地球一括計上

課題名	炭素循環の気候応答解明を目指した大気中酸素・二酸化炭素同位体の統合的観測研究		
担当研究機関	環境省国立研究開発法人国立環境研究所		
研究期間	2014-18年度	合計予算額 (当初予算額 ベース)	119,942千円(うち2018年度 21,298千円)

研究体制

(1)炭素循環の気候応答解明を目指した大気中酸素・二酸化炭素同位体の統合的観測研究(国 立研究開発法人国立環境研究所)

研究概要

1. 研究目的

地球温暖化による世界平均気温の上昇をできるだけ低く抑えるために、人為起源二酸化炭素(CO₂) の排出を減らすための様々な努力がなされている。しかし、化石燃料の燃焼やセメント製造に伴って 全世界で排出されるCO₂は依然として減少傾向を見せず、大気中のCO₂濃度は増加の一途をたどってい る。一方、排出される化石燃料起源CO₂の約半分は陸域生物圏および海洋が吸収していると考えられ、 実際に大気に蓄積するCO₂の量は排出量の半分程度に抑えられているのが現状である。したがって、陸 や海のCO₂吸収量が今後どのように推移するか、特に気候変動に対してこれらの自然の吸収源がどのよ うに応答するかを理解することは、大気中CO₂濃度を安定化させるためのCO₂排出削減策を設定する際 にも重要となる。本研究では、大気中のCO₂濃度と同時に炭素循環の指標となる大気中の酸素濃度や CO₂の炭素安定同位体および放射性炭素同位体、さらに表層海水中に溶存するCO₂の炭素安定同位体お よび放射性炭素同位体の広域観測を行い、地球表層における炭素循環の変動を明らかにし、その時間 変動や気候変動との関係を解明することを目的とする。

2. 研究方法

本研究では上記の目的を達成するために、炭素循環解明の有効な指標となる大気中酸素濃度やCO₂の 同位体比の広域観測を実施した。酸素は化石燃料の燃焼や生物の呼吸・光合成の過程で一定の比率でCO₂ と交換するが、大気-海洋間でのガス交換では酸素とCO₂のフラックスには密接な関連は見られない。 したがって、こうした性質に着目することで、CO₂と同時に酸素の大気中濃度の観測から陸域生物圏お よび海洋のそれぞれのCO₂吸収量を定量的に求めることができる。また、CO₂の炭素および酸素安定同 位体比(¹³C/¹²C比(δ¹³C)および¹⁸O/¹⁶O比(δ¹⁸O))は、大気-海洋間および大気-陸域生物圏間での 交換に際して異なる同位体分別効果を示すため、大気中のCO₂の安定同位体比の時空間変化から大気と 海洋および陸域生物圏との間の循環に関する情報を得ることができる。一方、放射性炭素(¹⁴C)は半減 期が約5700年であるため、化石燃料起源CO₂は¹⁴Cを含まない。したがって、大気中¹⁴CO₂の時空間分布 は化石燃料起源CO₂の寄与率の推定に役

立つと期待される。さらに、海洋表層に おける無機炭酸中の¹⁴Cおよび¹³C/¹²C比 の時空間変動は大気-海洋間のCO₂交換 の定量的な解析に寄与すると考えられ る。

上記の各成分の観測を実施するため に、図1.に示されたアジア・太平洋域 における広域観測網を整備した。大気観 測のためのボトルサンプリングはインド から北米西岸に広く展開した9つの地上 ステーションにおいて実施した。また、 日本-オーストラリア・ニュージーラン ド間(オセアニア航路)、日本-東南ア ジア間(東南アジア航路)、日本-北米 間(北米航路)を定期運航する貨物船で もボトルサンプリングを実施した。大気 試料は専用のガラス容器またはステンレ ス容器(酸素分析には用いない)に加圧

採取(大気圧+1~2気圧)され、研究室において各種成分の分析を実施した。酸素および CO₂ 濃度についてはガスクロマトグラフシステム(GC/TCD 法)および非分散型赤外分光計(NDIR)をそれぞれ用いた。また、CO₂ 濃度分析終了後、残りの大気試料から CO₂を分離抽出し、 δ^{13} C と δ^{18} O を同位体比質量分析計により測定した。

