	25.0	ND - 0.40	5	2	40.0	ND - 0.35	18	6	ND - 1.1
	Total	13	13	100.0	0.40 - 4.1	44	17	38.6	ND - 12	35	21	60.0	ND - 2.9	31	16	51.6	ND - 1.5	22	9	40.9	ND - 1.9	145	76	ND - 12
	Miyagi	1	1	100.0	1.6 - 1.6	3	2	66.7	ND - 2.1	5	5	100.0	0.3 - 2.2	6	5	83.3	ND - 0.96	8	7	87.5	ND - 1.4	23	20	ND - 2.2
	Fukushima	3	3	100.0	3.3 - 6.8	41	41	100.0	2.1 - 93	40	40	100.0	0.7 - 55	39	39	100.0	0.70 - 50	40	39	97.5	ND - 150	163	162	ND - 150
	Ibaraki	2	2	100.0	0.70 - 3.3	6	1	16.7	ND - 7.0	6	5	83.3	ND - 5.2	6	6	100.0	0.57 - 3.0	6	6	100.0	0.34 - 2.6	26	20	ND - 7.0
Lakes	Tochigi	1	1	100.0	1.3 - 1.3	2	1	50.0	ND - 1.6	2	2	100.0	0.74 - 0.93	2	2	100.0	1.0 - 1.1	2	2	100.0	0.47 – 2.2	9	8	ND - 2.2
	Gunma	1	1	100.0	2.0 - 2.0	2	2	100.0	1.9 - 2.2	2	1	50.0	ND – 1.7	2	2	100.0	1.5 - 1.7	8	8	100.0	0.67 – 2.4	15	14	ND – 2.4
	Chiba	1	1	100.0	1.4 - 1.4	4	1	25.0	ND - 4.4	2	1	50.0	ND - 1.8	4	3	75.0	ND - 2.5	4	4	100.0	0.36 - 0.61	15	10	ND - 4.4
	Total	9	9	100.0	0.70 - 6.8	58	48	82.8	ND - 93	57	54	94.7	ND - 55	59	57	96.6	ND - 50	68	66	97.1	ND - 150	251	234	ND - 150
	Miyagi	0	0	-	-	2	0	-	-	4	0	-	-	2	0	-	-	2	0	-	-	10	0	-
Coastal	Fukushima	0	0	-	-	21	0	-	-	30	1	3.3	ND - 0.33	30	2	6.7	ND - 0.58	30	3	10.0	ND - 0.78	111	6	ND - 0.78
areas	Tokyo Metropolis	0	0	-	-	2	0	-	-	0	0	-	-	0	0	-	-	0	0	-	-	2	0	-
	Total	0	0	-	-	25	0	-	-	34	1	2.9	ND - 0.33	32	2	6.3	ND - 0.58	32	3	9.4	ND - 0.78	123	6	ND - 0.78

ND: Not detectable

I

O Sr-89 (FY2011)

	Ri	ver	La	ike
Prefecture	Number of	Number of	Number of	Number of
	samples	detections	samples	detections
Miyagi	2	0	1	0
Fukushima	7	0	3	0
Ibaraki	1	0	2	0
Tochigi	1	0	1	0
Gunma	1	0	1	0
Chiba	1	0	1	0
Total	13	0	9	0

