第1部 オゾン層の状況

1. オゾン層の形成と分布・その変動

46 億年前の地球誕生以来、地球上に海が生まれ、海の中の光合成生物によって大 気中に大量の酸素が放出された結果、太陽光による酸素の光分解によって地球大気 上層にオゾン層が形成されることとなった。オゾン層が形成されると、オゾン自身 が太陽光を吸収してその周辺の大気を暖めるため、オゾン層周辺では上層の気温は 下層より高くなる。この気温の逆転層を成層圏と呼んでいる。成層圏のオゾンは地 球上の生物に有害な紫外線を吸収し、その地表への到達を防ぐことによって、地表 生物の生存を可能にする重要な役割を担っている。ここではオゾン層の形成、オゾ ン層の分布と変動、及び人間活動によるオゾン層破壊について解説する。

1-1. オゾン層の形成・分布・破壊

大気中でのオゾンの生成

大気の主成分の一つである酸素分子は、太陽からの紫外線のうちエネルギーの高い(波長の短い)紫外線を吸収し2個の酸素原子に解離する。生成した酸素原子は 周りの酸素分子と結合してオゾンを生成する。エネルギーの高い太陽紫外線は、大 気中の酸素分子に吸収されるため、高度が低くなるにつれて強度が弱まる。一方、 分解される酸素分子の量は高度が低い方が多いので、この2つの量のかねあいによ り、オゾンが生成される効率はある高度で最大になる。

一方、生成されたオゾンは大気中での分解反応(詳細は第1部参考資料1(P61) を参照)により消失する。またオゾンは、大気の運動によってある場所から別の場 所に輸送される。そのため、オゾンの分布は、大気中でのオゾンの生成・分解反応 とオゾンの輸送のバランスによって決まってくる。

オゾンの高度分布

図1-1-1にオゾン濃度の高度分布を示す。図からも分かる通り、オゾンの多く(大 気中のオゾンの約90%)は「オゾン層」と呼ばれる地上から約10kmから50kmの高 度領域に存在している。図1-1-1にはオゾン濃度の高度分布と合わせて、気温の高度 分布が示されている。地表面から高度10数kmまでは、高度が高くなるに従って気温 が低くなる。そのため、この高度領域は対流活動が起こることから、「対流圏」と呼 ばれる*。一方、高度約10kmより高い、オゾンが多く存在している高度領域では、高 度が高くなるに従って気温が高くなる。このような下層より上層の大気が暖かい温

^{*} 対流圏のオゾンは、成層圏からの輸送ならびに対流圏での光化学的な生成によって供給されている。なお、対流圏には酸素分子が吸収し解離を起こすようなエネルギーの高い太陽紫外線が到達しないため、対流圏では成層圏とは異なったメカニズムでオゾンが生成される。

オゾン層に関する基礎情報

度構造が見られることには、オゾン層の存在が関係している(詳細は第1部参考資料 1(P61)を参照)。この高度約10kmから50km付近までの気温が高度とともに上昇 している領域は「成層圏」と呼ばれる。

オゾン層は、太陽から地球にやってくる、生物に有害な紫外線(UV-B)をほとん ど(約90%)吸収する。一方、オゾン分子は生物にとって有害な物質である*。地表 面に生物が生存できるのは、このオゾン分子が地表面から離れた高度領域にオゾン 層として存在し、有害紫外線に対するシェルターとして働いているおかげである。 オゾン層によって吸収されなかったごく少量のUV-B(長波長側のUV-B)は地表面 に到達するので、地上生物はそれに対する防御機能を備えるようになったといわれ ている。しかし、過度にUV-Bを浴びることは人の健康や動植物に悪影響を及ぼすお それがある。

^{*} 成層圏に存在するオゾンも対流圏に存在するオゾンも化学的には同一の物質である。しかし ながら、対流圏に存在するオゾンは人の健康や作物・生物等に悪影響を及ぼすため、汚染物質 として扱われ、「悪いオゾン(スモッグオゾン)」と称されることがある。一方、成層圏に存 在するオゾンは、生物に有害な紫外線の防御機能の役割を果たすため、「良いオゾン」と称さ れることがある。

オゾン全量の地球規模の分布

オゾン量は、太陽紫外線照射量や大気中輸送量の違いによって、緯度・経度や季節による違いがある。低緯度上空の成層圏では、太陽紫外線の豊富な照射によりオ ゾンが多く生成される。ところが図1-1-2に示した衛星観測によるオゾン全量*の地 球規模の分布を見ると、オゾン全量は低緯度域で少なく中高緯度域で多くなってい ることが分かる。そのような緯度分布を作り出している原因は、大規模な大気の輸 送過程である。

大気は、平均的には、熱帯において対流圏から成層圏に入って上昇し、中高緯度 において下降して対流圏に戻る。この全球大気循環の存在は、Alan BrewerとGordon Dobsonによる水蒸気とオゾンの観測によって、半世紀以上昔に初めて推定された。 提唱者の名前にちなんでこの循環はブリューワ・ドブソン循環と呼ばれる。成層圏 内における下降流は、オゾンの豊富な低緯度成層圏の空気を中高緯度成層圏に輸送 する主要なメカニズムであり、これによって低緯度から中高緯度にかけてのオゾン 全量の増加が説明される。(詳細は第1部参考資料4(P72~73)を参照)。

更に図1-1-2を詳しく見ると、オゾン全量は赤道域では少なく、南北両半球とも中・ 高緯度域で多く、特にオホーツク海上空は最も多いことが分かる。また、緯度方向 の変化は、中緯度では南半球に比べて北半球で大きく、日本上空は世界的に見ても 最も大きい。

国 112 国外の中半均次ノン主軍 (1957~2000 中の半均値) 単位はm atm-cm、等値線間隔は10 m atm-cm。NASA提供の衛星データ (TOMS及びOMIデー タ)をもとに作成。 (出典)気象庁 オゾン層観測報告:2010

^{*} 地表から大気上端までの鉛直気柱に含まれるすべてのオゾンを積算した量をオゾン全量という。オゾン全量は、大気中のオゾンをすべて1気圧、0℃として地表に集めた場合の層の厚さに相当する量として表される。オゾン全量を表す単位としては、cm単位で表した厚みを1000倍した数値が一般に使われており、便宜的にこの単位をmatm-cm(ミリ・アトモスフェア・センチメートル)又はDU(Dobson Unit;ドブソン単位)と称している。地球全体の代表的なオゾン 全量は300matm-cmであるため、「代表的なオゾン層の厚みは3mm」と表現されることもある。ちなみに、大気全体の厚みを同じ方法で表すと8kmとなる。

1-2. オゾン層の自然変動

オゾン量は、季節により変動する。また、より長期的には QBO(準2年周期振動)、太陽 黒点活動(約11年周期)などに対応した変動がある。また成層圏に達するような火山の大規 模噴煙も一時的にオゾン量に影響を与えることが知られている。人為的要因によるオゾン層の 変化を精度よく検出するためには、これらの自然要因による変動成分を正しく把握しておくこ とが必要である。

オゾン全量の季節変動

東西方向に平均したオゾン全量の1997~2006年の平均値の季節変動を図1-1-3に示す。一般 的に中高緯度域のオゾン全量は、南北半球ともに春に最大となるような季節変動が見られ る。これは、赤道域から中高緯度への成層圏大気の大規模輸送が冬から春にかけて最も活発 となるためと理解されている。

図 1-1-3 オゾン全量(1997~2006年の平均値)の季節変動

単位は m atm-cm、等値線間隔は 25m atm-cm。NASA 提供の衛星データ(TOMS 及び OMI データ)をもと に作成。図中、極域での等値線のない陰影部があるのは、太陽光が射さなくなる冬季の両極域では観測できな いため。(出典)気象庁 オゾン層観測報告:2010

赤道上空成層圏の風向変化(準2年周期振動)

赤道付近の下部成層圏では東風と西風が約2年の周期で交代することが知られており、この 現象は準2年周期振動(QBO)と呼ばれている。QBOに伴ってオゾン全量も地球規模で変動す ることがわかっており、赤道上空で東風の時は低緯度でオゾン全量が平均値より少なく、中緯 度では平均値より多くなること、西風の時は低緯度でオゾン全量が平均値より多く、中緯度で は平均値より少なくなることが観測データにより確認されている。この相関関係のメカニズム については、赤道上空成層圏の東西風の変動と南北方向の大規模循環の変動とが結びついたも のであろうと考えられている。

オゾン層に関する基礎情報

大気の大規模循環場の変動

一般的に、大気の大規模な流れの強さの変動によってオゾン量は変動する。成層圏におい て低緯度域から高緯度域へのオゾン輸送量が多くなると高緯度域におけるオゾン量が多くな る。このような成層圏大気の大規模循環の長期的変動がオゾン層に与える変動については、 詳しいことはまだよくわかっていない。また、対流圏の循環場の変動とオゾン層との関連も 気候変化の影響を受けることもあり、今後の研究の進展が待たれる(詳細は第1部4-4(c)オ ゾン層の変化が対流圏気候に及ぼす影響(P59)を参照)。

太陽黒点活動(太陽紫外線量及び成層圏力学過程の変動)

太陽黒点活動に伴ってエネルギーの高い太陽紫外線の放射量が変動する(黒点数が多いと 紫外線の放射量は大きくなり、その影響は酸素分子の光分解を促進する短波長の紫外線ほど 顕著となる)ことは、人工衛星により観測されている。この変動に伴って上中部成層圏にお けるオゾンの生成量が変動するので、太陽黒点活動の極小期と極大期の間で世界平均のオゾ ン量は2~3%変動することがわかっている。また、上中部成層圏で吸収される太陽紫外線エ ネルギーの増加は成層圏気温の上昇をもたらすので、これによって成層圏大気の大循環場の 変動が起こり、下部成層圏でもオゾン輸送の変動を通じてオゾン濃度が変動するという説が 提案されている。

大規模火山噴煙

大規模な火山噴火の後で、例えば 1991 年のピナトゥボ火山噴火後の 1992 年と 1993 年に は、北半球全体でオゾン全量の減少が観測された。これは、下部成層圏に注ぎ込まれた火山噴 煙中の二酸化硫黄が硫酸エアロゾル粒子に変成し、その粒子表面での不均一相反応によってオ ゾンの消滅反応が促進されたためであるとされている(詳細は第1部4-4(b)火山噴火(エア ロゾル)がオゾン層破壊に及ぼす影響(P59)を参照)。

長期的な変動を考慮するときには、上述の変動(季節変動、赤道上空成層圏の風向変化、大 気の大規模循環場の変動、太陽黒点活動、大規模火山噴煙)による影響を取り除く必要がある。

13

1-3. 人為起源物質によるオゾン層破壊

成層圏中に極微量に存在し、オゾンを触媒反応によって破壊する成分である水素酸化物(HO_x)、窒素酸化物(NO_x)、塩素酸化物(ClO_x)、臭素酸化物(BrO_x)などには、自然界の大気 供給源に加えて、近年の人間活動の増大による人為的供給源が無視できないものがある(詳細 は第1部参考資料1(P61)を参照)。水素酸化物の起源物質は、対流圏から輸送される水蒸気、 ならびにメタンや水素である。対流圏から輸送される水蒸気量は熱帯上空の対流圏界面気温に より影響される。メタンや水素の放出源には人為起源発生源が含まれている。窒素酸化物の起 源物質としては、一酸化二窒素と上空に直接排出される NO_xが人為起源物質として問題にな る。ClO_xと BrO_xには自然界の発生源として塩化メチルと臭化メチルがあるが、ClO_xに対し てはクロロフルオロカーボン(CFC)など、また BrO_xに対してはハロンや燻蒸用途などに用 いられる臭化メチルが人為起源物質である。特に1960年代以降、人間活動に伴う CFC やハロ ンなどの人為起源物質の放出が著しく増加したことが引き金となり、オゾン層破壊が問題とな った。

