Recent Development of
The Joint Crediting Mechanism (JCM)

July 2015
Government of Japan

All ideas are subject to further consideration and discussion with host countries
Basic Concept of the JCM

- Facilitating diffusion of leading low carbon technologies, products, systems, services, and infrastructure as well as implementation of mitigation actions, and contributing to sustainable development of developing countries.
- Appropriately evaluating contributions from Japan to GHG emission reductions or removals in a quantitative manner and use them to achieve Japan’s emission reduction target.
- Contributing to the ultimate objective of the UNFCCC by facilitating global actions for GHG emission reductions or removals.

measurement, reporting and verification
Scheme of the JCM

Japan

- **Government**
 - Issuance of credits
 - Request registration of projects
 - Reports issuance of credits

- **Project Participants**
 - Implementation & monitoring of projects
 - Submit PDD/monitoring report
 - Inform results of validation/verification

- **Third party entities**
 - Validation of projects
 - Verification of amount of GHG emission reductions or removals

Host Country

- **Government**
 - Issuance of credits
 - Request registration of projects
 - Reports issuance of credits

- **Project Participants**
 - Implementation & monitoring of projects
 - Submit PDD/monitoring report
 - Inform results of validation/verification

- **Joint Committee (Secretariat)**
 - Development/revision of the rules, guidelines and methodologies
 - Registration of projects
 - Discusses the implementation of JCM
 - Conduct policy consultations

- **Third party entities**
 - Request registration of projects
 - Submit PDD/monitoring report
 - Inform results of validation/verification
The Joint Committee (JC) consists of representatives from both Governments.

The JC develops rules and guidelines necessary for the implementation of the JCM.

The JC determines either to approve or reject the proposed methodologies, as well as develops JCM methodologies.

The JC designates the third-party entities (TPEs).

The JC decides on whether to register JCM projects which have been validated by the TPEs.

Each Government establishes and maintains a registry.

On the basis of notification for issuance of credits by the JC, each Government issues the notified amount of credits to its registry.
(1) The JCM starts its operation as a non-tradable credit type mechanism.

(2) Both Governments continue consultation for the transition to a tradable credit type mechanism and reach a conclusion at the earliest possible timing, taking account of implementation of the JCM.

(3) The JCM aims for concrete contributions to assisting adaptation efforts of developing countries after the JCM is converted to the tradable credit type mechanism.

(4) The JCM covers the period until a possible coming into effect of a new international framework under the UNFCCC.
Project Cycle of the JCM and the CDM

JCM
- Submission of Proposed Methodology
- Approval of Proposed Methodology
- Development of PDD
- Validation
- Registration
- Monitoring
- Verification
- Issuance of credits

CDM
- Project Participant
- CDM Executive Board
- Designated Operational Entities (DOEs)
- Project Participant
- DOEs
- CDM Executive Board

Main actors at each process
- Project Participant / Each Government Joint Committee
- Joint Committee
- Project Participant
- Third Party Entities
- Joint Committee
- Project Participant
- Third Party Entities
- Joint Committee decides the amount
- Each Government issues the credit

*Can be conducted by the same TPE
Can be conducted simultaneously*
Roadmap for the JCM

JFY2012 JFY2013 JFY2014 JFY2015

Governmental Consultation (Increasing numbers of JCM Partner countries)
Consultations with interested countries

Establishment & operation of the JC
Development of rules and guidelines

Establishment & operation of the website

Development of methodologies
Registration of projects

JCM Demonstration Projects and JCM Financing Programme

Feasibility Studies & Capacity Building

UNFCCC negotiations
Japan has held consultations for the JCM with developing countries since 2011 and has established the JCM with Mongolia, Bangladesh, Ethiopia, Kenya, Maldives, Viet Nam, Lao PDR, Indonesia, Costa Rica, Palau, Cambodia, Mexico, Saudi Arabia and Chile.

Three (3) JCM projects have been registered between Indonesia and Japan, one (1) JCM project has been registered between Palau and Japan and two (2) projects have been registered between Mongolia and Japan.
Japan’s INDC (Excerpt)

Japan’s INDC

- Japan’s INDC towards post-2020 GHG emission reductions is at the level of a reduction of 26.0% by fiscal year (FY) 2030 compared to FY 2013 (25.4% reduction compared to FY 2005) (approximately 1.042 billion t-CO$_2$eq. as 2030 emissions), ensuring consistency with its energy mix, set as a feasible reduction target by bottom-up calculation with concrete policies, measures and individual technologies taking into adequate consideration, inter alia, technological and cost constraints, and set based on the amount of domestic emission reductions and removals assumed to be obtained.

Information to facilitate clarity, transparency and understanding

- The JCM is not included as a basis of the bottom-up calculation of Japan’s emission reduction target, but the amount of emission reductions and removals acquired by Japan under the JCM will be appropriately counted as Japan’s reduction.

