中環審第1175号令和3年3月25日

環境大臣 小泉 進次郎 殿

中央環境審議会 会長 高村 ゆかり (公印省略)

水質汚濁に係る生活環境の保全に関する環境基準の 水域類型の指定の見直しについて(答申)

平成13年9月25日付け諮問第17号により中央環境審議会に対してなされた「水質汚濁に係る生活環境の保全に関する環境基準の水域類型の指定の見直しについて(諮問)」については、別添のとおりとすることが適当であるとの結論を得たので、答申する。

水質汚濁に係る生活環境の保全に関する 環境基準の水域類型の指定の見直しについて (答申)

令和3年3月

中央環境審議会

1. 検討の概況

平成13年9月25日付け諮問第17号をもって環境大臣の諮問を受けた、水質汚濁に係る生活環境の保全に関する環境基準の水域類型の指定の見直しが必要な水域のうち、大滝ダム貯水池(おおたき龍神湖)、徳山ダム貯水池(徳山湖)、相模ダム貯水池(相模湖)、城山ダム貯水池(津久井湖)、土師ダム貯水池(八千代湖)の5つの湖沼(貯水量が1,000万立方メートル以上であり、かつ、水の滞留時間が4日間以上である人工湖)について検討を行った。

検討対象水域のうち、河川類型から湖沼類型への見直しを検討した 2 つの湖沼の現行の類型指定は以下の通りである。

政令別表の一	→v +at:	現行の類型指定状況					
に掲げる水域	水域	水域名	環境基準類型				
紀の川水系の 紀の川	大滝ダム貯水池 (おおたき龍神湖)	紀の川(1)	河川 AA				
木曾川水系の 揖斐川	徳山ダム貯水池 (徳山湖)	揖斐川(1)	河川 AA				

また、検討対象水域のうち、暫定目標の見直しを検討した3つの湖沼の、現行の化学的酸素要求量(COD)、全窒素及び全燐に係る環境基準の基準値及び類型指定、並びに暫定目標及び目標年度は以下のとおりである。

	次し日际「及ばめ	1 - 0		
政令別表の一 に掲げる水域	水域	項目	基準値 (該当類型)	暫定目標 (目標年度)
担格川木をの	+□+営 ゲ) P宀+√ 沁	化学的酸素 要求量 (COD)	3mg/L 以下 (湖沼 A)	_
相模川水系の相模川	相模ダム貯水池 (相模湖)	全窒素	0.2mg/L 以下 (湖沼 Ⅱ)	1.2mg/L (令和 2 年度)
		全燐	0.01mg/L 以下 (湖沼 Ⅱ)	0.080mg/L (令和2年度)
	ᆥᄼᅹᆉᄝᄼᅑ	化学的酸素 要求量 (COD)	3mg/L 以下 (湖沼 A)	_
相模川水系の 相模川	城山ダム貯水池 (津久井湖)	全窒素	0.2mg/L 以下 (湖沼 Ⅱ)	1.1mg/L (令和 2 年度)
		全燐	0.01mg/L 以下 (湖沼 Ⅱ)	0.042mg/L (令和 2 年度)
江の川水系の	土師ダム貯水池	化学的酸素 要求量 (COD)	3mg/L 以下 (湖沼 A)	_
江の川水系の	(八千代湖)	全窒素	0.2mg/L 以下 (湖沼 Ⅱ)	0.43mg/L (令和 2 年度)
		全燐	0.01mg/L 以下 (湖沼 Ⅱ)	0.018mg/L (令和 2 年度)

2. 検討の結果

上記5つの湖沼について、現在の水質の状況、利水の状況、将来水質予測等を踏まえて検討を行った結果、暫定目標については、おおむね5年ごとに見直しが必要されていることから、暫定目標の目標年度は、令和7年度とすることが適当である。各水域の環境基準の類型指定及び達成期間については、2.1、2.2のとおりとすることが適当である。

なお、暫定目標の設定に当たっては、以下の考え方を基本とした。

- ア 暫定目標の検討にあたっては、最近の水質改善対策の効果や発生負荷量の変動を反映している直近の実測値(水質調査結果)も勘案し、将来において実現可能と考えられる範囲で最も良好な値を目指すことを基本とする。
- イ 環境基準の達成が見込まれる水域においては、暫定目標を設定せず、速やか に環境基準の達成を図ることとする。

また、達成が見込まれない水域においては、実現可能と考えられる範囲で暫定目標を強化する。

ウ 従前の暫定目標に比べ水質の悪化が見込まれる場合は、実測値の推移等も考慮して、可能な限り水質悪化の防止が図られるような暫定目標を設定する。

2.1 河川類型から湖沼類型への見直しを検討した水域

類型指定、達成期間について、表1に示す通りとする。

表 1 類型指定の検討結果(河川類型から湖沼類型への見直しを検討した水域)

	<u> </u>					
政令別表 による名称	水域	項目	水域類型 (基準値)		達成期間	(参考) 現行の類型
紀の川水系の紀の川	大滝ダム貯水池	化学的酸素 要求量 (COD)	湖沼A (3mg/L以下)		直ちに達成する	河川 AA
	(おおたき龍神 湖)	全窒素 全燐	湖沼Ⅱ 全窒素を除く (全燐 0.01mg/L以下)	イ	直ちに達成する	
木曾川水系の 揖斐川	徒 (1) F) F → Vib	化学的酸素 要求量 (COD)	湖沼 A (3mg/L 以下)	イ	直ちに達成する	河川 AA
	徳山ダム貯水池 (徳山湖)	全窒素全燐	湖沼Ⅱ 全窒素を除く (全燐 0.01mg/L 以 下)	イ	直ちに達成する	_

(1)大滝ダム貯水池(おおたき龍神湖)

類型については、湖沼 A 類型、湖沼 II 類型に相当する水道の利用があること、また水産からも湖沼 A 類型、湖沼 II 類型に相当と考えられるため、「湖沼 A 類型・湖沼 II 類型」に指定する。なお、全窒素/全燐比及び全燐濃度の状況から、全窒素は適用しない。

(2)徳山ダム貯水池(徳山湖)

類型については、水利用の観点からは、湖沼 B 類型、湖沼 V 類型に相当するが、現状水質が湖沼 A 類型、湖沼 II 類型を満足しており、将来予測水質も湖沼 A 類型、湖沼 II 類型を満足することが見込まれることから、現状非悪化の観点から、「湖沼 A 類型・湖沼 II 類型」に指定する。なお、全窒素/全燐比及び全燐濃度の状況から、全窒素は適用しない。

2.2 暫定目標の見直しを検討した水域

類型指定、達成期間について、表2に示す通りとする。

表 2 類型指定の検討結果(暫定目標の見直しを検討した水域)

政令別表 による名称	水域	項目	水域類型 (基準値)		達成期間	(参考) 現行の類型
		化学的酸素 要求量 (COD)	湖沼A (3mg/L以下)	1	直ちに達成する	湖沼A
相模川水系の 相模川	相模ダム 貯水池 (相模湖)	全窒素全燐	湖沼Ⅱ (全窒素 0.2mg/L以下 全燐 0.01mg/L以 下)	11	段階的に暫定目標を達成しつつ、環境基準を可及的速やかな達成に努める。 全窒素:令和7年度までの暫定目標 1.0mg/L 全燐:令和7年度までの暫定目標 0.080mg/L	湖沼 II 全窒素:令和 2 年度までの 暫定目標 1.2mg/L 全燐 :令和 2 年度までの 暫定目標 0.080mg/L
		化学的酸素 要求量 (COD)	湖沼A (3mg/L以下)	イ	直ちに達成する	湖沼A
相模川水系の 相模川	城山ダム 貯水池 (津久井 湖)	全窒素全燐	湖沼Ⅱ (全窒素 0.2mg/L以下 全燐 0.01mg/L以 下)	11	段階的に暫定目標を達成しつつ、環境基準を可及的速やかな達成に努める。 全窒素:令和7年度までの暫定目標 1.0mg/L 全燐:令和7年度までの暫定目標 0.042mg/L	湖沼Ⅱ 全窒素:令和 2 年度までの 暫定目標 1.1mg/L 全燐 :令和 2 年度までの 暫定目標 0.042mg/L
		化学的酸素 要求量 (COD)	湖沼A (3mg/L以下)	イ	直ちに達成する	湖沼A
江の川水系の江の川	土師ダム 貯水池 (八千代 湖)	全窒素全燐	湖沼Ⅱ (全窒素 0.2mg/L以下 全燐 0.01mg/L以 下)	11	段階的に暫定目標を達成しつつ、環境基準を可及的速やかな達成に努める。 全窒素:令和7年度までの暫定目標 0.43mg/L 全燐 :令和7年度までの暫定目標 0.018mg/L	湖沼 II 全窒素:令和 2 年度までの 暫定目標 0.43mg/L 全燐 :令和 2 年度までの 暫定目標 0.018mg/L

(1)相模ダム貯水池(相模湖)

類型については、湖沼A類型・湖沼Ⅱ類型に相当する水道の利用があることから、引き続き「湖沼A類型・湖沼Ⅱ類型」とする。

全窒素及び全燐については、現在見込み得る対策を行ったとしても、5年後において環境基準の達成が困難であることが見込まれるため、達成期間は【ニ 段階的に暫定目標を達成しつつ、環境基準の可及的速やかな達成に努める。】とし、令和7年度までの暫定目標を設定する。

(2)城山ダム貯水池 (津久井湖)

類型については、湖沼A類型・湖沼Ⅱ類型に相当する水道の利用があることから、引き続き「湖沼A類型・湖沼Ⅱ類型」とする。

全窒素及び全燐については、現在見込み得る対策を行ったとしても、5年後において環境基準の達成が困難であることが見込まれるため、達成期間は【ニ 段階的に暫定目標を達成しつつ、環境基準の可及的速やかな達成に努める。】とし、令和7年度までの暫定目標を設定する。

(3) 土師ダム貯水池 (八千代湖)

類型については、湖沼A類型・湖沼Ⅱ類型に相当する水道及び水産の利用があることから、引き続き「湖沼A類型・湖沼Ⅱ類型」とする。

全窒素及び全燐については、現在見込み得る対策を行ったとしても、5年後において環境基準の達成が困難であることが見込まれるため、達成期間は【ニ 段階的に暫定目標を達成しつつ、環境基準の可及的速やかな達成に努める。】とし、令和7年度までの暫定目標を設定する。

なお、自然由来の発生負荷量の影響により環境基準の達成が非常に困難な湖沼について、指定のあり方や対策等のあり方について、専門家や関係機関等と協議し、速やかに検討していくことが必要である。

また、類型指定からの時間が経過し、類型指定や設定した暫定目標の根拠となった当時の水質状況または前提条件に変化が生じている湖沼について、環境基準の類型指定や暫定目標等の取扱いについて、今後の検討が必要である。

検討対象水域の水質予測結果について

1.	河丿	川類型から湖沼類	頁型への見直	Īί	. を	村	言	 	†ر	こフ	ķŧ	域					
1 —	1.	大滝ダム貯水池	(おおたき龍	神	湖)	•	•	•	•	•	•			•	1.	1
1 —	2.	徳山ダム貯水池	(徳山湖) •			•		•	•	•	•	•	•	•	•	1.	2
2.	暫気	定目標の見直しる	を検討した水	〈均	į												
2 –	1.	相模ダム貯水池	(相模湖) •	•	•	•	•	•	•	•	•		•	•	•	2.	1
2 –	2.	城山ダム貯水池	(津久井湖)	•	•	•	•	•	•	•	•	•	•	•	•	2.	2
2 –	3.	土師ダム貯水池	(八千代湖)													2.	3

1.1. 大滝ダム貯水池(おおたき龍神湖)

現在は河川類型(河川AA)が適用されている大滝ダム貯水池について、河川類型から湖沼類型への見直しを検討した。

具体的には以下に示す検討を行い、類型指定を検討した。

■各節における検討概要(サマリー)

1.1.1 大滝ダムの概要

大滝ダムの概要について、既存資料から整理した。

1.1.2 大滝ダム貯水池周辺の環境基準類型指定状況

大滝ダム貯水池周辺の環境基準類型指定の状況(今回の見直し前)について整理した。 大滝ダム貯水池は、現在河川 AA 類型に指定されている。

1.1.3 大滝ダム貯水池の水質状況

大滝ダムの水質について、水質測定データ、既存資料等から整理した。 全窒素(以下、「T-N」という。)の当てはめ有無を判定するための全窒素/全燐(以下、「T-N/T-P」という。)比について整理した。

■T-Nの基準の適用有無

異常値を除外したデータを用いて算定した結果、T-N/T-P 比が 20 以下となる年度、T-P 濃度が 0.02mg/L 以上となる年度はともになく、T-N の基準値は適用除外となる。

1.1.4 大滝ダム貯水池の利水状況

大滝ダムの利水状況、漁業権の設定状況等水産利用について、既存資料及び関係機関ヒアリング結果より整理した。

■利用状況等から見た適用類型

ダム下流に湖沼 AⅡ類型に相当する上水取水(水道 2 級の浄水場)があり、湖沼 AⅡ類型に相当する水産生物の漁業権が設定され、生息も確認されている。

⇒湖沼 AⅡ類型に指定することが考えられる。

1.1.5 大滝ダム貯水池 (おおたき龍神湖) にかかる水質汚濁負荷量

大滝ダムの将来水質予測を実施するにあたり、大滝ダム貯水池流域の現況および将来の水質汚濁負荷量について、収集データ等から算定した。

1.1.6 大滝ダム貯水池 (おおたき龍神湖) の将来水質予測

大滝ダムの現況水質、現況及び将来の汚濁負荷量より、将来の水質予測(化学的酸素要求量(以下、「COD」という。)、T-N、全燐(以下、「T-P」という。))を行った。

■将来水質予測結果(R7)

	4 4 644111111								
項	Ħ	大滝ダム貯水池							
块	. 🖽	将来水質(mg/L)	変動範囲 (mg/L)						
COD水質	75%値	1.8	1.6~1.9						
T-N水質	年平均値	0.39	0.33~0.44						
T-P水質	年平均値	0.013	0.010~0.015						

1.1.7 大滝ダム貯水池(おおたき龍神湖)の類型指定

以上までの検討結果を踏まえ、大滝ダム貯水池の類型指定を検討した。

水域類型		達成期間	(参考) 現行の類型
湖沼A	イ	直ちに達成する	河川 AA
湖沼Ⅱ 全窒素を除く	1	直ちに達成する	_

(1)類型指定

- ・ 類型については、湖沼 A 類型、湖沼 II 類型に相当する水道の利用があること、また水産から も A II 類型相当と考えられるため、「湖沼 A 類型・湖沼 II 類型」に指定する。
- なお、T-N/T-P 比及び T-P 濃度の状況から、T-N は適用しない。

(2)達成期間(暫定目標の設定を含む)

- ・ COD については、平成 25 年度~平成 28 年度の現況値 (75%値)、令和 7 年度の水質予測結果 (75%値 1.8mg/L) ともに、湖沼 A 類型の基準値 (3mg/L) を下回ることから、暫定目標は設定せず、達成期間は、【イ 直ちに達成する。】とする。
- ・ T-P については、平成 25 年度~平成 28 年度までの現況値は低下傾向にあり、現況年である 平成 28 年度は 0.010mg/L まで低下し、II 類型を満足している。直近の平成 29 年度~平成 30 年度は 0.012~0.016mg/L と II 類型を若干上回っているが、令和 7 年度の将来予測結果 (0.013mg/L,変動範囲: 0.010~0.015mg/L)の下限値は II 類型を満足していることから環境 基準の達成が見込まれると判断し、暫定目標は設定せず、達成期間は【イ 直ちに達成する。】 とする。

■現況水質

	H25	H26	H27	H28	H29	H30
COD水質(mg/L)	1.8	1.5	1. 7	2.0	1.8	1. 3
T-N水質(mg/L)	0.47	0.38	0.35	0.34	0.33	0.33
T-P水質(mg/L)	0.017	0.013	0.012	0.010	0.016	0.012

[※]CODは75%値、T-N、T-Pは年平均値を記載している。

1.1.1. 大滝ダムの概要

大滝ダムは、紀の川上流の奈良県吉野郡川上村に位置し、洪水調節、水道用水・工業用水の供給、発電、流水の正常な機能の維持を目的とする多目的ダムである。集水面積は258km²で、紀の川流域の約15%を占める。

洪水調節は、下流河道の整備状況から当面、最大1,200m³/sの放流としている。また、水道 用水・工業用水については、奈良県、和歌山県、和歌山市、橋本市に対して水道用水、和歌 山市に対して工業用水を供給している。発電については、直下の関西電力大滝発電所におい て、最大出力10,500kWの発電に利用されている。

貯水池の運用としては、常時満水位で運用する非洪水期(10/16〜翌6/15)、第一期洪水貯留準備水位で運用する第一期洪水期(6/16〜8/15)、第二期洪水貯留準備水位で運用する第二期洪水期(8/16〜10/15)の3期に区分して、利水容量及び洪水調節容量が設定されている。

本ダムは、昭和34年9月の伊勢湾台風による被害を契機に建設が検討され、昭和40年4月に ダム建設事業に着手、平成15年3月から試験湛水を開始し、平成25年3月に竣工、翌月より管理が開始されている。

参考: 紀の川ダム管理事務所WEBページ (http://www.kkr.mlit.go.jp/kinokawa/index.php) 「平成30年度 事業概要」(国土交通省近畿地方整備局 紀の川ダム統合管理事務所)

大滝ダムの概要及び諸元を表 1.1.1、表 1.1.2、大滝ダム貯水池の容量配分図を図 1.1.1、 大滝ダム貯水池流域図を図 1.1.2に示す。

表 1.1.1 大滝ダムの概要

(1)ダム名称	大滝ダム
(2)管理者	国土交通省近畿地方整備局
(3) ダム所在地	吉野郡川上村大字大滝地内
(4)水系名・河川名	紀の川水系紀の川
(5)水域	紀の川(1) (津風呂川合流点より上流。ただし、大迫ダム貯水池(全域)を除く)
(6)集水面積	258 (km²)
(7)環境基準類型	河川 AA

出典:紀の川ダム管理事務所 WEB ページ(http://www.kkr.mlit.go.jp/kinokawa/index.php)

表 1.1.2 大滝ダムの諸元

(1)堰長	315 (m)
(2)堤高	100 (m)
(3)総貯水容量	84,000 (千 m³)
(4)有効貯水容量	76,000 (千 m³)
(5)サーチャージ水位	323. 00 (ELm)
(6)年平均滯留時間**	68.8 (日)

※年平均滞留時間=有効貯水容量/年平均流入量(それぞれ H24~H27 の滞留時間を求めて平均を算出) 出典:ダム諸量データベース (http://mudam.nilim.go.jp/)

出典:令和2年度事業概要,国土交通省紀の川ダム統合管理事務所

図 1.1.1 大滝ダム貯水池容量配分図

大滝ダム 流域図

資料:国土数値情報[流域界・非集水域 (KS-273)] (国土交通省)をもとに国土地理院の数値地図 200000 (地図画像)を用いて作成した。

図 1.1.2 大滝ダム貯水池流域図

1.1.2. 大滝ダム貯水池周辺の環境基準類型指定状況

大滝ダム貯水池周辺及び、紀の川流域の水域類型指定状況を、表 1.1.3 及び図 1.1.3 に示した。

表 1.1.3 大滝ダム貯水池周辺の水域類型指定状況

水域名称	水域	該当類型	達成期間	指定年月日	
紀の川水系の紀の川	紀の川(1) 津風呂川合流点より上流。 ただし、大迫ダム貯水池 (全域)を除く。	河川 AA	7	昭和 47 年 11 月 6 日	環境庁 告示

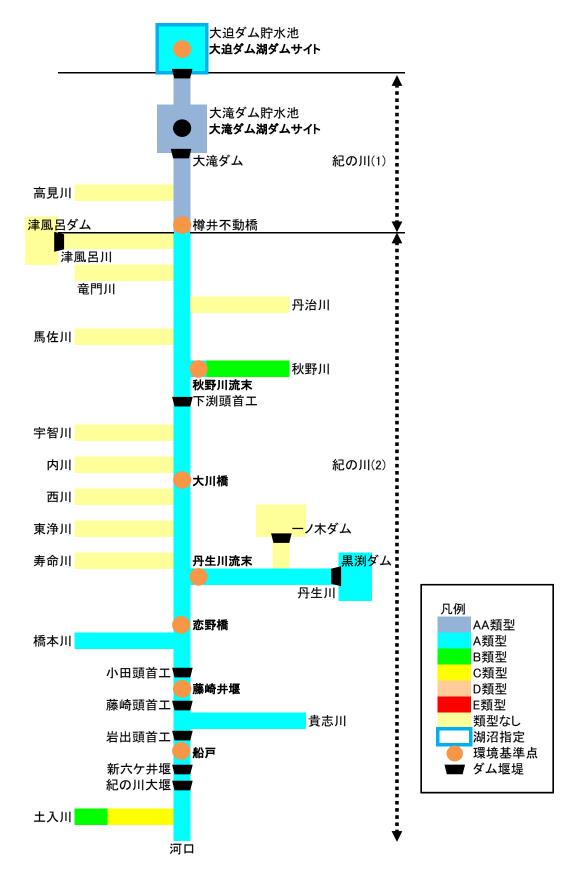


図 1.1.3 紀の川流域の水域類型指定状況図

1.1.3. 大滝ダム貯水池の水質状況

(1) 大滝ダム貯水池の水質状況

大滝ダム貯水池の水質測定地点を図 1.1.4 に示した。また、大滝ダム貯水池の水質測定地点における水質 (pH、DO、SS、大腸菌群数、BOD、COD、T-N、T-P、底層 DO、水温) の推移を、表 1.1.4 に示した。

資料:水質測定地点は、水環境総合情報サイト(環境省)https://water-pub.env.go.jp/water-pub/mizu-site/公共用水域水質測定データ(水質測定点データ)2017年度の緯度経度情報より作成した。

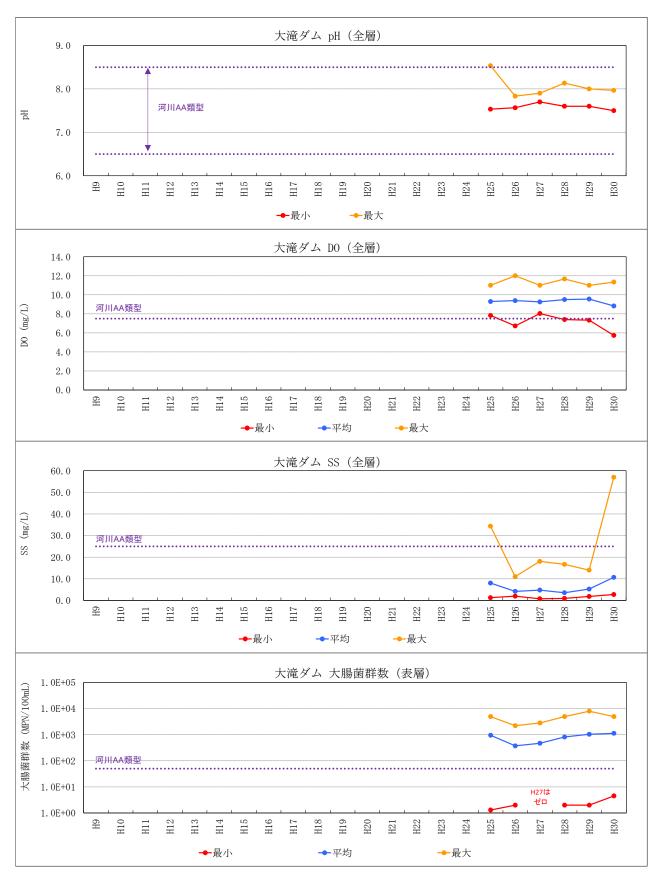
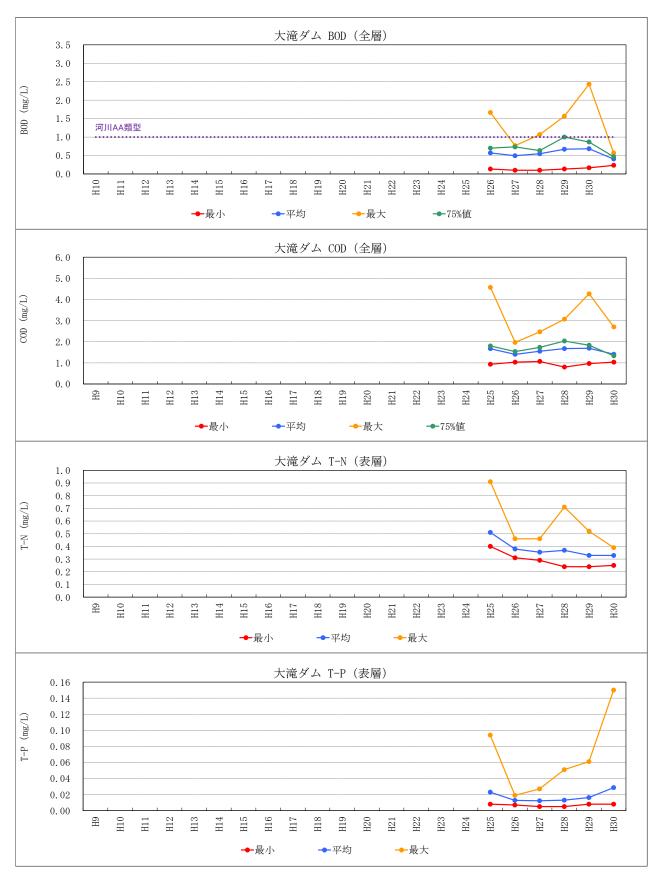

図 1.1.4 大滝ダム貯水池の水質測定地点

表 1.1.4 大滝ダム貯水池水質経年変化

年度			全層					DO (r	ng/L) 全層	7	
	最小	最大	m/n	平均	75%値	最小		最大	m/n	平均	75%値
H25	7.5 ~	8.5 1	/ 12	-	_	7.8	~	11. 0	0 / 12	9.3	-
H26	7.6	7.8 0		-	_	6. 7	\sim	12. 0	1 / 12	9.4	_
H27	7.7 ~	7.9 0		-	_	8.0	\sim	11.0	0 / 12	9.3	_
H28	7.6 ~	8.1 0		-	_	7.4	\sim	11. 7	1 / 13	9.5	_
H29	7.6	8.0 0		-	_	7. 3	\sim	11.0	1 / 12	9.6	-
H30	7.5 ~	8.0 0		_	_	5. 7	\sim	11. 3	2 / 12	8.8	_
年度		SS (mg/	/L) 全層				大	腸菌群数(MPN/100m	L)表層	
	最小	最大	m/n	平均	75%値	最小		最大	m/n	平均	75%値
H25	1.3 ~	34 2		8.0	_	1. 3	\sim	4900	6 / 12	945	_
H26	2.0 ~	11 0		4.2	_	2	\sim	2200	8 / 12	371	-
H27	0.8 ~	18 0		4.8	_	0	\sim	2800	8 / 12	467	_
H28	0.9 ~	17 0		3.6	_	2	\sim	4900	8 / 13	813	_
H29	1.8 ~	14 0		5. 2	_	2	\sim	7900	7 / 12	1033	_
H30	2.7 ~	57 2		10.7	_	4. 5	\sim	4900	5 / 12	1124	_
年度		BOD (mg	g/L)全师					COD(mg/L)全		
	最小	最大	m/n	平均	75%値	最小		最大	m/n	平均	75%値
H25	0.1	1.7 1	/ 12	0.6	0.7	0.9	\sim	4. 6	- / 12	1. 7	1.8
H26	0.1 ~	0.8 0		0.5	0.7	1.0	\sim	2.0	- / 12	1.4	1.5
H27	0.1 ~	1.1 1	/ 12	0.5	0.6	1. 1	\sim	2. 5	- / 12	1.6	1. 7
H28	0.1 ~	1.6 3		0.7	1.0	0.8	\sim	3. 1	- / 13	1.7	2.0
H29	0.2 ~	2.4 2		0.7	0.9	1. 0	\sim	4.3	- / 12	1. 7	1.8
H30	0.2 ~	0.6 0		0.4	0.5	1.0	\sim	2.7	- / 12	1.4	1.3
年度		T-N (mg						T-P(1			
	最小	最大	m/n	平均	75%値	最小		最大	m/n	平均	75%値
H25	0.40 ~	0.91 -	/ 12	0.51	_	0.008	\sim	0.094	- / 12	0.023	-
H26	0.31 ~	0.46 -	/ 12	0. 38	_	0.007	\sim	0.019	- / 12	0.013	-
H27	0.29 ~	0.46 -	/ 12	0.35	_	0.005	\sim	0.027	- / 12	0.012	_
H28	0.24 ~	0.71 -	/ 10	0.37	_	0.005	\sim	0.051	- / 13	0.013	_
H29	0.24 ~	0.52 -	/ 10	0. 33	_	0.008	\sim	0.061	- / 12	0.016	_
H30	0.25 ~	0.39 -	/ 14	0.33	_	0.008	\sim	0. 150	- / 12	0.029	
年度		DO(mg/L)	下層(底					水温		7 1/2	
	最小	最大	m/n	平均	75%値	最小		最大	m/n	平均	75%値
H25	4.8 ~	10.0 -	/ 14	8.4	_	5. 5	\sim	24.6	- / 12	13. 9	
H26	6.7 ~	10.0 -	/ 14	8.5	_	7.0	\sim	25. 9	- / 12	16.0	
H27	5.3 ~	11.0 -	/ 14	8.2	-	6. 2	\sim	26. 9	- / 12	15. 5	_
H28	7.0 ~	12.0 -	/ 10	9.2	_	5. 3	\sim	28. 2	- / 13	14. 5	_
H29 H30	7.0 ~ 3.8 ~	12.0 -	/ 14	9.6	-	5. 3 6. 9	\sim	28. 2 22. 8	- / <u>12</u> - / <u>12</u>	13. 1 12. 0	-
Н30	3.8 ∼	11.0 -	/ 12	8.1	_	б. 9	\sim	22.8	- / 12	12.0	_


注) m/n欄は、n:測定実施日数、m:環境基準を満足しない日数

出典:ダム諸量データベース (http://mudam.nilim.go.jp/) 国土交通省 近畿地方整備局 紀の川ダム統合管理事務所 提供資料

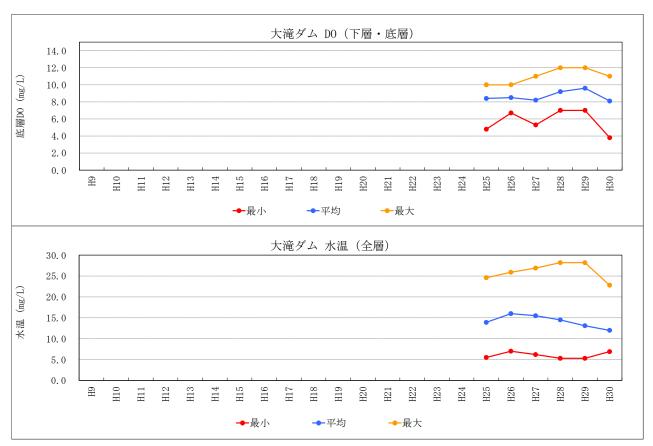

出典:ダム諸量データベース(http://mudam.nilim.go.jp/)、国土交通省近畿地方整備局 紀の川ダム統合管理事務所提供資料

図 1.1.5(1) 大滝ダム貯水池における水質の推移

出典:ダム諸量データベース(http://mudam.nilim.go.jp/)、国土交通省近畿地方整備局 紀の川ダム統合管理事務所提供資料

図 1.1.5(2) 大滝ダム貯水池における水質の推移 (続き)

出典:ダム諸量データベース(http://mudam.nilim.go.jp/)、国土交通省近畿地方整備局 紀の川ダム統合管理事務所提供資料

図 1.1.5(3) 大滝ダム貯水池における水質の推移(続き)

平成 25 年度から平成 30 年度の期間中、T-N/T-P 比が 20 以下の年度は平成 30 年度、T-P 年平均濃度が 0.02mg/L 以上は平成 25 年度、平成 30 年度であった。これらの年度のうち、T-N の項目の基準値を適用すべき湖沼の条件に合致しているものは平成 30 年度だった。ただし後述する異常値除外を行った水質データでは、条件を満たす年度は無くなった。

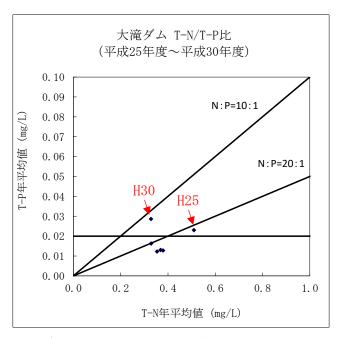


図 1.1.6 大滝ダム貯水池における T-N/T-P 比の状況 (異常値除外前)

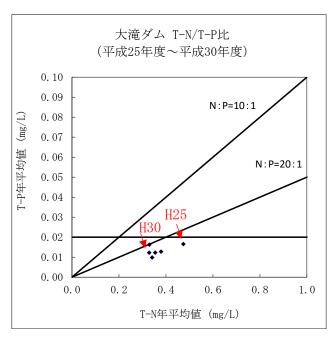
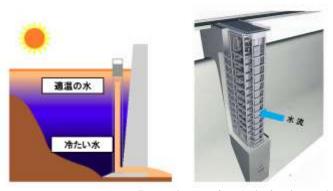


図 1.1.7 大滝ダム貯水池における T-N/T-P 比の状況 (異常値除外後)


<参考>T-Nの項目の基準値を適用すべき湖沼の条件

T-Nが湖沼植物プランクトンの増殖の要因となる湖沼(T-N/T-P比が20以下であり、かつT-P 濃度が0.02mg/L以上である湖沼)についてのみ適用

(2) 大滝ダム貯水池の水質保全対策

大滝ダムでは、水質保全施設として、下流河川への放流水の冷濁水対策として選択取水設備を運用している。選択取水設備の概要と運用方法を図 1.1.8、表 1.1.5 に示す。貯水池の水温は水面付近の浅いところの方が高く、深いところでは低くなる。また、大雨の時などは濁った水がダムに流れ込む。適温できれいな水の層を選んで流せるように、取水口の標高を変えることができる選択取水設備を設置している。

その取水範囲は E. L. 321m (平常時最高貯水位) ~E. L. 271m (最低水位) で 50m に及ぶ。

出典: 平成29年度 大滝ダム定期報告書(近畿地方整備局)

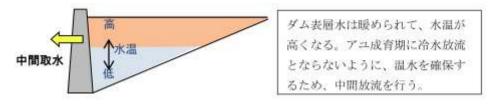

図 1.1.8 選択取水施設の概要

表 1.1.5 選択取水施設の運用方法

WEIGH	7.2	水質目標		in a	
期間生活		水温	濁度	備考	
1~2月	鋒下期	F期 なし(流入水温(柏木地点)との差 4°C以内が目安) 3		不可能なら	
3月	選上期			表層取水	
4月	进上期	10℃以上			
5~9月	成育期	16℃以上または流入水温以上	20 度以下		
10月	產卵期	14℃以上または流入水温以上	30度以下		
11~12 月	降下期	なし(流入水温(柏木地点)との差 4°C以内が目安)			

注) 天然アユの遡上は無く、アユの放流も5月に行われるため、現状では、4月については温水を温存する運用を 行っている

出典:平成29年度 大滝ダム定期報告書(近畿地方整備局)

出典:平成29年度 大滝ダム定期報告書(近畿地方整備局)

図 1.1.9 4月の温水温存のイメージ

1) 水温に関する効果の評価

アユ等に配慮した取水を行うこととし、アユの生育期である 5~9 月には、水温 16℃以上または流入水温以上を目標とした放流が行われている。

そのため、図 1.1.10 に示すとおり選択取水設備を運用し、春先は貯水池内に温水を温存するために低水温層から取水し、アユの生育期には温かい表層からの取水が行われている。これによって、下流河川への水温影響の低減が図られている。

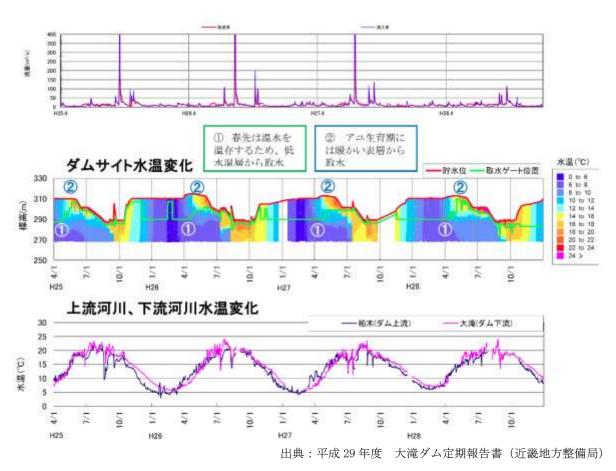
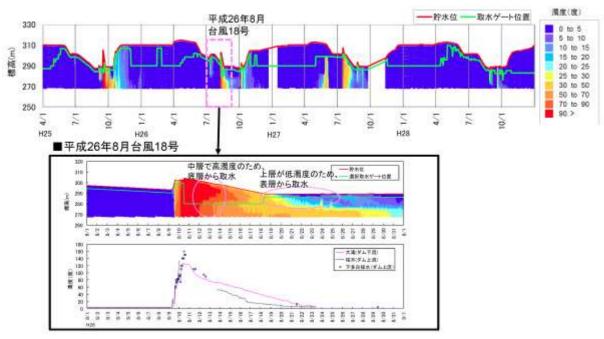



図 1.1.10 選択取水の状況と流入、放流水温の比較

2) 濁りに関する効果の評価

出水後にダム湖内で濁度が高い状態が継続しているが、選択取水設備により、濁度が低い層から取水する運用が行われている。

出典:平成29年度 大滝ダム定期報告書(近畿地方整備局)

図 1.1.11 選択取水による濁りへの効果

1.1.4. 大滝ダム貯水池の利水状況

大滝ダム貯水池の利用目的を表 1.1.6に、利水の状況を表 1.1.7 及び図 1.1.12に示した。 大滝ダムは洪水調節、流水機能維持、水道用水、工業用水及び発電を利用目的としている。

表 1.1.6 大滝ダム貯水池の利用目的

洪水調節	流水機能 維持	農業用水	水道 用水	工業 用水	発電	消流雪 用水	レクリエー ション
\bigcirc	0		0	0	0		

表 1.1.7 大滝ダム貯水池および下流の利水状況

用途	取水場所	浄水場名	処理水準	特記事項
	飯貝浄水場取水口	吉野町 飯貝浄水場	水道3級(前塩素、凝集沈殿、急 速ろ過、粒状活性炭ろ過、後塩素)	
	下市浄水場取水場	下市町 下市浄水場	水道2級(前塩素、苛性ソーダ、 凝集沈殿、中間塩素、急速ろ過、 後塩素)	流域面積 : 544.9km²
	檜垣本取水口	大淀町 桜ヶ丘浄水場	水道3級(粉末活性炭、前塩素、 硫酸、凝集沈殿、中間塩素、急速 ろ過、後塩素)	
	下渕頭首工 下市取水場	奈良県 御所浄水場	水道3級(粉末活性炭、硝酸、前塩素、苛性ソーダ、凝集沈殿、中間塩素、急速ろ過、苛性ソーダ、後塩素処理)(AⅡ類型相当)	
水道用水	小島取水場	五條市小島浄水場	水道3級(粉末活性炭、前次亜塩素酸ソーダ、凝集沈殿、急速ろ過、後次亜塩素酸ソーダ)(AⅡ類型相当)	
	橋本市上水道取水場	橋本市 橋本市浄水場	水道3級(粉末活性炭、前アルカリ、前塩素、凝集沈殿、中間塩素、 急速ろ過、後アルカリ、後塩素) (AⅡ類型相当)	
	紀の川取水枡	紀の川市 粉河浄水場	水道2級(前塩素、凝集沈殿、急 速ろ過、後塩素)	流域面積: 1211.1km²
	加納浄水場取水口	和歌山市加納浄水場	水道3級(粉末活性炭処理、凝集 沈殿、急速ろ過、中・後塩素処理) (AⅡ類型相当)	
	室山浄水場採水地点	海南市室山浄水場	水道2級(強制凝集沈殿、急速ろ 過)(AII類型相当)	
工業用水	紀の川 (和歌山市松島 新田地先)	_	工業用水 1 級	

出典:水道データベース(http://www.jwwa.or.jp/mizu/or_up.html)

和歌山市水道ビジョン(http://www.wakayamashi-suido.jp/006/vision/vision.pdf)

和歌山市企業局 (http://www.wakayamashi-suido.jp/)

橋本市上下水道(http://www.city.hashimoto.lg.jp/kurashi_tetsuduki/jogesuido/index.html)

奈良県水道局 (http://www.pref.nara.jp/1689.htm)

奈良県ヒアリング

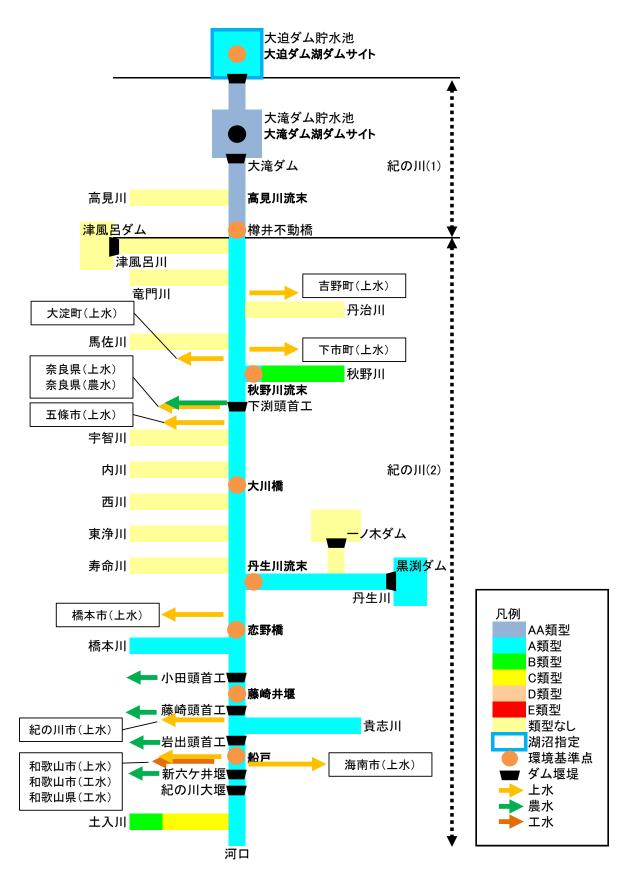
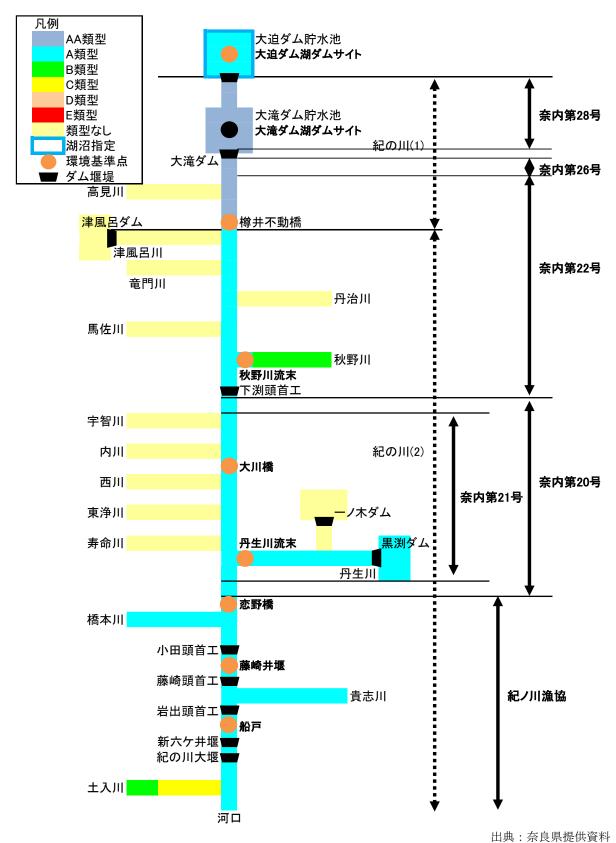
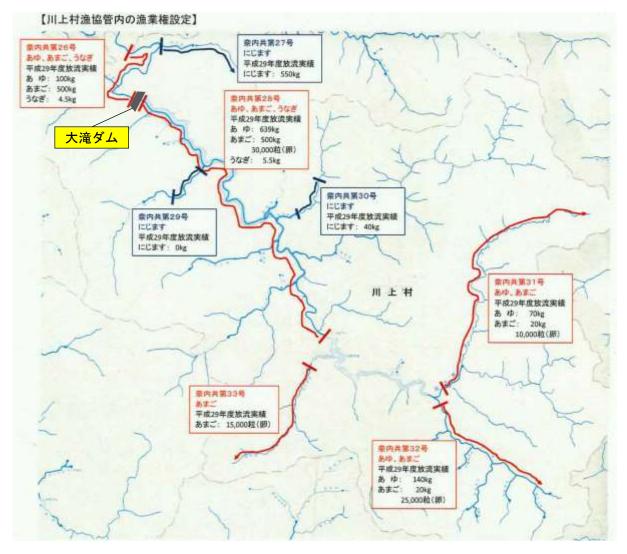


図 1.1.12 大滝ダム貯水池流域の利用状況


表 1.1.8 大滝ダム貯水池周辺の漁業権

免許番号	魚種	魚場	漁業時期	備考
奈内共第26号	アユ、アマゴ、	紀の川(吉野郡川上村)	1月1日から12月31日まで	大滝ダム直下流
(第五種共同	ウナギ			
漁業)				
奈内共第28号	アユ、アマゴ、	紀の川(吉野郡川上村)	1月1日から12月31日まで	大滝ダム貯水池内、
(第五種共同	ウナギ			上流
漁業)				
奈内共第31号	アユ、アマゴ	紀の川(吉野郡川上村)	1月1日から12月31日まで	大滝ダム下流
(第五種共同				
漁業)				
奈内共第22号	アユ、コイ、	紀の川、津風呂川、高見川(吉野郡	1月1日から12月31日まで	大滝ダム下流
(第五種共同	ウナギ	下市町、大淀町、吉野町)		
漁業)				
奈内共第21号	ニジマス	紀の川 (五條市)	1月1日から12月31日まで	大滝ダム下流
(第五種共同				
漁業)				
奈内共第20号	アユ、アマゴ、	紀の川、丹生川、吉田川(五條市)	1月1日から12月31日まで	大滝ダム下流
(第五種共同	コイ			
漁業)				
紀ノ川漁業	アユ、アマゴ、	紀の川河口より和歌山県。奈良県の県		大滝ダム下流
	コイ、モクズ	境(恋野橋)まで		
	ガニ			

出典:奈良県提供資料


H22 水生生物の保全に係る水質環境基準の類型指定について(第4次報告) 資料 2-2 (中央環境審議会水環境部会 水生生物保全環境基準類型指定専門委員会)

大滝ダム貯水池上流域での漁業権設定状況を図 1.1.13 に、放流実績を図 1.1.14 に示す。

H22 水生生物の保全に係る水質環境基準の類型指定について(第4次報告)資料2-2 (中央環境審議会水環境部会 水生生物保全環境基準類型指定専門委員会)

図 1.1.13 大滝ダム貯水池周辺の漁業権の状況

出典: 奈良県提供資料に加筆

図 1.1.14 大滝ダム貯水池上流の漁業権の状況および放流実績

1.1.5. 大滝ダム貯水池(おおたき龍神湖)にかかる水質汚濁負荷量

(1)大滝ダム貯水池(おおたき龍神湖)の水質汚濁負荷量の算定について

大滝ダム貯水池(おおたき龍神湖)の水質汚濁負荷量の算定及び将来水質予測手法の概要は、図 1.1.15 に示すとおりである。現況は平成 28 年度*として、基礎的な統計データである平成 27 年度国勢調査 3 次メッシュ別人口等の値を用いるとともに、平成 28 年度の値が入手可能な統計データを更新した。将来は現行の暫定目標の達成年度の 5 年後である令和 7 年度とした。

まず、流域フレーム(現況、将来)を設定したのち、点源については実測値法(排水量×水質)、面源については原単位法(フレーム×原単位)により水質汚濁負荷量を算定した。 将来水質は、算定した現況の発生負荷量、将来の発生負荷量、平均流入率及び平均流入量を用いて算定した。

なお、フレームの設定方法及び使用した資料は表 1.1.9 に示すとおりである。

※湖沼の水質データ(表 1.1.4、図 1.1.5で整理)は、入手可能な最新年度が平成30年度となっているが、将来水質予測の現況年度については、負荷量算定に用いる各種統計データの入手可能な最新の実績年度を踏まえ、平成28年度とした。