酸素濃度についてはより詳細に時間・空間変動を調べるために、GC/TCD法による現場連続観測を、 波照間島、落石岬、オセアニア航路(Trans Future 5号(TF5))において実施した。さらに、北米航路 ではNew Century 2号(NC2)に燃料電池式酸素計を用いた連続測定システムを搭載し、大気中酸素濃度 の連続観測を実施した。

¹⁴CO₂ 測定用のボトルサンプリングは北米航路およびオセアニア航路においてステンレスボトルを用 いて実施した。採取した大気試料は、各種温室効果気体の濃度を測定後、CO₂の濃縮を行って同位体分 析に供するよう準備した。また、波照間島、落石岬および南鳥島においてはガラスボトルを用いて、月 に 1~2 回の頻度で ¹⁴C 用試料採取を継続した。また、波照間島ならびに落石岬において、遠隔地から 操作可能なイベントサンプリングシステムを用いて、高 CO₂イベント時の大気試料のボトルサンプリン グを行った。¹⁴CO₂ の分析には、国立環境研究所に導入された小型加速器質量分析計(NIES-CAMS) を用いた。

表層海水の採取は日本と米国(北米航路)及び日本と豪州・ニュージーランド(オセアニア航路) をおおよそ1~2ヶ月で往復する自動車運搬船の航海を利用して実施した。CO2分圧測定のために船外 (水深7m程度)から引き込まれた試料海水の一部を大気と触れないようにして採取し、飽和塩化水銀 溶液を添加して実験室に持ち帰った。¹⁴C分析試料は、海水試料中の無機炭酸を真空ガラスライン中で CO2として抽出したのち、水素を用いてグラファイトに還元し、国立環境研究所所有の加速器質量分析 装置を用いて試料中の¹⁴C/¹²C比を計測した。¹⁴C濃度は標準物質と試料との間の¹⁴C/¹²C比の偏差を千分 率(Δ¹⁴C)として表現した。

3. 結果・考察

(i) 大気中酸素濃度の観測

ΗΔΤ 40-46N-W 30-40N-WP meg 10-20 10-20 meg) 20-30N-WP EQ-10N-W EQ-10 (mdd) 10-20N-WP 10S-EQ-W (per bel 20-10S-WF EQ-10N-WP ĝ 10S-EQ-WP δ(O₂/N₂) 30-20S **SAPO** 30-20 20-10S-WF 40-30S-W 30-20S-WP 40-46N-EP 40-30S-WP 46-55N-F 40-46N-EP 30-40N-EP 20-30N-EI SEA(10-16N) SEA(10-16N) 10-20N-FP SEA(5-10N) SEA(10-16N) SEA(EQ-5N) 20 ppm SEA(EC SEA(5-10N) SEA(6S-EQ) tion 100 € per mer SFA(6S SEA(EQ-5N) -100 400 SEA(6S-EQ) --1--2000 2000 2000 2010 2005 2010 2015 2005 2010 2015 2005 2015 Year Year Year

図 2. 地上ステーションおよび定期貨物船で観測された CO₂ 濃度、酸素濃度 (O₂/N₂比) および APO の時系列

2019年1月までに地上ステーション(落石(COI)、米国ラホヤ(SIO)、南鳥島(MNM)、波照間(HAT)、米国マウナロア(MLO))と貨物船で採取された大気試料の CO₂ および酸素濃度、さらに CO₂ と酸素の和として定義される大気ポテンシャル酸素(Atmospheric Potential Oxygen, APO = O_2 +1.1×CO₂)の時系列を図2に示す。なお、酸素濃度の変化は O_2/N_2 比のある基準からの偏差の百万分

率として表示され、4.8per meg が CO₂の 1ppm に相当する。また、貨物船のデータは 5~10°の緯度帯毎 に分類し、オセアニア・北米航路のデータについては 180°E を境に東西太平洋(EP および WP) に分け て表示した。観測結果を見ると、北米航路では航路が一定でないことや、ボトル本数の制限(各航海の ボトル本数は船内で使用許可されたスペースによって決まり、オセアニア航路で 21 本、北米航路で7 本)のため、北太平洋の高緯度および東部北太平洋のデータ取得率が低いことが分かる。そこで、デー タ取得頻度を増やすため北米航路を航行する NC2 号においても船上連続測定を開始した(図3)。観測 結果から分かるように、2016 年 9 月頃までは除湿用のトラップのトラブルでしばしば欠測したが、その 後トラップを改良し、欠測期間が少なくなっている。NC2 での連続観測によって、北米航路でも密度の 高い観測が実現し、北太平洋中緯度帯における APO の季節振幅の経度分布等が明らかとなった。なお、 NC2 における大気中酸素濃度の連続測定手法の詳細および初期データの解析結果については、