2. 世界と日本のオゾン層の観測状況

オゾン層の観測は、気球などを使って測定器を上空まで運び、その場でオゾン分子の濃度を 直接測る方法と、オゾン分子による光の吸収や発光を用い間接的に濃度を算出する遠隔測定方 法がある。遠隔測定では主に大気中の積分全量を計測するが、方式によっては高度分布まで測 定できる。また、測定器を載せるプラットフォームにより、地上からの観測、人工衛星からの 観測、気球を用いた観測などに分類できる。

地上観測体制

世界のオゾン観測地点を図 1-2-1 に示す。各観測点は北半球中緯度の陸上に偏在しており、 低緯度、南半球、海洋等では、観測点の密度がまだ不十分といえる。我が国では現在、札幌・ つくば(館野)・那覇・南極昭和基地において気象庁が観測を行っている。

図 1-2-1 オゾン観測地点の分布(2015~2019 年)

2015~2019年のオゾン観測データが世界オゾン・紫外線資料センター(WOUDC)に登録されている地点を示す。全量観測は156地点(○印)、オゾンゾンデ観測は51地点(□印)。なお、WOUDCの処理ソフトウェアの不具合のため、本年度の図では反転観測地点を除く。

南鳥島でのオゾン全量観測及び反転観測、札幌と那覇のオゾンゾンデ観測は2018年1月に終了した。 (出典)気象庁提供

衛星観測体制

人工衛星搭載センサーによる観測は、同一の測定器で地球全体を広くカバーし、地上観測だ けではカバーできない広い海洋上や内陸地のデータが取得でき、これまで世界各国の衛星・測 定器で観測が行われてきた。環境省では、衛星搭載センサーILAS及びILAS-IIの開発を行い、 国立環境研究所において、データ処理解析とデータ利用研究を進めた。

気象庁では、継続性と安定性で世界的に見て最も信頼性のある米国製衛星観測器TOMS、 OMI及びOMPSで得られたデータ*を基に解析を行っている。

日本における観測体制

日本においては、1960年代後半から札幌、つくば、鹿児島、南極昭和基地においてオゾンゾ ンデ観測がおこなわれてきた。さらに 1980年代後半には那覇における観測が加わっている。 一方で 2005年には鹿児島での観測が終了し、2018年2月には札幌と那覇でのオゾンゾンデ 観測が終了した。

日本のオゾンゾンデ観測網は、オゾン全量の緯度方向の変化が世界的に見ても最も大きい領 域に位置する南北に長い日本列島に沿って広く南北の緯度範囲をカバーし、アジアから西太平 洋域のオゾン変動を理解する上で重要なものであった。また大陸の下流域にあって、東アジア からの人為起源大気成分の対流圏内輸送過程を把握するためにも重要な位置を占めていたと いえる。さらにこれらの良質なデータは、衛星観測データの検証や化学気候モデルのパフォー マンスの確認に用いられてきた。

現在継続している観測は、札幌、つくば、那覇、南極昭和基地におけるオゾン全量観測とオ ゾン反転観測、つくば、南極昭和基地でのオゾンゾンデ観測である。オゾン層および紫外線の 観測地点に関する詳しい情報は気象庁のホームページを参照されたい

(https://www.data.jma.go.jp/env/ozonehp/5_0station.html)。

^{*} 気象庁では、2007 年 12 月以降の OMI のデータについて、地上観測値との偏差が大きいことなどから長期 的な変化傾向を解析する際には補正を行っている。

3. オゾン層の監視結果

3-1. 地球規模のオゾン層の状況

(a) 2020 年のオゾン全量の状況

世界のオゾン全量偏差(%)の分布(2020年)

2020年の世界のオゾン全量の分布を図 1-3-1(上図)に、オゾン全量偏差(%)の分布を図 1-3-1(下図)に示す。

2020年の世界の年平均オゾン全量の分布を、1997~2006年(オゾン全量の減少傾向が止ま り、オゾン全量がほぼ一定していた期間)の平均値の分布と比較すると、南北両半球の中緯度 の一部と北半球の低緯度で正偏差、それ以外の領域で負偏差*となった。その中で、南北半球高 緯度の負偏差は顕著となった。これは、北半球高緯度では春季の北極域でオゾン層破壊が例年 よりも大きかったこと、南半球高緯度では南極オゾンホールの規模が例年より大きく推移した ことが要因と考えられる。

2020年の世界の月平均オゾン全量偏差の分布(P80~82の図1-資-7を参照)をみると、 北半球では、-10%以上の負偏差は、2月から5月の北半球高緯度の広範囲でみられ、特に3 月の北極周辺では-40%以上の負偏差がみられた。一方+10%を超える正偏差は、1月、2月の 北アメリカ大陸などでみられた。このうち北半球高緯度の負偏差の領域は、春季の北極域で オゾン層破壊が例年よりも大きかったことが要因と考えられ、北アメリカ大陸の正偏差は、 対流圏界面の高度が平年より低い領域に対応している。

赤道付近では、1月から6月まで全域負偏差であったが、7月以降は正偏差の領域が広がっ てきた。同時に、赤道から少し離れた南北両半球の30度付近では1月から4月頃まで正偏差 の領域が広くみられ、5月に縮小した。これらはいずれも、QBO(赤道上空の成層圏におい て東風と西風が約2年周期で交代する自然変動)を原因とするオゾン変動であると考えられ る(P67~69の第1部参考資料2を参照)。赤道上30hPaの東西風は、2020年前半では東 風気味、後半では西風となっており、上記のオゾン変動はこの東西風変化に対応している。

南半球では、1月から2月に南極域で+10%以上の正偏差が、7月から9月に南太平洋から 南大洋で-10%以上の負偏差が、アフリカ大陸の南からインド洋南部、南アメリカ大陸の南 で+10%以上の正偏差がみられた。10月以降は、高緯度で負偏差が広がり、特に11月は-30%以上となった。これは、南極オゾンホールの規模が例年より大きく推移したことが要因 であると考えられる。

^{*} 偏差(%)とは、基準値(長期間の平均値など)からの差を基準値で割った大きさを百分率で示したもの。 正偏差は基準値よりも大きな値であることを、負偏差は基準値よりも小さな値であることを意味する。

図 1-3-1 世界のオゾン全量(上)および偏差(下)の年平均分布図(2020年) (上図)月平均オゾン全量(matm-cm)の年平均分布図および(下図)月平均オゾン全量偏差(%)の年平均 分布図。(上図)の等値線は15matm-cm間隔(下図)の等値線は2.5%間隔。1997~2006年の平均値を比較の 基準とした。北緯60度以北の1月と11~12月及び南緯60度以南の5~7月は、太陽高度角の関係で観測できない時 期があるため省いて年平均を計算した。NASA提供の衛星観測データから作成。※口絵III参照。

(出典) 気象庁提供

(b) オゾン量のトレンド解析

既知の自然要因による変動の除去

オゾン量のトレンド(長期変化傾向)をより正確に評価するためには、既知の様々な自然要 因によるオゾン変動を取り除くことが必要である。そのためオゾン量の観測値から、季節変動、 太陽黒点活動の変動(約11年ごと)、準2年周期振動(QBO)及び大規模火山噴煙による影響 (成層圏エアロゾル)、ENSO(エルニーニョ/ラニーニャ現象)を差し引いた時系列を計算す る。こうして得られるオゾン量の長期的な変動は、大気中のオゾン層破壊物質の濃度の変化に ともなう変動成分と、未知の要因による変動成分が重なった時系列と関連づけて理解されてい る。この時系列からオゾンのトレンド(長期変化傾向)を求める。

オゾン量の長期的な変化はその特徴から、1970年代及びそれ以前のオゾン量がほぼ一定していた状態、1979~1990年代前半までのほぼ直線的な減少傾向、1990年代後半の減少傾向の緩和、及び2000年代からの緩やかな増加傾向に分類できる。

トレンドの評価方法及びその留意点

オゾン量の長期的な変化傾向を抽出するため、これまで等価実効成層圏塩素(EESC* (Newman et al., 2007))の時系列(図1-3-2)と関連づけた解析を採用していたが、このような解析は、オゾン量の長期変化傾向が EESC の変化曲線で規定され、他の変動要因の影響を 排除してしまう欠点がある(WMO,2018)。

本報告書では、「オゾン層破壊の科学アセスメント 2018」で用いられている手法に準じて、 既知の周期的な自然変動を除去したオゾン時系列データを用いて、1979 年 1 月から 1996 年 12 月の回帰直線によりオゾン量が減少した時期の変化傾向を求め、2000 年 1 月から最新年ま での回帰直線で近年の変化傾向を求めた(図 1-3-3)。

図1-3-2 等価実効成層圏塩素 (EESC)の経年 変化

1980年を1とした相対的な値として示した。WMO (2014)と同様に、対流圏から成層圏に入ったオゾ ン層破壊物質が中緯度域まで塩素・臭素原子として 到達するまでの時間を3年として算出。また、臭素原 子のオゾン破壊効率を塩素原子の60倍とした。 EESCの数値は米国航空宇宙局(NASA)から提供。 (出典)気象庁 オゾン層・紫外線の年のまとめ (2018年)

^{*} EESC(等価実効成層圏塩素)とは、塩素及び臭素によるオゾン破壊効率が異なることを考慮して臭素濃度 を塩素濃度に換算して求めた成層圏での塩素・臭素濃度のことをいう。

長期変化傾向の解析を、世界のオゾン全量に適用した例。 実線は世界の地上観測によるオゾン全量偏差(%)で、既知の自然変動成分を除去している。比較の基準値は1994~2008年の平均値。直線は地上観測データの1979~1996年の回帰直線(①)と2000~2019年の回帰直線(②)。世界の地上観測点は世界オゾン・紫外線資料センター(WOUDC)のデータを用いた。 (出典)気象庁提供

なお、本報告書において、月別平均値から季節変動および既知の自然変動による影響を除去し た時系列データの回帰直線から長期変化傾向を算出した図表は下記のとおり。

図 1-3-5 【P22:オゾン全量緯度別トレンド】
図 1-3-6 【P23:緯度別・月別オゾン全量の変化傾向(%/10年)】
図1-3-16下段 【P36:南極昭和基地上空のオゾン分圧の高度別トレンド】
図1-3-22 【P45:日本上空のオゾン全量の長期変化傾向】
図1-3-23下段 【P46:日本上空のオゾン分圧の高度別トレンド】

本報告書では2000年以降のオゾン量の変化を「近年の変化傾向」として評価した。

第1部3-1(c) オゾン全量のトレンドの分布及び季節変動(P22~23)で使用する地上観測 地点の選択にあたっては、毎月の月平均値と衛星による観測データとの全期間を通した比較に おいて、データの精度に大きな問題がないと判断されることを基準とした。また、観測機器の 変更等により観測データに不自然な段差がみられる場合には、その観測データに補正を施した のち、解析を行った。衛星観測データの扱いについては第1部参考資料8(P78~79)を参照。

20

図 1-3-4 に、気温・東西風速・南北風速データを同化した化学気候モデルで計算された北半 球中緯度のオゾン全量の長期変化傾向を示す。EESC の増加が顕著であった 1996 年以前のオ ゾン全量の低下傾向は、モデルによる計算結果にも見られる。