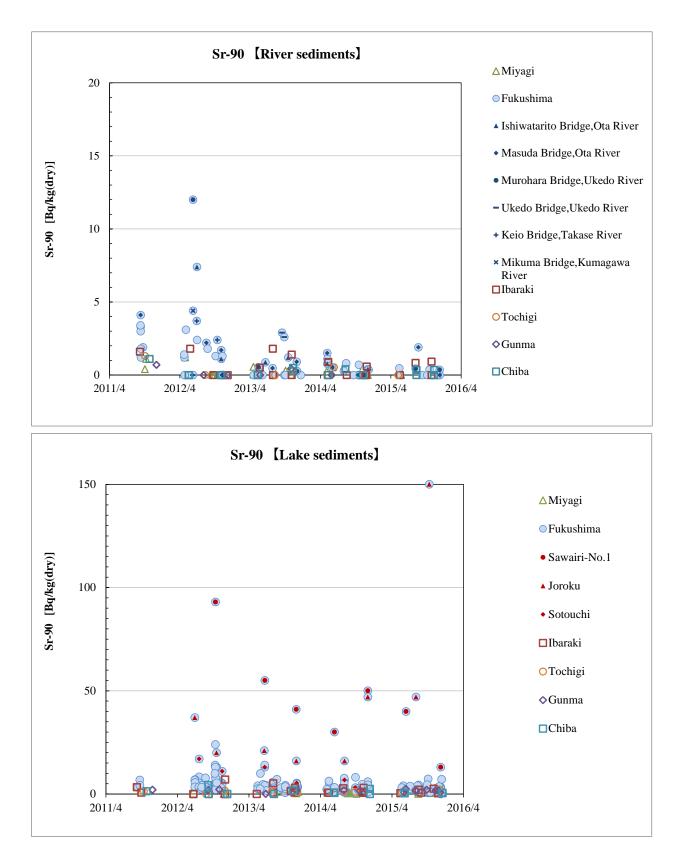


Figure 5.1-1 Detection of Sr-90 in sediment samples from public water areas (upper: rivers; lower: lakes)

(2) Groundwater

Surveys of Sr-89 and Sr-90 were conducted with regard to approx. the 240 groundwater samples collected in Fukushima Prefecture from January 2012 to February 2016.

The outline of the results of these surveys is as shown in Table 5.1-2. Detected values of Sr-89 and Sr-90 were all below the detection limit (1 Bq/L).

Table 5.1-2 Detection of Sr-89 and Sr-90 in groundwater samples (all collected in Fukushima Prefecture)

		Sı	:-90			Si	-89	
Financial year	Number of samples	Number of detections	Detection rate(%)	Range of measured values [Bq/L](*1)	Number of samples	Number of detections	Detection rate(%)	Range of measured values [Bq/L](*1)
FY2011	8	0	0.0	-	8	0	0.0	-
FY2012	60	0	0.0	-	60	0	0.0	-
FY2013	77	0	0.0	-	77	0	0.0	-
FY2014	48	0	0.0	-	48	0	0.0	-
FY2015	48	0	0.0	-	48	0	0.0	-
Total	241	0	0.0	-	241	0	0.0	-

*1:Results were compiled by setting the detection limit at 1 Bq/L.In reality, the detection limit was set at 0.0002 Bq/L and at 0.001 Bq/L for Sr-90 and Sr-89, respectively, for the FY2011 survey, and was set at 1 Bq/L for both Sr-90 and Sr-89 for surveys in FY2012 onward.

In the FY2011 survey (calendar year 2012), Sr-90 was detected in all eight specimens, with detected values ranging from 0.0004 to 0.0029 Bq/L. Similarly, while the detection limit for Sr-89 was set to 0.001 Bq/L in FY2011 (calendar year 2012), Sr-89 in all eight specimens was below the detection limit.

5.2 Other γ-ray emitting radionuclides

Apart from the aforementioned radionuclides (Cs-134, Cs-137, Sr-89 and Sr-90), measurement results for water samples and sediment samples using a germanium semiconductor detector were analyzed from FY2011 to FY2015 to obtain activity concentrations of accident-derived radionuclides (Ag-110m, Te-129m, Nb-95, Sb-125 and Ce-144, etc¹².) and major naturally occurring radionuclides such as K-40. The summary of the results is as shown in Table 5.2-1.

Among the detected radionuclides, no artificial radionuclides were detected in water samples, while two types of radionuclides, Ag-110m and Sb-125, were detected in sediment samples with detection rates of 1% or less. Since FY2013, neither radionuclide has been detected.

Six naturally occurring radionuclides (K-40, Pb-212, Pb-214, Tl-208, Ac-228 and Bi-214) were detected; K-40 is a naturally occurring radionuclide entrained during the Earth's formation, while the other species are all either uranium series or thorium series radionuclides, which are widely distributed in nature including earth crusts.

