3.3 中小水力発電の導入ポテンシャルの精緻化

中小水力発電の導入ポテンシャルの精緻化の実施フローを図 3.3-1 に示す。また、検討結果を以下に示す。

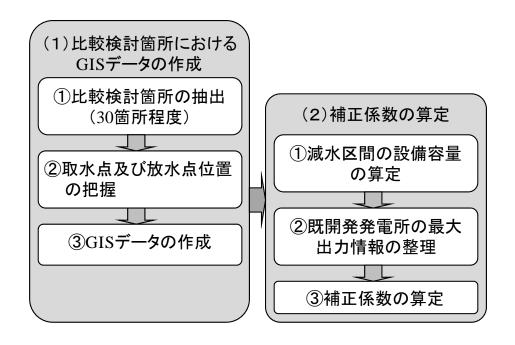


図 3.3-1 中小水力発電の導入ポテンシャルの精緻化の実施フロー

3.3.1 比較検討箇所における GIS データの作成

(1) 比較検討対象発電所の選定

流れ込み式かつ同一河川リンク内に取水口、放水口を持つ既開発発電所を優先的に 30 ヵ 所程度選定した。選定にあたっては、「最大出力」、「最大出力と常時出力の比」、「地域(都 道府県)」の視点で分類し、偏りがないように配慮した。

①発電出力による分類

平成23年度業務において整理した流れ込み式の既開発発電所(1,019ヵ所)について、電力土木技術協会の水力発電所データベース(http://www.jepoc.or.jp/hydro/)で公表されている最大出力及び常時出力の値を用いて、「最大出力」と「常時最大比(常時出力・最大出力)」の2つの視点で分類を行った。

最大出力の分類区分(表 3.3-1)は3区分、常時最大比の分類区分(表 3.3-2)は4区分とした。

区分 最大出力

1 1,000kW 未満
2 1,000kW 以上 3,000kW 未満
3 3,000kW 以上 10,000kW 未満※

表 3.3-1 最大出力の分類区分

^{※10,000}kW以上の発電所については、同一リンクでの取水・放水が想定しにくいと考えられたため、調査対象外とした。

区分	常時最大比
1	0.75以上
2	0.50以上0.75未満
3	0. 25 以上 0. 50 未満
4	0.25 未満

表 3.3-2 常時最大比の分類区分

最大出力の分類区分および常時最大比の分類区分の組み合わせにより、流れ込み式の既開発発電所を12(3×4)区分に分類した結果を表3.3-3に示す。

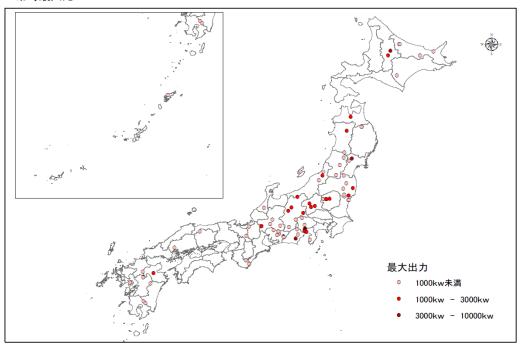

			合計		
		1,000kW 未満	1,000kW以上	3,000kW以上	
		1,0001117 7 1 1 1 1	3,000kW 未満	10,000kW 未満	
	0.75以上	57	27	3	87 (10. 0%)
常時最大比による区分	0.50以上0.75未満	68	69	31	168 (19. 4%)
	0. 25 以上 0. 50 未満	90	119	97	306 (35. 3%)
	0.25 未満	50	106	149	305 (35. 2%)
△ ∌L	_	265	321	280	866
合計		(30.6%)	(37.1%)	(32.3%)	(100%)

