第2部 特定物質等の大気中濃度

1. オゾン層破壊物質の種類と特性

オゾン層破壊物質

人間活動によって塩素原子や臭素原子を含有するオゾン層破壊物質が排出されている。 これらの物質の多くは、非常に安定で反応性がなく、雨や海水にも溶解しないため、大気 中の寿命が極めて長く、下層の対流圏大気中に蓄積する(大気中寿命の短いものは一部が 大気中に蓄積する)。これらは非常にゆっくりではあるが大気の運動を通じて成層圏に輸 送され、そこでオゾン層で遮蔽されない短波長の太陽紫外線によって分解され、反応性の 高い物質に変換される。生じた反応性物質が、成層圏オゾンを連鎖反応により破壊する。

塩素系オゾン層破壊物質には、主としてCFC、四塩化炭素、1,1,1-トリクロロエタン (別名メチルクロロホルム) があり、影響は小さいがHCFC、塩化メチルなどがある。 CFCは、炭素、塩素及びフッ素原子のみから構成される物質であり、冷凍機や空調機器の冷媒、発泡剤、エアロゾル噴射剤、金属や電子機器の洗浄剤などとして、多くの用途に使われてきた。四塩化炭素はCFCの製造原料として、1,1,1-トリクロロエタンは金属等の洗浄用溶剤として使われてきた。

臭素系オゾン層破壊物質では、反応性や水溶性のないハロンが主なものであり、その他 臭素系の人工物質や臭化メチルがある。ハロンは消火剤として、臭化メチルは農業用薫蒸 剤等として使用されている。

オゾン層保護法における特定物質

「オゾン層を破壊する物質に関するモントリオール議定書」(1987年)によって規制対象とされたオゾン層破壊物質は、「特定物質の規制等によるオゾン層の保護に関する法律」において「特定物質」として規制されている。具体的には、CFC、HCFC、ハロン、四塩化炭素、1,1,1-トリクロロエタン、HBFC、ブロモクロロメタン、臭化メチルである。各物質の特徴と用途については第2部参考資料1(P110)を参照。なお、2016年10月のモントリオール議定書キガリ改正を受けて、2018年にオゾン層保護法が改正され、新たに「特定物質代替物質」としてHFCが規制されることとなった。同法はキガリ改正が発効する2019年1月1日に施行されることから、特定物質代替物質については、次年度以降の報告書において対応されることとなる。

成層圏中の塩素・臭素の発生源

図 2-1-1 は、塩素・臭素を含む主要な物質が 1996 年及び 2012 年の成層圏中の塩素・臭素の全量にそれぞれどの程度寄与しているかを示している。ただし同図では、塩素系化合物 (左)と臭素系化合物 (右)でフルスケールが大きく異なっており、成層圏中の全臭素量は全塩素量の 100 分の 1 以下である。なお、自然発生源の割合は、全塩素よりも全臭素において大きい(量としては塩素系化合物の方がはるかに大きい)。

塩素源については、成層圏に達する塩素のほとんどを人間活動が占める。CFC は人間活動によって排出される塩素系オゾン層破壊物質のうち最も多量にあるものである。塩化メ

チルは大部分が自然発生源である。CFCの代替物質であるHCFCによる塩素系化合物中の割合は小さいが、その大気中濃度は近年急増している。

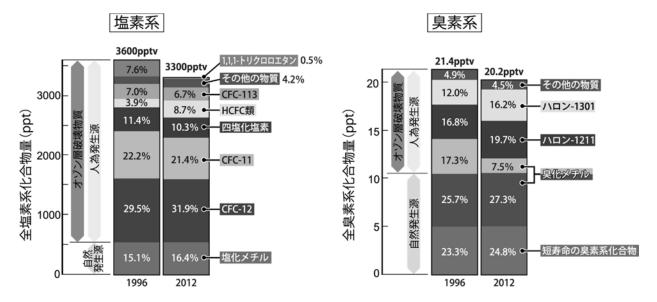


図 2-1-1 1996 年及び 2012 年の成層圏中の塩素・臭素の主要源

大気中のガスの濃度の単位として「1 兆分の1」(ppt)を使用している。1ppt は、1 兆個の大気分子が存在する中に着目するガス分子が1 個の割合で存在することを示す。

(出典) Scientific Assessment of Ozone Depletion: 2014 (WMO, 2014) より

主なオゾン層破壊物質の大気中寿命・オゾン層破壊係数

主なオゾン層破壊物質の大気中の寿命や成層圏オゾン破壊への影響を表2-1-1に示す。個々のオゾン層破壊物質の成層圏オゾン破壊への影響は「オゾン層破壊係数(Ozone Depletion Potential: ODP)」で示されている。個々のオゾン層破壊物質のODP値は一定重量の物質が大気に放出された際のオゾン層への影響を、同量のCFC-11が放出された際のオゾン層への影響との相対値(CFC-11のODP値=1)として、物質ごとに計算される。

		大気中寿命 (年)	オゾン層破壊係数
塩素系	CFC-12	102	0.73
	CFC-113	93	0.81
	CFC-11	52	1
	四塩化炭素(CCl4)	26	0.72
	HCFC	9~18	0.03~0.10
	1,1,1-トリクロロエタン(CH ₃ CCl ₃)	5	0.14
	塩化メチル	1	0.57
臭素系	ハロン1301	72	15.2
	ハロン1211	16	6.9
系	臭化メチル(CH ₃ Br)	0.8	0.57
•	極短寿命ガス(CHBr3など)	< 0.5	b

表 2-1-1 主なオゾン層破壊物質の大気中寿命、オゾン層破壊係数。

(出典) Scientific Assessment of Ozone Depletion: 2014 (WMO, 2015) より

a 人間活動及び自然発生源の両方を含む

b 推計が不確実

2. 特定物質等の観測状況

(a) 大気試料の採取法・分析法

特定物質の分析を目的とした大気試料の採取は、一般に、高真空にした超清浄の金属製容器に大気をそのまま採取するグラブサンプリング法、加圧状態まで試料採取が必要な場合は、メタルベローズポンプを用いて加圧を行い採取する加圧採取法、又は液体ヘリウムで冷却して採取するクライオジェニックサンプリング法により行われる。連続測定装置では、一定量の大気を低温カラムに通し、大気中成分を濃縮捕集する。

特定物質の分析には、ECD (電子捕獲型検出器) がハロゲンに対して比較的高い感度と 選択性を示すことから ECD を備えたガスクロマトグラフ、又は種々の物質が検出できるガ スクロマトグラフ/質量分析計 (GC/MS) が用いられる。

塩素原子や臭素原子を含む特定物質の中には、試料採取容器(キャニスター)、測定装置配管及び標準ガス容器内で化学変化や吸着による影響を受ける物質(四塩化炭素、臭化メチル等)がある。このため測定装置においては、配管のデッドボリュームを極力少なくし、内面に不活性処理を施した配管・部品を使用する事が望ましい。また同様に、特定物質の定量を行う際に不可欠となる標準ガスの安定性についても注意が必要であり、国際的に信頼度の高い研究機関との相互検定も重要である。