図 1-3-4 化学気候モデルで計算されたオゾンの長期変化傾向

長期変化傾向の解析を、化学気候モデルで計算されたオゾン全量に適用した例。実線は国立環境研究所の化 学気候モデルの30-60°N平均のオゾン全量偏差(%)で、既知の自然変動成分を除去している。比較の基準値 は図1-3-3と同じく1994~2008年の平均値。直線は1979~1996年の回帰直線。

(出典) 国立環境研究所秋吉英治氏提供データ

(c) オゾン全量トレンドの分布及び季節変動

オゾン全量トレンドの地球規模の分布

オゾン全量は 1980 年代から 1990 年代前半にかけてオゾン層破壊が進行した後、地球規模 (北緯 70 度~南緯 70 度)で大きく減少した。近年のオゾン層の状況は、人為的なオゾン層破 壊によりオゾン量が少なかった時期(1990 年代後半)と同程度か僅かに増加しているが、依然 として 1970 年代と比べて少ない状態が続いている。

観測されたデータによる緯度帯別オゾン全量の1979~1996年(左図)および2000~2018年 (右図)の変化傾向(%)を図1-3-5に示す。

1979~1996年の(左図)衛星観測(●印)では低緯度帯の一部(北緯20度~南緯20度)を除 き統計的に有意な減少傾向がみられ、高緯度ほど減少傾向が大きくなっている。地上観測も概 ね同様の傾向が確認できる。なお、南半球高緯度は、南極オゾンホールに関連した大規模なオ ゾン層破壊の影響により、北半球高緯度よりも減少傾向が大きい。

2000~2018年の変化傾向では、南緯10~40度を除いて有意な増加傾向がみられ、南半球高 緯度(南緯60度以南)では増加傾向が大きい。地上観測では、衛星観測と同様の傾向がみられ るが、北半球中緯度(北緯40~60度)においてはばらつきが大きい。南半球では、南緯60度以 南の誤差範囲は他の緯度帯と比べても幅があることから、南極オゾンホールの規模の年々変動 が影響していると考えられる。

なお、オゾン層破壊物質であるクロロフルオロカーボン類等の濃度は、大気中で緩やかに減 少しており、2000年以降、オゾン全量は複数の緯度帯で増加傾向がみられる。大気中のオゾン 層破壊物質の減少と自然変動が影響していると考えられているが、自然変動と比べてオゾン層 破壊物質が及ぼすオゾン全量変化が小さいため、オゾン層破壊物質がオゾン全量に及ぼす影響 を正確に見積もることは現状では難しい(WMO, 2014)。

図 1-3-5 オゾン全量緯度別トレンド

オゾン全量の長期変化傾向を示す。左図は、1979~1996年の変化傾向、右図は2000~2018年の変化傾向を示 す。緯度帯(10度)毎の衛星観測データ(●印)をプロットしている。衛星観測データの縦線は95%信頼区間 の範囲。世界の地上観測地点(121地点)のオゾン全量データ及びNASA提供の衛星観測データから作成。 (出典)気象庁 オゾン層・紫外線の年のまとめ(2018年)

オゾン全量トレンドの季節変動(衛星データ)

オゾン全量のトレンドの季節変動をみるため、緯度別・月別オゾン全量の1979~1996年(上図)と2000~2018年(下図)の変化傾向(%/10年)を図1-3-6に示す。

1979~1996年では、年間を通して低緯度帯を除き、南北両半球のほとんどの領域で有意な減 少傾向がみられた。北半球の高緯度では3~4月に、南半球の中・高緯度では8~12月にオゾン 全量の減少の割合が大きく、極域での冬季から春季にかけてのオゾン層破壊の影響が比較的大 きかったことを示している。これは冬季の低温条件下で塩素や臭素がオゾンを破壊しやすい物 質となって蓄積され、太陽光の照射を受ける春季に特にオゾン層破壊を進行させるためと考え られる(詳細は第1部参考資料1(P61~66を参照)。

2000年以降ではほとんどの領域で増加傾向が見られるが、有意なものは南半球高緯度の1~ 8月や低緯度の7~12月等の一部の領域である。南半球高緯度では8~9月にオゾンの増加の割 合が大きいが、増加が有意な領域は8月のみである。その理由は、これらの領域では、毎年の南 極オゾンホールの規模やオゾンホールの影響の及ぶ緯度が移り変わることによる年々変動が 大きいことが影響していると思われる。

(上図) 1979~1996年と(下図) 2000~2018のオゾン全量の変化傾向(%/10年)の月別分布。衛星観測による帯状平均オゾン全量データを用いて求めたもの。等値線間隔は2%。薄い陰影部は95%信頼区間で有意に増加または減少している領域。濃い陰影部は欠測域(太陽高度角の関係で観測できない領域)。NASA提供の衛星観測データから作成。

(出典)気象庁 オゾン層・紫外線の年のまとめ(2018年)

(d) オゾンの高度別分布のトレンド

オゾンの高度分布のトレンド(地球規模)

オゾンの鉛直分布のトレンドをみるため、1980年代のオゾン量の変化傾向(%/10年)を緯度 高度別に示したものを図1-3-7に示す。

北半球では、中緯度から高緯度にかけての、40km付近と20km付近以下の2つの高度に減少 率の大きい領域がみられる。南半球でも、中緯度から高緯度にかけての40km付近は減少率が 大きい領域が見られる。

高度40km付近と高度20km付近のオゾン減少は、ともにCFC等から解離した塩素によるもの であるが、高度40km付近の減少は、気相反応のみによって働く触媒反応サイクルによるのに 対し、高度20km付近の減少は主にエアロゾル粒子表面での不均一相反応によって活性化され る別の触媒反応サイクルによると考えられている(詳細は第1部参考資料1(P61)を参照)。

最近では、複数の衛星観測をつなげた長期間のデータにもとづいたトレンド解析がおこなわ れている。一方最新の衛星観測結果から、これまでオゾンの日周変動成分は小さく無視できる とされていた中部・下部成層圏でも、オゾンの日周変動が明瞭に検出されている(第1部参考 資料3(P70~71)を参照)。オゾンの日周期変動が解明された成果を踏まえ、オゾンアセスメ ントレポートでは、成層圏領域におけるオゾンの日変化がトレンド解析に及ぼす影響(さまざ まな手法によるオゾン測定がその固有な観測時間によってバイアスを持ちうること)について 述べられている(WMO, 2015)。

オゾン量の 1980 年代の変化傾向(%/10 年)。SAGE 衛星データで補正した最新の SBUV データを用いて EESC フィッティングを行い、1980 年代のオゾンの変化傾向(%/10 年)を求めたもの。等値線間隔は 2%。 薄い陰影部は 95%信頼区間で減少している領域。

(出典) Scientific Assessment of Ozone Depletion: 2010 (WMO, 2011)

3-2. 極域のオゾン層の状況

3-2-1. 南極域上空のオゾン層の状況

1980年代初め以降、南極域上空では、毎年 8~12 月にオゾン量が極端に減少し、オゾンホ ールと呼ばれる現象が発生する。南極域上空のオゾン層の状況に関して、2020年のオゾンホ ールは大きな規模を維持して長期間継続した。これは前年(2019年)のオゾンホールが極端に 小規模で短期間に留まった状況だったこととは対照的であった。2020年のオゾン全量、オゾ ン全量の経年変化、及び高度別トレンドは以下のとおりである。

(a) 2020 年の南極域におけるオゾン全量

オゾンホールの規模の推移(衛星観測)

衛星観測データの日別値から求めた 2020 年の南極オゾンホールの規模の推移を図 1-3-8 に 示す。(南極オゾンホールの規模の定義については p33 を参照)

2020年の南極オゾンホールは、8月中旬に発生したのち8月下旬に急速に拡大し、9月20日に最大面積が観測された。その大きさは2,480万km²で、南極大陸の約1.8倍となった。9月上旬以降、最近10年間の平均値より大きく推移した。10月中旬以降も例年ほど縮小せず推移し、特に11月下旬や12月中旬にはその時期の最大面積を更新した。その後オゾンホールは12月下旬にかけて急速に縮小し、2008年と並んで観測史上最も遅い12月28日に消滅した。

2020年は南半球中高緯度の対流圏から成層圏へ伝搬する大気の擾乱が、何らかの理由でこの時期に小さかったと考えられる。そのため南極上空に形成される極渦が大きく、ほぼ円形で安定していたため、極渦内部の高度約20km付近の気温の低い領域が7月中旬から11月中旬まで最近10年間の平均値より概ね広く推移し(p31図1-3-13参照)、オゾン層破壊を促進させる極域成層圏雲が例年より維持された。このことがオゾン破壊反応を継続し、10月中旬以降もオゾンホールの規模を維持した要因の一つと考えられる。更に11月以降も極渦は大きさが小さくなりつつも勢力を維持し、高度約20km付近の気温の低い領域が消滅した後も中緯度の高濃度オゾンの渦内への流入が抑えられた結果、長期間にわたってオゾンホールが消滅せず維持された要因と考えられる。

2020年のオゾン欠損量(オゾンホール内で破壊されたオゾンの総量の目安)は、7月下旬以降、最近10年間(2010~2019年)の平均値より大きく推移し、11月以降はこの時期の過去最大の欠損量と同程度か大きい状態を維持した。

2020年の領域最低オゾン全量(オゾンホールの深まりの目安)は9月下旬以降、最近10年間(2010~2019年)に観測された最小値と同程度か小さい値を維持した。

南極オゾンホールの規模は 1980 年代から 1990 年代半ばにかけて急激に拡大し、1990 年代 半ば以降では長期的な拡大傾向はみられなくなった。大気中のオゾン層破壊物質の濃度は 1990 年代以降ピークを過ぎ緩やかに減少し、これに呼応するような形で南極オゾンホールの 年最大面積とオゾン欠損量も、2000 年以降、統計的に有意な縮小傾向となっている。

25

図 1-3-8 南極オゾンホールの規模の推移(2020 年 7 月~2020 年 12 月) 実線は2020年、破線は最近10年間(2010~2019年)の平均値、陰影部の上端と下端は、同期間の最大(最高)値と最小(最低)値を示す。また、面積の図の横直線は南極大陸の面積、領域最低オゾン全量図の横直線はオゾンホールの目安である220 m atm-cmを表す。NASA提供の衛星データをもとに気象庁で作成。

(出典) 気象庁提供

月平均オゾン全量・日別オゾン全量(南極昭和基地の地上観測)

南極オゾンホールが大きな規模を維持して例年になく長期間継続した2020年の南極昭和基 地でのオゾン全量、オゾン分圧の鉛直分布を、オゾンホールが極端に小規模で短期間に留ま った状況だった2019年と比較して示す(図1-3-9)。

オゾンホールの季節に相当する8~12月における南極昭和基地の2019年の月平均オゾン全量 (図1-3-9a)は1994~2008年の平均値と比較して全ての月で多かった。これは2019年の南極 オゾンホールの面積が小さく推移し消滅も早く、南極昭和基地がオゾンホールの境界や外側 に位置することが多かったことが原因である(図1-3-10上段)。2020年の南極昭和基地上空 の月平均オゾン全量(図1-3-9b)は、1994~2008年の平均値と比較すると、1~4、8月に多 くなった。1~4月は前年(2019年)の南極上空におけるオゾン層破壊の規模が小さかった影 響と考えられる。8月は南極昭和基地が極渦の外にあったことで、極渦内でのオゾン破壊の影 響を例年より受けづらかったことが要因として考えられる。一方、例年であれば南極オゾン ホールが消滅する時期にあたる11、12月の月平均オゾン全量は少なく、観測開始(1961年) 以来、11月はその月として1番少なく、12月はその月として2番目に少ない値となった。11 月、12月にオゾン全量が少なかったことは2020年の南極オゾンホールが11月以降も大きな面 積を維持したまま推移したことに加え、観測史上最も遅い消滅となった12月下旬まで、南極 昭和基地がオゾンホールの内側に位置することが多かったことによる(図1-3-10下段)。

a)2019年およびb)2020年のオゾン全量。丸印はそれぞれの年の月平均値。点線はオゾンホールが出現する以前の1961~1980年の平均値。折線(実線)は1994~2008年の平均値で、縦線はその標準偏差である。 (出典)気象庁提供