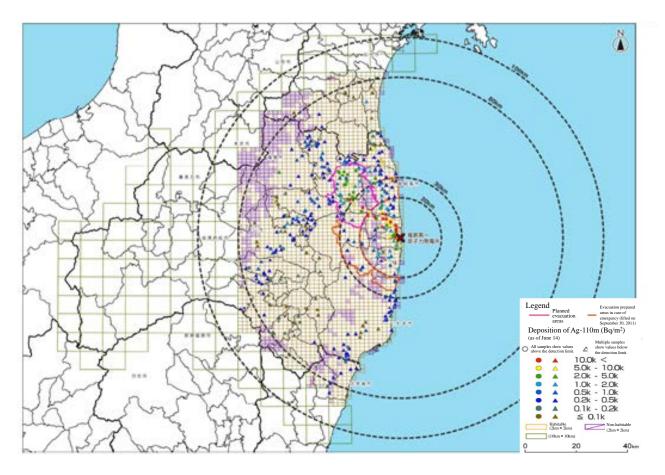
Among the detected radionuclides, Ag-110m and Sb-125 are artificial radionuclides that are generated at nuclear power stations, etc. Therefore, their emitting sources are examined below.

¹² For I-131 from among the accident-derived radionuclides, water samples from public water areas (3,111 river water specimens, 1,416 lake water specimens, and 715 coastal area water specimens) and sediment samples (3,073 river sediment specimen, 877 lake sediment specimens, and 393 coastal area sediment specimens) were surveyed from FY 2011 to FY 2012; from FY 2011 to FY 2014, groundwater samples (3,793 specimens) were surveyed. In none of these samples was I-131 detected (lower detection limit values: 1 Bq/L for water and 10 Bq/kg for sediments).

Fiscal	Number	Major de	tected artificial radionuclide		eted naturally occurring
year	of samples	Туре	Detection rate and detected values	Туре	Detection rate
FY2011	1,755	—	_	K-40	10%
FY2012	3,518	_	_	K-40	6%
FY2013	3,860	_	-	K-40	13%
FY2014	3,856		1	K-40	10%
FY2015	3,916	_	_	Pb-214 Pb-212 K-40	9% 7% 7%

Table 5.2-1 Detection of other radionuclides

<Water>

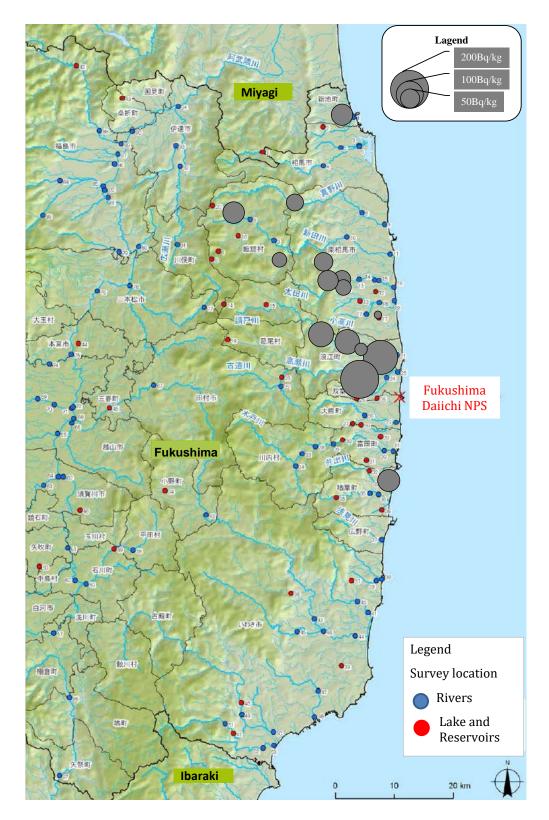

<Sediments> (detection limits: 7 - 180 Bq/kg for Ag-110m and 130 - 330 Bq/kg for Sb-125)

	Number	Maior det	ected artificial radionuclide	Major detect	ed naturally occurring
F ' 1		wajor det	ceted artificial fadionacide	ra	dionuclide
Fiscal year	of samples	Туре	Detection rate and detected values	Туре	Detection rate
				K-40	79%
FY2011	1,559	Ag-110m	4 samples (0.26%)	Pb-212	41%
112011	1,559	Ag-110III	46 - 170 Bq/kg	Pb-214	16%
			1 0	T1-208	14%
			26 samples (0.90%)	Ac-228	41%
		Ag-110m	· · · ·	Bi-214	43%
FY2012	2,885		7.9 - 350 Bq/kg	K-40	97%
F12012	2,003		3 samples (0.10%)	Pb-212	75%
		Sb-125	· · · ·	Pb-214	44%
			140 - 420 Bq/kg	T1-208	39%
				Ac-228	25%
				Bi-214	25%
EV2012	2.062			K-40	91%
FY2013	3,062	-	-	Pb-212	49%
				Pb-214	23%
				T1-208	23%
				Ac-228	24%
				Bi-214	24%
	2.025			K-40	91%
FY2014	3,035	-	-	Pb-212	48%
				Pb-214	24%
				T1-208	24%
				Ac-228	32%
				Bi-214	60%
EV2015	2 1 5 9			K-40	88%
FY2015	3,158	-	-	Pb-212	63%
				Pb-214	67%
				T1-208	37%

