Results of Research on Effects of Endocrine Disrupting Chemicals on Wildlife

October, 1999 Planning and Coordination Division, Nature Preservation Bureau, Environment Agency

Results of Research on Effects of Endocrine Disrupting Chemicals on Wildlife (Data)

No.	Specimen collection site	Gender(M:Male, F:Female)	Age (A:Adult)	Weight	Overall length	Body length	Weight of gonad	Gonad-weight ratio	Videllogenin
		J	Jnit	kg	cm	cm	g	%	μ g/ml
1	Hamura-seki	М	А	0.66	38	30	3.0	0.46	< 0.10
2	Hamura-bashi	М	А	1.7	46	36	147	8.8	<0.10
3	Hamura-bashi	М	А	2.1	50	40	173	8.4	100
4	Hamura-bashi	М	А	2.6	57	45	219	8.3	<0.10
5	Hamura-bashi	М	А	2.3	52	42	170	7.4	40
6	Hamura-bashi	М	А	1.5	47	37	107	7.0	0.17
7	Hamura-bashi	М	А	2.4	56	45	159	6.6	<0.10
8	Hamura-bashi	М	А	3.4	63	50	226	6.6	<0.10
9	Hamura-bashi	М	А	2.7	58	48	168	6.3	<0.10
10	Hamura-bashi	М	А	2.7	56	45	165	6.0	<0.10
11	Hamura-bashi	М	А	2.9	60	48	169	5.9	19
12	Hamura-bashi	М	А	2.0	52	41	110	5.5	<0.10
13	Hamura-bashi	М	А	2.7	59	47	150	5.5	<0.10
14	Hamura-bashi	М	А	3.5	62	50	188	5.4	<0.10
15	Hamura-bashi	М	А	3.3	64	51	149	4.5	<0.10
16	Hamura-bashi	М	А	2.0	53	43	80	4.1	<0.10
17	Tamagawara-bashi	М	А	1.7	49	40	130	7.5	<0.10
18	Tamagawara-bashi	М	А	1.7	53	41	124	7.1	0.83
19	Tamagawara-bashi	М	А	2.0	57	44	62	3.1	<0.10
20	Tamagawara-bashi	М	А	1.6	48	37	40	2.5	<0.10
21	Denenchofu-seki	М	А	1.6	48	38	176	11	<0.10
22	Denenchofu-seki	М	А	2.7	57	45	233	8.6	2.4
23	Denenchofu-seki	М	А	2.5	56	45	188	7.6	<0.10
24	Denenchofu-seki	М	А	2.7	56	44	188	7.0	3.5
25	Denenchofu-seki	М	А	2.2	54	43	145	6.5	<0.10
26	Denenchofu-seki	М	А	2.8	58	47	180	6.4	<0.10
27	Denenchofu-seki	М	А	2.5	57	47	156	6.2	<0.10

Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (Carp-1)

* Source of the above date: "Results of 1998 Endocrine Disrupting Chemicals Surveillance at Public Water Areas" compiled by the Ministry of Construction

No.	Specimen collection site	Gender(M:Male, F:Female)	Age (A:Adult)	Weight	Overall length	Body length	Weight of gonad	Gonad-weight ratio	Videllogenin	Estradiol	Testosterone
		U	Jnit	kg	cm	cm	g	%	$\mu~{ m g/ml}$	pg/ml	ng/ml
28	Akikawa	М	А	2.7	62	51	204	7.5	0.072	1.1	1.1
29	Akikawa	М	А	2.2	54	42	162	7.3	< 0.039	0	2.0
30	Akikawa	М	А	1.7	50	41	113	6.7	< 0.039	0	2.7
31	Akikawa	М	А	3.0	61	48	190	6.3	< 0.039	0	5.1
32	Akikawa	М	А	2.3	56	47	138	6.0	< 0.039	0	2.9
33	Akikawa	М	А	2.1	52	43	124	5.9	< 0.039	0	5.1
34	Akikawa	М	А	2.6	55	45	134	5.2	<0.039	0	1.3
35	Akikawa	М	А	2.9	62	50	143	4.9	<0.039	0	1.5
36	Akikawa	М	А	2.9	62	50	139	4.8	<0.039	0.48	1.5
37	Akikawa	М	А	2.4	58	48	98	4.1	<0.039	0	2.8
38	Akikawa	М	А	2.3	54	45	73	3.2	0.059	0	2.5
39	Akikawa	М	А	3.4	67	53	54	1.6	<0.039	0	0.85
40	Akikawa	М	А	1.9	49	41	19	1.0	6.9	1.0	1.6
41	Asaskawa	М	А	2.6	60	48	261	10	<0.039	44	1.6
42	Asaskawa	М	A	2.4	59	47	185	7.7	<0.039	54	1.2
43	Asaskawa	М	A	2.8	66	51	211	7.5	0.10	43	3.4
44	Asaskawa	M	А	1.3	45	36	89	6.8	<0.039	33	2.1
45	Asaskawa	M	A	3.0	63	51	204	6.8	<0.039	44	0.74
46	Asaskawa	M	A	2.8	63	50	190	6.8	< 0.039	7.5	2.5
47 48	Asaskawa	M M	A A	2.2 2.4	56 58	47 47	140 149	6.4 6.2	2.1 7.7	22 85	0.63 1.7
40 49	Asaskawa Asaskawa	M	A	1.8	56	46	149	5.6	<0.039	13	0.71
49 50	Asaskawa Asaskawa	M	А	1.0	54	40	100	5.5	<0.039	38	1.7
51	Asaskawa Asaskawa	M	A	3.5	66	54	188	5.4	<0.039	42	0.47
52	Asaskawa	M	A	2.6	65	52	128	4.9	<0.039	36	0.54
53	Asaskawa	M	A	2.7	63	52	130	4.8	<0.039	51	1.8
	Inbanuma	M	A	1.5	46	39	114	7.6		0	0.30
55	Inbanuma	М	A	4.6	73	59	243	5.3	< 0.039	0	1.2
56		М	А	1.8	52	44	94	5.2	< 0.039	4.6	1.3
57	Inbanuma	М	А	2.2	58	47	109	5.0	< 0.039	0.82	0.70
-		М	А	2.2	59	47	94	4.3	<0.039	35	1.5
59	Inbanuma	М	А	2.1	56	46	67	3.2	<0.039	1.4	1.1
60	Inbanuma	М	А	3.4	65	55	100	2.9	1.1	23	1.1
61	Inbanuma	М	А	2.2	59	49	60	2.7	< 0.039	0	0.74
62	Inbanuma	М	А	1.6	57	47	10	0.61	<0.039	0.13	0.22
63	Teganuma	М	А	1.5	48	41	166	11	<0.039	0	0.10
64	Teganuma	М	А	1.3	45	39	82	6.6	0.088	3.6	2.8
65	Teganuma	М	А	1.2	48	39	78	6.5	<0.039	0	1.2
66	Teganuma	М	А	0.70	44	36	38	5.4	2.5	0	0.32
67	Teganuma	M	A	0.80	42	36	27	3.3	<0.039	0	0.055
68	Teganuma	M	A	0.85	49	34	23	2.7	0.46	16	1.1
69 70	Teganuma T	M	A	0.82	42	35	19	2.4	0.45	1.3	0.47
70	Teganuma T	M	A	0.89	45	36	17	1.9	<0.039	2.5	0.42
71	Teganuma Teganuma	M	A	1.4	48	40	14	1.1	9.0	0.36	0.45
72	Teganuma	M	A	0.90	45	37	8.2	0.91	<0.039	0	0.0050
73	Teganuma Teganuma	M	A	0.85	45	37	3.1	0.36	<0.039	0	0
74	Teganuma	М	А	0.85	44	37	2.7	0.32	<0.039	0	0

Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (Carp-2)

No.	Specimen collection site	Gender(M:Male, F:Female)	Age (A:Adult)	Weight	Overall length	Body length	Weight of gonad	Gonad-weight ratio	Videllogenin
		J	Jnit	kg	cm	cm	g	%	μ g/ml
75	Hamura-seki	F	А	1.3	45	36	57	4.2	2,400
76	Hamura-seki	F	А	1.3	43	35	26	2.1	12
77	Hamura-seki	F	А	2.2	52	44	25	1.1	4.3
78	Hamura-seki	F	А	0.45	31	26	2.6	0.58	1.9
79	Haijima-bashi	F	А	2.9	57	45	462	16	7,700
80	Haijima-bashi	F	А	3.6	59	49	518	15	15,000
81	Haijima-bashi	F	А	5.3	70	57	758	14	3,600
82	Haijima-bashi	F	А	3.2	59	47	419	13	23,000
83	Haijima-bashi	F	А	2.3	56	46	57	2.5	150
84	Tamagawara-bashi	F	А	3.2	59	46	643	20	11,000
85	Tamagawara-bashi	F	А	2.3	55	44	400	17	5,000
86	Tamagawara-bashi	F	А	2.9	55	44	446	15	5,100
87	Tamagawara-bashi	F	А	1.6	51	39	229	15	5,000
88	Tamagawara-bashi	F	А	2.6	59	47	376	14	5,900
89	Tamagawara-bashi	F	А	1.7	50	40	236	14	9,800
90	Tamagawara-bashi	F	А	2.6	60	45	351	14	6,000
91	Tamagawara-bashi	F	А	2.1	57	44	276	13	2,100
92	Tamagawara-bashi	F	А	3.0	59	47	395	13	4,300
93	Tamagawara-bashi	F	А	2.9	62	48	275	9.4	2,000
94	Tamagawara-bashi	F	А	1.7	51	39	150	8.7	10,000
95	Tamagawara-bashi	F	А	2.9	58	47	235	8.3	5,400
96	Tamagawara-bashi	F	А	2.2	58	47	167	7.6	2,300
97	Denenchofu-seki	F	А	6.5	74	60	1,881	29	6,300
98	Denenchofu-seki	F	А	1.8	52	42	325	18	4,400
99	Denenchofu-seki	F	А	4.1	66	51	654	16	12,000
100	Denenchofu-seki	F	А	1.9	54	43	227	12	4,000
101	Denenchofu-seki	F	А	1.9	54	43	173	9.3	3,500
102	Denenchofu-seki	F	А	2.3	53	41	182	7.8	3,800

Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (Carp-3)