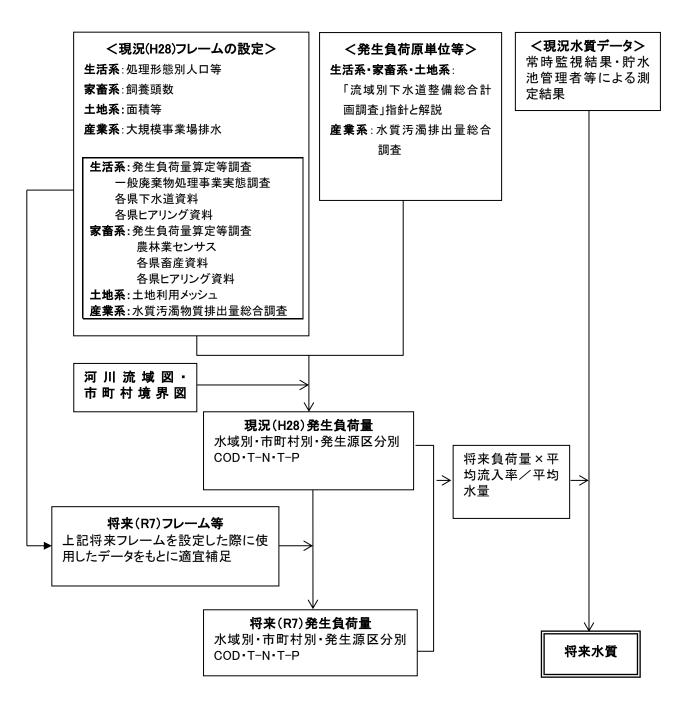


図 1.1.15 水質汚濁負荷量の算定及び将来水質予測手法の概要

表 1.1.9 紀の川流域における現況・将来フレームの設定方法及び使用した資料

分類	設定方法	使用した資料
生活系	●現況(平成28年度) ・流域内の総人口は、平成27年度国勢調査3次メッシュ別人口の値を使用。 ・し尿処理形態別人口は、「奈良県の一般廃棄物処理事業の概要 平成28年度版」(奈良県)により把握し、流域内外の人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分。 ●将来(令和7年度)	1)「国勢調査地域メッシュ統計データ(H27)」 (総務省) 2)「「奈良県の一般廃棄物処理事業の概要 平成28年度版」」(奈良県) 3)(前出)「奈良県ヒアリング資料」(奈良県)
	・将来総人口は、奈良県へのヒアリングにより設定。 ・し尿処理形態別人口は、奈良県へのヒアリングにより設定し、流域内外の人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分。	
家畜系	●現況(平成28年度) ・「奈良県家畜家きん規模別戸数および飼養頭羽数H28」(奈良県)により大滝ダム貯水池流域に該当する市町村別の飼養頭(羽)数を把握し、市町村別の飼養頭(羽)数は、流域内の農地(田・畑)面積と市町村の農地面積の比率から、大滝ダム貯水池流域に按分。 ●将来(令和7年度)・現況と同じとした。	4)「奈良県家畜家きん規模別戸数および飼養頭 羽数 H28」(奈良県)
土地系	●現況(平成28年度) ・平成28年度~(現行整備事業の整備済み範囲成果)の「土地利用第3次メッシュデータ(土地利用区分別面積)(国土交通省)」の土地利用別面積を設定。	5)「土地利用第3次メッシュデータ(土地利用 区分別面積)(H28~)」(国土交通省)
	●将来(令和7年度) ・過去の土地利用面積の推移において、明確な 市街地面積の増加傾向はみられなかったた め、現況年度(平成28年度)と同様の土地 利用別面積を設定。	
点源 •生活系 •家畜系 •産業系	●現況(平成28年度) ・環境省資料により平成28年度の流域内の対象工場・事業場を把握した。大滝ダム貯水池流域においては、フレーム設定の対象となる点源は認められなかった。	6)「水質汚濁物質排出量総合調査」(環境省)
	●将来(令和7年度)・最新年度(平成29年度)における環境省資料においてもフレーム設定の対象となる点源は認められなかった。	

(2) 大滝ダム貯水池 (おおたき龍神湖) の流域フレーム

大滝ダム貯水池(おおたき龍神湖)に係る現況フレームについては、当該流域が含まれる奈良県吉野郡天川村及び川上村のフレーム値(生活系、産業系、家畜系、土地系)を収集・整理して設定した。

現況及び将来フレームの設定方法の詳細は以下に示すとおりである。

- 1) 生活系
- ア) 現況
- i)総人口

流域内の総人口は、平成27年度国勢調査3次メッシュ別人口の値を使用した。

ii) し尿処理形態別人口

し尿処理形態別人口は、一般廃棄物処理事業実態調査(環境省)により把握し、流域内外の 人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分した。

表 1.1.10 大滝ダム貯水池流域のし尿処理別形態人口(現況・平成28年度)

	区分	単位	現況•平成28年度
生活系	総人口	人	926
	下水道	人	0
	コミュニティプラント	人	0
	農集排水	人	0
	浄化槽	人	882
	合併処理净化槽	人	307
	単独処理浄化槽	人	576
	計画収集	人	44
	自家処理	人	0

※単位未満を四捨五入しているため、内訳の計と合計が一致しない場合がある

4) 将来

i)総人口

将来総人口は、奈良県へのヒアリングにより設定した。

ii) し尿処理形態別人口

し尿処理形態別人口は、奈良県へのヒアリングにより設定し、流域内外の人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分した。

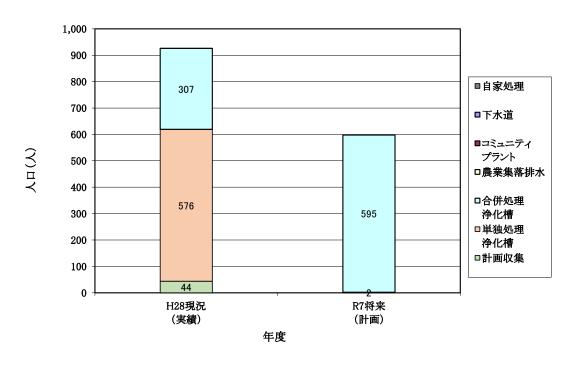


図 1.1.16 流域市町村のし尿処理形態人口の変化

表 1.1.11 大滝ダム貯水池流域のし尿処理形態別人口(将来・令和7年度)

	区分	単位	将来•令和7年度
生活系	総人口	人	598
	下水道	人	0
	コミュニティプラント	人	0
	農集排水	人	0
	浄化槽	人	598
	合併処理浄化槽	人	595
	単独処理浄化槽	人	2
	計画収集	人	0
	自家処理	人	0

※単位未満を四捨五入しているため、内訳の計と合計が一致しない場合がある

2) 家畜系

ア) 現況

「奈良県家畜家きん規模別戸数および飼養頭羽数H28」(奈良県)により大滝ダム貯水 池流域に該当する市町村別の飼養頭(羽)数を把握し、流域内の家畜頭(羽)数はゼロ とした。

1)将来

現況と同様に、家畜頭(羽)数はゼロとした

3) 土地系

ア) 現況

平成28年度~(現行整備事業の整備済み範囲成果)の「土地利用第3次メッシュデータ (土地利用区分別面積)(国土交通省)」より設定した。

土地利用第3次メッシュデータは、土地利用区分として12区分されており、表 1.1.12 のように5区分に集約した。

表 1.1.12 土地利用第3次メッシュデータの土地利用区分の集約

国土数値情報の 土地利用区分	集約区分	
田	田	
他農用地	畑	
森林	山林	
建物用地		
道路	市街地	
鉄道		
他用地		
荒地		
河川湖沼	 その他	
海浜	-C 0711113	
ゴルフ場		
海水域	除外	

表 1.1.13 大滝ダム貯水池流域の土地利用区分別面積(現況・平成28年度)

X	分	単位	現況・平成28年度
土地系	田	ha	0
	畑	ha	2
	山林	ha	25,112
	市街地	ha	112
	その他	ha	568
	総面積	ha	25,795

1) 将来

過去の土地利用面積の推移において、明確な市街地面積の増加傾向はみられなかった ため、現況年度(平成28年度)と同様の土地利用別面積を設定した。



図 1.1.17 大滝ダム貯水池流域の土地利用区分面積の変化

表 1.1.14 大滝ダム貯水池流域の土地利用区分別面積(将来・令和7年度)

X	分	単位	将来•令和7年度
土地系	田	ha	0
	畑	ha	2
	山林	ha	25,112
	市街地	ha	112
	その他	ha	568
	総面積	ha	25,795

4) 点源の排水

ア) 現況

平成28年度の「水質汚濁物質排出負荷量総合調査」において、流域内の対象工場・事業場を把握した。

大滝ダム貯水池流域においては、フレーム設定の対象となる点源は認められなかった。

イ) 将来

平成23年度、平成25年度、平成27年度、平成29年度における「水質汚濁物質排出負荷量総合調査」において、流域内の対象工場・事業場を把握し、稼動事業場の実測排水量と発生汚濁負荷量を把握した。

大滝ダム貯水池流域においては、フレーム設定の対象となる点源は認められなかった。

表 1.1.15 大滝ダム貯水池流域のフレームの推移(平成23年度~平成28年度)

	区 分	単位	H23	H24	H25	H26	H27	H28	現況平均 (H23~H28平均)
	総人口	人	1,095	1,059	1,024	988	953	926	1,008
	下水道	人	0	0	0	0	0	0	0
	コミュニティプラント	人	0	0	0	0	0	0	0
	農業集落排水	人	0	0	0	0	0	0	0
生活系	合併処理浄化槽	人	158	186	214	242	270	307	230
	単独処理浄化槽	人	827	778	728	678	629	576	
	計画収集	人	109	95	82	68	54	44	75
	自家処理	人	0	0	0	0	0	0	0
	点源	$m^3/$ 日	0	0	0	0	0	0	0
	牛	頭	0	0	0	0	0	0	0
家畜系	豚	頭	0	0	0	0	0	0	0
	鶏	羽	0	0	0	0	0	0	0
	点源	m^3/B	0	0	0	0	0	0	0
	田	ha	0	0	0	0	0	0	0
	畑	ha	13		14	14	8	2	11
	山林	ha	25,236	25,192	25,149	25,105	25,109	25,112	25,151
土地系	市街地	ha	101	102	103	103	108	112	105
	その他	ha	445	487	530	573	571	568	529
	総面積	ha	25,795	25,795	25,795	25,795	25,795	25,795	25,795
産業系	点源	$m^3/$ 日	0	0	0	0	0	0	0

表 1.1.16 大滝ダム貯水池流域の水質汚濁負荷量に係るフレーム (現況、将来)

	区 分	単位	現況•平成28年度	将来•令和7年度
	総人口	人	926	598
	下水道	人	0	0
	コミュニティプラント	人	0	0
	農業集落排水	人	0	0
生活系	合併処理浄化槽	人	307	595
	単独処理浄化槽	人	576	2
	計画収集	人	44	0
	自家処理	3 / 日	0	0
-	点源	m ³ /日	0	0
	牛	頭	0	0
家畜系	豚	頭	0	0
	鶏	羽	0	0
	点源	m ³ /日	0	0
	田	ha	0	0
	畑	ha	2	2
	山林	ha	25,112	25,112
土地系	市街地	ha	112	112
	その他	ha	568	568
	総面積	ha	25,795	25,795
産業系	点源	m^3/B	0	0

(3) 大滝ダム貯水池 (おおたき龍神湖) の発生汚濁負荷量の算定方法

発生汚濁負荷量の算定手法は表 1.1.17 に示すとおり、点源については実測値法(負荷量=排水量×水質)、面源については原単位法(負荷量=フレーム×原単位)により算定した。面源の発生汚濁負荷量の算定に用いた原単位は表 1.1.18 に示すとおりである。

表 1.1.17 大滝ダム貯水池 (おおたき龍神湖) の発生汚濁負荷量算定手法

発生活	原別	区分	算定手法
生活系	点源	下水道終末処理施設 (マップ調査)*	排水量(実測値)×排水水質(実測値)
		し尿処理施設(マップ調査)*	排水量(実測値)×排水水質(実測値)
	面源	し尿・雑排水(合併処理浄化槽)	合併処理浄化槽人口×原単位(し尿+雑排水)×(1-除去率)
		し尿(単独処理浄化槽)	単独処理浄化槽人口×原単位(し尿)×(1-除去率)
		し尿(計画収集)	計画収集人口×原単位(し尿)×(1-除去率)
		し尿(自家処理)	自家処理人口×原単位(し尿)×(1-除去率)
畜産系	点源	畜産業	排水量(実測値)×排水水質(実測値)
	面源	マップ調査以外の畜産業*	家畜頭数×原単位×(1-除去率)
土地系	面源	土地利用形態別負荷	土地利用形態別面積×原単位
産業系	点源	工場・事業場(マップ調査) *	排水量(実測値)×排水水質(実測値)

^{*:}マップ調査:平成23年度、平成25年度、平成27年度、平成29年度水質汚濁物質排出量総合調査(環境省)

[⇒]マップ調査の調査対象は、①日排出量が50m³以上、もしくは②有害物質を排出するおそれのある工場・事業場であり、 ③指定地域特定施設及び湖沼水質保全特別措置法で定めるみなし指定地域特定施設を含む。

表 1.1.18 大滝ダム貯水池 (おおたき龍神湖) の発生汚濁負荷量原単位

	E A)) (C	OD	T	-N	Т	-P
	区 分	単位	原単位	除去率(%)	原単位	除去率(%)	原単位	除去率(%)
	合併処理浄化槽	g/(人·日)	28.0	72.5	13.0	48.5	1.40	46. 4
生	単独処理浄化槽	g/(人・日)	10.0	53. 5	9.0	34. 4	0.90	30.0
活系	計画収集 (雑排水)	g/(人·目)	18. 0	0.0	4. 0	0.0	0.50	0.0
	自家処理	g/(人·目)	10.0	90.0	9.0	90.0	0.90	90.0
	田	kg/(km ² ・日)	30.44	_	3.67	_	1. 13	_
土	畑	kg/(km ² ・日)	13.56	_	27.51	_	0.35	_
地	山林	kg/(km ² ・日)	9. 97	_	1.34	_	0.08	_
系	市街地	kg/(km ² ・日)	29.32	_	4. 44	_	0. 52	_
	その他	kg/(km ² ・日)	7. 95	_	3. 56	_	0.10	_
	乳用牛	g/(頭・日)	530. 0	97. 5	290. 0	96. 1	50.00	98. 4
家畜	肉用牛	g/(頭・日)	530.0	97. 5	290. 0	96. 1	50.00	98.4
	豚	g/(頭•日)	130. 0	95. 9	40.0	93. 5	25.00	95. 1
	鶏	g/(羽・日)	2. 9	95. 5	1. 91	94. 5	0. 27	95. 5

出典:「流域別下水道整備総合計画調査 指針と解説 平成27年1月 国土交通省水管理・国土保全局下水道部」

- ・生活系の原単位は、「1人1日当たり汚濁負荷量の参考値」
- ・合併処理浄化槽の除去率は、「小型合併浄化槽の排水量・負荷量原単位」の排出負荷量の平均値と原単位から除去率を 算出した
- ・単独処理浄化槽の除去率は、「単独浄化槽の排出負荷量原単位」の排出負荷量の平均値と原単位から除去率を算出した
- ・自家処理の除去率は、前回の類型指定(平成25年6月)に係る検討時の値と同値とした
- ・土地系原単位は、各土地利用区分の原単位の平均値とした (田は純排出負荷量の平均値)。土地系のその他については「大気降下物の汚濁負荷量原単位」の平均値とした。なお、COD は「非特定汚染源からの流出負荷量の推計手法に関する研究 H24.3 (社)日本水環境学会」の平均値とした
- ・家畜系原単位は、「家畜による発生負荷量原単位」における原単位の平均値とした
- ・家畜系除去率は、「牛、豚、鶏の汚濁負荷量原単位と排出率(湖沼水質保全計画)」の排出率から算出した

(4) 大滝ダム貯水池 (おおたき龍神湖) の発生汚濁負荷量

大滝ダム貯水池(おおたき龍神湖)の発生汚濁負荷量は表 1.1.19に示すとおりである。

表 1.1.19 大滝ダム貯水池 (おおたき龍神湖) 流域の発生汚濁負荷量

			CC)D	T-	-N	T-	-P
	区 分		現況平均 (H23~28年度平 均)	将来 令和7年度	現況平均 (H23~28年度平 均)	将来 令和7年度	現況平均 (H23~28年度平 均)	将来 令和7年度
	合併処理浄化槽	kg/日	2	5	2	4	0.2	0.4
	単独処理浄化槽	kg/日	3	0	4	0	0.4	0.0
生活系	計画収集	kg/日	1	0	0	0	0.0	0.0
工作东	自家処理	kg/日	0	0	0	0	0.0	0.0
	点源(水質汚濁物質排出量総合調査)	kg/日	0	0	0	0	0.0	0.0
	小計	kg/日	6	5	6	4	0.7	0.4
	牛	kg/日	0	0	0	0	0.0	0.0
	豚	kg/∃	0	0	0	0	0.0	0.0
家畜系	鶏	kg/日	0	0	0	0	0.0	0.0
	点源(水質汚濁物質排出量総合調査)	kg/日	0	0	0	0	0.0	0.0
	小計	kg/日	0	0	0	0	0.0	0.0
	田	kg/日	0	0	0	0	0.0	0.0
	畑	kg/日	1	0	3	1	0.0	0.0
	山林	kg/日	2,508	2,504	337	337	20.1	20.1
土地系	市街地	kg/日	31	33	5	5	0.5	0.6
	その他	kg/日	42	45	19	20	0.5	0.6
	小計	kg/日	2,582	2,582	363	362	21.2	21.2
産業系	点源(水質汚濁物質排出量総合調査)	kg/日	0	0	0	0	0.0	0.0
合計		kg/日	2,588	2,587	369	366	21.9	21.7

注) 生活系のうち、「点源」は排水量 50m³/日以上の下水処理場、コミュニティプラント、農業集落排水処理施設等の大規模浄化槽及びし尿処理場を、「合併処理浄化槽」「単独処理浄化槽」は 50m³/日未満の浄化槽を、「計画収集」は市町村が計画処理区区域内で収集するし尿を、「自家処理」はし尿又は浄化槽汚泥を自家肥料として用いる等、自ら処分しているものを、それぞれ表す。

産業系の「点源」は生活系、家畜系以外の水質汚濁防止法の特定事業場を表す。

表 1.1.20 大滝ダム貯水池(おおたき龍神湖)流域の発生汚濁負荷量の推移(平成23~平成28年度)

Þ	区分		平成23年度	平成24年度	平成25年度	平成26年度	平成27年度	平成28年度	H23~H28 年度 平均
	生活系	kg/日	7	7	7	6	6	6	6
COD	家畜系	kg/日	0	0	0	0	0	0	0
	土地系	kg/∃	2,583	2,582	2,581	2,581	2,581	2,582	2,582
	産業系	kg/日	0	0	0	0	0	0	0
	合計	kg/∃	2,590	2,589	2,588	2,587	2,587	2,588	2,588
	生活系	kg/日	6	6	6	6	6	6	6
	家畜系	kg/日	0	0	0	0	0	0	0
T-N	土地系	kg/日	362	363	364	365	364	362	363
	産業系	kg/日	0	0	0	0	0	0	0
	合計	kg/日	368	369	370	371	370	368	369
	生活系	kg/日	0.7	0.7	0.7	0.6	0.6	0.6	0.7
	家畜系	kg/∃	0.0	0.0	0.0	0.0	0.0	0.0	0.0
T-P	土地系	kg/∃	21.2	21.2	21.2	21.2	21.2	21.2	21.2
	産業系	kg/∃	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	合計	kg/日	21.9	21.9	21.9	21.9	21.9	21.9	21.9

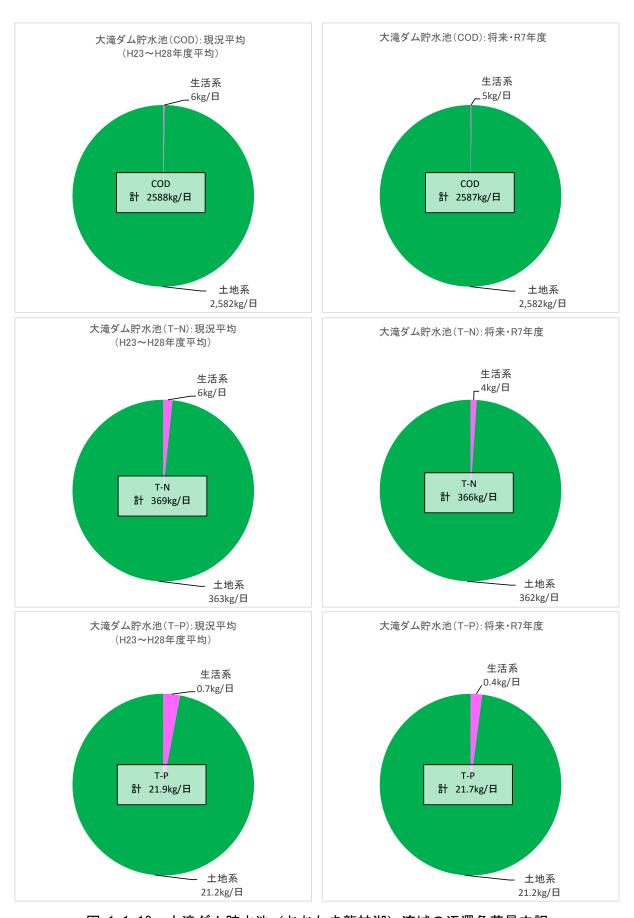


図 1.1.18 大滝ダム貯水池 (おおたき龍神湖) 流域の汚濁負荷量内訳

図 1.1.19 大滝ダム貯水池流域の COD 発生負荷量経年変化

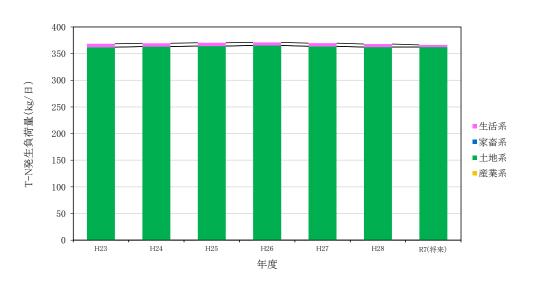


図 1.1.20 大滝ダム貯水池流域の T-N 発生負荷量経年変化

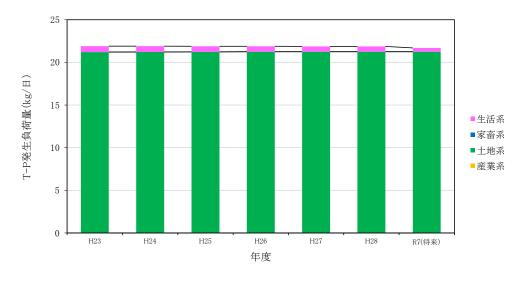


図 1.1.21 大滝ダム貯水池流域の T-P 発生負荷量経年変化

1. 1-35

1.1.6. 大滝ダム貯水池(おおたき龍神湖)の将来水質予測

大滝ダム貯水池(おおたき龍神湖)の将来水質予測結果は、次のとおりである。

大滝ダム貯水池への流入水量の経年変化は、ダム諸量データベースの値を用いた。

なお、将来水質については、大滝ダムの運用開始年度である平成 25 年度から、現況年度 である平成 28 年度のデータを用いて検討を行った。

また、大滝ダム貯水池への流入河川では、中奥観測地点と柏木観測地点の2箇所で水質 観測が行われていることから、それぞれについて流入流量を想定した。

観測地点流量は「国土数値情報 流域メッシュデータ (国土交通省)」より、各観測地点 の集水面積を把握し、大滝ダムへの流入水量を集水面積比によって按分した。

結果を表 1.1.21 に示す。

表 1.1.21 大滝ダム貯水池の現況年平均流入量の経年変化

	H24	H25	H26	H27	H28	平均
大滝ダム年平均流入量(m3/s)	-	15	15	16	11	14
中奥年平均流入量(m3/s)	_	3.9	3.8	4.1	2.8	3.6
柏木年平均流入量(m3/s)	-	11	11	12	8	11

※有効数字二桁で表示しています。

(1) 大滝ダム貯水池 (おおたき龍神湖) COD 水質予測

大滝ダム貯水池への流入水と貯水池の水質の経年変化は、表 1.1.22、表 1.1.23 のとおりである。

また、大滝ダム貯水池への負荷量の経年変化は表 1.1.24 のとおりである。

大滝ダム流入水質は、貯水池上流にある中奥観測地点および、柏木観測地点の値を用い、表 1.1.21 に示した流入水量で加重平均した結果とした。

表 1.1.22 大滝ダム貯水池の流入水質 (COD)

COD	H24	H25	H26	H27	H28	平均
大滝ダム年平均流入水質(mg/L)	-	1.4	1.2	1.3	1.3	1.3
中奥年平均流入水質(mg/L)	_	0.71	0.91	0.75	0.80	0.79
柏木年平均流入水質(mg/L)	-	1.7	1.3	1.5	1.5	1.5

※有効数字二桁で表示しています。

表 1.1.23 大滝ダム貯水池の現況 COD 水質の経年変化

COD	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	-	1.4	1.2	1.3	1.3	1.3
貯水池水質年平均値(mg/L)	-	1.4	1.4	1.6	1.7	1.5
貯水池水質75%值(mg/L)	-	1.8	1.5	1.7	2.0	1.8

※有効数字二桁で表示しています。

表 1.1.24 大滝ダム貯水池の現況 COD 発生負荷量と流入負荷量の経年変化

COD	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	-	2,588	2,587	2,587	2,588	2,588
流入負荷量(kg/日)	-	1,879	1,597	1,756	1,221	1,613
流入率	-	0.73	0.62	0.68	0.47	0.62

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流入率は有効数字二桁で表示しています。

将来水質の算定には次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 1.1.25 大滝ダム貯水池流域の将来 COD 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	1.5	表 2.1.25 の貯水池水質年平均値(COD)の 4 ヵ年平均値
将来発生負荷量(kg/日)	2,587	表 1.1.19 の将来の発生汚濁負荷量の合計 (COD)
現況平均流入率	0.62	表 1.1.24 の流入率の 4 ヶ年平均値
現況平均流入負荷量(kg/日)	1,613	表 1.1.24 の流入負荷量の 4 ヶ年平均値
将来流入負荷量(kg/日)	1,604	将来発生負荷量×現況平均流入率

COD 将来水質予測結果は、表 1.1.26 に示すとおりである。また、75%値は、図 1.1.22 に示す相関式に年平均値を当てはめて推計した。

表 1.1.26 大滝ダム貯水池流域の将来 COD 水質予測結果

		大滝ヶ	ブム貯水池	現在の類	[型
項目		将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値	現暫定目標値
COD水質	年平均値	1. 5	1.4~1.6	١	
COD小貝	75%値	1.8	1.6~1.9	河川AA類型 (基準値なし)	-

※年平均値の変動範囲は、表 1.1.23 の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。75%値の変動範囲は、表 1.1.23 の貯水池の75%値から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

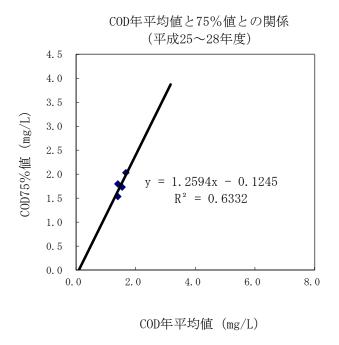


図 1.1.22 大滝ダム貯水池の COD 水質年平均値と 75%値との関係

(2) 大滝ダム貯水池 T-N 水質予測

大滝ダム貯水池への流入水と貯水池の水質の経年変化は、表 1.1.27、表 1.1.28 のとおりである。

また、大滝ダム貯水池への負荷量の経年変化は表 1.1.29 のとおりである。

大滝ダム流入水質は、貯水池上流にある中奥観測地点および、柏木観測地点の値を用い、 表 1.1.21 に示した流入水量で加重平均した結果とした。

表 1.1.27 大滝ダム貯水池の流入水質 (T-N)

T-N	H24	H25	H26	H27	H28	平均
大滝ダム年平均流入水質(mg/L)	-	0.44	0.33	0.31	0.32	0.35
中奥年平均流入水質(mg/L)	-	0.58	0.48	0.47	0.47	0.50
柏木年平均流入水質(mg/L)	-	0.39	0.27	0.26	0.27	0.30

※有効数字二桁で表示しています。

表 1.1.28 大滝ダム貯水池の現況 T-N 水質年平均値の経年変化

T-N	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	-	0.44	0.33	0.31	0.32	0.35
貯水池水質年平均値(mg/L)	-	0.47	0.38	0.35	0.34	0.39

※有効数字二桁で表示しています。

表 1.1.29 大滝ダム貯水池流域の現況 T-N 発生負荷量と流入負荷量の経年変化

T-N	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	-	370	371	370	368	370
流入負荷量(kg/日)	-	588	426	433	302	437
流入率	-	1.6	1.1	1.2	0.82	1.2

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流入率は有効数字二桁で表示しています。

将来水質の算定は次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 1.1.30 大滝ダム貯水池流域の将来 T-N 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	0.39	表 1.1.28 の貯水池水質年平均値 (T-N) の 4 ヵ年平均値
将来発生負荷量(kg/日)	366	表 1.1.19 の将来の発生汚濁負荷量の合計 (T-N)
現況平均流入率	1.2	表 1.1.29 の流入率の 4 ヶ年平均値
現況平均流入負荷量(kg/日)	437	表 1.1.29 の流入負荷量の4ヶ年平均値
将来流入負荷量(kg/日)	432	将来発生負荷量×現況平均流入率

T-N 将来水質予測結果は、表 1.1.31 に示すとおりである

表 1.1.31 大滝ダム貯水池流域の将来 T-N 水質予測結果

			ブム貯水池	現在の類型		
項	[目	将来水質(mg/L) 変動範囲 (mg/L)		類型指定 基準値	現暫定目標値	
T-N水質	年平均値	0.39	0.33~0.44	河川AA類型 (基準値なし)	-	

[※]変動範囲は、表 1.1.28 の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

(3) 大滝ダム貯水池 T-P 水質予測

大滝ダム貯水池への流入水と貯水池の水質の経年変化は、表 1.1.32、表 1.1.33 のとおりである。また、大滝ダム貯水池への負荷量の経年変化は表 1.1.34 のとおりである。

表 1.1.32 大滝ダム貯水池の流入水質 (T-P)

T-P	H24	H25	H26	H27	H28	平均
大滝ダム年平均流入水質(mg/L)	-	0.023	0.0077	0.013	0.013	0.014
中奥年平均流入水質(mg/L)	-	0.012	0.0087	0.011	0.011	0.011
柏木年平均流入水質(mg/L)	_	0.027	0.0073	0.014	0.014	0.015

※有効数字二桁で表示しています。

表 1.1.33 大滝ダム貯水池の現況 T-P 水質年平均値の経年変化

T-P	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	-	0.023	0.008	0.013	0.013	0.014
貯水池水質年平均値(mg/L)	-	0.017	0.013	0.012	0.010	0.013

※有効数字二桁で表示しています。

表 1.1.34 大滝ダム貯水池流域の現況 T-P 発生負荷量と流入負荷量の経年変化

T-P	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	-	22	22	22	22	22
流入負荷量(kg/日)	-	30	10	18	13	18
流入率	-	1.4	0.46	0.81	0.58	0.81

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流入率は有効数字二桁で表示しています。

将来水質の算定は次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 1.1.35 大滝ダム貯水池流域の将来 T-P 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	0.013	表 1.1.33 の貯水池水質年平均値 (T-P) の 4 ヵ年平均値
将来発生負荷量(kg/日)	22	表 1.1.19 の将来の発生汚濁負荷量の合計 (T-P)
現況平均流入率	0.81	表 1.1.34 の流入率の 4 ヶ年平均値
現況平均流入負荷量(kg/日)	18	表 1.1.34の流入負荷量の4ヶ年平均値
将来流入負荷量(kg/日)	18	将来発生負荷量×現況平均流入率

T-P 将来水質予測結果は、表 1.1.36 に示すとおりである

表 1.1.36 大滝ダム貯水池の将来 T-P 水質予測結果

			大滝ヶ	ブム貯水池	現在の類型		
	項目将另		将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値	現暫定目標値	
	T-P水質	年平均値	0.013	0.010~0.015	河川AA類型 (基準値なし)	-	

[※]変動範囲は、表 1.1.33 の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

1.1.7. 大滝ダム貯水池(おおたき龍神湖)の類型指定

大滝ダムにおける利水・水産・水質の状況は表 1.1.37 のとおりである。

表 1.1.37 大滝ダムの利水・水産・水質の状況

項目 摘要 (__:類型を当てはめる理由に該当 __:類型を当てはめる理由に該当しない)

利水 ・ダム地点の流域面積:258km²
・浄水処理方式が AII 類型に相当する上水道取水地点あり。
下市町上水道 ⇒544.9km²:流域域面積比=2.1(544.9/258)
紀の川市上水道⇒1211.1km²:流域域面積比=4.7 (1211.1/258)

→AII 類型に相当する水道の利用がある。

水産 ・大滝ダム貯水池内に漁業権が設定されている。また、ダム湖内では漁業実態はない。
・ダム上流域で放流を行っている。(アユ、アマゴ、ウナギ、ニジマス)
・貯水池区間では、漁業権に基づく放流は行われていない。ただし、平成26年に開催された「全国豊かな海づくり大会」において、アコとアマゴの放流が行われた。また、今後のダム湖の漁業利用について検討するため、試験的にワカサギの放流を行っている。

- ・ダム上流域で放流を行っている魚種のダム湖内での生息の有無については、支川で放流されている魚種は、湖内に流れ込んで生息していると考えるのが一般的であり(奈良県)、資料はないものの、漁協によると、湖内にアユ、アマゴ、ウナギ、ニジマスが生息している。
- →AⅡ類型(水産2級、水産1種)に相当する水産生物の漁業権が設定されており生息も している。ただし漁業実態はない。

現状水質

・現状水質は、以下のとおり。

H30 H25 | H26 | H27 | H28 H29 COD水質(mg/L) 1.8 1.5 2.0 1.8 1.3 1.7 T-N水質(mg/L) 0.47 0.38 0.35 0.34 0.33 0.33 T-P水質(mg/L) 0.017 0.013 0.012 0.010 0.016 0.012

※CODは75%値、T-N、T-Pは年平均値を記載している。

→H25~H27, H29, H30 は湖沼 AⅢ類型を満足、H28 は T-P が低下したため AⅡ類型を満足。

(基準値 A 類型: COD: 3mg/L、T-P Ⅱ類型: 0.01mg/L、Ⅲ類型: 0.03mg/L) T-N/T-P 比から T-N の基準値は適用対象外。

将来水質

・ 将来水質 (R7) の予測結果は以下のとおり。

T百	Ħ	大滝ダム	大滝ダム貯水池				
項目		将来水質(mg/L)	変動範囲 (mg/L)				
COD水質	75%値	1.8	1.6~1.9				
T-N水質	年平均値	0.39	0.33~0.44				
T-P水質	年平均値	0.013	0.010~0.015				

→予測値は、COD は A 類型(基準値: 3mg/L)、T-P はⅢ類型(基準値: 0.03mg/L)をそれぞれ 満足している。 以上を踏まえ、大滝ダム貯水池の類型指定を以下の通り検討した。

水域類型	達成期間		(参考) 現行の類型
湖沼 A	1	直ちに達成する	河川 AA
湖沼Ⅱ 全窒素を除く	イ	直ちに達成する	_

(1)類型指定

類型については、湖沼 A 類型、湖沼 II 類型に相当する水道の利用があること、また水産からも A II 類型相当と考えられるため、「湖沼 A 類型・湖沼 II 類型」に指定する。

なお、T-N/T-P 比及び T-P 濃度の状況から、T-N は適用しない。

(2)達成期間(暫定目標の設定を含む)

COD については、平成 25 年度~平成 28 年度の現況値 (75%値)、令和 7 年度の水質予測結果 (75%値 1.8mg/L) ともに、湖沼 A 類型の基準値 (3mg/L) を下回ることから、暫定目標は設定せず、達成期間は、【イ 直ちに達成する。】とする。

T-P については、平成 25 年度~平成 28 年度までの現況値は低下傾向にあり、現況年である平成 28 年度は 0.010 mg/L まで低下し、II 類型を満足している。直近の平成 29 年度~平成 30 年度は $0.012 \sim 0.016 mg/L$ と II 類型を若干上回っているが、令和 7 年度の将来予測結果 (0.013 mg/L) 変動範囲: $0.010 \sim 0.015 mg/L)$ の下限値は II 類型を満足していることから環境基準の達成が見込まれると判断し、暫定目標は設定せず、達成期間は【イ 直ちに達成する。】とする。

<参考:異常値の除外の考え方>

対数正規分布による異常値の除外の検討を行った。除外の候補とされた測定値について、藻類の異常増殖や出水の影響等を総合的に勘案し、異常値の除外を判断した。

表 1.1.38 大滝ダム貯水池における異常値の候補と除外有無の判定(COD)

(異常値判定時の上限値: 2.9mg/L, 下限値: 0.74mg/L)

年度	年月	COD (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考	
25	2013/9/6	4.6	I	除外する	前降雨があること、上流の大迫 ダムの工事に伴う水位低下の影 響が考えられるとされている (H29大滝ダム定期報告書)こと を勘案し、除外する。	1月3日 C98mm住民の降水のり。	
28	2016/4/22	3.1	13.5		降雨の影響、藻類の異常増殖の 影響は考えられない。	前3日で17mm程度の降水あり。大きな流入はない。	
29	2017/6/2	4.3	41.8	除外しない	降雨の影響、藻類の異常増殖の 影響は考えられない。	前3日で9mm程度の降水あり。大きな流入はない。	

[※]降水量は吉野観測所の観測データを参考とした。

表 1.1.39 大滝ダム貯水池における異常値の候補と除外有無の判定 (T-N)

(異常値判定時の上限値: 0.62mg/L, 下限値: 0.25mg/L)

年度	年月	T-N (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
25	2013/9/6	0.91	I	除外する		前3日で58mm程度の降水あり。 2日前に62m ³ /s程度の比較的大きな流入あり。
25	2013/11/1	0.61	4.6	除外しない	降雨の影響、藻類の異常増殖の 影響は考えられない。	前3日の降水なし。大きな流入はない。
28	2016/9/2	0.71	8.7	除外する	降雨の影響が考えられることから、除外する。	前3日の降水は6.5mm。4日前に115mmの降水あり。 3日前に80m ³ /s程度の比較的大きな流入あり。

[※]降水量は吉野観測所の観測データを参考とした。

表 1.1.40 大滝ダム貯水池における異常値の候補と除外有無の判定 (T-P)

(異常値判定時の上限値: 0.042mg/L, 下限値: 0.0034mg/L)

前降雨があること、上流の大追 ダムの工事に伴う水位低下の影 前3日で58mm程度の降水		
	前3日で58mm程度の降水あり。 2日前に62m ^{3/} s程度の比較的大きな流入あり。	
28 2016/9/2 0.051 8.70 除外する 降雨の影響が考えられることか り。 前3日の降水は6.5mm。4 り。 3日前に80m³/s程度の比		
29 2017/10/10 0.061 0.20 除外しない 降雨の影響は考えられないこと 前3日の降雨は2mm。大きから、除外とはしない	きな流入はない。	
30 2018/8/2 0.071 17.10 除外する 降雨の影響が考えられることか 前3日の降雨は6mm。4日 ら、除外する。 前3日の降雨は6mm。4日 3日前に70m3/s程度の比		
30 2018/9/13 0.15 0.90 除外する 降雨の影響が考えられることか 前3日の降雨は36mm。41 111mmの降水あり。9日前 な流入あり。		

[※]降水量は吉野観測所の観測データを参考とした。

<参考:流入河川水質についての異常値の除外について>

上流の大迫ダムの堤体工事の影響(2011~2014年)が考えられることから、大迫ダム 直下流の柏木地点の水質についても、同様に異常値の除外を検討した。

表 1.1.41 流入河川(柏木)における異常値の候補と除外有無の判定(COD)

(異常値判定時の上限値: 2.7mg/L, 下限値: 0.75mg/L)

年度	年月	COD (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
25	2013/9/6	4.0	ı	除外する	前降雨があること、上流の大迫 ダムの工事に伴う水位低下の影響が考えられるとされている (H29大滝ダム定期報告書)こと を勘案し、除外する。	前3日で57.5mm程度の降水あり。 2日前に62m ³ /s程度の比較的大きな流入あり。
25	2014/3/7	2.8	1	除外する	前降雨はさほど大きくないが、上流の大迫ダムの工事に伴う水位低下の影響が考えられるとされている(H29大滝ダム定期報告書)ことを勘案し、除外する。	前3日で16mm程度の降水あり。 大きな流入はない。
28	2016/9/2	3.0	-	除外しない	上流の大迫ダムの工事の期間 外のため、除外しない。	前3日で6.5mm程度の降水あり。4日前に115mm の降水あり。3日前に115m3/s程度の比較的大き な流入あり。
29	2017/12/1	0.7	ı	除外しない	降水の影響は考えられない	前3日で3mmの降水あり。 大きな流入はない。
29	2018/1/11		- -	除外する	降水の影響が考えられる	前3日で45.5mmの降水あり。 2日前に14m3/s程度の比較的大きな流入あり。

[※]降水量は吉野観測所の観測データを参考とした。

表 1.1.42 流入河川(柏木)における異常値の候補と除外有無の判定(T-N)

(異常値判定時の上限値: 0.59mg/L, 下限値: 0.11mg/L)

年度	年月	T-N (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考	
25	2013/5/10	0.030	-	除外する		前3日の降水はない。当日に3.5mmの降水あり。 大きな流入はない。	
25	2013/9/6	1.0	-		前降雨があること、上流の大迫 ダムの工事に伴う水位低下の影響が考えられるとされている (H29大滝ダム定期報告書)こと を勘案し、除外する。	前3日で57.5mm程度の降水あり。 2日前に62m ³ /s程度の比較的大きな流入あり。	

[※]降水量は吉野観測所の観測データを参考とした。

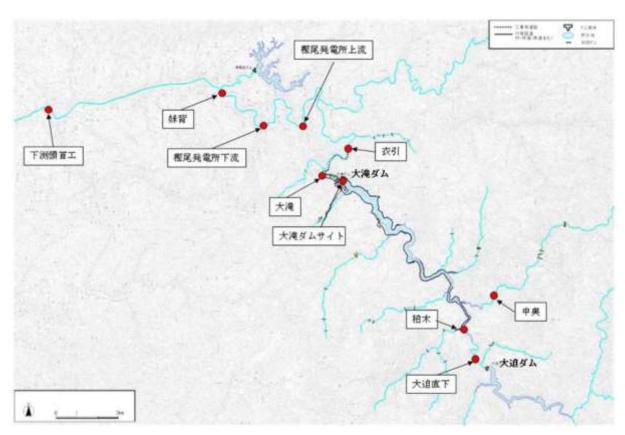
表 1.1.43 流入河川(柏木)における異常値の候補と除外有無の判定(T-P)

(異常値判定時の上限値: 0.08mg/L, 下限値: 0.0023mg/L)

年度	年月	T-P (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
25	2013/4/12	0.37	_	除外する	前降雨は大きくないが、上流の 大迫ダムの工事に伴う水位低下 の影響が考えられるとされてい る(H29大滝ダム定期報告書)こ とを勘案し、除外する。	前3日で3.5mmの降水あり。 大きな流入はない。
25	2013/9/6	0.15	-	除外する	前降雨があること、上流の大迫 ダムの工事に伴う水位低下の影響が考えられるとされている (H29大滝ダム定期報告書)こと を勘案し、除外する。	前3日で57.5mm程度の降水あり。 2日前に62m ³ /s程度の比較的大きな流入あり。
30	2018/10/4	0.12	-	除外する	降水の影響が考えられる	3日前に81.5mmの降水あり。 前4日間で83m~120m3/s程度の大きな流入あり。

[※]降水量は吉野観測所の観測データを参考とした。

<参考:大滝ダムと大迫ダムの関係について>


○大滝ダムと大迫ダムの位置関係

大滝ダムの上流に位置し、湖沼のAⅢ類型指定がされている大迫ダムの位置関係は、図 1.1.23、図 1.1.24 のとおりである。

出典: 平成29年度 大滝ダム定期報告書(近畿地方整備局)

図 1.1.23 大滝ダムと大迫ダムの位置関係

出典: 平成29年度 大滝ダム定期報告書(近畿地方整備局)

図 1.1.24 大滝ダムと大迫ダムの位置関係及び大滝ダムの水質調査地点

○大迫ダムの水質経年変化



図 1.1.25 大迫ダムの水質経年変化

○大滝ダムを湖沼AⅡ類型とした場合に、上流の大迫ダム(湖沼AⅢ類型)と類型指定が逆転することに関する検討結果

現状では大迫ダムの類型はAII類型であり、大滝ダムをAII類型とした場合、上流と下流で類型指定が逆転する。大迫ダムは大滝ダムの上流に位置するが、大滝ダムの流域面積(114.8km2)は、大滝ダムの流域面積(258km2)の 114.8/258=45%程度にあたり、大滝ダムの流域の 50%以上は大迫ダム以外の流域からの影響を受けていることになる。そのため、大滝ダムの水質は大迫ダムの水質のみによって決まるものではないことから、大滝ダムの類型指定に伴い、大迫ダムの類型指定の見直しを行う必要は必ずしもないと考えられる。

1.2. 徳山ダム貯水池(徳山湖)

現在は河川類型(河川AA)が適用されている徳山ダム貯水池について、河川類型から湖沼類型への見直しを検討した。

具体的には以下に示す検討を行い、類型指定を検討した。

■各節における検討概要(サマリー)

1.2.1. 徳山ダムの概要

徳山ダムの概要について、既存資料から整理した。

1.2.2. 徳山ダム貯水池周辺の環境基準類型指定状況

徳山ダム貯水池周辺の環境基準類型指定の状況(今回の見直し前)について整理した。 徳山ダム貯水池は、現在河川 AA 類型に指定されている。

1.2.3. 徳山ダム貯水池の水質状況

徳山ダムの水質について、水質測定データ、既存資料等から整理した。

全窒素(以下、「T-N」という。)の当てはめ有無を判定するための全窒素/全燐(以下「T-N/T-P」という。)比について整理した。

■T-Nの基準の適用有無

T-N/T-P 比が 20 以下となる年度、全燐 (以下、「T-P」という。) 濃度が 0.02mg/L 以上となる年度はともになく、T-N の基準値は適用除外となる。

1.2.4. 徳山ダム貯水池の利水状況

徳山ダムの利水状況、漁業権の設定状況等水産利用について、既存資料及び関係機関ヒアリング結果より整理した。

■利用状況等から見た適用類型

ダム下流に農業用水の利用がある(湖沼 BV 類型に相当)。ダム貯水池内での漁業権の設定、 漁業実態ともにない。

⇒利用状況から見た適用類型は湖沼 BV類型となる。(後述の通り、現況水質が湖沼 AII類型を満足しているため、現況非悪化の観点から AII 類型に指定)

1.2.5. 徳山ダム貯水池(徳山湖)にかかる水質汚濁負荷量

徳山ダムの将来水質予測を実施するにあたり、徳山ダム貯水池流域の現況および将来の水質汚濁負荷量について、収集データ等から算定した。

1.2.6. 徳山ダム貯水池(徳山湖)の将来水質予測

徳山ダムの現況水質、現況及び将来の汚濁負荷量より、将来の水質予測(化学的酸素要求量(以下、「COD」という。)、T-N、T-P)を行った。

■将来水質予測結果(R7)

TE	i 目	徳山ダム貯水池			
与	\ □	将来水質(mg/L)	変動範囲(mg/L)		
COD水質 75%値		2.5	2.4~2.6		
T-N水質	年平均値	0.30	0.25~0.35		
T-P水質	年平均値	0.0047	0.0041~0.0053		

1.2.7. 徳山ダム貯水池(徳山湖)の類型指定

以上までの検討結果を踏まえ、徳山ダム貯水池の類型指定を検討した。

水域類型		達成期間	(参考) 現行の類型	
湖沼A	イ	直ちに達成する	河川 AA	
湖沼Ⅱ 全窒素を除く	1	直ちに達成する	-	

(1)類型指定

- ・ 類型については、水利用の観点からは、湖沼 B 類型、湖沼 V 類型に相当するが、現状水質が A II 類型を満足しており、将来予測水質も A II 類型を満足することが見込まれることから、 現状非悪化の観点から、「湖沼 A 類型・湖沼 II 類型」に指定する。
- ・ なお、T-N/T-P 比及び T-P 濃度の状況から、T-N は適用しない。

(2)達成期間(暫定目標の設定を含む)

- ・ COD については、平成 23 年度~平成 28 年度の現況値、令和 7 年度の水質予測結果 (75%値 2.5mg/L) ともに、湖沼 A 類型の基準値 (3mg/L) を下回ることから、暫定目標は設定せず、 達成期間は、【イ 直ちに達成する。】とする。
- ・ T-Pについても、平成23年度~平成28年度の現況値、令和7年度の水質予測結果(0.0047mg/L) ともに、湖沼Ⅱ類型の基準値(0.01mg/L)を下回ることから、暫定目標は設定せず、達成期間は、【イ 直ちに達成する。】とする。

■現況水質

	H23	H24	H25	H26	H27	H28	H29	H30
COD水質(mg/L)	2.4	2.6	2.4	2.6	2.3	2.4	2.2	2.9
T-N水質(mg/L)	0.34	0.36	0.26	0.33	0.23	0.25	0.24	0.22
T-P水質(mg/L)	0.0059	0.0049	0.0043	0.0044	0.0046	0.0042	0.0055	0.0088

[※]CODは75%値、T-N、T-Pは年平均値を記載している。

1.2.1. 徳山ダムの概要

徳山ダムは、揖斐川上流の岐阜県揖斐郡揖斐川町に位置し、洪水調節、水道用水・工業用水の供給、発電、流水の正常な機能の維持を目的とする多目的ダムで、集水面積は254.5km²である。

洪水調節については、基本高水流量1,920m³/sの全量の洪水調節を行い、横山ダムと併せて、 ダム下流域の洪水被害の軽減を図ることとされている。

水道用水・工業用水については、徳山ダムの貯留水を利用して、新たに、岐阜県、愛知県および名古屋市の水道用水として最大4.5m³/s、岐阜県および名古屋市の工業用水として最大2.1m³/sを取水することとされている。

発電については、徳山ダム直下流の徳山発電所において、100.4m³/sの水を取水し、161,900kWの発電を行うこととされている。

流水の正常な機能の維持については、河川の流量不足時にダムから貯留水を放流し、揖斐川沿川にある用水の安定した取水と、河川環境の維持・保全を図る。また、横山ダムのかんがい用途を徳山ダムに振り替えて、沿川のかんがい用水の補給を行うこととされている。さらに、渇水に強い木曾川水系にするため、異常渇水時に緊急水を補給することとされている。

貯水池の運用としては、洪水期 (6/16~10/15)、非洪水期 (10/16~翌6/15) の2期に区分して、利水容量および洪水調節容量が設定されている。

本ダムは、総貯水容量・堤体積日本一のロックフィルダムで、平成12年よりダム建設事業 に着手、平成18年9月から試験湛水を開始し、平成20年5月より管理運用が開始されている。

参考:「徳山ダム」(独立行政法人水資源機構 徳山ダム管理所)

独立行政法人水資源機構 徳山ダム管理所 WEB ページ

(http://www.water.go.jp/chubu/tokuyama/)

中部電力 徳山発電所 WEB ページ

(https://www.chuden.co.jp/energy/ene_energy/water/wat_chuden/tokuyama/index.html)

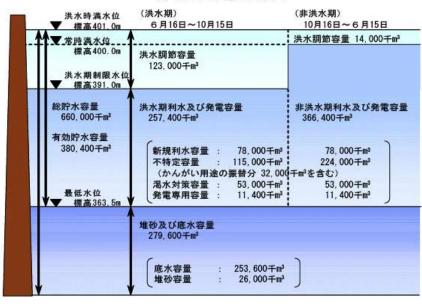
徳山ダムの概要及び諸元を表 1.2.1、表 1.2.2、徳山ダムの容量配分図を図 1.2.1、徳山 ダム貯水池流域図を図 1.2.2に示した。