(b) 大気試料の採取地点

特定物質の発生源からの局地的な汚染の影響がない大気(バックグラウンド大気)について測定を行うことで、地球規模の特定物質の分布や推移を知ることができる。

日本付近では、北海道の根室、稚内周辺などにおいて、気象条件によって局地的汚染のない北半球中緯度の代表的な大気を採取することができる。

一方、都市部などの発生源に近い場所では、大気中の特定物質の濃度は通常バックグラウンド濃度よりも高い値になる。このような場所での大気中濃度は、時間的にも地域的にも変動が大きく、風向・風速などの気象条件や人間の生産活動サイクル(週末や休日には低くなる)などによって左右されることが多い。

(c) 特定物質の観測体制

我が国では、東京大学において特定物質の大気中濃度を正確かつ精密に分析するための 装置と手法が開発され、1979 年(南極昭和基地については 1981 年)から、特定物質の広 域分布や経年変化の観測が続けられている。

環境省は1988年から北海道及び川崎市で特定物質の観測を開始している。

国立環境研究所では、2004年から、波照間島(沖縄県)で、2006年から落石岬(北海道)において、特定物質を含むハロカーボン類の毎時間連続観測を行っている。

気象庁では、1990年から岩手県三陸町綾里で、また 1990年から観測船「凌風丸」によって北西太平洋における特定物質の観測を行っている。

特定物質等に関する基礎情報

また、多くの都道府県及び政令指定都市においても、1989~1990 年頃から特定物質の大気中濃度の測定が行われている。平成22年4月に環境省が行った調査では、17道府県、7政令指定都市においてオゾン層破壊物質等の観測が行われた(第2部参考資料5(P123)参照)。

オゾン層破壊物質の我が国での大気中濃度は、CFC-11 等減少している物質がある一方、 HCFC-22 等増加し続けている物質もあり、今後も観測を続ける必要がある。

なお、世界において行われているオゾン層破壊物質の大気中濃度観測は、主なものとして、 AGAGE、NOAA、ESRL、UCI などがある。

3. 特定物質等の大気中濃度の監視結果

3-1. 特定物質等の大気中のバックグラウンド濃度の状況

3-1-1. 環境省による観測結果

北海道における特定物質等の大気中のバックグラウンド濃度の経年変化

環境省は、1988年から北海道の根室・稚内周辺において、15 物質の大気中濃度を測定している。測定対象物質は、CFC-11、CFC-12、CFC-113、CFC-114、CFC-115、ハロン 1211、ハロン 1301、ハロン 2402、1,1,1-トリクロロエタン、四塩化炭素(1989年~)、HCFC-22(1992年~)、HCFC-141b(2001年~)、HCFC-142b(1992年~)、臭化メチル(1997年~)、HFC-134a(2000年~)である。

「フロン等オゾン層影響微量ガス等監視調査」について、2015 年度の調査から測定装置、 試料採取方法等を変更した。測定装置の更新では、大気試料濃縮装置における試料導入配管 などでの特定物質の消失の影響が認められたため、配管などのデッドボリュームの削減を 行った。測定装置の更新および改善点の詳細については、参考資料4 (P122) を参照。

測定装置や試料採取方法の更新に伴い、従来の測定との継続性を確認するため、これまでの測定値も含めて定量性の再検討を行い、標準ガス容器内の特定物質などの濃度変化の確認や国立環境研究所内で行われているフロン類の測定の相互検定試験を行った。その結果、調査開始(1989年)から測定装置更新前(2014年)までの CFC-11 の測定値が全て 10ppt 程度低く定量されていることが判明したため、相互検定試験で得られた測定値に基づいて過去(1989年~2014年)の測定値について補正を行った。

測定装置や標準ガスの信頼性が確認出来た段階で、バックグラウンド地域における 2015 年度試料の再測定及び 2016 年度試料の測定を行った。なお、2015 年度夏期試料の再測定の結果、一部の物質(HCFC-22、HCFC-141b、臭化メチル)について異常値となり、原因は大気濃縮装置稼働初期の配管から試料が汚染されたものと考えられたため、15 物質全てについて欠測とした。

(a) 測定対象 15 物質の大気中のバックグラウンド濃度のトレンド

表 2-3-1 は、特定物質等の大気中のバックグラウンド濃度のトレンドについてまとめたものである。

表 2-3-1 北海道における特定物質等の大気中のバックグラウンド濃度のトレンド

(評価期間は原則として 1996年1月~2017年12月)

物質名	平均年間変化量 ⁽¹⁾ (pptv/年)		評価期間 ^② (~現在) (2017年12月)	現在の濃度 ⁽³⁾ (2017 年 12 月) (pptv)
CFC-11	-2.1	± 0.03	1996年1月~	231
CFC-12	-3.0	± 0.10	2006年1月~(4)	515
CFC -113	-0.63	± 0.01	1996年1月~	71
CFC-114 ⁽⁷⁾	-0.02	±0.002	1996年1月~	15.8
CFC -115	-0.007	±0.003	2003年1月~(4)	8.8
ハロン-1211	-0.10	±0.004	2006年1月~(4)	3.6
ハロン-1301	0.02	±0.001	2004年1月~(4)	3.5
ハロン-2402	-0.005	±0.0001	1996年1月~	0.42
四塩化炭素	-1.2	±0.04	1996年8月~(5)	84
1,1,1-トリクロロエタン	-0.8	± 0.05	2010年8月~⑷	1.5
HCFC-22	6.2	± 0.09	1996年1月~	260
HCFC-141b	0.6	±0.02	2000年8月~(4)	28
HCFC-142b	0.8	±0.02	1996年1月~	26
臭化メチル	-0.10	±0.02	2000年1月~(4)	8.2
HFC-134a	5.1	±0.05	2000年8月~(6)	104

※2015年度の調査から測定装置、試料採取方法等を変更した。

- (1) 平均年間変化量には土に続く数値により一定の幅を示したが、これは95%以上の確率で、真の平均年間変化量がこの範囲(95%信頼区間)に収まることを意味する。
- (2) 過去 22 年間 (1996 年 1 月~2017 年 12 月) の調査結果に基づく (CFC-12、CFC-115、ハロン-1211、ハロン-1301、四塩化炭素、1,1,1-トリクロロエタン、HCFC-141b、臭化メチル及びHFC-134aの評価期間については(4)~(6)を参照)。
- (3) 表中の「現在の濃度」とは、回帰式から算出される2016年12月での計算値であり、実測値ではない。
- (4) CFC-12 については濃度の低下が始まったため 2005 年 1 月から、CFC-115 については、濃度の変化傾向が安定した 2003 年 1 月から、ハロン-1211 については、濃度の低下傾向が明らかとなった 2005 年 1 月から、ハロン-1301 については、濃度の変化傾向が安定した 2004 年 1 月から、1, 1, 1-トリクロロエタンについては、濃度の変化傾向が安定した 2010 年 8 月から、HCFC-141b については濃度の変化傾向が安定した 2000 年 8 月から、臭化メチルについては濃度の変化傾向が安定した 2000 年 1 月からをそれぞれ評価期間とした。
- (5) 四塩化炭素については、1996 年 1 月及び同 3 月に測定結果が得られなかったため、1996 年 8 月からを評価期間とした。
- (6) HFC-134a については、測定を開始した 2000 年 8 月からを評価期間とした。
- (7) CFC-114 は異性体(CFC-114a)を含む値とし、平均年間変化量は「CFC-114+CFC-114a」のデータに対する直線回帰から求めた。
- (出典) 環境省 平成29年度フロン等オゾン層影響微量ガス等監視調査より