 \ast Source of the above date: "Results of 1998 Endocrine Disrupting Chemicals Surveillance at Public Water Areas" compiled by the Ministry of Construction

No.	Specimen collection site	Gender(M:Male, F:Female)	ii Age (A:Adult)	a Weight	Overall length	Body length	a Weight of gonad	% Gonad-weight ratio	ad Widellogenin مراجع	Estradiol	Testosterone
103	Akikawa	F	A	к <u>g</u> 3.5	cm 62	<u>cm</u> 52	g 550	16	μg/mi 9,400	290	4.3
103	Akikawa	F	A	3.5	66	52	497	14	2,800	230	2.7
_	Akikawa	F	A	2.3	59	47	308	13	4,500	160	2.2
106	Akikawa	F	A	3.2	62	52	358	11	3,200	190	1.3
107	Akikawa	F	А	3.5	65	52	325	9.3	4,200	64	1.8
	Akikawa	F	А	1.9	49	40	60	3.2	96	2.7	0
_	Akikawa	F	А	1.7	51	42	19	1.1	1.3	0	0.039
_	Akikawa	F	А	1.1	43	35	5.2	0.47	4.5	0	0
111	Asakawa	F	А	2.8	61	48	622	22	1,500	230	1.9
112	Asakawa	F	А	2.8	60	50	398	14	380	190	1.6
113	Asakawa	F	А	2.3	55	45	326	14	1,100	290	0.88
114	Asakawa	F	А	3.5	72	57	459	13	1,900	230	1.4
115	Asakawa	F	А	3.3	63	52	406	12	1,400	390	0.93
116	Asakawa	F	А	2.9	60	49	336	12	11,000	420	1.5
117	Asakawa	F	А	2.8	61	50	214	7.6	150	34	0
118	Asakawa	F	А	2.2	59	47	128	5.8	36	19	0
	Asakawa	F	А	2.7	62	50	153	5.7	420	8.4	0
120	Asakawa	F	А	3.2	66	54	75	2.3	2.7	10	0
121	Asakawa	F	А	2.6	66	54	51	2.0	1.3	29	0
	Inbanuma	F	А	7.8	89	73	1152	15	2,700	1,200	1.8
-	Inbanuma	F	А	3.5	66	54	360	10	2,000	190	0.73
	Inbanuma	F	А	2.5	60	49	194	7.8	1,900	110	0.28
	Inbanuma	F	A	4.6	74	60	283	6.2	2,100	150	0.49
	Inbanuma	F	A	4.0	70	58	164	4.1	190	1.3	0
	Inbanuma	F	A	2.0	57	47	66	3.3	160	2.5	0.028
	Inbanuma	F	A	2.3	56	44 52	75	3.3	75	3.7	0
	Inbanuma Inbanuma	F F	A	2.0 2.0	61 58	48	40 35	2.0 1.8	4.5 4.0	0	0
	Inbanuma	F	A	2.0	62	40 50	40	1.6	0.55	0	0
	Inbanuma	F	A	1.6	59	46	23	1.4	1.0	0	0
-	Inbanuma	F	A	4.0	75	58	52	1.3	0.52	0	0
	Inbanuma	F	A	3.5	71	59	44	1.3	0.28	0	0
	Inbanuma	F	A	3.2	68	57	39	1.2	1.5	0	0
	Inbanuma	F	А	2.1	60	51	20	0.95	<0.039	0.32	0.24
-	Inbanuma	F	A	2.5	66	53	20	0.82	2.0	0	0
	Teganuma	F	А	1.4	46	39	159	11	2,000	360	1.7
	Teganuma	F	А	1.6	51	43	170	11	4,100	180	0.42
140	Teganuma	F	А	1.5	50	42	90	5.9	530	69	0.49
141	Teganuma	F	А	1.1	46	38	53	5.0	1,300	0	0
142	Teganuma	F	А	0.80	43	37	21	2.6	1.7	0	0
143	Teganuma	F	А	1.2	49	41	27	2.3	15	0	0
144	Teganuma	F	А	0.95	45	38	18	1.9	33	0	0
145	Teganuma	F	А	1.0	39	34	4.0	0.40	12	0	0

Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (Carp-4)

Results of 1998 Research on Effects of Endocrine Disrupting
Chemicals on Wildlife (Carp-5)

(Concentration per wet weight)

					No.						1						2			3		
	1		ŝ	SPEED'9	8 No.						2		,				4			12		
]	Polychl	orinate	d biph	enyls ((PCBs))			-	He	xachlo	procycl	ohexa	ne
No.	Specimen collection site	Gender(M:Male, F:Female)	Age (A:Adult)	Specimen	Lipid	Chlorinated biphenyl	Dichloro biphenyl	Trichloro biphenyl	Tetrachloro biphenyl	Pentachloro biphenyl	Heachloro biphenyl	Heptachloro biphenyl	Octachloro biphenyl	Nonachloro biphenyl	Decihloro biphenyl	PCB total*	Hexachlorobenzene (HCB)	a -HCH	<i>β</i> -HCH	γ -HCH	δ-HCH	HCH total*
				Unit	%								g/kg-w									
1	Hamura-seki	М	А	Muscle	1.9	<0.10	<0.10	0.37	1.6	6.9	6.6	0.70	<0.10	<0.10	<0.10	16	< 5	< 5	< 5	< 5	< 5	0
2	Haijima-bashi	М	А	Muscle	1.5	<0.10	<0.10	<0.10	3.8	10	13	2.4		<0.10	<0.10	29	< 5	< 5	< 5	< 5	< 5	0
3	Haijima-bashi	М	А	Muscle	1.6	<0.10	<0.10	<0.10	8.8	7.8	19	3.6	<0.10	<0.10	<0.10	39	< 5	< 5	< 5	< 5	< 5	0
4	Haijima-bashi	М	А	Muscle	1.4	<0.10	0.34	<0.10	4.3	19	16	2.9	0.39	<0.10	<0.10	43	< 5	< 5	< 5	< 5	< 5	0
5	Haijima-bashi	М	А	Muscle	2.7	<0.10	<0.10	0.90	6.3	13	12	2.3	0.28	<0.10	<0.10	35	< 5	< 5	< 5	< 5	< 5	0
6	Haijima-bashi	М	А	Muscle	1.9	<0.10	0.30	<0.10	4.7	7.8	6.9	0.82	<0.10	<0.10	<0.10	21	< 5	< 5	< 5	< 5	< 5	0
7	Haijima-bashi	М	А	Muscle	2.3	<0.10	<0.10	<0.10	8.5	10	8.7	1.2	<0.10	<0.10	<0.10	28	< 5	< 5	< 5	< 5	< 5	0
8	Haijima-bashi	М	А	Muscle	1.7	<0.10	<0.10	<0.10	2.6	4.2	4.6	0.58	<0.10	<0.10	<0.10	12	< 5	< 5	< 5	< 5	< 5	0
9	Haijima-bashi	М	А	Muscle	2.1	<0.10	<0.10	<0.10	5.3	11	9.5	1.8	0.22	<0.10	<0.10	28	< 5	< 5	< 5	< 5	< 5	0
10	Haijima-bashi	М	А	Muscle	2.1	<0.10	<0.10	<0.10	2.5	8.7	8.6	0.86	<0.10	<0.10	<0.10	21	< 5	< 5	< 5	< 5	< 5	0
11	Haijima-bashi	М	А	Muscle	1.1	<0.10	<0.10	<0.10	2.1	3.2	3.3	0.63	<0.10	<0.10	<0.10	9.2	< 5	< 5	< 5	< 5	< 5	0
12	Haijima-bashi	М	А	Muscle	1.3	<0.10	2.0	<0.10	2.2	15	11	1.1	<0.10	<0.10	<0.10	31	< 5	< 5	< 5	< 5	< 5	0
13	Haijima-bashi	М	А	Muscle	3.6	<0.10	<0.10	1.5	13	18	16	2.2	0.40	<0.10	<0.10	51	< 5	< 5	< 5	< 5	< 5	0
14	Haijima-bashi	М	А	Muscle	1.3	<0.10	<0.10	0.39	3.7	9.0	12	1.7	0.10	<0.10	<0.10	26	< 5	< 5	< 5	< 5	< 5	0
15	Haijima-bashi	М	А	Muscle	1.1	<0.10	<0.10	0.30	1.7	4.3	6.3	1.4	0.13	<0.10	<0.10	14	< 5	< 5	< 5	< 5	< 5	0
16	Haijima-bashi	М	А	Muscle	1.4	<0.10	<0.10	<0.10	1.7	4.8	4.8	0.54	<0.10	<0.10	<0.10	12	< 5	< 5	< 5	< 5	< 5	0
17	Tamagawara-bashi	М	А	Muscle	1.7	<0.10	<0.10	0.21	3.2	3.0	3.1	0.53	<0.10	<0.10	<0.10	10	< 5	< 5	< 5	< 5	< 5	0
18	Tamagawara-bashi	М	А	Muscle	2.1	<0.10	<0.10	3.6	6.4	9.7	20	4.8	0.61	<0.10	<0.10	45	< 5	< 5	< 5	< 5	< 5	0
19	Tamagawara-bashi	М	А	Muscle	0.90	<0.10	<0.10	<0.10	2.5	2.7	3.3	0.48	<0.10	<0.10	<0.10	8.9	< 5	< 5	< 5	< 5	< 5	0
20	Tamagawara-bashi	М	А	Muscle	1.0	<0.10	<0.10	0.29	2.3	2.1	2.5	0.60	<0.10	<0.10	<0.10	7.8	< 5	< 5	< 5	< 5	< 5	0
21	Denenchofu-seki	М	А	Muscle	3.2	<0.10	0.46	7.7	21	30	28	4.1	0.42	<0.10	<0.10	91	< 5	< 5	< 5	< 5	< 5	0
22	Denenchofu-seki	М	А	Muscle	3.0	<0.10	0.44	23	110	300	220	29	1.9	<0.10	<0.10	690	< 5	< 5	< 5	< 5	< 5	0
23	Denenchofu-seki	М	А	Muscle	3.4	<0.10	<0.10	27	88	130	76	2.9	0.57	<0.10	<0.10	330	< 5	< 5	< 5	< 5	< 5	0
24	Denenchofu-seki	М	А	Muscle	1.6	<0.10	4.3	10	72	150	99	12	0.65	<0.10	<0.10	350	< 5	< 5	< 5	< 5	< 5	0
25	Denenchofu-seki	М	А	Muscle	3.0	<0.10	<0.10	7.8	34	87	60	9.3	0.83	<0.10	<0.10	200	< 5	< 5	< 5	< 5	< 5	0
26	Denenchofu-seki	М	А	Muscle	3.3	<0.10	<0.10	22	86	180	120	14	0.83	<0.10	<0.10	420	< 5	< 5	< 5	< 5	< 5	0
27	Denenchofu-seki	М	А	Muscle	1.5	<0.10	<0.10	12	70	110	90	15	0.39	<0.10	<0.10	290	< 5	< 5	< 5	< 5	< 5	0

 \ast Calculated on the assumption that values below the limit of detection are counted as 0.