表 3.3-3 各区分別の既開発発電所数

②地域による分布の確認

分類した既開発発電所の分布を図3.3-2に示す。

常時最大比 0.75 ~ 1.00

常時最大比 0.5 ~ 0.75

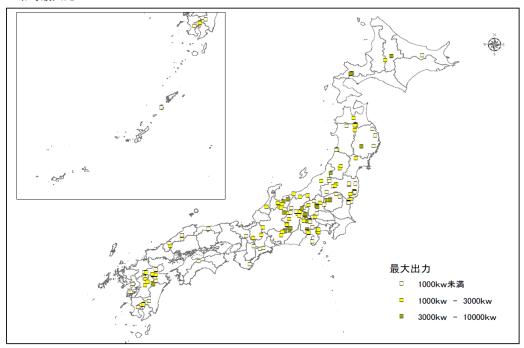
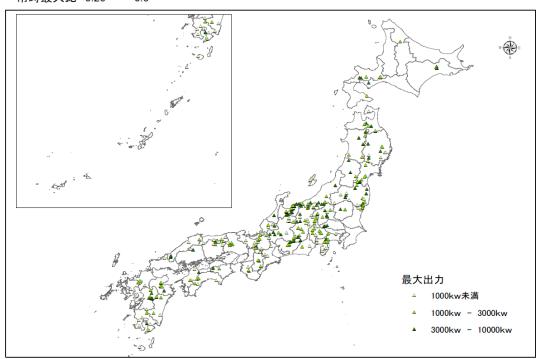



図 3.3-2 各区分別の既開発発電所の分布(1)

常時最大比 0.25 ~ 0.5

常時最大比 0 ~ 0.25

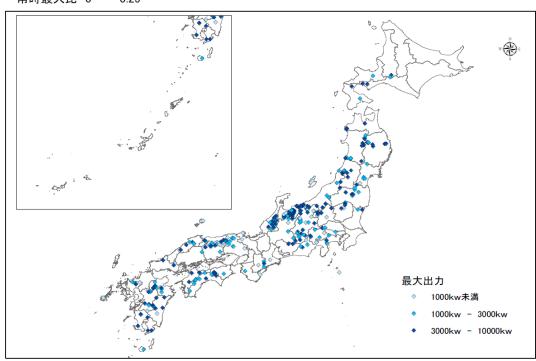


図 3.3-2 各区分別の既開発発電所の分布(2)

③比較検討対象発電所の選定

上記整理結果を基に、以下の基準により比較検討する既開発発電所を選定した。結果を表 3.3-4 に示す。

- ア)「○○第二」のような番号付きは避ける(上流の発電所の影響を受けるため)。
- イ) 多様性(発電事業者の多さなど) を重視する。
- ウ) 最大出力や、最大・常時比、地域の偏りがないようにする。
- エ) 比較的新しい発電所を優先する。
- オ)以下の条件に該当する発電所は避ける。
 - ・島嶼部の場合
 - ・河川取水以外(水道など)の場合
 - ・事業主体が農業系の場合(おそらく農業用水であるため)
 - ・ダム管理発電所の場合
- カ) 常時出力が 0kW の場合 (特殊事情がある可能性があるため)

表 3.3-4 選定した既開発発電所

NO	発電所名称	最大出力 (kW)	常時出力 (kW)	NO	発電所名称	最大出力 (kW)	常時出力 (kW)
1	長拇	5,000	200	17	窪田	600	210
2	新小滝	4, 100	720	18	名村川	420	170
3	川又	3, 200	400	19	嶽野川	160	70
4	青田	2,800	360	20	尻別第一	6, 100	3, 480
5	新楠川	2, 200	260	21	中村	4, 300	3, 100
6	市原	1, 100	140	22	銚子第一	2, 300	1, 250
7	花合野川	680	29	23	野上	1,600	830
8	梶並	180	37	24	忍野	800	440
9	茂庭	1, 400	390	25	室生	200	120
10	立石	10, 500	5, 100	26	赤松(東海パルプ)	6,000	4, 900
11	赤松(昭和電工)	5, 500	1,650	27	関川	2, 300	2, 200
12	樫尾	3, 650	1,520	28	鳥並	1,200	950
13	臼田	2,700	1, 300	29	津金	700	575
14	舌崎	2,600	990	30	滝ノ上	112	90
15	中津川	1, 200	300	31	川下	380	290
16	向原	820	280		_		