(b) CFC-11、CFC-12、CFC-113、1, 1, 1-トリクロロエタン、四塩化炭素の大気中のバックグラウンド濃度の変化

図 2-3-1 に CFC-11、CFC-12、CFC-113、1,1,1-トリクロロエタン、四塩化炭素の測定結果を示す。このうち、CFC-11、CFC-12、CFC-113 及び四塩化炭素については、濃度変化を見やすくするために、縦方向(濃度)に拡大したものを図 2-3-2 に示す。図 2-3-2 には測定結果の標準偏差もあわせて示した。CFC-11、CFC-113、四塩化炭素は 1990 年代半ば以降 1 %/年前後の割合で減少している(図 2-3-2)。CFC-12 は 1990 年代後半以降長期間ほぼ横ばいであったが、2006 年頃から減少し始めている(図 2-3-2)。また、大気中での寿命の短い 1,1,1-トリクロロエタンの減少率は極めて大きい(図 2-3-2)。

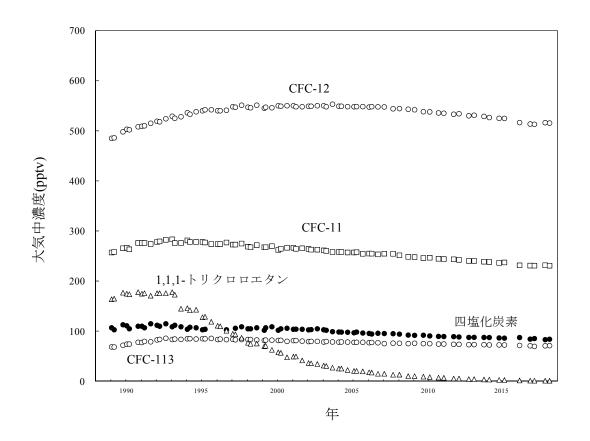


図 2-3-1 北海道における特定物質の大気中のバックグラウンド濃度の経年変化 ※口絵 IV 参照。

※2015 年度の調査から測定装置、試料採取方法等を変更した。 (出典) 環境省 平成 29 年度フロン等オゾン層影響微量ガス等監視調査より

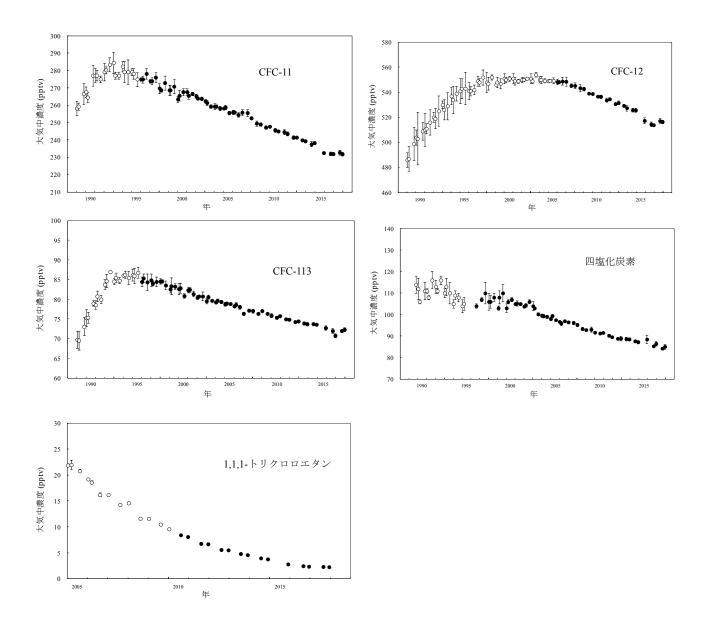


図 2-3-2 北海道における CFC-11、CFC-12、CFC-113 及び四塩化炭素の大気中の バックグラウンド濃度の経年変化

※図中の各点につけた短い縦線は測定結果の標準偏差を示す。 ※2015年度の調査から測定装置、試料採取方法等を変更した。 (出典)環境省 平成29年度フロン等オゾン層影響微量ガス等監視調査より

(c) CFC-114 及び CFC-115 の大気中のバックグラウンド濃度の変化

CFC-114 の大気中のバックグラウンド濃度は 16pptv 程度で近年はほとんど変化していない。CFC-115 の大気中のバックグラウンド濃度は 9pptv 程度で、近年はほとんど増加していない(図 2-3-3)。

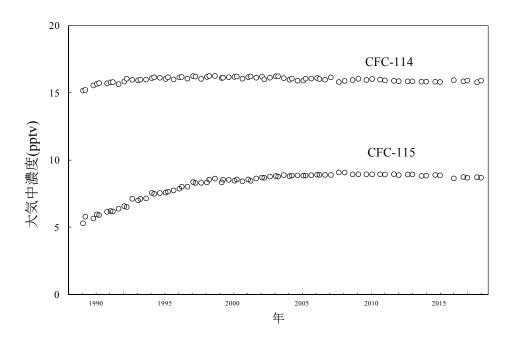


図 2-3-3 北海道における CFC-114 及び CFC-115 の大気中のバックグラウンド濃度の 経年変化

※CFC-114 は異性体(CFC-114a)を含む。

※2015 年度の調査から測定装置、試料採取方法等を変更した。

(出典) 環境省 平成29年度フロン等オゾン層影響微量ガス等監視調査より

(d) ハロン-1211、ハロン-1301 及びハロン-2402 の大気中のバックグラウンド濃度の変化 ハロン-1211 の濃度は 1990 年代は急増してきたが、2000 年代に入って増加傾向が鈍化し、近年は減少に転じている。ハロン-1301 の大気中のバックグラウンド濃度は継続して約 1%/年の割合で増加している。一方、ハロン-2402 の大気中のバックグラウンド濃度はわずかであるが減少している(図 2-3-4)。

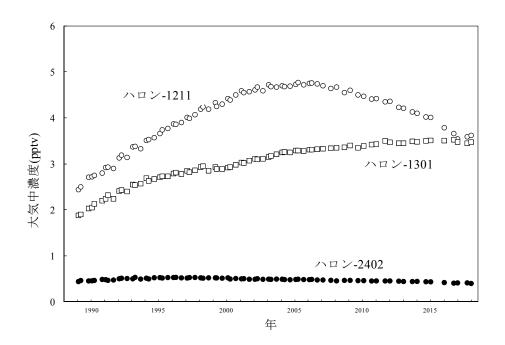


図 2-3-4 北海道におけるハロン類の大気中のバックグラウンド濃度の経年変化 ※2015 年度の調査から測定装置、試料採取方法等を変更した。 (出典) 環境省 平成 29 年度フロン等オゾン層影響微量ガス等監視調査より

(e) HCFC-22、HCFC-141b、HCFC-142b の大気中のバックグラウンド濃度の変化 HCFC-22 の大気中のバックグラウンド濃度は、約 2%/年の割合で増加している(図 2-3-5)。HCFC-141b 及び HCFC-142b の大気中のバックグラウンド濃度は、調査開始以来増加し続けていたが、近年その増加はゆるやかになり、2014 年以降は濃度の明瞭な増加は認められない(図 2-3-6)。