Table of Contents

Carp	381
Frogs	404
Whales	417
Seals	419
Common pigeons	421
Black kite	424
Birds of prey	426
Blakiston's fish owls	428
Wood mice	429
Japanese macaques	432
Bears	436
Raccoon dogs	438

Results of research on effects of endocrine disrupting chemicals on wildlife (summary)

1. Basic approach to research

This research was conducted in line with the objectives of "Strategic Programs on Environmental Endocrine Disruptors' 98 (SPEED '98)" to extensively obtain data on levels of chemicals suspected of having an endocrine disrupting effect that could be found in the bodies of wildlife.

Wildlife species (vertebrate animals) were selected for this research based on reports on abnormality contained in both domestic and foreign documents, and whether they showed any morphologic or histologic abnormality was also surveyed during the research.

2. Specimens surveyed

As per attachment "A List of Specimens Surveyed."

3. Results of research

This was the first research conducted to extensively study the accumulation of chemicals suspected of having an endocrine disrupting effect in the bodies of wildlife, and as such it obtained specific data. However, because the conditions under which the specimens were collected differed from one specimen to another, the specimens surveyed were of different kinds and quantities, and the number of specimens surveyed was small, researchers failed to make a complete analysis of differences among species or regions. In addition, although histologic changes were observed in some specimens, the results of this research did not clarify the relation between the accumulation of chemicals in their bodies and such histologic changes.

[Summary of research results]

(1) Analytical test of chemicals

Accumulation of PCB and organic chlorine agricultural chemicals (DDT, etc.) was observed in higher-order predators in the food chain (whales, black kites, birds of prey). Details are shown in attachment "Research Results (Summary Table)."

(2) Pathological test

No specific abnormality was recognized in the species surveyed except the following two species.

Carp: The histologic test of testes revealed that one specimen had fewer sperms. Raccoon dogs: The gross anatomic examination revealed that one specimen had a testicular tumor, which was confirmed by the histologic test.

(3) Blood test

Blood vitellogenin was detected in 19 male carp out of 74.

Based upon the results of this research, it will be necessary in the future to improve the accuracy of research by limiting species to be surveyed and by

List of Specimens

Category	Species	Place	Number of specimens collected
Fishes	Carp	Total	145
		Tamagawa	55
		Akikawa	21
		Asakawa	24
		Inbanuma	25
		Teganuma	20
Amphibians	Frogs	Total	100
-	Montane brown frogs	Yamada Ryokuchi	20
	0	Place A selected for comparison purposes	20
		Preserved specimen (Yamada Ryokuchi)	1
	Japanese brown frogs	Yamada Ryokuchi	20
	Japanece crown noge	Place B selected for comparison purposes	20
		Preserved specimen (Yamada Ryokuchi)	8
		Preserved specimen (place B selected for comparison purposes)	
Sea mammals	Whales	Total	26
ocu manimais	Seals	Total	19
	Common Seals	Hokkaido	13
	Spotted seals	Hokkaido	7
Birds	Feral pigeons	Total	32
Dirus		Tokyo	9
		Osaka	23
	Black kites	Total	23
	DIACK KILES	Miyagi	3
		Kanagawa	8
		Ehime	
			5 10
	D: 1 C	Nagasaki	
	Birds of prey Blakiston's fish-owls	Total Total Hokkaido	<u> </u>
Land mammals	Wood mice	Total	30
Land manimals	wood mice	Saitama	50
		Fukui	9
	×	Nagasaki	14
	Japanese macaques	Total	52
		Nagano	18
		Niigata	2
		Tokyo	13
		Fukui	8
		Hyogo (blood)	8
		Experiment facilities (blood)	3
	Bears	Total	17
		Hokkaido	5
		Gifu	10
		Hiroshima	2
	Raccoon dogs	Total	15
		Hokkaido	1
		Tokyo	4
		Gifu	5
		kyoto	1
		Hyogo	3
		Kochi	1
	Grand total		499

Research Results (Summary Table)

(Concentration per wet weight: µg/kg-wet)

No.		1	2	3		4	5	6	7	7		8	3		9	10	11	12	13	14	15	16	17	18	19		20	21	22	23	24	25	26	27		28
SPEED'98 I	No	2	4	12	1	4	15	16	1	8		1			23	25	26	43	33	34			9	11	35		36	37		39	40	42	45			66
0.220 00 1		-				・ レデン	10	10	D			DDE ar			20	20	20	10		0.					00		l phenol	01			10		10		Sty	yrene prization
Chemicals surveyed		Polychlorinated biphenyl (PCB tot:	Hexachlorobenzene (HCB)	Hexachlorocyclohexane (HCH total)	cis-Chlordane	t rans-Chlordane	Oxych I o rdane	t rans-Nonach lor	o,p'-DDT	p , p ' -DDT	o,p'-DDE	p,p'-DDE	0,p'-DDD	p,p'-DDD	Dieldrin	Hep tach I or	Heptachlor epoxide	Bezo(a)pyrene	Tributyltin	Triphenyltin	DibutyItin	Monobuty!tin	Atrazine	CAT(simazine)	Trifluralin	Nonyl phenol	4 - t-Octyl phenol		Di-(2-ethylhexyl) phthalate	Buty benzyl phthalate	Di-n-butyl phthalate	Diethyl phthalate	Diethylhexyl adipate	Styrene monomer	Styrene dimer	Styrene trimer
Carp	Max.value Min.value Detection rate	1,600 2 145/145	nd	6 nd 1/145	36 nd 18/145	nd	7 nd 2/145	32 nd 19/145	nd	nd nd 0/145	nd nd 0/145	27 nd 39/145	nd	nd	6 nd 2/145	nd nd 0/145	nd	nd nd 0/145	nd nd	99 nd 108/145	16 nd 32/145	6 nd 28/145	nd nd 0/145	nd nd 0/145	11 nd 3/145	nd nd 0/145 0	nd	nd n nd n 145 0/14	d 26 d n 5 88/14	d no	1 79 1 nd 5 27/145	i nd	nd nd 0/145	1 nd 14/145	nd nd 0/145	nd nd 0/145
Frogs Yamada Ryokuchi	Max.value Min.value Detection rate	nd nd 0/40	nd nd	5 nd	nd nd 0/40	nd nd	8 nd 21/40	nd nd 0/40		33 nd 13/49	nd nd 0/49	185 nd 29/49	nd nd 0/49	nd	12 nd 1/40	nd nd 0/40	nd	nd nd 0/40					nd nd 0/40	nd nd 0/40												
Frogs Place selected for comprison purposes	Max.value Min.value Detection rate	13 nd 1/40	nd	nd nd 0/40	nd nd 0/40	nd	6 nd 5/40	nd nd 0/40	nd	1 nd 1/51	nd nd 0/51	7 nd 5/51	nd nd 0/51	nd	3 nd 1/40	nd nd 0/40	nd	nd nd 0/40	1				nd nd 0/40	nd nd 0/40												
Whales	Max.value Min.value Detection rate	120,600 nd 24/26	549 nd	2,357 nd	459 nd	45 nd	1,190 nd 25/26	7,570 nd 25/26	2,270 12	6,610 20	351 nd 24/26		392 nd 25/26	4,780 20	nd	nd nd 0/26	220 nd	nd nd 0/26	l nd	60 nd 12/26	nd	300 nd 2/26														
Seals	Max.value Min.value Detection rate	8,660 120	17	630 15	7 nd 1/19	nd nd	305 40 19/19	434 57 19/19	6 nd	549 30	nd nd 0/19	2,530 150 19/19	nd nd 0/19	117 nd	90 nd	nd nd 0/19	70 nd	nd nd 0/19	110 nd	nd nd 0/19	nd nd	nd nd 0/19														
Common pigeons	Max.value Min.value Detection rate	6/32	nd nd	10/10 10 nd 7/32	nd nd 0/32	nd nd	11 nd 9/32	10/13 3 nd 1/32	nd nd 0/32	2 nd	nd nd 0/32	10/10 10 nd 17/32	nd nd 0/32	3 nd	1/13 nd 1/32	nd nd 0/32	nd nd	nd 0/32	nd nd	nd nd 0/31	0/13 nd 0/31	nd nd 0/31	nd nd	nd nd 0/31	nd nd 0/31	113 nd 16/31	nd	nd 4 nd n /31 1/3	8 3,29 d n 1 3/3	d no	d nd	i nd	nd nd 0/31	nd	nd nd 0/30	nd nd 0/30
Black kites	Max.value Min.value Detection rate	8,871 48 26/26	12 nd	35 nd 25/26	nd	nd	80 3 26/26	322 10 26/26	nd nd	8 nd	nd nd 0/26	230 5 26/26	nd nd 0/26	18 nd	124 nd 24/26	nd nd 0/26	nd	nd nd	8 I nd	10 nd 3/26	nd nd	nd nd 0/26														
Birds of prey	Max.value Min.value Detection rate	14,255 nd 26/30	nd	297 nd 26/30	74 nd 7/30	5 nd 1/30	510 nd 27/30	761 nd 26/30		4 nd 3/30	nd nd 0/30	5,940 12 30/30	nd nd 0/30	nd	506 nd 20/30	nd nd 0/30	nd	nd nd 0/30	l nd	nd nd 0/30	nd	nd nd 0/30														
Blakiston's fish owls	Max.value Min.value Detection rate	72 9 5/5	nd	3 nd 1/5	nd nd 0/5		4 nd 2/5	5 nd 4/5		6 nd 2/5	nd nd 0/5	34 15 5/5		3	nd nd 0/5	nd nd 0/5		nd nd 0/5	l nd	3 nd 2/5	30 nd 1/5	nd nd 0/5														
Wood mice	Max.value Min.value Detection rate	nd nd 0/30	nd nd 0/30	nd 0/30	nd nd 0/30	nd 0/30	nd nd 0/30	nd nd 0/30	nd 0/30	nd 0/30	nd nd 0/30	2 nd 1/30	nd nd 0/30	nd 0/30	nd 0/30	nd nd 0/30	nd 0/30	nd nd 0/30	nd 0/30	nd nd 0/30	nd 0/30	nd nd 0/30	nd 0/30	nd nd 0/30	nd nd 0/30	190 nd 22/30 2	nd	nd 4 nd n /30 1/3	d n	d no	d nd	nd nd	nd nd 0/30	nd	nd nd 0/30	nd nd 0/30
Japanese macaques (except blood)	Max.value Min.value Detection rate Detection rate	nd nd 0/41 0/11	nd 0/41	20 nd 24/41 0/11	3 nd 1/41 0/11	nd nd 0/41 0/11	28 nd 24/41 0/11	12 nd 17/41 0/11	nd nd 0/41 0/11	nd nd 0/41 0/11	nd nd 0/41 0/11	10 nd 7/41 1/11	nd nd 0/41 1/11	nd	115 nd 31/41 0/11	nd nd 0/41 0/11	nd	nd nd 0/41 0/11	l nd	nd nd 0/41 0/11		nd nd 0/41 0/11														
(Blood) Bears	Max.value Min.value Detection rate	0/11 14 nd 2/17	6 nd	0/11 nd nd 0/17		nd nd	0/11 110 nd 4/17	0/11 12 nd 1/17	nd nd		0/11 nd nd 0/17	1/11 23 nd 1/17	nd nd	nd nd	0/11 12 nd 3/17	0/11 nd 0/17	80 nd	0/11 nd 0/17	nd nd	0/11 nd nd 0/17	nd nd	0/11 nd nd 0/17														
Raccoon Dogs	Max.value Min.value Detection rate	577 nd 10/15	24 nd	54 nd 8/15	nd nd 0/15	nd nd	196 12 15/15	241 nd 12/15	nd nd 0/15	26 nd 2/15	nd nd 0/15	60 nd 6/15	nd nd 0/15	nd nd	29 nd 8/15	nd nd 0/15	23	nd nd 0/15	nd nd	nd nd 0/15	nd nd 0/15	nd nd 0/15	nd nd	nd nd 0/15	nd nd 0/15	2,000 nd 14/15	nd	nd n nd n /15 0/1	d 363,00 d n 5 10/1	d no	d nd	i nd	57,230 nd 4/15	nd	4 nd 1/15	339 nd 7/15