図 3.2015 年 12 月から 2019 年 1 月までに北米航 路を航行する NC2 号の船上で観測された(a)CO₂、 (b)O₂/N₂比、および(c)APO の時系列(Hoshina et al., 2018 にデータを追加。)

Atmospheric Chemistry and Physics誌に掲載された(Hoshina et al., 2018)。

北米航路以外でも、波照間・落石両ス テーションとオセアニア航路で大気酸 素の連続観測は順調に実施された。オセ アニア航路を運航する TF5 号での観測 によって得られた APO の時間・緯度分 布を図4に示す。オセアニア航路は航 路・航海頻度共に安定しているため、西 部太平洋における APO の時空間変動を 詳しく調べるために非常に有効である ことが分かった。2018年末までの観測か ら、APO の年平均値の緯度分布に見られ る赤道極大が 2015/2016 年のエルニーニ ョ現象時に消失したが、その後2017年 には赤道極大が再び現れたことが確認 された。これまでの観測から、APO の赤 道極大は、エルニーニョ現象の指数(こ こでは Niño-4 を使用) と逆相関するこ とが明瞭に示された。

ボトルサンプリングで得られた大気 試料の酸素および CO₂ 濃度から計算さ

S(O₂/N₂) (per meg)

図4. オセアニア航路を運航する貨物船での連 続観測で得られた APO の時間・緯度分布 (Tohjima et al., 2015 にデータを追加)

図5. 波照間・落石での観測結果に基づく2000年1月から2018年1月までの18年間における炭素収支計算の図解。縦軸・横軸はそれぞれAPOとCO2濃度を表わし、紫は観測値、赤矢印は化石燃料の消費による変化を表わす。

れる APO の経年変化を用いてグローバルな炭素収支を計算した。なお、化石燃料起源の CO₂ (セメン ト製造起源 CO₂を含む) 放出量および大気中の CO₂ 蓄積量については、グローバルカーボンプロジェ クト (GCP) がまとめた値を用いた (Le Quéré et al., 2018)。化石燃料の燃焼による酸素消費量は種類 別化石燃料統計と種類別の酸化比から計算した (石炭、石油、天然ガスの酸化比を 1.95、1.44、1.17 と して各種燃料の割合から計算する)。また、海洋からの酸素放出量については、海洋観測に基づく深度 0-2000m の貯熱量の変化と、酸素フラックス/熱フラックス比の報告値から推定した。一例として波照 間・落石ステーションの観測結果から、2000 年 1 月から 2017 年 12 月までの 18 年間の炭素収支を計算 すると、その期間における化石燃料起源 CO₂の平均排出量 8.6 PgC yr⁻¹に対し、海洋および陸上生物圏 の CO₂吸収量はそれぞれ 2.5±0.6PgC yr⁻¹および 1.6±0.8 PgC yr⁻¹となった(図 5)。さらに、波照間・ 落石のデータに貨物船で得られた西部太平洋でのデータを加えて、海洋および陸域生物圏の吸収量の長 期的な変化傾向を調べたところ、海洋は一貫して増加傾向が認められるのに対し、陸域生物圏は 2009 年頃までは増加傾向であったものが、それ以降減少傾向に転じている可能性が示唆された(図 6)。な お、本研究成果については Atmospheric Chemistry and Physics 誌にディスカッションペーパーとし て掲載中である(Tohjima et al., 2019)。

図6. 波照間・落石およびオセアニア航路の貨物船での観測結果に基づく(a)海洋および(b)陸 域生物圏の炭素吸収量の年々変化。黒点線および赤丸はボトル観測から計算される炭素収支の年々 変動およびその5年間の移動平均を表す。また、青丸はGCPの推定結果についての5年間の移動 平均値を、水色は陸域生物圏の吸収量の年平均値を表す。