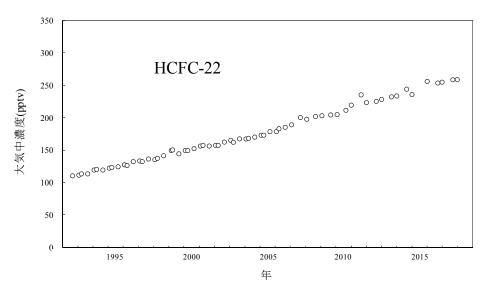


図 2-3-5 北海道における HCFC-22 の大気中のバックグラウンド濃度の経年変化 ※2015 年度の調査から測定装置、試料採取方法等を変更した。 (出典) 環境省 平成 29 年度フロン等オゾン層影響微量ガス等監視調査より

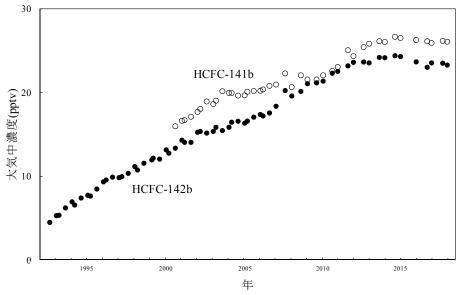


図 2-3-6 北海道における HCFC-141b、HCFC-142b の大気中のバックグラウンド 濃度の経年変化

※2015 年度の調査から測定装置、試料採取方法等を変更した。 (出典) 環境省 平成 29 年度フロン等オゾン層影響微量ガス等監視調査より

(f) HFC-134a の大気中のバックグラウンド濃度の変化

HFC-134a の大気中のバックグラウンド濃度の増加率は、約 5%/年と極めて大きい(図 2-3-7)。

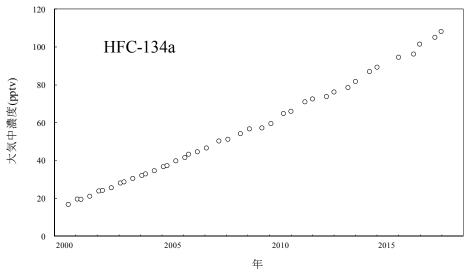


図 2-3-7 北海道における HFC-134a の大気中のバックグラウンド濃度の経年変化 ※2015 年度の調査から測定装置、試料採取方法等を変更した。 (出典) 環境省 平成 29 年度フロン等オゾン層影響微量ガス等監視調査より

(g) 臭化メチルの大気中のバックグラウンド濃度の変化

臭化メチルの大気中のバックグラウンド濃度は減少してきたが、近年はほぼ横ばいである(図 2-3-8)。

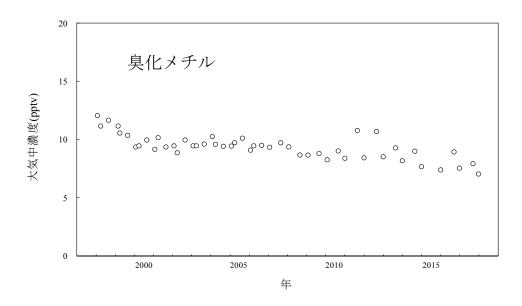


図 2-3-8 北海道における臭化メチルの大気中のバックグラウンド濃度の経年変化 ※2015 年度の調査から測定装置、試料採取方法等を変更した。

(出典) 環境省 平成29年度フロン等オゾン層影響微量ガス等監視調査より

3-1-2. 国立環境研究所による観測結果

沖縄県波照間島における特定物質の大気中濃度の経年変化

国立環境研究所では、人為汚染の影響が少ない波照間島(沖縄県)及び落石岬(北海道)において、特定物質を含むハロカーボン類の観測を行っている。このうち、波照間島における CFC-11、CFC-12 及び CFC-113 濃度の経年変化を図 2-3-9 に示す。波照間島は夏季には低緯度、冬季には中高緯度からの気団の影響を受けやすいため、CFC 濃度にもわずかな季節変動が見られる。CFC-11 と CFC-113 の濃度は観測開始時(2004 年)から減少傾向にある。CFC-12 濃度は 2007 年頃からごく緩やかに減少し、2010 年以降減少傾向が加速している。

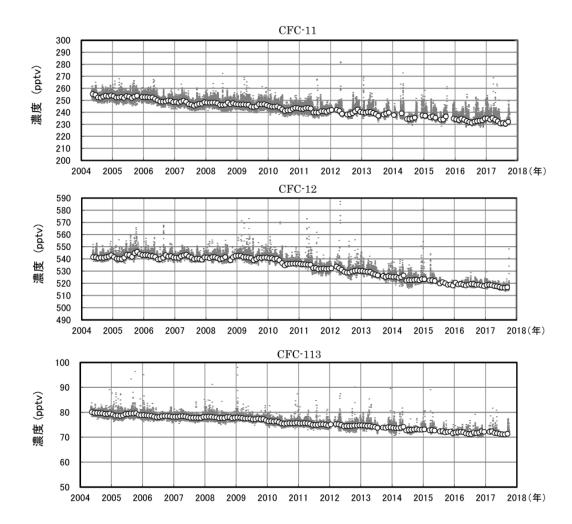


図 2-3-9 波照間島で観測された CFC-11、CFC-12 及び CFC-113 濃度の経年変化

国立環境研究所波照間観測ステーションにおける観測結果。低温濃縮/ガスクロマトグラフ-質量分析計(全自動)による毎時間観測データを基に、各月ごとに平均値 $\pm 1~\sigma$ から外れるデータを省くステップを 2~度繰り返してベースライン濃度を算出し、月平均値(白丸)とした。なお、観測数が不十分な月については欠測としている。2017年 10~月から 12~月は装置のトラブルのため欠測%口絵 10~00 を照。口絵では、月平均濃度のみを表している。

(出典) 国立環境研究所環境計測研究センター/地球環境研究センター提供データ

3-1-3. 気象庁による観測結果

岩手県大船渡市綾里における特定物質の大気中濃度の経年変化

気象庁では、1990年から岩手県大船渡市綾里において、CFC等の観測を行っている。綾里における CFC-11、CFC-12及び CFC-113 濃度の経年変化を図 2-3-10に示す。いずれも季節変化はみられない。CFC-11 濃度は $1993\sim1994$ 年の約 270pptv をピークとして減少傾向にある。CFC-12 濃度は、1993年まで増加し、その後も緩やかに増加していたが、2005年をピークに減少している。CFC-113濃度は 2001年頃までにごく緩やかな増加が止まり、その後減少傾向がみられる。2017年の年平均濃度は CFC-11が 238pptv、CFC-12が 515pptv、CFC-113が 72pptv(いずれの値も速報値)であった。