349

(Note) Nd means was "not detected."

restricting conditions and methods for collecting specimens.

Results of Research on Effects of Endocrine Disrupting Chemicals on Wildlife

1 Outline of research

(1) Basic approach to research

This research was conducted in line with the objectives of "Strategic Programs on Environmental Endocrine Disruptors' 98 (SPEED '98)" to extensively obtain data on levels of chemicals suspected of having an endocrine disrupting effect that could be found in the bodies of wildlife.

Wildlife species (vertebrate animals) were selected for this research based on reports on abnormality contained in both domestic and foreign documents, and whether they showed any morphologic or histologic abnormality was also surveyed during the research.

The research was conducted in accordance with "Manual for Research on Effects of Endocrine Disrupting Chemicals on Wildlife," and "Tentative Manual for Research on Exogenous Endocrine Disrupting Chemicals" was used as reference for the analysis methods employed.

(2) Selection of species to be surveyed

Species to be surveyed were selected in consideration of feasibility of collecting specimens with priority given to aquatic life, and consisted mainly of wildlife (vertebrates) on which abnormality reports were made.

The number of specimens and places where specimens would be collected were determined in consideration of the state of their distribution, and birds and animals that were caught as harmful ones were used as specimens as far as possible. The following considerations were given to select species to be surveyed for each category.

(Fishes)

Carp were selected because several abnormality cases have already been reported in Japan, and research is under way in foreign countries. (Amphibians)

As for amphibians, frogs were selected because the decreasing number of frogs and cases of deformed frogs have been reported worldwide and cases of deformed frogs were reported in Kitakyushu City and other parts of Japan. Surveys were conducted in different places including the place where cases of deformed frogs were reported (Yamada Ryokuchi).

(Sea mammals)

The ocean receives much attention as the place where various substances finally arrive or accumulate, and chemicals are highly likely to accumulate in the bodies of marine mammals that occupy a high-order position in the marine ecosystem.

A survey was conducted mostly on sea mammals stranded in Japan, and whales and seals that could be obtained were selected for the survey.

(Birds)

From the viewpoint of food chain bio-concentration (higher-order predators) and in consideration of the feasibility of collecting specimens, common pigeons, black kites, birds of prey and Blakiston's fish owls were selected. (Land mammals)

A survey was conducted on land mammals with a view to obtaining baseline data as they live close to the living environment of human beings. From the viewpoint of food chain bio-concentration (prey) and in consideration of the feasibility of obtaining specimens, wood mice, Japanese macaques, bears and raccoon dogs were selected.

(3) Selection of substances subjected to chemical analysis

Substances were selected mostly from Table 3 of SPEED '98 (chemicals suspected of having an endocrine disrupting effect) in consideration of bioconcentration, environmental residual tendency, actual applications of substances, examples of substances detected in the environment, etc. (Table 1). Highly degradable substances that have a low possibility of being detected were excluded.

Since dibutyltin and monobutyltin are known for their immunotoxicity and styrene monomer is used in large quantities and is likely to change its form to a dimer or a trimer through polymerization, these substances were also analyzed. Environmental concentrations were measured in water and sediment for ethynyl estradiol, a synthetic hormone that pollutes rivers according to foreign reports.

Table I List of Compounds Surveyed	
Speed '98	Speed '98
No. Names of substances	No. Names of substances
1 Polychlorinated biphenyl (PCB)	18 CAT (simazine)
2 Hexachlorobenzene (HCB)	19 Trifluralin
3 Hexachlorocyclohexane (HCH)	20 Alkyl phenol (Nonyl phenol, 4-Oc
4 Chlordane	21 Bisphenol A
5 Oxychlordane	22 tyl phenol)
6 trans-Nonachlor	21 Bisphenol A
7 DDT	22 Di-(2-ethylhexyl) phthalate
8 DDE and DDD	23 Butyl benzyl phthalate
9 Dieldrin	24 Di-n-butyl phthalate
10 Heptachlor	25 Diethyl phthalate
11 Heptachlor epoxide	26 Di-2-ethylhexyl adipate
12 Benzo(a)pyrene	27 Styrene monomer
13 Tributyltin	28 Styrene dimer and trimer
14 Triphenyltin	29 Testosterone
15 Dibutyltin	30 17 - Estradiol
16 Monobutyltin	31 Vitellogenin
17 Atrazine	32 Ethynyl estradiol

Table 1 List of Compounds Surveyed

1) Considered as a group consistir

accumulability and residual tendency, those from No. 1 to No. 16 considered were measured in all the species surveyed.

2) Considered as a group consisting mainly of substances that have been in use and detected in the environment, those from No. 17 to No. 28 were measured in fishes.

3) Substances Nos. 29 and 30 (sex hormones) were measured in species from which blood could be collected (fishes, amphibians, etc.).

4) Substance No. 31 was measured in fishes.

5) The above-mentioned substances (those from No. 1 to No. 32 excluding Nos. 29 and 31) were measured in the surrounding environment for fishes and amphibians.

(4) Research on effects (pathologic anatomy, etc.)

Morphological examinations (gross anatomy) and histologic tests of endocrine organs and reproductive organs were performed.

2. Results

(1) Fishes and surrounding environment

1) Species: Carp

2) Ecology:

Habitat

They live in the lower-middle reaches of rivers, and like to inhabit the bottoms of deep pools with a gentle current, the bottoms of sandy muds, space between ripraps or blocks, and places around snags.

Food habit

They are omnivorous and feed mainly on benthic animals. Fry larvae feed on plankton and attached organism in dead water where waterweeds grow thickly. Many carp fry feed on midge larvae. Full-grown carp feed on shellfish such as mud snails and "shijimi" clams, midge larvae, tubifexes, lugworms and attached diatoms.

3) Number of specimens collected: 145 (74 males and 71 females)

4) Collection method: Specimens were caught in nets.

5) Details of survey

The survey was conducted jointly by the Ministry of Construction and the Water Conservation Bureau of the Environment Agency.

athological examinations - Appearance checks, gross anatomical

examinations, and histologic examinations of testes

Blood test - Measurement of concentration of vitellogenin, estradiol and testosterone (Nos. 29-31 in Table 1)

Chemical analysis - Samples : muscle

Analyzed substances: Nos. 1-28 in Table 1 (28 kinds in total)

Environmental survey - Chemical analysis of water and sediment:

Nos. 1-28, 30 and 32 (30 kinds in total)

6) Results:

Pathological examinations

The histologic examination of testes revealed that one specimen had fewer sperms.

Blood test

Blood vitellogenin was detected in 19 out of 74 male specimens.

Chemical analysis

Of the 28 kinds of substances subjected to analysis, the following 15 kinds were detected.

[Polychlorinated biphenyl (PCB), Hexachlorocyclohexane (HCH), Chlordane, Oxychlordane, trans-Nonachlor, DDE and DDD, Dieldrin, Tributyltin, Triphenyltin, Dibutyltin, Monobutyltin, Trifluralin, Di-(2ethylhexyl)phthalate, Di-n-butyl phthalate, and Styrene monomer]

Environmental survey

Of the 30 kinds of substances subjected to analysis, the following six kinds were detected.

[Monobutyltin, Nonyl phenol, 4-Octyl phenol, Bisphenol A, Di-n-butyl phthalate, Styrene monomer and 17 - Estradiol]

The following 15 substances were detected in the sediment.