(2) 選定した既開発発電所に関する資料収集

上述(1)で抽出した既開発発電所について、電力土木技術協会の水力発電所データベース(図 3.3-3)及び、国土地理院の地図検索サービス(図 3.3-4)等を参照し、取水点、放水点、導水管等の詳細な位置、標高値を調査した。

図 3.3-3 水力発電所データベース

出典:電力土木技術協会 HP



図 3.3-4 国土地理院の地図検索サービス

出典:ウオッちず HP

(3) 既開発発電所情報(取水点・放水点位置、標高値等)の GIS 化

上述 (2) の調査結果に基づいて、既開発発電所の関連施設(取水口、放水口、導水管等)の位置を電子地図上にプロットし、GIS データとして整理した。作成した GIS データの例を図 3.3-5 に示す。

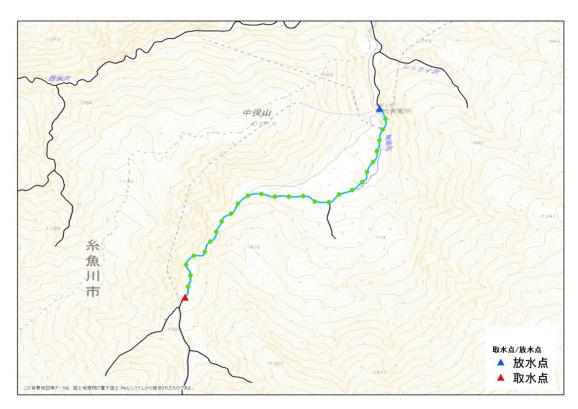


図 3.3-5 作成した GIS データの例

3.3.2 補正係数の算定

(1)計算モデルによる設備容量の算定

上述 3.3.1 で作成した既開発発電所の GIS データと、当該リンクの河川 100m セグメント データ (河川線形を 100m 単位で分割して生成した点データ) との重ね合わせを行った。 取水口、放水口に最も近接するセグメント (点) のデータを用いて取水点の流域面積を 算定し、既開発発電所による減水区間 (取水口~放水口) での設備容量 (kW) を算定した。 なお、流量は、当該リンクの流況曲線から得られる設備利用上の最大流量とした。