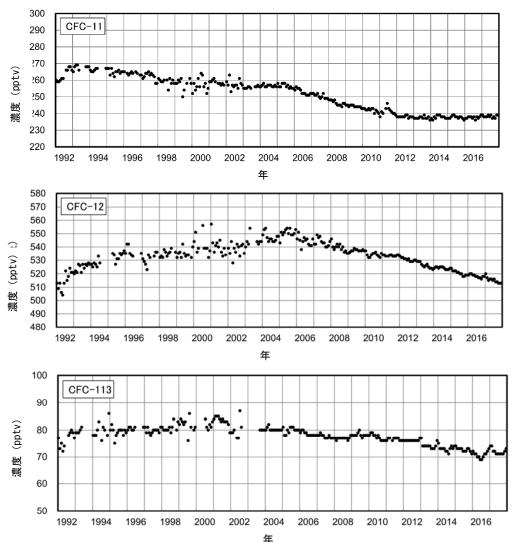


図 2-3-10 岩手県大船渡市綾里における大気中のクロロフルオロカーボン類濃度の経年変化 綾里における大気中の CFC-11 (上)、CFC-12 (中)、CFC-113 (下)の地上での月平均濃度 (測定結果を 月平均したもの)の経年変化を示す。なお、データのない期間は、主に観測機器の更新や較正作業のため の欠測である。また、観測精度を向上させるため、2003 年 9 月から放射線源を用いた電子捕獲型検出器 (ECD)を搭載したガスクロマトグラフを導入したことにより、観測濃度データのばらつきがそれ以前と 比較して少なくなっている。※口絵 IV 参照。口絵では、水色で表している。 (出典)気象庁提供データ

95

(参考) 東日本大震災に伴うフロン等の大量排出

2011年3月11日に発生した東日本大震災では、多くの建物や施設の被害により、建物内 で使用されていた特定物質を含む様々なハロカーボン類などが大気に排出された。実際、国 立環境研究所で実施している 2 地点(沖縄・波照間島、北海道・落石岬)でのハロカーボン 類のモニタリングのうち、落石岬での観測では、図 2-3-11b からも分かるように、地震発生 から 10 日間ほどの間に、CFC 類、HCFC 類、ならびに SF_6 の濃度に顕著な増加が認められ る事例が観測された。流跡線解析の結果(図 2-3-11a)から、ハロカーボン濃度のスパイク的 な増加が観測された日には、震災被害が大きかった東日本の上空を通過した空気塊が落石岬 に到達していたと考えられることから、震災被害で大気に放出されたハロカーボン類を含ん だ空気塊の影響が観測で捕らえられたと考えられている。また震災被災地に位置する気象庁 の綾里(震災直後から2011年5月13日までは観測は中断)においても、5月の観測再開後 に CFC-11 について高い濃度現象が、震災で大きな被害を受けた太平洋沿岸の被災地のある 方向からの風を受けたときに顕著に観測されている*。

大気中のハロカーボン類のモニタリングデータと大気輸送モデルを利用した放出量の逆推 定法から、2011 年 3 月から 2012 年 2 月の 1 年間の国内排出量は例年の同時期に比べ 21~ 91%増加、東日本大震災によるハロカーボン類の排出量は6.6Gg(ODP換算で1.3Gg、19.2Tg- CO_2 相当の温室効果ガス放出に相当)と見積もられている。(Saito et al., 2015)

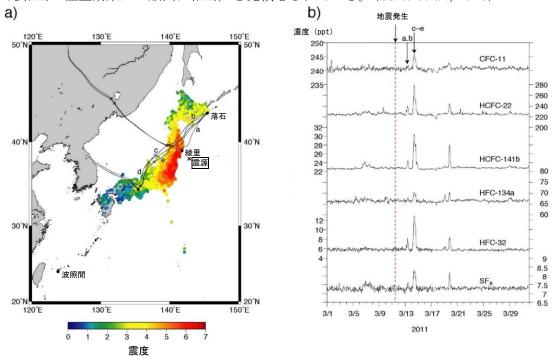


図 2-3-11 国内における大気観測地点、空気塊の後方流跡線およびフロン等濃度の経時変化

- a) 国内の大気モニタリングステーション(落石岬、綾里、波照間島)の位置ならびに 2011 年 3月13日から14日に落石岬上空500mに到達した空気塊の3日間の後方流跡線。
- b) 2011 年 3 月に落石岬モニタリングステーションで観測された CFC-11、HCFC 類と SF6 濃度 の経時変化。

^{*}震災発生から2ヶ月が過ぎた5月以降もCFC-11の増加が観測されたことについて、CFC-11はかつて発泡 剤として使用されており、建物の倒壊や震災廃棄物の処理過程における断熱材の破砕などに伴って、建物 などの断熱材中に気泡として閉じ込められていた CFC-11 が大気へ排出されたためではないかと考えられ ている。

3-1-4. 大学・国際機関による観測結果

東京大学による観測結果

我が国では、環境省が観測を開始する 10 年前の 1979 年から東京大学で、32 年間にわたり観測が行われており、北海道と南極昭和基地で夏期と冬期に集中して金属製容器に採取したバックグラウンド大気試料の精密定量分析データが蓄積されている。同観測は、2011年3月の東京電力福島第一原子力発電所事故に東京大学が対応するため中断、中止された。

東京大学によって測定された特定物質のうち、CFC-11、CFC-12、CFC-113 及び 1,1,1-トリクロロエタン (CH_3CCl_3) の、北海道及び南極昭和基地における大気中のバックグラウンド濃度の経年変化を、図 2-3-12 に、それぞれ実線 (N) 及び破線 (S) で示す。

北半球中緯度の平均的な状況を代表する北海道において、1980 年代の年増加率は CFC-11 及び CFC-12 が約 4%、CFC-113 が約 10%であったが、モントリオール議定書による国際的な CFC の生産・消費の規制開始(1989 年 7 月)に伴って 1990 年以降これら CFC の大気中濃度増加は鈍り、さらに先進国における CFC の全廃 (1995 年末)を反映して、CFC-11 は 1990 年代に入って、CFC-12 は 2000 年代後半で、非常に僅かずつ減少し始めた。

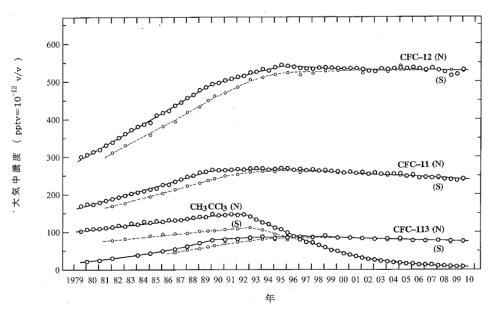


図 2-3-12 北半球中緯度(北海道)及び南半球(南極昭和基地)における特定物質の 大気中のバックグラウンド濃度の経年変化

北半球中緯度(北海道:N)及び南半球(南極昭和基地:S)%口絵 IV 参照。 (出典) 東京大学提供データ

南半球を代表する南極昭和基地でも、1980年代には CFC 類の大気中濃度の増加が観測されたが、同じレベルの濃度に達する時期は北海道に比べ、2年程度遅れている。図 2-3-12と口絵 IV で、観測開始から 1990年代前半くらいまでの時期に北半球と南半球の間で CFC 類の濃度差が生じる理由としては、この時期は CFC 類の放出が盛んに行われた時期にあた

ること、また、CFC 類の主要な放出源が北半球側にあり、北半球側の大気と南半球側の大気が混合するのにある程度の時間を要することが挙げられる。主に北半球側で放出された CFC 類は大気中で数十年~百年以上の寿命をもち、放出後はほとんど化学変化を受けずに 高濃度を保ちながら南半球側へ徐々に広がっていく。南半球側でこの高濃度 CFC 大気の影響が出始めた頃には、北半球側ではさらなる放出によって濃度がさらに上昇している。したがって、南北半球間で偏在している放出源からの放出が続いている間は南北半球間である程度の濃度差が生じる。一方、世界的な放出規制に伴って次第に北半球での濃度増加が鈍化すると、少し遅れて南半球にもその影響があらわれ、濃度増加が小さくなる。さらに全廃に伴って南北両半球間における濃度差がなくなりつつある。