Reference information
GHG emissions and removals
JCM and other international contributions

- Japan establishes and implements the JCM in order both to appropriately evaluate contributions from Japan to GHG emission reductions or removals in a quantitative manner achieved through the diffusion of low carbon technologies, products, systems, services, and infrastructure as well as implementation of mitigation actions in developing countries, and to use them to achieve Japan’s emission reduction target.
- Apart from contributions achieved through private-sector based projects, accumulated emission reductions or removals by FY 2030 through governmental JCM programs to be undertaken within the government’s annual budget are estimated to be ranging from 50 to 100 million t-CO$_2$.
41. Acknowledges that Parties, individually or jointly, may develop and implement various approaches, including opportunities for using markets and non-markets, to enhance the cost-effectiveness of, and to promote, mitigation actions, bearing in mind different circumstances of developed and developing countries;

42. Re-emphasizes that, as set out in decision 2/CP.17, paragraph 79, all such approaches must meet standards that deliver real, permanent, additional and verified mitigation outcomes, avoid double counting of effort and achieve a net decrease and/or avoidance of GHG emissions;

44. Requests the SBSTA to conduct a work programme to elaborate a framework for such approaches, drawing on the work of the AWG-LCA on this matter, including the relevant workshop reports and technical paper, and experience of existing mechanisms, with a view to recommending a draft decision to the COP for adoption at its 19th session;

45. Considers that any such framework will be developed under the authority and guidance of the Conference of the Parties;
The JCM is one of various approaches based on Decision 1/CP.18, jointly developed and implemented by Japan and partner countries, and Japan intends to contribute to elaborating the framework for such approaches under the UNFCCC.

Japan will report to the COP the use of the JCM in Biennial Reports including the Common Tabular in line with Decision 19/CP18.

<table>
<thead>
<tr>
<th>Year</th>
<th>JUsP</th>
<th>EUsP</th>
<th>CERs</th>
<th>ICAEs</th>
<th>Units from other market-based mechanisms</th>
<th>Units from other market-based mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>20XX-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20XX-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20XX-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20XX-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The UNFCCC documents related to the JCM (2/2)
Technical Details for the JCM

(Subject to further consideration and discussion with host countries)
Necessary documents for the JCM

(Subject to further consideration and discussion with host countries)

<table>
<thead>
<tr>
<th>Rules and Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Rules of Implementation</td>
</tr>
<tr>
<td>✓ Project Cycle Procedure</td>
</tr>
<tr>
<td>✓ Glossary of Terms</td>
</tr>
<tr>
<td>✓ Guidelines for Designation as a Third-Party Entity (TPE guidelines)</td>
</tr>
</tbody>
</table>

Overall

- ✓ Rules of Procedures for the Joint Committee (JC rules)
- ✓ Guidelines for Developing Proposed Methodology (methodology guidelines)

Joint Committee

- ✓ Rules of Procedures for the Joint Committee (JC rules)

Methodology

- ✓ Guidelines for Developing Proposed Methodology (methodology guidelines)

Project Procedures

Developing a PDD
- ✓ Guidelines for Developing Project Design Document and Monitoring Report (PDD and monitoring guidelines)

Monitoring

Validation

Verification
- ✓ Guidelines for Validation and Verification (VV guidelines)
Methodology Development Procedure of the JCM

(Subject to further consideration and discussion with host countries)

- **Submission of Proposed Methodology**
 - Project Participant (Methodology Proponent)
 - Prepare a proposed methodology
 - Methodology guidelines
 - Proposed methodology form
 - Proposed Methodology Spreadsheet Form
 - Government (Methodology Proponent)
 - Prepare a proposed methodology
 - Methodology guidelines
 - Proposed methodology form
 - Proposed Methodology Spreadsheet Form

- **Completeness Check**
 - Completeness check [7 days] (secretariat)
 - Communicate the result of completeness check

- **Public Inputs**
 - Public inputs [15 days] (secretariat)

- **Approval of Proposed Methodology**
 - Assessment of the proposed methodology [60 days or up to 90 days]
 - Approval of the proposed methodology

Note: Asterisk (*) indicates documentation relevant for each step of the procedure
Registration & Issuance Procedure of the JCM (1/2)

Project Participant
- Complete a PDD and develop a monitoring plan
 - PDD form and Monitoring Spreadsheet
 - PDD and monitoring guidelines
- Complete an MoC Form
 - MoC Form

Third-Party Entity
- Submit the draft PDD and MoC, and request for validation and public inputs
- Notify the receipt of the submission
- Validate a project
 - Prepare a validation report
 - Validation and verification report
 - Validation guidelines
 - Validation report form
- Submit the validation report

Joint Committee
- Public inputs [30 days] (secretariat)
- Notify the receipt of the submission
- Validate a project
 - Prepare a validation report
 - Validation and verification report
 - Validation guidelines
 - Validation report form

Government
- Notify the conclusion [7 days] (secretariat)
- Notify the registration
Registration & Issuance Procedure of the JCM (2/2)

Monitoring
- Project Participant
 - Conduct monitoring
 - Prepare a monitoring report
 * PDD and monitoring guidelines
 * Monitoring report sheet

- Third-Party Entity
 - Submit the monitoring report for verification

- Joint Committee
 - Verify emission reductions
 - Prepare a verification report
 * Validation and Verification guidelines
 * Verification report form

- Government
 - Submit the verification report

Verification
- Validation and verification can be conducted simultaneously or separately.