(ii) 大気中 CO2の同位体 ¹³C の観測

①グローバルな二酸化炭素収支

同位体比を用いた二酸化炭素のグローバルな収支を求めるために、太平洋上の大気サンプリングと精 度管理された同位体比分析を継続して来た。これにより約 25 年間の収支についての時系列が得られた (図7)。

CO₂濃度は最近では北半球では 410ppm を超える 程度まで増加しており、また同位体比はそれに応じ て減少した。季節変動を取り除いたトレンドライン をそれぞれの大気量で重みづけして 30°N から 30° Sまでの平均の濃度と 8¹³C を作製し、それを基に大 気中の炭素収支を検討した。化石燃料起源排出量は 10GtC/年で少し頭打ちになっていが、依然高い状態 にあった。大気の蓄積速度を観測で求め、同時に炭 素の同位体効果に基づき、長期間に海洋、陸域の吸 収量を推定した。図8には CO₂の海洋と陸域のフラ ックスの時系列を示した。海洋と陸域生態系の吸収 は全体的に徐々に増加傾向を示しながら、年ごとに 変化もみられた。特に陸域の生態系の吸収量は 2008 年ごろに大きくなった後、少し吸収量を減らしつつ 推移していた。2015 年のグローバルな気温上昇に合

図7.CO₂濃度と炭素同位体比から計算された 長期的収支変動

1 • v

わせて吸収量が減少した。その後吸収量は 2GtC/年程度まで回復した。海洋は2015年に むけて吸収量が増大してきた。特に2007年以 降吸収量の増大速度が大きくなっていた。最近 では2014年までに吸収が3GtC/年まで最大に なった後、2016-2018年に吸収量が減少すると いう傾向を示した。これらの観測結果を、GCP のモデル平均と比較した結果、陸域、海洋とも 傾向の一致が見られた。これらからは、モデル 解析の合理性が評価できる。一方、海洋は部分 的に不整合や逆の相関関係などが見られる。こ れらは、観測データの地域性の問題を考慮すべ きかもしれないが、最近の2年間の吸収量の低 下方向への若干のシフトは、観測とモデルで整 合的であった。

②アジア地域の同位体からの炭素循環解析

インド・Nainital (NTL) とバングラデシュ・ Comilla (CLA) での CO₂ 濃度および δ^{13} C-CO₂ の観測結果を、太平洋におけるほぼ同じ緯度帯 での観測結果と比較すると、NTL と CLA にお

ける CO₂ 濃度と δ^{13} C-CO₂ の季節変動幅は、それらより大きく周辺での植生の呼吸と光合成による CO₂ の放出と吸収の影響が強いことからその解析を試みた。NTL と CLA の CO₂ 濃度(と δ^{13} C-CO₂) はそ れぞれ 1 年に 2 回の低下時期(と増加時期)を示した(図 9)。これは現地の二期作あるいは二毛作に よる植生の光合成による CO₂ 吸収の影響を強く受けているためだと考えられた。南アジア域で CO₂ 濃 度のバックグラウンドを示す Cape Rama および北半球中緯度の平均的な CO₂ 濃度を示す Mauna Loa と NTL の CO₂ 濃度と δ^{13} C-CO₂ の年平均値をプロットすると傾きは 0.05‰ppm⁻¹であった。この値は CO₂ 濃度の場所ごとの差異が大気 – 陸上生物圏間の CO₂ 変換度合いによって生じていることを意味す る。さらに 1-3 月の CO₂ 濃度と δ^{13} C-CO₂および 6-9 月の CO₂ 濃度と δ^{13} C-CO₂からそれぞれの Keeling

plotsの切片を求めたところ、6-9月の Keeling plotsの切片は 1-3月のそれより重かった。こ れは 6-9月にNTLと CLA 周辺で栽培されてい る C4 植物(トウモロコシやサトウキビなど) の比率が高いことが影響していると考えられ た。これらのように、同位体比の解析により地 域的な吸収排出の特徴が明らかになることが わかってきたことで、今後モデルに同位体比を 組み込んで解析する手法も検討する必要があ る。