表 1.2.1 徳山ダムの概要

(1)ダム名称	徳山ダム
(2)管理者	独立行政法人水資源機構
(3) ダム所在地	岐阜県揖斐郡揖斐川町
(4)水系名・河川名	木曾川水系揖斐川
(5)水域	揖斐川 (1) (岡島橋より上流。ただし、横山ダム貯水池(奥いび湖) (全域) を除く。)
(6)集水面積	254. 5 (km²)
(7)環境基準類型	河川 AA

参考:紀独立行政法人水資源機構 徳山ダム管理所 WEB ページ(http://www.water.go.jp/chubu/tokuyama/) 岐阜県 公共用水域の水質調査結果 WEB ページ

(http://www.pref.gifu.lg.jp/kurashi/kankyo/kankyo-hozen/c11264/index_6150.html)


表 1.2.2 徳山ダムの諸元

(1)堰長	427 (m)
(2)堤高	161 (m)
(3)総貯水容量	660,000 (千 m³)
(4)有効貯水容量	380, 400 (千 m³)
(5)サーチャージ水位	401.00 (ELm)
(6)年平均滯留時間※	157.3 (日)

※年平均滞留時間=有効貯水容量/年平均流入量(それぞれ H23~H27 の滞留時間を求めて平均を算出)

出典:ダム諸量データベース (http://mudam.nilim.go.jp/home)

貯水池容量配分図

出典:独立行政法人水資源機構 徳山ダム管理所 WEB ページ(http://www.water.go.jp/chubu/tokuyama/)

図 1.2.1 徳山ダム貯水池の運用

徳山ダム 流域図

資料:国土数値情報[流域界・非集水域 (KS-273)] (国土交通省) をもとに国土地理院の数値地図 200000 (地図画像) を用いて作成した。

図 1.2.2 徳山ダム貯水池流域図

1.2.2. 徳山ダム貯水池周辺の環境基準類型指定状況

徳山ダム貯水池周辺及び、揖斐川流域の水域類型指定状況を表 1.2.3 及び図 1.2.3 に示した。

表 1.2.3 徳山ダム貯水池周辺の水域類型指定状況

水域名称	水 域	該当類型	達成期間	指定年月日	
木曾川水系の 揖斐川	揖斐川(1) 岡島橋より上流。ただし、 横山ダム貯水池(奥いび湖) (全域)を除く。	河川 AA	1	昭和 47 年 11 月 6 日	環境庁 告示
	横山ダム貯水池 (奥いび湖) (全域)	湖沼AⅢ	1	平成 15 年 3 月 27 日	環境省 告示

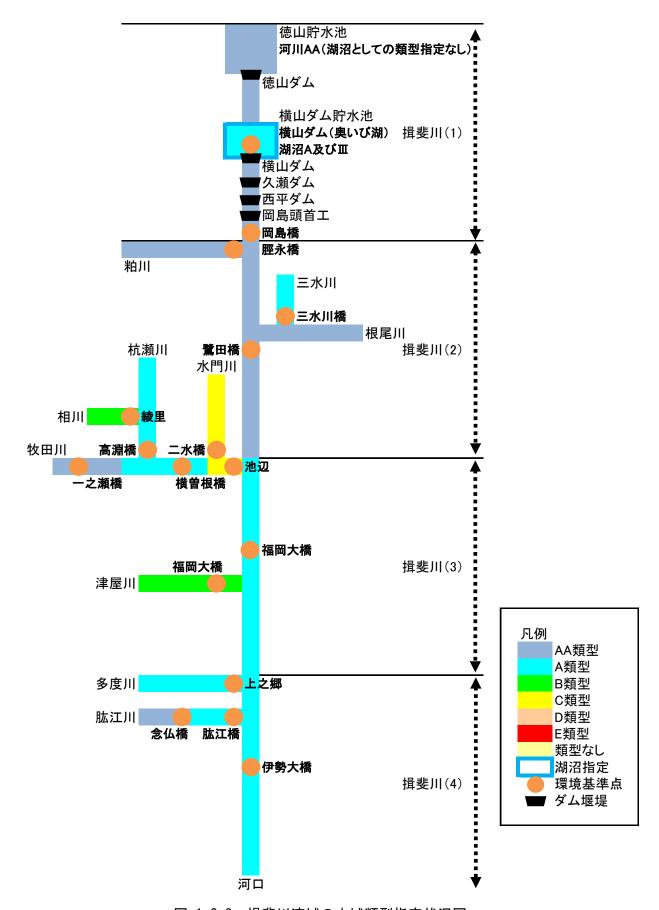


図 1.2.3 揖斐川流域の水域類型指定状況図

1.2.3. 徳山ダム貯水池の水質状況

(1)徳山ダム貯水池の水質状況

徳山ダム貯水池においては、公共用水域水質調査は行われていないが、ダムを管理する 水資源機構によって水質調査が行われている。

水質測定地点を図 1.2.4 に示した。また、徳山ダム貯水池の水質測定地点における水質 (pH、DO、SS、大腸菌群数、BOD、COD、T-N、T-P、底層 DO、水温) の推移を、表 1.2.4、図 1.2.5 に示した。

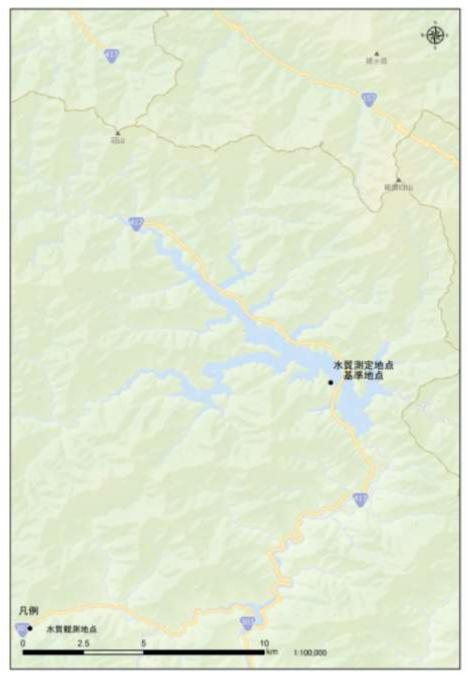


図 1.2.4 徳山ダム貯水池の水質測定地点

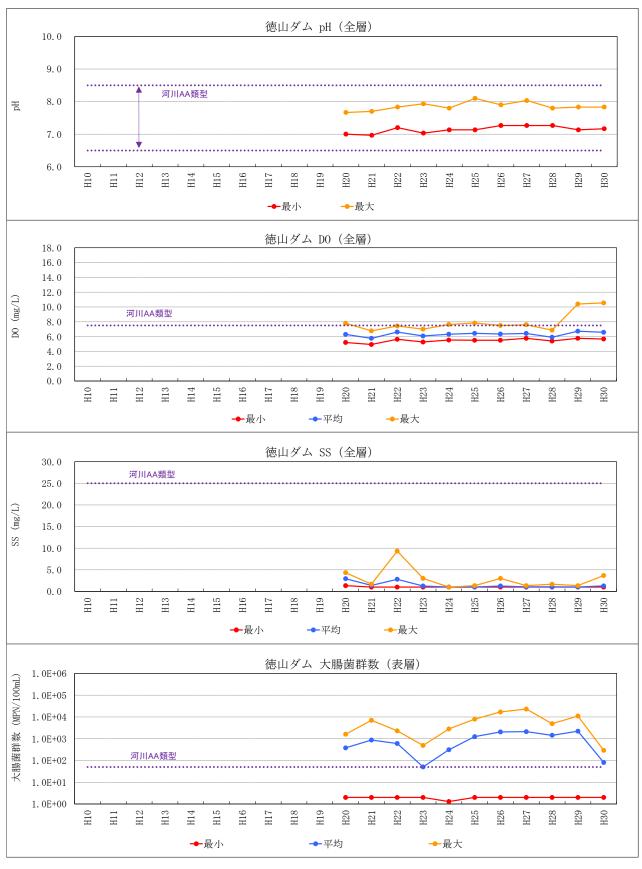
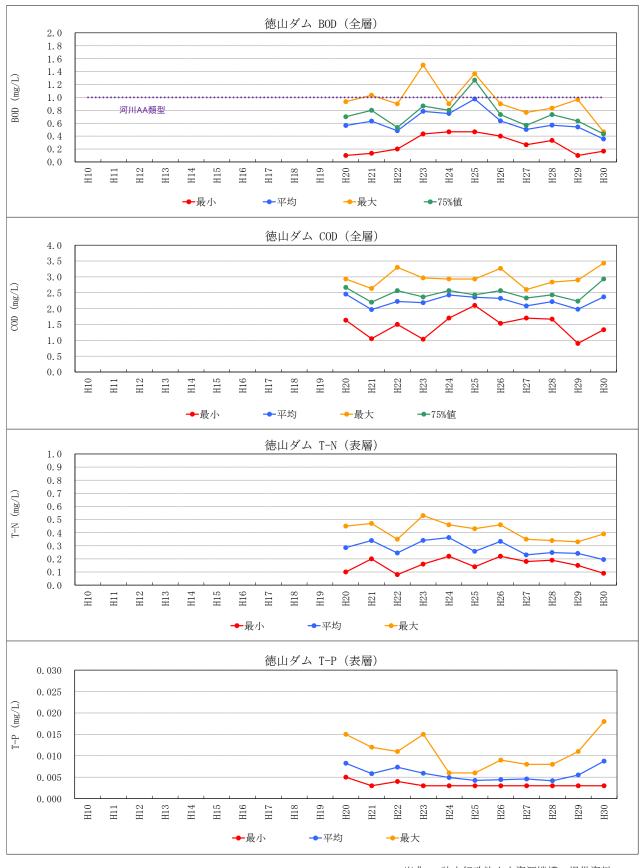

出典:独立行政法人 水資源機構 徳山ダム管理所 WEB ページ (http://www.water.go.jp/chubu/tokuyama/reservoir/reservoir.html)

表 1.2.4 徳山ダム貯水池水質経年変化

左庄		1	pH 全層				DO	(mg/L) 全層		
年度	最小	最大	m/n	平均	75%値	最小	最大	m/n	平均	75%値
H20	7.0 ~	7.7	0 / 12	-	-	5.2 ~	7.8	10 / 12	6. 3	-
H21	7.0 ~	7.7	0 / 12	_	_	4.9 ~	6.8	12 / 12	5.8	_
H22 H23	7.2 ~ 7.0 ~	7.8 7.9	0 / 12 0 / 12	-	_	5. 6 ~ 5. 3 ~	7. 4 7. 0	12 / 12 12 / 12	6.6 6.1	
H24	7.1 ~	7.8	0 / 12	_	_	5.5 ~	7.6	11 / 12	6. 3	_
H25	7.1 ~	8. 1	0 / 12	_	_	5.5 ~	7.8	11 / 12	6. 4	_
H26	7.3 ~	7. 9	0 / 12	_	_	5.5 ~	7. 5	11 / 12	6. 3	_
H27	7.3 ~	8.0	0 / 12	-	_	5.8 ~	7.6	11 / 12	6.4	-
H28	7.3 ~	7.8	0 / 12		_	5. 4 ∼	6.9	12 / 12	5. 9	
H29 H30	7.1 ~ 7.2 ~	7. 8 7. 8	0 / 12 0 / 12		_	5. 8 ~ 5. 7 ~	10.4	11 / 12 11 / 12	6. 7 6. 6	
	1.2		mg/L) 全層		_		10.6 - 阻弗米米	(MPN/100mI		_
年度	最小	最大	m/n	平均	75%値	最小	加四件数 最大	m/n	-/ - 	75%値
H20	1 ~	4	0 / 12	2. 9	- TOWNE	2 ~	1600	6 / 12	380	-
H21	1 ~	2	0 / 12	1.4	-	2 ~	7000	5 / 12	869	_
H22	1 ~	9	0 / 12	2.8	_	2 ~	2300	5 / 12	599	_
H23	1 ~	3	0 / 12	1.3	-	2 ~	490	1 / 12	51	_
H24 H25	1 ~	<u>l</u> 1	0 / 12 0 / 12	1. 0 1. 0		1.3 ~ 2 ~	2800 7900	5 / 12 7 / 12	310 1245	
H25 H26	1 ~	3	0 / 12	1. 0		$\begin{array}{c c} 2 & \sim \\ 2 & \sim \end{array}$	17000	6 / 12	2048	
H27	1 ~	1	0 / 12	1. 1	_	2 ~	23000	7 / 12	2104	
H28	1 ~	2	0 / 12	1. 1	-	2 ~	4900	8 / 12	1432	-
H29	1 ~	1	0 / 12	1. 0	-	2 ~	11000	6 / 12	2207	-
H30	1 ~	4	0 / 12	1.3	-	2 ~	290	5 / 12	81	_
年度	Ei.		(mg/L) 全		750 lit	COD(mg/L) 全層				7 F0/ (-1:-
H20	最小 0.1 ~	<u>最大</u> 0.9	m/n 0 / 12	平均 0,6	75%値 0.7	最小 1.6 ~	<u>最大</u> 2.9	m/n - / 12	平均 2.5	75%値 2.7
H21	0.1 ~	1.0	1 / 12	0.6	0. 8	1.0	2. 6	- / 12	2. 0	2. 2
H22	0.2 ~	0. 9	0 / 12	0. 5	0.5	1.5 ~	3. 3	- / 12	2. 2	2. 6
H23	0.4 ~	1.5	2 / 12	0.8	0.9	1.0 ~	3. 0	- / 12	2. 2	2.4
H24	0.5 ~	0.9	0 / 12	0.8	0.8	1.7 ∼	2.9	- / 12	2.4	2.6
H25	0.5 ~	1.4	6 / 12	1.0	1.3	2.1 ~	2.9	- / 12	2.4	2.4
H26	0.4 ~ 0.3 ~	0.9	0 / 12 0 / 12	0. 6 0. 5	0. 7 0. 6	1.5 ~ 1.7 ~	3. 3 2. 6	- / 12 - / 12	2. 3 2. 1	2. 6 2. 3
H27 H28	0.3 ~	0.8	0 / 12 0 / 12	0. 6	0.6	1.7 ~	2.8	- / 12 - / 12	2. 2	2. 3
H29	0.1 ~	1.0	0 / 12	0. 5	0. 6	0.9 ~	2. 9	- / 12	2. 0	2. 2
H30	0.2 ~	0.5	0 / 12	0.4	0.4	1.3 ~	3. 4	- / 12	2. 4	2. 9
年度			(mg/L) 表质	3		T-P(mg/L) 表層				
	最小	最大	m/n	平均	75%値	最小	最大	m/n	平均	75%値
H20	0.10 ~	0.45	- / 12	0. 29	_	0.005 ~	0.015	- / 12	0.008	-
H21 H22	0. 20 ~ 0. 08 ~	0. 47 0. 35	- / 12 - / 12	0.34	_	$\begin{array}{c cccc} 0.003 & \sim \\ 0.004 & \sim \end{array}$	0. 012 0. 011	- / 12 - / 12	0.006 0.007	
H23	0.08 ~	0. 53	- / 12	0. 25 0. 34		0.004 ~	0.011	- / 12 - / 12	0.007	
H24	0. 10	0. 46	- / 12	0.34	_	0.003 ~	0.015	- / 12	0.005	
H25	0.14 ~	0.43	- / 12	0. 26	-	0.003 ~	0.006	- / 12	0.004	-
H26	0.22 ~	0.46	- / 12	0.33	_	0.003 ~	0.009	- / 12	0.004	_
H27	0.18 ~	0. 35	- / 12	0. 23	-	0.003 ~	0.008	- / 12	0.005	-
H28 H29	0. 19 ~ 0. 15 ~	0. 34 0. 33	- / <u>12</u> - / <u>12</u>	0. 25 0. 24		$\begin{array}{c cccc} 0.003 & \sim \\ 0.003 & \sim \end{array}$	0.008 0.011	- / 12 - / 12	0. 004 0. 006	
H29 H30	$\begin{array}{c cccc} 0.15 & \sim \\ 0.09 & \sim \\ \end{array}$	0. 33	- / 12 - / 12		_	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.011	- / 12 - / 12	0.006	
	0.00	DO(mg/	/L) 下層(底			0.000		温(℃) 全層	0.003	
年度	最小 最大 m/n 平均 75%値				最小 最大 m/n 平均 75%値				75%値	
H20						6.0 ~	29.0			_
H21						4.7 ~	26. 3	- / 12	14.8	- .
H22 H23						5.0 ~ 4.6 ~	30. 0 27. 4	- / 12 - / 12	15. 8 14. 4	
H24						4. 6 ~ 4. 7 ~	26.7	- / 12 - / 12	14. 4	
H25						4.8 ~	28. 5	- / 12	15. 3	_
H26						4.1 ~	24. 9	- / 12	14. 6	_
H27	0.5 ~	0.5	- / 12	0.5	-	4.7 ∼	26. 5	- / 12	9.0	-
H28	0.5 ~	0.5	- / 12	0. 5	-	5.0 ~	27.6	- / 12	9.3	-
H29	0.5 ~	10. 2	- / 12	1.5	-	3.9 ~	25. 2	- / 12	8.8	_
H30	0.5 ~	1.1	- / 9	0.6	-	4.4 ~	28. 7	- / 9	10. 1	_


注) m/n欄は、n:測定実施日数、m:環境基準を満足しない日数

出典: 独立行政法人水資源機構 提供資料

出典: 独立行政法人水資源機構 提供資料

図 1.2.5(1) 徳山ダム貯水池における水質の推移

出典: 独立行政法人水資源機構 提供資料

図 1.2.5(2) 徳山ダム貯水池における水質の推移 (続き)

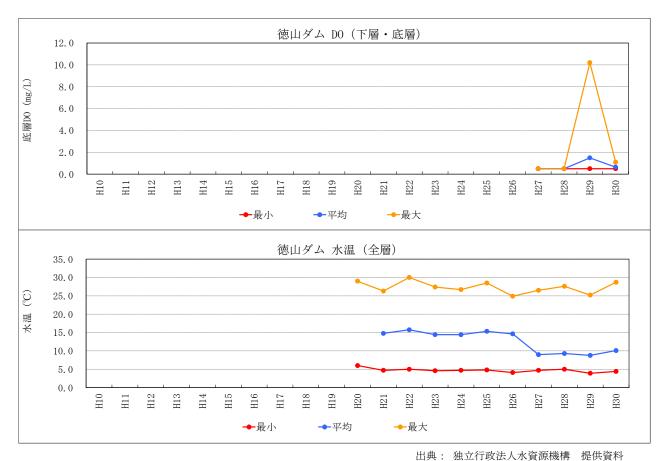


図 1.2.5(3) 徳山ダム貯水池における水質の推移 (続き)

平成20年度から平成30年度の期間中、T-N/T-P比が20以下で、かつT-P濃度が0.02mg/L以上である年度は無く(異常値除外後も変化なし)、T-Nの項目の基準値を適用すべき湖沼の条件に合致している年度は無かった。

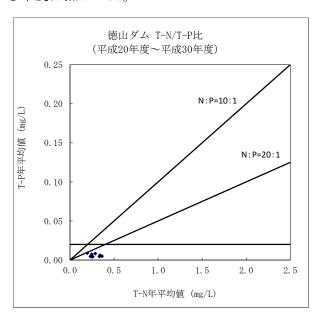


図 1.2.6 徳山ダム貯水池における T-N/T-P 比の状況 (異常値除外前)

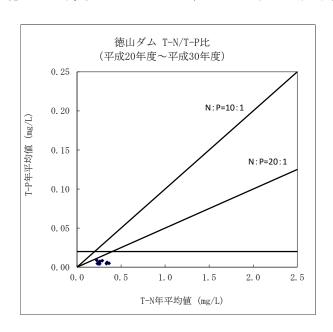
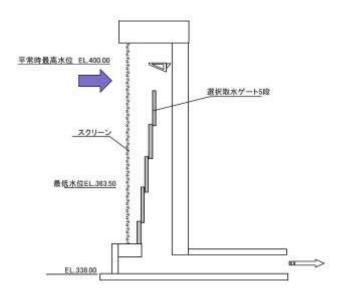


図 1.2.7 徳山ダム貯水池における T-N/T-P 比の状況 (異常値除外後)

<参考>T-Nの項目の基準値を適用すべき湖沼の条件

T-Nが湖沼植物プランクトンの増殖の要因となる湖沼 (T-N/T-P比が20以下であり、かつT-P 濃度が0.02mg/L以上である湖沼) についてのみ適用


(2) 徳山ダム貯水池の水質保全対策

徳山ダムでは、冷濁水対策を目的に、選択取水設備を設置している。

下流河川の環境に配慮することを目的に、現状のダム流入水温を確認し、ダム建設前の下流河川の水温にほぼ等しい水温層から放流する運用を行っている。

また、出水時の濁水が貯水池に貯留された場合、濁水の層を確認し、できるだけ清水の層から放流する運用を行っている。

その他に、貯水池への土砂の流入・濁水の発生を抑制することを目的として、貯水池及びその周辺の樹林帯保全を行っている。

出典: 平成 29 年度 中部地方ダム等管理フォローアップ委員会 徳山ダム定期報告書 (独立行政法人水資源機構中部支社)

図 1.2.8 選択取水施設の概要

出典: 平成 29 年度 中部地方ダム等管理フォローアップ委員会 徳山ダム定期報告書 (独立行政法人水資源機構中部支社)

図 1.2.9 樹林帯保全

1.2.4. 徳山ダム貯水池の利水状況

徳山ダム貯水池の利用目的を表 1.2.5に、利水の状況を表 1.2.6及び図 1.2.10に示した。 徳山ダムは洪水調節、流水機能維持、水道用水、工業用水及び発電を利用目的としている。

ダムの建設により、水道用水(岐阜県、愛知県、名古屋市)、工業用水(岐阜県、名古屋市) の新規利水が取水できるようになっているが、現在のところ取水はなされておらず、徳山ダムの利用としては、流水の正常な機能の維持(灌漑振替分を含む。) および発電用水として利用されている。

表 1.2.5 徳山ダム貯水池の利用目的

洪水調節	流水機能 維持	農業 用水	水道 用水	工業用水	発電	消流雪 用水	レクリエー ション
0	0		0	0	0		

表 1.2.6 徳山ダム貯水池および下流の利水状況

用途	取水場所	浄水場名	処理水準	特記事項
水道用水	なし		_	
工業用水	なし	_	_	_
	岡島頭首工(西濃用 水)	_	_	_
曲光田水	福束揚水機場(福東用 水)	_	_	_
農業用水	中江揚水機場(長良川 用水)	_		_
	徳山ダム下流の揖斐 川沿川(慣行水利)	_	_	_

出典:木曾川水系河川整備計画(http://www.cbr.mlit.go.jp/kisokaryu/kisosansen-plan/index.html)



図 1.2.10 徳山ダム貯水池流域の利用状況

徳山ダム貯水池周辺の漁業権について、表 1.2.7 及び図 1.2.11 に示す。水産 2 級 (A 類型)、水産 1 種 (Π 類型) の魚種が対象となっている。

表 1.2.7 徳山ダム貯水池周辺の漁業権

免許番号	魚種	魚場	漁業時期	備考
内水共第9号	アユ、アマゴ、	揖斐川、白石川、桂川、粕川、高橋谷川、長谷川、	アユ:5月11日か	徳山ダム下流
	コイ、ウナギ、	表川並びにそれらの支派川(安八郡神戸町、揖斐	ら12月31日まで	
	オイカワ、ウ	郡揖斐川町、大野町及び池田町	ウグイ:6月1日か	
	グイ		ら3月31日まで	
内水共第10号	アユ、アマゴ、	揖斐川、飛島川、高知川及び日坂川並びにそれら	アユ:5月11日か	徳山ダム下流
	ニジマス、イ	の支派川 (揖斐郡揖斐川町)	ら12月31日まで	
	ワナ、コイ、		ウグイ:6月1日か	
	ウナギ、オイ		ら3月31日まで	
	カワ、ウグイ		アマゴ、イワナ:	
			2月1日から9月30	
			日まで	
内水共第11号	アユ、アマゴ、	揖斐川、坂内川、城川、大谷川、広瀬浅又川、八	アユ:5月11日か	徳山ダム直下流
	ニジマス、イ	草川及び谷原川並びにそれらの支派川 (揖斐郡揖	ら12月31日まで	
	ワナ、コイ、	斐川町)	ウグイ:6月1日か	
	ウナギ、オイ		ら3月31日まで	
	カワ、ウグイ		アマゴ、イワナ:	
			2月1日から9月30	
			日まで	

出典:岐阜県 岐阜県の漁業権 WEB ページ

(http://www.pref.gifu.lg.jp/sangyo/suisan/gyogyo-chosei/11428/gyogyouken2.html) H22 岐阜県の水産業(岐阜県農政部水産課)

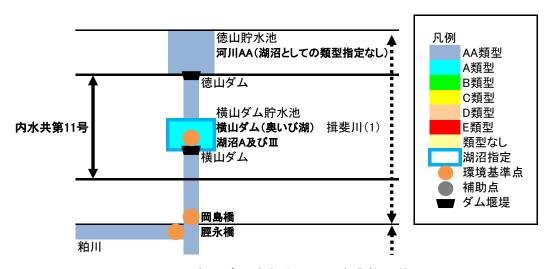


図 1.2.11 徳山ダム貯水池周辺の漁業権の状況

1.2.5. 徳山ダム貯水池(徳山湖)にかかる水質汚濁負荷量

(1)徳山ダム貯水池(徳山湖)の水質汚濁負荷量の算定について

徳山ダム貯水池(徳山湖)の水質汚濁負荷量の算定及び将来水質予測手法の概要は、図1.2.12に示すとおりである。現況は平成28年度*、将来は現行の暫定目標の達成年度の5年後である令和7年度とした。

まず、流域フレーム(現況、将来)を設定したのち、点源については実測値法(排水量×水質)、面源については原単位法(フレーム×原単位)により水質汚濁負荷量を算定した。 将来水質は、算定した現況の発生負荷量、将来の発生負荷量、平均流入率及び平均流入量を用いて算定した。

なお、フレームの設定方法及び使用した資料は表 1.2.8 に示すとおりである。

※湖沼の水質データ (表 1.2.4、図 1.2.5 整理) は、入手可能な最新年度が平成30年度となっているが、将来水質予測の現況年度については、負荷量算定に用いる各種統計データの入手可能な最新の実績年度を踏まえ、平成28年度とした。

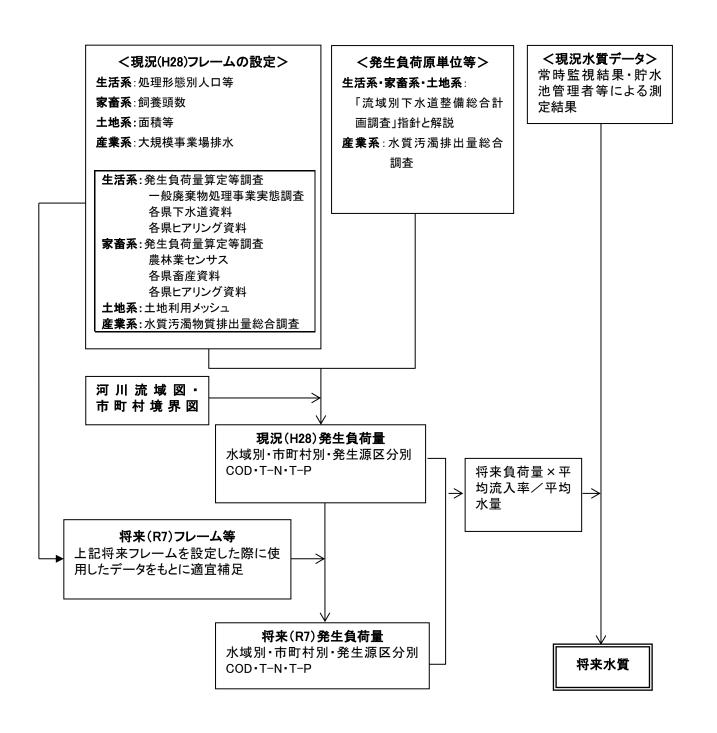


図 1.2.12 水質汚濁負荷量の算定及び将来水質予測手法の概要

表 1.2.8 揖斐川流域における現況・将来フレームの設定方法及び使用した資料

分類	設定方法	使用した資料
生活系	●現況(平成28年度) ・流域内の総人口は、平成27年度国勢調査3次メッシュ別人口の値を使用。 ・し尿処理形態別人口は、岐阜県へのヒアリングにより把握し、流域内外の人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分。	 1)「国勢調査地域メッシュ統計データ(H27)」 (総務省) 2)「岐阜県ヒアリング資料」(岐阜県)
	●将来(令和7年度) ・将来総人口は、岐阜県へのヒアリングにより設定。 ・し尿処理形態別人口は、岐阜県へのヒアリングにより把握し、流域内外の人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分。	2) (前出)「岐阜県ヒアリング資料」(岐阜県)
家畜系	●現況(平成28年度) ・2015年農林業センサス(農林水産省)により徳山ダム貯水池流域に該当する市町村別の飼養頭(羽)数を把握し、市町村別の飼養頭(羽)数は、流域内の農地(田・畑)面積と市町村の農地面積の比率から、徳山ダム貯水池流域に按分。	3)「2015 年農林業センサス」(農林水産省)2)(前出)「岐阜県ヒアリング資料」(岐阜県)
	・現況と同じとした。	
土地系	●現況(平成28年度) ・平成28年度〜(現行整備事業の整備済み範囲成果)の「土地利用第3次メッシュデータ(土地利用区分別面積)(国土交通省)」と同様の土地利用別面積を設定。	4)「土地利用第3次メッシュデータ(土地利用 区分別面積)(H28~)」(国土交通省)
	●将来(令和7年度) ・過去の土地利用面積の推移において、明確な市街地面積の増加傾向はみられなかったため、現況年度(平成28年度)と同様の土地利用別面積を設定。	
点源 ・生活系 ・家畜系 ・産業系	●現況(平成28年度) ・環境省資料および岐阜県へのヒアリングにより平成28年度の流域内の対象工場・事業場を把握した。徳山ダム貯水池流域においては、フレーム設定の対象となる点源は認められなかった。	5)「水質汚濁物質排出量総合調査」(環境省) 2)(前出)「岐阜県ヒアリング資料」(岐阜県)
	●将来(令和7年度) ・最新年度(平成29年度)における環境省資料においてもフレーム設定の対象となる点源は認められなかったため、現況と同じとした。	

(2)徳山ダム貯水池(徳山湖)の流域フレーム

徳山ダム貯水池(徳山湖)に係る現況フレームについては、当該流域が含まれる岐阜県揖斐郡揖斐川町のフレーム値(生活系、産業系、家畜系、土地系)を収集・整理して設定した。

現況及び将来フレームの設定方法の詳細は以下に示すとおりである。

1) 生活系

ヒアリング結果(岐阜県、揖斐川町)を踏まえ、流域内の総人口は現況、将来ともに ゼロとした。

2) 家畜系

ヒアリング結果(岐阜県、揖斐川町)を踏まえ、流域内の家畜頭(羽)数は現況、将 来ともにゼロとした。

3) 点源の排水

ヒアリング結果(岐阜県、揖斐川町)を踏まえ、現況、将来ともにゼロとした。

4) 土地系

ア) 現況

平成28年度~(現行整備事業の整備済み範囲成果)の「土地利用第3次メッシュデータ (土地利用区分別面積)(国土交通省)」より設定した。

土地利用第3次メッシュデータは、土地利用区分として12区分されており、表 1.2.9 のように5区分に集約した。

表 1.2.9 土地利用第3次メッシュデータの土地利用区分の集約

国土数値情報の 土地利用区分	集約区分			
田	田			
他農用地	畑			
森林	山林			
建物用地				
道路	市街地			
鉄道	川坦地			
他用地				
荒地				
河川湖沼	その他			
海浜	ての他			
ゴルフ場				
海水域	除外			

表 1.2.10 徳山ダム貯水池流域の土地利用区分別面積(現況・平成28年度)

区	分	単位	現況•平成28年度
土地系	田	ha	0
	畑	ha	0
	山林	ha	24,180
	市街地	ha	7
	その他	ha	1,328
	総面積	ha	25,515

イ) 将来

過去の土地利用面積の推移において、明確な市街地面積の増加傾向はみられなかったため、現況年度(平成28年度)と同様の土地利用別面積を設定した。

図 1.2.13 徳山ダム貯水池流域の土地利用区分面積の変化

表 1.2.11 徳山ダム貯水池流域の土地利用区分別面積(将来・令和7年度)

×	分	単位	将来•令和7年度
土地系	田	ha	0
	畑	ha	0
	山林	ha	24,180
	市街地	ha	7
	その他	ha	1,328
	総面積	ha	25,515

表 1.2.12 徳山ダム貯水池流域のフレームの推移(平成23年度~平成28年度)

	区 分	単位	H23	H24	H25	H26	H27	H28
	総人口	人	0	0	0	0	0	0
	下水道	人	0	0	0	0	0	0
	コミュニティプラント	人	0	0	0	0	0	0
	農業集落排水	人	0	0	0	0	0	0
生活系	合併処理浄化槽	人	0	0	0	0	0	0
	単独処理浄化槽	人	0	0	0	0	0	0
	計画収集	人	0	0	0	0	0	0
	自家処理	人	0	0	0	0	0	0
	点源	m^3/B	0	0	0	0	0	0
	牛	頭	0	0	0	0	0	0
家畜系	鶏	頭	0	0	0	0	0	0
水田 尔	鶏	羽	0	0	0	0	0	0
	点源	m ³ /日	0	0	0	0	0	0
	田	ha	1	0	0	0	0	0
	畑	ha	0	0	0	0	0	0
土地系	山林	ha	24,038	24,050	24,062	24,074	24,127	24,180
上地宋	市街地	ha	3	3	4	4	6	7
	その他	ha	1,474	1,461	1,449	1,437	1,383	1,328
	総面積	ha	25,515	25,515	25,515	25,515	25,515	25,515
産業系	点源	m^3/ \exists	0	0	0	0	0	0

表 1.2.13 徳山ダム貯水池流域の水質汚濁負荷量に係るフレーム (現況、将来)

	区 分	単位	現況•平成28年度	将来•令和7年度
	総人口	人	0	0
	下水道	人	0	0
	コミュニティプラント	人	0	0
	農業集落排水	人	0	0
生活系	合併処理浄化槽	人	0	0
	単独処理浄化槽	人	0	0
	計画収集	人	0	0
	自家処理	人	0	0
	点源	m^3/B	0	0
	牛	頭	0	0
家畜系	<u>豚</u> 鶏	頭	0	0
か田 か	鶏	羽	0	0
	点源	m^3/B	0	0
	田	ha	0	0
	畑	ha	0	0
土地系	山林	ha	24,180	24,180
ユートロンハ	市街地	ha	7	7
	その他	ha	1,328	1,328
	総面積	ha	25,515	25,515
産業系	点源	m^3/B	0	0

(3) 徳山ダム貯水池 (徳山湖) の発生汚濁負荷量の算定方法

発生汚濁負荷量の算定手法は表 1.2.14 に示すとおり、点源については実測値法(負荷量=排水量×水質)、面源については原単位法(負荷量=フレーム×原単位)により算定した。面源の発生汚濁負荷量の算定に用いた原単位は表 1.2.15 に示すとおりである。

表 1.2.14 徳山ダム貯水池(徳山湖)の発生汚濁負荷量算定手法

発生活	原別	区分	算定手法
生活系	点源	下水道終末処理施設 (マップ調査) *	排水量(実測値)×排水水質(実測値)
		し尿処理施設(マップ調査) *	排水量(実測値)×排水水質(実測値)
	面源	し尿・雑排水(合併処理浄化槽)	合併処理浄化槽人口×原単位(し尿+雑排水)×(1-除去率)
		し尿(単独処理浄化槽)	単独処理浄化槽人口×原単位(し尿)×(1-除去率)
		し尿(計画収集)	計画収集人口×原単位(し尿)×(1-除去率)
		し尿(自家処理)	自家処理人口×原単位(し尿)×(1-除去率)
畜産系	点源	畜産業	排水量(実測値)×排水水質(実測値)
	面源	マップ調査以外の畜産業 *	家畜頭数×原単位×(1-除去率)
土地系	面源	土地利用形態別負荷	土地利用形態別面積×原単位
産業系	点源	工場・事業場(マップ調査) *	排水量(実測値)×排水水質(実測値)

^{*:}マップ調査: 平成23年度、平成25年度、平成27年度、平成29年度水質汚濁物質排出量総合調査(環境省) ※マップ調査の調査対象は、①日排出量が50m³以上、もしくは②有害物質を排出するおそれのある工場・事業場であり、③指定地域特定施設及び湖沼水質保全特別措置法で定めるみなし指定地域特定施設を含む。

表 1.2.15 徳山ダム貯水池(徳山湖)の発生汚濁負荷量原単位

);; (- - -	CO	OD	T-	-N	T-P		
	区 分	単位	原単位	除去率(%)	原単位	除去率(%)	原単位	除去率(%)	
	合併処理浄化槽	g/(人・日)	28.0	72.5	13.0	48.5	1.40	46. 4	
生	単独処理浄化槽	g/(人・日)	10.0	53. 5	9.0	34.4	0.90	30.0	
活系	計画収集 (雑排水)	g/(人・日)	18. 0	0.0	4. 0	0.0	0.50	0.0	
	自家処理	g/(人・日)	10.0	90.0	9.0	90.0	0.90	90.0	
	田	kg/(km ² ・日)	30.44	_	3.67	_	1. 13	_	
土	畑	kg/(km ² ・日)	13. 56	_	27.51	_	0.35	_	
地	山林	kg/(km ² ・日)	9. 97		1.34		0.08	_	
系	市街地	kg/(km ² ・日)	29. 32		4.44	_	0. 52	_	
	その他	kg/(km ² ・日)	7. 95	_	3.56	_	0.10	_	
	乳用牛	g/(頭・日)	530. 0	97. 5	290. 0	96. 1	50.00	98. 4	
家畜	肉用牛	g/(頭・日)	530. 0	97. 5	290. 0	96. 1	50.00	98. 4	
音系	豚	g/(頭・日)	130. 0	95. 9	40.0	93. 5	25.00	95. 1	
	鶏	g/(羽・日)	2. 9	95. 5	1.91	94. 5	0. 27	95. 5	

出典:「流域別下水道整備総合計画調査 指針と解説 平成27年1月 国土交通省水管理・国土保全局下水道部」

- ・生活系の原単位は、「1人1日当たり汚濁負荷量の参考値」
- ・合併処理浄化槽の除去率は、「小型合併浄化槽の排水量・負荷量原単位」の排出負荷量の平均値と原単位から除去率を 算出した
- ・単独処理浄化槽の除去率は、「単独浄化槽の排出負荷量原単位」の排出負荷量の平均値と原単位から除去率を算出した
- ・自家処理の除去率は、前回の類型指定(平成25年6月)に係る検討時の値と同値とした
- ・土地系原単位は、各土地利用区分の原単位の平均値とした (田は純排出負荷量の平均値)。土地系のその他については「大気降下物の汚濁負荷量原単位」の平均値とした。なお、COD は「非特定汚染源からの流出負荷量の推計手法に関する研究 H24.3 (社)日本水環境学会」の平均値とした
- ・家畜系原単位は、「家畜による発生負荷量原単位」における原単位の平均値とした
- ・家畜系除去率は、「牛、豚、鶏の汚濁負荷量原単位と排出率(湖沼水質保全計画)」の排出率から算出した

(4) 徳山ダム貯水池 (徳山湖) の発生汚濁負荷量

徳山ダム貯水池(徳山湖)の発生汚濁負荷量は表 1.2.16 に示すとおりである。

表 1.2.16 徳山ダム貯水池 (徳山湖) 流域の発生汚濁負荷量

			CC)D	T-	·N	T-	P
区 分		単位	現況平均 (H23~H28年度平均)	将来 令和7年度	現況平均 (H23~H28年度平均)	将来 令和7年度	現況平均 (H23~H28年度平均)	将来 令和7年度
	合併処理浄化槽	kg/日	0	0	0	0	0	0
	単独処理浄化槽	kg/日	0	0	0	0	0	0
生活系	計画収集	kg/日	0	0	0	0	0	0
工口水	自家処理	kg/日	0	0	0	0	0	0
	点源(水質汚濁物質排出量総合調査)	kg/日	0	0	0	0	0	0
	小計	kg/日	0	0	0	0	0	0
	牛	kg/日	0	0	0	0	0	0
家畜系	豚	kg/日	0	0	0	0	0	0
水田 水	鶏	kg/日	0	0	0	0	0	0
	小計	kg/日	0	0	0	0	0	0
	田	kg/日	0	0	0	0	0	0
	畑	kg/日	0	0	0	0	0	0
土地系	山林	kg/日	2,402	2,411	323	324	19	19
工地尔	市街地	kg/日	1	2	0	0	0	0
	その他	kg/日	113	106	51	47	1	1
	小計	kg/日	2,516	2,518	374	372	21	21
産業系	点源(水質汚濁物質排出量総合調査)	kg/日	0	0	0	0	0	0
合計		kg/日	2,516	2,518	374	372	21	21

注) 生活系のうち、「点源」は排水量 50m³/日以上の下水処理場、コミュニティプラント、農業集落排水処理施設等の大規模浄化槽及びし尿処理場を、「合併処理浄化槽」「単独処理浄化槽」は 50m³/日未満の浄化槽を、「計画収集」は市町村が計画処理区区域内で収集するし尿を、「自家処理」はし尿又は浄化槽汚泥を自家肥料として用いる等、自ら処分しているものを、それぞれ表す。

産業系の「点源」は生活系、家畜系以外の水質汚濁防止法の特定事業場を表す。

表 1.2.17 徳山ダム貯水池(徳山湖)流域の発生汚濁負荷量の推移(平成23~28年度)

×	公分	単位	平成23年度	平成24年度	平成25年度	平成26年度	平成27年度	平成28年度	H23~H28年度 平均
	生活系	kg/目	0	0	0	0	0	0	0
	家畜系	kg/日	0	0	0	0	0	0	0
COD	土地系	kg/日	2,515	2,515	2,515	2,516	2,517	2,518	2,516
	産業系	kg/日	0	0	0	0	0	0	0
	合計	kg/日	2,515	2,515	2,515	2,516	2,517	2,518	2,516
	生活系	kg/目	0	0	0	0	0	0	0
	家畜系	kg/日	0	0	0	0	0	0	0
T-N	土地系	kg/日	375	374	374	374	373	372	374
	産業系	kg/日	0	0	0	0	0	0	0
	合計	kg/日	375	374	374	374	373	372	374
	生活系	kg/日	0	0	0	0	0	0	0
	家畜系	kg/日	0	0	0	0	0	0	0
T-P	土地系	kg/日	21	21	21	21	21	21	21
	産業系	kg/日	0	0	0	0	0	0	0
	合計	kg/日	21	21	21	21	21	21	21

図 1.2.14 徳山ダム貯水池(徳山湖)流域の汚濁負荷量内訳

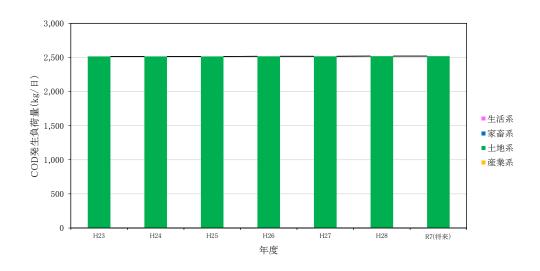


図 1.2.15 徳山ダム貯水池流域の COD 発生負荷量経年変化

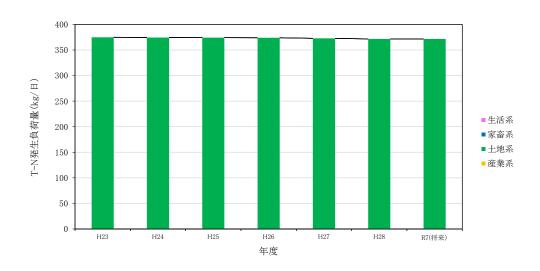


図 1.2.16 徳山ダム貯水池流域の T-N 発生負荷量経年変化



図 1.2.17 徳山ダム貯水池流域の T-P 発生負荷量経年変化

1.2.6. 徳山ダム貯水池(徳山湖)の将来水質予測

徳山ダム貯水池(徳山湖)の将来水質予測結果は、次のとおりである。

徳山ダムへの流入水量の経年変化は、ダム諸量データベースの値を用いた。

なお、徳山ダム貯水池への流入河川では、塚観測地点と門入観測地点の2箇所で水質観測が行われていることから、それぞれについて流入流量を想定した。

観測地点流量は「国土数値情報 流域メッシュデータ (国土交通省)」より、各観測地点 の集水面積を把握し、徳山ダムへの流入水量を集水面積比によって按分した。

結果を表 1.2.18 に示す。

表 1.2.18 徳山ダム貯水池の現況年平均流入量の経年変化

	H23	H24	H25	H26	H27	H28	平均
徳山ダム年平均流入量(m³/s)	32	29	27	25	29	19	27
塚年平均流入量(m³/s)	14	13	12	11	13	9	12
門入年平均流入量(m³/s)	17	16	15	13	16	10	15

※有効数字二桁で表示しています。

(1) 徳山ダム貯水池(徳山湖) COD 水質予測

徳山ダム貯水池の水質の経年変化は、表 1.2.20 のとおりである。

また、徳山ダム貯水池への負荷量の経年変化は、表 1.2.21 のとおりである。

徳山ダム流入水質は、貯水池上流にある塚観測地点および、門入観測地点の値を用い、表 1.2.18 に示した流入水量で加重平均した結果とした。

表 1.2.19 徳山ダム貯水池の流入水質 (COD)

	H23	H24	H25	H26	H27	H28	平均
徳山ダム年平均流入水質(mg/L)	1.1	1.6	1.5	1.3	1.2	1.0	1.3
塚年平均水質(mg/L)	1.2	1.8	1.2	1.2	1.1	1.0	1.3
門入年平均水質(mg/L)	1.0	1.6	1.7	1.2	1.1	1.0	1.2

※有効数字二桁で表示しています。

表 1.2.20 徳山ダム貯水池の現況 COD 水質の経年変化

COD	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	1.1	1.7	1.5	1.2	1.1	1.0	1.3
貯水池水質年平均値(mg/L)	2.3	2.4	2.4	2.3	2.1	2.2	2.3
貯水池水質75%值(mg/L)	2.4	2.6	2.4	2.6	2.3	2.4	2.5

※有効数字二桁で表示しています。

表 1.2.21 徳山ダム貯水池の現況 COD 発生負荷量と流入負荷量の経年変化

COD	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	2,515	2,515	2,515	2,516	2,517	2,518	2,516
流入負荷量(kg/日)	2,894	4,123	3,381	2,642	2,719	1,634	2,899
流入率	1.2	1.6	1.3	1.1	1.1	0.65	1.2

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流入率は有効数字二桁で表示しています。

将来水質の算定には次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 1.2.22 徳山ダム貯水池流域の将来 COD 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質 (mg/L)	2. 3	表 1.2.20 の貯水池水質年平均値 (COD) の 6
元化十岁知 (mg/ L)		カ年平均値
将来発生負荷量(kg/日)	2, 516	表 1.2.16 の将来の発生汚濁負荷量の合計
付木光生貝仰里(Kg/口)		(COD)
現況平均流入率	1. 2	表 1.2.21 の流入率の6ヶ年平均値
現況平均流入負荷量(kg/日)	2,899	表 1.2.21 の流入負荷量の6ヶ年平均値
将来流入負荷量(kg/日)	2,896	将来発生負荷量×現況平均流入率

COD 将来水質予測結果は、表 1.2.23 に示すとおりである。また、75%値は、図 1.2.18 に示す相関式に年平均値を当てはめて推計した。

表 1.2.23 徳山ダム貯水池流域の将来 COD 水質予測結果

		徳山ダム	5貯水池	現在の類型			
项目 		将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値	現暫定目標値		
		2.3	2.1~2.5		_		
	DD水質 75%値 2.5		2.4~2.6	河川AA類型 (基準値なし)	-		

※年平均値の変動範囲は、表 1.2.20 の貯水池の年平均水質から標準偏差 (不偏分散) を求め、その数値を将来水質に加算、減算して求めた。75%値の変動範囲は、表 1.2.20 の貯水池の 75%値から標準偏差 (不偏分散) を求め、その数値を将来水質に加算、減算して求めた。

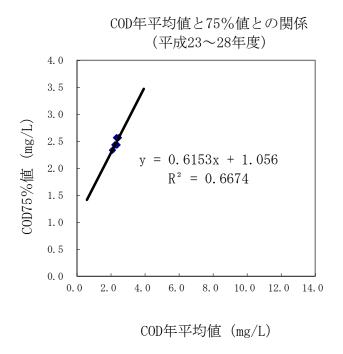


図 1.2.18 徳山ダム貯水池の COD 水質年平均値と 75%値との関係

(2) 徳山ダム貯水池(徳山湖) T-N 水質予測

徳山ダム貯水池の水質の経年変化は、表 1.2.25 のとおりである。

また、徳山ダム貯水池への負荷量の経年変化は表 1.2.26 のとおりである。

徳山ダム流入水質は、貯水池上流にある塚観測地点および、門入観測地点の値を用い、表 1.2.18 に示した流入水量で加重平均した結果とした。

表 1.2.24 徳山ダム貯水池の流入水質 (T-N)

	H23	H24	H25	H26	H27	H28	平均
徳山ダム年平均流入水質(mg/L)	0.36	0.40	0.28	0.42	0.30	0.34	0.35
塚年平均水質(mg/L)	0.39	0.43	0.29	0.42	0.28	0.35	0.36
門入年平均水質(mg/L)	0.38	0.38	0.27	0.41	0.32	0.33	0.35

※有効数字二桁で表示しています。

表 1.2.25 徳山ダム貯水池の現況 T-N 水質年平均値の経年変化

T-N	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	0.36	0.40	0.28	0.42	0.30	0.34	0.35
貯水池水質年平均値(mg/L)	0.34	0.36	0.26	0.33	0.23	0.25	0.30

※有効数字二桁で表示しています。

表 1.2.26 徳山ダム貯水池流域の現況 T-N 発生負荷量と流入負荷量の経年変化

T-N	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	375	374	374	374	373	372	374
流入負荷量(kg/日)	991	996	648	885	752	560	805
流入率	2.6	2.7	1.7	2.4	2.0	1.5	2.2

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

将来水質の算定は次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 1.2.27 徳山ダム貯水池流域の将来 T-N 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	0.30	表 1.2.25 の貯水池水質年平均値 (T-N) の 6 ヵ年平均値
将来発生負荷量(kg/日)	372	表 1.2.16 の将来の発生汚濁負荷量の合計 (T-N)
現況平均流入率	2.2	表 1.2.26 の流入率の 6 ヶ年平均値
現況平均流入負荷量(kg/日)	805	表 1.2.26 の流入負荷量の 6 ヶ年平均値
将来流入負荷量(kg/日)	799	将来発生負荷量×現況平均流入率