[Polychlorinated biphenyl (PCB), Benzo(a)pyrene, Tributyltin, Triphenyltin, Dibutyltin, Monobutyltin, Nonyl phenol, 4-Octyl phenol, Bisphenol A, Di-(2-ethylhexyl) phthalate, Butyl benzyl phthalate, Di-n-butyl phthalate, Di-2-ethylhexyl adipate, Styrene dimer and trimer, 17 - Estradiol and Ethynyl estradiol]

(2) Amphibians and surrounding environment

1) Names of species: Japanese brown frog, montane brown frog

2) Ecology:

Habitat

Brown frogs surveyed in this research often live in and around marshes and ponds, in grass around paddy fields, fallow fields and wetland. They are also found in slightly dry grassland and light forest floors, and live mainly on land. Food habit

Larvae are omnivorous, but full-grown frogs are carnivorous and feed on spiders, flies, beetles, butterfly larvae, worms and slugs.

3) Number of specimens collected:

Specimens were collected in Yamada Ryokuchi located in Kitakyushu City, Fukuoka Prefecture where multi-legged frogs were observed and in a place in the city selected for comparison purposes where no multi-legged frogs were observed.

Yamada Ryokuchi 49 (20 males and 12 females)

Place selected for comparison purposes 51 (29 males and 22 females) Total: 100

In addition to these specimens, the following specimens were collected to perform a blood test on 1 - 4 specimens under the same conditions. Yamada Ryokuchi 29 (17 males and 12 females) Place selected for comparison purposes 26 (14 males and 12 females)

4) Collection method

Frogs that came out to ponds to lay eggs or breed were caught in a net trap or with a net.

5) Details of survey

Pathological examinations - Appearance checks, gross anatomical examinations, and histologic examinations of testes

Blood test - Measurement of concentration of estradiol and testosterone (Nos. 29 and 30 in Table 1)

Chemical analysis - Samples : whole body

Analyzed substances: Nos. 1-12, 17 and 18 in Table 1 (14 kinds in total)

Environmental survey - Chemical analysis of water and soil or sediment

Water and soil or sediment in Yamada Ryokuchi and in the place selected for comparison purposes were analyzed.

Substances analyzed: Nos. 1-28, 30 and 32 (30 kinds in total)

6) Results

Pathological examinations

No specific abnormality was recognized.

Blood test

No significant differences were recognized between Yamada Ryokuchi and the place selected for comparison purposes.

Chemical analysis

Of the 14 kinds of substances subjected to analysis, the following six kinds were detected.

[Polychlorinated biphenyl (PCB), Hexachlorocyclohexane (HCH), Oxychlordane, DDT, DDE and DDD and Dieldrin]

The analysis revealed that the specimens collected in Yamada Ryokuchi tended to have a higher concentration of DDTs and Oxychlordane as compared with specimens collected in the place selected for comparison purposes. However, the relation between the development of deformity and accumulation of these substances remained to be accounted for.

Environmental survey

Of the 30 kinds of substances subjected to analysis, the following four substances were detected in the water.

[Nonyl phenol, 4-Octyl phenol, Bisphenol A, Di-2-ethylhexyl adipate and 17 - Estradiol]

The following six kinds of substances were detected in the soil.

[DDT, DDE and DDD, Benzo(a)pyrene, Di-(2-ethylhexyl) phthalate, Di-n-butyl phthalate and 17 - Estradiol]

The following eight kinds of substances were detected in the sediment.

[Polychlorinated biphenyl (PCB), DDT, DDE and DDD, Benzo(a)pyrene, Nonyl phenol, 4-Octyl phenol, Bisphenol A, Di-(2-ethylhexyl) phthalate and 17 - Estradiol]

Of these substances, Polychlorinated biphenyl (PCB), DDT, DDE and DDD, Din-butyl phthalate, Di-2-ehylhexyl dipate were found only in Yamada Ryokuchi. (3) Marine mammals

3-1 Whales

1) Ecology:

Habitat

Many of them are pelagic whales, but the harbor porpoises and finless porpoises subject to this survey are littoral mammals.

Food habit

They are carnivorous; whalebone whales feed on gregarious small fishes and plankton including krill, while toothed whales mainly feed on cephalopods (squids, etc) and fishes. Although finless porpoises are a species of toothed whale, they feed on gregarious small fishes and benthic invertebrates that inhabit shallow seas.

2) Number of specimens collected: 26 (11 males and 15 females)

3) Collection method: Dead bodies washed ashore (strandings), etc.

Frogs that came out to ponds to lay eggs or breed were caught in a net trap or with a net.

4) Details of survey

Pathological examinations - Appearance checks, gross anatomical examinations, and histologic examinations of major organs. Histologic examinations were not conducted as some parts of the bodies were frozen for storage.

Chemical analysis - Samples : Blubber, liver as a rule for measuring organic tin

Analyzed substances: Nos. 1-16 (16 kinds in total)

5) Results

Pathological examinations

The appearance checks revealed that two specimens had vinyl, etc. in their stomachs as an alien substance. The histologic examinations did not disclose any significant abnormality, and some specimens were very difficult to diagnose because of sever postmortem changes.

Chemical analysis

Of the 16 kinds of substances subjected to analysis, the following 14 kinds were detected.

[Polychlorinated biphenyl (PCB), Hexachlorobenzene (HCB), Hexachlorocyclohexane (HCH), Chlordane, Oxychlordane, trans-Nonachlor, DDT, DDE and DDD, Dieldrin, Heptachlor epoxide, Tributyltin, Triphenyltin, Dibutyltin and Monobutyltin]

3-2 Seals

1) Names of species: Ringed seal, spotted seal

2) Ecology:

Habitat

In the sea near Japan, they are distributed on the coasts of the Pacific, the sea of Okhotsk and the Sea of Japan in Hokkaido. Food habit

They are carnivorous, and prey on littoral Northern Pacific giant octopuses in addition to fishes (bullheads, right-eyed flounders, butterfishes, etc.).

3) Number of specimens collected: 19 (5 males and 14 females)

4) Collection method: Dead bodies accidentally trapped in a net or washed ashore

5) Details of survey

Pathological examinations - Appearance checks, gross anatomical examinations, and histologic examinations of major organs. Histologic examinations were not conducted as some parts of the bodies were frozen for storage.

Chemical analysis - Samples : Blubber, liver as a rule for measuring organic tin

Analyzed substances: Nos. 1-16 (16 kinds in total)

6) Results

Pathological examinations

No specific abnormality was recognized.

Chemical analysis

Of the 16 kinds of substances subjected to analysis, the following 11 kinds were detected.

[Polychlorinated biphenyl (PCB), Hexachlorobenzene (HCB), Hexachlorocyclohexane (HCH), Chlordane, Oxychlordane, trans-Nonachlor, DDT, DDE and DDD, Dieldrin, Heptachlor epoxide and Tributyltin]

(4) Birds

4-1Common pigeons

1) Ecology:

Habitat

Currently in Japan, they are widely observed in urban and rural areas and in is olated islands. Particularly in recent days, their distribution has markedly increased from the central parts of urban areas to suburbs.

Food habit

They are herbivorous and feed mainly on land, and formulated granular feed and bread, rice and cooked rice, and cookies fed by people are considered to account for a significant portion. In addition o these, they sometimes feed on tree fruits and small snails.

2) Number of specimens collected: 32 (16 males and 16 females)

3) Collection method: Pigeons caught as harmful birds were used.

4) Details of survey

Pathological examinations - Appearance checks, gross anatomical examinations

Chemical analysis - Samples : Muscle, liver as a rule for measuring organic tin

Analyzed substances: Nos. 1-28 (28 kinds in total)

5) Results

Pathological examinations

No specific abnormality was recognized.

Chemical analysis

Of the 28 kinds of substances subjected to analysis, the following 11 kinds were detected.

[Polychlorinated biphenyl (PCB), Hexachlorocyclohexane (HCH), Oxychlordane, trans-Nonachlor, DDT, DDE and DDD, Dieldrin, Nonyl phenol/4-Octyl phenol, Bisphenol A, Di-(2-ethylhexyl) phthalate and Styrene monomer]

4-2 Black kites

1) Ecology:

Habitat

They are observed in flatlands in various parts of Japan, and mainly inhabit farm land in and around urban areas. They also live near the waterside in mountainous regions. They prefer to live in places near rivers, lakes, wetlands, and open water such as harbors. They normally live around their feeding grounds, and travel about 1-3 km. However, they fly a distance of up to about 10 km during migration or dispersion.

Food habit

They are carnivorous and feed on small- and medium-size mammals, birds, reptiles, amphibians, fishes, insects, spiders and worms.

2) Number of specimens collected: 26 (16 males and 10 females)

3) Collection method: Dead bodies of black kites killed in accidents or died after rescue

4) Details of survey

athological examinations - Appearance checks, gross anatomical examinations

Chemical analysis - Samples: Muscle, liver as a rule for measuring organic t $\ensuremath{\mathsf{t}}$ in

Analyzed substances: Nos. 1-16 (16 kinds in total)

5) Results

Pathological examinations

No specific abnormality was recognized.

Chemical analysis

Of the 16 kinds of substances subjected to analysis, the following 12 kinds were detected.

[Polychlorinated biphenyl (PCB), Hexachlorobenzene (HCB), Hexachlorocyclohexane (HCH), Chlordane, Oxychlordane, trans-Nonachlor, DDT, DDE and DDD, Dieldrin, Nonyl, Heptachlor epoxide and Triphenyltin]

4-3 Birds of prey

1) Ecology:

Habitat

Of the birds surveyed, Japanese lesser sparrow hawks and brown hawk owls are summer birds, marsh harriers are winter birds, and others are resident birds. They inhabit forests in flatlands and mountainous regions. Their feeding grounds include forests, farmland, riverbeds and golf courses.

Food habit

They are carnivorous and feed on small-size mammals, birds, reptiles, amphibians, fishes and insects.

2) Number of specimens collected: Hawks - 6 species: 25 (8 males, 7 females and 10 whose sex is unknown)

Owls - 3 species: 5 (1 female and 4 whose sex is unknown)

- 3) Collection method: Dead bodies collected (frozen for storage)
- 4) Details of survey

Pathological examinations - Appearance checks, gross anatomical examinations. Histologic examinations were not conducted since the specimens were frozen for storage.

Chemical analysis - Samples : liver

Analyzed substances: Nos. 1-16 (16 kinds in total)

5) Results

Pathological examinations

No specific abnormality was recognized.

Chemical analysis

Of the 16 kinds of substances subjected to analysis, the following 10 kinds were detected.