(iii) 大気中 CO₂の ¹⁴C の観測

波照間と落石の両ステーション、並びに南鳥 島で採取されたバックグランド大気の¹⁴CO₂

図 9.NTL と CLA の CO₂ 濃度と δ^{13} C-CO₂ の季節 変化

測定を行った。2004 年から 2012 年の9年間の ¹⁴CO₂減少トレンドは、波照間と落石でほぼ同じであったが、2013 年から 2016 年にかけては、波照間の方が落石よりも大きな ¹⁴CO₂減少トレンドを示した。これまで波照間と落石の平均 Δ^{14} C 値にはほとんど差が無かったが、2016 年については波照間が落石より約 5%低い値を示した。また、2013 年以降の波照間では、夏に、平均的な季節変動より数‰~10‰ほど高い Δ^{14} C 値が観測された。南鳥島と波照間の CO₂ 濃度を比較すると、夏の濃度はほぼ一致するのに対し、秋から春の期間は南鳥島の方が波照間と比べ、数 ppm 低い。 Δ^{14} C は、これに対応して、秋から春の期間は南鳥島の方が波照間と比べ高くなっていた(図10)。これは、秋から春の期間は波照間の方が南鳥島より化石燃料起源 CO₂ が多いためと考えられる。南鳥島と東アジアに近い波照間の差を観測することで、東アジアの化石燃料起源 CO₂ 量の季節変動や年々変動を広域で捉えることができる可能性が示された。

また、波照間と落石のイベントサンプリングで採取された大気 CO₂の放射性炭素同位体比を分析し、 短期変動を示した。2016 年から 2018 年に観測された 6 つの高 CO₂ 濃度イベントにおいて、化石燃料起 源 CO₂の割合が最も低い(平均 70%)イベントは中国華北部から流入した空気塊で、これまでに得られ た知見(大陸起源の空気塊は陸上生物圏起源の CO₂をより含んでいる)と整合的であった。また、落石

図8.海洋(a)と陸上生物圏(b)の CO₂ flux の観 測値と GCP モデルとの比較

ステーションで 2015 年 6 月 10~11 日に観測されたイベントでは、陸域生態系に起因する CO₂ 濃度の日 変動を捉えることに成功し、陸域生態系が CO₂を放出するとともに大気 ¹⁴CO₂が増加することが明らか になった (図 1 1)。また、CO₂ 濃度が明け方にかけて減少している時も Δ^{14} C は増加を続けており、これは Δ^{14} C がグロスの CO₂ 放出を捉えていることを反映していると考えられた。サンプリングを継続し て Δ^{14} C 分析結果を増やしていくことで、陸域生態系が放出する CO₂の同位体特性とグロスの CO₂放出 量の推定を行うことが可能になると期待される。

図10.南鳥島で観測された CO₂ 濃度(上)と Δ¹⁴C (下)の時系列(黒)。比較として波照間の観測デ ータを示した(赤)。

(iv)海洋表層水中溶存 CO2 同位体・酸素 の観測

本研究では、北米航路およびオセアニア 航路を航行する貨物船を用いて、表層海水 試料の採取および表層海水の溶存 CO₂の炭 素同位体比の測定を行った。特に、北太平 洋表層における放射性炭素(¹⁴C)の経年変 化を評価するために、海洋表層が成層化す る夏季(便宜上 5~9月と定義)に北米航路 で採取された試料の¹⁴C 測定を優先的に進 め、調査を開始した 2003 年から 2016 年ま での測定が終了した。

北米航路では、大圏コースで米国西海岸 へ向かう「西岸航路」と北緯10度付近に位 置するパナマ運河を経由して米国東海岸へ 向かう「東岸航路」の2つの航路が利用さ れる。したがって、得られた表層のΔ¹⁴C値 は北太平洋の非常に広い緯度帯(20~50°N) をカバーしており、その値は-55~+108‰と 大きな変動幅を持っていた。過去のΔ¹⁴C値

Δ¹⁴C 値の長期時間変動

●:A(黒潮・黒潮続流域)、▲:B(北太平洋海流域)、
▼:C(カリフォルニア海流域)、○:D(混乱水域)、
△:E(亜寒帯海流域)、▽:F(アラスカ海流域)を
示す。X軸の目盛りは各年の1月1日を示す。