T-N 将来水質予測結果は、表 1.2.28 に示すとおりである

[※]発生負荷量・流入負荷量は小数点以下四捨五入、流入率は有効数字二桁で表示しています。

表 1.2.28 徳山ダム貯水池流域の将来 T-N 水質予測結果

		徳山ダム	5貯水池	現在の類型		
項目		将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値	現暫定目標値	
T-N水質	N水質 年平均値 0.30		0.25~0.35	河川AA類型 (基準値なし)	-	

[※]変動範囲は、表 1.2.25 の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

(3) 徳山ダム貯水池(徳山湖) T-P 水質予測

徳山ダム貯水池の水質の経年変化は、表 1.2.30 のとおりである。

また、徳山ダム貯水池への負荷量の経年変化は表 1.2.31 のとおりである。

徳山ダム流入水質は、貯水池上流にある塚観測地点および、門入観測地点の値を用い、表 1.2.18 に示した流入水量で加重平均した結果とした。

表 1.2.29 徳山ダム貯水池の流入水質 (T-P)

	H23	H24	H25	H26	H27	H28	平均
徳山ダム年平均流入水質(mg/L)	0.0069	0.0082	0.0090	0.0094	0.0095	0.0084	0.0086
塚年平均水質(mg/L)	0.0067	0.0083	0.0077	0.0093	0.0087	0.0083	0.0081
門入年平均水質(mg/L)	0.0071	0.0081	0.0102	0.0095	0.0102	0.0085	0.0089

※有効数字二桁で表示しています。

表 1.2.30 徳山ダム貯水池の現況 T-P 水質年平均値の経年変化

T-P	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	0.0069	0.0082	0.0090	0.0094	0.0095	0.0084	0.0086
貯水池水質年平均値(mg/L)	0.0059	0.0049	0.0043	0.0044	0.0046	0.0042	0.0047

※有効数字二桁で表示しています。

表 1.2.31 徳山ダム貯水池流域の現況 T-P 発生負荷量と流入負荷量の経年変化

T-P	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	21	21	21	21	21	21	21
流入負荷量(kg/日)	19	20	21	20	24	14	20
流入率	0.9	1.0	1.0	1.0	1.1	0.7	1.0

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流出率は有効数字二桁で表示しています。

将来水質の算定は次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 1.2.32 徳山ダム貯水池流域の将来 T-P 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	0.0047	表 1.2.30 の貯水池水質年平均値 (T-P) の 6 ヵ年平均値
将来発生負荷量(kg/日)	21	表 1.2.16 の将来の発生汚濁負荷量の合計 (T-P)
現況平均流入率	1.0	表 1.2.31 の流入率の 6 ヶ年平均値
現況平均流入負荷量(kg/日)	20	表 1.2.31 の流入負荷量の 6 ヶ年平均値
将来流入負荷量(kg/日)	20	将来発生負荷量×現況平均流入率

T-P 将来水質予測結果は、表 1.2.33 に示すとおりである。

表 1.2.33 徳山ダム貯水池の将来 T-P 水質予測結果

項目		徳山ダム	5貯水池	現在の類型		
		将来水質(mg/L)	将来水質(mg/L) 変動範囲(mg/L)		現暫定目標値	
T-P水質	年平均値	0.0047	0.0041~0.0053	河川AA類型 (基準値なし)	-	

[※]変動範囲は表 1.2.30 の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

1.2.7. 徳山ダム貯水池(徳山湖)の類型指定

徳山ダムにおける利水・水産・水質の状況は表 1.2.34のとおりである。

表 1.2.34 徳山ダムの利水・水産・水質の状況

	I I ample () almost well 2 to 1 and 2 and							
項目	摘要(:類型を当てはめる理由に該当:類型を当てはめる理由に該当しない)							
利水	・ ダム地点の流域面積:254.5km ²							
	・ 取水地点の流域面積:ダム下流では、現状上水の取水実績はない。計画上確保さ							
	れている上水取水は、木曾川連絡導水路を通じて、木曾川において取水される計							
	画となっている。木曾川の導水先となる地点直下流の犬山地点の流域面積⇒							
	4,684km ² 。流域面積比が 5.0 以下に相当しない。							
	・ダム下流の農業用水利用あり。(BV類型相当)							
	7 1 VIL - <u>ACCIONATINATION OF THE PARTITION OF THE PA</u>							
	→現状では上水の取水実績はない。BV類型に相当する農業用水の利用がある。							
水産	・ 徳山ダム貯水池内に漁業権が設定されていない。ダム湖内では漁業実態はない。							
/11/三	・ダム上流域で放流を行っていない。							
	 →漁業権・漁業実態ともなく、放流も行われていない。							
	MANAGER MANAGERE OF A CONTROL OF THE PROPERTY							
現状	・現状水質は、以下のとおり。							
水質	H23 H24 H25 H26 H27 H28 H29 H30							
小貝	COD水質(mg/L) 2.4 2.6 2.4 2.6 2.3 2.4 2.2 2.9							
	T-N水質(mg/L) 0.34 0.36 0.26 0.33 0.23 0.25 0.24 0.22 T-P水質(mg/L) 0.0059 0.0049 0.0043 0.0044 0.0046 0.0042 0.0055 0.0088							
	**CODは75%値、T-N、T-Pは年平均値を記載している。							
	→現状水質は湖沼 AⅡ 類型を満足(H23~H30)。							
	(基準値 COD:3mg/L、T-P:0.01mg/L)							
	また T-N/T-P 比から T-N の基準値は適用対象外。							
将来	・ 将来水質(R7)の予測結果は以下のとおり。							
水質	項目 徳山ダム貯水池							
	将来水質(mg/L) 変動範囲(mg/L)							
	COD水質 75%値 2.5 2.4~2.6 T-N水質 年平均値 0.30 0.25~0.35							
	T-P水質 年平均値 0.0047 0.0041~0.0053							
	→予測値は、COD はA類型を、T-P はⅡ類型をそれぞれ満足している。							

以上を踏まえ、徳山ダム貯水池の類型指定を以下の通り検討した。

水域類型		達成期間	(参考) 現行の類型
湖沼 A	イ	直ちに達成する	河川 AA
湖沼Ⅱ 全窒素を除く	1	直ちに達成する	_

(1)類型指定

類型については、水利用の観点からは、湖沼 B 類型、湖沼 V 類型に相当するが、現状水質が A II 類型を満足しており、将来予測水質も A II 類型を満足することが見込まれることから、現状非悪化の観点から、「湖沼 A 類型・湖沼 II 類型」に指定する。なお、T-N/T-P 比及び T-P 濃度の状況から、T-N は適用しない。

(2)達成期間(暫定目標の設定を含む)

COD については、平成 23 年度~平成 28 年度の現況値、令和 7 年度の水質予測結果 (75%値 2.5mg/L) ともに、湖沼 A 類型の基準値 (3mg/L) を下回ることから、暫定目標は設定せず、達成期間は、【イ 直ちに達成する。】とする。

T-P についても、平成 23 年度~平成 28 年度の現況値、令和 7 年度の水質予測結果 (0.0047mg/L) ともに、湖沼 II 類型の基準値 (0.01mg/L) を下回ることから、暫定目標は 設定せず、達成期間は、【イ 直ちに達成する。】とする。

<参考:異常値の除外の考え方>

対数正規分布による異常値の除外の検討を行った。除外の候補とされた測定値について、藻類の異常増殖や出水の影響等を総合的に勘案し、異常値の除外を判断した。

表 1.2.35 徳山ダム貯水池における異常値の候補と除外有無の判定 (COD)

(異常値判定時の上限値: 3.5mg/L, 下限値: 1.4mg/L)

年度	年月	COD (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
21	2009/5/15	1.1	3.6		降雨の影響、藻類の異常増殖の影響は 考えられない。	3日前までの降水量は2mm。
23	2011/4/27	1.0	4.3	除外する	降雨の影響が考えられる。	3日前までの降水量は89mm。
29	2018/1/19	1.1	1.7		降雨の影響、藻類の異常増殖の影響は 考えられない。	2日前に32mmの降水あり。大きな流入はない。
29	2018/2/21	0.9	1.0		降雨の影響、藻類の異常増殖の影響は 考えられない。	3日前までの降水なし。大きな流入はない。
30	2019/2/20			际外しない	降雨の影響、藻類の異常増殖の影響は 考えられない。	前日に36mmの降水あり。

※降水量は樽見観測所の観測データを参考とした

表 1.2.36 徳山ダム貯水池における異常値の候補と除外有無の判定 (T-N)

(異常値判定時の上限値: 0.54mg/L, 下限値: 0.13mg/L)

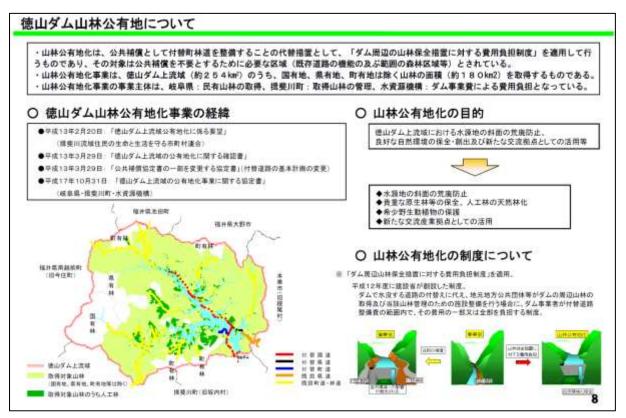
年度	年月	T-N (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
20	2008/9/16	0.10	2.3		降雨の影響、藻類の異常増殖の影響は 考えられない。	3日前までの降水量は5mm。
22	2010/8/25	0.08	1.4	除外する	降雨の影響が考えられる。	3日前までの降水量は45mm。
30	2018/6/29	0.12	5.6	除外する	降雨の影響が考えられる。	当日に133mmの降水あり。
30	2018/7/18	0.12	1.5	除外する	降雨の影響が考えられる。	11日から13日前に最大212mmの降水あり。
30	2018/8/15	0.09	1.5	除外する	降雨の影響が考えられる。	当日に113mmの降水あり。

※降水量は樽見観測所の観測データを参考とした

表 1.2.37 徳山ダム貯水池における異常値の候補と除外有無の判定 (T-P)

(異常値判定時の上限値: 0.0126mg/L, 下限値: 0.0022mg/L)

年度	年月	T-P (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
20	2008/8/6	0.015	2.8	除外しない	降雨や藻類の異常発生の影響は考えられない。	3日前までの降水量は15mm。
23	2011/9/26	0.015	5.4	除外しない	降雨の影響、藻類の異常増殖の影響は 考えられない。	3日前までの降水量は0mm。
30	2018/4/18	0.018	4.2		降雨の影響、藻類の異常増殖の影響は 考えられない。	当日に21mm、3日前までに64mm降水あり。
30	2018/9/25	0.013	12.2		降雨の影響、藻類の異常増殖の影響は 考えられない。	4日から5日前に最大35mmの降水あり。


[※]降水量は樽見観測所の観測データを参考とした

<参考:徳山ダム上流域の山林公有地化事業について>

徳山ダム上流域では、「徳山ダム山林公有地化事業」が進められており、将来的には公有地 化が見込まれる。

出典:木曾川水系連絡導水路事業の関係地方公共団体からなる検討の場,第1回資料,平成23年6月 中部地方整備局,水資源機構中部支社

出典:「徳山ダム及び木曾川水系連絡導水路について,平成21年2月,水資源機構中部支社

2.1. 相模ダム貯水池(相模湖)

現在、湖沼AII類型が適用されている相模ダム貯水池においては、全窒素(以下、「T-N」という。)・全燐(以下、「T-P」という。)について、令和2年度までの暫定目標が設定されており、その見直しを検討した。

具体的には以下に示す検討を行い、類型指定を検討した。

■各節における検討概要(サマリー)

2.1.1. 相模ダムの概要

相模ダムの概要について、既存資料から整理した。

2.1.2. 相模ダム貯水池周辺の環境基準類型指定状況

相模ダム貯水池周辺の環境基準類型指定の状況について整理した。 相模ダム貯水池は、現在湖沼 AⅡ 類型に指定されている。

2.1.3. 相模ダム貯水池の水質状況

相模ダムの水質について、水質測定データ、既存資料等から整理した。

T-Nの当てはめ有無を判定するための全窒素/全燐(以下、「T-N/T-P」という。) 比について整理した。

■T-N の基準の適用有無

全ての年度で T-N/T-P 比が 20 以下、T-P 濃度が 0.02mg/L 以上となることから、T-N の基準値は適用となる。

2.1.4. 相模ダム貯水池の利水状況

相模ダムの利水状況、漁業権の設定状況等水産利用について、既存資料及び関係機関ヒアリング結果より整理した。

■利用状況等から見た適用類型

ダム下流に湖沼AⅡ類型に相当する上水取水(水道2級の浄水場)がある。

⇒引き続き、湖沼 A II 類型に指定することが考えられる。

2.1.5. 相模ダム貯水池(相模湖)にかかる水質汚濁負荷量

相模ダムの将来水質予測を実施するにあたり、相模ダム貯水池流域の現況および将来の水質汚濁負荷量について、収集データ等から算定した。

■自然由来(湧水由来)の窒素、燐の取扱いについて

相模ダムにおいては、自然由来(湧水由来)の栄養塩(窒素、燐)の取扱いが課題となっていたが、平成30年度~令和元年度にかけて「類型指定見直しの検討に向けた検討会」を開催して検討した結果、以下の通りとする。

- ・ 窒素については、自然由来と明瞭に判断できる知見が得られていないこと、既往研究 事例を踏まえると、これまでの検討で用いている山林の原単位が実態に比べて過少で あると考えられることから、<u>これまでのように、湧水負荷を別途計上するのではなく、</u> 山林原単位の変更により対応する。
- ・ 燐ついては、新たに文献・資料を追加収集し、整理した結果、相模川の燐が高濃度であることは、富士山麓における地下水の影響(地質が燐を多く含む玄武岩質であるため)であることが明らかとなったことから、これまで同様、湧水負荷を別途計上する方法により対応する。

2.1.6. 相模ダム貯水池(相模湖)の将来水質予測

相模ダムの現況水質、現況及び将来の汚濁負荷量より、将来の水質予測(化学的酸素要求量(以下、「COD」という。)、T-N、T-P)を行った。

■将来水質予測結果 (R7)

T百	Ħ	相模ダム貯水池			
項目		将来水質(mg/L)	変動範囲(mg/L)		
COD水質	75%値	2.1	1.8~2.4		
T-N水質	年平均値	1.1	1.0~1.2		
T-P水質	年平均値	0.082	0.081~0.083		

2.1.7. 相模ダム貯水池(相模湖)の水域類型指定

以上までの検討結果を踏まえ、相模ダム貯水池の類型指定を検討した。

	が上よく。 が内間がと聞るだい 間段が一般が同じり 放生的にも でした。							
項目	基準値 (類型)	R2までの 暫定目標	H23~H28水質 (6力年平均)	H29,H30水質	R7水質予測	改善目標値	R7までの 暫定目標	
COD	3mg/L (湖沼A)	-	2.2mg/L	H29:2.1mg/L H30:2.4mg/L	2.1mg/L (1.8~2.4)	-	設定しない	
T-N	0.2mg/L (湖沼Ⅱ)	1.2mg/L	1.2mg/L	H29:1.2mg/L H30:1.0mg/L	1.1mg/L (1.0~1.2)	1.0mg/L (変動範囲の 下限値)	1.0mg/L	
T-P	0.01mg/L (湖沼Ⅱ)	0.080mg/L	0.086mg/L	H29:0.074mg/L H30:0.075mg/L	0.082mg/L (0.081~0.083)	0.081mg/L (変動範囲の 下限値)	0.080mg/L	
W.COI	71十年75% 値	T_N T_D		獣 アハス				

※CODは年75%値、T-N、T-Pは年平均値を記載している。

(1)類型指定

・ 類型については、湖沼A類型・湖沼Ⅱ類型に相当する水道の利用があることから、引き続き 「湖沼A類型・湖沼Ⅱ類型」とする。

(2)達成期間(暫定目標の設定を含む)

- ・ COD については、平成 23 年度から平成 28 年度の現況値 (75%値)、令和 7 年度の水質予測結果 (75%値 2. 1mg/L) ともに、基準値 (3mg/L) を下回っていることから、暫定目標は設定せず、達成期間は、引き続き【イ 直ちに達成】とする。
- ・ T-N 及び T-P については、令和 7 年度の水質予測結果(T-N 1.1mg/L、T-P 0.082mg/L)は湖沼 II 類型の基準値(T-N 0.2mg/L、T-P 0.01mg/L)を大きく上回り、現在見込み得る対策を行ったとしても、5 年後において達成が困難なため、達成期間は【ニ 段階的に暫定目標を達成しつつ、環境基準の可及的速やかな達成に努める。】とする。
- ・ 令和7年度までの暫定目標については、T-N は、近年、将来水質予測結果を下回る実績値があることから、より良好な水質の実現が見込まれると判断し、将来水質予測結果の変動範囲の下限値である T-N 1.0mg/L と設定する。また、T-P は、将来水質予測結果の変動範囲の下限値(0.081mg/L)が従前の暫定目標を上回っているが、近年、従前の暫定目標を満たす年があることから、実現可能と考えられる最も低い値として現行の暫定目標を据え置き、T-P 0.080mg/L と設定し、今後、経過を見守りつつ、引き続き、段階的な水質改善を図ることとする。

2.1.1. 相模ダムの概要

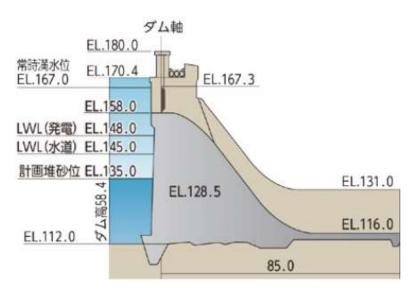
相模川は富士山麓の山中湖を源流とし、山梨県大月市で笹子川、葛野川と合流し、神奈川県に入り相模湖・津久井湖を過ぎると南下を始め、道志川、中津川等の支川を集め、県中央部を流下し相模湾に注ぐ全長 113km、流域面積 1,680km²の神奈川県最大の 1 級河川であり、流域内人口は約 133 万人である。

古くから流域の生活用水・かんがい用水・漁業等に広く利用されてきており、現在も神奈川県内の生活用水の約60%は相模川水系から取水されており、一部は東京都にも分水されている。このような水需要に対応するとともに、流域の住民を洪水から守るため、相模川においては古くからダム開発が進められた。

相模ダムは、相模川に建設されたダムで、神奈川県相模原市に位置し、その流域は相模川上流部に位置する。また、本ダムは、農業用水(平成9年3月31付けで廃止)、水道用水、工業用水、発電を目的として、昭和22年に竣工したダムである。

相模ダムの概要及び諸元を表 2.1.1、表 2.1.2、相模ダムの標準断面図及び容量配分図を 図 2.1.1、図 2.1.2、相模ダム貯水池流域図を図 2.1.3 に示した。

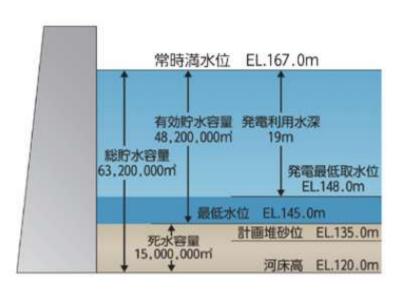
(1) ダム名称 相模ダム (2)管理者 神奈川県企業庁 左岸 神奈川県相模原市緑区与瀬 (3) ダム所在地 右岸 神奈川県相模原市緑区若柳 (4) 水系名·河川名 相模川水系相模川 (5)水域 相模ダム貯水池(相模湖)(全域) (6)集水面積 $1,016.0 \text{ (km}^2)$ 湖沼 A (直ちに達成) 湖沼Ⅱ (7)環境基準類型 (令和2年度までの暫定目標:T-N1.2mg/L T-P0.080mg/L ※本来の湖沼Ⅱ類型は T-NO. 2mg/L 以下, T-PO. 01mg/L 以下)


表 2.1.1 相模ダムの概要

出典:「相模ダム 相模川河水統制事業」(神奈川県企業庁 相模川水系ダム管理事務所相模ダム管理所) 「平成28年度神奈川県_公共用水域及び地下水の水質測定結果」(神奈川県) 「「河川及び湖沼が該当する水質汚濁に係る環境基準の水域類型の指定に関する件」(告示)の改正について」(環境省)

表 2.1.2 相模ダムの諸元

(1)堰長	196.0(m)
(2)堤高	58.4(m)
(3)総貯水容量	63, 200 (千 m³)
(4)有効貯水容量	48, 200 (千 m³)
(5)サーチャージ水位	-(ELm)
(6)年平均滯留時間※	13.2 (日)


※年平均滞留時間=有効貯水容量/年平均流入量 (それぞれ H23~H27 の滞留時間を求めて平均を算出) 出典:「相模ダム 相模川河水統制事業」(神奈川県企業庁 相模川水系ダム管理事務所相模ダム管理所) 神奈川県企業庁資料

(単位:メートル)

出典:「相模ダム 相模川河水統制事業」(神奈川県企業庁 相模川水系ダム管理事務所相模ダム管理所)

図 2.1.1 相模ダム標準断面図

出典:「相模ダム 相模川河水統制事業」(神奈川県企業庁 相模川水系ダム管理事務所相模ダム管理所)

図 2.1.2 相模ダム容量配分図

相模ダム 流域図

資料:国土数値情報[流域界・非集水域 (KS-273)] (国土交通省) をもとに国土地理院の数値地図 200000 (地図画像)を用いて作成した。

図 2.1.3 相模ダム貯水池流域図

2.1.2. 相模ダム貯水池周辺の環境基準類型指定状況

相模ダム貯水池周辺及び、相模川流域の水域類型指定状況を表 2.1.3 及び図 2.1.4 に示した。

表 2.1.3 相模ダム貯水池周辺の水域類型指定状況

水域名称	水域	該当類型	達成期間	指定年月日	
相模川水系の 相模川(桂川を 含む)	相模川上流(2) (柄杓流川合流点 から城山ダムより 上流。 ただし、相模ダム貯 水池(相模湖)(全 域)及び城山ダム貯 水池(津久井湖)(全 域)を除く。)	河川 A	ハ	昭和 48 年 3 月 31 日	環境庁 告示
	相模ダム貯水池 (相模湖) (全域)	湖沼 A 湖沼 Ⅱ ^{注1}	イ 二	平成 22 年 9 月 24 日	環境省 告示
	城山ダム貯水池 (津久井湖) (全域)	湖沼 A 湖沼 II ^{注 2}	イ 二	平成 22 年 9 月 24 日	環境省 告示

注 1) 令和 2 年度までの暫定目標: T-N 1. 2mg/L 以下、T-P 0. 080mg/L 以下 注 2) 令和 2 年度までの暫定目標: T-N 1. 1mg/L 以下、T-P 0. 042mg/L 以下

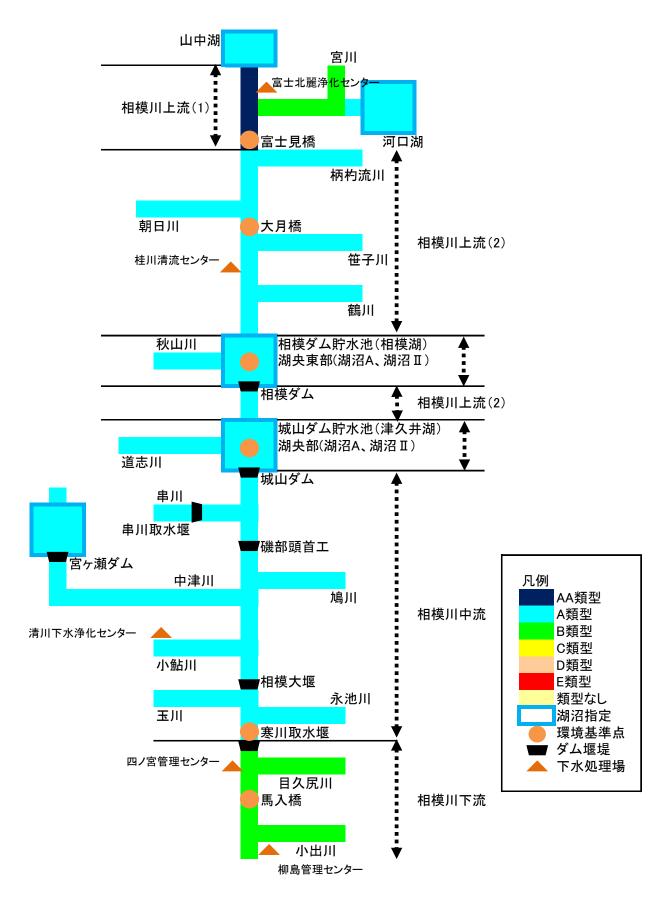
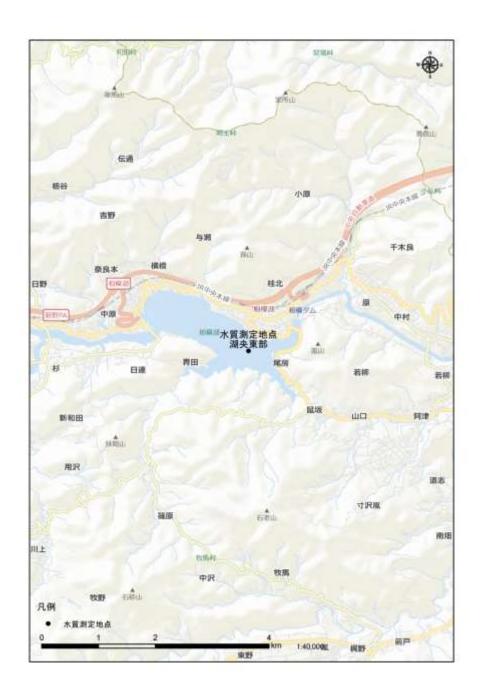



図 2.1.4 相模川流域の水域類型指定状況図

2.1.3. 相模ダム貯水池の水質状況

(1)相模ダム貯水池の水質状況

相模ダム貯水池の水質測定地点を図 2.1.5 に示した。また、相模ダム貯水池の水質測定地点における水質 (pH、DO、SS、大腸菌群数、BOD、COD、T-N、T-P、底層 DO、水温) の推移を、表 2.1.4、図 2.1.6 に示した。

資料:水質測定地点は、水環境総合情報サイト(環境省)https://water-pub.env.go.jp/water-pub/mizu-site/公共用水域水質測定データ(水質測定点データ)2017年度の緯度経度情報より作成した。

図 2.1.5 相模ダム貯水池の水質測定地点

表 2.1.4(1) 相模ダム貯水池水質経年変化

年度				pН	全層					DO (ı	mg/L)	全	罾	
	最小		最大	Ţ,	m/n	平均	75%値	最小		最大	m/r	1	平均	75%値
H9 H10	7. 5 7. 6	\sim	9. 2 9. 0	$\frac{4}{2}$		_	_	9. 5 9. 1	\sim	13. 9 13. 0	0 /	12 12	11. 0 10. 7	
H11	7. 5	\sim	9. 3	3		_	_	9. 4	\sim	13. 8	0 /	12	10.8	_
H12	7. 5	\sim	9.6	4	/ 12	-	-	9. 1	\sim	16. 9	0 /	12	11. 2	-
H13	7.6	~	9. 3 9. 2	5		_	_	10.3	\sim	15.4	0 /	12	12. 1	_
H14 H15	7. 5 7. 6	\sim	9. 2	4		_	_	9.8	\sim	15. 0 15. 3	0 /	12 12	12. 0 11. 6	
H16	7.6	\sim	9. 4	4		-	-	10. 2	\sim	16. 0	0 /	12	11.8	-
H17	7.6	\	9. 2	5		-	-	8.8	\sim	14.6	0 /	12	11.3	_
H18 H19	7.6 7.1	\sim	8. 3 8. 3	0		_	_	9. 0 9. 2	\sim	10. 8 12. 8	0 /	12 12	9. 9 10. 1	
H20	7. 2	\sim	8. 1	0		_	_	8. 9	~	12. 3	0 /	12	10. 1	_
H21	7. 3	\sim	8. 5	0	/ 12	_	-	8. 4	\sim	13. 0	0 /	12	10. 2	-
H22	7.7	\sim	8.7	1	/ 12	_	_	9.0	\sim	12. 2	0 /	12	10.4	_
H23 H24	7. 7 7. 6	∼	8. 6 8. 5	$\frac{1}{0}$	/ 12	_	_	9. 4 8. 8	\sim	11. 3 11. 1	0 /	12 12	10. 3 10. 0	
H25	7. 6	\sim	8. 5	0		-	_	8. 3	~	11. 0	0 /	12	9.9	_
H26	7.6	\sim	8. 5	0		-	-	8.3	\sim	11.6	0 /	12	10. 1	-
H27	7.7	\sim	8.4	0		-	_	8.8	\sim	12. 4	0 /	12	10.3	_
H28 H29	7. 9 7. 6	\sim	8. 6 8. 4	0		_	_	8. 9 9. 3	\sim	11. 8 11. 5	0 /	12 12	10. 3 10. 4	_
H30	7.8	\sim	8. 5	0	/ 12	_	-	9. 1	\sim	11.5	0 /	12	10. 2	-
年度			SS (mg/	/L) 全原				大	腸菌群数(100n		
	最小		最大		m/n	平均	75%値	最小		最大	m/r		平均	75%値
H9 H10	2. 0 2. 0	\sim	8. 0 23. 0	0		4. 0 7. 0	_	17 26	\sim	2400 7000	3 /	12 12	590 1100	_
H11	1. 0	\sim	8. 0	0		4. 0	_	22	\sim	1100	1 /	12	400	-
H12	1.0	\sim	18.0	0	/ 12	5.0	-	70	\sim	24000	3 /	12	4400	-
H13	1.0	~	12.0	0		5.0	_	33	\sim	24000	5 /	12	3100	
H14 H15	1.0	\sim	10. 0 12. 0	0	,	4. 0 5. 0	_	49 49	\sim	4900 11000	2 / 5 /	12 12	1100 2700	_
H16	1. 0	~	16. 0	0		6.0	_	170	\sim	17000	5 /	12	4700	-
H17	1.0	\	10.0	0		5.0	_	70	\sim	79000	7 /	12	8400	_
H18	1.5	\sim	6. 5	0		4.4	_	49	\sim	11000 7900	4 /	12	2242	
H19 H20	1. 0 2. 0	\ \	15. 5 11. 0	0		5. 5 5. 0	_	49 70	\sim	7900	4 /	12 12	1646 1433	_
H21	2.5	\sim	17. 5	0	/ 12	8.6	-	11	\sim	1300	1 /	12	318	_
H22	1.5	\sim	6. 5	2		3. 7	-	0	\sim	4900	4 /	12	896	-
H23 H24	2. 0 2. 0	\sim	33. 0 7. 5	5	/ 12	5. 7 4. 4	_	49 22	\sim	3300 1400	4 /	12 12	881 339	
H25	1. 0	~	11. 0	5		5. 5	_	79	~	7000	6 /	12	1491	_
H26	2.0	\sim	11.5	4	/ 12	4.5	-	79	\sim	3300	5 /	12	1393	-
H27	1.5	\sim	34. 5	5		6.6	_	33	\sim	54000	5 /	12	5589	_
H28 H29	1. 5 2. 0	∼	5. 5 43. 5	1 3	/ 12 / 12	3. 3 7. 6	_	23 17	\sim	3300 17000	1 /	12 12	442 2091	_
H30	1. 0	\sim	9. 0	2		2. 9	_	2	\sim	170	0 /	12	35	-
年度			BOD		g/L)全						(mg/L)	全		
	最小	_	最大 2 1	1	m/n	平均	75% <u>値</u> 1 7	最小		最大	m/r		平均	75%値
H9 H10	0.4	∼	3. 1 3. 0	1	/ 12	1. 3 1. 2	1. 7 1. 3	1. 5 1. 5	\sim	3. 0 4. 7	- /	12 12	2. 1 2. 0	2. 5 2. 0
H11	0.8	\sim	2. 4	2	/ 12	1.4	1. 7	1.5	\sim	2.8	- /	12	2.0	2.3
H12	0.8	\	4. 2	3		1.5	1.8	1.4	\sim	5. 1	- /	12	2.6	2.8
H13 H14	0.3	\sim	2. 2 2. 3	0		1. 2 1. 3	1. 5 1. 7	1. 4 1. 5	\sim	3. 6 3. 4	- /	12 12	2. 4 2. 3	3. 3 2. 8
H15	0.6	\ \	6. 3	3		1. 7	1. 6	1. 1	\sim	5. 3	- /	12	2. 3	2. 5
H16	0.7	\sim	4. 6	3	/ 12	1.6	1.6	1.0	\sim	4.8	- /	12	2. 5	2. 9
H17	0.	\	2. 4	4	/ 12	1. 5	2. 1	1.4	\sim	3.8	- /	12	2.3	2.8
H18 H19	0. 5 0. 8	\sim	2. 4 2. 3	2		1. 3 1. 5	1. 9 1. 6	1. 3 0. 9	\sim	2. 9 3. 5	- /	12 12	2. 0 2. 2	2. 1 2. 8
H20	0. 6	\ \	2. 2	1		1. 3	1. 4	1. 5	~	3. 6	- /	12	2. 0	2. 1
H21	0.8	\sim	2. 9	2	/ 12	1.6	1.8	1.8	\sim	4.1	- /	12	2. 5	2. 9
H22	•	\sim	2. 1	+=		1.0	1. 1	1.2	\sim	3.6	1 /	12	1.9	1.9
H23 H24	0.4	\sim	2. 1 2. 6	+-	/	1.0	1. 2 1. 2	1. 0 1. 2	\sim	3. 2 3. 1	1 /	12 12	1. 7	1. 9 1. 8
H25	0. 4	~	4.8	† –	/ 12	1. 0	1. 1	1. 2	\sim	4. 9	2 /	12	2. 2	2. 6
H26	0.6	\sim	5. 4	-	/ 12	1.8	2. 0	1. 1	\sim	4. 2	2 /	12	2.0	2.0
H27	0.4	\sim	3. 0	+-	/ 10	1.2	1.4	1.5	\sim	3.7	1 /	12	2. 1	2.1
H28 H29	0.6	\sim	2. 1 1. 7	+-	/ 14	1. 3 1. 1	1. 8 1. 5	1. 4 1. 2	\sim	4. 2 2. 7	2 /	12 12	2. 4 1. 8	2. 7 2. 1
H30	0.4	\sim	2. 2	<u> </u>		1. 2	1. 3	1. 5	\sim	3. 6	2 /	12	2. 3	2. 4

注) m/n欄は、n:測定実施日数、m:環境基準を満足しない日数

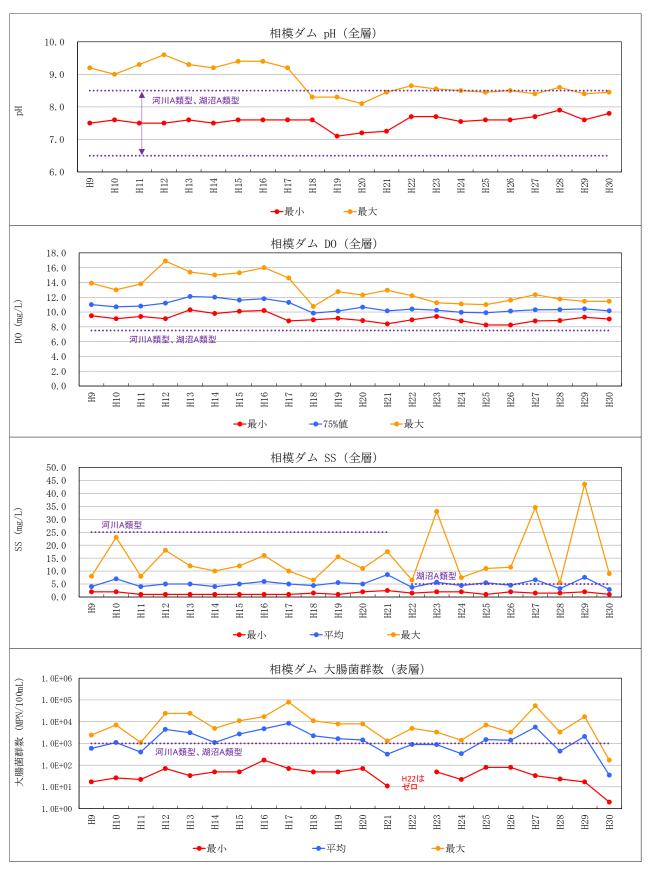
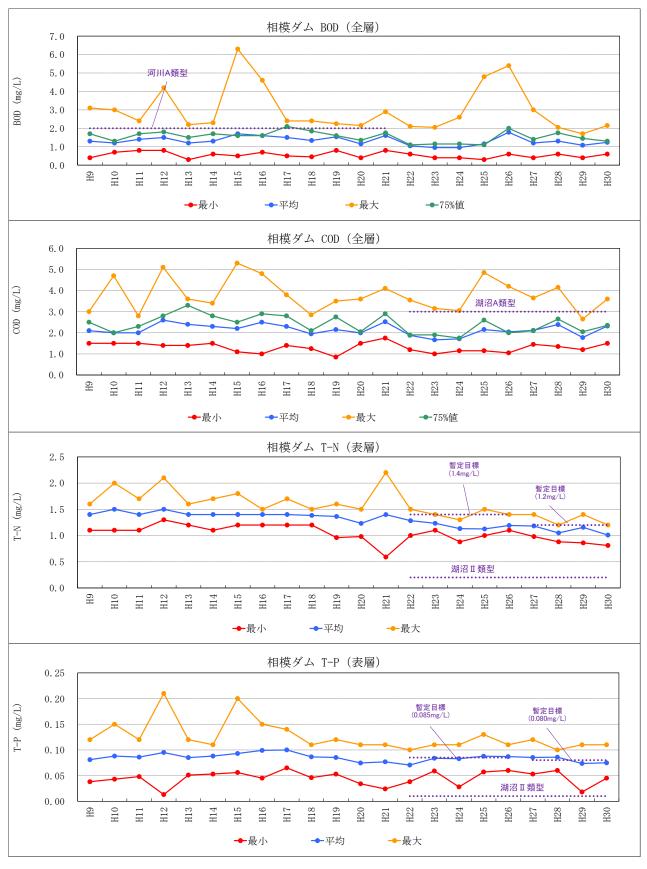

出典:「公共用水域及び地下水の水質測定結果」(神奈川県)

表 2.1.4(2) 相模ダム貯水池水質経年変化(続き)

年度		T-N	(mg/L) 表	層			T-P	(mg/L) 表	層	
十段	最小	最大	m/n	平均	75%値	最小	最大	m/n	平均	75%値
Н9	1.1 ~	1.6	- / 12	1.4		0.038 ~	0.120	- / 12	0.081	
H10	1.1 ~	2. 0	- / 12	1.5	_	0.043 ~	0.150	- / 12	0.088	-
H11	1.1 ~	1. 7	- / 12	1.4	_	0.048 ~	0.120	- / 12	0.086	-
H12	1.3 ~	2. 1	- / 12	1.5	_	0.013 ~	0.210	- / 12	0.095	-
H13	1.2 ~	1. 6	- / 12	1.4	_	0.051 ~	0.120	- / 12	0.085	-
H14	1.1 ~	1. 7	- / 12	1.4	-	0.053 ~	0.110	- / 12	0.088	-
H15	1.2 ~	1.8	- / 12	1.4	_	0.056 \sim	0.200	- / 12	0.093	-
H16	1.2 ~	1.5	- / 12	1.4	_	0.045 ~	0.150	- / 12	0.099	-
H17	1.2 ~	1. 7	- / 12	1.4	_	0.065 ~	0.140	- / 12	0. 100	_
H18	1.2 ~	1. 5	- / 12	1.4	-	0.046 ~	0.110	- / 12	0.087	_
H19	1.0 ~	1. 6	- / 12	1.4	_	0.053 ~	0.120	- / 12	0.085	_
H20	1.0 ~	1. 5	- / 12	1.2	_	0.034 ~	0.110	- / 12	0.075	_
H21	0.6 ~	2. 2	- / 12	1.4	_	0.024 ~	0.110	- / 12	0.077	_
H22	1.0 ~	1.5	12 / 12	1. 3	_	0.038 ~	0.100	12 / 12	0.071	_
H23	1.1 ~	1.4	12 / 12	1. 2	_	0.059 ~	0.110	12 / 12	0.084	-
H24	0.9 ~	1.3	12 / 12	1. 1	_	0.028 ~	0.110	12 / 12	0.083	_
H25	1.0 ~	1.5	12 / 12	1. 1	_	0.057 ~	0.130	12 / 12	0.088	_
H26	1.1	1.4	12 / 12	1. 2	-	0.060 ~	0.110	12 / 12	0.087	_
H27	1.0 ~	1.4	12 / 12	1.2	_	0.053 ~	0.120	12 / 12	0.085	_
H28	0.9 ~	1. 2	12 / 12	1.0	-	0.060 ~	0.100	12 / 12	0.086	_
H29	0.9 ~	1.4	12 / 12	1. 2	_	0.018 ~	0.110	12 / 12	0.074	_
H30	0.8 ~	1. 2	12 / 12	1.0	_	0.045 \sim	0.110	12 / 12	0.075	_
								-		
年度		DO(mg/						温(℃) 全層		
年度	最小	最大	m/n	平均	75%値	最小	最大	温(℃) 全層 m/n	平均	75%値
Н9	3.6 ~	最大 10.7	m/n - / 12	平均 8.0		6.0 ~	最大 21.7	温(℃) 全層 m/n - / 12	14. 1	
H9 H10	3.6 ~ 6.8 ~	最大 10.7 10.6	m/n - / 12 - / 12	平均 8.0 9.0	- -	6.0 ~ 6.7 ~	最大 21.7 20.4	温(℃) 全層 m/n - / 12 - / 12	14. 1 14. 1	_ _
H9 H10 H11	$\begin{array}{c c} 3.6 & \sim \\ 6.8 & \sim \\ 5.2 & \sim \\ \end{array}$	最大 10.7 10.6 10.2	m/n - / 12 - / 12 - / 12 - / 12	平均 8.0 9.0 8.2	_ _ _ _	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21.7 20.4 22.1	温(℃) 全層 m/n - / 12 - / 12 - / 12	14. 1 14. 1 14. 4	_ _ _
H9 H10 H11 H12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 10.7 10.6 10.2 10.5	m/n - / 12 - / 12 - / 12 - / 12 - / 12	平均 8.0 9.0 8.2 8.7	_ _ _ _	$\begin{array}{c cccc} 6.0 & \sim \\ 6.7 & \sim \\ 7.4 & \sim \\ 6.4 & \sim \\ \end{array}$	最大 21.7 20.4 22.1 21.6	<u>M</u> (C) 全層 m/n - / 12 - / 12 - / 12 - / 12	14. 1 14. 1 14. 4 14. 3	- - - -
H9 H10 H11 H12 H13	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~	最大 10.7 10.6 10.2 10.5 10.2	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 8.0 9.0 8.2 8.7 8.2	- - - -	$\begin{array}{c cccc} 6. & 0 & \sim \\ 6. & 7 & \sim \\ \hline 7. & 4 & \sim \\ 6. & 4 & \sim \\ 6. & 6 & \sim \\ \end{array}$	最大 21.7 20.4 22.1 21.6 22.8	<u>M</u> (C) 全層 m/n - / 12 - / 12 - / 12 - / 12 - / 12	14. 1 14. 1 14. 4 14. 3 14. 1	- - - -
H9 H10 H11 H12 H13 H14	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 5.3 ~	最大 10.7 10.6 10.2 10.5 10.2	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8	- - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21.7 20.4 22.1 21.6 22.8 23.2	Marcon	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9	- - - - -
H9 H10 H11 H12 H13 H14 H15	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 5.3 ~ 6.8 ~	最大 10.7 10.6 10.2 10.5 10.2 10.9 10.8	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0	- - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21.7 20.4 22.1 21.6 22.8 23.2 19.5	Marcola Mar	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8	- - - - -
H9 H10 H11 H12 H13 H14 H15 H16	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 5.3 ~ 6.8 ~ 6.5 ~	最大 10.7 10.6 10.2 10.5 10.2 10.9 10.8	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2	- - - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21.7 20.4 22.1 21.6 22.8 23.2 19.5 22.2	■(°C) 全層 m/n - / 12 - / 12	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 3	- - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 5.3 ~ 6.8 ~ 6.5 ~ 6.6 ~	最大 10.7 10.6 10.2 10.5 10.2 10.9 10.8 10.8	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9	- - - - - - - -	$\begin{array}{c} 6.0 \\ 6.7 \\ \sim \\ 7.4 \\ \sim \\ 6.4 \\ \sim \\ 6.6 \\ \sim \\ 6.1 \\ \sim \\ 7.1 \\ \sim \\ 7.1 \\ \sim \\ 6.1 \\ \sim \end{array}$	最大 21.7 20.4 22.1 21.6 22.8 23.2 19.5 22.2 21.5	出(°C) 全層 m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 3 14. 0	- - - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 6.8 ~ 6.5 ~ 6.6 ~ 5.0 ~	最大 10.7 10.6 10.2 10.5 10.2 10.9 10.8 10.8 11.3	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21.7 20.4 22.1 21.6 22.8 23.2 19.5 22.2 21.5	M/n	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 3 14. 0 14. 1	- - - - - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 6.8 ~ 6.5 ~ 6.6 ~ 5.0 ~ 5.2 ~	最大 10.7 10.6 10.2 10.5 10.2 10.9 10.8 10.8 11.3 10.7	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9 9.2 9.0	- - - - - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21.7 20.4 22.1 21.6 22.8 23.2 19.5 22.2 21.5 19.4 19.9	出(°C) 全層 m/n - / 12 - / 12	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 3 14. 3 14. 1 14. 1	- - - - - - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 5.3 ~ 6.8 ~ 6.5 ~ 6.5 ~ 5.0 ~ 5.2 ~ 8.5 ~	最大 10.7 10.6 10.2 10.5 10.9 10.8 10.8 11.3 10.7 12.5	m/n - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9 9.1 10.0	- - - - - - - - - - - - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21. 7 20. 4 22. 1 22. 1 21. 6 22. 8 23. 2 19. 5 22. 2 21. 5 19. 4 19. 9	Manual	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 3 14. 0 14. 1 13. 9	- - - - - - - - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 5.3 ~ 6.8 ~ 6.5 ~ 6.6 ~ 5.0 ~ 5.2 ~ 6.5 ~ 7.5 ~	最大 10.7 10.6 10.2 10.5 10.9 10.8 10.8 11.3 10.7 12.5 11.9 13.1	m/n - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9 8.4 9.0 10.0	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21.7 20.4 22.1 21.6 22.8 23.2 19.5 22.2 21.5 19.4 19.9 23.8 22.8	Manual	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 3 14. 0 14. 1 14. 1 13. 9 14. 9	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 6.8 ~ 6.5 ~ 6.6 ~ 5.0 ~ 5.2 ~ 6.5 ~ 6.6 ~ 5.0 ~ 5.2 ~ 6.6 ~ 5.3 ~ 6.8 ~ 6.5 ~ 6.6 ~ 5.3 ~	最大 10.7 10.6 10.2 10.5 10.9 10.8 10.8 11.3 10.7 12.5 11.9 13.1	m/n - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9 9.0 9.2 8.9	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21.7 20.4 22.1 22.6 22.8 23.2 19.5 22.2 21.5 19.4 19.9 23.8 22.8	一次 一次 一次 一次 一次 一次 一次 一次	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 3 14. 0 14. 1 14. 1 14. 1 14. 7	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 6.8 ~ 6.5 ~ 6.6 ~ 5.0 ~ 5.2 ~ 8.5 ~ 4.8 ~ 7.0 ~	最大 10.7 10.6 10.2 10.5 10.9 10.8 10.8 11.3 10.7 12.5 11.9 13.1	m/n - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9 0.0 10.0 9.6 9.2	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21.7 20.4 22.1 21.6 22.8 23.2 19.5 22.2 21.5 19.4 19.9 23.8 23.8 24.2 22.1	(C) 全層	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 3 14. 0 14. 1 14. 1 14. 1 14. 1 14. 1	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 6.8 ~ 6.5 ~ 6.6 ~ 5.0 ~ 5.2 ~ 8.5 ~ 7.5 ~ 4.8 ~ 7.0 ~ 7.5 ~	最大 10.7 10.6 10.2 10.5 10.9 10.8 10.8 11.3 10.7 12.5 11.9 13.1 12.0	m/n - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9 8.4 9.0 10.0 9.6 9.2	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 6.0 \\ \hline 6.7 \\ \hline \\ 7.4 \\ \hline \\ 6.4 \\ \hline \\ 6.6 \\ \hline \\ 7.1 \\ \hline \\ 7.1 \\ \hline \\ 6.1 \\ \hline \\ \hline \\ 7.1 \\ \hline \\ 6.8 \\ \hline \\ \hline \\ 7.0 \\ \hline \\ \hline \\ 7.1 \\ \hline \\ \hline \\ 6.8 \\ \hline \\ \hline \\ \hline \\ 7.0 \\ \hline \\ \hline \\ \hline \\ 6.3 \\ \hline \\ \hline \\ \hline \\ 6.3 \\ \hline \\ $	最大 21.7 20.4 22.1 21.6 22.8 23.2 19.5 22.2 21.5 19.4 19.9 23.8 22.8 24.2 22.8	一	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 14. 3 14. 0 14. 1 14. 1 14. 1 14. 1 14. 1 14. 1 14. 1 15. 0	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H23	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 5.3 ~ 6.5 ~ 6.5 ~ 6.6 ~ 5.0 ~ 5.2 ~ 8.5 ~ 4.8 ~ 7.5 ~ 4.8 ~	最大 10.7 10.6 10.2 10.5 10.9 10.8 10.8 11.3 10.7 12.5 11.9 13.1 12.0 11.2	m/n - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9 0.0 9.2 8.9 9.0 9.6 9.2 9.2 9.2		$\begin{array}{c} 6.0 \\ \hline 6.7 \\ \hline \\ 7.4 \\ \hline \\ 6.4 \\ \hline \\ 6.6 \\ \hline \\ 7.1 \\ \hline \\ 7.1 \\ \hline \\ 7.1 \\ \hline \\ 6.1 \\ \hline \\ 7.1 \\ \hline \\ 6.8 \\ \hline \\ 7.0 \\ \hline \\ \\ 7.2 \\ \hline \\ 6.3 \\ \hline \\ \\ 6.8 \\ \hline \\ \\ \hline \\ \\ 7.2 \\ \hline \\ \\ 6.8 \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ $	最大 21.7 20.4 22.1 21.6 22.8 23.2 19.5 22.2 21.5 19.4 19.9 23.8 22.8 24.2 24.2	出(で) 全層 m/n - / 12 - / 12	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 14. 3 14. 0 14. 1 14. 1 14. 1 14. 1 15. 0 14. 4	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	最大 10.7 10.6 10.2 10.5 10.9 10.8 10.8 11.3 10.7 12.5 11.9 13.1 12.0 11.2	m/n - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9 9.0 10.0 9.6 9.2 9.4 9.2 8.9		$\begin{array}{c} 6.0 \\ \hline 6.7 \\ \hline \\ 6.7 \\ \hline \\ 7.4 \\ \hline \\ 6.4 \\ \hline \\ 6.6 \\ \hline \\ \hline \\ 7.1 \\ \hline \\ \hline \\ 6.1 \\ \hline \\ \hline \\ 7.1 \\ \hline \\ \hline \\ 6.1 \\ \hline \\ \hline \\ \hline \\ 7.1 \\ \hline \\ \hline \\ \hline \\ 6.8 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 7.0 \\ \hline \\ $	最大 21. 7 20. 4 22. 1 22. 1 23. 2 19. 5 22. 2 21. 6 22. 8 23. 2 21. 6 21. 6 22. 8 23. 2 21. 6 21. 6 21	一	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 0 14. 1 14. 1 14. 1 14. 1 15. 9 14. 7 14. 7	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 5.3 ~ 6.8 ~ 6.5 ~ 6.6 ~ 5.0 ~ 5.2 ~ 6.8 ~ 6.5 ~ 6.6 ~ 7.5 ~ 4.8 ~ 7.0 ~ 4.8 ~ 6.2 ~ 7.0 ~	最大 10.7 10.6 10.2 10.5 10.9 10.8 10.8 11.3 10.7 12.5 11.9 13.1 12.0 11.2 10.7	m/n - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9 8.4 9.0 10.0 9.6 9.2 9.4 9.2 9.5		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21. 7 20. 4 22. 1 21. 6 22. 8 23. 2 19. 5 22. 2 21. 5 19. 4 19. 9 23. 8 22. 8 24. 2 22. 1 23. 9 24. 2 25. 8 26. 8 27. 8 28. 8 28. 8 29. 8 20. 8 20	一	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 0 14. 1 14. 1 13. 9 14. 7 14. 1 15. 0 14. 1 15. 0	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	最大 10.7 10.6 10.2 10.5 10.9 10.8 10.8 11.3 10.7 12.5 11.9 13.1 12.0 11.2 10.7 11.1	m/n - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9 9.0 10.0 9.6 9.2 9.4 9.2 8.9		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21. 7 20. 4 22. 1 22. 8 23. 2 19. 5 22. 2 21. 5 19. 4 19. 9 23. 8 22. 8 24. 2 22. 1 23. 9 22. 3 24. 2	一次 一次 一次 一次 一次 一次 一次 一次	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 0 14. 1 14. 1 14. 1 15. 0 14. 4 14. 7 14. 7 14. 7 15. 4	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27	3.6 ~ 6.8 ~ 5.2 ~ 6.6 ~ 5.3 ~ 5.3 ~ 6.8 ~ 6.5 ~ 6.6 ~ 5.0 ~ 5.2 ~ 6.8 ~ 6.5 ~ 6.6 ~ 7.5 ~ 4.8 ~ 7.0 ~ 4.8 ~ 6.2 ~ 7.0 ~	最大 10.7 10.6 10.2 10.5 10.9 10.8 10.8 11.3 10.7 12.5 11.9 13.1 12.0 11.2 10.7	m/n - / 12	平均 8.0 9.0 8.2 8.7 8.2 8.8 9.0 9.2 8.9 9.0 10.0 9.6 9.2 9.4 9.2 9.5		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 21. 7 20. 4 22. 1 21. 6 22. 8 23. 2 19. 5 22. 2 21. 5 19. 4 19. 9 23. 8 22. 8 24. 2 22. 1 23. 9 24. 2 25. 8 26. 8 27. 8 28. 8 28. 8 29. 8 20. 8 20	一	14. 1 14. 1 14. 4 14. 3 14. 1 13. 9 13. 8 14. 0 14. 1 14. 1 13. 9 14. 7 14. 1 15. 0 14. 1 15. 0	