[Polychlorinated biphenyl (PCB), Hexachlorobenzene (HCB), Hexachlorocyclohexane (HCHs), Chlordane, Oxychlordane, trans-Nonachlor, DDT, DDE and DDD, Dieldrin, Nonyl and Heptachlor epoxide]

4-4 Blakiston's fish owls

- 1) Ecology:
 - Habitat

They are resident birds living along some of the rivers and forests near lakes in Hokkaido.

Food habit

They feed on fishes, amphibians, crayfishes, etc.

2) Number of specimens collected: 5 (1 male, 3 females, 1 whose sex is unknown)

3) Collection method: Dead bodies collected (frozen for storage)

4) Details of survey

Pathological examinations - Appearance checks, gross anatomical examinations. Histologic examinations were not conducted since the specimens were frozen for storage.

Chemical analysis - Samples: Muscle, liver as a rule for measuring organic tin

Analyzed substances: Nos. 1-16 (16 kinds in total)

5) Results

Pathological examinations

No specific abnormality was recognized during appearance checks and gross anatomical examinations.

Chemical analysis

Of the 16 kinds of substances subjected to analysis, the following 9 kinds were detected.

[Polychlorinated biphenyl (PCB), Hexachlorobenzene (HCB), Hexachlorocyclohexane (HCHs), Oxychlordane, trans-Nonachlor, DDT, DDE and DDD, Tributyltin and Triphenyltin]

(5) Land mammals

5-1 Wood mice

1) Ecology:

Habitat

The are distributed mainly in forests located from lowlands to alpine regions, including shrine and temple groves, forests around farmland and riverbeds. Their home range is several hectares.

Food habit

They are omnivorous, and feed on roots and stalks of herbaceous plants, seeds, nuts and insects.

2) Number of specimens collected: 61 (31 males, 30 females)

Since they are small, a group of 1 - 4 mice having the same conditions are counted as one specimen.

- 3) Collection method: They were caught in a trap (some were frozen for storage).
- 4) Details of survey

Pathological examinations - Appearance checks, gross anatomical examinations, and histologic examinations of major organs. Histologic examinations were not conducted since some specimens were frozen for storage.

Chemical analysis - Samples: Whole body (skinned, and entrails, head, limbs and tail removed), liver as a rule for measuring organic tin

Analyzed substances: Nos. 1-28 (28 kinds in total)

5) Results

Pathological examinations

No specific abnormality was recognized.

Chemical analysis

Of the 28 kinds of substances subjected to analysis, the following 5 kinds were detected.

[DDE and DDD, Nonyl phenol, 4-Octyl phenol, Bisphenol A, Di-(2-ethylhexyl) phthalate, Styrene monomer]

5-2 Japanese macaques

1) Ecology:

Habitat

The are distributed in forests from Aomori Pref. to Kagoshima Pref., and sometimes observed in farmland. Their groups have a home range of 2~25km2. Food habit

They are omnivorous, and feed on fruits, seeds, leaves, buds, insects and small animals on trees and on ground. Plants account for a larger portion of their feed.

2) Number of specimens collected: 41 (24 males, 15 females, 2 whose sex is

unknown)

In addition to these specimens, blood was taken for chemical analysis from 8 (2 males, 6 females) belonging to a group of Japanese macaques having deformity, and from 3 (1 male and 2 females) belonging to other groups.

- 3) Collection method: Japanese macaques caught as harmful animals were used as specimens (some were frozen for storage). Blood was taken from those caught for academic research purposes.
- 4) Details of survey

Pathological examinations - Appearance checks, gross anatomical examinations, and histologic examinations of major organs. Histologic examinations were not conducted since some specimens were frozen for storage.

Chemical analysis - Samples: Liver, parts of bodies, fat and muscle, and liver as a rule for measuring organic tin. Blood

Analyzed substances: Nos. 1-16 (16 kinds in total)

5) Results

Pathological examinations

No specific abnormality was recognized.

Chemical analysis

Of the 16 kinds of substances subjected to analysis, the following 6 kinds were detected from the organs.

[Hexachlorobenzene (HCB), Chlordane, Oxychlordane, trans-Nonachlor, DDE and DDD, Dieldrin, Heptachlor epoxide]

5-3 Bears

1) Names of species: Japanese bear, brown bear

- 2) Ecology
- Habitat

They live mainly in deciduous broadleaf forests in the cold temperate zone (beech forests) in Hokkaido, Honshu and Shikoku, and have a home range of several km2 to 80 km. They hibernate in tree hollows and burrows during the winter.

Food habit

They are omnivorous, but mainly feed on plants, including stalks, roots and seeds of herbaceous plants. They also feed on insects such as bees and ants, dead bodies of deer and antelopes, and at times prey on fawns. Brown bears have a stronger tendency to eat flesh, and some of them living in the Shiretoko Peninsula prey on salmons.

3) Number of specimens collected: 17 (10 males, 7 females)

4) Collection method: Bears caught as harmful animals were used as specimens.5) Details of survey

Pathological examinations - Appearance checks, gross anatomical examinations, and histologic examinations of major organs.

Chemical analysis - Samples: Fat, and liver as a rule for measuring organic tin.

Analyzed substances: Nos. 1-16 (16 kinds in total)

6) Results

Pathological examinations

No specific abnormality was recognized.

Chemical analysis

Of the 16 kinds of substances subjected to analysis, the following 7 kinds were detected.

[Polychlorinated biphenyl (PCB), Hexachlorobenzene (HCB), Oxychlordane, trans-Nonachlor, DDE and DDD, Dieldrin, Heptachlor epoxide]

5-4 Raccoon dogs

1) Ecology

Habitat

They inhabit forests, forest edges and mountains near villages and towns located from flatlands to the sub-alpine zone. They sometimes appear in residential areas in suburbs.

Food habit

They are omnivorous, and feed on fruits, nuts, cereals, insects, worms, crustaceans, snakes, frogs, field mice and birds. Soil animals such as beetle larvae and worms account for a relatively larger portion of their feed. They have a limited home range in the suburbs of cities, but have a broader home range of about several tens of hectares to several hundreds of hectares in mountainous areas.

2) Number of specimens collected: 15 (7 males, 4 females)

- 3) Collection method: Raccoon dogs that died after rescue and those caught as harmful animals were used as specimens.
- 4) Details of survey

Pathological examinations - Appearance checks, gross anatomical examinations, and histologic examinations of major organs.

Chemical analysis - Samples: Fat, and liver as a rule for measuring organic tin.

Analyzed substances: Nos. 1-28 (28 kinds in total)

5) Results

Pathological examinations

No specific abnormality was recognized during the appearance checks, except external wounds inflicted in traffic and other accidents. The gross anatomical examinations revealed that one specimen had a tumor in its testis.

Chemical analysis

Of the 28 kinds of substances subjected to analysis, the following 14 kinds were detected.

[Polychlorinated biphenyl (PCB), Hexachlorobenzene (HCB), Hexachlorocyclohexane, (HCH), Oxychlordane, trans-Nonachlor, DDT, DDE and DDD, Dieldrin, Heptachlor epoxide, Nonyl phenol/4-Octyl phenol, Di-(2ethylhexyl) phthalate, Di-2-ethylhexyl adipate, Styrene monomer, Styrene dimer and trimer] (6) Comments on the results of this research

This was the first research conducted to extensively study the accumulation of chemicals suspected of having an endocrine disrupting effect in the bodies of wildlife, and as such it obtained specific data. However, because the conditions under which the specimens were collected differed from one specimen to another, the specimens surveyed were of different kinds and quantities, and the number of specimens surveyed was small, researchers failed to make a complete analysis of differences among species or regions. In addition, although histologic changes were observed in some specimens, the results of this research did not clarify the relation between the accumulation of chemicals in their bodies and such histologic changes.

Based upon the results of this research, it will be necessary in the future to improve the accuracy of research by limiting species to be surveyed and by restricting conditions and methods for collecting specimens. Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (1)

(Concentration per wet weight)

		No.						1						2			3		
	SPEED '	98 No.						2						4			12		
						Polych	lorinate	ed biphe	nyls (F	PCBs)					ŀ	lexachlo	rocycl	ohexane)
Substances surveyed		Fat	Chlorinated biphenyl	Dichiloro biphenyl	Trichloro biphenyl	Tetrachloro biphenyl	Pentachloro biphenyl	Hexachloro biphenyl	Heptachloro biphenyl	Octachloro biphenyl	Nonachloro biphenyl	Decichloro biphenyl	PCB total	Hexachlorobenzene(HCB)	- HCH	- HCH	- HCH	- HCH	HCH total
	Unit	%							I	µg/kg-	wet								
Carp	Max. value	8.3	nd	4.3	79	330	640	490	76	7.5	0.17	nd	1,600	nd	6.0	nd	nd	nd	6.0
	Min. value	0.49	nd	nd	nd	0.21	0.66	0.80	0.10	nd	nd	nd		nd	nd	nd	nd	nd	nd
	Limit of detection		0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	5	fe (1)	5	5	5	5
	Frequency of detection		0/145	28/145	68/145	145/145	145/145	145/145	145/145		4/145	0/145	145/145	0/145	1/145	0/145	0/145	0/145	1/145
Frogs	Max. value	3.2	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	5	nd	nd	5	5
Yamada Ryokuchi	Min. value	0.50	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Limit of detection		1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
			~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	-	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5
	Frequency of detection		0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	0/40	1/40	0/40	0/40	1/40	2/40
Frogs	Max. value	2.8	nd	nd	nd	nd	4	9	nd	nd	nd	nd	13	nd	nd	nd	nd	nd	nd
Place selected for	Min. value	0.48	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
comparision purposes	Limit of detection		1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
			~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5		~ 5	~ 5	~ 5	~ 5	~ 5	~ 5
	Frequency of detection		0/40	0/40	0/40	0/40	1/40	1/40	0/40	0/40	0/40	0/40	1/40	0/40	0/40	0/40	0/40	0/40	0/40
Whales	Max. value	90	nd	nd	310	8,220	17,100	57,000	33,300	4,740	240	nd	120,600	549	192	2,330	30	nd	2,357
	Min. value	20	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Limit of detection		50	50	50	50	50	50	50	50	50	50	50	5	5 ~ 10	10	10	10	10
	Frequency of detection		0/26	0/26	6/26	22/26	23/26	24/26	21/26	6/26	1/26	0/26	24/26	25/26		25/26	6/26	0/26	25/26
Seals	Max. value	94	nd	nd	nd	180	2,470	5,490	520	nd	nd	nd	8,660	17	91	560	nd	nd	630
	Min. value	72	nd	nd	nd	nd	nd	120	nd	nd	nd	nd	120	nd	13	nd	nd	nd	15
	Limit of detection		50	50	50	50	50	50	50	50	50	50	50	5	10	10	10	10	10
	Frequency of detection		0/19	0/19	0/19	1/19	13/19	19/19	4/19	0/19	0/19	0/19	19/19	14/19	19/19	15/19	0/19	0/19	19/19

(Note) No nd was detected.

Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (2) (Concetration per wet weight)

	SPEED'	98 No.															3		
			1					2						4			12		
						Polych	lorinate	d bipher	nyls (F	PCBs)					F	lexach l o	rocycl	ohexane	÷
Substances surveyed		Fat	Chlorinated biphenyl	Dichloro biphenyl	Trichloro biphenyl	Tetrachloro biphenyl	Pentachloro biphenyl	Hexachloro biphenyl	Heptachloro biphenyl	Octachloro biphenyl	Nonachloro biphenyl	Decichloro biphenyl	PCB total	Hexach Iorobenzene (HCB)	-HCH	HCH-	-HCH	-HCH	HCH total
Uni	it	%								µg/kg-v	wet								
Feral pigeons Max	x. value	7.3	nd	nd	nd	nd	1	6	1	nd	nd	nd	6	nd	nd	10	nd	nd	10
Min	n. value	1.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Lim	mit of detection		1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
	anuanau of detection		~ 5 0/32	~ 5 0/32	~ 5 0/32	~ 5 0/32	~ 5 1/32	~ 5 6/32	~ 5 1/32	~ 5 0/32	~ 5 0/32	~ 5 0/32	~ 5 6/32	0/32	0/32	7/32	0/32	0/32	7/22
	equency of detection	40			0/32 67	494								0/32					
	x.value n.value	12	nd	nd	-	494	2,230	3,940	1,760	346	38	21	8,871		-	35	nd	nd	
		1.5	nd	nd	nd	C d	14	20	4	nd	nd	nd	48	nd	nd	nd	nd	nd	nd
	mit of detection equency of detection		0/26	0/26	25/26	26/26	26/26	26/26	26/26	24/26	7/26	4/26	26/26	7/26	2 0/26	25/26	2 0/26	0/26	25/26
	x. value	8.8	nd	0/20 nd	202	1,460	3,310	6,160	20/20	24/20 419	93	4/20	14,255	65		25/26	0/20 nd	0/20 nd	
	n. value	0.020	nd	nd	nd			· .	,	nd	nd		14,255 nd	nd	nd	nd		nd	
	mit of detection	0.020	10	10	10	nd 1	nd 1	nd 1	nd 1	10	10	nd 1	10	טוו כ	טוז כ	יות ס	nd 2	יות מו	nd 2
			~ 50	~ 50	~ 50	~ 50	~ 50	~ 50	~ 50	~ 50	~ 50	~ 50	~ 50	2 50 ~	2 ~ 10	2 10~	2 10~	2 10~	2 ~ 10
Fre	equency of detection		0/30	0/30	8/30	11/30	23/30	26/30	23/30	15/30	10/30	9/30	26/30	18/30		-	0/30	0/30	
Blakiston`s fish.owlsMax	<u> </u>	6.8	nd	nd	2	11	23	20,00	11	nd	nd	nd	72	.0700	nd	3	nd	nd	3
	n. value	3.2	nd	nd	nd	nd	4.0	5.0	nd	nd	nd	nd	9.0	nd	nd	nd	nd	nd	nd
	mit of detection	0.2	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
	equency of detection		0/5	0/5	4/5	4/5	5/5	5/5	4/5	0/5	0/5	0/5	5/5	4/5	=	1/5	0/5	0/5	1/5

(Note) No nd was detected.

Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (3) (Concentration per wet weight)

		No.						1						2			3		[
	SPEED'	98 No.						2						4			12		
						Polych	lorinate	d biphen	yls (F	PCBs)					ŀ	lexach I o	rocycl	ohexane	
Substances surveyed		Fat	Chlorinated biphenyl	Dichloro biphenyl	Trichloro biphenyl	Tetrachloro biphenyl	Pentachloro biphenyl	Hexachloro biphenyl	Heptachloro biphenyl	Octachloro biphenyl	Nonachloro biphenyl	Decichloro biphenyl	PCB total	Hexachlorobenzene(HCB)	-HCH	HOH-	-HCH	HOH-	HCH tatal
	Unit	% µg/kg-wet														I			
Wood mice	Max. value	7.7	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Min. value	1.6	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Limit of detection		2	2	2	2	2	2	2	2	2	2	-	2	2	2	2	2	2
			~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5		~ 4	~ 4	~ 4	~ 4	~ 4	~ 4
	Frequency of detection		0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30
Japanese macaques	Max. value	13	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	20	nd	nd	20
(except blood)	Min. value	1.6	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Limit of detection		1	1	1	1	1	1	1	1	1	1	-	2	2	2	2	2	2
			~ 10	~ 10	~ 10	~ 10	~ 10	~ 10	~ 10	~ 10	~ 10	~ 10		~ 4	~ 4	~ 4	~ 4	~ 4	~ 4
	Frequency of detection		0/41	0/41	0/41	0/41	0/41	0/41	0/41	0/41	0/41	0/41	0/41	0/41	0/41	24/41	0/41	0/41	24/41
Bears	Max. value	89	nd	nd	nd	nd	nd	14	nd	1	nd	nd	14	6	nd	nd	nd	nd	nd
	Min. value	42	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Limit of detection		1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
			~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5
	Frequency of detection		0/17	0/17	0/17	0/17	0/17	2/17	0/17	1/17	0/17	0/17	2/17	1/17	0/17	0/17	0/17	0/17	0/17
Raccoon dogs	Max. value	89	nd	nd	26	90	178	223	85	8	nd	nd	577	24	nd	54	nd	nd	54
	Min. value	44	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Limit of detection		4	4	4	4	4	4	4	4	4	4	4	2	2	2	2	2	2
			~ 25	~ 25	~ 25	~ 25	~ 25	~ 25	~ 25	~ 25	~ 25	~ 25	~ 25	~ 8	~ 8	~ 8	~ 8	~ 8	~ 8
	Frequency of detection		0/15	0/15	1/15	2/15	8/15	10/15	7/15	1/15	0/15	0/15	10/15	1/15	0/15	8/15	0/15	0/15	8/15

(Note) No nd was detected

Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (4)

(Concentration per wet weight)

	No.	4		5	6	7	7		8			9	10	11	12	13	14	15	16	17	18
	SPEED'98 No.	14	1	15	16	. 1		1	19			23	25	26	43	33	34			9	11
		Chlor	dane			DE	T		DDE an	d DDD											
Substances surveyd		cis-Chlordane	t rans-Ch lordane	Oxych I ordane	t rans-Nonach lor	o, p'-DDT	p,p'-DDT	o,p'-DDE	p , p ' - DDE	o, p' - DDD	p,p'-DDD	Dieldrin	Heptachlor	Heptachlor epoxide	Benzo(a) pyrene	Tributyltin	Triphenyltin	Dibutyltin	Monobutyltin	Atrazine	CAT (Simazine)
	Unit										µg/kg	-wet									
Carp	Max. value	36	26	7.4	32	nd	nd	nd	27	nd	21	5.7	nd	nd	nd	75	99	16	6	nd	nd
	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd	nd	nd
	Limit of detection	5	5	5	5	5	5	5	5	5	5		5	5	1	0.3	0.3	2	2	1	1
	Frequency of detection	18/145	9/145	2/145	19/145	0/145	0/145	0/145	39/145	0/145	2/145	2/145	0/145	0/145	0/145	92/145	108/145	32/145	28/145	0/145	0/145
Frogs	Max. value	nd	nd	8	nd	3	33	nd	185	nd	19	12	nd	nd	nd					nd	nd
Yamada Ryokuchi	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd					nd	nd
	Limit of detection	2	2	2	2	1	1	1	1	1	1	2	2	2	2					2	0.5
		~ 5	~ 5	~ 5	~ 5	~ 5	~ 5		~ 5	~ 5	~ 5		~ 5	~ 5	~ 5					~ 5	~ 3
	Frequency of detection	0/40	0/40	21/40	0/40	1/49	13/49	0/49	29/49	0/49	6/49	1/40	0/40	0/40	0/40					0/40	0/40
Frogs	Max. value	nd	nd	6	nd	nd	1	nd	7	nd	nd	3	nd	nd	nd					nd	nd
Place selected for	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd	nd	nd					nd	nd
comparision purposes	Limit of detection	2	2	2	2	1	1	1	1	1	1	2	2	2	2					2	1
		~ 5	~ 5	~ 5	~ 5	~ 5	~ 5		~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5					~ 5	~2.5
	Frequency of detection	0/40	0/40	5/40		0/51	1/51	0/51	5/51	0/51	0/51	1/40	0/40	0/40	0/40					0/40	0/40
Whales	Max. value	459	45	1,190	7,570	2,270	6,610	351	30,300	392	4,780	1,930	nd	220	nd	330	60	1,100	300		
	Min. value	nd	nd	nd	nd	12	20	nd	60	nd	20		nd	nd	nd		nd	nd	nd		
	Limit of detection	5	5 ~ 10	5	5	5	5	5	5	5	5	10	5	10	5	20 ~ 50	20 ~ 50	50 ~ 100	200 ~ 500		
	Frequency of detection	25/26	19/26	25/26	25/26	26/26	26/26	24/26	26/26	25/26	26/26	24/26	0/26	23/26	0/26	18/26	12/26	16/26	2/26		
Seals	Max. value	7	nd	305	434	6	549	nd	2,530	nd	117	90	nd	70	nd	110	nd	nd	nd		
	Min. value	nd	nd	40	57	nd	30	nd	150	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		
	Limit of detection	5	5	5	5	5	5	5	5	5	5	10	5	10	5	20	20	50	200		
																~ 50	~ 200	~ 100	~ 500		
	Frequency of detection	1/19	0/19	19/19	19/19	1/19	19/19	0/19	19/19	0/19	16/19	7/19	0/19	17/19	0/19	1/19	0/19	0/19	0/19		

(Note) No nd was detected.

Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (5)

(Concentration per wet weight)

	No.	4		5	6	7	7		8			9	10	11	12	13	14	15	16	17	18
	SPEED'98 No.	14	4	15	16	1	8		19			23	25	26	43	33	34			9	11
		Chlor	dane			DE)T		DDE and	d DDD											
Substances surveyed		cis-Chlordane	t rans-Chlordane	0xych lordane	t rans-Nonach lor	o , p' - DDT	p , p ' - DDT	o,p' - DDE	p , p ' - DDE	o , p' - DDD	p , p [,] - DDD	Dieldrin	Heptachlor	Heptachlor epoxide	Benzo(a) py rene	Tributyltin	Triphenyltin	DibutyItin	MonobutyItin	Atrazine	CAT (Simazine)
	Unit										µg/kg∙	-wet			I	1		1			
Common pigeons	Max. value	nd	nd	11	3	nd	2	nd	10	nd	3	3	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Limit of detection	2	2	2	2	2	2	2	2	2	2	2	2	2	2	200	200	1,000	2,000	0.5 ~2	0.5 ~2
	Frequency of detection	0/32	0/32	9/32	1/32	0/32	1/32	0/32	17/32	0/32	1/32	1/32	0/32	0/32	0/32	0/31	0/31	0/31	0/31	0/31	0/31
Black kites	Max. value	119	13	80	322	nd	8	nd	230	nd	18	124	nd	7	nd	8	10	nd	nd		
	Min. value	nd	nd	3.0	10	nd	nd	nd	5.0	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		
	Limit of detection	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	10	20		
																~ 200	~ 200				
	Frequency of detection	23/26	9/26		26/26	0/26	16/26	0/26	26/26	0/26	23/26	24/26	0/26	9/26	0/26	2/26	3/26	0/26	0/26		
Birds of prey	Max. value	74	5	510	761	nd	4	nd	5,940	nd	82	506	nd	170	nd	nd	nd	nd	nd		
	Min. value	nd	nd	nd	nd	nd	nd	nd	12	nd	nd	nd	nd	nd	nd	nd	nd		nd		
	Limit of detection	2	2	2	2	2	2	2	2	2	2	2	2	2	2	200	200	1,000	2,000		
		~ 10	~ 10	-	~ 10	~ 10	~ 10	~ 10	~ 10	~ 10	~ 10	~ 10		~ 10	~ 10						
	Frequency of detection	7/30	1/30	27/30	26/30	0/30	3/30	0/30	30/30	0/30	15/30	20/30	0/30	26/30	0/30	0/30	0/30		0/30		
Blakiston`s fish owls		nd	nd	4	5	nd	6	nd	34	nd	8	nd	nd	nd	nd	nd	3	30	nd		
	Min. value	nd	nd		nd	nd	nd	nd	15	nd	3	nd	nd	nd	nd	nd	nd		nd		
	Limit of detection	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	10	20		
	Frequency of detection	0/5	0/5		4/5	0/5	2/5	0/5	5/5	0/5	5/5	0/5	0/5	0/5	0/5	0/5	2/5	1/5	0/5		

(Note) No nd was detected.

Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (6)

(Concentration per wet weight)

	No.	4		5	6	7	7		8			9	10	11	12	13	14	15	16	17	18
	SPEED'98 No.	14	1	15	16	1	8		19			23	25	26	43	33	34			9	11
		Chlor	dane			DD)T		DDE and	d DDD											
Substances surveyed		cis-Chlordane	trans-Chlordane	Oxych lor dane	trans-Nonachlor	o , p' - DDT	p , p [,] - DDT	o,p'-DDE	p,p'-DDE	o , p' - DDD	p , p' - DDD	Dieldrin	Heptachlor	Heptachlor epoxide	Benzo(a)pyrene	Tributyltin	Triphenyltin	Dibutyltin	Monobutyltin	Atrazine	CAT (Simazine)
	Unit					÷	÷				µg/kg-	-wet									
Wood mice	Max. value	nd	nd	nd	nd	nd	nd	nd	2	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Limit of detection	2	2	2	2	2	2	2	2	2	2	2	2	2	2	200	200	1,000	2,000	1	1
		~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4					~2.5	~2.5
	Frequency of detection	0/30	0/30	0/30	0/30	0/30	0/30	0/30	1/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30	0/30
Japanese macaques	Max. value	3	nd	28	12	nd	nd	nd	10	nd	3	115	nd	178	nd	nd	nd	nd	nd		
(except blood)	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		
	Limit of detection	2	2	2	2	2	2	2	2	2	2	2	2	2	2	200	200	1,000	2,000		
		~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4						
	Frequency of detection	1/41	0/41	24/41	17/41	0/41	0/41	0/41	7/41	0/41	1/41	31/41	0/41	16/41	0/41	0/41	0/41	0/41	0/41		
Bears	Max. value	nd	nd	108	12	nd	nd	nd	23	nd	nd	12	nd	80	nd	nd	nd	nd	nd		
	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		
	Limit of detection	2	2	2	2	2	2	2	2	2	2	2	2	2	2	50	50	50	500		
		~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 200	~ 200	~ 1,000	~2,000		
	Frequency of detection	0/17	0/17	4/17	1/17	0/17	0/17	0/17	1/17	0/17	0/17	3/17	0/17	2/17	0/17	0/17	0/17	0/17	0/17		
Raccoon dogs	Max. value	nd	nd	196	241	nd	26	nd	60	nd	nd	29	nd	23	nd	nd	nd	nd	nd	nd	nd
	Min. value	nd	nd	12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	Limit of detection	2	2	2	2	2	2	2	2	2	2	2	2	2	2	50	50	50	500	2	2
		~ 8	~ 8	~ 8	~ 8	~ 8	~ 8	~ 8	~ 8	~ 8	~ 8	~ 8	~ 8	~ 8	~ 8	~ 200	~ 200			~ 50	~ 50
	Frequency of detection	0/15	0/15	15/15	12/15	0/15	2/15	0/15	6/15	0/15	0/15	8/15	0/15	9/15	0/15	0/15	0/15	0/15	0/15	0/15	0/15

(Note) No nd was detected

	No.	19		20		21	22	23	24	25	26	27		28	
	SPEED'98 No.	35		36		37	38	39	40	42	45		66		
			Alk	yl pher	no I								Styrene	dimers and trimers	
Substances surveyd		Trifluralin	Nonyl phenol	4 - t-Octyl phenol	4 - n-Octyl phenol	Bisphenol A	Di-(2-ethylhexyl) phthalate	Butyl benzyl phthalate	Di-n-butyl-phthalate	Diethyl phthalate	Di-2-ethylhexyl adipate	Styrene monomer	Styrene dimers	Styrene trimers	
	Unit		μg/kg-wet												
Carp	Max. value	11	nd	nd	nd	nd	260	nd	79	nd	nd	1.4	nd	nd	
	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
	Limit of detection	1	50	5	5	5	=•	10		10			1	1	
	Frequency of detection	3/145	0/145	0/145	0/145	0/145	88/145	0/145	27/145	0/145	0/145	14/145	0/145	0/145	
common pigeons	Max. value	nd	113	5.6	nd	48	3,290	nd	nd	nd	nd	3	nd	nd	
	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
	Limit of detection	0.5	15	1.5	1.5	20	100	40	100	40	40	2	4	4	
		~ 2			~ 2	~ 80	~ 400	~ 160	~ 400	~ 160	~ 160	~ 8	~ 20	~ 20	
	Frequency of detection	0/31	16/31	9/31	0/31	1/31	3/31	0/31	0/31	0/31	0/31	2/31	0/30	0/30	
Wood mice	Max. value	nd	190	7.2	nd	42	390	nd	nd	nd	nd	56	nd	nd	
	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
	Limit of detection	1	15	1.5	1.5	40	200	80	200	80	80	4	8	8	
		~2.5			~2.5	~ 100	~ 500	~ 200	~ 500	~ 200	~ 200	~ 10	~ 20	~ 20	
	Frequency of detection	0/30	22/30	21/30	0/30	1/30	2/30	0/30	0/30	0/30	0/30	8/30		0/30	
Raccoon dogs	Max. value	nd	2,000	37	nd	nd	363,000	nd	nd	nd	57,230	240	4	339	
J	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
	Limit of detection	2	15	1.5	1.5	20	40	40	100	40	40	2	4	4	
		~ 50			~ 7	~ 320	~ 640	~ 640	~ 1,600	~ 640	~ 640	~ 30	~ 70	~ 70	
	Frequency of detection	0/15	14/15	6/15	0/15	0/15	10/15	0/15	0/15	0/15	4/15	12/15	1/15	7/15	

Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (7) (Concentration per wet weight)

(Note) No nd was detected.

	No. SPEED'98 No.						1						2		3 12						
	SPEED 98 NO.						Z						4			12					
				P	olychl	orinate		B)													
								(HCB)	ŀ	Hexachlorocyclohexane											
Substances surveyed		Chlorinated biphenyl	lloro bip chloro bi chloro bi chloro bi chloro bi thloro bip chloro bip chloro bip chloro bip									Hexachlorobenzene	-нсн	-нсн	-HCH	-нсн	HCH total				
	Unit							Water:	μg/L、	Sedime	nt:µg	/kg-dr	у								
Environmental	Max. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd			
survey on carp	Min. value	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		nd		nd	nd				
Water	Limit of detection	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.025			0.05	0.05				
	-	~ 0.5	~ 2	~0.5	~0.5	~0.5	~0.5		~ 1.0					~ 0.05				~ 0.05			
	Frequency of detection	0/8	0/8	0/8	0/8	0/8	0/8	0/8	0/8		0/8	0/8				0/2	0/2				
Environmental	Max. value	nd	0.82	6.6	5.6	5.7	3.4	0.3	0.28	0.13	nd	22	nd	-		-	-	nd			
	Min. value	nd	nd	nd		0.020	nd	nd	nd	nd		0.080			nd	-	-	nd			
Sediment	Limit of detection	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	5	5	5	-	-	5			
	Frequency of detection	~0.1	~0.1 2/8	~0.1	~0.1 7/8	~0.1 8/8	~0.1 7/8	~0.1 3/8	~ 0.1	~0.1 1/8	~0.1 0/8	~0.1 8/8	0/8	0/8	0/8	-	-	0/8			

Results of 1998 Research on Effects of Endocrine Disrupting Chemicals on Wildlife (Environmenyal Survey 1)

(Note) No nd was detected.