Issuance
- Determine allocation of credits
- Complete a credit issuance request form
 * Credit issuance request form

- Request for notification for issuance
 - Completeness check [7 days] (secretariat)

- Decision on notification of amount of credits to be issued
 - Notify the receipt of the request
 - Notify the result of the completeness check

- Notify the amount of credits to be issued

- Issuance of credits
 - Notify the issuance of credits

(Subject to further consideration and discussion with host countries)
Rules of Procedures for the Joint Committee

(Subject to further consideration and discussion with host countries)

Members
- The Joint Committee (JC) consists of representatives from both Governments.
- Each Government designates members, which may not exceed 10.
- The JC has two Co-chairs to be appointed by each Government (one from the host country and the other from Japan). Each Co-Chair can designate an alternate from members of the JC.

Decision making in the JC
- The JC meets no less than once a year and decision by the JC is adopted by consensus.
- The JC may adopt decisions by electronic means in the following procedure:
 (a) The proposed decisions are distributed by the Co-Chairs to all members of the JC.
 (b) The proposed decision is deemed as adopted when,
 i) no member of the JC has provided negative assertion within [10] calendar days after distribution and both Co-Chairs have made affirmative assertion, or
 ii) all members of the JC have made affirmative assertion.
- If a negative assertion is made by one of the JC members, the Co-Chairs take into account the opinion of the member and take appropriate actions.
- The JC may hold conference calls to assist making decisions by electronic means.

External assistance
- The JC may establish panels and appoint external experts to assist part of its work.

Languages: English Secretariat: The secretariat services the JC.
Confidentiality: Members of the JC, Secretariat, etc. respect confidentiality.
Record of the meeting: The full text of all decisions of the JC is made publicly available.
In the JCM, emission reductions to be credited are defined as the difference between “reference emissions” and project emissions. The reference emissions are calculated below business-as-usual (BaU) emissions which represent plausible emissions in providing the same outputs or service level of the proposed JCM project in the host country. This approach will ensure a net decrease and/or avoidance of GHG emissions.
Addendum: ways to realize net reduction

(Subject to further consideration and discussion with host countries)

- A net decrease and/or avoidance of GHG emissions can be realized in alternative way, instead of calculating the reference emissions below BaU emissions.

- **Using conservative default values in parameters to calculate project emissions** instead of measuring actual values will lead calculated project emissions larger than actual project emissions.

- This approach will also ensure a net decrease and/or avoidance of GHG emissions, as well as reduce burdens of monitoring.

Start of project operation

- **BaU emissions**
- **Calculated project emissions**
- **Actual project emissions**

GHG emissions from sources covered by a project

Time
JCM Methodology

Key Features of the JCM methodology

➢ The JCM methodologies are designed in such a way that project participants can use them easily and verifiers can verify the data easily.
➢ In order to reduce monitoring burden, default values are widely used in a conservative manner.
➢ Eligibility criteria clearly defined in the methodology can reduce the risks of rejection of the projects proposed by project participants.

<table>
<thead>
<tr>
<th>Eligibility Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A checklist will allow easy determination of eligibility of a proposed project under the JCM and applicability of JCM methodologies to the project.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data (parameter)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• List of parameters will allow project participants to determine what data is necessary to calculate GHG emission reductions/removals with JCM methodologies.</td>
<td></td>
</tr>
<tr>
<td>• Default values for specific country and sector are provided beforehand.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Premade spreadsheets will allow GHG emission reductions/removals to be calculated automatically by inputting relevant values for parameters, in accordance with methodologies.</td>
<td></td>
</tr>
</tbody>
</table>
Eligibility criteria in JCM methodologies contain the following:

1. Both Governments determine what technologies, products, etc. should be included in the eligibility criteria through the approval process of the JCM methodologies by the Joint Committee.