2020年

図 1-3-10 2019 年ならびに 2020 年の 9~12 月の南半球月平均オゾン全量の分布図 上段が 2019 年の、下段が 2020 年の月平均オゾン全量の推移。図中、▲は南極昭和基地の位置である。

次に、南極昭和基地で観測したオゾン全量の日代表値(日別オゾン全量)の推移を見ると、2019 年は9月からオゾンホールの消滅(11月10日)までの期間のオゾン全量は南極オゾンホールの目安 である220m atm・cmより大きな値で推移し、特に9月中旬は参照値期間(1994~2008年)の最大 値より大きくなった日が多かった(図1-3-11)。これは、南極昭和基地がこの期間、オゾンホール の外側に位置していることが多かったためである。なお、9月下旬から10月中旬までは南極昭和基 地はオゾンホールの境界付近に位置したため、断続的に220 m atm・cm程度のオゾン全量となる日 もあったが、参照値期間の最大値付近で推移する日も多かった。

2019年とは対照的に 2020年は、オゾンホールが大規模な状態が例年になく長期間安定して存在していたことを受け、南極昭和基地がオゾンホールの内側に位置することが多かった。そのため、2020年の 9月中旬から 12月中旬までの期間の南極昭和基地におけるオゾン全量は南極オゾンホールの目安である 220m atm-cm を下回る日が多く、また参照値期間の最小値付近で推移する日も多かった。特に 11月、12月は参照値期間の最小値を下回る日もあった(図 1-3-11)。

図 1-3-11 南極昭和基地における日別オゾン全量の推移 ●は観測値(日代表値)。陰影部の上端と下端は参照値期間(1994~2008年)の最大及び最小値。横破線はオ ゾンホールの目安である220m atm-cmを示す。

(出典) 気象庁提供

令和2年度監視結果報告(オゾン層)

2020年8月から2021年1月における南極昭和基地の月平均オゾン分圧の高度分布を図1-3-12 に示す。8月は南極昭和基地が極渦の外に位置していたため、極渦内でのオゾン破壊の影響を受 けにくく、14~17kmの高度域で参照値に比べて高いオゾン分圧が観測された。一方、9月以降は、 南極昭和基地は南極オゾンホールの内部に位置することが多く、9月の月平均オゾン分圧は、参 照値(1994~2008年平均値)並であった。更に10~12月の期間でもオゾンホールは南極大陸上 空にほぼ円形に安定して位置していたため、南極昭和基地はオゾンホール内部に位置することが 多かった。そのため、10~12月の期間のオゾン分圧は高度約15~25kmで参照値より低くなっ た。特に10月は高度18km付近のオゾン分圧がゼロに近い状況になった。11月から12月も高度 約15~25kmで例年に比べ低いオゾン分圧が観測されたことは、11月以降も極渦内の低温領域が 比較的長く維持され、オゾン層破壊を促進させる極成層圏雲が例年より長く維持されたことと、 極渦の大きさが小さくなりつつも勢力を維持し、中緯度の高濃度オゾンの渦内への流入が抑えら れたためと考えられる。オゾンホールの消滅(12月28日)後となる2021年1月の月平均オゾ ン分圧は参照値並みとなった。

図 1-3-12 2020 年 8 月~2021 年 1 月の月平均オゾン分圧の高度分布グラフ(南極昭和基地) 太実線:観測値の月平均値。細実線:月の参照値(1994~2008 年平均)、横細実線:参照値の標準偏差。細破線: オゾンホールが明瞭に現れる以前の月平均値(1968~1980 年平均)。オゾン分圧(横軸)が高いほど、その層の オゾン量が多いことを示す。(出典)気象庁提供

^{* 「}オゾン層・紫外線の年のまとめ(2011年)」までは、南極下部成層圏として 30hPa の気温データを用いていた。しかし、WMO の報告等では 50hPa のデータが用いられることが多く、最大オゾン欠損量との相関も良いことが確認されているため、「オゾン層・紫外線の年のまとめ(2012年)」よりこれを用いている。

(b) オゾン全量の経年変化

オゾンホールの経年変化(衛星データ)

最盛期(9~10月)のオゾンホールの規模を表す3要素(年最大面積、年最低オゾン全量、年 最大オゾン欠損量(破壊量))、オゾンホール出現期間全体のオゾンホール規模の指標として のオゾンホール面積の年積算値、ならびにオゾンホールの消滅日の経年変化(1979~2020年) を図1-3-14に示す。

南極オゾンホールの規模は3要素のいずれにおいても1980年代から1990年代半ばにかけて 急激に拡大したことが認められる。一方、1990年代後半以降は、年々変動による増減はあるも のの、長期的な拡大傾向はみられなくなった。また、南極オゾンホールの年最大面積とオゾン 欠損量は、2000年以降、統計的に有意な縮小傾向となっている。

オゾンホール面積の年積算値はオゾンホールの出現期間全体を通してオゾンホール面積が どの程度の規模であったかを示す指標であるが、最盛期以外の時期の極渦の偏在や下部成層圏 気温の状況をもたらす気象要因の影響を受けやすいため、年々変動が大きい。2020年のオゾ ンホール面積の年積算値は過去最大であった。これは、2020年のオゾンホール年最大面積は 過去最大規模であった2000年や2006年(共に約3,000万km²)に比べると小さい(2,480万 km²)ものの、11月もオゾンホール面積がその時期として例年以上に大きい状況が続き、過去 最も遅い時期のオゾンホール消滅となった12月下旬まで、その時期としては例年以上の面積 を維持していたためである。

オゾンホールの消滅日は、オゾンホールの消滅する 11 月や 12 月の極渦の状況が影響してい ると考えられる。2000 年代と比較すると、近年は早く消滅する傾向があるが、2020 年は 2008 年と並び最も遅くなった。

「オゾン層破壊の科学アセスメント:2018」(WMO,2018)では、南極オゾンホールは今後 次第に縮小する見込みであり、南極オゾンホールが発生する春季のオゾン全量が1980年の水 準に回復するのは2060年代と予測している。

32

1979~2020年の(a)オゾンホール年最大面積、(b)最低オゾン全量、(c)オゾン欠損量の年極値、(d)オゾンホール面 積の年積算値、(e)オゾンホールの消滅日の経年変化。いずれの図もNASA提供の衛星データをもとに作成(主に TOMS/OMI/OMPSデータを使用。1995年のみTOVSの高分解能赤外放射計のデータを使用)。(d)年積算値の1993 ~1996年はデータが十分得られていないため、面積を求めていない。(a)横破線は南極大陸の面積、(b)横破線はオ ゾンホールの目安である220m atm-cmを表す。(e) 1997~1998年は消滅時のデータが欠測であるため欠測期間を エラーバーで記している。(a)、(c)の直線は2000年以降の統計的に有意な変化傾向を示している。

(出典) 気象庁提供

(参考) 南極オゾ	ンホールの規模の定義
オゾンホールの規模の	の目安として、オゾンホールの面積、最低オゾン全量、オゾン欠損量(破壊量)の3要素が以
下のように定義され	ている。
オゾンホール面積	: 南緯45度以南でのオゾン全量が220m atm-cm以下の領域の面積
最低オゾン全量	: オゾンホール内のオゾン全量の最低値
オゾン欠損量	: 南緯 45 度以南のオゾン全量を 300m atm-cm(オゾン全量の地球規模の平均値) に回復さ
	せるために必要なオゾンの質量

月平均オゾン全量の経年変化(南極昭和基地上空)

オゾンホールの縁辺となることが多い南極昭和基地における9~12月の平均オゾン全量の経 年変化を図1-3-15に示す。各月ともオゾン全量は、1980年頃から長期的に減少し、1990年代半 ば以降は減少傾向がみられなくなったものの、少ない状態が継続している。なお、2002年の10 ~11月にオゾン全量が大きく増加しているのは、9月下旬に南極域で大規模な成層圏突然昇温 が発生し、成層圏の気温が上昇し、高濃度オゾンが流入したためオゾン層破壊の規模が小さか ったことによる。

また、2009年の11月にオゾン全量が多かったのは、南極渦が南米南端方面に移動して3週間 ほど停滞し、南極昭和基地がオゾンホールの外に位置することが多かったためである。逆に、 南米南端ではオゾンホールの内側に位置することになり、紫外線量が増加した。(de Laat et al., 2010)

2019年の9~12月のオゾン全量は全ての月で例年に比べて多かった。これは2019年のオゾン ホールの規模が特異的に小さく、更に極渦も偏在していたため南極昭和基地は9月以降のほと んどの期間オゾンホールの外側に位置していたためである。一方、2020年は9月の平均オゾン 全量は最近10年間の平均値と同程度であったが、10~12月は最近10年間の中で最も少ない値 だった。これは極渦が11月中旬までほぼ円形で安定しており、南極昭和基地は概ねオゾンホー ルの内側に位置していたこと、更に11月以降においても極渦の大きさは小さくなりつつも勢力 を維持し、南極昭和基地が極渦の内側に位置することが多かったためである。

図 1-3-15 南極昭和基地における月平均オゾン全量の経年変化(毎年 9~12 月) (出典)気象庁提供

(c) 高度分布のトレンド

南極昭和基地上空におけるオゾンゾンデ観測による高度別オゾン分圧のトレンドを図1-3-15に示す。

オゾン層の破壊が進んだとみられる1979~1996年の長期変化傾向(10年あたりの変化率 (%))を通年(図1-3-16(a))と南極オゾンホールが発生する9~11月の春季(図1-3-16(b)) で示す。この結果によると、通年では高度約10~20kmで有意な減少傾向を示し、特に15kmの 減少率が大きい。春季では、通年よりもさらに減少率が大きく、また高度約22kmでも有意な 減少傾向を示している。これらの減少率が大きい高度は、極渦内におけるオゾン破壊の影響が 大きい下部成層圏にあたるため、南極昭和基地上空のオゾン分圧の減少は南極渦内で起こった 化学的なオゾン破壊の影響が考えられる。

また、2000~2018年の長期変化傾向(10年あたりの変化率(%))の高度分布を通年(図1-3-16(c))、9~11月の春季(図1-3-16(d))で示す。これらの結果によると、通年では全高度で 大きな増減はみられず、また統計的に有意な増減もなかった。春季では高度約15~18km付近 で、統計的に有意ではないが、高い増加率となっていた。

このように、南極オゾンホールの規模が顕著になった1980年頃から1990年代半ばにかけて、 南極昭和基地上空10~25km付近のオゾン分圧は大きく減少した。2000年以降、同高度での回 帰直線から求めたオゾン分圧の増加率は正となっているが、統計的に有意な増加傾向とはなっ ていない。

35

図1-3-16 南極昭和基地上空のオゾン分圧の高度別トレンド

●印はオゾンゾンデ観測から求めた高度別オゾン分圧のトレンド。上段(a)、(b)は、1979~1996年における オゾン分圧の変化傾向(%/10年)、下段(c)、(d)は、2000~2018年におけるオゾン分圧の変化傾向(%/10 年)を示しており、月別平均値から季節変動および既知の自然変動による影響を除去した時系列データの回 帰直線から求めた。横軸は変化量、縦軸は高度。外側の折線は95%信頼区間の範囲。左(a)(c) (通年)は 月別値(1~12月)から、右(b)(d)が春季(9~11月)の月別値から求めた。なお、(a)、(b)の期間のオゾ ンゾンデ観測について、対流圏の値は精度検証できていないため描画していない。実線は対流圏界面の目安 を示す。