注) m/n 欄は、n:測定実施日数、m:環境基準を満足しない日数

出典:「公共用水域及び地下水の水質測定結果」(神奈川県)

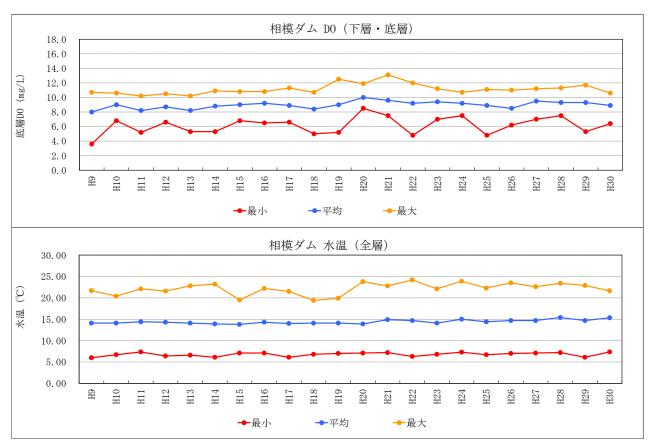

出典:「公共用水域及び地下水の水質測定結果」(神奈川県)

図 2.1.6(1) 相模ダム貯水池における水質の推移

出典:「公共用水域及び地下水の水質測定結果」(神奈川県)

図 2.1.6(2) 相模ダム貯水池における水質の推移 (続き)

出典:「公共用水域及び地下水の水質測定結果」(神奈川県)

図 2.1.6(3) 相模ダム貯水池における水質の推移(続き)

平成9年度から平成30年度の期間中、全ての年度でT-N/T-P比が20以下であった。一方、T-P年平均濃度についても全ての年度で0.02mg/L以上であった。

相模ダム貯水池では、全ての年度で T-N の項目の基準値を適用すべき湖沼の条件に合致 している。後述する異常値除外を行った水質データでも、結果は同様である。

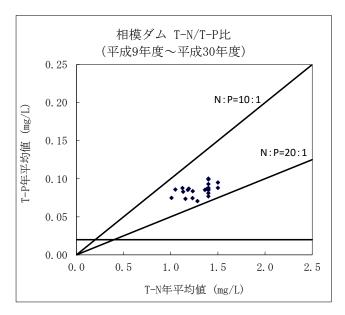


図 2.1.7 相模ダム貯水池における T-N/T-P 比の状況 (異常値除外前)

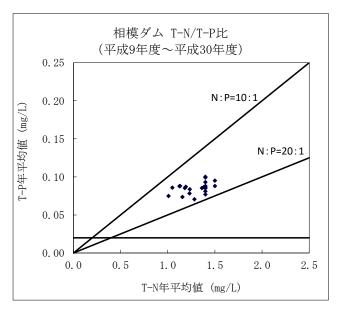


図 2.1.8 相模ダム貯水池における T-N/T-P 比の状況 (異常値除外後)

<参考>T-Nの項目の基準値を適用すべき湖沼の条件

T-Nが湖沼植物プランクトンの増殖の要因となる湖沼(T-N/T-P比が20以下であり、かつT-P 濃度が0.02mg/L以上である湖沼)についてのみ適用

(2)相模ダム貯水池の水質保全対策

相模ダム貯水池では、曝気循環装置が設置されており、昭和63年に1基設置され、平成3年に3基、平成4年に4基が増設され、合計8基が稼動し現在に至っている。相模ダム貯水池の曝気循環装置設置位置を図2.1.9に示す。

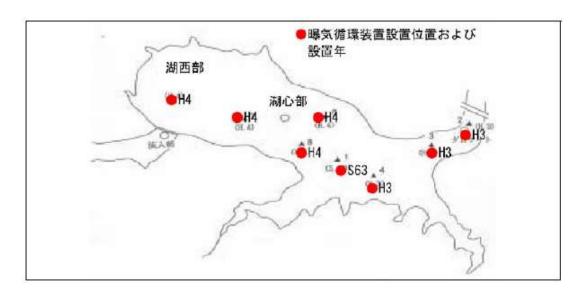


図 2.1.9 相模ダム貯水池 曝気循環装置設置位置

2.1.4. 相模ダム貯水池の利水状況

(1)相模ダム貯水池の利水状況

相模ダム貯水池の利用目的を表 2.1.5 に、利水の状況を表 2.1.6 及び図 2.1.10 に示した。相模ダムは水道用水、工業用水、発電を利用目的としている。

表 2.1.5 相模ダム貯水池の利用目的

洪水調節	流水機能維持	農業用水	水道 用水	工業 用水	発電	消流雪 用水	レクリエー ション
			0	0	0		

表 2.1.6 相模ダム貯水池及び下流の利水の状況

用途	取水場所	浄水場名	処理水準	特記事項	
		横浜市西谷浄水場	水道3級(急速ろ過・塩素 処理・粉末活性炭・マンガ ン接触ろ過・多層ろ過・酸 処理)(AⅢ類型相当)		
		川崎市長沢浄水場	水道 2級(急速ろ過・塩素 処理・マンガン接触ろ過・ 多層ろ過)(AⅡ類型相当)		
水道用水	城 山 ダ ム (沼 本 ダ 水道用水 」 ム)、相模	神奈川県谷ヶ原浄水場	水道3級(急速ろ過・緩速 ろ過・塩素処理・多層ろ 過・粉末活性炭・酸処 理)(AⅢ類型相当)	植物性臭気 (藻臭、青草臭 など)	
	大堰、寒川 取水堰	神奈川県寒川浄水場	水道2級(急速ろ過・塩素 処理・多層ろ過・酸処 理)(AⅡ類型相当)		
		横浜市·横須賀市小雀 浄水場	水道3級(急速ろ過・塩素 処理・粉末活性炭・マンガ ン接触ろ過・二段凝集処 理・酸処理)(AⅢ類型相 当)		
		横須賀市有馬浄水場	水道3級(急速ろ過・塩素 処理・粒状活性炭・多層ろ 過)(AⅢ類型相当)	土臭・かび臭	
工業用水	城山ダム (沼本ダ ム)、寒川 取水堰	_	_	_	

出典:「水道統計」((公社) 日本水道協会)

神奈川県 飲料水・上下水道 (http://www.pref.kanagawa.jp/life/1/1/2/)

横浜市水道局(http://www.city.yokohama.lg.jp/suidou/)

川崎市上下水道局 (http://www.city.kawasaki.jp/800/cmsfiles/contents/0000035/35839/index.html)

横須賀市上下水道局(http://www.water.yokosuka.kanagawa.jp/index.html)

神奈川県内広域水道企業団(http://www.kwsa.or.jp/index.html)

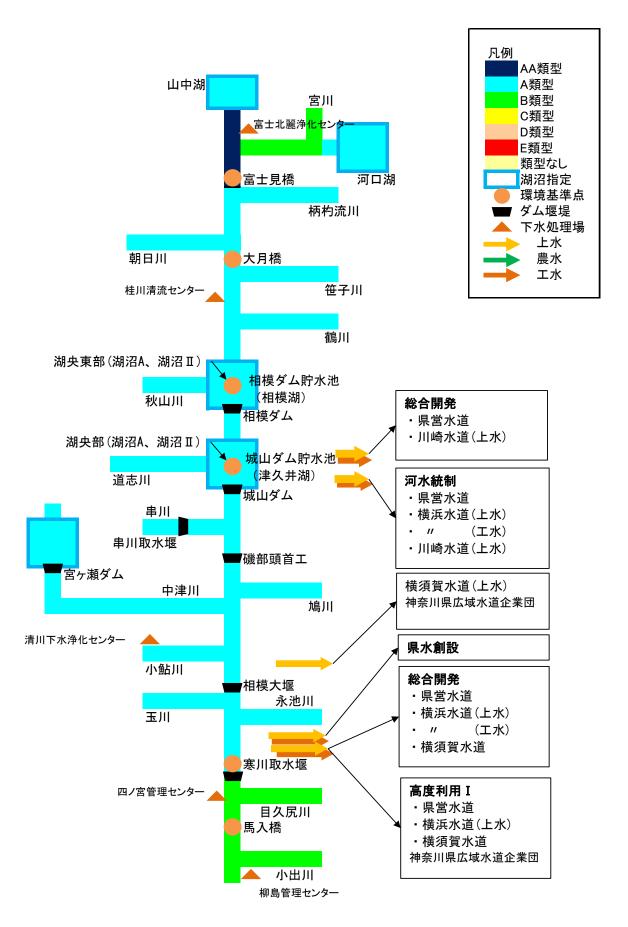


図 2.1.10 相模ダム貯水池流域の利用状況

相模ダム周辺の漁業権について、表 2.1.7 に示した。

相模ダム貯水池には、漁業権の設定はない。参考として、相模ダムの下流に位置する神奈川県における相模川の魚種別漁獲量(平成28年度)について整理した結果を表2.1.8に示した。

表 2.1.7 相模ダム周辺の漁業権

免許番号	魚種	魚場	漁業時期	備考
内水共第1号	ヤマメ、イワ	相模川,中津川、小鮎川、	ヤマメ、イワナ、漁業は3月1日から10	相模ダム下流
(第5種共同漁	ナ、ニジマ	道志川、神の川、宮ケ瀬金	月14日まで	
業権)	ス、アユ、ウ	沢、早戸川、水沢川、玉川、	ニジマス漁業は3月1日から10月14日ま	
	グイ、オイカ	小出川、目久尻川	で。ただし、相模川支川・支流には別	
	ワ、フナ、コ		途期間設定あり。	
	イ、ウナギ、		アユ漁業は6月1日から10月14日までの	
	テナガエビ		期間で連合会が定めて公示する日から	
			10月14日まで及び12月1日から12月31	
			日まで	
			ウグイ、オイカワ、フナ、コイ漁業は1	
			月1日から12月31日まで。ただし相模川	
			支川・支流には別途期間設定あり。	

参考:神奈川県川・湖のルールを守りましょう!! WEBページ (http://www.pref.kanagawa.jp/docs/kb2/cnt/f790/p504690.html)

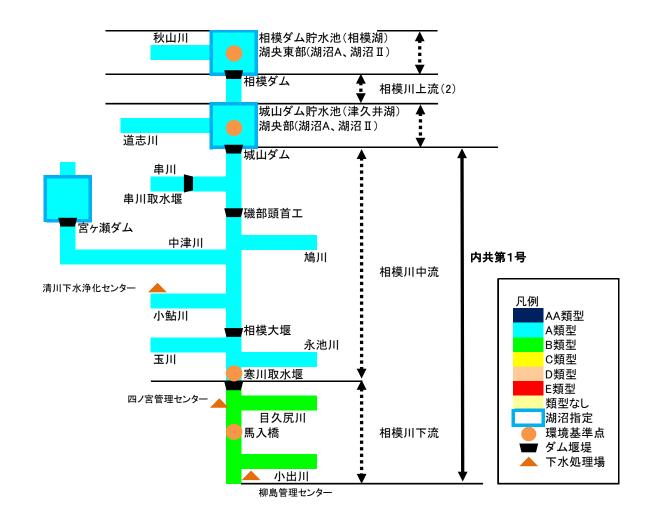


図 2.1.11 相模ダム貯水池周辺の漁業権の状況

表 2.1.8 神奈川県における相模川の流域の魚種別漁獲量:平成 28 年度

		魚類								
魚種	計	さけ類	からふと ます	さくらます	その他のさ け・ます類	わかさぎ	あゆ	しらうお	こい	ふな
漁獲量(t)	407	_	_	_	1	_	380	_	-	4
	魚類			貝類			その他の水産動植物類			
魚種	うぐい・ おいかわ	うなぎ	はぜ類	その他の 魚類	計	しじみ	その他の 貝類	=	えび類	その他の水 産動植物類
漁獲量(t)	21	0	0	1	_	-	_	-	-	_
	天然産種	苗採捕量								
魚種	あゆ	うなぎ								
漁獲量(t)	_	0								

出典:「平成28年漁業·養殖業生産統計」(農林水産省)

(2) 相模ダム貯水池流域における流域別下水道計画の見直しについて

流域別下水道整備総合計画(以下、流総計画)は、環境基本法第16条第1項に基づく水質環境基準の類型指定がなされている水域について、下水道法第2条の2に基づいて策定される当該水域に係る下水道整備に関する総合的な基本計画である。

相模川(桂川)流域では、平成9年に流総計画が策定され、平成20年に見直しがされたが、相模湖・津久井湖のT-N、T-Pの環境基準達成のためには、神奈川県、山梨県の流総計画の見直しが必要不可欠であることから、基本方針(両県の目標汚濁負荷量の配分)の策定のため、平成24年に「相模川流域別下水道整備総合計画基本方針検討委員会」が設置された。

「相模川流域別下水道整備総合計画基本方針検討委員会」では、約2年間にわたって調査・検討を行い、平成26年3月26日に「相模川流域の目標汚濁負荷量に関する基本方針」を合意事項としてとりまとめた。同基本方針では、「相模湖・津久井湖のT-N、T-Pは、自然由来も含めた面源負荷量の割合が高く、直ちに環境基準の達成は困難であるが、将来において環境基準を達成するための排出負荷量を目標汚濁負荷量とし、相模湖・津久井湖に流入する流域の排出負荷量の削減により、今後も水質保全に努めるものとする。」とし、県別目標汚濁負荷量を表 2.1.9のように定めた。

現在、同基本方針を踏まえ、各県において、流域別下水道整備総合計画の見直しが行われており、神奈川県では、平成27年度に、整備計画年度を平成43年度(令和13年度)とした「相模川流域別下水道整備総合計画」が策定された。

表 2.1.9 相模川流域別下水道整備総合計画基本方針における県別目標汚濁負荷量

(単位: t/日)

項目	水域	神奈川県	山梨県	合計
BOD	相模川本川	7.3	6.5	13.8
000	相模湖	0.6	11.6	12.2
COD	津久井湖	1.6	12.2	13.8
T . NI	相模湖	0.04	0.74	0.78
T-N	津久井湖	0.11	0.78	0.89
T D	相模湖	0.001	0.034	0.035
T-P	津久井湖	0.005	0.053	0.058

※導水負荷量を除く流域の排出負荷量

2.1.5. 相模ダム貯水池(相模湖)にかかる水質汚濁負荷量

(1) 相模ダム貯水池(相模湖)の水質汚濁負荷量の算定について

相模ダム貯水池(相模湖)の水質汚濁負荷量の算定及び将来水質予測手法の概要は、図2.1.12に示すとおりである。現況は平成28年度**として、基礎的な統計データである平成27年度国勢調査3次メッシュ別人口等の値を用いると共に、平成28年度の値が入手可能な統計データを更新した。将来は現行の暫定目標の達成年度の5年後である令和7年度とした。

まず、流域フレーム(現況、将来)を設定したのち、点源については実測値法(排水量×水質)、面源については原単位法(フレーム×原単位)により水質汚濁負荷量を算定した。将来水質は、算定した現況の発生負荷量、将来の発生負荷量、平均流入率及び平均流入量を用いて算定した。

なお、フレームの設定方法及び使用した資料は表 2.1.10に示すとおりである。

※湖沼の水質データ(表 2.1.4、図 2.1.5 で整理)は、入手可能な最新年度が平成30年度となっているが、将来水質予測の現況年度については、負荷量算定に用いる各種統計データの入手可能な最新の実績年度を踏まえ、平成28年度とした。

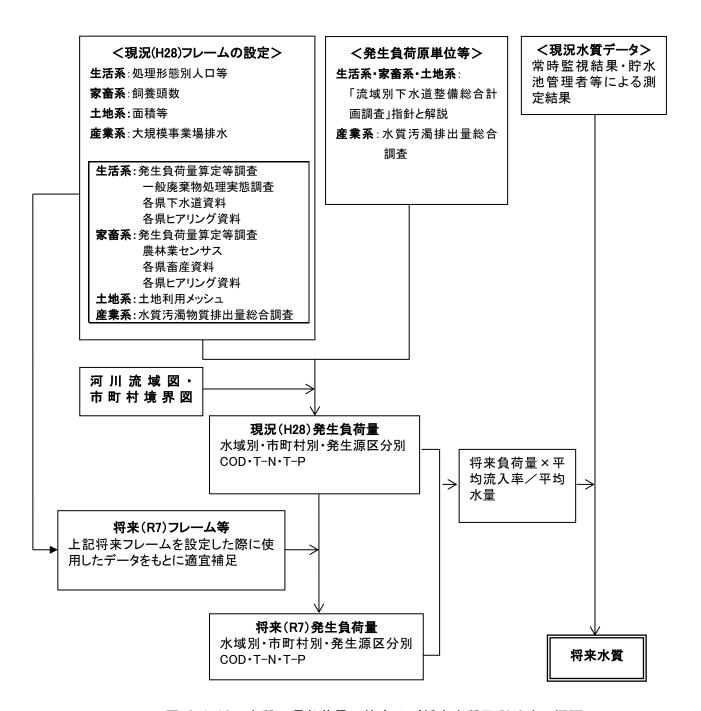


図 2.1.12 水質汚濁負荷量の算定及び将来水質予測手法の概要

表 2.1.10 相模川流域における現況・将来フレームの設定方法及び使用した資料

1) VET	an de Loi	H. Et a.). Viralisi
分類 生活系	設定方法 ●現況(平成28年度) ・流域内の総人口は、平成27年度国勢調査3次メッシュ別人口の値を使用。 ・し尿処理形態別人口は、環境省資料及び、流域市町村へのヒアリング、下水道資料には、ホ町村別に3次メッシュ別人口の流域内外の人口により配分。 <神奈川県> ・各処理形態別人口は、相模原市へのヒアリングにより把握。 <川梨> ・各処理形態別人口は、相模原市へのヒアリンがにより把握。 ・山梨県> ・下水道・コミュニティプラント・農業集落排水施設・合併処理浄化槽人口は、県ホーン処理率の実績H28」より把握。 ・単独処理浄化槽・計画収集・自家処理人口は、「生活排水クリーン処理率の実績H28」より把握。 ・単独処理浄化槽・計画収集・自家処理人口は、「生活排水クリーン処理率の実績H28」での総入口および衛生処理人口から算出される未処理人口を、一般廃棄物処理事業実態調査の現況年度における比率で按分。	使用した資料 1)「国勢調査地域メッシュ統計データ(H27)」(総務省) 2)「環境省廃棄物処理技術情報 一般廃棄物処理事業実態調査」(環境省) 3)「相模原市ヒアリング資料」(相模原市) 4)「生活排水クリーン処理率の実績 H28」(山梨県) 3)(前出)「相模原市ヒアリング資料」(相模原市)
	・将米総人口は、流域市町村へのヒアリングをで、下水道資料より設定。 ・し尿処理形態別人口は、流域市町村別によりかの人口の配分については、かりでは、下水道資料によりででは、内外の人口の配分につの流域内外の人口の配分については、のをとから。 < 神奈川県 > ・総人口のでは、では、アリングにより設定。 ・下水道・コミュニティがでは、アリングにより設定。 ・下水道・コミュニティがでは、アリングにより設定。 ・下水が設・市へのヒアリングにより設定。 ・下水が設・市へのヒアリングにより設定。 ・下水が設・コーニー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	市) 1) (前出) 「国勢調査地域メッシュ統計データ (H27)」(総務省) 5) 「山梨県生活排水処理施設整備構想 2017」 (山梨県)

分類	設定方法	使用した資料
家畜系	●現況(平成28年度) ・流域市町村の畜産資料により、相模ダム貯水池流域に該当する市町村別の飼養頭(羽)数は、流域内の農地(田・畑)面積と市町村の農地面積の比率から、相模ダム貯水池流域に按分。 <神奈川県> ・「平成29年度相模原市産業の概要農林業」より把握。 <山梨県> ・山梨県へのヒアリングにより把握。 ●将来(令和7年度) ・各家畜ともに、現況と同じとした。	6)「平成 29 年度相模原市産業の概要」(相模原 市) 7)「山梨県ヒアリング資料」(山梨県)
土地系	●現況(平成28年度) ・平成28年度~(現行整備事業の整備済み範囲成果)の「土地利用第3次メッシュデータ(土地利用区分別面積)(国土交通省)」の土地利用別面積を設定。 ●将来(令和7年度) ・平成26年度から平成28年度の市街地面積の伸び率を用い、現況から将来までの伸び率を1.06と算定し、将来の土地利用別面積を設定。それ以外の土地利用面積は、現況年度における比率で按分。	8)「土地利用第3次メッシュデータ(土地利用 区分別面積)(H28~)」(国土交通省)
点源 ·生活系 ·家業系	●現況(平成28年度) ・環境省資料により平成27年度および平成29年度の流域内の対象工場・事業場における総排水量、排出負荷量を把握し、両年の平均値を設定。 ●将来(令和7年度) ・生活系は、下水道は下水道人口の伸び率を対象工場の排水量に乗じて負荷量を算定。それ以外の生活系点源は現状維持とした。 ・産業系は総排水量が概ね減少傾向となっているが、現況(平成28年度)から平成29年度の総排水量がほぼ横ばいであることから、将来負荷量は、現況と同様とした。	9)「水質汚濁物質排出量総合調査」(環境省)

(2) 相模ダム貯水池(相模湖)の流域フレーム

相模ダム貯水池(相模湖)に係る現況フレームについては、当該流域が含まれる神奈川県相模原市及び山梨県上野原市、大月市、富士吉田市、都留市、小菅村、富士河口湖町、山中湖村、忍野村、西桂町、鳴沢村のフレーム値(生活系、産業系、家畜系、土地系)を収集・整理して設定した。

現況及び将来フレームの設定方法の詳細は以下に示すとおりである。

- 1) 生活系
- ア) 現況
- i)総人口

流域内の総人口は、平成27年度国勢調査3次メッシュ別人口の値を使用した。

ii) し尿処理形態別人口

し尿処理形態別人口は、一般廃棄物処理事業実態調査(環境省)及び、流域市町村へのヒアリング、下水道資料により把握し、流域内外の人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分した。

<神奈川県>

・ 各処理形態別人口は、相模原市へのヒアリングにより把握した。

<山梨県>

- ・ 下水道・コミュニティプラント・農業集落排水施設・合併処理浄化槽人口は、県ホームページで公開されている「生活排水クリーン処理率の実績 H28」より把握した。
- ・ 残りの、単独処理浄化槽・計画収集・自家処理人口は、「生活排水クリーン処理率の実績 H28」での総人口および衛生処理人口から算出される未処理人口を、一般廃棄物処理 事業実態調査の現況年度における比率で按分した。

表 2.1.11 相模ダム貯水池流域のし尿処理別形態人口(現況・平成28年度)

	2	⊠分	単位	現況•平成28年度
生活系	総人口]	人	189,005
	下水道		人	85,299
	コミュニ	ニティプラント	人	110
	農集排	非水	人	7
	浄化棉	=	人	90,427
		合併処理箳化槽	人	37,476
		単独処理箳化槽	人	52,951
	計画地	集	人	13,086
	自家处	D理	人	75

※単位未満を四捨五入しているため、内訳の計と合計が一致しない場合がある

4) 将来

i)総人口

将来総人口は、流域市町村へのヒアリング及び、下水道資料より設定した。

<神奈川県>

・ 将来総人口は、相模原市へのヒアリングにより設定した。

<山梨県>

・ 将来総人口は、「山梨県生活排水処理施設整備構想 2017」(山梨県) より設定した。

ii) し尿処理形態別人口

し尿処理形態別人口は、流域市町村へのヒアリング及び、下水道資料により把握し、 流域内外の人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比 により配分した。

<神奈川県>

- ・ 下水道・コミュニティプラント・農業集落排水施設・合併処理浄化槽・自家処理人口は、 相模原市へのヒアリングにより設定した。
- ・ 残りの、単独処理浄化槽・計画収集人口は、まとめて計上されているため、現況年度の フレームにおける比率で按分した。

<山梨県>

- ・ 下水道・コミュニティプラント・農業集落排水施設・合併処理浄化槽は、「山梨県生活 排水処理施設整備構想 2017」より設定した。
- ・ 残りの、単独処理浄化槽・計画収集・自家処理人口は、「山梨県生活排水処理施設整備構想 2017」での総人口および処理人口から算出される未処理人口を、現況年度のフレームにおける比率で按分した。

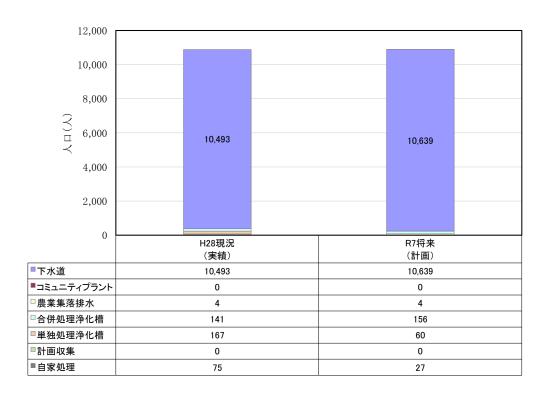


図 2.1.13 神奈川県流域市町村のし尿処理形態人口の変化

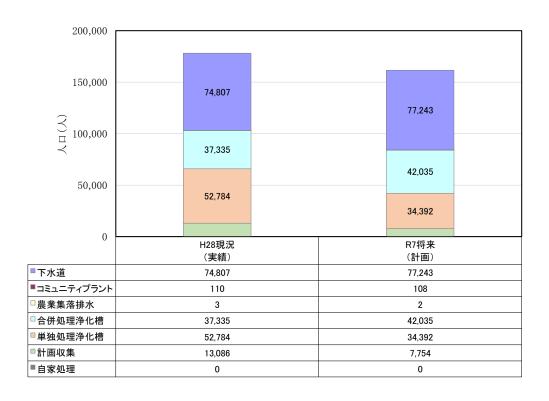


図 2.1.14 山梨県流域市町村のし尿処理形態人口の変化

表 2.1.12 将来人口算出に使用した単独処理浄化槽、計画収集、自家処理人口比率

県	市町村	単独処理 浄化槽	計画収集	自家処理
山梨県	上野原市	0.84	0. 16	0.00
	大月市	0. 90	0. 10	0.00
	富士吉田市	0. 53	0. 47	0.00
	都留市	0.94	0.06	0.00
	小菅村	0.00	0.00	0.00
	富士河口湖町	0.80	0. 20	0.00
	山中湖村	1.00	0.00	0.00
	忍野村	0.83	0. 17	0.00
	西桂町	0.82	0. 18	0.00
	鳴沢村	0. 95	0.05	0.00
神奈川県	相模原市	0. 69	0.00	0.31

表 2.1.13 相模ダム貯水池流域のし尿処理形態別人口(将来・令和7年度)

	区分	単位	将来•令和7年度
生活系	総人口	人	172,418
	下水道	人	87,881
	コミュニティプラント	人	108
	農集排水	人	6
	浄化槽	人	76,787
	合併処理浄化槽	人	42,191
	単独処理浄化槽	人	34,596
	計画収集	人	7,610
	自家処理	人	26

※単位未満を四捨五入しているため、内訳の計と合計が一致しない場合がある

2) 家畜系

ア) 現況

2015年農林業センサス(農林水産省)及び、流域市町村の畜産資料により相模ダム貯水池流域に該当する市町村別の飼養頭(羽)数を把握した。

<神奈川県>

・ 「平成 29 年度 相模原市産業の概要 農林業」より把握した。

<山梨県>

・ 山梨県へのヒアリング調査により把握した。

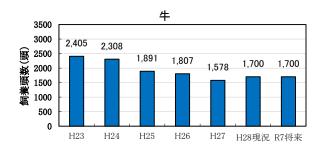
市町村別の飼養頭(羽)数は、流域内の農地(田・畑)面積と市町村の農地面積の比率から、相模ダム貯水池流域に按分した。

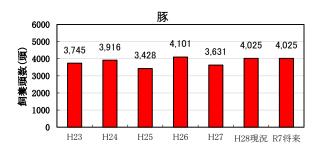
流域内の飼養頭(羽)数の算定は次式を用いた。

流域内飼養頭(羽)数=

各市町村飼養頭(羽)数×(流域内各市町村農地(田・畑)面積/各市町村農地(田・畑)面積)

表 2.1.14 各市町村飼養頭(羽)数と流域内飼養頭(羽)数(現況・平成28年度)


県	市町村	各市町村飼養頭(羽)数		羽)数	流域内農 地面積比	流域内飼養頭(羽)数		
		牛(頭)	豚(頭)	鶏(羽)	地則惧比	牛(頭)	豚(頭)	鶏(羽)
山梨県	上野原市	5	0	4,036	1.00	5	0	4,036
	大月市	0	0	38	1.00	0	0	38
	富士吉田市	1	0	45	1.00	1	0	45
	都留市	0	673	376	1.00	0	673	376
	小菅村	0	0	0	0.11	0	0	0
	富士河口湖町	3,686	5,214	21,569	0.41	1,516	2,144	8,870
	山中湖村	0	0	0	1.00	0	0	0
	忍野村	0	0	45,514	1.00	0	0	45,514
	西桂町	0	0	0	1.00	0	0	0
	鳴沢村	33	0	45,000	0.99	33	0	44,710
神奈川県	相模原市	683	5,654	262,366	0.21	146	1,208	56,038


表 2.1.15 相模ダム貯水池流域の飼養頭(羽)数(現況・平成28年度)

×	区分	単位	現況•平成28年度
家畜系	牛	頭	1,700
	豚	頭	4,025
	鶏	羽	159,626

1)将来

牛、鶏は H23 から H28 で概ね減少傾向であるため安全側の視点で、豚は明瞭な増減傾向が見られないため、いずれも現況と同じとした。

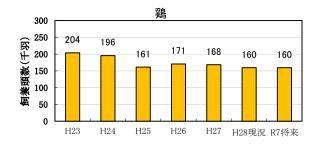


図 2.1.15 相模ダム貯水池流域の飼養頭(羽)数の変化

表 2.1.16 相模ダム貯水池流域の飼養頭(羽)数(将来・令和7年度)

	区分	単位	将来•令和7年度
家畜系	牛	頭	1,700
	豚	頭	4,025
	鶏	羽	159,626

3) 土地系

ア) 現況

流域の土地利用面積は、平成28年度~(現行整備事業の整備済み範囲成果)の「土地利用第3次メッシュデータ(土地利用区分別面積)(国土交通省)」より設定した。

土地利用第3次メッシュデータは、土地利用区分として12区分されており、表 2.1.17 のように5区分に集約した。

表 2.1.17 土地利用第3次メッシュデータの土地利用区分の集約

国土数値情報の 土地利用区分	集約区分	
田	田	
他農用地	畑	
森林	山林	
建物用地		
道路	市街地	
鉄道	111年12日	
他用地		
荒地		
河川湖沼	その他	
海浜	C 0711L	
ゴルフ場		
海水域	除外	

表 2.1.18 相模ダム貯水池流域の土地利用区分別面積(現況・平成28年度)

Z	区分		現況•平成28年度
土地系	田	ha	1,875
	畑	ha	2,996
	山林	ha	87,101
	市街地	ha	9,496
	その他	ha	5,100
	総面積	ha	106,567

1) 将来

相模ダム貯水池流域の土地利用面積の過去の推移を見ると、市街地面積が増加傾向であったことから、平成26年度から平成28年度の市街地面積の伸び率を用い、現況から将来までの伸び率を1.06と算定し、将来の市街地の土地利用別面積を設定した。それ以外の区分の土地利用面積は、現況年度における比率で按分した。

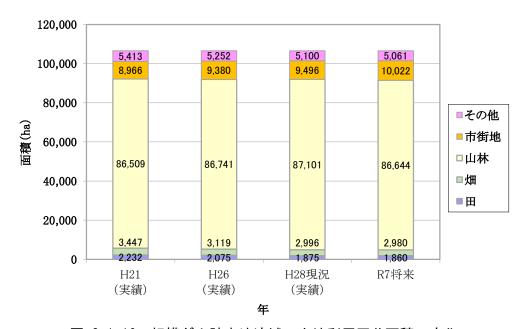


図 2.1.16 相模ダム貯水池流域の土地利用区分面積の変化

表 2.1.19 相模ダム貯水池流域の土地利用区分別面積(将来・令和7年度)

区分		単位	将来•令和7年度
土地系	田	ha	1,860
	畑	ha	2,980
	山林	ha	86,644
	市街地	ha	10,022
	その他	ha	5,061
	総面積	ha	106,567

4) 点源の排水

ア) 現況

平成27年度および平成29年度の「水質汚濁物質排出負荷量総合調査」において、流域 内の対象工場・事業場を把握し、稼動事業場の実測排水量および発生汚濁負荷量の両年 度の平均値を平成28年度に適用した。発生汚濁負荷量の算定は、実測排水量に実測排水 水質を乗じて算出した。実測水質が無い場合は、水質汚濁物質排出量総合調査において 取りまとめられている、代表特定施設別平均水質の値を適用した。

1)将来

平成23年度、平成25年度、平成27年度、平成29年度における「水質汚濁物質排出負荷 量総合調査」において、流域内の対象工場・事業場を把握し、稼動事業場の実測排水量 と発生汚濁負荷量を把握した。

生活系は、下水道は、下水道人口の平成27年度から令和7年度の伸び率を対象工場の排 水量に乗じて負荷量を算定した。それ以外の生活系点源は現状維持とした。

産業系は総排水量が概ね減少傾向となっているが、平成27年度から平成29年度の総排 水量がほぼ横ばいであることから、将来負荷量は、現況(平成28年度)と同様とした。

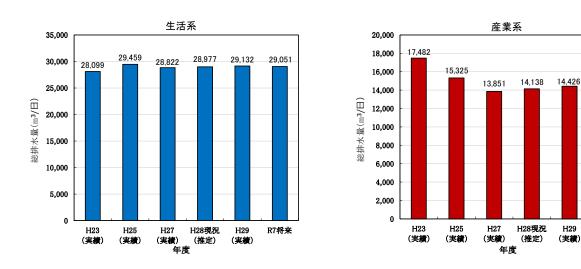


図 2.1.17 相模ダム貯水池流域の総排水量の変化

H29

(実績)

R7将来

表 2.1.20 相模ダム貯水池流域の点源の総排水量

区	分	単位	現況•平成28年度	将来•令和7年度
生活系	点源	m^3/\exists	28,977	29,051
産業系	点源	m^3/ \exists	14,138	14,138

表 2.1.21 相模ダム貯水池流域のフレームの推移(平成23年度~平成28年度)

ı	区 分	単位	H23	H24	H25	H26	H27	H28
	総人口	人	197,774	195,997	194,220	192,443	190,667	189,005
	下水道	人	67,769	72,539	77,309	82,079	86,848	85,299
	コミュニティプラン	人	128	125	122	118	115	110
	農業集落排水	人	465	351	236	122	7	7
生活系	合併処理浄化槽	人	38,348	37,959	37,571	37,183	36,794	37,476
	単独処理浄化槽	人	69,265	65,316	61,366	57,416	53,467	52,951
	計画収集	人	21,784	19,679	17,573	15,468	13,362	13,086
	自家処理	人	15	29	44	58	73	75
	点源	m^3/\exists	28,099	28,779	29,459	29,141	28,822	28,977
	牛	頭	2,405	2,308	1,891	1,807	1,578	1,700
家畜系	豚	頭	3,745	3,916	3,428	4,101	3,631	4,025
	鶏	羽	203,804	195,721	161,244	170,693	168,458	159,626
	点源	m^3/\exists	0	0	0	0	0	0
	田	ha	2,169	2,138	2,107	2,075	1,975	1,875
	畑	ha	3,316	3,250	3,184	3,119	3,057	2,996
土地系	山林	ha	86,602	86,649	86,695	86,741	86,921	87,101
上地东	市街地	ha	9,132	9,214	9,297	9,380	9,438	9,496
	その他	ha	5,348	5,316	5,284	5,252	5,176	5,100
	総面積	ha	106,567	106,567	106,567	106,567	106,567	106,567
湧水	湧水	m^3/B	1,543,104	1,543,104	1,543,104	1,543,104	1,543,104	1,543,104
産業系	点源	m^3/ \exists	17,482	16,404	15,325	14,588	13,851	14,138

表 2.1.22 相模ダム貯水池流域の水質汚濁負荷量に係るフレーム (現況、将来)

]	区 分	単位	現況•平成28年度	将来•令和7年度
	総人口	人	189,005	172,418
	下水道	人	85,299	87,881
	コミュニティプラン	人	110	108
	農業集落排水	人	7	6
生活系	合併処理浄化槽	人	37,476	42,191
	単独処理浄化槽	人	52,951	34,451
	計画収集	人	13,086	7,754
	自家処理	人	75	27
	点源	m ³ /日	28,977	29,051
	牛	頭	1,700	1,700
家畜系	豚	頭	4,025	4,025
	鶏	羽	159,626	159,626
	点源	m^3/ B	0	0
	田	ha	1,875	1,860
	畑	ha	2,996	2,980
土地系	山林	ha	87,101	86,644
上地尔	市街地	ha	9,496	10,022
	その他	ha	5,100	5,061
	総面積	ha	106,567	106,567
湧水	湧水	m^3/\exists	1,543,104	1,543,104
産業系	点源	m^3/B	14,138	14,138

(3)土地系(山林)の原単位

相模ダム貯水池の、水域類型指定に関する既往検討(中央環境審議会水環境部会陸域環境 基準専門委員会(第10回,平成22年5月)(第14回,平成27年7月))では、現況の発生負荷 量算定に用いる土地系(山林)の発生負荷量の原単位として、「昭和62年度湖沼水質汚濁機 構等検討調査(昭和63年3月)」の結果を用いている。

今回は、過去の検討結果を踏まえるとともに、「相模川流域別下水道整備総合計画基本方 針検討委員会」によってとりまとめられた「相模川流域の目標汚濁負荷量に関する基本方 針、平成26年3月」における原単位や負荷量の取扱いも参考として、山林からの負荷量およ び次項(4)で示す湧水由来の負荷についての取扱いを以下のように設定した。

表 2.1.23 土地系(山林)の負荷量・原単位の取扱い

項目	負荷量の算定方法	使用原単位
COD	山林負荷(フレーム×原単位)に加え、湧水負荷量 ^{※1} を別途考慮	S62 年度調査**2
T-N	山林負荷(フレーム×原単位)で設定し、湧水は別途見込まない	H26 相模川流総※3
Т-Р	山林負荷(フレーム×原単位)に加え、湧水負荷量を別途考慮	S62 年度調査

^{※1)} 後述(4)に湧水負荷量の算定方法・結果について記載

土地系(山林)の負荷量原単位については、これまで、その精度向上のため、「昭和62年度湖沼水質汚濁機構等検討調査(昭和63年3月)」(以下、「S62調査」という。)や「平成20年度 相模川水系類型指定に係る発生負荷量検討調査」(以下、「H20調査」という。)等が実施されている。各調査の概要を以下に示す。

^{※2)「}昭和62年度湖沼水質汚濁機構等検討調査(昭和63年3月)」

^{※3)「}相模川流域の目標汚濁負荷量に関する基本方針,平成26年3月」

1) S62 調査

ア) 調査地点

調査地点の概要は、以下に示すとおりである。

表 2.1.24 調査地点の概要

調査地点	調査日時
	昭和 62 年 7 月 28 日
大幡川	昭和 62 年 10 月 6 日
	昭和 62 年 12 月 21 日
	昭和 62 年 7 月 28 日
葛野川	昭和 62 年 10 月 13 日
	昭和 62 年 12 月 21 日
	昭和 62 年 7 月 28 日
真木川	昭和 62 年 10 月 13 日
	昭和 62 年 12 月 22 日
	昭和 62 年 7 月 29 日
朝日川	昭和 62 年 10 月 7 日
	昭和 62 年 12 月 21 日
	昭和 62 年 7 月 29 日
鹿留川	昭和 62 年 10 月 7 日
	昭和 62 年 12 月 21 日

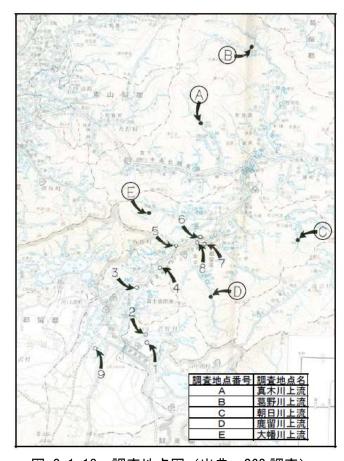


図 2.1.18 調査地点図 (出典: S62 調査)

(1) 調査項目

調査項目および分析方法は以下に示すとおりである。

表 2.1.25 調査項目および分析方法

	項目	分析方法
1	рН	ガラス電極法
2	伝導率	伝導率計
3	SS	昭和 46 年環境庁告示第 59 号 付表 9
4	COD	KMnO₄法(100℃)
5	NH ₄ -N	フェノールハイポクロライト法
6	NO_2 -N	ナフチルエチレンジアミン法
7	NO ₃ -N	イオンクロマト法
8	T-N	昭和 46 年環境庁告示第 59 号 別表2
9	PO_4 –P	アスコルビン酸還元比色法
10	Т-Р	昭和 46 年環境庁告示第 59 号 別表2
11	Cl	イオンクロマト法
12	溶解性 COD	1μの GFP ろ過 4 の方法
13	溶解性 T-N	1μの GFP ろ過後 8 の方法
14	溶解性 T-P	1μの GFP ろ過後 10 の方法

ウ) 調査結果

調査結果は、以下に示すとおりである。

表 2.1.26 調査結果

項目	負荷量原単位(g/ha/日)				
(タロ	田	畑	山林	市街地	
COD	_	_	16.7	_	
T-N	_	_	6.60	_	
T-P	_	_	0.080	_	

2) H20 調査

ア) 調査概要

調査の概要は、以下に示すとおりである。

表 2.1.27 調査の概要

調査地点	調査日時	備考
朝日川 (No.1、No.2)	灌漑期 : 平成 20 年 9 月 11 日 非灌漑期 : 平成 20 年 11 月 6 日 冬季 : 平成 21 年 1 月 5 日	水田を主体とした農業地域(上流域は山林を主体とした地域)
向沢川 (No.3、No.4)	夏季 : 平成 20 年 9 月 11 日 秋季 : 平成 20 年 11 月 6 日 冬季 : 平成 21 年 1 月 5 日	畑作を主体とした農業地域
戸沢川 (No.5)	夏季 : 平成 20 年 9 月 11 日 秋季 : 平成 20 年 11 月 6 日 冬季 : 平成 21 年 1 月 5 日	自然地域(山林を主体とした地域)

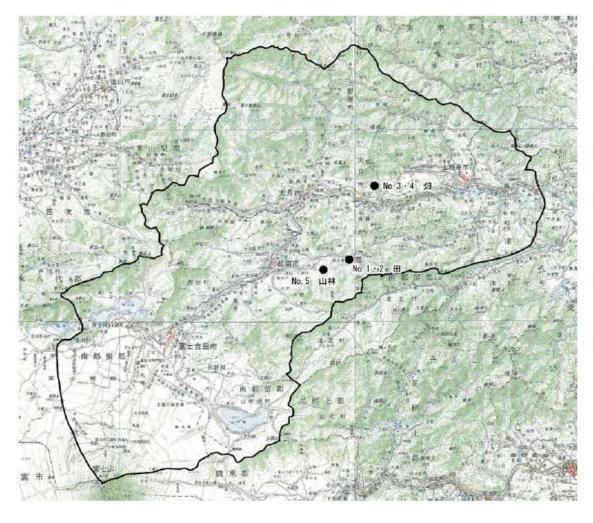


図 2.1.19 調査地点図 (出典: S62 調査)

()調查項目

調査項目および分析方法は以下に示すとおりである。

表 2.1.28 調査項目および分析方法

	項目	分析方法				
1	рН	ガラス電極法				
2	伝導率	伝導率計				
3	SS	昭和 46 年環境庁告示第 59 号 付表 9				
4	COD	KMnO₄法(100℃)				
5	NH ₄ -N	フェノールハイポクロライト法				
6	NO_2 -N	ナフチルエチレンジアミン法				
7	NO ₃ -N	イオンクロマト法				
8	T-N	昭和 46 年環境庁告示第 59 号 別表2				
9	PO_4 –P	アスコルビン酸還元比色法				
10	Т-Р	昭和 46 年環境庁告示第 59 号 別表2				
11	Cl	イオンクロマト法				
12	溶解性 COD	1μの GFP ろ過後 4 の方法				
13	溶解性 T-N	1μの GFP ろ過後 8 の方法				
14	溶解性 T-P	1μの GFP ろ過後 10 の方法				

ウ) 調査結果

調査結果を以下に示す。

表 2.1.29 調査結果

項目	負荷量原単位(g/ha/日)							
-	田	畑	山林	市街地				
COD	_	57.0	3.0	-				
T-N	_	59.5	0.9	_				
T-P	_	1.430	0.014	-				

3) 既往調査における土地系(山林)の原単位の設定

以上を踏まえ、既往検討(中央環境審議会水環境部会陸域環境基準専門委員会(第10回,平成22年5月)(第14回,平成27年7月))において、山林負荷量の原単位は、以下の理由からS62調査を用いることとされた(表 2.1.30参照)。

- ・S62 調査及び H20 調査から、本流域の原単位はいずれも流総平均値よりも低い数値を示しており、 山林からの負荷量は小さいものと考えられる。
- ・S62 調査は、5 流域 $\times 3$ 季分の調査の平均値を用いて原単位を算出しており、1 流域 $\times 2$ 季分の H20 調査よりも精度としては高いと想定される。

表 2.1.30 相模川流域の自然汚濁負荷量原単位(山林)

項目	負荷量原単位					
COD	16.7 (g/ha/day)					
T-N	6.6 (g/ha/day)					
T-P	0.08 (g/ha/day)					

(4) 湧水負荷量について

相模ダム貯水池の、水域類型指定に関する既往検討(中央環境審議会水環境部会陸域環境 基準専門委員会(第10回,平成22年5月)(第14回,平成27年7月))では、現況の発生負荷 量算定に、富士山麓からの湧水による発生負荷量の算定結果を別途計上している。

相模ダム貯水池では、窒素・燐ついては、設定されている類型の基準値に対して現況水質の栄養塩濃度が非常に高い状況が継続しているが、忍野地域で測定される湧水の濃度が高いことから、湧水(地下水)由来分を別途計上してきたが、高濃度となっている要因が自然由来(地下水分を別途計上することが妥当)なのか、自然由来ではないのかという点が課題とされてきた。