2. Project participants can use the list of approved JCM methodologies when applying for the JCM project registration.

Examples of eligibility criteria 1.
- Introduction of \textit{xx} (products/technologies) whose design efficiency is above \textit{xx} (e.g. output/kWh) \textit{<Benchmark Approach>}
- Introduction of \textit{xx} (specific high efficient products/technologies, such as air conditioner with inverter, electric vehicles, or PV combined with battery) \textit{<Positive List Approach>}

Examples of eligibility criteria 2.
- Existence of historical data for \textit{x} year(s)
- Electricity generation by \textit{xx} (e.g. PV, wind turbine) connected to the grid
- Retrofit of the existing boiler
Overview of JCM Methodology, Monitoring Plan and Monitoring Report

- JCM methodology consists of the followings.
 - Approved Methodology Document
 - Monitoring Spreadsheet
 - Monitoring Plan Sheet (including Input Sheet & Calculation Process Sheet)
 - Monitoring Structure Sheet
 - Monitoring Report Sheet (including Input Sheet & Calculation Process Sheet)

(Subject to further consideration and discussion with host countries)
Developing a Project Design Document (PDD) and a Monitoring Plan

- A PDD form should be filled in with information of the proposed project.
- A Monitoring Plan consists of Monitoring Plan Sheet and Monitoring Structure Sheet, and it should be filled in as well.

Other necessary information on parameters to be monitored are:
- Monitoring options
- Source of data
- Measurement methods and procedures
- Monitoring frequency

Roles and responsibilities of personnel for monitoring should be described.

Cells for data input (ex ante)
Possible Contents of the JCM PDD

A. Project description
 A.1. Title of the JCM project
 A.2. General description of project and applied technologies and/or measures
 A.3. Location of project, including coordinates
 A.4. Name of project participants
 A.5. Duration
 A.6. Contribution from developed countries

B. Application of an approved JCM methodology(ies)
 B.1. Selection of JCM methodology(ies)
 B.2. Explanation of how the project meets eligibility criteria of the approved methodology

C. Calculation of emission reductions
 C.1. All emission sources and their associated greenhouse gases relevant to the JCM project
 C.2. Figure of all emission sources and monitoring points relevant to the JCM project
 C.3. Estimated emissions reductions in each year

D. Environmental impact assessment

E. Local Stakeholder consultation
 E.1. Solicitation of comments from local stakeholders
 E.2. Summary of comments received and their consideration

F. References

Annex

Approved Methodology Spreadsheet consists of Monitoring Plan Sheet, Monitoring Structure Sheet and Monitoring Report Sheet, and it shall be attached to the PDD.
Making a Monitoring Report

- A Monitoring Report should be made by filling cells for data input (ex post) in the Monitoring Report Sheet with monitored values.
- Project participants prepare supporting documents which include evidence for stated values in the cells for data input.

Other necessary information on monitored parameters are to be filled in:
- Monitoring options
- Source of data
- Measurement methods and procedures
- Monitoring frequency
Establishment & operation

• A registry will be established by each side (RoI (draft) para13 (b)).
• The registries need to share “Common specifications”, e.g.,
 - functions (e.g. issuance, retirement, holding, cancelation of credits)
 - account type (e.g. holding account, government holding account, cancellation account, and retirement account)
 - rules of serial number of the credit
 - information sharing
• Japan plans to establish its registry and start operation in FY 2015.
• The host countries will also establish their own registry.
Contents

• General information page
• Individual JCM Partner countries-Japan page

Function

• Information sharing to the public, e.g.,
 - the JC decisions,
 - rules and guidelines,
 - methodologies,
 - projects,
 - call for public inputs/comments,
 - status of TPEs, etc.
• Internal information sharing for the JC members, e.g.,
 - File sharing for electric decisions by the JC