(出典)気象庁 オゾン層・紫外線の年のまとめ(2018年)

3-2-2. 北半球高緯度域のオゾン層の状況

北半球高緯度域でも、南極オゾンホールほど大規模ではないものの、オゾンの少ない領域が 現れることがある。北半球高緯度域のオゾン層の状況に関して、2020年のオゾン全量、及びオ ゾン層の推移は以下のとおりである。

(a) 2020 年の北半球高緯度域のオゾン層の状況

衛星観測によれば、2020年春季の北半球高緯度では、これまで北半球において確認されたオ ゾン層破壊の中でも特に顕著であった2011年の春季と同程度かそれ以上に顕著なオゾン層破 壊が観測された。2020年3月の月平均オゾン全量分布とオゾン全量偏差分布を、3月の月平均オ ゾン全量が最近10年間の平均値と同程度であった2019年ならびに顕著なオゾン層破壊が観測 された2011年の月平均オゾン全量分布とオゾン全量偏差分布と合わせて図1-3-17に示す。2019 年3月は北アメリカ大陸北部を除く北半球高緯度の広い地域で正偏差が認められたが、2020年 3月は2011年と同様に北極点付近にオゾン全量が特に少ない領域が存在しており、北半球高緯 度全域の広い範囲で負偏差となった。更に2020年は2011年には見られなかった250 m atm-cm 以下の領域も観測されており、一時的に南極オゾンホールの目安である220 m atm-cmを下回 る日もあった。-20%以上の負偏差となっている領域の範囲も2011年と同程度かそれ以上に及 んでおり、また極付近を中心に広い範囲で-30%以上の負偏差となり、-40%以上の負偏差も みられた。これは北極域上空の極渦が例年になく長期間安定で、オゾン量の多い周辺大気の輸 送が制限されたことに加え、極域成層圏雲が出現するような気温の低い状況が冬季から春季に かけて長期間継続したためと考えられる。

2011年3月のオゾン全量偏差

2011年3月のオゾン全量

2019年3月のオゾン全量偏差

2019年3月のオゾン全量

月平均オゾン全量の等値線間隔は15 m atm-cm、偏差の等値線間隔は5 %。北極点付近の白色域は太陽 高度角の関係で観測できない領域。比較の基準は1997~2006年の月別累年平均値。図は米国航空宇宙 局(NASA)提供の衛星観測データをもとに気象庁で作成。

(出典)気象庁HP「オゾン層・紫外線の年のまとめ」

北半球高緯度の下部成層圈(北緯 60 度以北 50 hPa 面)における 2019 年 7 月~2020 年 6 月の最低気温を、前年の同時期(2018年7月~2019年6月)と比較すると、12月下旬から4 月にかけて明らかに低い温度で推移した。2019 年春季(図 1-3-18(a)、上段)は、2018 年 12 月下旬から最低気温が急激に高くなり(成層圏突然昇温)、3月上旬まで概ね平均値より高く推 移し、それ以降、4 月中旬から下旬にかけて平均値より低い時期を除くと概ね平均値と同程度 で推移した。一方、2020 年春季(図 1-3-18(a)、下段)は、1 月中旬まで累年平均値と同程度 で推移していたが、1 月下旬から低くなり、4 月下旬まで、大規模なオゾン層破壊が確認され た 2011 年春季と同程度の低さで推移した。また、極成層圏雲出現の目安である-78℃以下の領 域は、2019 年春季(図 1-3-18(b)、上段)は 2018 年 12 月下旬の成層圏突然昇温以降は存在し なかったのに対し、2020 年春季(図 1·3·18(b)、下段)におけるその領域の面積は1月中旬ご ろまでは過去の平均の標準偏差の範囲内で推移した後、1月下旬から過去の平均を超える大き い状態になった。その後、2月上旬に大きく変動した後、2月中旬から3月下旬までは過去の 最大の大きさと同程度かそれを上回る状況が続いた。低温領域の面積が過去最大規模で維持さ れ、オゾンホールと同様のオゾン破壊反応が進行したことと、極渦が安定でオゾン量の多い周 辺大気の輸送が制限されたことが、2020年春季の北極域での大規模なオゾン層破壊の要因と 考えられる。

北緯60度以北の高度約20kmにおける日別の最低気温の推移。陰影中の実線は、7~12月は1979~2018年、1 月~6月は1979~2019年の平均値。陰影外の細実線は同期間の最高(最大)値及び最低(最小)値。ただ し、気温が-78℃以下の領域の面積の最小値は一年を通して0km²である。陰影は標準偏差の範囲。上図中の 横の破線は極成層圏雲出現の目安である-78℃。

(出典) 気象庁提供

(b) 北半球高緯度域のオゾン層の経年変化

北半球高緯度域のオゾン層の状況をみるために、北半球高緯度域の3月の月平均オゾン全量 偏差を図1-3-19に示す。衛星観測(TOMSおよびOMI)データによると、北半球高緯度は概ね 1990年以降オゾン全量が少ない状態が続いており、顕著なオゾン層破壊も複数年観測されてい る。特に1997年、2011年、2020年は顕著に少なかった*。北半球高緯度に位置する観測点の一 つであり1970年から観測が継続されている英国のラーウィック(北緯60度、西経1度)におけ る地上観測データでも、1990年以降にオゾン全量が少ない状態が続いていることや顕著なオゾ ン層破壊が観測される年が存在することなど衛星観測データと同様の変化が認められる[†]。

1997年、2011年、2020年の顕著なオゾン全量の減少は、下部成層圏気温が低く、比較的規 模の大きなオゾン層破壊が起こったことが要因と考えられる。また2020年は1997年と同様に、 円形に近い安定な極渦がほぼ北極を中心に位置し、オゾン量の多い中緯度域からのオゾンの輸 送が少なかったことも顕著なオゾン層破壊が発生した大きな要因の一つと考えられる。

しかしながら、北半球でのオゾン層破壊は南極オゾンホールほど大規模とはなっていない。 例えば、北半球高緯度での過去最大規模のオゾン層破壊だった2020年春季の北半球高緯度では オゾン全量が南極オゾンホールの目安である220 m atm-cmを下回った日もあったものの、220 m atm-cm以下の領域の範囲は南極オゾンホールの面積に比べて極めて限定的であり、また220 m atm-cm以下の領域の持続期間も南極オゾンホールの期間に比べると極めて短期間であった。 北半球高緯度でのオゾン層破壊が南極オゾンホールほど大規模には至らないのは、もともと春 季の北半球高緯度上空のオゾン量が春季の南極上空のオゾン量に比べて多いこと、北半球高緯 度上空の気温が南極域上空に比べ高く、北半球高緯度上空ではオゾンホール形成に必須の極成 層圏雲が発生するのに必要な低温領域の範囲が南極域上空に比べ小さい(図1-3-13の右図と図 1-3-18(b)の下図を比較)ため、極成層圏雲上での化学反応の進行が南極オゾンホールに比べて 限定的であること、更には大気の流れが南極上空に比べて複雑で極渦が持続的に安定に存在す ることが難しく、周辺領域からのオゾンの輸送の影響を受けやすいたためである。

^{* 1995} 年及び 1996 年には TOMS データがないが、SBUV/2 のデータを用いた解析によると、両年ともに春季に オゾン全量の大規模な減少が観測されている(NOAA, 2005)

^{*} 衛星観測データは北半球高緯度域の緯度平均されたオゾン全量偏差であるのに対し、地上観測(ラーウィ ック)データは一地点の観測に基づくデータであるため、衛星観測と地上観測(ラーウィック)のデータに 基づくオゾン全量偏差の変動の傾向が一致しない年もある。

●印はNASA提供のTOMS、OMIをもとに作成した北半球高緯度(北緯60度以北)域の3月の平均オゾン全量 (1979~1989年の平均値)からの偏差。なお、1995、1996年はTOMSデータがない。○印は、ラーウィッ ク(英国、北緯60度、西経1度。世界オゾン・紫外線資料センター(WOUDC)公開のデータを使用)の3月 の平均オゾン全量の1979~1989年の平均値からの偏差を示す。(出典)気象庁提供

3-3.我が国におけるオゾン層の状況

(a) 2020年の日本上空の月別オゾン全量

気象庁で観測しているオゾン全量の2020年における月平均値の推移を図1-3-20に示す。 2020年の状況については1994~2008年の平均値からの差が平均値算出期間の標準偏差以内 のときを「並」、それより大きい時を「多い」、それより小さい時を「少ない」とした。

1994~2008年の平均値と比べると、2020年のオゾン全量の月平均値は、札幌では、5、6、 8月に少なく、観測開始(1958年)以来、5月はその月として3番目に少なく、8月はその月とし て2番目に少ない値となった。つくばでは、4月に多く、6、8、10月に少なくなった。那覇では、 3、4月に多く、6、7月に少なくなった。観測開始(1974年)以来、3月はその月として3番目に 多く、4月はその月として1番に多い値となった。

これら地点の月平均オゾン全量の多寡は対流圏界面の高度の高低による影響とみられ、札幌の5月はそれに加え、高緯度側からのオゾンの少ない大気の流入の影響も考えられる。(参考 資料13「つくばのオゾン分圧・規格化偏差の高度分布」p89を参照)

国内3地点(札幌、つくば、那覇)における月平均オゾン全量の推移。丸印は2020年の月平均値。折線(実線) は1994~2008年の平均値。縦線はその標準偏差。

(出典) 気象庁提供

(b) 日本上空のオゾン全量のトレンド

オゾン全量の経年変化

札幌、つくば、那覇のオゾン全量の年平均値の経年変化を図1-3-21に示す。なお、この図は 3-1 (b) で述べた既知の自然要因による変動を除去する処理を行っていない(詳細はP19を参 照)。よって、図に見られるオゾン全量の変化には、太陽活動(約11年周期)や準2年周期振 動(QBO)等の自然要因によるオゾン変動の影響が含まれていることに注意する必要がある。

日本上空のオゾン全量は、札幌とつくばにおいて1980年代から1990年代はじめまで減少し た後、緩やかな増加傾向がみられる。また、那覇では1990年代半ば以降、緩やかな増加傾向が 見られていたが、近年はオゾン全量が少ない年が続いている。

つくばにおける最近の5年間(2016~2020年)の平均値はオゾン層破壊現象が顕著に現れる 以前の1970~1980年の平均値と比べ、同程度まで回復しているが、札幌に関しては、依然少な い状況にあり、1970~1980年のレベルには回復していない。

札幌、つくば及び那覇における1993年を中心とした一時的なオゾン全量の減少は、1991年の ピナトゥボ火山噴火にともない、成層圏エアロゾルが増加し、オゾン層破壊が促進されたため に起こったと考えられる。

図 1-3-21 日本上空のオゾン全量の年平均値の経年変化(1958~2020 年) 札幌、つくば、那覇(以上●印)、におけるオゾン全量の観測開始から2020年までの年平均値の経年変化(こ こでは、既知の周期的な自然要因(太陽活動、QBOなど)と相関の高い変動成分を除去していない)。灰色破 線は1970~1980年平均値(那覇は1975~1980年)と最近5年間(2016~2020年)の平均値 (出典)気象庁提供

自然変動要因を除去したオゾン全量の長期変化

国内3地点(札幌、つくば、那覇)の地上観測データを用いたオゾン全量とオゾン層破壊が進んだとみられる1979~1996年までの期間と、僅かな増加がみられる2000年以降の期間の既知の自然変動要因を除去した長期的な変化傾向を図1-3-22に示す。