そこで、以上を踏まえ、平成30年度~令和元年度にかけて、「類型指定見直しの検討に向けた検討会」を開催し、相模川の栄養塩負荷の取扱いについて検討を行い、以下の取扱いを採用することとなった。

【山林からの栄養塩類の取扱いについて】

相模川の栄養塩の由来に関して、文献収集、ヒアリングの結果より、以下の方針とする。

●窒素

・窒素については、自然由来と明瞭に判断できる知見が得られていないこと、既往研究事例 を踏まえると、これまでの検討で用いている山林の原単位が実態に比べて過少であると考 えられることから、これまでのように、<u>湧水負荷を別途計上するのではなく、山林原単位</u> の変更により対応する。

●燐

・燐については、新たに文献・資料を追加収集し、整理した結果、相模川の燐が高濃度であることは、富士山麓における地下水の影響(地質が燐を多く含む玄武岩質であるため)であることが明らかとなったことから、これまで同様、<u>湧水負荷を別途計上する方法により</u> 対応する。

以上を踏まえ、<u>土地系の山林の T-N の汚濁負荷量については</u>、相模川流域別下水道整備総合計画における山林からの原単位(下表)を採用するものとし、湧水由来の負荷量については、別途上乗せをしない。

表 2.1.31 相模川流域別下水道整備総合計画における山林の負荷量原単位

区 分	単位	T-N 原単位		
山林	kg/(km ² ・日)	4.54		

上記の通り、T-Nについては、湧水負荷を別途計上しないこととするが、COD、T-Pについては、既往検討同様に湧水負荷量を別途計上する。

以下に、既往検討での湧水由来の負荷を把握するために実施した現地調査の概要、湧水 分の発生負荷量の算定方法を示す。

1) 調査の概要

H19調査(富士山麓湧水水質調査,環境省:以下H19調査)の概要を表 2.1.32、調査地点の概要を表 2.1.33及び図 2.1.20、現地観測方法を表 2.1.34、室内分析方法を表 2.1.35に示す。

表 2.1.32 H19 湧水負荷量調査の概要

項目	内容
調査項目	BOD、SS、COD、D-COD(溶存性 COD)、TOC、D-TOC(溶存性 TOC)、T-N、D-TN(溶存性 T-N)、T-P、D-TP(溶存性 T-P)
調査水域	富士北麓地域の湧水とする
調査頻度	調査頻度は、秋季(平成19年11月21日)と冬季(平成20年2月20日)の2回
調査方法	採水は「要調査項目等調査マニュアル(水質、底質、水生生物) 平成 13 年 3 月 環境省」に 準拠し、河川流心において表層水をバケツまたは立ち込みにより採水した。 流量測定については直接観測法で実施した。 調査方法は、河川断面(河川幅、水深)および流速を測定し、河川の断面積に流速を乗じて流量を算出する。

表 2.1.33 H19 湧水負荷量調査の調査地点

調査 地点 番号	調査地点	H19 調査地点の考え方
1	忍野八海 (出口池)	忍野八海の中でひとつだけ離れたところにあり、魚苗センターの近傍に位置 する。
2	忍野八海	各湧水池からの湧水は近傍の河川に流入している。 湧水の水質、負荷量を把握するために、湧水池群上流 2 地点、下流 1 点を 測定し、差し引くことで湧水の状況を把握する。 また、実際の湧水の水質についても、お釜池、底抜池、銚子池、湧池、大池 の 5 地点の調査を実施する。
3	浅間神社	近傍に浅間神社脇に湧水が確認されたため、ここを調査地点とする。
4	夏狩湧水群	近傍に夏狩湧水群と呼ばれる湧水が確認されたため、ここを調査地点とする。
5	永寿院	調査地点とする。

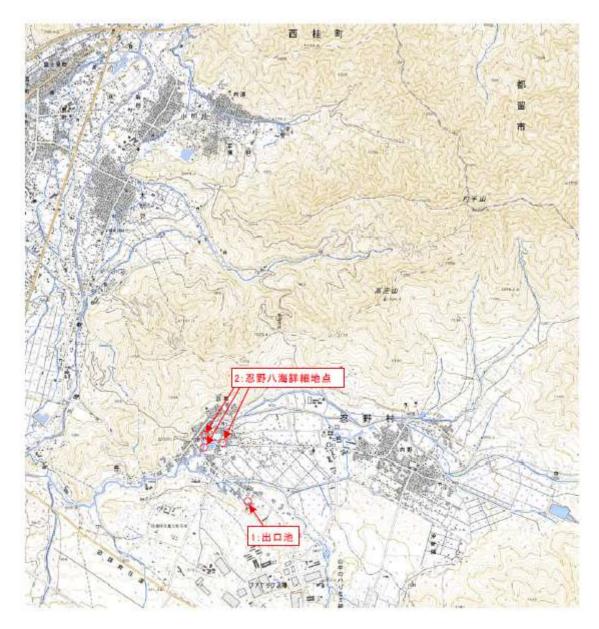


図 2.1.20 湧水調査地点(1)

出典: H19 調査

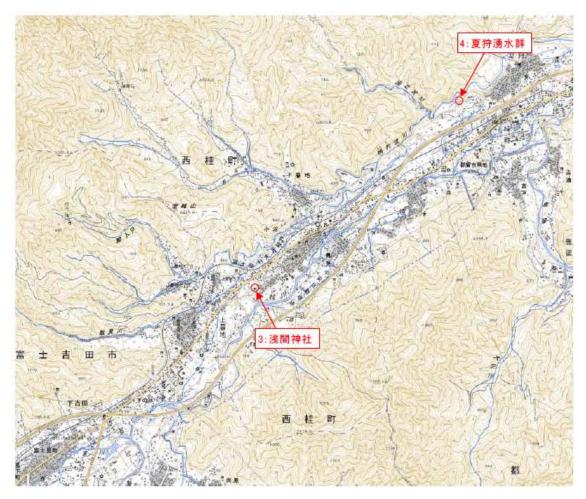


図 2.1.21 湧水調査地点(2)

図 2.1.22 湧水調査地点(3)

出典: H19 調査

表 2.1.34 現地観測方法

観測項目	観測方法
水深	レッド間縄および竹尺により測定
気温	0.1℃水銀棒状温度計により測定
水温	ハンディの pH・DO・EC 計いずれかにより測定
рН	ハンディの pH 計により測定
DO	ハンディの DO 計により測定
EC	ハンディの EC 計により測定
天候	目視により観察

表 2.1.35 室内分析方法

調査項目	室内分析方法
BOD	環境省告示の方法 [日本工業規格 K0102 (以下 「規格」 という。) 21 に定める方法]
SS	環境省告示の方法 [付表 8 に掲げる方法]
COD	環境省告示の方法 [規格 17 に定める方法]
D-COD (溶存性 COD)	環境省告示の方法 [規格 17 に定める方法 (ガラス繊維ろ紙(GFB、孔径 1 μm)を通過した試水について測定)]
TOC	厚生労働省告示第 261 号の方法 [懸濁物質は、ホモジナイザー、ミキサー、 超音波発生器等で破砕し、均一に分散させた試験溶液とする]
D-TOC (溶存性 TOC)	厚生労働省告示第 261 号の方法 [ガラス繊維ろ紙(GFB、孔径 1mm) を通過した試水について測定]
T-N	環境省告示の方法 [規格 45.2、45.3 又は 45.4 に定める方法]
D-TN (溶存性 T-N)	環境省告示の方法 [規格 45.2、45.3 又は 45.4 に定める方法 (ガラス繊維ろ紙(GFB、孔径 1μm)を通過した試水について測定)]
Т-Р	環境省告示の方法 [規格 46.3 に定める方法]
D-TP (溶存性 T-P)	環境省告示の方法 [規格 46.3 に定める方法 (ガラス繊維ろ紙(GFB、孔径 1 μm)を通過した試水について測定)]

2) 調査結果

秋季・冬季の湧水調査結果及び2季平均水質は、表 2.1.36~表 2.1.38に示すとおりである。2季平均値で見ると、CODは平均で0.5mg/Lと低い値となっているが、T-Nは1.56mg/L、T-Pは0.121mg/Lと高い値となっている。

表 2.1.36 湧水調査結果(秋季 調査日:平成19年11月21日)

単位:mg/L

地点	BOD	SS	COD	D-COD	TOC	D-TOC	T-N	D-TN	Т-Р	D-TP
1.出口池	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	0.74	0.69	0.135	0.131
2.1.忍野八海上流	0.8	1	1.5	1.2	0.8	0.7	2.14	2.13	0.041	0.020
2.2.忍野八海上流	1.1	1	1.5	1.3	0.8	0.7	2.66	2.57	0.060	0.046
2.3.忍野八海下流	0.8	2	1.2	0.5	0.5	0.3	2.08	1.92	0.122	0.097
2.4.お釜池	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.96	1.82	0.157	0.156
2.5.底抜池	< 0.5	<1	< 0.5	< 0.5	0.2	0.2	1.46	1.34	0.146	0.143
2.6.銚子池	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	2.00	1.88	0.153	0.145
2.7.湧池	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.73	1.61	0.136	0.136
2.8.濁池	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	2.17	2.02	0.136	0.135
4.浅間神社	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.85	1.65	0.093	0.089
5.夏狩湧水	< 0.5	<1	0.5	< 0.5	< 0.2	< 0.2	2.03	1.85	0.100	0.087
8.永寿院	0.6	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.41	1.25	0.052	0.051
最小値	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	0.74	0.69	0.041	0.020
最大値	1.1	2	1.5	1.3	0.8	0.7	2.66	2.57	0.157	0.156
平均値	0.6	1	0.7	0.6	0.5	0.3	1.85	1.73	0.111	0.103

表 2.1.37 湧水調査結果 (冬季 調査日:平成20年2月20日)

単位:mg/L

地点	BOD	SS	COD	D-COD	TOC	D-TOC	T-N	D-TN	Т-Р	D-TP
1.出口池	< 0.5	<1	< 0.5	< 0.5	0.2	< 0.2	0.69	0.68	0.141	0.141
2.1.忍野八海上流	1.2	<1	1.9	1.6	0.7	0.7	2.05	2.01	0.052	0.032
2.2.忍野八海上流	2.1	2	2.4	1.8	0.8	0.8	2.11	1.98	0.081	0.053
2.3.忍野八海下流	0.6	<1	0.9	0.8	0.3	0.3	1.83	1.76	0.126	0.109
2.4.お釜池	0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.64	1.60	0.150	0.145
2.5.底抜池	< 0.5	1	< 0.5	< 0.5	0.2	< 0.2	1.37	1.33	0.144	0.136
2.6.銚子池	< 0.5	2	0.5	< 0.5	0.2	< 0.2	1.82	1.81	0.154	0.143
2.7.湧池	< 0.5	<1	< 0.5	< 0.5	0.2	< 0.2	1.46	1.42	0.134	0.133
2.8.濁池	< 0.5	<1	< 0.5	< 0.5	0.2	< 0.2	1.84	1.80	0.144	0.143
4.浅間神社	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.59	1.57	0.095	0.092
5.夏狩湧水	< 0.5	<1	0.7	< 0.5	0.2	0.2	1.73	1.73	0.107	0.100
8.永寿院	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.37	1.35	0.065	0.063
最小値	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	0.69	0.68	0.052	0.032
最大値	2.1	2	2.4	1.8	0.8	0.8	2.11	2.01	0.154	0.145
平均値	0.7	1	0.8	0.7	0.5	0.3	1.63	1.59	0.116	0.108

表 2.1.38 湧水調査結果 (2季平均)

単位:mg/L

地点	BOD	SS	COD	D-COD	TOC	D-TOC	T-N	D-TN	Т-Р	D-TP
1.出口池	< 0.5	< 1	< 0.5	< 0.5	< 0.2	< 0.2	0.72	0.69	0.138	0.136
2.1.忍野八海上流	_		_	_	_	_		_	_	_
2.2.忍野八海上流	_	_	_	_	_	_	_	_	_	_
2.3.忍野八海下流			_	_	_	_	_	_		_
2.4.お釜池	0.5	< 1	< 0.5	< 0.5	< 0.2	< 0.2	1.80	1.71	0.154	0.151
2.5.底抜池	< 0.5	< 1	< 0.5	< 0.5	0.2	0.2	1.42	1.34	0.145	0.140
2.6.銚子池	< 0.5	< 2	< 0.5	< 0.5	0.2	< 0.2	1.91	1.85	0.154	0.144
2.7.湧池	< 0.5	<1	< 0.5	< 0.5	0.2	< 0.2	1.60	1.52	0.135	0.135
2.8.濁池	< 0.5	< 1	< 0.5	< 0.5	0.2	< 0.2	2.01	1.91	0.140	0.139
4.浅間神社	< 0.5	< 1	< 0.5	< 0.5	< 0.2	< 0.2	1.72	1.61	0.094	0.091
5.夏狩湧水	< 0.5	<1	0.6	< 0.5	0.2	< 0.2	1.88	1.79	0.104	0.094
8.永寿院	0.6	< 1	< 0.5	< 0.5	< 0.2	< 0.2	1.39	1.30	0.059	0.057
最小値	0.5	<1	0.5	0.5	0.2	0.2	0.72	0.69	0.059	0.057
最大値	0.6	< 2	0.6	0.5	0.2	0.2	2.01	1.91	0.154	0.151
平均値	0.5	< 1	0.5	0.5	0.2	0.2	1.56	1.48	0.121	0.117

注) 忍野八海上流 (2.1,2.2) 及び忍野八海下流 (2.3) は、BOD, COD, T-N が他の湧水と比べて高く、上流側の集落等の排水の影響を受けている可能性が考えられることから、湧水負荷量の算定に用いる湧水水質の平均値は 2.1 ~2.3 の値は除外して算定した。

: 負荷量の算定に使用

3) 湧水負荷量の検討

湧水水質調査結果を用い、図 2.1.23 に示す湧水汚濁負荷量算定フローにより、湧水 負荷量の試算を行った。

富士北麓地域の湧水量1(相模ダム流入量・降水量・蒸発散等から試算)を算定

湧水の水質の実測調査を実施

湧水からの負荷量を「富士北麓地域の山林からの負荷量」と 「その他の地域(流域外)からの負荷量」に分ける

- ・湧水量1=湧水量2(富士北麓地域由来)+湧水量3(流域外由来) にわける
- ・湧水量3(流域外由来)=相模ダム流入量-相模ダム推定流入量とする。
- ・相模ダム推定流入量=相模川水系降水量-相模川水系蒸発量 ・湧水量2(富士北麓地域由来)=降水量-蒸発量-表面流出量
- 湧水由来汚濁負荷量=富士北麓地域由来湧水汚濁負荷量+流域外由来湧水汚濁負荷量

湧水由来汚濁負荷量

- ·富士北麓地域由来湧水汚濁負荷量=湧水実測水質×湧水量2
- 流域外由来湧水汚濁負荷量=湧水実測水質×湧水量3

汚濁負荷量の整理

•富士北麓山林発生汚濁負荷量=

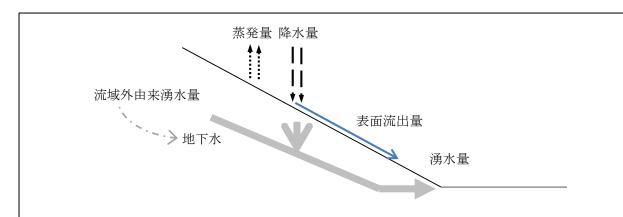
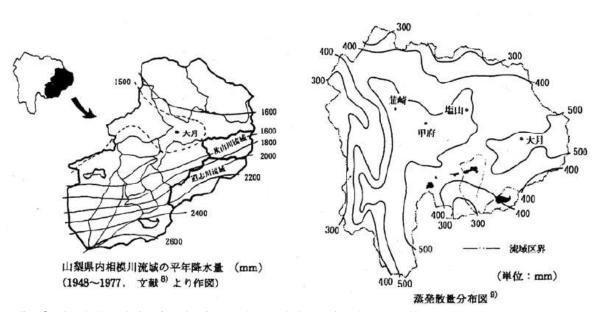

山林由来発生汚濁負荷量+富士北麓地域由来湧水汚濁負荷量

図 2.1.23 湧水汚濁負荷量算定フロー

表 2.1.39 山林及び湧水における汚濁負荷量算定方法の整理

項目	富士北麓流域	その他の流域
山林汚濁負荷量	山林汚濁負荷量+湧水汚濁負荷量	山林汚濁負荷量
湧水汚濁負荷量	流域外由来湧水汚濁負荷量	考慮しない


注)富士北麓流域は、山中湖、河口湖、宮川、富士見橋上流の流域とする。

湧水量=富士北麓流域湧水量±流域外由来湧水量 富士北麓流域湧水量=降水量-蒸発量-表面流出量 流域外由来湧水量=相模ダム流入量-相模ダム推定流入量 相模ダム推定流入量=相模川水系降水量-相模川水系蒸発量

注:表面流出量は実測調査を行っていないため、既往文献から設定した。 降水量、蒸発量、相模川水系降水量、相模川水系蒸発量は、「山梨県相模川流域の 降雨流出解析の試み 山梨衛生公害研究所年報 第31 号34~38 頁 1987」(次頁) を参考に設定した。相模ダム流入量は、ダム管理年報より算定した。

図 2.1.24 湧水負荷量の算定方法

出典:「山梨県相模川流域の降雨流出解析の試み 山梨衛生公害研究所年報 第31号34~38頁 1987」

図 2.1.25 蒸発散量分布図

4) 富士北麓地域由来湧水量の算定

山梨県内の相模川流域(桂川)について、流域面積・降水量・蒸発散量・湖水放流量・ 晴天時比流量などの値から、流域全体の降雨流出量及びその内訳として、晴天時流出量・ 湧水量・降雨時流出量を推定した。

湧水の流出量は、降雨量に係わらず一定とし、流域の平年の降水量と蒸発散量及び流域面積から降雨流出量を推定した。計算に用いた降水量・蒸発散量の値と得られた流出量を表 2.1.40 に示した。

流域区分	流域面積 (km²)	降水量 (mm/yr)	蒸発散量 (mm/yr)	流出高 (mm/yr)	推定流出量 (m³/sec)
富士見橋上流	78.25	2,250	400	1,850	4.59
宮川	56.14	2,250	400	1,850	3.29
山中湖流域	61.61	2,510	400	2,110	4.34
河口湖流域	129.51	1,860	400	1,460	6.26
計	325.51	-	-	-	18.48

表 2.1.40 桂川橋における降雨流出解析

表面流出量については当該地域についての調査結果等の知見がないことから、「山梨県相模川流域の降雨流出解析の試み山梨衛生公害研究所年報 第31号34~38頁 1987」における考え方に準じ、宮川、富士見橋上流流域については、流出する降雨の100%が地下流出するものと仮定した。

山中湖及び河口湖の表面流出量は、「山梨県相模川流域の降雨流出解析の試み 山梨衛 生公害研究所年報 第31号34~38頁 1987」で設定された平年値(東京電力による湖水 放流量)とした。

推定流出量から表面流出量を引いた残りを、富士北麓地域由来湧水量とみなし表 2.1.41のとおり算定した。

表 2.1.41 湧水量 (湧水量 2) の推定 (平年)

(単位:m³/s)

流域区分	推定流出量	表面流出量	地下流出量 (湧水量)
富士見橋上流	4.59	0.00	4.59
宮川	3.29	0.00	3.29
山中湖流域	4.34	1.07	3.27
河口湖流域	6.26	0.73	5.53
計	18.48	1.80	16.68

注)降水量及び蒸発散量は、「山梨県相模川流域の降雨流出解析の試み 山梨衛生公害研究所年報 第 31 号 34~38 頁 1987」で整理された平年値を使用した。「富士見橋上流」については、資料中桂川(1)流域とほぼ同様であることから、桂川(1)流域の値を用いた。

5) 流域外湧水量の算定

流域外由来湧水量は、次式により算定した。

湧水量3 (流域外由来) = 相模ダム流入量 - 相模ダム推定流入量 相模ダム推定流入量 = 相模川水系降水量 - 相模川水系蒸発量

相模ダム推定流入量の算定結果は、表 2.1.42 に示すとおりである。

表 2.1.42 相模ダム推定流入量の算定

	流域面積 (km²)	相模ダム水 系降水量 (mm/年)	相模川水系 蒸発量 (mm/年)	流出高 (mm/年)	相模ダム推 定流入量 (m³/sec)
相模ダム水系	1,016.32	1,740	500	1,240	39.96

注) 相模川水系降水量及び蒸発量は、「山梨県相模川流域の降雨流出解析の試み 山梨衛生公害研究所年報 第 31 号 34~38 頁 1987」で整理された情報によった。(図 2.1.25)

相模ダム流入量の過去 10 年間の実績は、表 2.1.43 に示すとおりであり、本試算においては、過去 10 年間の平均流入量を用いて算定を行った。

流域外湧水量(湧水量3)の試算結果は、表 2.1.44に示すとおりである。

表 2.1.43 相模ダム流入量

年度	年平均 (m³/s)
Н6	34.44
H7	31.65
Н8	27.16
Н9	27.07
H10	67.80
H11	48.40
H12	34.99
H13	49.48
H14	40.02
H15	50.42
10ヶ年平均	41.14

出典:相模ダム管理年報

表 2.1.44 流域外由来湧水量 (湧水量3)

	相模ダム 流入量 (m³/s)	相模ダム 推定流入量 (m³/s)	湧水量3 (m³/s)
年平均	41.14	39.96	1.18

6) 湧水負荷量の算定結果

湧水汚濁負荷量の試算結果は、表 2.1.45に示すとおりである。

富士北麓流域における山林汚濁負荷量としての湧水汚濁負荷量は、COD で 720kg/日、T-N で 2,248kg/日、T-P で 174.38kg/日と試算される。

また、富士北麓流域における流域外からの湧水汚濁負荷量は、COD で 51kg/日、T-N で 159kg/日、T-P で 12kg/日と試算される。合計で COD771kg/日、T-N2, 407kg/日、T-P187kg/日の湧水汚濁負荷量が相模湖に流入するものと試算される。

表 2.1.45 相模ダム貯水池流域における湧水汚濁負荷量の試算結果

区分	水質項目	流域	水量 (m³/s)	水質 (mg/L)	汚濁負荷量 (kg/日)
流域内由来	COD	山中湖	3.27	0.5	141
		河口湖	5.53	0.5	239
		宮川	3.29	0.5	142
		富士見橋上流	4.59	0.5	198
		計	16.68	_	720
	T-N	山中湖	3.27	1.56	441.0
		河口湖	5.53	1.56	745.0
		宮川	3.29	1.56	443.0
		富士見橋上流	4.59	1.56	619.0
		計	16.68		2,248.0
	T-P	山中湖	3.27	0.121	34.19
		河口湖	5.53	0.121	57.81
		宮川	3.29	0.121	34.39
		富士見橋上流	4.59	0.121	47.99
		計	16.68		174.38
流域外由来	COD	流域外	1.18	0.5	51
	T-N	流域外	1.18	1.56	159.0
	T-P	流域外	1.18	0.121	12.34
	COD	_		_	771
合計	T-N				2407.0
	T-P	_	_	_	186.72

(5) 相模ダム貯水池(相模湖)の発生汚濁負荷量の算定方法

発生汚濁負荷量の算定手法は表 2.1.46 に示すとおり、点源については実測値法(負荷量=排水量×水質)、面源については原単位法(負荷量=フレーム×原単位)により算定した。面源の発生汚濁負荷量の算定に用いた原単位は表 2.1.47 に示すとおりである。

表 2.1.46 相模ダム貯水池(相模湖)の発生汚濁負荷量算定手法

発生活	原別	区分	算定手法
生活系	点源	下水道終末処理施設 (マップ調査) *	排水量(実測値)×排水水質(実測値)
		し尿処理施設(マップ調査) *	排水量(実測値)×排水水質(実測値)
	面源	し尿・雑排水(合併処理浄化槽)	合併処理浄化槽人口×原単位(し尿+雑排水)×(1-除去率)
		し尿(単独処理浄化槽)	単独処理浄化槽人口×原単位(し尿)×(1-除去率)
		し尿(計画収集)	計画収集人口×原単位(し尿)×(1-除去率)
		し尿(自家処理)	自家処理人口×原単位(し尿)×(1-除去率)
畜産系	点源	畜産業	排水量(実測値)×排水水質(実測値)
	面源	マップ調査以外の畜産業 *	家畜頭数×原単位×(1-除去率)
土地系	面源	土地利用形態別負荷	土地利用形態別面積×原単位
産業系	点源	工場・事業場(マップ調査) *	排水量(実測値)×排水水質(実測値)

^{*:}マップ調査: 平成23年度、平成25年度、平成27年度、平成29年度水質汚濁物質排出量総合調査(環境省) ⇒マップ調査の調査対象は、①日排出量が50m³以上、もしくは②有害物質を排出するおそれのある工場・事業場であり、③指定地域特定施設及び湖沼水質保全特別措置法で定めるみなし指定地域特定施設を含む。

表 2.1.47 相模ダム貯水池(相模湖)の発生汚濁負荷量原単位

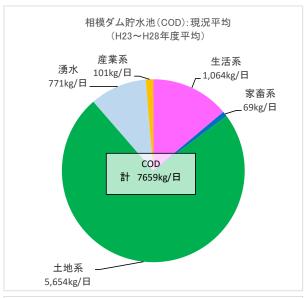
			C	OD	T-	-N	Т	-P
	区 分	単位	原単位	除去率(%)	原単位	除去率(%)	原単位	除去率(%)
	合併処理浄化槽	g/(人・日)	28.0	72. 5	13. 0	48. 5	1. 40	46. 4
生	単独処理浄化槽	g/(人·目)	10.0	53. 5	9. 0	34. 4	0.90	30.0
活系	計画収集 (雑排水)	g/(人・日)	18.0	0.0	4. 0	0.0	0. 50	0.0
	自家処理	g/(人・日)	10.0	90.0	9.0	90.0	0.90	90.0
	田	kg/(km ² ・日)	30. 44	_	3.67	_	1. 13	_
土	畑	kg/(km ² ・日)	13. 56	_	27.51	_	0.35	_
地	山林	kg/(km ² ・日)	1. 67	_	4. 54**	_	0.008	_
系	市街地	kg/(km ² ・日)	29. 32	_	4.44	_	0. 52	_
	その他	kg/(km ² ・日)	7. 95	_	3.56	_	0.10	_
	乳用牛	g/(頭・日)	530. 0	97. 5	290. 0	96. 1	50.00	98. 4
家畜	肉用牛	g/(頭・日)	530. 0	97.5	290. 0	96. 1	50.00	98.4
音系	豚	g/(頭•日)	130. 0	95. 9	40.0	93. 5	25.00	95. 1
	鶏	g/(羽・日)	2.9	95. 5	1.91	94. 5	0. 27	95. 5

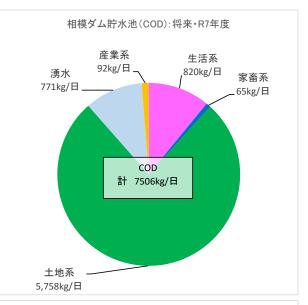
- 注)※:前回の暫定目標見直し時(平成28年3月)以降に見直された原単位及び除去率
- 出典:「流域別下水道整備総合計画調査 指針と解説 平成27年1月 国土交通省水管理・国土保全局下水道部」
 - ・生活系の原単位は、「1人1日当たり汚濁負荷量の参考値」
 - ・合併処理浄化槽の除去率は、「小型合併浄化槽の排水量・負荷量原単位」の排出負荷量の平均値と原単位から除去率を 算出した
 - ・単独処理浄化槽の除去率は、「単独浄化槽の排出負荷量原単位」の排出負荷量の平均値と原単位から除去率を算出した
 - ・自家処理の除去率は、前回の類型指定(平成25年6月)に係る検討時の値と同値とした
 - ・土地系の山林の原単位 (COD, T-P) は「昭和 62 年度湖沼水質汚濁機構等検討調査 (昭和 63 年 3 月)」の調査結果から算出した
 - 山林の原単位 (T-N) は「相模川流域の目標汚濁負荷量に関する基本方針,平成26年3月」の原単位を用いた
 - ・土地系の山林以外の原単位は、各土地利用区分の原単位の平均値とした (田は純排出負荷量の平均値)。 土地系のその他については「大気降下物の汚濁負荷量原単位」の平均値とした。
 - なお、COD は「非特定汚染源からの流出負荷量の推計手法に関する研究 H24.3 (社)日本水環境学会」の平均値とした
 - ・家畜系原単位は、「家畜による発生負荷量原単位」における原単位の平均値とした
 - ・家畜系除去率は、「牛、豚、鶏の汚濁負荷量原単位と排出率(湖沼水質保全計画)」の排出率から算出した

(6) 相模ダム貯水池(相模湖)の発生汚濁負荷量

相模ダム貯水池(相模湖)の発生汚濁負荷量は表 2.1.48 に示すとおりである。

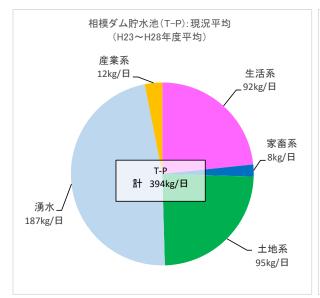
表 2.1.48 相模ダム貯水池(相模湖)流域の発生汚濁負荷量


			CC)D	T-	N	T-	Р
	区 分		現況平均 (H23~H28年度平均)	将来 令和7年度	現況平均 (H23~H28年度平均)	将来 令和7年度	現況平均 (H23~H28年度平均)	将来 令和7年度
	合併処理浄化槽	kg/日	289	325	251	282	28	32
	単独処理浄化槽	kg/日	279	160	354	203	38	22
生活系	計画収集	kg/日	303	140	67	31	8	4
工伯尔	自家処理	kg/日	0	0	0	0	0	0
	点源(水質汚濁物質排出量総合調査)	kg/日	193	195	206	222	18	14
	小計	kg/日	1,064	820	879	739	92	72
	牛	kg/日	26	23	22	19	2	1
	豚	kg/日	20	21	10	10	5	5
家畜系	鶏	kg/日	23	21	19	17	2	2
	点源(水質汚濁物質排出量総合調査)	kg/日	0	0	0	0	0	0
	小計	kg/日	69	65	50	46	8	8
	田	kg/日	626	566	75	68	23	21
	烟	kg/日	428	404	868	820	11	10
土地系	山林	kg/日	1,449	1,447	3,940	3,934	7	7
上地ボ	市街地	kg/日	2,734	2,938	414	445	48	52
	その他	kg/日	417	402	187	180	5	5
	小計	kg/日	5,654	5,758	5,484	5,447	95	96
湧水	湧水	kg/日	771	771	_	_	187	187
産業系	点源(水質汚濁物質排出量総合調査)	kg/日	101	92	59	70	12	15
合計		kg/日	7,659	7,506	6,472	6,303	394	377


注) 生活系のうち、「点源」は排水量 50m³/日以上の下水処理場、コミュニティプラント、農業集落排水処理施設等の大規模浄化槽及びし尿処理場を、「合併処理浄化槽」「単独処理浄化槽」は 50m³/日未満の浄化槽を、「計画収集」は市町村が計画処理区区域内で収集するし尿を、「自家処理」はし尿又は浄化槽汚泥を自家肥料として用いる等、自ら処分しているものを、それぞれ表す。

産業系の「点源」は生活系、家畜系以外の水質汚濁防止法の特定事業場を表す。


表 2.1.49 相模ダム貯水池(相模湖)流域の発生汚濁負荷量の推移(平成 23~平成 28 年度)


×	分	単位	平成23年度	平成24年度	平成25年度	平成26年度	平成27年度	平成28年度	H23~H28年度 平均
	生活系	kg/日	1,196	1,140	1,085	1,025	966	968	1,064
	家畜系	kg/日	78	77	64	68	62	65	69
COD	土地系	kg/日	5,659	5,663	5,667	5,671	5,646	5,621	5,654
СОВ	湧水	kg/日	771	771	771	771	771	771	771
	産業系	kg/日	84	100	117	110	103	92	101
	合計	kg/目	7,788	7,751	7,704	7,645	7,549	7,517	7,659
	生活系	kg/日	926	906	886	862	837	854	879
	家畜系	kg/日	58	57	47	49	45	46	50
T-N	土地系	kg/日	5,519	5,505	5,490	5,476	5,463	5,450	5,484
1 11	湧水	kg/日	_					_	
	産業系	kg/日	66	66	66	51	37	70	59
	合計	kg/目	6,569	6,533	6,489	6,438	6,383	6,421	6,472
	生活系	kg/日	104	99	93	88	82	86	92
	家畜系	kg/日	9	9	8	9	8	8	8
T-P	土地系	kg/日	96	96	96	95	94	93	95
1-F	湧水	kg/日	187	187	187	187	187	187	187
	産業系	kg/日	9	11	12	13	13	15	12
	合計	kg/日	404	401	396	391	384	390	394

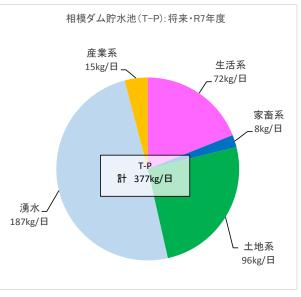


図 2.1.26 相模ダム貯水池(相模湖)流域の汚濁負荷量内訳

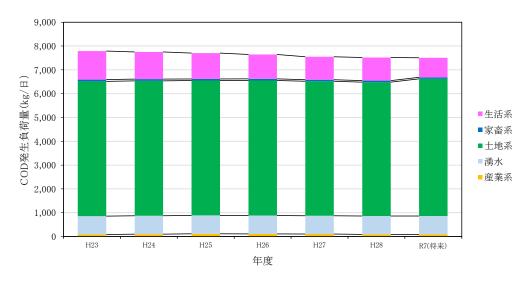


図 2.1.27 相模ダム貯水池流域の COD 発生負荷量経年変化

図 2.1.28 相模ダム貯水池流域の T-N 発生負荷量経年変化

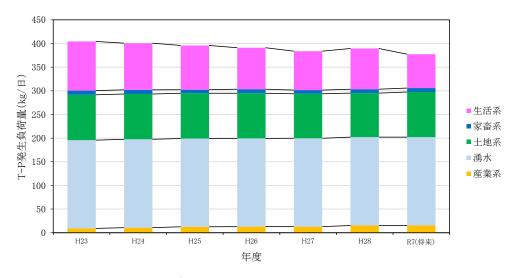


図 2.1.29 相模ダム貯水池流域の T-P 発生負荷量経年変化

2. 1-55

2.1.6. 相模ダム貯水池(相模湖)の将来水質予測

相模ダム貯水池(相模湖)の将来水質予測結果は、次のとおりである。 流入水量の経年変化は、神奈川県提供のデータを用いた。

表 2.1.50 相模ダム貯水池の現況年平均流入量の経年変化

	H23	H24	H25	H26	H27	H28	平均
流入量年平均(m³/s)	61	38	37	40	43	33	42

※有効数字二桁で表示しています。

(1) 相模ダム貯水池(相模湖) COD 水質予測

相模ダム貯水池への流入水と貯水池の水質の経年変化は、表 2.1.51 のとおりである。 流入水質は、相模ダム貯水池上流にある日連大橋の値を用いた。相模ダム貯水池への負荷 量の経年変化は表 2.1.52 のとおりである。

表 2.1.51 相模ダム貯水池の現況 COD 水質の経年変化

COD	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	1.7	1.8	2.2	2.4	1.8	2.3	2.0
貯水池水質年平均値(mg/L)	1.7	1.7	1.9	1.8	2.1	2.2	1.9
貯水池水質75%值(mg/L)	1.9	1.8	2.6	2.0	2.1	2.7	2.2

※有効数字二桁で表示しています。

表 2.1.52 相模ダム貯水池の現況 COD 発生負荷量と流入負荷量の経年変化

COD	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	7,788	7,751	7,704	7,645	7,549	7,517	7659
流入負荷量(kg/日)	8,886	5,749	7,164	8,054	6,680	6,504	7173
流入率	1.1	0.7	0.9	1.1	0.9	0.9	0.94

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流入率は有効数字二桁で表示しています。

将来水質の算定には次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 2.1.53 相模ダム貯水池流域の将来 COD 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	1.9	表 2.1.51 の貯水池水質年平均値 (COD) の 6 ヵ年平均値
将来発生負荷量(kg/日)	7,506	表 2.1.48 の将来の発生汚濁負荷量の合 計 (COD)
現況平均流入率	0.94	表 2.1.52 の流入率の 6 ヶ年平均値
現況平均流入負荷量(kg/日)	7,173	表 2.1.52 の流入負荷量の 6 ヶ年平均値
将来流入負荷量(kg/日)	7,055	将来発生負荷量×現況平均流入率

COD 将来水質予測結果は、表 2.1.54 に示すとおりである。また、75%値は、図 2.1.30 に示す相関式に年平均値を当てはめて推計した。

表 2.1.54 相模ダム貯水池流域の将来 COD 水質予測結果

		相模ダ	ム貯水池	現在の類型			
項目 		将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値	現暫定目標値		
COD水質	年平均値	1.9	1.7~2.1		-		
ししか小貝	75%値	2.1	1.8~2.4	A類型 3mg/L以下	-		

※年平均値の変動範囲は、表 2.1.51の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。75%値の変動範囲は、表 2.1.51の貯水池の75%値から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

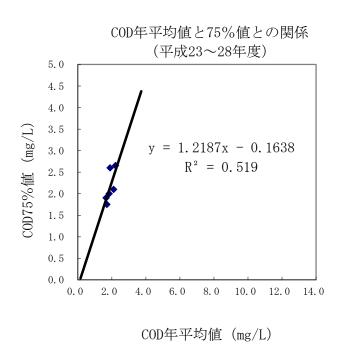


図 2.1.30 相模ダム貯水池の COD 水質年平均値と 75%値との関係

(2) 相模ダム貯水池(相模湖) T-N 水質予測

相模ダム貯水池の水質の経年変化は、表 2.1.55のとおりである。流入水質は、相模ダム貯水池上流にある日連大橋の値を用いた。相模ダム貯水池への負荷量の経年変化は表 2.1.56のとおりである。

表 2.1.55 相模ダム貯水池の現況 T-N 水質年平均値の経年変化

T-N	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	1.3	1.2	1.2	1.3	1.1	1.0	1.2
貯水池水質年平均値(mg/L)	1.2	1.1	1.1	1.2	1.2	1.0	1.2

※有効数字二桁で表示しています。

表 2.1.56 相模ダム貯水池流域の現況 T-N 発生負荷量と流入負荷量の経年変化

T-N	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	6,569	6,533	6,489	6,438	6,383	6,421	6,472
流入負荷量(kg/日)	6,670	3,807	3,718	4,417	4,170	2,919	4,283
流入率	1.0	0.58	0.57	0.69	0.65	0.45	0.66

注)流入負荷量=年平均流入量×年平均流入水質 流入率=流入負荷量/発生負荷量

[※]発生負荷量・流入負荷量は小数点以下四捨五入、流入率は有効数字二桁で表示しています。

将来水質の算定は次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 2.1.57 相模ダム貯水池流域の将来 T-N 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	1.2	表 2.1.55 の貯水池水質年平均値(T-N) の6ヵ年平均値
将来発生負荷量(kg/日)	6,303	表 2.1.48 の将来の発生汚濁負荷量の合 計 (T-N)
現況平均流入率	0.66	表 2.1.56 の流入率の 6 ヶ年平均値
現況平均流入負荷量(kg/日)	4,283	表 2.1.56 の流入負荷量の 6 ヶ年平均値
将来流入負荷量(kg/日)	4,160	将来発生負荷量×現況平均流入率

T-N 将来水質予測結果は、表 2.1.58 に示すとおりである。

表 2.1.58 相模ダム貯水池流域の将来 T-N 水質予測結果

	相模ダ	ム貯水池	現在の類型		
項目	将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値	現暫定目標値	
T-N水質 年平均値	1.1	1.0~1.2	$_{ m II}$ 0.2mg/L	1.2mg/L	

※変動範囲は、表 2.1.55 の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

(3) 相模ダム貯水池(相模湖) T-P 水質予測

相模ダム貯水池の水質の経年変化は、表 2.1.59のとおりである。流入水質は、相模ダム貯水池上流にある日連大橋の値を用いた。相模ダム貯水池への負荷量の経年変化は表 2.1.60のとおりである。

表 2.1.59 相模ダム貯水池の現況 T-P 水質年平均値の経年変化

T-P	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	0.092	0.093	0.087	0.106	0.081	0.101	0.093
貯水池水質年平均値(mg/L)	0.084	0.088	0.088	0.087	0.085	0.086	0.086

※有効数字二桁で表示しています。

表 2.1.60 相模ダム貯水池流域の現況 T-P 発生負荷量と流入負荷量の経年変化

T-P	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	404	401	396	391	384	390	394
流入負荷量(kg/日)	486	303	280	362	303	283	336
流入率	1.2	0.8	0.7	0.9	0.8	0.7	0.85

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流出率は有効数字二桁で表示しています。

将来水質の算定は次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 2.1.61 相模ダム貯水池流域の将来 T-P 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	0.086	表 2.1.59 の貯水池水質年平均値(T-P) の6ヵ年平均値
将来発生負荷量(kg/日)	377	表 2.1.48 の将来の発生汚濁負荷量の合計 (T-P)
現況平均流入率	0.85	表 2.1.60 の流入率の 6 ヶ年平均値
現況平均流入負荷量(kg/日)	336	表 2.1.60 の流入負荷量の 6 ヶ年平均値
将来流入負荷量(kg/日)	321	将来発生負荷量×現況平均流入率

T-P 将来水質予測結果は、表 2.1.62 に示すとおりである

表 2.1.62 相模ダム貯水池の将来 T-P 水質予測結果

		相模ダ	ム貯水池	現右	Eの類型
項	〔目	将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値	現暫定目標値
T-P水質	T-P水質 年平均値		0.081~0.083	$_{ m II}$ 0.01mg/L	0.080mg/L

[※]変動範囲は表 2.1.59 の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

2.1.7. 相模ダム貯水池(相模湖)の水域類型指定

水質予測結果及び現況年度(平成28年度)の翌年度以降(平成29,30年度)の水質調査結果を踏まえた相模ダム貯水池(相模湖)の類型指定は下記のとおりである。なお、暫定目標の設定にあたっては、中央環境審議会水環境部会(第44回)資料1-別添1,2(巻末資料(7))に示す考え方を基本とする。

表 2.1.63 相模ダムの将来水質予測結果と暫定目標

項目	基準値 (類型)	R2までの 暫定目標	H23~H28水質 (6力年平均)	H29,H30水質	R7水質予測	改善目標値	R7までの 暫定目標
COD	3mg/L (湖沼A)	_	2.2mg/L	H29:2.1mg/L H30:2.4mg/L	2.1mg/L (1.8~2.4)	_	設定しない
T-N	0.2mg/L (湖沼Ⅱ)	1.2mg/L	1.2mg/L	H29:1.2mg/L H30:1.0mg/L	1.1mg/L (1.0~1.2)	1.0mg/L (変動範囲の 下限値)	1.0mg/L
T-P	0.01mg/L (湖沼Ⅱ)	0.080mg/L	0.086mg/L	H29:0.074mg/L H30:0.075mg/L	0.082mg/L (0.081~0.083)	0.081mg/L (変動範囲の 下限値)	0.080mg/L
ЖСОI	つは年75%値	、T-N、T-P	は年平均値を記載	載している。			

(1)類型指定

類型については、湖沼A類型・湖沼Ⅱ類型に相当する水道の利用があることから、引き続き「湖沼A類型・湖沼Ⅱ類型」とする。

(2) 達成期間 (暫定目標の設定を含む)

COD については、平成 23 年度から平成 28 年度の現況値 (75%値)、令和 7 年度の水質予測結果 (75%値 2.1mg/L) ともに、基準値 (3mg/L) を下回っていることから、暫定目標は設定せず、達成期間は、引き続き【イ 直ちに達成】とする。

T-N 及び T-P については、令和 7 年度の水質予測結果(T-N 1.1mg/L、T-P 0.082mg/L)は湖沼 II 類型の基準値(T-N 0.2mg/L、T-P 0.01mg/L)を大きく上回り、現在見込み得る対策を行ったとしても、5 年後において達成が困難なため、達成期間は【ニ 段階的に暫定目標を達成しつつ、環境基準の可及的速やかな達成に努める。】とする。

令和7年度までの暫定目標については、T-Nは、近年、将来水質予測結果を下回る実績値があることから、より良好な水質の実現が見込まれると判断し、将来水質予測結果の変動範囲の下限値である T-N 1.0mg/L と設定する。また、T-P は、将来水質予測結果の変動範囲の下限値(0.081mg/L)が従前の暫定目標を上回っているが、近年、従前の暫定目標を満たす年があることから、実現可能と考えられる最も低い値として現行の暫定目標を据え置き、T-P 0.080mg/L と設定し、今後、経過を見守りつつ、引き続き、段階的な水質改善を図ることとする。

<参考:異常値の除外の考え方>

対数正規分布による異常値の除外の検討を行った。除外の候補とされた測定値について、藻類の異常増殖や出水の影響等を総合的に勘案し、異常値の除外を判断した。

表 2.1.64 相模ダム貯水池における異常値の候補と除外有無の判定(COD)

(異常値判定時の上限値: 3.8mg/L, 下限値: 1.0mg/L)

年度	年月	COD (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
19	2008/2/6	0.85	2	除外しない	降雨・藻類の異常発生等の 影響は考えられない。	前3日の降水量は26.0mm。
21	2009/5/13	4.1	52	除外する	藻類の異常発生がみられる	前3日の降水量は0mm。
25	2013/9/11	7.4	100	除外する	藻類の異常発生がみられる	前3日の降水量は12mm。
26	2014/8/6	4.2	100	除外する	藻類の異常発生がみられる	前3日の降水量は0mm。
	2016/8/3	4.2	46	除外する	降雨の影響がみらえる	前3日の降水量は46.5mm

[※]降水量は相模湖観測所のデータを参考とした。

表 2.1.65 相模ダム貯水池における異常値の候補と除外有無の判定 (T-N)

(異常値判定時の上限値: 1.7mg/L, 下限値: 0.85mg/L)

年度	年月	T-N (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
21	2009/4/23	2.2	11		降雨・藻類の異常発生等の影響は考えられない。	前3日の降水量は17.5mm.。
21	2009/7/8	0.59	41		降雨・藻類の異常発生等の影響は考えられない。	前3日の降水量は3.5mm.
21	2009/9/9	1.9	9.8		降雨・藻類の異常発生等の影響は考えられない。	前3日の降水量は0mm。
30	2018/8/23	0.81	34		降雨・藻類の異常発生等の影響は考えられない。	当日に33mmの降水あり。

[※]降水量は相模湖観測所のデータを参考とした。

表 2.1.66 相模ダム貯水池における異常値の候補と除外有無の判定 (T-P)

(異常値判定時の上限値: 0.15mg/L, 下限値: 0.040mg/L)

年度	年月	T-P (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
20	2008/8/13	0.034	55		降雨・藻類の異常発生等の影響は考えられない。	前3日の降水量は0mm。
20	2008/9/10	0.034	9.2	除外する	降雨の影響がみらえる	前3日の降水量は63.5mm。
21	2009/7/8	0.024	41		降雨・藻類の異常発生等の影響は考えられない。	前3日の降水量は3.5mm。
22	2010/7/7	0.038	16		降雨・藻類の異常発生等の影響は考えられない。	前3日の降水量は15mm。
24	2012/9/5	0.028	9.9	除外する	降雨の影響がみらえる	前3日の降水量は37.5mm。
29	2017/9/13	0.018	16	IKT AL 7 ()	降雨・藻類の異常発生等の影響は考えられない。	前3日の降水量は0mm。

[※]降水量は相模湖観測所のデータを参考とした。

2.2. 城山ダム貯水池 (津久井湖)

現在、湖沼AII類型が適用されている城山ダム貯水池においては、全窒素(以下、「T-N」という。)・全燐(以下、「T-P」という。)について、令和2年度までの暫定目標が設定されており、その見直しを検討した。

具体的には以下に示す検討を行い、類型指定を検討した。

■各節における検討概要(サマリー)

2.2.1. 城山ダムの概要

城山ダムの概要について、既存資料から整理した。

2.2.2. 城山ダム貯水池周辺の環境基準類型指定状況

城山ダム貯水池周辺の環境基準類型指定の状況について整理した。 城山ダム貯水池は、現在湖沼 A II 類型に指定されている。

2.2.3. 城山ダム貯水池の水質状況

城山ダムの水質について、水質測定データ、既存資料等から整理した。

T-Nの当てはめ有無を判定するための全窒素/全燐(以下、「T-N/T-P」という。) 比について整理した。

■T-Nの基準の適用有無

異常値除外を行った水質データでは、1 年度(H17)で T-N/T-P 比が 20 以下、全ての年度 で T-P 濃度が 0.02mg/L 以上となることから、T-N の基準値は適用となる。

2.2.4. 城山ダム貯水池の利水状況

城山ダムの利水状況、漁業権の設定状況等水産利用について、既存資料及び関係機関ヒアリング結果より整理した。

■利用状況等から見た適用類型

ダム下流に湖沼 AⅡ類型に相当する上水取水(水道2級の浄水場)がある。

⇒引き続き、湖沼 AII 類型に指定することが考えられる。

2.2.5. 城山ダム貯水池にかかる水質汚濁負荷量

城山ダムの将来水質予測を実施するにあたり、城山ダム貯水池流域の現況および将来の水質汚濁負荷量について、収集データ等から算定した。

■自然由来(湧水由来)の窒素、燐の取扱いについて

城山ダムにおいては、自然由来(湧水由来)の栄養塩(窒素、燐)の取扱いが課題となっていたが、平成30年度~令和元年度にかけて「類型指定見直しの検討に向けた検討会」を開催して検討した結果、以下の通りとする。

- ・ 窒素については、自然由来と明瞭に判断できる知見が得られていないこと、既往研究 事例を踏まえると、これまでの検討で用いている山林の原単位が実態に比べて過少で あると考えられることから、これまでのように、湧水負荷を別途計上するのではなく、 山林原単位の変更により対応する。
- ・ 燐ついては、新たに文献・資料を追加収集し、整理した結果、相模川の燐が高濃度であることは、富士山麓における地下水の影響(地質が燐を多く含む玄武岩質であるため)であることが明らかとなったことから、これまで同様、湧水負荷を別途計上する方法により対応する。

2.2.6. 城山ダム貯水池 (津久井湖) の将来水質予測

城山ダムの現況水質、現況及び将来の汚濁負荷量より、将来の水質予測(化学的酸素要求量(以下、「COD」という。)、T-N、T-P)を行った。

■将来水質予測結果(R7)

T百	Ī	城山ダム貯水池				
块	, ¤	将来水質(mg/L)	変動範囲(mg/L)			
COD水質	75%値	2.2	2.0~2.4			
T-N水質	年平均値	1.1	1.0~1.2			
T-P水質	年平均値	0.049	$0.044 \sim 0.054$			

2.2.7. 城山ダム貯水池(津久井湖)の水域類型指定

以上までの検討結果を踏まえ、城山ダム貯水池の類型指定を検討した。

基準値 (類型)	R2までの 新定日標	THE RESERVE THE PROPERTY OF THE PARTY OF THE	H29,H30水質	R7水質予測	改善目標値	R7までの 暫定目標
3mg/L (湖沼A)	- EXC 178	2.2mg/L	H29:2.1mg/L H30:2.8mg/L	2.2mg/L (2.0~2.4)	-	設定しない
0.2mg/L (湖沼Ⅱ)	1.1mg/L	1.1mg/L	H29:1.1mg/L H30:0.9mg/L	1.1mg/L (1.0~1.2)	1.0mg/L (変動範囲の 下限値)	1.0mg/L
0.01mg/L (湖沼II)	0.042mg/L	0.051mg/L	H29:0.045mg/L H30:0.043mg/L	0.049mg/L (0.044~0.054)	0.044mg/L (変動範囲の 下限値)	0.042mg/L
	(類型) 3mg/L (湖沼A) 0.2mg/L (湖沼I) 0.01mg/L	(類型) 暫定目標 3mg/L (湖沼A) - 0.2mg/L (湖沼I) 1.1mg/L 0.01mg/L 0.042mg/l	(類型) 暫定目標 (6力年平均) 3mg/L (湖沼A) - 2.2mg/L 0.2mg/L (湖沼II) 1.1mg/L 1.1mg/L 0.01mg/L 0.042mg/L 0.051mg/L	(類型) 暫定目標 (6力年平均) H29:H307K質 H29:L1mg/L H30:2.8mg/L H30:2.8mg/L H30:2.8mg/L H30:0.9mg/L H30:0.9mg/L H29:0.045mg/L H20:0.045mg/L H20:0.045mg/L H20:0.045mg/L H20:0.045mg/L H20:0	(類型) 暫定目標 (6力年平均) H29.H30水質 R7水質予測 R7・表質予測 R7・表質	(類型) 暫定目標 (6力年平均) H29:A130水質 R7水質予測 改善目標値 公書目標値 R7水質予測 改善目標値 R7水質予測 改善目標値 R7水質予測 改善目標値 R7水質予測 改善目標値 R7水質予測 改善目標値 R7水質予測 改善目標値 R7水質予測 公書目標値 R7水質予測 C2.2mg/L (2.0~2.4) E2.2mg/L (2.