URL: https://www.jcm.go.jp/
<table>
<thead>
<tr>
<th>No.</th>
<th>Country</th>
<th>Sectoral Scope</th>
<th>Methodology Title</th>
<th>GHG Emission Reduction Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN AM 001</td>
<td>Mongolia</td>
<td>Energy distribution</td>
<td>Installation of energy-saving transmission lines in the Mongolian Grid</td>
<td>Reduction of transmission loss by introduction of LL-ACSR/SA (Low Electrical Power Loss Aluminum Conductors, Aluminum-Clad Steel Reinforced).</td>
</tr>
<tr>
<td>MN AM 002</td>
<td>Mongolia</td>
<td>Energy industries</td>
<td>Replacement and Installation of High Efficiency Heat Only Boiler (HOB) for Hot Water Supply Systems</td>
<td>Installation of new HOB for hot water supply system and the replacement of existing coal-fired HOB. The boiler efficiency of the reference HOB is typically lower than that of the project HOB. Therefore, the project activity leads to the reduction of coal consumption, resulting in lower emission of GHGs as well as air pollutants.</td>
</tr>
<tr>
<td>MV AM 001</td>
<td>Maldives</td>
<td>Energy industries</td>
<td>Displacement of Grid and Captive Genset Electricity by Solar PV System</td>
<td>Displacement of grid electricity and/or captive electricity using diesel fuel as a power source by installation and operation of the solar PV system(s)</td>
</tr>
<tr>
<td>VN AM 001</td>
<td>Viet Nam</td>
<td>Transport</td>
<td>Transportation energy efficiency activities by installing digital tachograph systems</td>
<td>Improvement of driving efficiency by installation of digital tachograph system to freight vehicle fleets providing to the drivers a real-time feedback against inefficient driving.</td>
</tr>
<tr>
<td>VN AM 002</td>
<td>Viet Nam</td>
<td>Energy demand</td>
<td>Introduction of Room Air Conditioners Equipped with Inverters</td>
<td>Energy saving achieved by introduction of RACs equipped with inverters.</td>
</tr>
<tr>
<td>VN AM 003</td>
<td>Viet Nam</td>
<td>Energy demand</td>
<td>Improving the energy efficiency of commercial buildings by utilization of high efficiency equipment</td>
<td>Reduction of electricity and fossil fuel consumed by existing facilities is achieved by replacing or substituting these facilities with high efficiency equipment.</td>
</tr>
<tr>
<td>No.</td>
<td>Country</td>
<td>Sectoral Scope</td>
<td>Methodology Title</td>
<td>GHG Emission Reduction Measures</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ID_A M001</td>
<td>Indonesia</td>
<td>Energy industries</td>
<td>Power Generation by Waste Heat Recovery in Cement Industry</td>
<td>Waste heat recovery (WHR) system generates electricity through waste heat recovered from cement production facility. Electricity generated from the WHR system replaces grid electricity resulting in GHG emission reductions of the connected grid system.</td>
</tr>
<tr>
<td>ID_A M002</td>
<td>Indonesia</td>
<td>Energy demand</td>
<td>Energy Saving by Introduction of High Efficiency Centrifugal Chiller</td>
<td>Saving energy by introducing high efficiency centrifugal chiller for the target factory, commerce facilities etc.</td>
</tr>
<tr>
<td>ID_A M003</td>
<td>Indonesia</td>
<td>Energy demand</td>
<td>Installation of Energy-efficient Refrigerators Using Natural Refrigerant at Food Industry Cold Storage and Frozen Food Processing Plant</td>
<td>Saving energy by introducing high efficiency refrigerators to the food industry cold storage and frozen food processing plants.</td>
</tr>
<tr>
<td>ID_A M004</td>
<td>Indonesia</td>
<td>Energy demand</td>
<td>Installation of Inverter-Type Air Conditioning System for Cooling for Grocery Store</td>
<td>Saving energy by introducing inverter-type air conditioning system for cooling for grocery store.</td>
</tr>
<tr>
<td>ID_A M005</td>
<td>Indonesia</td>
<td>Energy demand</td>
<td>Installation of LED Lighting for Grocery Store</td>
<td>Saving energy by introducing LED (Light Emitting Diode) lighting for grocery store.</td>
</tr>
<tr>
<td>ID_A M006</td>
<td>Indonesia</td>
<td>Energy demand</td>
<td>GHG emission reductions through optimization of refinery plant operation in Indonesia</td>
<td>Introduction of plant optimization control systems (APC) that reduce energy consumption in the hydrogen production unit (HPU) and hydro cracking unit (HCU) at a refinery plant.</td>
</tr>
<tr>
<td>ID_A M007</td>
<td>Indonesia</td>
<td>Energy demand</td>
<td>GHG emission reductions through optimization of boiler operation in Indonesia</td>
<td>The project achieves energy conservation in boilers, through operation optimization by applying Utility Facility Operation Optimization Technology.</td>
</tr>
<tr>
<td>ID_A M008</td>
<td>Indonesia</td>
<td>Energy demand</td>
<td>Installation of a separate type fridge-freezer showcase by using natural refrigerant for grocery store to reduce air conditioning load inside the store</td>
<td>Saving total energy of in-store showcase and air conditioning system by introducing a separate type natural refrigerant fridge-freezer showcase for grocery store, which leads to GHG emission reductions, through the reduction of air conditioning electricity load demand by not releasing waste heat inside the store.</td>
</tr>
<tr>
<td>PW AM001</td>
<td>Palau</td>
<td>Energy industries</td>
<td>Displacement of Grid and Captive Genset Electricity by a Small-scale Solar PV System</td>
<td>Displacement of grid electricity and/or electricity using diesel fuel as a power source by installation and operation of the solar PV system(s).</td>
</tr>
</tbody>
</table>
References

◆ JCM Demonstration Projects and JCM Financing Programme
◆ Feasibility Studies
◆ Capacity Building
JCM Demonstration Projects

- JCM Demonstration Projects are implemented by NEDO (New Energy and Industrial Technology Development Organization), which supports the project costs necessary to verify the amount of GHG emission reduction in line with JCM rules and guidelines.
- The budget for FY 2015: 3 billion JPY (approximately $30 million)
- Coverage of project cost: Cost of the JCM Demonstration Projects necessary for MRV (e.g., Cost of design, machines, materials, labor, travel, etc.).

Eligibility for the JCM Demonstration Projects:
- Concrete Projects to demonstrate the effectiveness of leading Japanese technologies and/or products installed and operated in the projects, and the amount of their GHG emission reduction with MRV methodology by actual operation
- Project Participants consist of entities from both countries, only the Japanese entities can apply for the JCM Demonstration projects. The projects shall be completed within 3 years.