1979~1996年のオゾン全量は、減少傾向を示していた。特に、札幌とつくばでは有意に減少しており、10年あたりの変化率は、札幌で-4.1%、つくばで-1.2%となった。2000~2018年の国内3地点で有意な増減はみられなかった。

図1-3-22 日本上空のオゾン全量の長期変化傾向

国内のオゾン全量観測による1979年以降のオゾン全量(m atm-cm)。実線は、太陽活動など既知の周期的な自 然要因と相関の高い変動成分を除去した値である。直線は、1979~1996年及び2000~2018年の回帰直線を示 す。上から、札幌、つくば、那覇のデータ。

(出典)気象庁 オゾン層・紫外線の年のまとめ(2018年)

(c) 日本上空のオゾンの高度分布にみられるトレンド

日本上空のオゾンの高度別トレンド

日本上空のオゾン鉛直分布の長期変化傾向をみるため、オゾン層の破壊が進んだとみられる 1979~1996年の変化傾向(10年あたりの変化率(%))について鉛直分布を図1-3-23上段に示 す。解析には、高度約15~22 kmのオゾンゾンデ観測データ、高度約20~42 kmの反転観測デ ータを用いた。札幌では、オゾンゾンデ観測の高度約15~20 kmにおいて、また反転観測の高 度約20~35 kmで有意な減少傾向となり、特に高度約25 km以下において減少率が大きい。つ くばではオゾンゾンデ観測、反転観測ともに高度約20 km以上で有意な減少傾向となり、特に 高度30~42 kmの上部成層圏において減少率が大きい。那覇の反転観測では高度約20~25 km と高度約35~38 kmで有意な減少傾向となった。

2000 年以降(つくばは 2000~2018 年、札幌と那覇においては、2000~2017 年)の変化傾向を図 1-3-23 下段に示す。札幌の反転観測の高度約 25km 以上で有意な増加傾向となった。 つくばでは、反転観測の高度約 32~38km で有意な増加傾向となった。

(a) 1979~1996年の変化傾向(%/10年)

国内3地点(札幌、つくば、那覇)の上空における高度別のオゾン分圧について、(上段)1979~1996年及び(下 段)2000年以降の変化傾向(%/10年)を示している。●印はオゾンゾンデ観測データ、〇印は反転観測データ による。外側の折線は95%信頼区間の範囲。那覇は、1989年より前のオゾンゾンデ観測データがないため、上 段では反転観測の結果のみ示す。上段の期間のオゾンゾンデ観測について、対流圏の値は精度検証できていな いため描画していない。実線は対流圏界面の目安を示す。下段では、つくばにおいては2000~2018年、札幌と 那覇では、2018年1月でオゾンゾンデ観測が終了したため、2000~2017年の変化傾向を示している。 上段、下段ともに季節変動および既知の自然変動による影響の成分を除去している。

(出典)気象庁 オゾン層・紫外線の年のまとめ(2018年)

4. オゾン層の将来予測

4-1. CFC、ハロン等オゾン層破壊物質濃度とその推移

4-1-1. 地表面付近のオゾン層破壊物質濃度の推移

成層圏オゾンを破壊する CFC やハロン等の有機塩素・臭素化合物(ODS:オゾン層破壊物 質)は、地上で放出された後、対流圏から成層圏に輸送され、主に太陽紫外線によって引き起 こされる光化学反応を通して塩素原子や臭素原子ならびに一酸化塩素・一酸化臭素等の無機塩 素・臭素化合物を生成する。これらの原子・分子が ClO_xサイクルや BrO_xサイクルと呼ばれ る連鎖的なオゾン分解反応サイクルの担い手となり、オゾンの消失を促進しオゾン層の破壊を 引き起こす。よって、成層圏中の塩素・臭素量の変化はオゾン層の長期的な変化を考える上で の目安となる量である。(参考資料1.成層圏におけるオゾンの生成と消滅 P61 を参照)

将来のオゾン層の変化予測を行う際に用いた地表面での有機塩素・臭素濃度の変化シナリオ を図1-4-1に示す。地表面でのCFCなどの有機塩素濃度(CCly。破線)は1990年代前半にピー クに達した後、緩やかに減少し、2040年頃に1980年レベルに戻る(図中の縦の矢印)。一方、 ハロンなどの有機臭素化合物を考慮した有機塩素・臭素濃度(太い実線。 図1-4-2と比較しやす いように有機塩素濃度CClyに有機臭素濃度CBryを60倍にした値を加えた総和として示す)で は、1990年代半ばにピークを迎えた後、2010年頃までは有機塩素濃度の変化に比べて濃度の減 少が緩やかなシナリオになっていることが分かる。これはハロン類の濃度増加が2000年過ぎま で続くと想定しているためである。その後、有機塩素・臭素濃度は有機塩素濃度とほぼ同様の 減少傾向を示し、2040年代前半には1980年の濃度レベルに戻る(図中の縦の矢印)とのシナリ オになっている。有機塩素・臭素濃度が1980年代のレベルに戻る時期が有機塩素濃度のみが 1980年レベルに戻る時期に比べて10年程度遅くなっているのは、ハロン類の大気放出がCFC などに比べてより長い期間継続すると想定したことが主な原因である。実際、多くのCFCの大 気中濃度は1990年半ばには減少傾向に転じた(詳細はP113の図2-3-12を参照)のに対し、主な ハロン類の濃度の経年変化に関しては、ハロン-1211が減少傾向に転じたのは2005年頃を過ぎ てであり、ハロン-1301では現時点でも増加傾向が認められている(詳細はP114の図2-3-14を 参照)。

このような有機塩素・臭素化合物の地表面濃度の経年変化は、それらの対流圏内の濃度変化 を起こす。その後、有機塩素・臭素化合物が成層圏へ達し、分解されて無機塩素・臭素化合物 に変わる時、地表面の有機塩素・臭素化合物濃度の変化より数年ほど遅れて成層圏の無機塩素・ 臭素化合物濃度に変化が起こる。その様子を次節で見ることにする。

47

図 1-4-1 オゾン層の長期変化予測数値実験に用いる地表面の有機塩素・臭素濃度の変化シナリオ

太い破線は CFC などの有機塩素(CCly)のみの変化。太い実線は塩素に対する臭素のオゾン破壊効率が 60 倍と仮定して求めた有機塩素・臭素の変化(CCly + 60CBry)。WMO2010のシナリオを元に作成。細い破線 および実線はWMO2018のシナリオを元に作成。細い点線および実線の水平線はそれぞれ有機塩素及び有機 塩素・臭素濃度の 1980 年レベルを表す。(出典)国立環境研究所秋吉英治氏提供データ

4-1-2. 成層圏でのオゾン層破壊物質濃度の推移

成層圏オゾン層破壊に対する寄与の観点から、成層圏に達した有機塩素・臭素化合物が分解 して生じた無機塩素・臭素化合物による塩素・臭素の濃度を表す指標として、等価実効成層圏 塩素(EESC。詳細は第1部3・1 (b)(P19)脚注を参照)が提唱されている。これは、臭素が関 与するオゾン分解反応サイクルの効率が塩素のサイクルに比べて約60倍高いことを考慮して 臭素量を塩素量に換算することで求められた成層圏での塩素・臭素濃度である。地表から対流 圏を経て成層圏へ輸送された塩素・臭素は、成層圏での大気の流れによって、地球規模の平均 で3~7年程度かけて成層圏の様々な場所に運ばれる。したがって、成層圏中の塩素・臭素濃度 は3~7年程度さかのぼった対流圏濃度を反映することになる。つまり、オゾン層における塩素・ 臭素濃度が1980年レベルに戻る時期は、地表面や対流圏における有機塩素・臭素濃度が1980年 レベルに戻る時期とは必ずしも一致しない。

これらの大気の輸送時間を考慮して推定された中緯度上空及び極域上空での EESC の推移 の将来予測を図 1-4-2 に示す。まず、図 1-4-1 の実線で表された地表面の有機塩素・臭素化合 物濃度の変化と比べると、そのピークが数年ほど遅れていることが分かる。更に、EESC のピ ークは中緯度では 1990 年代後半にあるのに対し、極域では 2000 年頃になっている。また、 EESC が 1980 年レベルにまで減少するには、中緯度では 2050 年頃、極域では 2065 年頃まで の期間を要することが分かる(最新の WMO2018 によると、EESC が 1980 年レベルまで減少 する時期は、中緯度では 2049 年、南極域では 2076 年と見積もられている。)

図 1-4-2 中緯度及び極域下部成層圏における等価実効成層圏塩素の推移

対流圏で放出された塩素・臭素が成層圏に輸送された後、中緯度成層圏並びに極域成層圏まで輸送される時間 (成層圏大気滞留時間とも呼ばれる)を、それぞれ3年並びに6年として算出。それぞれの領域でのEESCの 推移は1980年の値との相対値の推移として示されている。

(出典) Scientific Assessment of Ozone Depletion: 2006 (WMO, 2007) より作成

4-2. 温室効果ガス濃度の増加とオゾン層への影響

4-2-1. 温室効果ガス濃度の推移

オゾン層破壊が塩素・臭素濃度のみで決定されるのであれば、オゾン層の破壊は図 1-4-2 の 曲線に対応して、中緯度では 1990 年代後半をピークに、また極域では 2000 年代前半をピー クに減少しはじめ、中緯度では 2046 年頃に、また極域では 2073 年頃には 1980 年レベルまで オゾン層が回復することが期待される。しかし、成層圏の大気の組成は、オゾン層破壊物質だ けでなく二酸化炭素 (CO₂)、メタン (CH₄)、一酸化二窒素 (N₂O) などの温室効果ガス (GHG) の濃度も 1980 年代に比べて変化している。そこで、WMO 科学評価パネルでは、想定される オゾン層破壊物質や GHG の濃度変化シナリオの下でオゾン層の将来変化予測が行われた。将 来予測には、気候変化を含む成層圏の力学過程、化学過程をモデル化した三次元化学気候モデ ルが用いられた。モデル予測に使用された有機塩素化合物 (CCly)、二酸化炭素 (CO₂)、メタ ン (CH₄)、一酸化二窒素 (N₂O) の地表濃度の推移シナリオの例を図 1-4-3 に示す。(図中の CCly 曲線は図 1-4-1 のものと同じ)

CCly は図 1-4-1 と同じ。CO₂、CH₄、N₂O は、RCP6.0 シナリオ*を元に作成。 (出典)国立環境研究所秋吉英治氏提供データ

^{*} RCP シナリオとは気候予測を行う際に、放射強制力のいくつかの上昇レベルに対応した温室効果ガスなどの 代表的濃度経路のシナリオのこと。図 1-4-7 を参照のこと

4-2-2. CO₂ 濃度の増加とオゾン層破壊の関係

オゾンの生成が活発な成層圏中上部における主要なオゾン分解反応である酸素原子とオゾ ンとの反応は、気温が下がると反応が遅くなる性質を持っているため、気温の低下はオゾン量 の増加をもたらす。一方、オゾン量の増加はオゾンの光化学反応によって成層圏をより加熱す る(気温を上げる)方向に働くことで、オゾンの分解速度を加速し、オゾンの増加を抑える方 向にフィードバックされる。その結果、オゾン量の増加はある程度抑制される(参考資料 1. 成層圏におけるオゾンの生成と消滅 P61 を参照)。この様な気温の変化によるオゾン量の変化 とその変化率に対するフィードバックの存在は広く成層圏全体に当てはまる。