※CODは年75%値、T-N、T-Pは年平均値を記載している。

(1)類型指定

類型については、湖沼A類型・湖沼Ⅱ類型に相当する水道の利用があることから、引き続き 「湖沼A類型・湖沼Ⅱ類型」とする。

(2)達成期間(暫定目標の設定を含む)

- ・ COD については、平成 23 年度から平成 28 年度の現況値 (75%値)、令和 7 年度の水質予測結果 (75%値 2.2mg/L) ともに、基準値 (3mg/L) を下回っていることから、暫定目標は設定せず、達成期間は、引き続き【イ直ちに達成】とする。
- ・ T-N 及び T-P については、令和 7 年度の水質予測結果(T-N 1.1mg/L、T-P 0.049mg/L)は湖 沼 Ⅱ 類型の基準値(T-N 0.2mg/L、T-P 0.01mg/L)を大きく上回り、現在見込み得る対策を行ったとしても、5 年後において達成が困難なため、達成期間は【ニ 段階的に暫定目標を達成しつつ、環境基準の可及的速やかな達成に努める。】とする。
- ・ 令和7年度までの暫定目標については、T-N は、近年、将来水質予測結果を下回る実績値があることから、より良好な水質の実現が見込まれると判断し、将来水質予測結果の変動範囲の下限値である T-N 1.0mg/L と設定する。また、T-P は、近年の水質の実測値が、従前の暫定目標値(0.042mg/L)を上回って推移しており、将来水質予測結果の変動範囲の下限値(0.044mg/L)も従前の暫定目標を上回っているが、過去に従前の暫定目標を満たす年があったことから、、実現可能と考えられる最も低い値として現行の暫定目標を据え置き、T-P 0.042mg/L と設定し、今後、経過を見守りつつ、引き続き、段階的な水質改善を図ることとする。

2.2.1. 城山ダムの概要

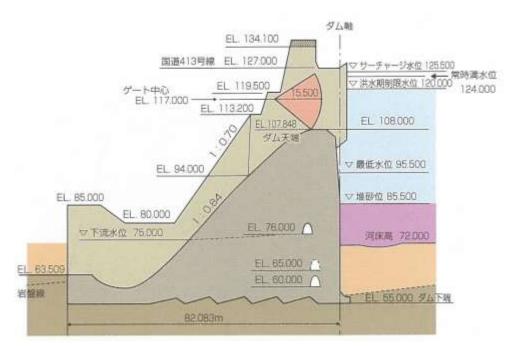
相模川は富士山麓の山中湖を源流とし、山梨県大月市で笹子川、葛野川と合流し、神奈川県に入り相模湖・津久井湖を過ぎると南下を始め、道志川、中津川等の支川を集め、県中央部を流下し相模湾に注ぐ全長113km、流域面積1,680km²の神奈川県最大の1級河川であり、流域内人口は約133万人である。

古くから流域の生活用水・かんがい用水・漁業等に広く利用されてきており、現在も神奈川県内の生活用水の約60%は相模川水系から取水されており、一部は東京都にも分水されている。このような水需要に対応するとともに、流域の住民を洪水から守るため、相模川においては古くからダム開発が進められた。

城山ダムは、相模川に建設されたダムで、神奈川県相模原市に位置し、その流域は相模川 上流部に位置する。また、本ダムは、水道用水、工業用水、発電及び洪水調節を目的として、 昭和40年に竣工したダムである。

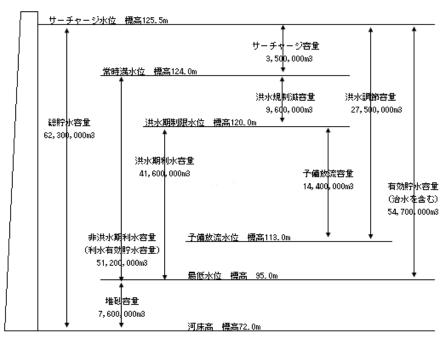
城山ダムの概要および諸元を表 2.2.1、表 2.2.2、城山ダムの断面図及び容量配分図を、図 2.2.1、図 2.2.2、城山ダム貯水池流域図を図 2.2.3 に示した。

(1)ダム名称	城山ダム
(2)管理者	神奈川県企業庁
(3) ダム所在地	左岸 神奈川県相模原市緑区川尻字水源 右岸 神奈川県相模原市緑区太井字葵
(4)水系名・河川名	相模川水系相模川
(5)水域	城山ダム貯水池(津久井湖)(全域)
(6)集水面積	1, 201. 3 (km ²)
(7)環境基準類型	湖沼 A (直ちに達成) 湖沼 II (令和 2 年度までの暫定目標: T-N1.1mg/L T-P0.042 mg/L ※本来の湖沼 II類型は T-N0.2mg/L 以下, T-P0.01mg/L 以下)


表 2.2.1 城山ダムの概要

出典:「城山ダム 相模川総合開発事業」(神奈川県企業庁 相模川水系ダム管理事務所(城山ダム管理事務所)) 「平成28年度神奈川県_公共用水域及び地下水の水質測定結果」(神奈川県) 「「河川及び湖沼が該当する水質汚濁に係る環境基準の水域類型の指定に関する件」(告示)の改正について」(環境省)

表	2.	2.	2	城山ダム	の諸元
-1			_	720 —	~ ~ ~ ~ ~ ~ ~


(1)堰長	260 (m)
(2)堤高	75 (m)
(3)総貯水容量	62, 300 (千 m³)
(4)有効貯水容量	54,700 (千 m³)
(5)サーチャージ水位	125.50 (ELm)
(6)年平均滞留時間※	12.6 (日)

※年平均滞留時間=有効貯水容量/年平均流入量(それぞれ H23~H27 の滞留時間を求めて平均を算出) 出典:「城山ダム 相模川総合開発事業」(神奈川県企業庁相模川水系ダム管理事務所(城山ダム管理事務所)) ダム諸量データベース(http://mudam.nilim.go.jp/home)

出典:「城山ダム 相模川総合開発事業」(神奈川県企業庁 相模川水系ダム管理事務所(城山ダム管理事務所))

図 2.2.1 城山ダム断面図

洪水期: 6月 1日〜10月15日 非洪水期:10月16日〜5月31日 サーチャージ水位:洪水期満水位をいう

出典:神奈川県 城山ダム・寒川取水堰(せき)WEBページ (http://www.pref.kanagawa.jp/docs/vh6/cnt/f8018/p45936.html)

図 2.2.2 城山ダム容量配分図

城山ダム 流域図

資料:国土数値情報[流域界・非集水域 (KS-273)] (国土交通省) をもとに国土地理院の数値地図 200000 (地図画像) を用いて作成した。

図 2.2.3 城山ダム貯水池流域図

2.2.2. 城山ダム貯水池周辺の環境基準類型指定状況

城山ダム貯水池周辺及び、相模川流域の水域類型指定状況を、表 2.2.3 及び図 2.2.4 に示した。

表 2.2.3 城山ダム貯水池周辺の水域類型指定状況

水域名称	水域	該当類型	達成期間	指定年月日	
相模川水系の 相模川(桂川を 含む)	相模川上流(2) (柄杓流川合流点 から城山ダムより 上流。 ただし、相模ダム貯 水池(相模湖)(全 域)及び城山ダム貯 水池(津久井湖)(全 域)を除く。)	河川 A	ハ	昭和 48 年 3 月 31 日	環境庁 告示
	相模ダム貯水池 (相模湖) (全域)	湖沼 A 湖沼 Ⅱ ^{注1}	イ ニ	平成 22 年 9 月 24 日	環境省 告示
	城山ダム貯水池 (津久井湖) (全域)	湖沼 A 湖沼 II ^{注 2}	イ ニ	平成 22 年 9 月 24 日	環境省 告示

注 1) 令和 2 年度までの暫定目標: T-N 1. 2mg/L 以下、T-P 0. 080mg/L 以下 注 2) 令和 2 年度までの暫定目標: T-N 1. 1mg/L 以下、T-P 0. 042mg/L 以下

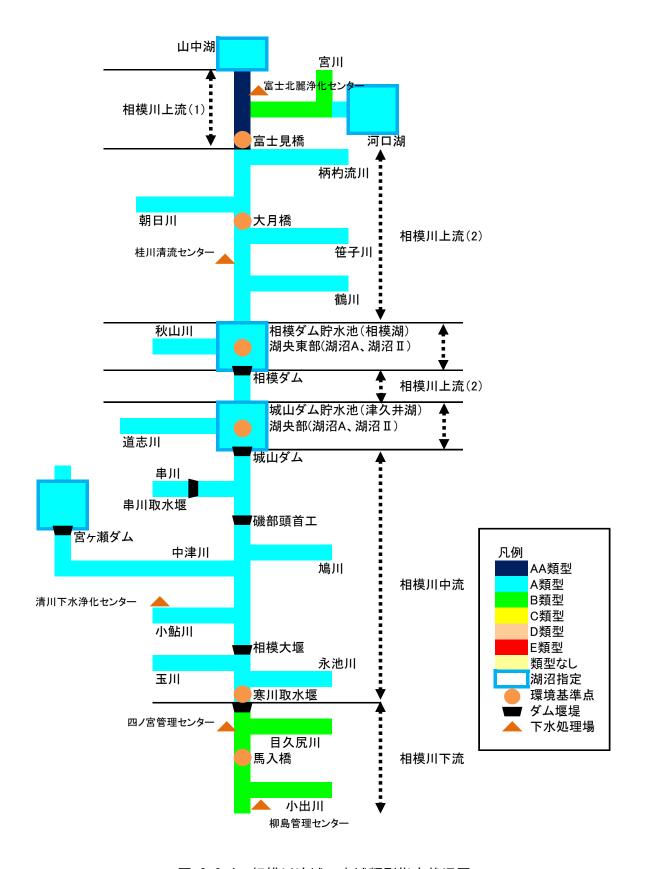
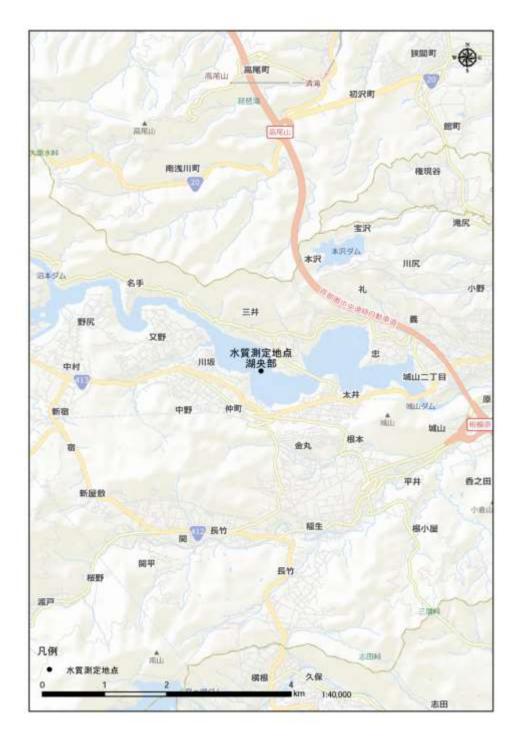



図 2.2.4 相模川流域の水域類型指定状況図

2.2.3. 城山ダム貯水池の水質状況

(1) 城山ダム貯水池の水質状況

城山ダム貯水池の水質測定地点を図 2.2.5 に示した。また、城山ダム貯水池の水質測定地点における水質 (pH、DO、SS、大腸菌群数、BOD、COD、T-N、T-P、底層 DO、水温) の推移を、表 2.2.4、図 2.2.6 に示した。

資料:水質測定地点は、水環境総合情報サイト(環境省)https://water-pub.env.go.jp/water-pub/mizu-site/公共用水域水質測定データ(水質測定点データ)2017年度の緯度経度情報より作成した。

図 2.2.5 城山ダム貯水池の水質測定地点

表 2.2.4(1) 城山ダム貯水池水質経年変化

				T T	人员				1-1		/፣ \ 🔨	₩.	
年度	П.			Hç							mg/L)全		
	最小		最大		m/n	平均	75%値	最小		最大	m/n	平均	75%値
Н9	7. 6	\sim	8.3	0	/ 12	_	_	9. 1	\sim	12. 9	0 / 12	10. 5	_
H10	7. 5	\sim	9. 2	2	/ 12	_	_	8.9	\sim	13. 2	0 / 12	10. 3	_
H11	7.6	\sim	9. 2	2	/ 12	_	_	9. 4	\sim	13.8	0 / 12	10.6	_
H12	7.6	\sim	9. 1	3	/ 12	_	_	7. 2	\sim	15. 0	1 / 12	10.8	
H13	7.6	\sim	9.0	5	/ 12	_	_	8.8	\sim	14. 4	0 / 12	11. 3	-
H14	7. 6	\sim	9. 5	4	/ 12	_	_	9.5	\sim	16. 5	0 / 12	11. 0	_
H15	7. 6	\sim	9. 0	4	/ 12	_	_	9. 2	\sim	15. 6	0 / 12	11. 8	_
H16	7. 7	~.	9. 1	5	/ 12	_	_	10. 2	\sim	14. 6	0 / 12	11.5	_
	7.6	_	9. 1		/ 12	_			~			22,0	
H17		\sim		4	/ 12			7.6	-	<u>15. 5</u>	0 / 12	11. 5	
H18	7.6	\sim	8. 4	0	/ 12			5.5	\sim	10.7	3 / 12	8.4	-
H19	6.8	\sim	7.7	0	/ 12	_	_	6.6	\sim	10.9	2 / 12	9. 1	-
H20	7. 2	\sim	7.8	0	/ 12	_	-	7. 5	\sim	11.5	1 / 12	9. 7	_
H21	7. 1	\sim	7. 9	0	/ 12	_	_	5. 3	\sim	12. 6	4 / 12	9. 0	
H22	7.4	\sim	8. 2	0	/ 12	-	_	5. 3	\sim	12. 3	3 / 12	9. 2	ı
H23	7.6	\sim	8. 3	0	/ 11	-	-	7.6	$ \sim $	11.0	0 / 11	9.8	_
H24	7.4	\sim	8. 1	0	/ 12	_	_	7.4	\sim	11. 9	1 / 12	9.4	_
H25	7.4	~	8.6	1	/ 12	_	_	2.6	\sim	11.8	1 / 12	9. 1	-
H26	7. 4	\sim	8. 7	1	/ 12	_	_	5. 6	\sim	19. 1	3 / 12	9. 5	_
H27	7.7	$ \sim $	8. 4	0	/ 12	_	_	6.8	~	12. 4	1 / 12	9. 7	_
H28	7. 9	۱	8. 5	0	/ 12			6. 2	\sim	12. 4	2 / 12	9. 7	
				_	/ 14				_				
H29	7.4	\sim	8.8	1	/ 12	_	_	6. 2	\sim	14. 2	3 / 12	9.8	_
H30	7.7	\sim	8.5	0	/ 12	-	-	7. 7	\sim	13.7	0 / 12	10.1	-
年度			SS (1						一大	腸菌群数			
	最小		最大	_	m/n	平均	75%値	最小		最大	m/n	平均	75%値
H9	1.0	\sim	10.0	0	/ 12	4.0	_	230	\sim	13000	3 / 12	1900	_
H10	1.0	\sim	120.0	1	/ 12	13.0	-	330	\sim	4900	1 / 12	630	-
H11	1.0	\sim	8. 0	0	/ 12	3.0	_	230	\sim	2200	1 / 12	310	_
H12	1.0	\sim	8. 0	0	/ 12	4.0	_	5	\sim	11000	3 / 12	1200	
H13	1. 0	\sim	5. 0	0	/ 12	3. 0	_	49	\sim	14000	5 / 12	3100	_
H14	1. 0	\sim	9. 0	0	/ 12	4.0	_	110	\sim	4900	2 / 12	760	_
H15	1.0	\sim	6. 0	0	/ 12	3. 0	_	33	\sim	24000	5 / 12	3100	_
H16	1.0	2	13. 0	0	/ 12	4. 0	_	130	\sim	17000	5 / 12	2300	_
		-		_	/ 12				_				
H17	1.0	\sim	20.0	0	/ 12	5. 0	_	49	\sim	28000	7 / 12	4100	
H18	2.0	\sim	8. 5	0	/ 12	4. 3	_	140	\sim	13000	3 / 12	1553	_
H19	1.5	\sim	34. 5	1	/ 12	6.7	_	13	\sim	7900	4 / 12	1933	_
H20	1.5	\sim	7. 0	0	/ 12	4.0	_	230	\sim	240000	4 / 12	21758	ı
H21	1.0	\sim	18. 5	0	/ 12	6.0	_	33	$ \sim $	2200	3 / 12	524	_
H22	1.5	\sim	6. 5	1	/ 12	3.6	_	0	\sim	330	0 / 12	61	_
H23	2. 0	\sim	20.0	2	/ 11	6.3	_	8	\sim	330	0 / 11	195	-
H24	1. 5	\sim	18. 5	5	/ 12	5. 2	_	33	\sim	4000	4 / 12	1139	_
H25	1. 0	\sim	14. 5	5	/ 12	5.6	_	13	\sim	49000	5 / 12	5173	_
H26	2. 0	~.	8. 0	6	/ 12	4. 9	_	8	\sim	1400	2 / 12	412	_
H27	3. 0	_	46. 0	5	/ 12	9. 1	_	11	\sim		0 / 12		_
									\sim	490		248	
H28	2.0	\sim	8. 0	2	/ 12	4. 1	_	23		130000	4 / 12	13471	-
H29	2.0	\sim	37. 0	7	/ 12	8.7	_	13	\sim	7900	6 / 12	1949	
H30	1.5	\sim	24. 5	5	/ 12	6.0	_	2	\sim	79	0 / 12	31	
年度			BOD	(mg/	/L) 全						(mg/L)	2層	
1/2	最小		最大	1	m/n	平均	75%値	最小		最大	m/n	平均	75%値
Н9	0. 5	\sim	1.7	0	/ 12	1.1	1. 2	2. 1	$ \sim $	3. 2	- / 12	2. 4	2. 5
H10	0.3	\	1.9	0	/ 12	0.9	1. 1	1.4	\sim	3.8	- / 12	2. 0	2. 1
H11	0.0	\sim	1. 9	0	/ 12	1.3	1. 4	1.8	\sim	3. 1	- / 12		2. 3
H12	0. 7	\sim	2. 1	1	/ 12	1. 3	1. 4	1.6	\sim	3. 2	- / 12		2. 6
H13	0. 3	\sim	3. 0	0	/ 12	1.4	1. 5	1. 4	\sim	3. 9	- / 12		3. 0
H14	0. 5	\sim	4. 7	0	/ 12	1. 1	1. 0	1.6	\sim	5. 4	- / 12	2. 4	2. 2
H15	0.4	\sim	1. 8	0	/ 12	1. 2	1.6	1. 4	\sim	3. 2	- / 12	2. 3	2. 5
H16	0. 4	\sim	2. 1	2	/ 12	1. 3	1. 8	1. 3	~	3. 5	- / 12	2. 2	2. 7
H17	0. 9	\sim	5. 0		/ 12	1. 3	2. 3	1. 7	~		- / 12		3. 9
				4		1.9			-	6.4		4.9	
H18	0.5	\sim	2.6	2	/ 12	1.2	1.5	1.4	\sim	3.9	/ 10	2. 3	2.7
H19	0.8	\sim	2. 4	1	/ 12	1.4	1.9	1.1	\sim	3.6	- / 12		3.0
H20	0.6	\sim	1. 9	0	/ 12	1.1	1.5	1.6	\sim	3.0	- / 12	2. 1	2. 1
H21	0.7	\sim	3. 5	2	/ 12	1.6	1.6	1.5	\sim	4.9	- / 12		2. 7
H22	0.6	\sim	2. 7	_	/ 12	1.3	1. 5	1. 2	\sim	2.8	0 / 12		2. 2
H23	0.3	\sim	2. 7	_	/ 11	1.2	1. 3	1.3	\sim	3. 2	1 / 11	1.8	2.0
H24	0.4	\sim	3. 2	-	/ 12	1. 1	1. 3	1. 2	\sim	4. 1	1 / 12	1. 9	2.0
H25	0. 4	\sim	4. 5	-	/ 12	1. 3	1. 6	1. 3	\sim	5. 2	2 / 12		2. 6
H26	0. 7	\sim	3. 0		/ 12	1.4	1. 4	1. 2	\sim	3.8	1 / 12	1. 9	2. 1
H27	0.6	\sim	6. 3	-	/ 12	1.8	1. 5	1. 6	\sim	6. 0	3 / 12	2.6	2. 5
H28	0. 5	~	2. 1	-	/ 12	1. 2	1. 5	1. 4	~	2. 9	0 / 12		2. 4
H29	0. 3	~	1. 8	-	/ 12	1. 1	1. 3	1.4	~	2. 6	0 / 12		2. 4
<u>н29</u> Н30	0. 4	~	3. 5		/ 12	1. 1	1. 9	1. 3	\sim	4.5	4 / 12		3.6
		_						1. 3		4. 0	14 / 12	<u> </u>	ა. წ
					THE LOCK 11 1/16	きを満足しな	O						

注) m/n欄は、n:測定実施日数、m:環境基準を満足しない日数

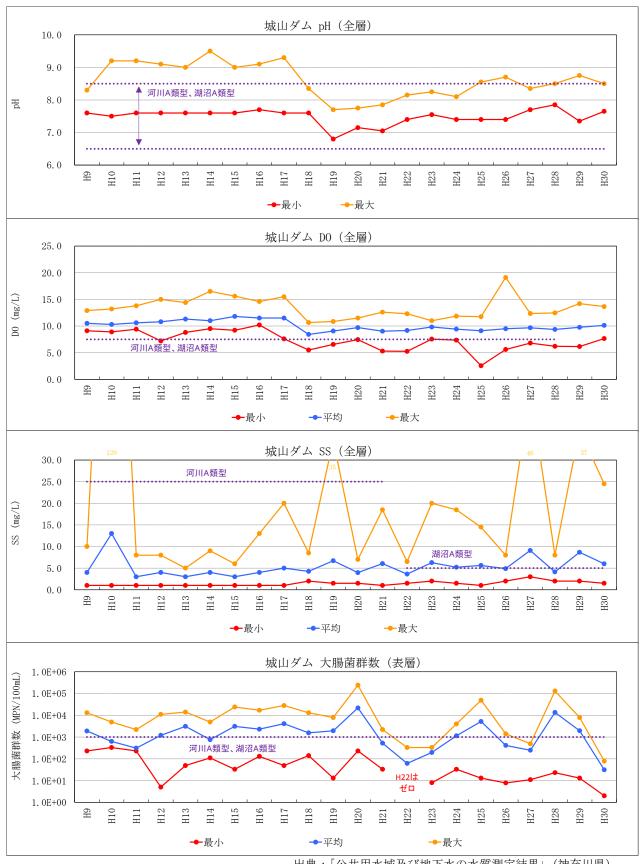
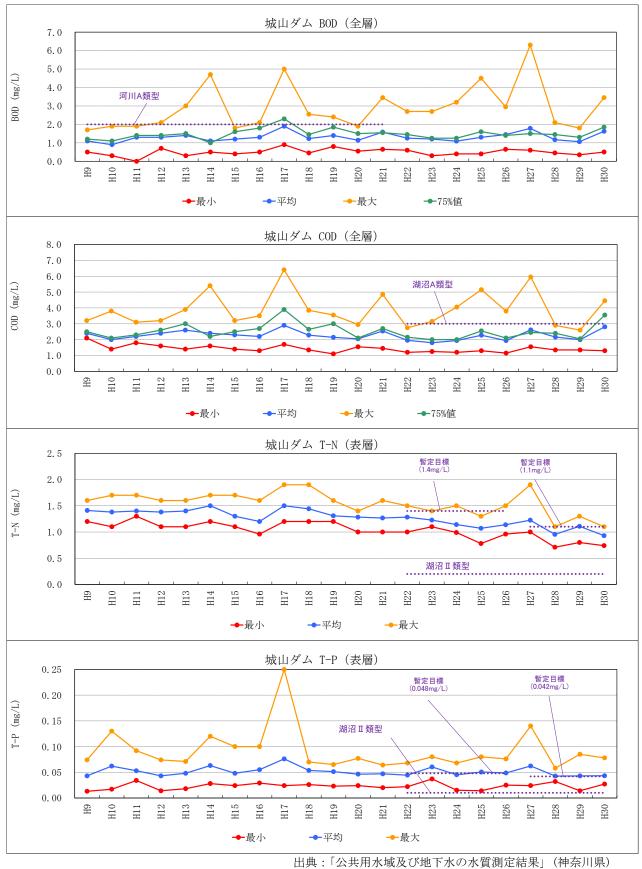

出典:「公共用水域及び地下水の水質測定結果」(神奈川県)

表 2.2.4(2) 城山ダム貯水池水質経年変化(続き)

		T NI	(mg/L) 表	균			ΤЪ	(mg/L) 表	园	
年度	B I	1-1/1			550/ FH	e i				550/H
	最小	最大	m/n	平均	75%値	最小	最大	m/n	平均	75%値
H9	1.2 ~	1.6	- / 12	1.4	_	0.013	0.011	- / 12	0.043	_
H10	1.1 ~	1. 7	- / 12	1.4	-	0.017	0.100	- / 12	0.062	_
H11	1.3 ∼	1. 7	- / 12	1.4	-	0.034 ~	0.002	- / 12	0.053	_
H12	1.1 ~	1.6	- / 12	1.4	_	0.014	0.011	- / 12	0.043	_
H13	1.1 ~	1.6	- / 12	1.4	_	0.018 ~	0.011	- / 12	0.048	_
H14	1.2 ~	1. 7	- / 12	1.5	_	0.028 ~	0.120	- / 12	0.063	_
H15	1.1 ~	1.7	- / 12	1.3	_	0.024 ~	0.100	- / 12	0.048	_
H16	1.0	1.6	- / 12	1.2	_	0.029 ~	0.100	- / 12	0.055	_
H17	1.2 ~	1. 9	- / 12	1.5	_	0.024 ~	0.250	- / 12	0.076	_
H18	1.2	1. 9	- / 12	1.4	_	0.026	0.070	- / 12	0.054	_
H19	1.2 ~	1. 6	- / 12	1. 3	_	0.023	0.065	- / 12	0.051	_
H20	1.0 ~	1. 4	- / 12	1.3	_	0.024 ~	0.077	- / 12	0.046	_
H21	1.0 ~	1. 6	- / 12	1.3	_	0.020 ~		- / 12	0.047	_
H22	1.0 ~	1. 5	12 / 12	1.3	_	0.022 ~	0.068	12 / 12	0.044	_
H23	1.1 ~	1. 4	11 / 11	1.2	_	0.037 ~		11 / 11	0.060	_
H24	1.0 ~	1. 5	12 / 12	1. 1	_	0.015 ~	0.068	12 / 12	0.045	
H25	0.8 ~	1. 3	12 / 12	1. 1	_	0.014		12 / 12	0.051	
H26	1.0 ~	1.5	12 / 12	1.1	_	0.025 ~		12 / 12	0.049	-
H27	1.0 ~	1. 9	12 / 12	1.2	_	0.024 ~	0.140	12 / 12	0.062	-
H28	0.7 ~	1. 1	12 / 12	1.0	_	0.032 ~		12 / 12	0.043	_
H29	0.8 ~	1. 3	12 / 12	1. 1	_		~ 0.085	12 / 12	0.043	_
H30	0.7 ~	1. 1	12 / 12	0. 9	_		~ 0.078	12 / 12	0.043	_
		水温(℃) 全層								
一曲		DO(mg/	化) 卜僧(低	も、増り			7代注	県(℃) 全層	i	
年度	最小	DO(mg/ 最大			75%値	最小	水			75%値
	最小 0 2 ~	最大	m/n	平均	75%値 -	最小 6 4 6	最大	m/n	平均	75%値 -
Н9	0.2 ~	最大 12.6	m/n 4 / 12	平均 7.7		6.4	最大 ~ 24.3	m/n - / 12	平均 15.0	75%値 - -
H9 H10	0.2 ~ 4.6 ~	最大 12.6 11.1	m/n 4 / 12 3 / 12	平均 7.7 8.6	_	6. 4 6. 5 6	最大 ~ 24.3 ~ 21.7	m/n - / 12 - / 12	平均 15.0 14.5	-
H9 H10 H11	0.2 ~ 4.6 ~ 1.3 ~	最大 12.6 11.1 9.5	m/n 4 / 12 3 / 12 6 / 12	平均 7.7 8.6 7.3	-	6. 4 ~ 6. 5 ~ 7. 0 ~	最大 ~ 24.3 ~ 21.7 ~ 21.4	m/n - / 12 - / 12 - / 12 - / 12	平均 15.0 14.5 14.6	<u>-</u>
H9 H10 H11 H12	$ \begin{array}{c cccc} 0.2 & \sim \\ 4.6 & \sim \\ 1.3 & \sim \\ 0.6 & \sim \end{array} $	最大 12.6 11.1 9.5 10.7	m/n 4 / 12 3 / 12 6 / 12 5 / 12	平均 7.7 8.6 7.3 6.7	_ _ _	6. 4	最大 24.3 21.7 21.4 24.1	m/n - / 12 - / 12 - / 12 - / 12 - / 12	平均 15.0 14.5 14.6 14.9	_ _ _
H9 H10 H11 H12 H13	0. 2 ~ 4. 6 ~ 1. 3 ~ 0. 6 ~ 0. 2 ~	最大 12.6 11.1 9.5 10.7 10.8	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7	- - - -	6. 4	最大 24.3 21.7 21.4 24.1 24.2	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 15.0 14.5 14.6 14.9 14.1	- - - -
H9 H10 H11 H12 H13 H14	0. 2 ~ 4. 6 ~ 1. 3 ~ 0. 6 ~ 0. 2 ~ 0. 9 ~	最大 12.6 11.1 9.5 10.7 10.8 10.8	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 6.7	- - - -	6. 4	最大 24.3 21.7 21.4 24.1 24.2 22.7	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 15.0 14.5 14.6 14.9 14.1 13.9	- - - -
H9 H10 H11 H12 H13 H14 H15	0. 2 ~ 4. 6 ~ 1. 3 ~ 0. 6 ~ 0. 2 ~ 0. 9 ~ 0. 7 ~	最大 12.6 11.1 9.5 10.7 10.8 10.8	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12 - / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 6.7 7.3	- - - - -	6. 4	最大 - 24.3 - 21.7 - 21.4 - 24.1 - 24.2 - 22.7 - 21.0	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 15.0 14.5 14.6 14.9 14.1 13.9 13.8	- - - - -
H9 H10 H11 H12 H13 H14 H15 H16	0. 2 ~ 4. 6 ~ 1. 3 ~ 0. 6 ~ 0. 2 ~ 0. 9 ~ 0. 7 ~ 0. 9 ~	最大 12.6 11.1 9.5 10.7 10.8 10.8 11.1	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 6.7 7.3 6.1	- - - - -	6. 4	最大 - 24.3 - 21.7 - 21.4 - 24.1 - 24.2 - 22.7 - 21.0 - 19.8	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 15.0 14.5 14.6 14.9 14.1 13.9 13.8 13.4	- - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17	0. 2 ~ 4. 6 ~ 1. 3 ~ 0. 6 ~ 0. 2 ~ 0. 9 ~ 0. 7 ~ 0. 9 ~ 1. 4 ~	最大 12.6 11.1 9.5 10.7 10.8 10.8 11.1 11.1	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 6.7 7.3 6.1 7.5	- - - - - -	6. 4	最大 - 24.3 - 21.7 - 21.4 - 24.1 - 24.2 - 22.7 - 21.0 - 19.8 - 22.8	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 15.0 14.5 14.6 14.9 14.1 13.9 13.8 13.4 14.2	- - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17	0. 2 ~ 4. 6 ~ 1. 3 ~ 0. 6 ~ 0. 2 ~ 0. 9 ~ 0. 7 ~ 0. 9 ~ 1. 4 ~ 0. 1 ~	最大 12.6 11.1 9.5 10.7 10.8 10.8 11.1 11.1 11.7	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 6.7 7.3 6.1 7.5 6.2	- - - - - - - -	6. 4	最大	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 15.0 14.5 14.6 14.9 14.1 13.9 13.8 13.4 14.2 14.5	- - - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18	0. 2 ~ 4. 6 ~ 1. 3 ~ 0. 6 ~ 0. 2 ~ 0. 9 ~ 0. 7 ~ 0. 9 ~ 1. 4 ~ 0. 1 ~ 2. 2 ~	最大 12.6 11.1 9.5 10.7 10.8 10.8 11.1 11.1 11.7 10.4 10.7	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 6.7 7.3 6.1 7.5 6.2 7.9	- - - - - - - -	6. 4	最大	m/n - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 15.0 14.5 14.6 14.9 14.1 13.9 13.8 13.4 14.2 14.5 13.8	- - - - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19	0. 2 ~ 4. 6 ~ 1. 3 ~ 0. 6 ~ 0. 2 ~ 0. 9 ~ 0. 7 ~ 0. 9 ~ 1. 4 ~ 2. 2 ~ 4. 6 ~	最大 12.6 11.1 9.5 10.7 10.8 10.8 11.1 11.1 11.7 10.4 10.7	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 6.7 7.3 6.1 7.5 6.2 7.9	- - - - - - - - -	6. 4	最大 - 24.3 - 21.7 - 21.4 - 24.1 - 24.2 - 22.7 - 21.0 - 19.8 - 22.8 - 21.8 - 20.4 - 24.4	m/n - / 12	平均 15.0 14.5 14.6 14.9 14.1 13.9 13.8 13.4 14.2 14.5 13.8 14.2	- - - - - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21	0. 2 ~ 4. 6 ~ 1. 3 ~ 0. 6 ~ 0. 2 ~ 0. 9 ~ 0. 7 ~ 0. 9 ~ 1. 4 ~ 0. 1 ~ 2. 2 ~ 4. 6 ~ 2. 1 ~	最大 12.6 11.1 9.5 10.7 10.8 10.8 11.1 11.7 10.4 10.7 11.0	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 6.7 7.3 6.1 7.5 6.2 8.8 7.6	- - - - - - - - - -	6. 4	最大	m/n - / 12	平均 15.0 14.5 14.6 14.9 13.9 13.8 13.4 14.2 14.5 13.8	- - - - - - - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21	$\begin{array}{c cccc} 0.2 & \sim \\ 4.6 & \sim \\ 1.3 & \sim \\ 0.6 & \sim \\ 0.2 & \sim \\ 0.7 & \sim \\ 0.9 & \sim \\ 0.7 & \sim \\ 0.9 & \sim \\ 1.4 & \sim \\ 0.1 & \sim \\ 2.2 & \sim \\ 4.6 & \sim \\ 2.1 & \sim \\ 0.6 & \sim \\ \end{array}$	最大 12.6 11.1 9.5 10.7 10.8 10.8 11.1 11.7 10.4 10.7 11.0 11.5	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 7.3 6.1 7.5 6.2 7.9 8.8 7.6 6.9	- - - - - - - - - - - -	6. 4	最大 - 24.3 - 21.7 - 21.4 - 24.2 - 22.7 - 21.0 - 19.8 - 22.8 - 21.8 - 20.4 - 24.4 - 23.2 - 25.3	m/n - / 12	平均 15.0 14.5 14.6 14.9 14.1 13.9 13.8 13.4 14.2 14.5 13.8 14.2 14.4	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23	$\begin{array}{c cccc} 0.2 & \sim \\ 4.6 & \sim \\ 1.3 & \sim \\ 0.6 & \sim \\ 0.2 & \sim \\ 0.9 & \sim \\ 0.7 & \sim \\ 0.9 & \sim \\ 1.4 & \sim \\ 0.1 & \sim \\ 2.2 & \sim \\ 4.6 & \sim \\ 2.1 & \sim \\ 0.6 & \sim \\ 5.5 & \sim \\ \end{array}$	最大 12.6 11.1 9.5 10.7 10.8 11.1 11.7 10.4 10.7 11.0 11.5 11.7	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 7.3 6.1 7.5 6.2 7.9 8.8 7.6 6.9	- - - - - - - - - - - - - - - - - - -	6. 4	最大	m/n - / 12	平均 15.0 14.5 14.6 14.9 14.1 13.9 13.8 13.4 14.2 14.5 13.8 14.2 14.5	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 12.6 11.1 9.5 10.7 10.8 11.1 11.7 10.4 10.7 11.0 11.5 11.7	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 7.3 6.1 7.5 6.2 7.9 8.8 7.6 6.9 8.6	- - - - - - - - - - - - - - - - - - -	6. 4	最大	m/n - / 12	平均 15.0 14.5 14.6 14.9 14.1 13.9 13.8 13.4 14.2 14.5 13.8 14.2 14.5 13.8 14.2	- - - - - - - - - - - - - - - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24	$\begin{array}{c ccccc} 0.2 & \sim \\ 4.6 & \sim \\ 1.3 & \sim \\ 0.6 & \sim \\ 0.2 & \sim \\ 0.9 & \sim \\ 0.7 & \sim \\ 0.9 & \sim \\ 1.4 & \sim \\ 0.1 & \sim \\ 2.2 & \sim \\ 4.6 & \sim \\ 2.1 & \sim \\ 0.6 & \sim \\ 5.5 & \sim \\ 5.7 & \sim \\ 1.2 & \sim \\ \end{array}$	最大 12.6 11.1 9.5 10.7 10.8 11.1 11.7 10.4 10.7 11.0 11.5 11.7	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 6.7 7.3 6.1 7.5 6.2 7.9 8.8 7.6 6.9 8.6	- - - - - - - - - - - - - - - - - - -	6. 4	最大 24.3 21.7 21.4 24.1 24.2 22.7 21.0 19.8 22.8 21.8 20.4 24.4 23.2 25.3 26.1 25.3	m/n - / 12	平均 15.0 14.5 14.6 14.9 14.1 13.9 13.8 13.4 14.2 14.5 13.8 14.2 14.4 14.9 13.8	- - - - - - - - - - - - - - - - - - -
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 12.6 11.1 9.5 10.7 10.8 10.8 11.1 11.7 10.4 10.7 11.0 11.5 11.7 11.1 10.5 11.4	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 7.3 6.1 7.5 6.2 7.9 8.8 7.6 6.9 8.6	- - - - - - - - - - - - - - - - - - -	6. 4	最大 - 24.3 - 21.7 - 21.4 - 24.1 - 24.2 - 22.7 - 19.8 - 21.8 - 21.8 - 20.4 - 24.4 - 23.2 - 25.3 - 21.3 - 25.3 - 25.3 - 25.3 - 25.3	m/n - / 12	平均 15.0 14.5 14.6 14.9 13.9 13.8 13.4 14.2 14.5 13.8 14.2 14.5 13.8 14.2 14.5	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 12.6 11.1 9.5 10.7 10.8 10.8 11.1 11.7 10.4 10.7 11.0 11.5 11.7 11.1 10.5 11.7	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 6.7 7.3 6.1 7.5 6.2 7.9 8.8 7.6 6.9 8.5 7.7 8.0 7.9	- - - - - - - - - - - - - - - - - - -	6. 4	最大 - 24.3 - 21.7 - 21.4 - 24.1 - 24.2 - 22.7 - 21.0 - 19.8 - 22.8 - 21.8 - 21.8 - 21.3 - 24.4 - 23.2 - 25.3 - 26.1 - 25.3 - 21.3 - 22.3 - 22.3 - 23.2 - 23.2 - 21.3 - 23.2 - 21.3 - 23.2 - 21.3 - 21.3	m/n - / 12	平均 15.0 14.5 14.6 14.9 13.8 13.4 14.2 14.5 13.8 14.2 14.4 14.9 13.3 15.6 15.0 14.8	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28	$\begin{array}{c ccccc} 0.2 & \sim \\ 4.6 & \sim \\ 1.3 & \sim \\ 0.6 & \sim \\ 0.2 & \sim \\ 0.7 & \sim \\ 0.9 & \sim \\ 0.7 & \sim \\ 0.9 & \sim \\ 1.4 & \sim \\ 0.1 & \sim \\ 2.2 & \sim \\ 4.6 & \sim \\ 2.1 & \sim \\ 0.6 & \sim \\ 5.5 & \sim \\ 5.7 & \sim \\ 1.2 & \sim \\ 1.5 & \sim \\ 1.5 & \sim \\ 4.2 & \sim \\ \end{array}$	最大 12.6 11.1 9.5 10.7 10.8 10.8 11.1 11.7 10.4 10.7 11.0 11.5 11.7 11.1 10.5 11.7	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 7.3 6.1 7.5 6.2 7.9 8.8 7.6 6.9 8.6 8.5 7.7 8.0 7.9 8.5	- - - - - - - - - - - - - - - - - - -	6. 4	最大 - 24.3 - 21.7 - 21.4 - 24.1 - 24.2 - 22.7 - 21.0 - 19.8 - 22.8 - 21.8 - 20.4 - 24.4 - 23.2 - 25.3 - 21.3 - 25.3 -	m/n - / 12	平均 15.0 14.5 14.6 14.9 13.8 13.4 14.2 14.5 13.8 14.2 14.4 14.9 13.3 15.6 15.0 14.8 15.2 15.2	
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	最大 12.6 11.1 9.5 10.7 10.8 10.8 11.1 11.7 10.4 10.7 11.0 11.5 11.7 11.1 10.5 11.7	m/n 4 / 12 3 / 12 6 / 12 5 / 12 - / 12	平均 7.7 8.6 7.3 6.7 6.7 6.7 7.3 6.1 7.5 6.2 7.9 8.8 7.6 6.9 8.5 7.7 8.0 7.9	- - - - - - - - - - - - - - - - - - -	6. 4	最大 - 24.3 - 21.7 - 21.4 - 24.1 - 24.2 - 22.7 - 21.0 - 19.8 - 22.8 - 20.4 - 23.2 - 25.3 - 26.1 - 25.3 - 23.2 - 25.3 - 26.1 - 25.3 - 23.2 - 25.3 -	m/n - / 12	平均 15.0 14.5 14.6 14.9 13.8 13.4 14.2 14.5 13.8 14.2 14.4 14.9 13.3 15.6 15.0 14.8	


注) m/n欄は、n:測定実施日数、m:環境基準を満足しない日数

出典:「公共用水域及び地下水の水質測定結果」(神奈川県)

出典:「公共用水域及び地下水の水質測定結果」(神奈川県)

図 2.2.6(1) 城山ダム貯水池における水質の推移

田央・「五六川小久久〇地「小ツ小貝倒足相不」(旧木川)

図 2.2.6(2) 城山ダム貯水池における水質の推移 (続き)

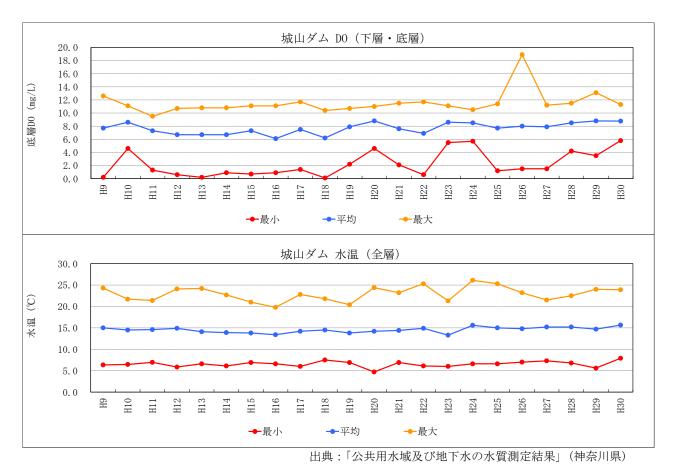


図 2.2.6(3) 城山ダム貯水池における水質の推移 (続き)

平成9年度から平成30年度の期間中、T-N/T-P比が20以下の年度は平成17年度、平成27年度であった。また、後述する異常値除外を行った水質データでは、平成17年度のみがT-N/T-P比20以下となった。一方、T-P年平均濃度は、異常値除外の如何にかかわらず、全ての年で0.02mg/L以上であった。以上より、T-Nの項目の基準値を適用すべき湖沼の条件に合致している。

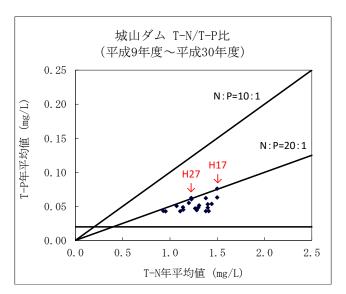


図 2.2.7 城山ダム貯水池におけるT-N/T-P比の状況(異常値除外前)

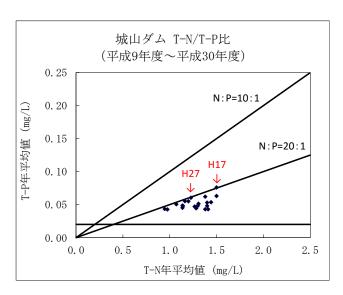


図 2.2.8 城山ダム貯水池における T-N/T-P 比の状況 (異常値除外後)

<参考>T-Nの項目の基準値を適用すべき湖沼の条件

T-Nが湖沼植物プランクトンの増殖の要因となる湖沼(T-N/T-P比が20以下であり、かつT-P 濃度が0.02mg/L以上である湖沼)についてのみ適用

(2) 城山ダム貯水池の水質保全対策

城山ダムでは、津久井湖の富栄養化に伴う、アオコ発生を抑制する対策として、津久井 湖環境整備事業が行われており、エアレーション装置を平成5年度に間欠式1基、散気管 式1基、平成6年度に散気管式3基、平成7年度に流動化装置を2基、平成8年度及び平 成9年度に流動化装置を各1基ずつ設置した。

また、平成13年度からは、植物による水質改善を図るため、植物浄化施設の設置をおこなっており、平成15年度に三井地区、平成19年度に沼本地区の整備を完了した。

出典:神奈川県 城山ダム・寒川取水堰 (せき) WEB ページ (http://www.pref.kanagawa.jp/docs/vh6/cnt/f8018/p45936.html#shiroyama)

図 2.2.9 津久井湖環境整備事業

2.2.4. 城山ダム貯水池の利水状況

(1) 城山ダム貯水池の利水状況

城山ダム貯水池の利用目的を表 2.2.5 に、利水の状況を表 2.2.6 及び図 2.2.10 に示した。城山ダムは洪水調節、水道用水、工業用水、発電を利用目的としている。

表 2.2.5 城山ダム貯水池の利用目的

洪水調節	流水機能 維持	農業用水	水道 用水	工業 用水	発電	消流雪 用水	レクリエー ション
0			0	0	0		

表 2.2.6 城山ダム貯水池及び下流の利水の状況

用途	取水場所	浄水場名	処理水準	特記事項
		横浜市西谷浄水場	水道3級(急速ろ過・塩素 処理・粉末活性炭・マンガ ン接触ろ過・多層ろ過・酸 処理)(AⅢ類型相当)	
		川崎市長沢浄水場	水道 2級(急速ろ過・塩素 処理・マンガン接触ろ過・ 多層ろ過)(AⅡ類型相当)	
水道用水	城山ダム (沼本ダ ム)、相模	神奈川県谷ヶ原浄水 場	水道3級(急速ろ過・緩速 ろ過・塩素処理・多層ろ 過・粉末活性炭・酸処 理)(AⅢ類型相当)	植物性臭気 (藻臭、青草臭 など)
	大堰、寒川 取水堰	神奈川県寒川浄水場	水道2級(急速ろ過・塩素 処理・多層ろ過・酸処 理)(AⅡ類型相当)	
		横浜市·横須賀市小雀 浄水場	水道3級(急速ろ過・塩素 処理・粉末活性炭・マンガ ン接触ろ過・二段凝集処 理・酸処理)(AⅢ類型相 当)	
		横須賀市有馬浄水場	水道3級(急速ろ過・塩素 処理・粒状活性炭・多層ろ 過)(AⅢ類型相当)	土臭・かび臭
工業用水	城山ダム (沼本ダ ム)、寒川 取水堰	_	_	_

出典:「水道統計」((公社) 日本水道協会)

神奈川県 飲料水・上下水道 (http://www.pref.kanagawa.jp/life/1/1/2/)