大気中寿命が短い 1,1,1-トリクロロエタンについては、先進国が集中する北半球から南半球に拡散する対流圏内でも分解されることから、南極では、1980年代には北半球より約 30%低い濃度で増加した。両半球の大気中濃度は、短寿命を反映して、国際的な規制が始まった1993年以降急速に減少し、特に 1997年以降、指数関数的に減少している。

これらハロカーボン類の使用量が北半球で圧倒的に多かった 1970 年代から 1990 年代前半においては、北半球と南半球の大気中濃度には大きな差があったが、その後、その生産と消費が国際的に規制された結果、南北両半球の大気中濃度に差はなくなり、近年は、日本における北半球バックグラウンド濃度の測定結果からでもグローバル大気中濃度の動向を知ることができるようになった。したがって東京大学のこれらの結果と、わが国の他機関による北半球での近年の観測結果の傾向を合わせれば、30 数年間にわたるこれらのグローバルな大気中濃度変動を知ることができる。

国際機関による観測結果

「オゾン層破壊の科学アセスメント: 2014」(WMO, 2014)では、世界各地で観測されたオゾン層破壊物質の地球規模の濃度がとりまとめられている。以下はその抜粋である。

(a) CFC

地球規模の CFC 濃度の経年変化を図 2-3-13 に示す。

CFC-11、CFC-12、CFC-113の大気中濃度は、それぞれ、1994~1995年、2002~2003年、1996~1997年ごろに最大となって以降は減少傾向が続いている。

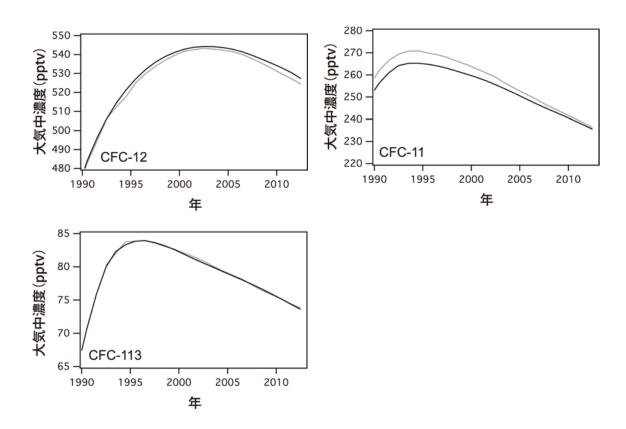


図 2-3-13 海外のネットワークで観測された CFC-12、CFC-11 及び CFC-113 の濃度変化 各観測ネットワークによる観測結果。NOAA による観測結果を薄い灰色、AGAGE による観測結果を濃い灰色で示している。

(出典) Scientific Assessment of Ozone Depletion: 2014 (WMO, 2014) より作成

(b) 四塩化炭素及び 1, 1, 1-トリクロロエタン

地球規模の四塩化炭素と 1,1,1-トリクロロエタン濃度の経年変化を図 2-3-14 に示す。 四塩化炭素の濃度は 1990 年代初期に最大値となり、その後は着実に減少している。 1,1,1-トリクロロエタンの濃度は、1992 年頃に最大値となりなった後は着実に減少している。 2012 年の大気中濃度(約 5.4ppt)は最も濃度の高かった 1992 年ごろの濃度(約 130ppt)の 4%程度のレベルである。

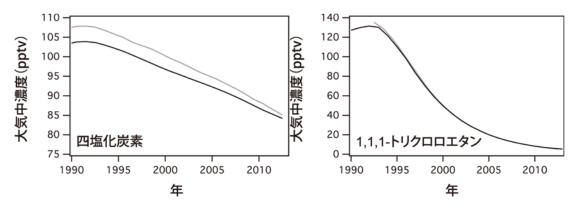


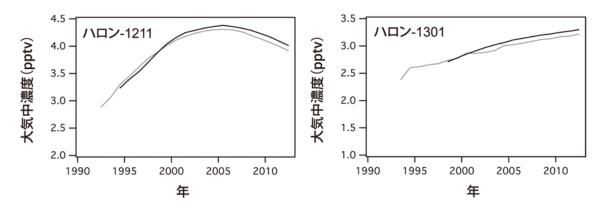
図 2-3-14 海外のネットワークで観測された四塩化炭素及び 1,1,1-トリクロロエタンの濃度変化 各観測ネットワークによる観測結果。NOAA による観測結果を薄い灰色、AGAGE による観測結果を濃い 灰色で示している。

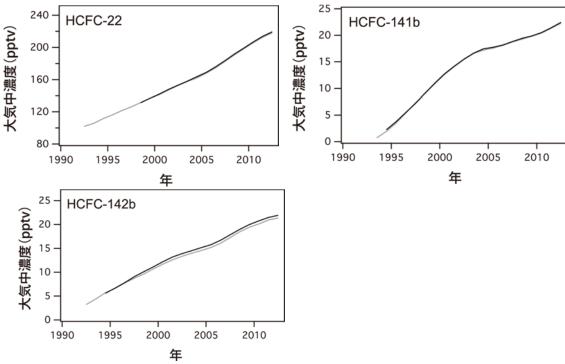
(出典) Scientific Assessment of Ozone Depletion: 2014 (WMO, 2014) より作成

(c) ハロン

地球規模のハロン-1211 とハロン-1301 の濃度の経年変化を図 2-3-15 に示す。

ハロン-1211の大気中濃度は、 $2005\sim2008$ 年にかけて初めて減少に転じた。ハロン-1301の大気中濃度は 1990年代前半に比べると増加傾向は鈍ったものの、2010年以降もなお増加傾向がみられる。




図 2-3-15 海外のネットワークで観測されたハロン-1211 及びハロン-1301 の濃度変化 各観測ネットワークによる観測結果。NOAA による観測結果を薄い灰色、AGAGE による観測結果を濃い 灰色で示している。

(出典) Scientific Assessment of Ozone Depletion: 2014 (WMO, 2014) より作成

(d) HCFC

地球規模の HCFC 濃度の経年変化を図 2-3-16 に示す。

HCFC-22、HCFC-141b、HCFC-142b の大気中濃度はいずれも増加している。HCFC-22 及び HCFC-142b の増加傾向は $2006\sim2010$ 年ごろに比べると 2010 年以降はやや鈍ってきている。一方、HCFC-141b では、増加傾向の鈍化は認められない。

図 2-3-16 海外のネットワークで観測された HCFC-22、HCFC-141b 及び HCFC-142b の濃度変化 各観測ネットワークによる観測結果。NOAA による観測結果を薄い灰色、AGAGE による観測結果を濃い灰色で示している。

(出典) Scientific Assessment of Ozone Depletion: 2014 (WMO, 2014) より作成

(e) HFC-134a

HFC-134a は CFC-12 の代替として冷媒に用いられ、消費量が増加している。このため、 大気中濃度は顕著な増加傾向にあり、近年は毎年約 7~8%ずつ増加している。