一方で、南極オゾンホールで代表されるような極成層圏雲上での不均一反応が重要となって くる極域の下部成層圏では、気温変化とオゾン層破壊の関係は、上述の状況とは異なってくる。 極域の下部成層圏での大規模なオゾン層破壊にとって重要となる極成層圏雲の生成には、冬季 から春先にかけての気温が-78°C以下の低温になることが不可欠である。また一般に、気温 の低い領域が広範囲に存在する方がオゾン層破壊は大きく、極成層圏雲が生成し得る低温の期 間が長いほどオゾン層破壊も長期化する。この様に、極域下部成層圏の春先のオゾン層破壊で は、成層圏中上部に存在する気温を介したフィードバックは機能せず、オゾン層破壊の規模は、 極成層圏雲が生成し得る低温の領域の大きさや低温期間の持続性に依存する。

成層圏において GHG は、対流圏とは異なって、赤外線を宇宙に向けて放射することで成層 圏大気を冷却する働きを持っている。GHG の中でも CO₂は最も濃度が高く、成層圏における CO₂の増加は成層圏気温の低下に最も大きな影響を及ぼす。先に述べた通り、成層圏気温の低 下は成層圏 (特に上部成層圏)でのオゾン分解反応を減速させ、オゾン濃度の増加をもたらす。 CO₂増加によって成層圏気温が低下することでオゾン量の増加の効果は、オゾン分解反応に対 する酸素原子とオゾンの反応の寄与が大きい上部成層圏で最も顕著に表れることが予想され る。一方、極域成層圏では、気温の低下は極成層圏雲の生成を促すことでオゾン分解反応を加 速する可能性がある。

51

4-2-3. CO2以外の温室効果ガス濃度の増加とオゾン層の関係

前節で述べた通り、温室効果ガスのうち最も濃度の高い CO2の増加は、赤外線を宇宙に向け て放射することによって、成層圏気温の低下をもたらし、その結果オゾンの生成・分解速度に 影響を及ぼす。これに対し、CO2以外の主要な GHG である CH4 や N2O は CO2に比べ濃度が 低く、CH₄やN₂Oの濃度の増減が成層圏気温に与える影響は小さい。しかし、CH₄やN₂Oは 成層圏での光化学反応によってオゾン分解サイクルに関与する活性種 HO_xや NO_x*のソース ガスである(参考資料1P61 を参照)。更に CH4 は、塩素原子を不活性化(塩化水素に変換) する役割も担っている。また CH4 は NO_xを触媒としたオゾン生成**にも関与する。したがっ て、CH4や N2O の濃度の増減は、成層圏におけるオゾンの生成・分解反応の効率に複雑に影 響を及ぼすと考えられている。今後の GHG の排出量の変化がオゾン層に与える影響について、 経度方向に平均化された二次元モデルを用いた数値実験からは、北半球中緯度では、N2Oの増 加は成層圏でのオゾンを減少させることで、オゾン層の回復を遅らせる方向に働く。一方、CH4 の増加は結果として成層圏のオゾンを増加させる方向に働くことが示された(Chipperfield と Feng, 2003 及び WMO, 2007, 2015)。ただし CO₂, CH₄, N₂O のオゾン層への影響の大きさは、 今後これらの温室効果ガスがどの程度放出されるかに依存する。CO2は、その放出量が大きい ほどオゾン層の回復を早める効果が大きい。N2O はその放出量が大きいほど回復を遅らせる効 果が大きい。逆に CH4 はその放出量が大きいほど回復を早める効果が大きい。なお、CH4 は N2Oとは異なり、対流圏オゾンの生成にも関わるため、CH4の放出量の変化に対しオゾン全量 は、成層圏オゾン量の変化だけでなく、対流圏オゾン量の変化の影響も受けて変化する $(WMO2018)_{\circ}$

^{*} HO_aや NO_aの定義(説明)については、第1部参考資料1(本文 P61)を参照。

^{**} 成層圏下部ならびに対流圏では、CH₄の大気酸化反応 [CH₄ + 4O₂ + 4NO \rightarrow CO₂ + 4NO₂、4 (NO₂ + O₂ + hv \rightarrow NO + O₃)] によって光化学的にオゾンが生成される。

4-3. 化学気候モデルを用いたオゾン層の将来変化予測

成層圏のオゾン濃度や分布は、着目する領域において化学反応によって生成・消失するオゾン量と、他の領域からその領域に輸送されてくるオゾン量並びに他の領域に輸送されるオゾン 量(オゾンの輸送量)に依存する(詳細は第1部1-1(P9)を参照)。

オゾンの生成並びに消滅に関わる化学反応の起こりやすさは、気温に依存する。一方、成層 圏ではオゾンの太陽光吸収が主要な熱源になっており、オゾン濃度の変化は気温の変化につな がる。さらに、オゾンの輸送量も成層圏の気温分布と相互に関係している。

そこで、成層圏での化学過程(オゾンの生成や消失)、物理過程(オゾンの輸送)、並びに放 射過程(放射を通した加熱・冷却)の間の相互作用を含んだ「化学気候モデル」(詳細は第1部 参考資料 15(P91~92)を参照)と呼ばれる数値モデルを用いて、オゾン層の将来変化予測が 行われている。

このような化学気候モデルを利用することによって、温室効果気体の増加とオゾン層破壊物 質の減少、両者の影響を取り込んだ将来予測実験が可能になってきている。温暖化とオゾン層 回復に関わるシナリオをそれぞれ別々に扱うような実験もおこなうことにより、温暖化とオゾ ン層回復の特徴がより明確に切り分けられるようになる。特に温暖化実験からは、ブリューワ・ ドブソン循環に代表される大気循環が強化されるという結果が得られており、大気輸送の効果 とオゾンの回復傾向との関連が注目されている。(詳細は第1部参考資料4(P72~73)を参 照)。

(a) 中緯度域のオゾン層の予測

中緯度域(北緯 35 度~北緯 60 度及び南緯 35 度~南緯 60 度)での年平均・緯度平均した オゾン全量の将来予測について、緯度帯(北半球中緯度:北緯 35 度~北緯 60 度、南半球中緯 度:南緯 35 度~南緯 60 度)ごとのオゾン全量の推移を図 1-4-4 に示す。

中緯度域のオゾン全量の長期変化には南北両半球で類似の傾向(2000年過ぎに最も低いレベルに達した後、増加傾向に転じる)がみられる。しかしながら、オゾン全量が1960年レベル(人為起源のオゾン層破壊物質による大規模なオゾン層破壊が起こる前のレベル)に回復する時期は半球間で異なっており、北半球では、2030年頃に、南半球では、2055年頃と予測されている。オゾン全量が1980年レベルに回復するのは、北半球では、2010~2030年頃

(WMO2018 では 2035 年頃)、南半球では 2025~2045 年頃(WMO2018 では 2050 年頃)と なっている。オゾン全量が 1960 年レベルに回復する時期が北半球に比べて南半球で遅くなる のは、オゾンが大きく破壊された南極域の成層圏の空気塊が毎年春に南半球中緯度域に移動す る影響を受けるためである。なお数値モデル予測によれば、南北両半球とも中緯度域でのオゾ ン全量は 21 世紀後半には 1960 年レベルを超える見通しである。このような予測結果となる のは、EESC の減少の影響に加え、GHG (特に CO₂)の増加による成層圏気温の低下(オゾン 分解反応の減速)とブリューワ・ドブソン循環(詳細は第 1 部参考資料 4 (P72~73)を参照) の強化(オゾンを多く含む空気塊の輸送の増加。詳細は第 1 部 4-4 (a) (P58)を参照)によ るものと考えられている。図 1-4-4 の破線は、オゾン層破壊物質(ODS)の放出量を 1960 年 レベルに固定した条件で、GHG の増加の影響のみによるオゾン全量の変化の予測を示す。 GHG の増加によってオゾン全量は 21 世紀末に向かって増加する。また、南半球中緯度では、 実線と破線が 21 世紀末になってようやく近づいてくることから、この頃にオゾン全量が ODS の影響を受けなくなることがわかる。

図 1-4-4 中緯度域におけるオゾン全量の推移予測

1960年を基準としたのオゾン全量の推移の予測。黒点は観測値で、縦線はその標準偏差。太い実線は9つの化学気候モデルによる計算結果の平均であり、薄い網掛け部分は95%信頼区間を示す。太い破線はODSを1960年レベルに固定したものであり、ODSの放出量の変化の影響がない、GHGの増加の影響のみによるオゾン全量の変化の予測を示す。横軸に平行な破線はオゾンホールが顕著に現れ始めた年である1980年のレベルを示している。

(出典) Scientific Assessment of Ozone Depletion: 2010 (WMO, 2011) より作成

(b) 極域オゾン層の予測

図1-4-5に北極域(北緯60度〜北緯90度)及び南極域(南緯60度〜南緯90度)のオゾン全量の推移を示す。

極域で予測されるオゾン全量の推移の傾向は北極域と南極域で類似しており、中緯度域のオ ゾン全量の推移と同様、2000年頃に極小を迎えたあとは、増加に転じ、21世紀末まで増加傾向 が続くと予想されている。一方、北極域と南極域を比較すると、オゾン全量が1980年レベルに 回復する時期や21世紀末のオゾン全量に違いがある。1980年レベルに回復する時期は、北極域 では2020~2035年の間(WMO2018では2030年代)と予測されるのに対し、南極域では21世 紀中頃以降(WMO2018では2060年代)と予測されている。また、21世紀末のオゾン全量は、 北極域では1960年レベルを超えているのに対し、南極域では1960年とほぼ同じレベルである。 この違いは、GHGの増加によって引き起こされるブリューワ・ドブソン循環の強化(詳細は第 1部参考資料4(P72~73)を参照)に伴う極域へのオゾンの輸送量の違いによるものと考えら れている。図1-4-5の破線で示されるように、北極域ではGHGの増加に伴ってオゾン全量が増 加していくのに対し、南極域ではわずかに増加するにとどまっている。また南極域では、今世 紀末に近づいても実線と破線が十分に近づかないことから、この頃になってもオゾン全量は ODSの影響を受けることが予想される。

令和2年度監視結果報告(オゾン層)

1960年のオゾン全量を基準とした場合の推移の予測。左図は北極域の3月、右図は南極域の10月を示す。 黒点は観測値で、縦線はその標準偏差。太い実線は9つの化学気候モデルによる計算結果の平均であり、薄い網掛け部分は95%信頼区間を示す。太い破線はODSを1960年レベルに固定したものであり、ODSの放出 量の変化の影響がない、GHGの増加の影響のみによるオゾン全量の変化の予測を示す。横軸に平行な破線は オゾンホールが顕著に現れ始めた年である1980年のレベルを示している。

(出典) Scientific Assessment of Ozone Depletion: 2010 (WMO, 2011) より作成

(c) 低緯度域のオゾン層の予測

一方、低緯度域(南緯 25 度~北緯 25 度)で予測されるオゾン全量の長期的な変化の様子 は、中緯度域や極域と異なっている(図 1-4-6)。すなわち、オゾン全量は 2000 年過ぎに増加 傾向に転じ、2060 年頃に 1980 年レベルに回復し最大となるが、その後 21 世紀末まで再び減 少すると予測されている。また、低緯度域でのオゾン全量は 21 世紀を通して 1960 年レベルよ りも少ないままである。低緯度域で見られる 21 世紀半ば以降のオゾン全量の推移(再減少) は、上部並びに下部成層圏での異なる振る舞いの結果と考えられている。すなわち、EESC の 減少の影響並びに GHG の増加による成層圏気温の低下(オゾン分解反応の減速)による上部 成層圏でのオゾン濃度の増加の影響に対し、GHG の増加にともなうブリューワ・ドブソン循 環の強化によるオゾン濃度の減少(濃度の低い対流圏大気の輸送が強化されることによる下部 成層圏でのオゾン濃度の減少)の影響が 21 世紀後半には勝るためと考えられている。GHG 増 加のこの効果は、ODS 変化の影響のない計算(図中の破線)によって確認することができる。