JCM Feasibility Study (FS)

- The study to promote potential JCM projects and to survey their feasibility as well as to check the practicality of the MRV methodology.

Capacity Building Programmes

- Variety of capacity building activities to increase technical experts (e.g.,) Experts on measuring amount of emission reductions by introducing low carbon technologies and products in the host country.
JCM Feasibility Studies, MRV Applicability Verification Studies and Demonstration Projects by METI & NEDO in FY2013

Mongolia:
- Wind-Power generation
- Energy efficient housing complex at Ger area
- High efficiency and low loss power transmission and distribution system

Myanmar:
- Run-of-river Micro Hydro Power Generation

Bangladesh:
- CCGT power generation

Kenya:
- Dissemination of Solar lantern

Kenya, Ethiopia:
- Micro Hydro power plant

Djibouti, Rwanda:
- Geothermal Power Generation

India:
- Energy Efficient Air Conditioners (HFC 32)
- Energy Efficient Technologies for Integrated Steel Works

Vietnam:
- Highly Efficient Coal Power Plants (Ultra Super Critical)
- Energy recovery using organic waste
- Wind-Power generation
- Energy saving by inverter air conditioner optimum operation at National Hospital
- Energy saving by BEMS optimum operation at Hotel

Indonesia:
- Biomass Power Generation
- Energy saving stores based on CO2 refrigerant
- REDD+ (4 projects)
- Energy saving by optimum operation at Oil factory
- Utility facility operation optimization technology into Oil factory
- Thin-Film solar power plant

Lao PDR:
- Energy saving at beer plant
- REDD+

Peru:
- REDD+

Mexico:
- CCS (Carbon dioxide Capture and Storage)

Bangladesh:
- CCGT power generation

Kenya, Ethiopia:
- Micro Hydro power plant

Djibouti, Rwanda:
- Geothermal Power Generation

India:
- Energy Efficient Air Conditioners (HFC 32)
- Energy Efficient Technologies for Integrated Steel Works

Vietnam:
- Highly Efficient Coal Power Plants (Ultra Super Critical)
- Energy recovery using organic waste
- Wind-Power generation
- Energy saving by inverter air conditioner optimum operation at National Hospital
- Energy saving by BEMS optimum operation at Hotel

Indonesia:
- Biomass Power Generation
- Energy saving stores based on CO2 refrigerant
- REDD+ (4 projects)
- Energy saving by optimum operation at Oil factory
- Utility facility operation optimization technology into Oil factory
- Thin-Film solar power plant

Lao PDR:
- Energy saving at beer plant
- REDD+

Peru:
- REDD+

Mexico:
- CCS (Carbon dioxide Capture and Storage)
Kenya:
- Geothermal power generation

Lao PDR:
- Energy efficiency container date center

Indonesia:
- Energy efficiency for mobile communication system
- Low carbon waste treatment
- LNG supply chain development and energy conversion
- Energy efficiency at data center
- Utility facility operation optimization technology into Oil factory (since FY2013)
- Thin-Film solar power plant (since FY2013)

Vietnam:
- Energy efficiency technologies for steel industry
- Energy saving by operation at material factory
- Installing LED lighting into Fishing vessel
- Energy efficient paper making process
- Energy saving by inverter air conditioner optimum operation at National Hospital (since FY2013)
- Energy saving by BEMS optimum operation at Hotel (since FY2013)
- Ecological convenience store

Mexico:
- Energy efficiency technology in commerce and industrial sector
- Geothermal power plant for IPPs
- Ion exchange membrane in caustic soda and chlorine production
- Energy efficiency beverage and food factory

Bangladesh:
- CCGT power generation (since FY2013)

Saudi Arabia:
- Solar power generation and gas-fired combined power generation

Kenya:
- Geothermal power generation

Ethiopia, Kenya:
- Mega-solar power generation and Hydro power generation
- Rural electrification without power grid
- Bioethanol from molasses

Malaysia:
- Woody biomass power generation

Maldives:
- Medium-size wind power generation

Cambodia:
- Energy efficiency LED street light
- Hybrid(solar+diesel) power generation in SEZ(Special Economic Zone)

Lao PDR:
- Energy efficiency container date center

Vietnam:
- Energy efficiency technologies for steel industry
- Low carbon technology application for eco-city
- Energy efficiency operation for ships
- Installing LED lighting into Fishing vessel
- Energy efficient paper making process
- Energy saving by inverter air conditioner optimum operation at National Hospital (since FY2013)
- Energy saving by BEMS optimum operation at Hotel (since FY2013)
- Ecological convenience store

Indonesia:
- Energy efficiency for mobile communication system
- Low carbon waste treatment
- LNG supply chain development and energy conversion
- REDD+ 6 projects
- Energy efficiency at data center
- Energy efficiency at data center
- Energy saving by optimum operation at Oil factory (since FY2013)
- Utility facility operation optimization technology into Oil factory (since FY2013)
- Thin-Film solar power plant (since FY2013)
Capacity Building Programmes