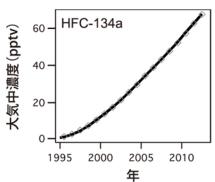


図 2-3-17 海外のネットワークで観測された HFC-134a の濃度変化

各観測ネットワークによる観測結果。NOAAによる観測結果を◇、AGAGEによる観測結果を実線で示している。

(出典) Scientific Assessment of Ozone Depletion: 2014 (WMO, 2014)

(f) 臭化メチル

臭化メチルの濃度は、2000年以降、着実に減少しており、2010年以降の濃度(約7ppt)は、減少傾向が認められる以前(1990年代)の濃度(約9ppt)に比べ、3/4程度まで減少している。(図2-3-18)。

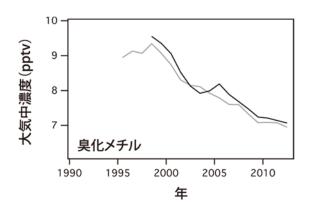


図 2-3-18 海外のネットワークで観測された臭化メチルの濃度変化

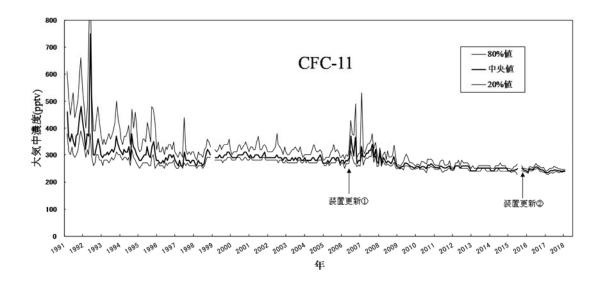
各観測ネットワークによる観測結果。NOAA による観測結果を薄い灰色、AGAGE による観測結果を濃い灰色で示している。

(出典) Scientific Assessment of Ozone Depletion: 2014 (WMO, 2014) より作成

3-2. 日本の都市域における大気中濃度の状況

特定物質等の大気中濃度の経年変化(川崎市)

環境省では、1988年以降、都市域における特定物質等の排出の状況を把握するため、川崎市内において特定物質等の大気中濃度の連続測定を実施している。


図 2-3-19 に、1991 年 3 月から 2018 年 2 月までの CFC-11、CFC-12、CFC-113、四塩化炭素及び 1,1,1-トリクロロエタンの測定結果 (CFC-113、四塩化炭素及び 1,1,1-トリクロロエタンについては 2006 年 2 月まで)並びに 2006 年 3 月から 2018 年 2 月までの HCFC-22、HCFC-141b、HCFC-142b、HFC-134a 及び臭化メチルの測定結果を示す。これらの図は、月間の測定データの集計結果の経時変化を示しており、変動幅の大きさを示すため、中央値に加え 80%値と 20%値についても記載してある。

CFC-11、CFC-12、CFC-113、四塩化炭素及び1,1,1-トリクロロエタンの大気中濃度は、1990年代には頻繁に高濃度が観測され、変動幅は大きく、平均濃度も北海道よりは高かったが、いずれも次第に減少し、2000年代以降、図2-3-1に示す北海道における大気中濃度とほとんど変わらなくなってきている。この近年の変動幅の減少は、川崎周辺におけるこれら物質の放出が著しく減少していることを示しており、日本における生産量等の削減及び排出抑制等の結果と考えられる。

一方、HCFC-22、HCFC-141b、HCFC-142b及びHFC-134aは、2000年代以降においても頻繁に高濃度が検出されてきたが、最近では、その頻度も強度も低下しており、都市域における放出量の減少を示しているものの、平均濃度は北海道より依然として高い。これらの物質は冷媒や発泡剤の代替フロン類として多く使用され、機器装置類の中にも大量に存在しており、都市域におけるそれらからの放出を反映していると考えられる。なお、北海道において観測されるこれら物質のバックグラウンド濃度の増加は、川崎等の都市部における濃度変動に比較して数十分の一の変化である。したがって、バックグラウンド濃度の変化を、高濃度の都市部における測定で検出することはできない。一方、グローバルな放出量の変化は、北海道におけるバックグラウンド濃度の変化として、変動幅も小さく、かつゆっくり現れるが、主要な発生源のある都市域における濃度変動には、日本における放出量の変化が、速やかに、かつ顕著に現れる(大気中寿命に関係なく、例えば放出量が減少すれば、都市域での大気中濃度は、変動幅が大きく減少し、平均濃度は次第にバックグラウンド濃度に近づいて行く)。

天然にも発生源のある臭化メチルでは、その濃度の値も変動も北海道に比較してそれほど大きくはなく、都市部での放出は限定的と考えられる。

なお、「フロン等オゾン層影響微量ガス等監視調査」について、2015 年度の調査から測定装置等を変更した。(3-1-1 (P85)を参照)。測定されたフロン等オゾン層影響微量ガスの濃度は、100ppt 程度の低濃度の標準ガスを利用して定量を行った。都市地域での測定では、比較的高頻度(1日に一回)に標準ガス測定を行っており、その過程で、臭化メチルの標準ガス濃度が短期間で大きく減少することが判明した。そこで濃度保証がなされ、ガス容器内での濃度減少も無視し得る濃度(1ppm)の標準ガスを用いて100ppt 標準ガス容器中の臭化メチル濃度の減少率を算出した。この減少率を用いて都市地域試料中の臭化メチルの測定値について補正を行った。

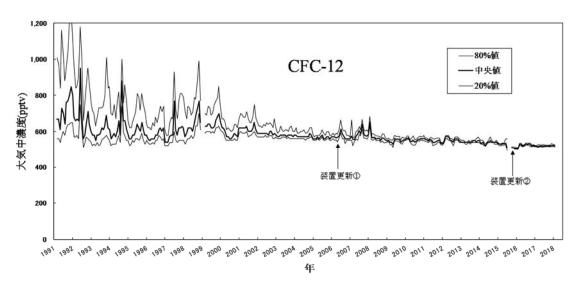
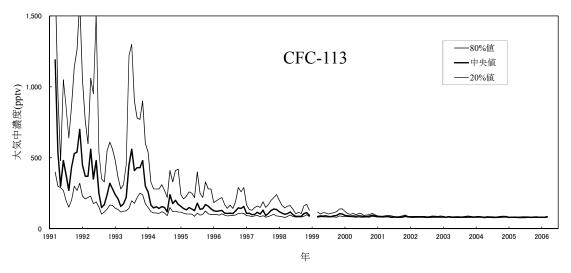
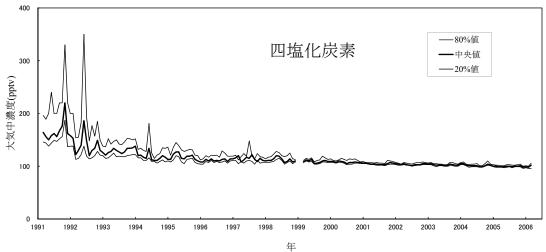




図 2-3-19 川崎市における特定物質等の月別濃度(中央値)の経年変化

%2006 年 3 月から GC/MS を中心に構成した新装置による測定を開始した。 %2015 年 10 月から新規システム導入に伴い GC/MS の条件を変更した。 %80%値と 20%値は変動幅の大きさを示す。