The two types of detected artificial radionuclides (Ag-110m and Sb-125) were not included in the publicized reference materials concerning the amount of radioactive materials discharged due to the Fukushima NPS Accident¹³, but the Distribution Maps of Radiation Doses, etc., prepared in October 2011 include a detailed map showing activity concentrations in soil which contains data for Ag-110m (see Figure 5.2-1). In addition, there were instances of detection of Sb-125 in Niigata Prefecture after the accident¹⁴. Since FY2013, however, Sb-125 has not been detected.

Ag-110m is produced as the result of activation of Ag-109 in a nuclear reactor, while Sb-125 is a radioisotope produced as a result of nuclear fission.

Accordingly, in light of the distribution of the detected artificial radionuclides and their production processes, they are considered to have been derived from the Fukushima NPS Accident.



(*) Reference: Website of the Ministry of Education, Culture, Sports, Science and Technology¹⁵ Figure 5.2-1 Map showing concentrations of Ag-110m in soil

¹³ Errors in the Released Data on the Amount of Radioactive Materials (October 20, 2011; Nuclear and Industrial Safety Agency) <u>http://www.meti.go.jp/press/2011/10/20111020001/20111020001.pdf</u>

¹⁴ Artificial Radionuclides Detected in Niigata Prefecture After the Accident at the Fukushima Daiichi NPS, by Ono, et al.; Annual Report of the Niigata Prefectural Institute of Environmental Radiation Monitoring, vol. 9, 19-29.

¹⁵ Preparation of Distribution Maps of Radiation Doses, etc. (Te-129m and Ag-110m) by MEXT: http://radioactivity.nsr.go.jp/ja/contents/6000/5050/24/5600 111031_rev130701.pdf

(*) Average of detected values; Ag-110m was not detectable at any other time, or at any unmarked locations.

(*) Sb-125 was detected only at Joroku (agricultural reservoir) (approx. 10 km northwest of the Fukushima Daiichi NPS) at Levels of 140 to 420 Bq/kg during the period from July to November 2012.

Figure 5.2-2 Detection of Ag-110m in sediment samples from public water areas (average of data from September 2011 to March 2013)

Part 3: Other Radioactive Material Monitoring Conducted Nationwide (FY2015)

1. Outline of the Monitoring

1.1 Covered monitoring

As other radioactive material monitoring activity conducted nationwide, the results of the Monitoring of Environmental Radioactivity Levels in FY2015, which has been conducted by the Nuclear Regulation Authority for the purpose of clarifying the existence or nonexistence of the influence of nuclear facilities, etc. nationwide, are compiled here.

Monitoring locations are as shown in Table 1.1-1 and Figure 1.1-1. See the relevant website for more details. (http://www.env.go.jp/air/rmcm/result/nsr.html)

1.2 Compilation methods

Measurement data are available on the website of Environmental Radioactivity and Radiation in Japan, "Environmental Radiation Database".¹⁶

Data for this report were collected from this website under the following search criteria.

- (i) Period: April 2015 to March 2016
- (ii) Coverage: Nationwide
- (iii) Targets: All radionuclides
- (iv) Targeted samples: Inland water (river water, lake water, freshwater), seawater, sediments (river sediments, sea sediments)

¹⁶ Environmental Radioactivity and Radiation in Japan "Environmental Radiation Database" <u>http://search.kankyo-hoshano.go.jp/servlet/search.top</u>. (Japanese only,accessed 2017-06-14)