(2)補正係数の算定

既開発発電所の最大出力と、仮想発電所の設備容量との比較を行った。結果を表 3.3-5 に示す。

表 3.3-5 仮想発電所と既開発電所の比較結果

		仮想発電所						既開発発電所		比較
No.	発電所名称	取水位 (m)	放水位 (m)	リンク長 (m)	有効落差 (m)	効率	設備容量 (kW)	最大出力	常時出力	設備容量 /最大出力
1	長拇	918	596	2,703	317	0.72	438	5,000	200	9%
2	新小滝	135	15	3,400	113	0.72	2,579	4,100	720	63%
3	川又	892	655	5,322	226	0.72	663	3,200	400	21%
4	青田	606	369	3,306	230	0.72	547	2,800	360	20%
5	新楠川	1,026	835	1,422	188	0.72	229	2,200	260	10%
6	市原	326	250	2,764	70	0.72	1,333	1,100	140	121%
7	花合野川	382	301	1,200	79	0.72	524	680	29	77%
8	梶並	210	201	300	8	0.72	159	180	37	88%
9	茂庭	61	40	3,856	13	0.72	1,951	1,400	390	139%
10	立石	195	140	6,545	42	0.72	3,644	10,500	5,100	35%
11	赤松(昭和電工)	721	689	2,100	28	0.72	1,740	5,500	1,650	32%
12	樫尾	236	191	9,684	26	0.72	2,002	3,650	1,520	55%
13	田田	743	714	3,089	23	0.72	2,668	2,700	1,300	99%
14	舌崎	74	55	6,935	5	0.72	1,438	2,600	990	55%
15	中津川	446	379	1,799	63	0.72	841	1,200	300	70%
16	向原	246	186	1,567	57	0.72	1,001	820	280	122%
17	窪田	153	118	2,381	30	0.72	3,013	600	210	502%
18	名村川	156	26	3,400	123	0.72	753	420	170	179%
20	尻別第一	128	106	2,200	18	0.72	5,354	6,100	3,480	88%
21	中村	351	257	3,966	86	0.72	7,794	4,300	3,100	181%
22	銚子第一	405	362	2,892	37	0.72	1,999	2,300	1,250	87%
24	忍野	921	882	1,378	36	0.72	1,635	800	440	204%
26	赤松(東海パルプ)	108	83	6,265	12	0.72	1,122	6,000	4,900	19%
27	関川	572	517	2,266	50	0.72	3,757	2,300	2,200	163%
28	鳥並	160	156	800	2	0.72	0	1,200	950	0%
29	津金	917	777	3,669	133	0.72	1,221	700	575	174%
30	川下	239	113	1,460	123	0.72	300	380	290	79%
30	滝ノ上	128	126	100	2	0.72	114	112	90	102%
以下リンク長が設定できないため除外										
	野上	483	432		51	0.72	2,155	1,600	830	260%
25	室生	295	235		60	0.72	351	200	120	292%
以下沿	元量未設定のため除外									
19	嶽野川	63	5	500	57	0.72	0	160	70	0%

既開発発電所の最大出力を縦軸に、仮想発電所の設備容量を横軸に取ったグラフを図3.3-6に示す。

既開発発電所の最大出力と仮想発電所の設備容量の相関式 $y=\alpha x$ (y: 最大出力、x: 仮想発電所設備容量、 α : 補正係数)の決定係数 R^2 は 0.0256 となり、既開発発電所の最大出力と仮想発電所の設備容量の間に相関は見られなかった。

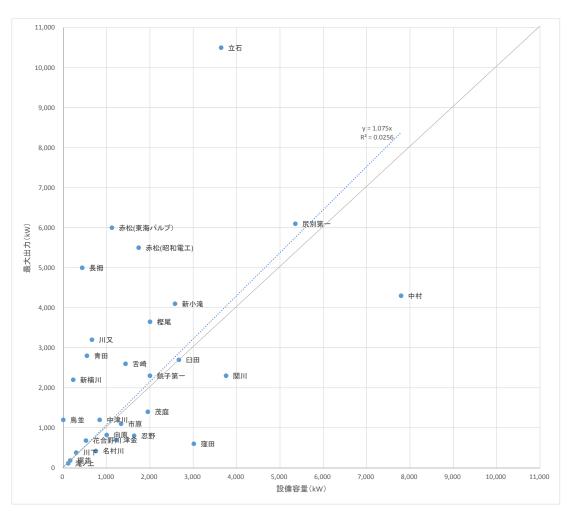


図3.3-6 仮想発電所と既開発電所の比較結果

上記分析により相関が確認できなかったことから、グラフ上で、y=x (y: 最大出力、x: 仮想発電所設備容量)の直線から大きく外れている発電所について、発電所の位置や、事業者の種別、発電開始時期などの情報をもとに、差が大きい原因を分析調査し、補正係数の算定のために使用すべきか否かを検討した。分析調査を行った発電所を表 3.3–6 に示す。分析調査を行った結果、この 7 発電所については、表 3.3–7 で示した理由より、補正係数の算定から除外すべきと判断した。