の広域観測(1970年代のGEOSECSや1990年代のWOCEなど)の結果から、北太平洋の40°N以北の高緯度 域表層では、冬季の強い鉛直混合の影響を受けて、Δ¹⁴C値が40°N以南に比べて著しく低くなることが明 らかになっている。このように、海洋表層のΔ¹⁴C値は表層流や海水の鉛直混合、あるいは大気海洋間の CO₂交換速度など、各海域の特徴によって大きく変動する。そこで我々は、¹⁴C分析試料と同時に得られ た海水の塩分・水温、これらデータから算出されるポテンシャル密度、さらには試料が採取された地点 の緯度・経度と、観測されたΔ¹⁴C値との関係から、北米航路で得られたΔ¹⁴C値をA:黒潮・黒潮続流域、

∆¹⁴C (‰)

B:北太平洋海流域、C:カリフォルニア海流域、D:冷水塊と暖水塊が複雑に入り交じる混乱水域、E: 亜寒帯海流域、F:アラスカ海流域の6つの海域に大別した。図12には2004~2016年の最近13年間に おける各海域のΔ¹⁴C平均値の長期時間変動を示した。なお、2003年分についてはデータ数に限りがある 上に試料採取された海域が限定されていたため、今回のデータ解析からは割愛した。1970年代後半から 続く亜熱帯域表層のΔ¹⁴C値の長期減少傾向は現在でも継続しており、黒潮・黒潮続流域、北太平洋海流 域及びカリフォルニア海流域における減少速度は、それぞれ-3.3、-5.2、-3.3‰/yrと計算された。しかし ながら、2012年以降については黒潮・黒潮続流域ではおおよそ+50‰で一定となっていた。これは西部 北太平洋の亜熱帯域表層のΔ¹⁴C値が、2012年には大気のΔ¹⁴CO₂と平衡に達したことを示唆したものと考 えられる。また、亜寒帯海域やアラスカ海流域のΔ¹⁴C値は亜熱帯域に比べて著しく低い値を示したが、 2010年以降は減少傾向が増加傾向に転じた可能性が強く示唆された。これは数十年前に混合層下に蓄積 された核実験由来の¹⁴Cが、冬季の深い鉛直混合によって表層へ再循環した可能性が考えられる。

4. 成果

4.1 課題関連イベントの開催

環境省職員に対する勉強会(2018年11月7日、環境省)を開催した。

4.2 データ公開・共有の実施

本研究で得られた酸素濃度広域観測の結果の一部は、独・マックスプランク研究所の C. Röedenbeck 博士や、米・スクリップス海洋研究所の R. Keeling 教授らのグループ、ニュージーランド・NIWA の S. Mikaloff Fletcher 博士、ノルウェイ・NILU の Rona Thompson 博士、さらにコロラド大の Cynthia Nevison 博士に提供され、大気輸送モデルや海洋モデルを使った研究に利用されている。また、西部大西洋上で の大気観測から明らかにされた APO の年平均値の緯度分布のデータは、East Anglia 大の P. Pickers 博士 の研究に提供され、彼女らの大西洋における APO の緯度分布の解析に用いられた (Pickers et al., 2017)。

4.3 論文発表

- <u>Tohjima T.</u>, <u>Terao Y.</u>, <u>Mukai H.</u>, Machida T., <u>Nojiri Y.</u>, Makyutov S. (2015), ENSO-related variability in latitudinal distribution of annual mean atmospheric potential oxygen (APO) in the equatorial Western Pacific. Tellus-B, 67, 25869.
- Yu Hoshina, Yasunori Tohjima, Keiichi Katsumata, Toshinobu Machida, and Shin-ichiro Nakaoka, In situ observation of atmospheric oxygen and carbon dioxide in the North Pacific using a cargo ship, Atmos. Chem. Phys., 18, 9283-9295, 2018, https://doi.org/10.5194/acp-18-9283-2018.
- <u>Takafumi Aramaki</u>, Shin-ichiro Nakaoka, <u>Yukio Terao</u>, Seiko Kushibashi, Toshiyuki Kobayashi, Yumi Osonoi, <u>Hitoshi Mukai</u> and <u>Yasunori Tohjima</u>, Variation of surface radiocarbon in the North Pacific during summer season, 2004-2016, Radiocarbon, 2019, <u>http://dx.doi.org/10.1017/RDC.2019.32</u>.
- 4) <u>Yasunori Tohjima</u>, <u>Hitoshi Mukai</u>, Toshinobu Machida, <u>Yu Hoshina</u>, Shin-ichiro Nakaoka, Global carbon budgets estimated from atmospheric O₂/N₂ and CO₂ observations in the western Pacific region over a 15-year period, Atmos. Chem. Phys. Discuss., 2019, https://doi.org/10.5194/acp-2019-69.