1960年のオゾン全量を基準とした場合の推移の予測。黒点は観測値で、縦線はその標準偏差。太い実線は9つの化学気候モデルによる計算結果の平均であり、薄い網掛け部分は95%信頼区間を示す。太い破線はODSを1960年レベルに固定したものであり、ODSの放出量の変化の影響がない、GHGの増加の影響のみによるオゾン全量の変化の予測を示す。横軸に平行な破線はオゾンホールが顕著に現れ始めた年である1980年のレベルを示している。

(出典) Scientific Assessment of Ozone Depletion: 2010 (WMO, 2011) より作成

(d) 温室効果ガスの排出量の違いによるオゾン層の変化の予測

オゾン層の回復時期は、今後の ODS 濃度の変化に依存するともに、緯度帯によっても異な る。更に、4-2-3 節に記載した通り GHG 濃度の変化によっても影響される。GHG の排出シ ナリオとしては、RCP(代表的濃度経路)シナリオと呼ばれている、今後の産業の発展や脱 温暖化・脱炭素に向けた取り組み等を想定した排出シナリオ(図 1-4-7)が利用されている。 WMO2018 では RCP シナリオによる GHG 濃度の変化に基づいて計算されたオゾン層の将来 予測結果がまとめられている(図 1-4-8)。これらの予測結果からは、温室効果ガスの排出量 が大きいシナリオ(RCP 8.5)ほど将来のオゾン全量が増加してオゾン層回復が早まる傾向に あることが分かる。また南北中緯度でのオゾン全量の変化を比較すると、北半球中緯度では オゾン全量の変化は RCP シナリオの違いに依存するのに対し、南半球中緯度では RCP シナ リオの違いによるオゾン全量の変化の違いが顕著ではない。なお本節の(a)と(b)で示された WMO2018によるオゾン全量の 1980年レベルへの回復年は、温室効果ガス排出シナリオの 1つである RCP6.0 シナリオによる最新の予測結果に基づくものである。

図 1-4-7 RCP シナリオに基づく将来の温室効果ガスの濃度変化 RCP history は 1960~2004 年の GHG 濃度の変化。RCP 2.6 ~ RCP 8.5 はそれぞれ、21 世紀末の放射強 制力が 2.6 W/m² ~ 8.5 W/m² に留まるように設定した濃度経路シナリオ。

図 1-4-8 GHG の排出シナリオの違いによるオゾン層の将来変化の予測計算結果(WMO2018) REF-C2 は、ODS は A1 標準シナリオ(WMO 2010)に従って、GHG などは RCP 6.0 シナリオに従って 変化させた場合の将来予測。SEN-C2-RCP45 ならびに-RCP85 は、GHG などを RCP 4.5 シナリオおよび RCP 8.5 シナリオに従って変化させた場合の将来予測(ODS は REF-C2 と同条件)。SBUV MOD は年平 均オゾン全量の実測値。

4-4. オゾン層破壊と気候変化の相互作用

オゾン層破壊と気候変化は相互(オゾン層変化が気候に、気候変化がオゾン層)に影響を及 ぼしあうと考えられる。しかしながら、化学、放射及び大気循環パターンの変化を介して引き 起こされるオゾン層破壊と気候変化の相互作用は複雑であり、そのメカニズムはまだ充分に解 明されているとは言い難い(WMO, 2011、UNEP-EEAP, 2011)。

(a) 気候変化が成層圏過程に及ぼす影響

4-2-3で述べた通り、GHG(特に CO₂)の増加は成層圏の気温を低下させる。成層圏の 気温低下は、4-2-2で述べた通り、オゾン生成が活発な成層圏中上部におけるオゾンの分 解を抑制し、オゾン量を増加させる。一方、極成層圏雲上での不均一反応が重要となる冬季~ 春季の極域下部成層圏では、GHG の増加による気温の低下は、極成層圏雲の生成に必要な-78℃以下の低温条件を作りやすくする方向に働き、極域でのオゾン層破壊を加速する可能性が ある。更に、GHG の増加は大規模な成層圏大気の循環に影響を与えることが指摘されている。 気候モデル*並びに成層圏化学気候モデル計算からは、GHG の増加によりブリューワ・ドブソ ン循環が強まると予測されている。このような循環の強化が起こると、その上昇域にあたる熱 帯でオゾン全量が減少し、下降域にあたるその他の緯度帯で増加するといった非常に重要な結 果をもたらし得る(図 1-4-4、図 1-4-5 及び図 1-4-6(P54~55)参照)。下降域にあたる緯度帯 のオゾン量の増加には、上・中部成層圏における気温の低下に伴うオゾン量の増加が下部成層 圏へのオゾンの輸送量の増加となって表れる、と言ったプロセスも関わっている。これらによ り、下降域にあたる緯度帯では GHG の増加によってオゾン層の回復が早まる可能性がある。 このように、循環の変化は今後のオゾン層の回復時期に影響を与えることが指摘されているも のの、循環強化を引き起こすメカニズムはまだ解明されておらず、循環が強まっているという 事実も観測されていない(WMO, 2011、Engel et al., 2009)。(詳細は第1部参考資料4(P72 ~73)を参照)。したがって、今後の GHG の増加がオゾン層回復時期にどの程度の影響を及 ぼし得るのかについてはまだ不確実な部分が多い。

水蒸気(H2O)もCO2などと同じく、放射を通して成層圏の気温に影響を及ぼす。また同時 に、H2OはHO_xの生成や極成層圏雲をはじめとする成層圏エアロゾルの生成にも関与してい る。そのため、成層圏の水蒸気量の変化は将来のオゾン層の変化を考える上では重要である。 近年の下部成層圏での水蒸気量の気球観測からは、北半球中緯度の下部成層圏(<30km)で 1980~2000年の期間に増加傾向があることが報告されている。なお、1990年代半ば以降の衛 星観測からは、明瞭な増加傾向は認められていない。一方、2000~2001年にかけて中緯度並 びに熱帯の成層圏での水蒸気量の急激な減少が気球観測並びに衛星観測によって観測されて いる。成層圏水蒸気濃度の過去の変動のメカニズムはまだ充分に理解されておらず、将来の気 候変化に伴う水蒸気の変化の予測は容易ではない。

^{*} IPCC の気候変化アセスメントなどに用いられているモデル。

(b) 火山噴火(エアロゾル)がオゾン層破壊に及ぼす影響

火山噴火もオゾン層破壊に影響を及ぼす。噴煙が成層圏にまで達するような大きな火山噴火 が起きると、硫酸を主成分とするエアロゾルが成層圏で増加する。硫酸エアロゾルの増加は、 エアロゾル上での不均一反応を介したオゾン層破壊反応を加速するだけでなく、成層圏の気温 や輸送過程の変化を通しても、成層圏でのオゾン量に影響を及ぼす。特に、低緯度帯で大規模 な火山噴火が起こった場合は、その気温やオゾン層への影響が地球規模で大きくなる。

例えば、1991年6月のフィリピンのピナツボ火山噴火では(火山噴火の影響がない)バッ クグランドレベルに比ベエアロゾル量が数十倍まで増加した。著しいエアロゾル量の増加は南 北両半球で認められ、バックグランドレベルまで減少するのに5~6年を要した。火山噴火後 の数年間にわたって南北両半球でNO2濃度の減少が観測されたが、これはエアロゾルの増加 による不均一反応の加速が原因として説明されている(WMO,1994)前述の通り、硫酸エアロ ゾルの増加に伴う不均一反応の増大はオゾン層破壊も加速すると考えられており、実際ピナツ ボ火山噴火後、北半球では数年間オゾン全量の減少が観測されている。一方、南半球中緯度で は、ピナツボ火山噴火後も顕著なオゾン全量の変化は認められていない。これはエアロゾルの 長波吸収による低緯度下部成層圏の加熱が中緯度成層圏にオゾンを輸送する大気の循環を強 化させたと考えられている。更に、準二年周期振動(QBO)が中緯度オゾンを増加する位相で あったことなども加わることで、南半球中緯度へのオゾンの輸送量が増加し、化学的なオゾン 層破壊の増大の効果を打ち消した結果と考えられている(WMO,2014)。

火山噴火による成層圏エアロゾル量の変化の影響は数年程度であり、オゾン層回復や地球温 暖化問題のような数十年〜数百年という長期的な時間スケールから見れば一時的であるが、現 在のようにオゾン層回復の兆しが僅かながら見え始めた時期に今後オゾン量がどう推移して いくかを見極める場合には、重要な因子である。特にこれまでは、ピナツボ火山噴火のような 大規模なイベントにともなう影響はよく研究されてきたが、最近では比較的小さな火山噴火に 対する影響についても調べられている。例えば、南極域のオゾン全量は2000年〜2014年の期 間において9月に統計的に有意な増加傾向を示したが、2015年にチリで起こった比較的小規 模の火山噴火の影響によってこの年のオゾンホールが拡大したことが報告されている

(Solomon et al., 2016, Bègue et al., $2017)_{\circ}$

また最近では、モンスーン循環にともなうエアロゾルの成層圏への輸送過程が注目されてい る。アジアおよび北アメリカの夏季モンスーン循環は亜熱帯の下部成層圏で低温域をともなっ ており、化学気候モデルによる結果によると、モンスーンの高気圧性循環の南東側で不均一反 応による塩素の活性化が起きているという報告がある(Solomon et al., 2016)。こういった塩 素の活性化は、定量的には必ずしも大きなものではないがオゾンの減少を引き起こしうること が示されている。

(c) オゾン層の変化が対流圏気候に及ぼす影響

オゾン層のこれまでの長期的な変化の中で最も顕著な変化は、南極成層圏でのオゾンホール の形成である。よって、オゾン層の変化が対流圏気候に及ぼす影響に関しても南極域で最も顕 著な影響が現れる可能性が高い。

南極の成層圏で春季にオゾン層が破壊されると、成層圏の気温が低下し、中緯度帯との気温

令和2年度監視結果報告(オゾン層)

較差が拡大して、ジェット気流(偏西風)が強くなる。その影響は1~数ヶ月経って地表にも 及ぶ可能性がある。Thompson と Solomon (2002)では、1969~2000年の間に南極大陸の 中央部から東側にかけて地表気温の低下傾向を、また、1979~2000年の間に南極大陸周辺の 西風が強まっている傾向を示した。このようなオゾン層と地表の風との関係は、化学気候モデ ルにおいても示されている (Son et al, 2008, Son et al., 2010)。

将来、南半球の地表の気温、風がどう変化するかについては、温室効果ガスの増加も影響す る。IPCC の温暖化予測モデルや化学気候モデルによるシミュレーションにより、今後の温室 効果ガスの増加によって南半球成層圏のほぼ全域で偏西風が強まることが予想されている。ま た、化学気候モデルは、今後、ODS 規制が功を奏してオゾン層が回復していった場合は、南極 周辺の偏西風が弱まり、その弱まる領域が成層圏のみならず地表付近まで拡がることを示唆し ている。さらに、このオゾン層回復の影響は、温室効果ガスの影響を上回る可能性も示されて いる (Polvani et al., 2011)。

南半球で、オゾン層の変化を介して地表まで達する偏西風の変化は、地表気温や海洋風成循 環への直接的な影響をはじめ、様々な形で南半球の気候と関係している可能性がある。

60