No.	Prefecture	Property	Sampling locations	Water	Sediments
1	TT 11 · 1	Lake	Oyafuru, Ishikari City (Lake Barato)	0	_
2	Hokkaido	Coastal area	Yoichi Town, Yoichi County (Yoichi Bay)	0	0
3	A	Coastal area	Fukaura Town, Nishitsugaru County (off Kasose)	0	0
4	Aomori	Coastal area	Hiranai Town, Higashitsugaru County (Mutsu Bay)	0	0
5	Iwate	Coastal area	Hirono Town, Kunohe County (off Taneichi)	0	0
6	Akita	River	Asahikawa, Akita City	0	—
7	F1 1 '	Coastal area	Soma City (off Haragama Beach)	0	0
8	Fukushima	River	Zainiwasaka, Fukushima City	0	_
9	TI 1.	Lake	Kasumigaura	0	—
10	Ibaraki	Coastal area	Tokai Village, Naka County (off the NPS)	0	0
11	Chiba	Coastal area	Tokyo Bay (off Sodegaura City)	0	0
12	Kanagawa	Coastal area	Yokosuka City (Odawa Bay)	0	0
13	N T"	Lake	Shichikuyama, Chuo Ward, Niigata City	0	_
14	Niigata	Coastal area	off Niigata Port	0	0
15	Fukui	Lake	Inogaike Pond, Tsuruga City	0	_
16	Nagano	Lake	Lake Suwa	0	_
17	Aichi	Coastal area	Tokoname City (off Kosugaya)	0	0
18	Mie	River	Seki Town, Kameyama City (Suzuka River)	0	_
19	Kyoto	Freshwater	Tenno, Ogura Town, Uji City	0	_
20	Osaka	Coastal area	Osaka City (Entrance to Osaka Port)	0	0
21		River	Katamo (Katamo River System)	0	0
22		River	Kawakami (Kawakami River System)	0	0
23	Tottori	River	Hotani (Iwakura River System)	0	0
24		River	Bessho (except for Katamo River System)	0	0
25		River	Kannokura (Oshika River System)	0	0
26	Hiroshima	River	Kawate Town, Shobara City (Saijo River)	0	_
27	Yamaguchi	Coastal area	Ajisu, Yamaguchi City (Yamaguchi Bay)	0	0
28	Fukuoka	Coastal area	Higashiminato Town, Moji Ward, Kitakyushu City (off Chichisaki)	0	0
29	Kagoshima	Coastal area	Minamisatsuma City (off the mouth of Manose River)	0	0
30	Okinawa	Coastal area	Katsuren White Beach, Uruma City	0	0

Table 1.1-1 Locations for the Monitoring of Environmental Radioactivity Levels (30 in total)

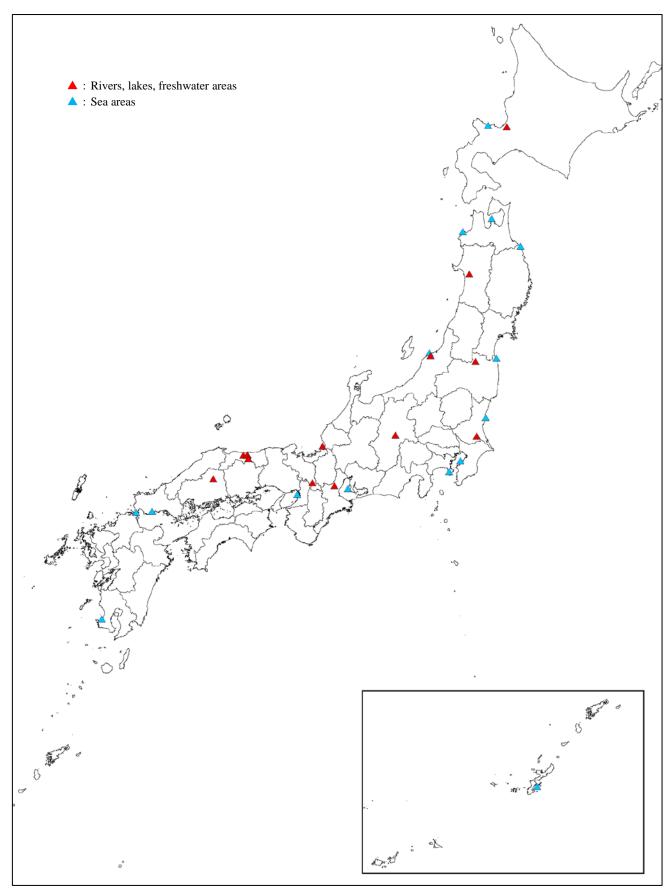


Figure 1.1-1 Survey Locations for the Monitoring of Environmental Radioactivity Levels

2. Results

2.1 Water

(1) Inland water¹⁷

In the Monitoring of Levels performed in FY2015, inland water samples were reported for 9 radionuclides (Be-7, K-40, U-234, U-235, U-238, Cs-134, Cs-137, I-131 and Sr-90), as shown in Table 2.1-1.