4.4 口頭発表

- 1) <u>遠嶋康徳、寺尾有希夫、向井人史、野尻幸宏</u>、町田敏暢、西部太平洋で観測された APO の年平均値 の緯度分布の ENSO イベントに関連した変動について、日本地球化学会第 61 回年会、2014 年 9 月 16-18 日、富山
- 2) 遠嶋康徳、向井人史、町田敏暢、<u>寺尾有希夫</u>、野尻幸宏、2009/2010年のエルニーニョ時に西部太平 洋で観測された年平均 APO の赤道極大の平坦化、日本地球惑星科学連合 2014 年度連合大会、2014 年4月 28-5月2日、横浜
- <u>Y. Tohjima, H. Mukai, T. Machida and Y. Terao</u>, Inter-annual variation in seasonal cycle of APO observed at Cape Ochi-ishi and its relationship with SST and NPP, The 5th Symposium on Polar Science, Dec. 2-5, 2014, Tachikawa.
- 4) <u>荒巻能史</u>、<u>寺尾有希夫</u>、中岡慎一郎、串橋聖子、遅野井祐美、<u>遠嶋康徳</u>、<u>野尻幸宏</u>、<u>向井人史</u>、北 太平洋表層水中における炭素 14 の 10 年間の変動、日本海洋学会 2015 年度春季大会、2015 年 3 月 21-25 日、品川
- 5) <u>遠嶋康徳</u>, <u>向井人史</u>,町田敏暢, <u>寺尾有希夫</u> (2015) 落石岬における APO トレンド変化率の年々変動 と PDO の関係、日本地球惑星科学連合 2015 年大会、2015 年 5 月 24-28 日、幕張.