表 3.3-6 仮想発電所と既開発電所の出力の差が大きかった発電所

発電所名	既開発発電所最大出力	仮想発電所設備容量	設備容量
	(kW)	(kW)	/最大出力 (kW)
1長拇	5, 000	438	8.8%
10 立石	10, 500	3, 644	34. 7%
11 赤松(昭和電工)	6, 500	1,740	31.6%
17 窪田	600	3,013	502. 1%
21 中村	4, 300	7, 794	181.3%
26 赤松(東海パルプ)	6,000	1, 122	18. 7%
27 関川	2, 300	3, 757	163. 3%

表 3.3-7 補正係数の算定から除外した発電所とその理由

発電所名	主な理由	除外理由
1長拇	既開発発電所の	流量基準データが下流の観測所、当該地点は最上
	最大使用水量が多い	流部であったため。
10 立石	既開発発電所の	上流側にある発電所が、黄瀬川、葛川、中里川等、
	最大使用水量が多い	奥入瀬川 (当発電所の直接流域) 以外の流域から
		も拾っているため。
11 赤松	既開発発電所の	仮想発電所の設備容量は、梓川扇状地の水利権を
(昭和電工)	最大使用水量が多い	除外して計算したが、既開発発電所ではその水を
		従属的に使っているため。
17 窪田	既開発発電所の	上流にある来島ダムから江の川に水を抜かれて
	最大使用水量が少ない	いるため。(来島ダム・窪田発電所は神戸川)
21 中村	既開発発電所の	早月川水系で上流から何段にも連続設置されて
	最大使用水量が少ない	いる発電所の中間部であり、最大と常時の比が小
		さいことから、最大取水量を抑制していると推測
		される。
26 赤松	最大使用水量が多い	仮想発電所の設備容量は、大井川用水の水利権分
(東海パルプ)		を除外して計算したが、既開発発電所ではその水
		を従属的に使っているため。
27 関川	既開発発電所の	関川水系の発電所は農業用水に従属との情報が
	最大使用水量が少ない	あったため。用水発電所の下流調整池から取水
		等、特殊なオペレーションで、最大出力と常時出
		力がほぼ一致するような(渇水流量に近い流量
		で)設計されている。

以上の結果を踏まえ、除外すべきと判断した観測所以外の観測所により、既開発発電所の最大出力と、仮想発電所の設備容量との比較を行った結果を図3.3-7に示す。

その結果、仮想発電所設備容量と、既開発発電所最大出力の相関式 $y = \alpha x$ (y: 最大出力、x: 仮想発電所設備容量、 α : 補正係数)の決定係数 R^2 は 0.5185 となり、補正係数 α は、1.2059 \Rightarrow 1.2 となった。仮想発電所の設備容量は、既開発発電所の最大出力の概ね 83%程度となっており、ほぼ妥当な値となっていることがわかった。

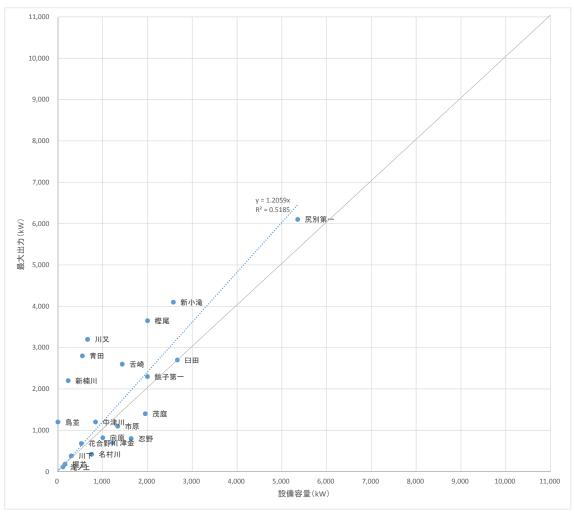


図 3.3-7 仮想発電所と既開発電所の比較結果 (7 発電所除外後)