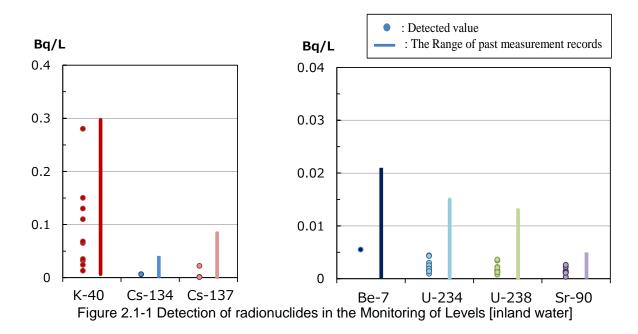

A comparison with the results of the Monitoring of Levels for the last twenty years (excluding data from March 11, 2011, to March 10, 2012) revealed that detected values for all these radionuclides were within the past measurement trends (see Figure 2.1-1).

Table 2.1-1 Detection of radionuclides in the Monitoring of Levels [inland water]

Nuclides		Number of reported data	Number of detections	Range of measured values [Bq/L]		The range of past measurement records (*1) [Bq/L]			
	Be-7	7	1	ND	_	0.0055	ND	-	0.021
Naturally	K-40	10	10	0.013	-	0.28	0.0067	-	0.30
occurring	U-234	10	10	0.00094	-	0.0044	ND	-	0.015
radionuclides	U-235	10	0	ND	-	ND	ND	-	0.00054
	U-238	10	10	0.00076	-	0.0036	ND	-	0.013
	Cs-134	9	1	ND	_	0.0062	ND	_	0.041
Artificial	Cs-137	9	4	ND	-	0.022	ND	-	0.084
radionuclides	I-131	7	0	ND	-	ND	ND	-	0.016
	Sr-90	10	8	ND	_	0.0026	ND	-	0.0050

ND = Not detectable

(*1) Results of the Monitoring of Levels from FY1995 to FY2014 (excluding data from March 11, 2011 to March 10, 2012)

¹⁷ This report only covers data for river water, lake water, and freshwater in the Monitoring of Levels.

(2) Seawater

In the Monitoring of Levels in FY2015, seawater samples were reported for 6 radionuclides (Be-7, K-40, Cs-134, Cs-137, I-131 and Sr-90) as shown in Table 2.1-2.

A comparison with the results of the Monitoring of Levels for the last twenty years (excluding data from March 11, 2011, to March 10, 2012) revealed that detected values for both of these radionuclides were within the past measurement trends (see Figure 2.1-2).

Table 2.1-2 Detection of radionacides in the monitoring of Levels [seawater]										
Nuclides		Number of reported data	Number of detections	Range of measured values[Bq/L]			The range of past measurement records [Bq/L] (*1)			
Naturally occurring radionuclides	Be-7	2	0	ND	-	ND	ND	-	ND	
	K-40	16	16	0.18	-	12	0.078	-	14	
Artificial radionuclides	Cs-134	16	0	ND	-	ND	ND	-	ND	
	Cs-137	16	1	ND	-	0.0019	ND	-	0.040	
	I-131	13	0	ND	_	ND	ND	_	ND	
	Sr-90	15	15	0.00073	_	0.0013	ND	_	0.0084	

Table 2.1-2 Detection of radionuclides in the Monitoring of Levels [seawater]

ND = Not detectable

(*1) Results of the Monitoring of Levels from FY1995 to FY2014 (excluding data from March11, 2011 to March 10, 2012)

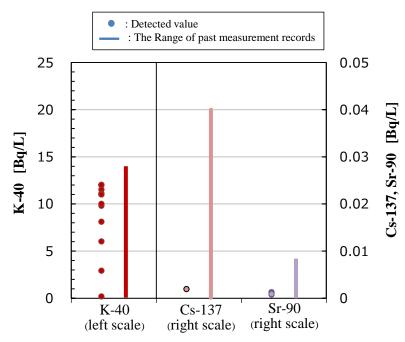


Figure 2.1-2 Detection of radionuclides in the Monitoring of Levels [seawater]

2.2 Sediments

(1) Inland water sediments (river sediments)

In the Monitoring of Levels in FY2015, inland water sediment samples (river sediments) were reported for three radionuclides (U-234, U-235 and U-238) as shown in Table 2.2-1.