- 6) <u>Tohjima Y., Keeling R., Mukai H.</u>, Machida T., 2015: Preliminary results on O₂/N₂ scale comparison between SIO and NIES based on flask sampling at La Jolla, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT), Scripps Institution of Oceanography, La Jolla, California. (Sep. 13-17, 2015).
- 7) <u>Tohjima Y., Mukai H.</u>, Machida T., <u>Terao Y.</u>, Maksyutov S., <u>Nojiri Y.</u>, 2015: Spatiotemporal variability in APO in the western Pacific region observed from the NIES observing network. APO workshop, Scripps Institution of Oceanography, La Jolla, California. (Sep. 18-20, 2015).
- 8) <u>野村渉平・向井人史・寺尾有希夫</u>・西橋政秀・<u>遠嶋康徳</u>・町田敏暢・谷本浩志・<u>野尻幸宏</u>、東南ア ジア域の温室効果ガス濃度、日本気象学会 2016 年度秋季大会、2015 年 10 月 28-30 日、京都
- 9) <u>Terao Y., H. Mukai</u>, Fossil fuel and biogenic partitioning in CO₂ emissions from East Asia determined by high-frequency radiocarbon measurements at Hateruma Island. 18th WNO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT), 2015 年 9 月, La Jolla
- 10) 遅野井祐美・<u>寺尾有希夫</u>・<u>向井人史</u>・小林利行・<u>荒巻能史</u>・近藤美由紀・内田昌男・柴田康行、国 立環境研究所における CAMS 導入と現状、第 28 回タンデム加速器及びその周辺技術の研究会、2015 年 7 月、仙台
- 11) Osonoi Y., <u>Terao Y.</u>, <u>Mukai H.</u>, Aramaki T., Kondo M., Uchida M., Kobayashi T., Shibata Y., Installation and current status of CAMS system at NIES. 18th WNO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT), 2015 年 9 月, La Jolla
- 12) 遠嶋康徳、向井人史、町田敏暢、中岡慎一郎:日本地球惑星科学連合 2016 年大会、2016 年 5 月 22-26 日、幕張、「大気中の酸素および二酸化炭素の観測に基づく過去 15 年間の炭素収支推定」
- 13) <u>遠嶋康徳、向井人史</u>、町田敏暢、中岡慎一郎:大気化学討論会 2016、2016 年 10 月 12-14 日、札幌 2015/2016、「エルニーニョ現象の際に観測された年平均 APO の緯度分布の変化について」
- 14) <u>保科優、遠嶋康徳</u>、勝又啓一、町田敏暢、中岡慎一郎: 大気化学討論会 2016、2016 年 10 月 12-14 日、札幌、「貨物船を利用した北太平洋における大気中酸素濃度の連続測定」
- 15) <u>保科優</u>,<u>遠嶋康徳</u>,<u>寺尾有希夫</u>,勝又啓一,<u>向井人史</u>,町田敏暢,遅野井祐美:日本気象学会 2016 年度秋季大会、2016 年 10 月 26-28 日、名古屋、「酸素や炭素同位体の測定に基づく大気 CO₂濃度 変動成分の起源推定法の開発」
- 16) <u>Yasunori Tohjima, Hitoshi Mukai</u>, Toshinobu Machida, <u>Yu Hoshina</u> and Shin-ichiro Nakaoka, Atmospheric O₂/N₂ and CO₂ observation in the Pacific region and its application to the global carbon budget estimation, 10th International Carbon Dioxide Conference, Interlaken, Switzerland, 21-25 August 2017. ICDC, Aug. 2. 1, 2017 (Aug. 21 presentation)
- 17) <u>Yu Hoshina, Yasunori Tohjima, Yukio Terao</u>, Keiichi Katsumata, <u>Hitoshi Mukai</u>, Toshinobu Machida, Yumi Osonoi, Separating short-term CO₂ variation into biotic and fossil fuel components based on the atmospheric O₂ and CO₂ continuous measurements, 10th International Carbon Dioxide Conference, Interlaken, Switzerland, 21-25 August 2017. ICDC, Aug. 2. 1, 2017 (Aug. 22 presentation)
- 18) <u>Yu Hoshina</u>, <u>Yasunori Tohjima</u>, Kei-ichi Katsumata, Toshinobu Machida, and Shin-ichiro Nakaoka³ Continuous observation of atmospheric oxygen concentration onboard a cargo ship sailing between Japan and North America, 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT-2017), 27-31 August 2017, Empa Dubendorf, Switzerland. (27-28, Aug)
- 19) 遠嶋康徳,保科優,向井人史,町田敏暢,中岡慎一郎,勝又啓一,石澤みさ,白井知子,Shamil Maksyutov,北太平洋における大気中ポテンシャル酸素(APO)の分布について,第23回大気化学討 論会2017、2017年10月2-4日、高松(サンポートホール高松、発表は10月2-3日)
- 20) <u>保科優,遠嶋康徳,寺尾有希夫</u>,勝又啓一,高橋善幸,<u>向井人史</u>,<u>町田敏暢</u>,遅野井祐美,<u>荒巻能史</u>, 大気中酸素濃度や炭素同位体比等を用いた化石燃料起源 CO₂の分離手法の検討,第23回大気化学討 論会 2017、2017 年 10 月 2-4 日、高松(サンポートホール高松、発表は 10 月 2-3 日)
- <u>Terao Y.</u>, Mukai H., Osonoi Y., Observations of atmospheric radiocarbon in carbon dioxide at Hateruma Island and Cape Ochi-ishi, Japan., 10th International Carbon Dioxide Conference, Interlaken, Switzerland, 21-25 August 2017.
- 22) <u>保科優、遠嶋康徳、寺尾有希夫</u>、町田敏暢、東京における人為起源 CO₂ 推定のための O₂、CO₂連続 測定、日本気象学会 2018 年度秋季大会、2018 年 10 月 29 日~11 月 1 日、仙台。
- 23) <u>Takafumi Aramaki</u>, Shin-ichiro Nakaoka, <u>Yukio Terao</u>, Seiko Kushibashi, Toshiyuki Kobayashi, Yumi Osonoi, <u>Hitoshi Mukai</u> and <u>Yasunori Tohjima</u>, Variations of surface radiocarbon of the North Pacific in summer season during the past decade, 23rd International Radiocarbon Conference, 2018 年 6 月 18~22 日, トロンハイム, ノルウェイ。
- 24) <u>Yasunori Tohjima</u>, Land-ocean flux portioning, Regional Carbon Cycle Assessment and Processes-2, 2019 March 18-21, Gotemba, Japan.