<table>
<thead>
<tr>
<th>Region</th>
<th>Asia, Africa, Latin America, and Small Island countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Facilitating understanding on the JCM rules and guidelines, enhancing capacities for implementing MRV</td>
</tr>
<tr>
<td>Activities</td>
<td>Consultations, workshops, seminars, training courses and study tours, etc.</td>
</tr>
<tr>
<td>Target</td>
<td>Government officials, private sectors, candidate for validation & verification entities, local institutes and NGOs</td>
</tr>
</tbody>
</table>

Feasibility Studies

<table>
<thead>
<tr>
<th>Objective</th>
<th>Elaborating investment plan on JCM projects, developing MRV methodologies and investigating feasibility on potential JCM projects,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of studies</td>
<td></td>
</tr>
<tr>
<td>JCM Project Planning Study (PS)</td>
<td>To develop a JCM Project in the next fiscal year</td>
</tr>
<tr>
<td>JCM Feasibility Study (FS)</td>
<td>To survey feasibility of potential JCM projects</td>
</tr>
<tr>
<td>Large Scale JCM Feasibility Study</td>
<td>To survey feasibility of potential large scale JCM projects including city level cooperation</td>
</tr>
</tbody>
</table>

Outreach

New Mechanisms Information Platform website provides the latest information on the JCM
<URL: http://www.mmechanisms.org/e/index.html>
The budget for FY 2015
2.4 billion JPY (approx. USD24 million) per year by FY2017 (total 7.2 billion JPY)

Finance part of an investment cost (up to the half)

Conduct MRV and expected to deliver at least half of JCM credits issued

International consortiums (which include Japanese entities)

- Scope of the financing: facilities, equipment, vehicles, etc. which reduce CO2 from fossil fuel combustion as well as construction cost for installing those facilities, etc.
- Eligible Projects : starting installation after the adoption of the financing and finishing installation within three years.
Support Program Enabling “Leapfrog” Development (Finance/ADB) by MOE

Collaborative Financing Programme

Budget for FY 2015 [Budget for FY2014]
1.8 billion JPY (approx. USD18 million) per year by FY2018 (total 7.2 billion JPY) [4.2 billion JPY]

Scheme
To finance the projects which have the better efficiency of reducing GHG emission in collaboration with other projects supported by JICA and other governmental-affiliated financial institute.

Purpose
To expand superior and advanced low-carbon technologies for building the low carbon society as the whole city wise and area wise in the wider fields, and to acquire credits by the JCM.

ADB Trust Fund (JF JCM)

Budget for FY 2015 [Budget for FY2014]
1.8 billion JPY (approx. USD18 million) [1.8 billion JPY]

Scheme
To provide the financial incentives for the adoption of the advanced low-carbon technologies which are superior in GHG emission reduction but expensive in ADB-financed projects.

Purpose
To develop ADB projects as the “Leapfrog” developments by the advanced technologies and to show the effectiveness of the JCM scheme by the acquisition of credits of the JCM.

MOEJ
Finance
Contribution

JICA, other
Finance
Support for overseas investment and lending

MOEJ

ADB
Trust Fund

Superior Advanced Low Carbon Technologies

ADB Project

Supported Project by JICA, etc.

Collaboration

JCM Project

- Waste to Energy Plant
- Renewable Energies
- Water Supply and Sewage Systems
- Transportation

GHG Emission Reduction
JCM Financing programs by MOEJ (FY2013/2014/2015)

Thailand:
- Energy Saving at Convenience Stores with High Efficiency Air-Conditioning and Refrigerated Showcase
- Introduction of Solar PV System on Factory Rooftop
- Reducing GHG Emission at Textile Factory by Upgrading to Air-saving Loom (Samutprakarn)
- Energy Saving for Semiconductor Factory with High Efficiency Centrifugal Chiller and Compressor

Bangladesh:
- Energy Saving for Air Conditioning & Facility Cooling by High Efficiency Centrifugal Chiller (Suburbs of Dhaka)
- Installation of High Efficiency Loom at Weaving Factory
- Introduction of PV-diesel Hybrid System at Fastening Manufacturing Plant

Myanmar:
- Introduction of Waste to Energy Plant in Yangon City

Kenya:
- Solar Diesel Abatement Projects

Maldives:
- Solar Power on Rooftop of School Building Project
- Smart Micro-Grid System for POISED Project in Addu Atoll

Malaysia:
- PV power generation and relevant monitoring system for the office building

Mongolia:
- Upgrading and Installation of Centralized Control System of High-Efficiency Heat Only Boiler (HOB)

Viet Nam:
- Anaerobic Digestion of Organic Waste for Biogas Utilization at Market
- Eco-driving with the Use of Digital Tachographs
- Introduction of amorphous high efficiency transformers in power distribution systems
- Introduction of High Efficiency Air-conditioning in Hotel
- Energy Saving in Lens Factory with Energy Efficient Air-Conditioners