A comparison with the results of the Monitoring of Levels for the last twenty years (excluding data from March 11, 2011, to March 10, 2012) revealed that detected values for all the 3 detected radionuclides were within the past measurement trends (see Figure 2.2-1).

Table 2.2-1 Detection of radionuclides in the Monitoring of Levels
[Inland water sediments (river sediments)]

Nuclides		Number of reported data	Number of detections	Range of measured values [Bq/kg(dry)]			The range of past measurement records [Bq/kg(dry)] (*1)		
Naturally	U-234	5	5	11	-	38	6.5	-	76
occurring radionuclides	U-235	5	5	0.43	-	1.4	0.20	_	3.4
	U-238	5	5	11	-	39	6.6	_	94

(*1) Results of the Monitoring of Environmental Radioactivity Levels from FY1995 to FY2014 (excluding data from March 11, 2011 to March 10, 2012 and results reported in mg/kg units)

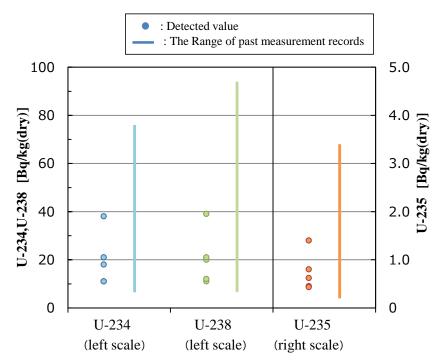
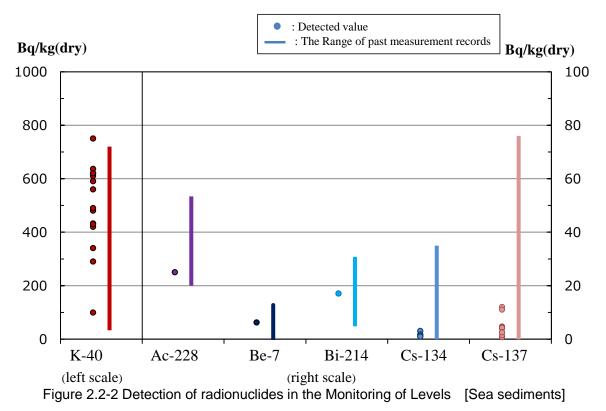


Figure 2.2-1 Detection of radionuclides in the Monitoring of Levels [Inland water sediments (river sediments)]

(2) Sea sediments

In the Monitoring of Levels in FY2015, seawater sediment samples were reported for 8 radionuclides (Ac-228, Be-7, Bi-214, K-40, Cs-134, Cs-137, I-131 and Sr-90) as shown in Table 2.2-2.


A comparison with the results of the Monitoring of Levels for the last twenty years (excluding data from March 11, 2011, to March 10, 2012) revealed that detected values for all these radionuclides were within the past measurement trends (see Figure 2.2-2).

[Sea sediments]											
Nuclides		Number of reported data	Number of detections	Range of measured values [Bq/kg(dry)]			The range of past measurement records [Bq/kg(dry)](*1)				
Naturally occurring radionuclides	Ac-228	1	1	25	-	25	20	-	53		
	Be-7	4	1	ND	-	6.2	ND	-	13		
	Bi-214	1	1	17	-	17	4.8	-	31		
	K-40	15	15	99	-	750	33	-	720		
Artificial radionuclides	Cs-134	15	4	ND	-	3.0	ND	-	35		
	Cs-137	15	10	ND	-	12	ND	-	76		
	I-131	8	0	ND	-	ND	ND	-	ND		
	Sr-90	15	0	ND	-	ND	ND	-	0.46		

Table 2.2-2 Detection of radionuclides in the Monitoring of Levels

(*1) Results of the Monitoring of Environmental Radioactivity Levels from FY1995 to FY2014 (excluding data from March 11, 2011 to March 10, 2012)

ND = Not detectable