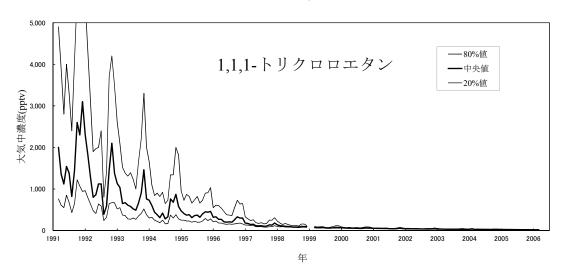
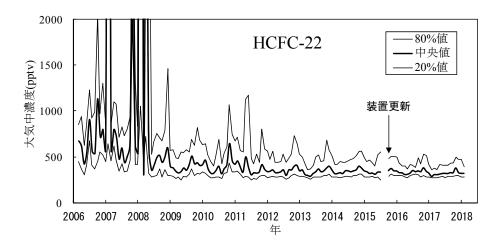
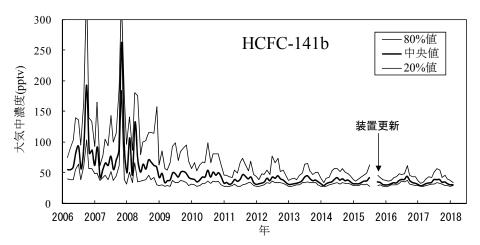




図 2-3-19 川崎市における特定物質等の月別濃度(中央値)の経年変化(続き) ※80%値と 20%値は変動幅の大きさを示す。

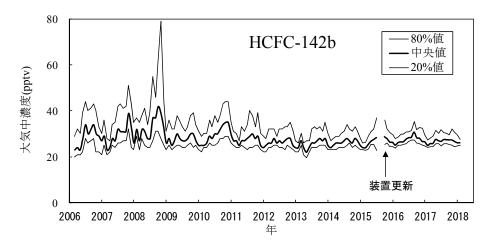
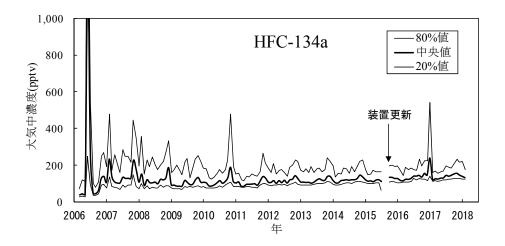



図 2-3-19 川崎市における特定物質等の月別濃度(中央値)の経年変化(続き)

%2015 年 10 月から新規システム導入に伴い GC/MS の条件を変更した。 %80%値と 20%値は変動幅の大きさを示す。

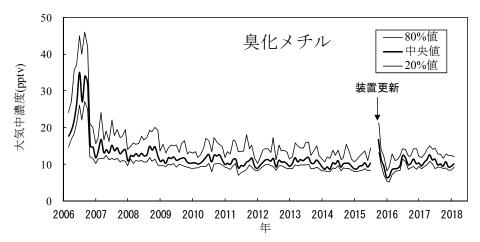


図 2-3-19 川崎市における特定物質等の月別濃度(中央値)の経年変化(続き) ※2015 年 10 月から新規システム導入に伴い GC/MS の条件を変更した。 ※80%値と 20%値は変動幅の大きさを示す。

4. 特定物質の大気中濃度の将来予測

オゾン層破壊物質の大気中濃度の将来予測については、「オゾン層破壊の科学アセスメント: 2014」(WMO,2014 及び 2015)に詳しく述べられている。

図 2-4-1 の左上の図は、オゾン層破壊の潜在的脅威を示す等価実効成層圏塩素量(EESC) (詳細は第 1 部 3-1 (b) (P15) 脚注を参照)の経年変化を示す。等価実効成層圏塩素量は、1990 年まで急速に増加してきたが、モントリオール議定書の規制によって 1990 年代以降減少に転じた。等価実効成層圏塩素量の減少傾向は、21 世紀を通じて継続すると考えられるが、1980 年レベルにまで回復するには数十年かかると考えられる。

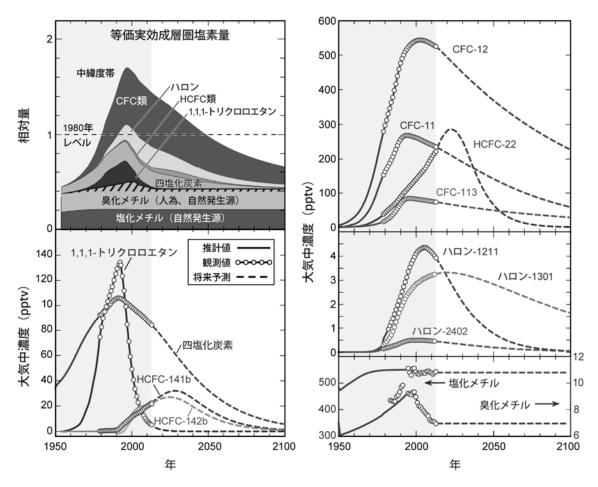


図 2-4-1 大気中のオゾン層破壊物質の推移と将来予測

(出典) Twenty Questions and Answers About the Ozone Layer: 2014 Update Scientific Assessment of Ozone Depletion: 2014(WMO, 2015)より

CFC の将来予測

CFC の生産と消費は既に、先進国では 1995 年末までに、途上国では 2009 年末までに全廃されたが、CFC は大気中寿命が非常に長く、また冷凍・空調機器や断熱材にも多く使用され大気中にゆっくりと放出されるので、今後、CFC の大気中濃度は極めてゆるやかに減少していくと予測されている。

HCFC の将来予測

モントリオール議定書では、生産・消費の規制スケジュールに従って削減が進められているものの、当面の間 HCFC は使用されるため、HCFC-22、HCFC-141b、HCFC-142b の大気中濃度は、引き続き増加すると考えられる。HCFC は、対流圏内で分解が進むので大気中寿命が CFC より短く、CFC に比べるとオゾン層に対する影響(オゾン層破壊係数)は小さい(詳細は表 2-1-1 (P82) を参照)。

2007 年 9 月のモントリオール議定書第 19 回締約国会議において、先進国での HCFC の 生産は 2019 年末までに、途上国においても 2029 年末までに原則全廃することで前倒しされた。したがって、HCFC の大気中濃度は引き続き増加するが、今後 $20\sim30$ 年でピークに 達し、その後減少すると予測されている。

1,1,1-トリクロロエタンの将来予測

1,1,1-トリクロロエタンはオゾン層破壊物質のうち、これまでで最も削減されている。先 進国では1996年に生産と消費が中止され、途上国でも2014年末までに全廃された。途上 国での規制が達成でき次第、大気中から完全に除去されると見込まれている。

ハロン類の将来予測

ハロン類は、先進国では 1994 年に、途上国では 2009 年末までに全廃となっているものの、消火機器中の多量のハロンがゆっくりと大気中に放出されるため、引き続き増加すると考えられる。ハロンは大気中寿命も長いため、大気中濃度は今後も高水準が続くと考えられる。

塩化メチルと臭化メチルの将来予測

塩化メチルと臭化メチルは、その多くが自然起源であるという点で、他のオゾン層破壊物質とは異なっている。

モントリオール議定書の規制対象となっていない塩化メチルの大気中の平均濃度は、自 然発生源に変化がなければ、今世紀を通して変化なく推移すると考えられる。

臭化メチルは、モントリオール議定書の規制対象となっており、近年、大気中の濃度は減少しており、今後さらに規制により減少すると自然発生量に近づくが、その値は定かではない。