Cambodia:
- Introduction of High Efficiency LED Lighting Utilizing Wireless Network

Palau:
- Small-Scale Solar Power Plant for Commercial Facilities in Island States Project
- Small-Scale Solar Power Plants for Commercial Facilities Project II
- Solar PV System for Schools Project

Mexico:
- Domo de San Pedro II Geothermal Power Generation
- Energy Saving by Converting from Hg-Cell Process to Ion-exchange Membrane Process at Chlorine Production Plant

Indonesia:
- Energy Saving for Air-Conditioning and Process Cooling at Textile Factory (in Batang city)
- Energy Savings at Convenience Stores
- Energy Efficient Refrigerants to Cold Chain Industry
- Energy Saving by Double Bundle-Type Heat Pump at Beverage Plant
- Energy Saving for Air-Conditioning and Process Cooling at Textile Factory
- Power Generation by Waste Heat Recovery in Cement Industry
- Solar Power Hybrid System Installation to Existing Base Transceiver Stations in Off-grid Area
- Energy Saving through Introduction of Regenerative Burners to the Aluminum Holding Furnace of the Automotive Components Manufacturer
- Energy Saving for Textile Factory Facility Cooling by High Efficiency Centrifugal Chiller
- Introduction of high efficient Old Corrugated Cartons Process at Paper Factory
- Reducing GHG emission at textile factories by upgrading to air-saving loom
- Installation of Cogeneration System in Hotel
- Energy Saving by Utilizing Waste Heat at Hotel
- Energy Saving for Air-Conditioning at Shopping Mall with High Efficiency Centrifugal Chiller
- Energy Saving for Industrial Park with Smart LED Street Lighting System
- Energy Saving for Office Building with High Efficiency Water Cooled Air-Conditioning Unit
- Introduction of High Efficiency Once-through Boiler System in Film Factory

Model project in FY 2013 (3 countries, 7 projects)
Model project in FY 2014 (7 countries, 15 projects)
ADB project in FY 2014 (1 country, 1 project)
Model project in FY 2015 (7 countries, 18 projects)

Total 12 countries, 41 projects

- The underlined projects have been registered as the JCM projects (6 projects)
- these projects account for 2 registered JCM projects respectively, as they’re operating in different sites
Overview of JCM Planning/Feasibility Studies in 2015 by MOEJ

Mongolia:
- Distributed heat supply system using biomass and coal mixture combustion type boiler

Philippines:
- Talubin Mini-Hydropower Project

Indonesia:
- Energy saving in industrial wastewater treatment for rubber industry
- Hybrid Power Generation Project Using Biogas and Solar Power
- Development of District Energy Supply Business by introducing co-generation
- Introduction of co-generation and solar power generation systems in large shopping malls

Myanmar:
- Rice husk power generation in rice mill factory in Ayeyarwady

Bangladesh:
- Energy saving by utilizing lithium-ion batteries at base transceiver stations in unstable-grid areas

Thailand:
- Energy saving by introducing power generation and storage system in Skytrain
- Saving energy for station facilities utilizing regenerative energy from trains
- Energy saving by co-generation project in the fiber factory

Lao PDR:
- Utilization of agricultural biomass in Cement Kiln
- Biogas recovery and utilization in tapioca starch factory

Viet Nam:
- Recovery and utilization of biogas from agricultural processing waste in Ninh Binh Province
- Waste Heat Recovery Power Generation at Cement Factory in Quang Ninh Province

Costa Rica:
- Low-carbon project by introducing PV and energy saving equipment in Hotel, Office Building and others

Chile:
- Geothermal Power Generation in the south of Santiago

Cambodia:
- Installation of high-efficiency chillers in large-scale hotels

Continued...
1. Establishment of Base for Low-Carbon Project Expansion in Surabaya (Surabaya)
2. Project for Developing JCM projects under city-to-city collaboration between Yokohama city and Batam city (Batam)
3. Project for Developing Low-carbon Tourism Cities through the Joint Crediting Mechanism in Siem Reap (Siem Reap)
4. JCM projects development (energy efficiency, and waste and waste water) under the Bangkok Master Plan on Climate Change, and study on financial and other facilitation schemes for introducing low carbon technologies (Bangkok)
5. Promotion of Decarbonizing of Municipal Waste Management and Ecological Industrial Town in Rayong Prefecture (Rayong Pref.)
6. The whole city low carbonization in Hai Phong City (Hai Phong)
7. Ho Chi Minh City – Osaka City Cooperation Programme for Developing Low Carbon City (Ho Chi Minh)
8. Establishment of Base for Low-Carbon Project Expansion in Iskandar (Iskandar)
9. Programme for the Establishment of Low-Carbon Historic City in Vientiane, based on City-to-City Cooperation between Vientiane Capital and Kyoto City (Vientiane Capital)