横浜市水道局(http://www.city.yokohama.lg.jp/suidou/)

川崎市上下水道局 (http://www.city.kawasaki.jp/800/cmsfiles/contents/0000035/35839/index.html)

横須賀市上下水道局(http://www.water.yokosuka.kanagawa.jp/index.html)

神奈川県内広域水道企業団(http://www.kwsa.or.jp/index.html)

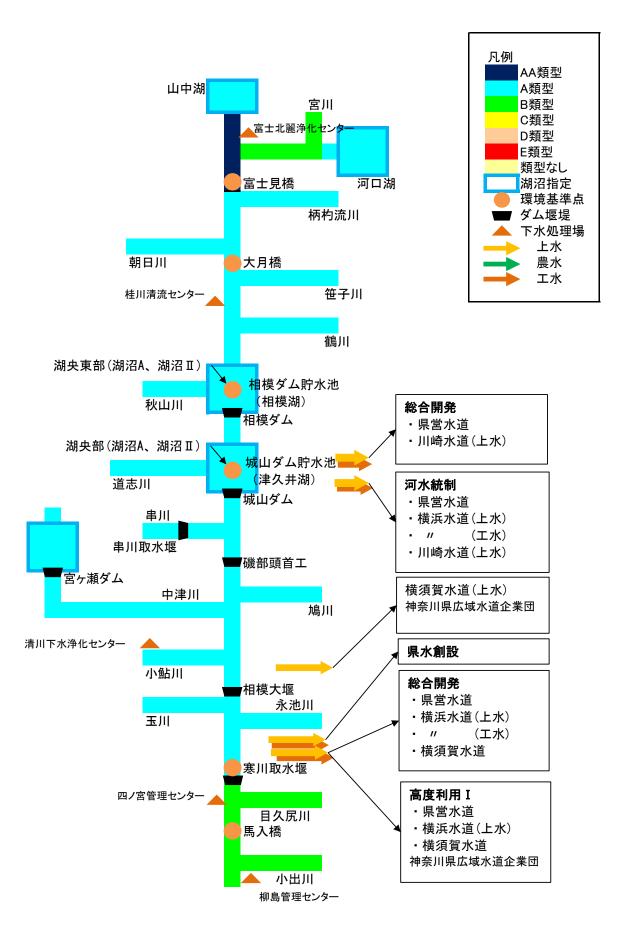


図 2.2.10 城山ダム貯水池流域の利用状況

城山ダム周辺の漁業権について、表 2.2.7 に示した。

城山ダム貯水池には、漁業権の設定はない。参考として、城山ダムの下流に位置する神 奈川県における相模川の魚種別漁獲量(平成28年)について整理した結果を表2.2.8に 示した。

表 2.2.7 城山ダム周辺の漁業権

免許番号	魚種	魚場	漁業時期	備考
内水共第1号	ヤマメ、イワ	相模川,中津川、小鮎川、	ヤマメ、イワナ、漁業は3月1日から10月1	城山ダム直下流
(第5種共同漁	ナ、ニジマ	道志川、神の川、宮ケ瀬金	4日まで	
業権)	ス、アユ、ウ	沢、早戸川、水沢川、玉川、	ニジマス漁業は3月1日から10月14日ま	
	グイ、オイカ	小出川、目久尻川	で。ただし、相模川支川・支流には別途	
	ワ、フナ、コ		期間設定あり。	
	イ、ウナギ、		アユ漁業は6月1日から10月14日までの期	
	テナガエビ		間で連合会が定めて公示する日から10月	
			14日まで及び12月1日から12月31日まで	
			ウグイ、オイカワ、フナ、コイ漁業は1	
			月1日から12月31日まで。ただし相模川支	
			川・支流には別途期間設定あり。	

参考:神奈川県川・湖のルールを守りましょう!! WEB ページ (http://www.pref.kanagawa.jp/docs/kb2/cnt/f790/p504690.html)

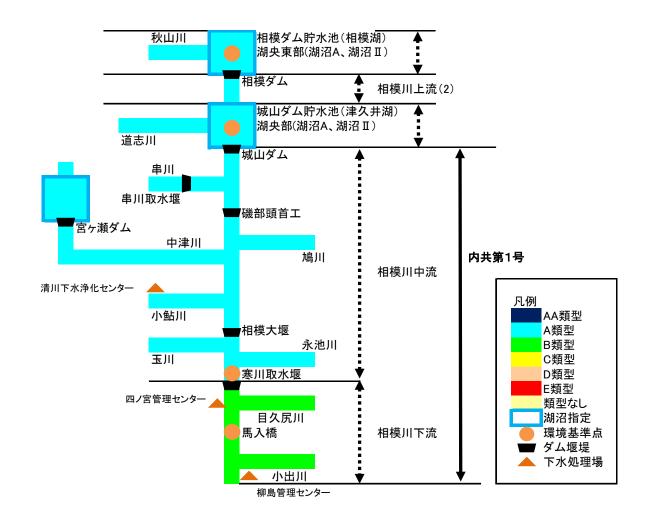


図 2.2.11 城山ダム貯水池周辺の漁業権の状況

表 2.2.8 神奈川県における相模川の流域の魚種別漁獲量:平成 28年

	魚類									
魚種	計	さけ類	からふと ます	さくらます	その他のさ け・ます類	わかさぎ	あゆ	しらうお	こい	ふな
漁獲量(t)	407	_	_	_	1	_	380	_	_	4
	魚類			貝類			その他の水産動植物類			
魚種	うぐい・ おいかわ	うなぎ	はぜ類	その他の 魚類	計	しじみ	その他の 貝類	計	えび類	その他の水 産動植物類
漁獲量(t)	21	0	0	1	_	-	_	-	-	_
	天然産種苗採捕量									
魚種	あゆ	うなぎ								
漁獲量(t)	_	0								

出典:「平成28年漁業·養殖業生産統計」(農林水産省)

(2) 城山ダム貯水池流域における流域別下水道計画の見直しについて

流域別下水道整備総合計画(以下、流総計画)は、環境基本法第16条第1項に基づく水質環境基準の類型指定がなされている水域について、下水道法第2条の2に基づいて策定される当該水域に係る下水道整備に関する総合的な基本計画である。

相模川(桂川)流域では、平成9年に流総計画が策定され、平成20年に見直しがされたが、相模湖・津久井湖のT-N、T-Pの環境基準環境基準達成のためには、神奈川県、山梨県の流総計画の見直しが必要不可欠であることから、基本方針(両県の目標汚濁負荷量の配分)の策定のため、平成24年に「相模川流域別下水道整備総合計画基本方針検討委員会」が設置された。

「相模川流域別下水道整備総合計画基本方針検討委員会」では、約2年間にわたって調査・検討を行い、平成26年3月26日に「相模川流域の目標汚濁負荷量に関する基本方針」を合意事項としてとりまとめた。同基本方針では、「相模湖・津久井湖のT-N、T-Pは、自然由来も含めた面源負荷量の割合が高く、直ちに環境基準の達成は困難であるが、将来において環境基準を達成するための排出負荷量を目標汚濁負荷量とし、相模湖・津久井湖に流入する流域の排出負荷量の削減により、今後も水質保全に努めるものとする。」とし、県別目標汚濁負荷量を表 2.2.9のように定めた。

現在、同基本方針を踏まえ、各県において、流域別下水道整備総合計画の見直しが行われており、神奈川県では、平成27年度に、整備計画年度を平成43年度(令和13年度)とした「相模川流域別下水道整備総合計画」が策定された。

表 2.2.9 相模川流域別下水道整備総合計画基本方針における県別目標汚濁負荷量

(単位: t/日)

項目	水域	神奈川県	山梨県	合計
BOD	相模川本川	7.3	6.5	13.8
000	相模湖	0.6	11.6	12.2
COD	津久井湖	1.6	6.5	13.8
T N	相模湖	0.04	0.74	0.78
T-N	津久井湖	0.11	0.78	0.89
T D	相模湖	0.001	0.034	0.035
T-P	津久井湖	0.005	0.053	0,058

※導水負荷量を除く流域の排出負荷量

2.2.5. 城山ダム貯水池にかかる水質汚濁負荷量

(1) 城山ダム貯水池の水質汚濁負荷量の算定について

城山ダム貯水池(津久井湖)の水質汚濁負荷量の算定及び将来水質予測手法の概要は、 図 2.2.12 に示すとおりである。現況は平成 28 年度**として、基礎的な統計データである 平成 27 年度国勢調査 3 次メッシュ別人口等の値を用いると共に、平成 28 年度の値が入手 可能な統計データを更新した。将来は現行の暫定目標の達成年度の 5 年後である令和 7 年 度とした。

まず、流域フレーム(現況、将来)を設定したのち、点源については実測値法(排水量×水質)、面源については原単位法(フレーム×原単位)により水質汚濁負荷量を算定した。 将来水質は、算定した現況の発生負荷量、将来の発生負荷量、平均流入率及び平均流入量を用いて算定した。

なお、フレームの設定方法及び使用した資料は表 2.2.10 に示すとおりである。

※湖沼の水質データ(表 2.2.4、図 2.2.6で整理)は、入手可能な最新年度が平成30年度となっているが、将来水質予測の現況年度については、負荷量算定に用いる各種統計データの入手可能な最新の実績年度を踏まえ、平成28年度とした。

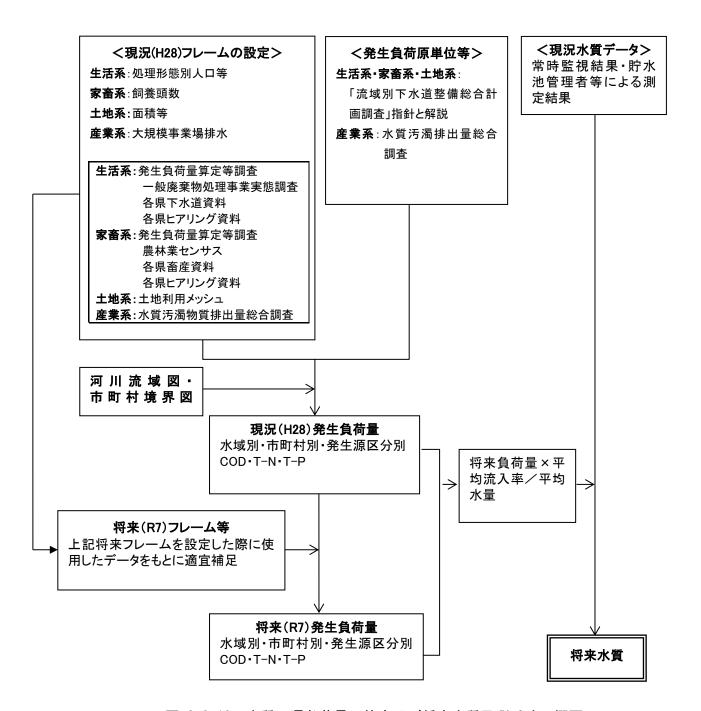


図 2.2.12 水質汚濁負荷量の算定及び将来水質予測手法の概要

表 2.2.10 相模川流域における現況・将来フレームの設定方法及び使用した資料

分類	設定方法	使用した資料
<u>分類</u> 生活系	●現況(平成28年度) ・流域内の総別日口は、平成27年度国勢調査3次メッシュ別別人口の値を使用。 ・し尿処理形態別人口は、環境省資料及び、流り地では、でのとアリングの配別のでは、では、では、では、では、では、では、では、では、では、では、では、では、で	使用した資料 1)「国勢調査地域メッシュ統計データ(H27)」(総務省) 2)「環境省廃棄物処理技術情報 一般廃棄物処理事業実態調査」(環境省) 3)「相模原市ヒアリング資料」(相模原市) 4)「生活排水クリーン処理率の実績 H28」(山梨県) 3) (前出)「国勢調査地域メッシュ統計データ(H27)」(総務省) 5)「山梨県生活排水処理施設整備構想 2017」(山梨県)
	水処理施設整備構想 2017」より設定。	

分類	設定方法	使用した資料
家畜系	●現況 (平成 28 年度)	6)「平成 29 年度相模原市産業の概要」(相模原
	・流域市町村の畜産資料により、城山ダム貯水 池流域に該当する市町村別の飼養頭(羽)数 を把握し、市町村別の飼養頭(羽)数は、流 域内の農地(田・畑)面積と市町村の農地面 積の比率から、城山ダム貯水池流域に按分。 <神奈川県> ・「平成29年度 相模原市産業の概要 農林業」 より把握。 <山梨県> ・山梨県へのヒアリングにより把握。 ●将来(令和7年度) ・各家畜ともに、現況と同じとした。	市) 7)「山梨県ヒアリング資料」(山梨県)
土地系	●現況(平成 28 年度) ・平成 28 年度~(現行整備事業の整備済み範囲成果)の「土地利用第 3 次メッシュデータ(土地利用区分別面積)(国土交通省)」の土地利用別面積を設定。	8)「土地利用第3次メッシュデータ(土地利用 区分別面積)(H28~)」(国土交通省)
	●将来(令和7年度) ・平成26年度から平成28年度の市街地面積の 伸び率を用い、現況から将来までの伸び率を 1.06と算定し、将来の土地利用別面積を設 定。それ以外の土地利用面積は、現況年度に おける比率で按分。	
点源 ·生活系 ·家畜系 ·産業系	●現況(平成 28 年度) ・環境省資料により平成 27 年度および平成 29 年度の流域内の対象工場・事業場における総 排水量、排出負荷量を把握し、両年の平均値 を設定。	9)「水質汚濁物質排出量総合調査」(環境省)
	●将来(令和7年度) ・生活系は、下水道は下水道人口の伸び率を対象工場の排水量に乗じて負荷量を算定した。 それ以外の生活系点源は現状維持とした。 ・産業系は総排水量が概ね減少傾向となっているが、現況(平成28年度)から平成29年度の総排水量がほぼ横ばいであることから、将来負荷量は、現況と同様とした。	

(2) 城山ダム貯水池 (津久井湖) の流域フレーム

城山ダム貯水池(津久井湖)に係る現況フレームについては、当該流域が含まれる神奈川県相模原市及び山梨県上野原市、大月市、富士吉田市、都留市、小菅村、富士河口湖町、山中湖村、忍野村、西桂町、道志村、鳴沢村のフレーム値(生活系、産業系、家畜系、土地系)を収集・整理して設定した。

現況及び将来フレームの設定方法の詳細は以下に示すとおりである。

- 1) 生活系
- ア) 現況
- i)総人口

域内の総人口は、平成27年度国勢調査3次メッシュ別人口の値を使用した。

ii) し尿処理形態別人口

し尿処理形態別人口は、一般廃棄物処理事業実態調査(環境省)及び、流域市町村へのヒアリング、下水道資料により把握し、流域内外の人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分した。

<神奈川県>

・ 各処理形態別人口は、相模原市へのヒアリングにより把握した。

<山梨県>

- ・ 下水道・コミュニティプラント・農業集落排水施設・合併処理浄化槽人口は、県ホームページで公開されている「生活排水クリーン処理率の実績 H28」より把握した。
- ・ 残りの、単独処理浄化槽・計画収集・自家処理人口は、「生活排水クリーン処理率の実績 H28」での総人口および衛生処理人口から算出される未処理人口を、一般廃棄物処理 事業実態調査の現況年度における比率で按分した。

表 2.2.11 城山ダム貯水池流域のし尿処理別形態人口(現況・平成28年度)

	区分			現況•平成28年度
生活系	総人口		人	215,585
	下水道		人	109,241
		·ティ ロ ラント	人	111
	農集排		人	16
	浄化槽		人	92,826
	合併処理箳化槽		人	39,204
		単独処理踭化槽	人	53,622
	計画収集		人	13,148
	自家処	理	人	244

※単位未満を四捨五入しているため、内訳の計と合計が一致しない場合がある

4) 将来

i)総人口

将来総人口は、流域市町村へのヒアリング及び、下水道資料より設定した。

<神奈川県>

・ 将来総人口は、相模原市へのヒアリングにより設定した。

<山梨県>

・ 将来総人口は、「山梨県生活排水処理施設整備構想 2017」(山梨県) より設定した。

ii) し尿処理形態別人口

し尿処理形態別人口は、流域市町村へのヒアリング及び、下水道資料により把握し、流域内外の人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分した。

<神奈川県>

- ・ 下水道・コミュニティプラント・農業集落排水施設・合併処理浄化槽・自家処理人口は、 相模原市へのヒアリングにより設定した。
- ・ 残りの、単独処理浄化槽・計画収集人口は、まとめて計上されているため、現況年度の フレームにおける比率で按分した。

<山梨県>

- ・ 下水道・コミュニティプラント・農業集落排水施設・合併処理浄化槽は、「山梨県生活 排水処理施設整備構想 2017」より設定した。
- ・ 残りの、単独処理浄化槽・計画収集・自家処理人口は、「山梨県生活排水処理施設整備構想 2017」での総人口および処理人口から算出される未処理人口を、現況年度のフレームにおける比率で按分した。

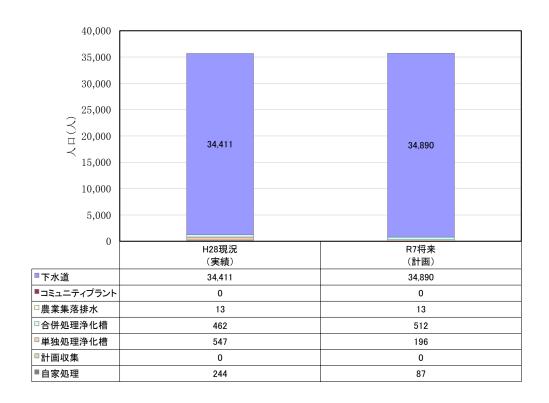


図 2.2.13 神奈川県流域市町村のし尿処理形態人口の変化

図 2.2.14 山梨県流域市町村のし尿処理形態人口の変化

表 2.2.12 将来人口算出に使用した単独処理浄化槽、計画収集、自家処理人口比率

県	市町村	単独処理 浄化槽	計画収集	自家処理
山梨県	上野原市	0.84	0.16	0.00
	大月市	0.90	0.10	0.00
	富士吉田市	0.53	0.47	0.00
	都留市	0.94	0.06	0.00
	小菅村	0.00	0.00	0.00
	富士河口湖町	0.80	0.20	0.00
	山中湖村	1.00	0.00	0.00
	忍野村	0.83	0.17	0.00
	西桂町	0.82	0.18	0.00
	道志村	0.83	0.17	0.00
	鳴沢村	0.95	0.05	0.00
神奈川県	相模原市	0.69	0.00	0.31

表 2.2.13 城山ダム貯水池流域のし尿処理形態別人口(将来・令和7年度)

	区	分	単位	将来•令和7年度
生活系	総人口		人	198,905
	下水道		人	112,155
		ティプラント	人	108
	農集排水		人	15
	浄化槽		人	78,733
		合併処理箳化槽	人	43,890
		単独処理踭化槽	人	34,843
	計画収集		人	7,808
	自家処	理	人	87

※単位未満を四捨五入しているため、内訳の計と合計が一致しない場合がある

2) 家畜系

ア) 現況

2015年農林業センサス(農林水産省)及び、流域市町村の畜産資料により城山ダム貯水池流域に該当する市町村別の飼養頭(羽)数を把握した。

<神奈川県>

・ 「平成 29 年度 相模原市産業の概要 農林業」より把握した。

<山梨県>

・ 山梨県へのヒアリング調査により把握した。

市町村別の飼養頭(羽)数は、流域内の農地(田・畑)面積と市町村の農地面積の比率から、城山ダム貯水池流域に按分した。

流域内の飼養頭(羽)数の算定は次式を用いた。

流域内飼養頭(羽)数=

各市町村飼養頭(羽)数×(流域内各市町村農地(田・畑)面積/各市町村農地(田・畑)面積)

表 2.2.14 各市町村飼養頭(羽)数と流域内飼養頭(羽)数(現況・平成28年度)

県	市町村	各市町村飼養頭(羽)数		流域内農	流域内飼養頭(羽)数			
		牛(頭)	豚(頭)	鶏(羽)	地面積比	牛(頭)	豚(頭)	鶏(羽)
山梨県	上野原市	5	0	4,036	1.00	5	0	4,036
	大月市	0	0	38	1.00	0	0	38
	富士吉田市	1	0	45	1.00	1	0	45
	都留市	0	673	376	1.00	0	673	376
	小菅村	0	0	0	0.11	0	0	0
	富士河口湖町	3,686	5,214	21,569	0.41	1,516	2,144	8,870
	山中湖村	0	0	0	1.00	0	0	0
	忍野村	0	0	45,514	1.00	0	0	45,514
	西桂町	0	0	0	1.00	0	0	0
	道志村	0	1,995	208	1.00	0	1,995	208
	鳴沢村	33	0	45,000		33	0	44,710
神奈川県	相模原市	683	5,654	262,366	0.55	376	3,110	144,308

表 2.2.15 城山ダム貯水池流域の飼養頭(羽)数(現況・平成28年度)

区	分	単位	現況•平成28年度
家畜系	牛	頭	1,930
	豚	頭	7,922
	鶏	羽	248,104

4) 将来

牛、鶏は H23 から H28 で減少傾向であるため安全側の視点で、豚は明瞭な増減傾向が 見られないため、それぞれ現況と同じとした。

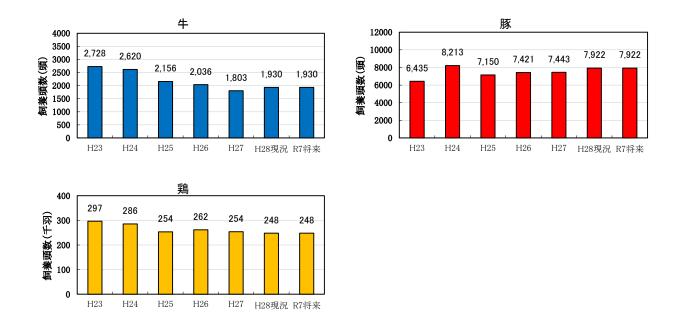


図 2.2.15 城山ダム貯水池流域の飼養頭(羽)数の変化

表 2.2.16 城山ダム貯水池流域の飼養頭(羽)数(将来・令和7年度)

×	分	単位	将来•令和7年度
家畜系	牛	頭	1,930
	豚	頭	7,922
	鶏	羽	248,104

3) 土地系

ア) 現況

流域の土地利用面積は、平成28年度~(現行整備事業の整備済み範囲成果)の「土地利用第3次メッシュデータ(土地利用区分別面積)(国土交通省)」より設定した。

土地利用第 3 次メッシュデータは、土地利用区分として 12 区分されており、表 2.2.17 のように 5 区分に集約した。

表 2.2.17 土地利用第3次メッシュデータの土地利用区分の集約

国土数値情報の 土地利用区分	集約区分		
田	田		
他農用地	畑		
森林	山林		
建物用地			
道路	士徒地		
鉄道	市街地		
他用地	1		
荒地			
河川湖沼	その他		
海浜	その他		
ゴルフ場]		
海水域	除外		

表 2.2.18 城山ダム貯水池流域の土地利用区分別面積(現況・平成28年度)

区分		単位	現況•平成28年度
土地系	田	ha	2,029
	畑	ha	3,547
	山林	ha	102,850
	市街地	ha	10,369
	その他	ha	5,724
	総面積	ha	124,518

4) 将来

城山ダム貯水池流域の土地利用面積の過去の推移を見ると、市街地面積が増加傾向であったことから、平成26年度から平成28年度の市街地面積の伸び率を用い、現況から将来までの伸び率を1.06と算定し、将来の市街地の土地利用別面積を設定した。それ以外の区分の土地利用面積は、現況年度における比率で按分した。

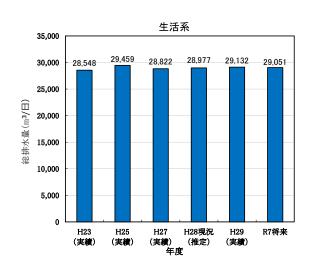
図 2.2.16 城山ダム貯水池流域の土地利用区分面積の変化

表 2.2.19 城山ダム貯水池流域の土地利用区分別面積(将来・令和7年度)

×	分	単位	将来•令和7年度
土地系	田	ha	2,013
	畑	ha	3,528
	山林	ha	102,319
	市街地	ha	10,979
	その他	ha	5,679
	総面積	ha	124,518

4) 点源の排水

ア) 現況


平成27年度および平成29年度の「水質汚濁物質排出負荷量総合調査」において、流域内の対象工場・事業場を把握し、稼動事業場の実測排水量および発生汚濁負荷量の両年度の平均値を平成28年度に適用した。発生汚濁負荷量の算定は、実測排水量に実測排水水質を乗じて算出した。実測水質が無い場合は、水質汚濁物質排出量総合調査において取りまとめられている、代表特定施設別平均水質の値を適用した。

4) 将来

平成23年度、平成25年度、平成27年度、平成29年度における「水質汚濁物質排出 負荷量総合調査」において、流域内の対象工場・事業場を把握し、稼動事業場の実測排 水量と発生汚濁負荷量を把握した。

生活系は、下水道は、下水道人口の平成27年度から令和7年度の伸び率を対象工場の 排水量に乗じて負荷量を算定した。それ以外の生活系点源は現状維持とした。

産業系は総排水量が概ね減少傾向となっているが、平成27年度から平成29年度の総 排水量がほぼ横ばいであることから、将来負荷量は、現況と同様とした。

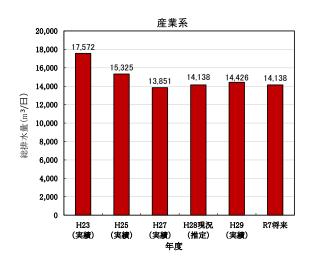


図 2.2.17 城山ダム貯水池流域の総排水量の変化

表 2.2.20 城山ダム貯水池流域の点源の総排水量

区	.分	単位	現況•平成28年度	将来•令和7年度
生活系	点源	m^3/\exists	28,977	29,051
産業系	点源	m^3/ \exists	14,138	14,138

表 2.2.21 城山ダム貯水池流域のフレームの推移 (平成 23 年度~平成 28 年度)

	区 分	単位	H23	H24	H25	H26	H27	H28
	総人口	人	224,124	222,412	220,700	218,988	217,275	215,585
	下水道	人	83,575	90,382	97,190	103,998	110,805	109,241
	コミュニティプラント	人	128	125	122	118	115	111
	農業集落排水	人	467	355	242	129	16	16
生活系	合併処理浄化槽	人	40,457	39,980	39,503	39,026	38,549	39,204
	単独処理浄化槽	人	77,116	71,368	65,620	59,873	54,125	53,622
	計画収集	人	22,333	20,106	17,880	15,653	13,426	13,148
	自家処理	人	48	96	143	191	239	244
	点源	m^3/B	28,548	29,004	29,459	29,141	28,822	28,977
	牛	頭	2,728	2,620	2,156	2,036	1,803	1,930
家畜系	<u>豚</u> 鶏	頭	6,435	8,213	7,150	7,421	7,443	7,922
	鶏	羽	296,726	285,637	253,585	261,657	253,612	248,104
	点源	m^3/B	0	0	0	0	0	0
	田	ha	2,325	2,293	2,262	2,230	2,129	2,029
	畑	ha	3,865	3,806	3,747	3,688	3,617	3,547
土地系	山林	ha	102,440	102,467	102,495	102,522	102,686	102,850
土地东	市街地	ha	9,981	10,066	10,151	10,236	10,303	10,369
	その他	ha	5,908	5,886	5,865	5,843	5,783	5,724
	総面積	ha	124,518	124,518	124,518	124,518	124,518	124,518
湧水	湧水	m^3/\exists	1,543,104	1,543,104	1,543,104	1,543,104	1,543,104	1,543,104
産業系	点源	m^3/\exists	17,572	16,449	15,325	14,588	13,851	14,138

表 2.2.22 城山ダム貯水池流域の水質汚濁負荷量に係るフレーム (現況、将来)

	区 分	単位	現況•平成28年度	将来•令和7年度
	総人口	人	215,585	198,905
	下水道	人	109,241	112,155
	コミュニティプラント	人	111	108
	農業集落排水	人	16	15
生活系	合併処理浄化槽	人	39,204	43,890
	単独処理浄化槽	人	53,622	34,843
	計画収集	人	13,148	7,808
	自家処理	人	244	87
	点源	m^3/ \exists	28,977	29,051
	牛	頭	1,930	1,930
家畜系	豚	頭	7,922	7,922
多田 市	鶏	羽	248,104	248,104
	点源	m^3/B	0	0
	田	ha	2,029	2,013
	畑	ha	3,547	3,528
土地系	山林	ha	102,850	102,319
土地尔	市街地	ha	10,369	10,979
	その他	ha	5,724	5,679
	総面積	ha	124,518	124,518
湧水	湧水	m^3/\exists	1,543,104	1,543,104
産業系	点源	m^3/\exists	14,138	14,138

(3)土地系(山林)の原単位

城山ダム貯水池の、水域類型指定に関する既往検討(中央環境審議会水環境部会陸域環境 基準専門委員会(第10回,平成22年5月)(第14回,平成27年7月))では、現況の発生負荷 量算定に用いる土地系(山林)の発生負荷量の原単位として、「昭和62年度湖沼水質汚濁機 構等検討調査(昭和63年3月)」の結果を用いている。

今回は、過去の検討結果を踏まえるとともに、「相模川流域別下水道整備総合計画基本方 針検討委員会」によってとりまとめられた「相模川流域の目標汚濁負荷量に関する基本方 針、平成26年3月」における原単位や負荷量の取扱いも参考として、山林からの負荷量およ び次項(4)で示す湧水由来の負荷についての取扱いを以下のように設定した。

表 2.2.23 土地系(山林)の負荷量・原単位の取扱い

項目	負荷量の算定方法	使用原単位
COD	山林負荷(フレーム×原単位)に加え、湧水負荷量 ^{※1} を別途考慮	S62 年度調査**2
T-N	山林負荷(フレーム×原単位)で設定し、湧水は別途見込まない	H26 相模川流総※3
Т-Р	山林負荷(フレーム×原単位)に加え、湧水負荷量を別途考慮	S62 年度調査

^{※1)} 後述(4)に湧水負荷量の算定方法・結果について記載

土地系(山林)の負荷量原単位については、これまで、その精度向上のため、「昭和62年度湖沼水質汚濁機構等検討調査(昭和63年3月)」(以下、「S62調査」という。)や「平成20年度 相模川水系類型指定に係る発生負荷量検討調査」(以下、「H20調査」という。)等が実施されている。各調査の概要を以下に示す。

^{※2)「}昭和62年度湖沼水質汚濁機構等検討調査(昭和63年3月)」

^{※3)「}相模川流域の目標汚濁負荷量に関する基本方針,平成26年3月」

1) S62 調査

ア) 調査地点

調査地点の概要は、以下に示すとおりである。

表 2.2.24 調査地点の概要

調査地点	調査日時
	昭和 62 年 7 月 28 日
大幡川	昭和 62 年 10 月 6 日
	昭和 62 年 12 月 21 日
	昭和 62 年 7 月 28 日
葛野川	昭和 62 年 10 月 13 日
	昭和 62 年 12 月 21 日
	昭和 62 年 7 月 28 日
真木川	昭和 62 年 10 月 13 日
	昭和 62 年 12 月 22 日
	昭和 62 年 7 月 29 日
朝日川	昭和 62 年 10 月 7 日
	昭和 62 年 12 月 21 日
	昭和 62 年 7 月 29 日
鹿留川	昭和 62 年 10 月 7 日
	昭和 62 年 12 月 21 日

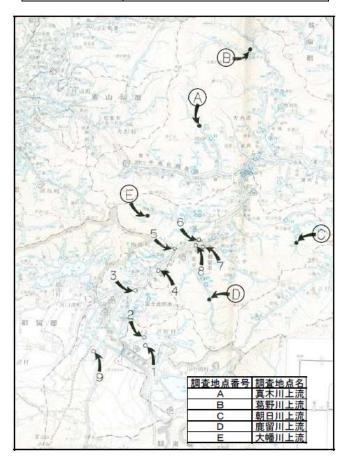


図 2.2.18 調査地点図 (出典: S62 調査)

調査項目

調査項目および分析方法は以下に示すとおりである。

表 2.2.25 調査項目および分析方法

	項目	分析方法
1	рН	ガラス電極法
2	伝導率	伝導率計
3	SS	昭和 46 年環境庁告示第 59 号 付表 9
4	COD	KMnO₄法(100℃)
5	NH ₄ -N	フェノールハイポクロライト法
6	NO_2 -N	ナフチルエチレンジアミン法
7	NO ₃ -N	イオンクロマト法
8	T-N	昭和 46 年環境庁告示第 59 号 別表2
9	PO_4 –P	アスコルビン酸還元比色法
10	Т-Р	昭和 46 年環境庁告示第 59 号 別表2
11	Cl	イオンクロマト法
12	溶解性 COD	1μの GFP ろ過 4 の方法
13	溶解性 T-N	1μの GFP ろ過後 8 の方法
14	溶解性 T-P	1μの GFP ろ過後 10 の方法

ウ) 調査結果

調査結果は、以下に示すとおりである。

表 2.2.26 調査結果

項目	負荷量原単位(g/ha/日)			
(タロ	田	畑	山林	市街地
COD	_	_	16.7	_
T-N	_	_	6.60	_
T-P	_	_	0.080	_

2) H20 調査

ア) 調査概要

調査の概要は、以下に示すとおりである。

表 2.2.27 調査の概要

調査地点	調査日時	備考
朝日川 (No.1、No.2)	灌漑期 : 平成 20 年 9 月 11 日 非灌漑期 : 平成 20 年 11 月 6 日 冬季 : 平成 21 年 1 月 5 日	水田を主体とした農業地域(上流域は山林を主体とした地域)
向沢川 (No.3、No.4)	夏季 : 平成 20 年 9 月 11 日 秋季 : 平成 20 年 11 月 6 日 冬季 : 平成 21 年 1 月 5 日	畑作を主体とした農業地域
戸沢川 (No.5)	夏季 : 平成 20 年 9 月 11 日 秋季 : 平成 20 年 11 月 6 日 冬季 : 平成 21 年 1 月 5 日	自然地域(山林を主体とした地域)

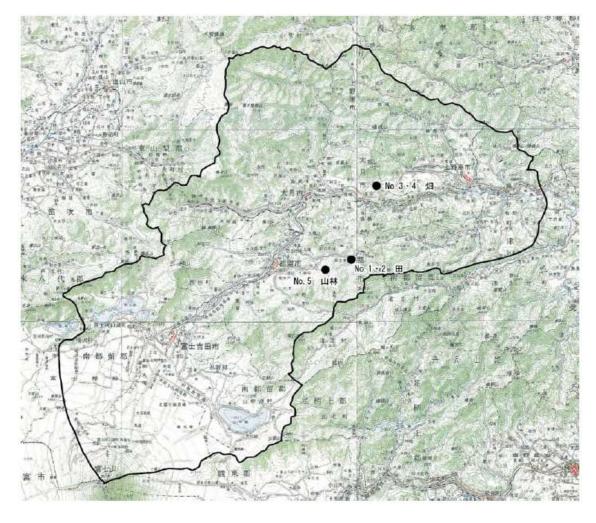


図 2.2.19 調査地点図 (出典: S62調査)

()調查項目

調査項目および分析方法は以下に示すとおりである。

表 2.2.28 調査項目および分析方法

	項目	分析方法
1	рН	ガラス電極法
2	伝導率	伝導率計
3	SS	昭和 46 年環境庁告示第 59 号 付表 9
4	COD	KMnO₄法(100℃)
5	NH ₄ -N	フェノールハイポクロライト法
6	NO_2 -N	ナフチルエチレンジアミン法
7	NO ₃ -N	イオンクロマト法
8	T-N	昭和 46 年環境庁告示第 59 号 別表2
9	PO_4 –P	アスコルビン酸還元比色法
10	Т-Р	昭和 46 年環境庁告示第 59 号 別表2
11	Cl	イオンクロマト法
12	溶解性 COD	1μの GFP ろ過後 4 の方法
13	溶解性 T-N	1μの GFP ろ過後 8 の方法
14	溶解性 T-P	1μの GFP ろ過後 10 の方法

ウ) 調査結果

調査結果を以下に示す。

表 2.2.29 調査結果

項目	負荷量原単位(g/ha/日)			
-	田	畑	山林	市街地
COD	_	57.0	3.0	-
T-N	_	59.5	0.9	_
T-P	_	1.430	0.014	-

1) 既往調査における土地系(山林)の原単位の設定

以上を踏まえ、既往検討(中央環境審議会水環境部会陸域環境基準専門委員会(第10回,平成22年5月)(第14回,平成27年7月))において、山林負荷量の原単位は、以下の理由からS62調査を用いることとされた(表 2.2.30参照)。

- ・S62 調査及び H20 調査から、本流域の原単位はいずれも流総平均値よりも低い数値を示しており、 山林からの負荷量は小さいものと考えられる。
- ・S62 調査は、5 流域 $\times 3$ 季分の調査の平均値を用いて原単位を算出しており、1 流域 $\times 2$ 季分の H20 調査よりも精度としては高いと想定される。

表 2.2.30 相模川流域の自然汚濁負荷量原単位(山林)

項目	負荷量原単位	
COD	16.7 (g/ha/day)	
T-N	6.6 (g/ha/day)	
T-P	0.08 (g/ha/day)	

(4) 湧水負荷量について

城山ダム貯水池の、水域類型指定に関する既往検討(中央環境審議会水環境部会陸域環境 基準専門委員会(第10回,平成22年5月)(第14回,平成27年7月))では、現況の発 生負荷量算定に、富士山麓からの湧水による発生負荷量の算定結果を別途計上している。

城山ダム貯水池では、窒素・燐ついては、設定されている類型の基準値に対して現況水質の栄養塩濃度が非常に高い状況が継続しているが、忍野地域で測定される湧水の濃度が高いことから、湧水(地下水)由来分を別途計上してきたが、高濃度となっている要因が自然由来(地下水分を別途計上することが妥当)なのか、自然由来ではないのかという点が課題とされてきた。

そこで、以上を踏まえ、平成30年度~令和元年度にかけて、「類型指定見直しの検討に向けた検討会」を開催し、相模川の栄養塩負荷の取扱いについて検討を行い、以下の取扱いを採用することとなった。

【山林からの栄養塩類の取扱いについて】

相模川の栄養塩の由来に関して、文献収集、ヒアリングの結果より、以下の方針とする。

●窒素

・窒素については、自然由来と明瞭に判断できる知見が得られていないこと、既往研究事例 を踏まえると、これまでの検討で用いている山林の原単位が実態に比べて過少であると考 えられることから、これまでのように、<u>湧水負荷を別途計上するのではなく、山林原単位</u> の変更により対応する。

●燐

・燐については、新たに文献・資料を追加収集し、整理した結果、相模川の燐が高濃度であることは、富士山麓における地下水の影響(地質が燐多く含む玄武岩質であるため)であることが明らかとなったことから、これまで同様、<u>湧水負荷を別途計上する方法により対</u> **応する**。

以上を踏まえ、<u>土地系の山林の T-N の汚濁負荷量については</u>、相模川流域別下水道整備総合計画における山林からの原単位(下表)を採用するものとし、湧水由来の負荷量については、別途上乗せをしない。

表 2.2.31 相模川流域別下水道整備総合計画における山林の負荷量原単位

区 分	単位	T-N 原単位	
山林	kg/(km ² ・日)	4.54	

上記の通り、T-Nについては、湧水負荷を別途計上しないこととするが、COD、T-Pについては、既往検討同様に湧水負荷量を別途計上する。

以下に、既往検討での湧水由来の負荷を把握するために実施した現地調査の概要、湧水 分の発生負荷量の算定方法を示す。

1) 調査の概要

H19 調査(富士山麓湧水水質調査,環境省:以下H19 調査)の概要を表 2.2.32、調査地点の概要を表 2.2.33 及び図 2.2.19、現地観測方法を表 2.2.34、室内分析方法を表 2.2.35に示す。

表 2.2.32 H19 湧水負荷量調査の概要

項目	内容
調査項目	BOD、SS、COD、D-COD(溶存性 COD)、TOC、D-TOC(溶存性 TOC)、T-N、D-TN(溶存性 T-N)、T-P、D-TP(溶存性 T-P)
調査水域	富士北麓地域の湧水とする
調査頻度	調査頻度は、秋季(平成19年11月21日)と冬季(平成20年2月20日)の2回
調査方法	採水は「要調査項目等調査マニュアル(水質、底質、水生生物) 平成 13 年 3 月 環境省」に 準拠し、河川流心において表層水をバケツまたは立ち込みにより採水した。 流量測定については直接観測法で実施した。 調査方法は、河川断面(河川幅、水深)および流速を測定し、河川の断面積に流速を乗じて流 量を算出する。

表 2.2.33 H19 湧水負荷量調査の調査地点

調査地点番号	調査地点	H19 調査地点の考え方
1	忍野八海 (出口池)	忍野八海の中でひとつだけ離れたところにあり、魚苗センターの近傍に位置 する。
	(щниш)	うる。 各湧水池からの湧水は近傍の河川に流入している。
2	忍野八海	海水心がらの海水は近傍の河川に流入している。 湧水の水質、負荷量を把握するために、湧水池群上流 2 地点、下流 1 点を 測定し、差し引くことで湧水の状況を把握する。 また、実際の湧水の水質についても、お釜池、底抜池、銚子池、湧池、大池 の 5 地点の調査を実施する。
3	浅間神社	近傍に浅間神社脇に湧水が確認されたため、ここを調査地点とする。
4	夏狩湧水群	近傍に夏狩湧水群と呼ばれる湧水が確認されたため、ここを調査地点とする。
5	永寿院	調査地点とする。

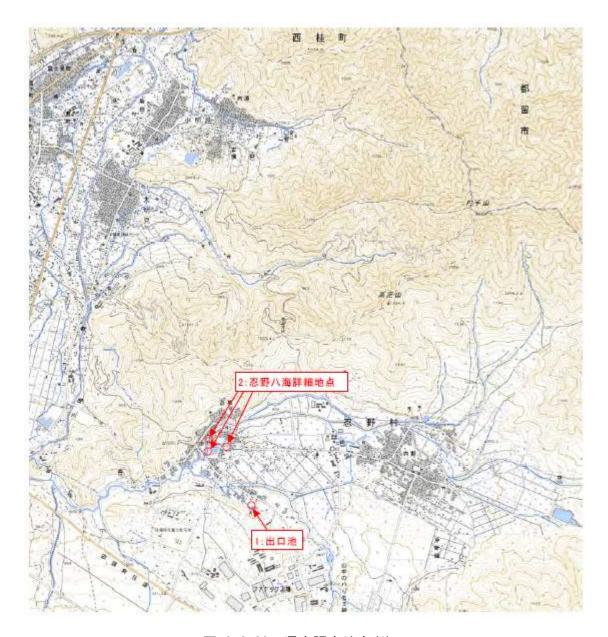


図 2.2.20 湧水調査地点(1)

出典: H19 調査

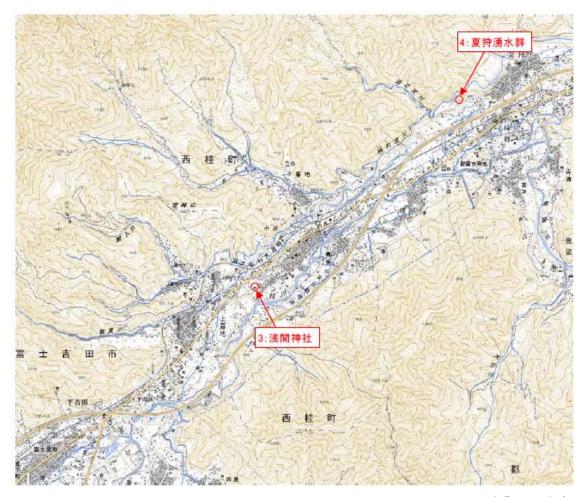


図 2.2.21 湧水調査地点(2)

出典:H19調査

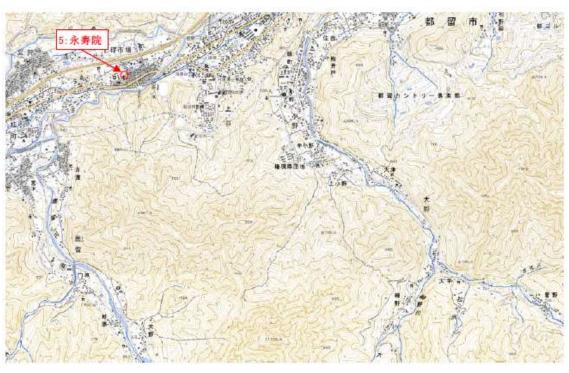


図 2.2.22 湧水調査地点(3)

出典: H19 調査

表 2.2.34 現地観測方法

観測項目	観測方法
水深	レッド間縄および竹尺により測定
気温	0.1℃水銀棒状温度計により測定
水温	ハンディの pH・DO・EC 計いずれかにより測定
рН	ハンディの pH 計により測定
DO	ハンディの DO 計により測定
EC	ハンディの EC 計により測定
天候	目視により観察

表 2.2.35 室内分析方法

調査項目	室内分析方法						
BOD	環境省告示の方法 [日本工業規格 K0102 (以下 「規格」 という。) 21 に定める方法]						
SS	環境省告示の方法 [付表 8 に掲げる方法]						
COD	環境省告示の方法 [規格 17 に定める方法]						
D-COD (溶存性 COD)	環境省告示の方法 [規格 17 に定める方法 (ガラス繊維ろ紙(GFB、孔径 1 μm)を通過した試水について測定)]						
TOC	厚生労働省告示第 261 号の方法 [懸濁物質は、ホモジナイザー、ミキサー、 超音波発生器等で破砕し、均一に分散させた試験溶液とする]						
D-TOC (溶存性 TOC)	厚生労働省告示第 261 号の方法 [ガラス繊維ろ紙(GFB、孔径 1mm) を通過した試水について測定]						
T-N	環境省告示の方法 [規格 45.2、45.3 又は 45.4 に定める方法]						
D-TN (溶存性 T-N)	環境省告示の方法 [規格 45.2、45.3 又は 45.4 に定める方法 (ガラス繊維ろ紙(GFB、孔径 1μm)を通過した試水について測定)]						
Т-Р	環境省告示の方法 [規格 46.3 に定める方法]						
D-TP (溶存性 T-P)	環境省告示の方法 [規格 46.3 に定める方法 (ガラス繊維ろ紙(GFB、孔径 1 μm)を通過した試水について測定)]						

2) 調査結果

秋季・冬季の湧水調査結果及び2季平均水質は、表 2.2.36~表 2.2.38 に示すとおりである。2季平均値で見ると、COD は平均で 0.5mg/L と低い値となっているが、T-N は 1.56mg/L、T-P は 0.121mg/L と高い値となっている。

表 2.2.36 湧水調査結果(秋季 調査日:平成19年11月21日)

単位:mg/L

地点	BOD	SS	COD	D-COD	TOC	D-TOC	T-N	D-TN	Т-Р	D-TP
1.出口池	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	0.74	0.69	0.135	0.131
2.1.忍野八海上流	0.8	1	1.5	1.2	0.8	0.7	2.14	2.13	0.041	0.020
2.2.忍野八海上流	1.1	1	1.5	1.3	0.8	0.7	2.66	2.57	0.060	0.046
2.3.忍野八海下流	0.8	2	1.2	0.5	0.5	0.3	2.08	1.92	0.122	0.097
2.4.お釜池	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.96	1.82	0.157	0.156
2.5.底抜池	< 0.5	<1	< 0.5	< 0.5	0.2	0.2	1.46	1.34	0.146	0.143
2.6.銚子池	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	2.00	1.88	0.153	0.145
2.7.湧池	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.73	1.61	0.136	0.136
2.8.濁池	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	2.17	2.02	0.136	0.135
4.浅間神社	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.85	1.65	0.093	0.089
5.夏狩湧水	< 0.5	<1	0.5	< 0.5	< 0.2	< 0.2	2.03	1.85	0.100	0.087
8.永寿院	0.6	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.41	1.25	0.052	0.051
最小値	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	0.74	0.69	0.041	0.020
最大値	1.1	2	1.5	1.3	0.8	0.7	2.66	2.57	0.157	0.156
平均値	0.6	1	0.7	0.6	0.5	0.3	1.85	1.73	0.111	0.103

表 2.2.37 湧水調査結果 (冬季 調査日:平成20年2月20日)

単位:mg/L

地点	BOD	SS	COD	D-COD	TOC	D-TOC	T-N	D-TN	Т-Р	D-TP
1.出口池	< 0.5	<1	< 0.5	< 0.5	0.2	< 0.2	0.69	0.68	0.141	0.141
2.1.忍野八海上流	1.2	<1	1.9	1.6	0.7	0.7	2.05	2.01	0.052	0.032
2.2.忍野八海上流	2.1	2	2.4	1.8	0.8	0.8	2.11	1.98	0.081	0.053
2.3.忍野八海下流	0.6	<1	0.9	0.8	0.3	0.3	1.83	1.76	0.126	0.109
2.4.お釜池	0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.64	1.60	0.150	0.145
2.5.底抜池	< 0.5	1	< 0.5	< 0.5	0.2	< 0.2	1.37	1.33	0.144	0.136
2.6.銚子池	< 0.5	2	0.5	< 0.5	0.2	< 0.2	1.82	1.81	0.154	0.143
2.7.湧池	< 0.5	<1	< 0.5	< 0.5	0.2	< 0.2	1.46	1.42	0.134	0.133
2.8.濁池	< 0.5	<1	< 0.5	< 0.5	0.2	< 0.2	1.84	1.80	0.144	0.143
4.浅間神社	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.59	1.57	0.095	0.092
5.夏狩湧水	< 0.5	<1	0.7	< 0.5	0.2	0.2	1.73	1.73	0.107	0.100
8.永寿院	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	1.37	1.35	0.065	0.063
最小値	< 0.5	<1	< 0.5	< 0.5	< 0.2	< 0.2	0.69	0.68	0.052	0.032
最大値	2.1	2	2.4	1.8	0.8	0.8	2.11	2.01	0.154	0.145
平均値	0.7	1	0.8	0.7	0.5	0.3	1.63	1.59	0.116	0.108

表 2.2.38 湧水調査結果 (2季平均)

単位:mg/L

地点	BOD	SS	COD	D-COD	TOC	D-TOC	T-N	D-TN	Т-Р	D-TP
1.出口池	< 0.5	< 1	< 0.5	< 0.5	< 0.2	< 0.2	0.72	0.69	0.138	0.136
2.1.忍野八海上流	_		_	_	_	_		_	_	_
2.2.忍野八海上流	_	_	_	_	_	_	_	_	_	_
2.3.忍野八海下流			_	_	_	_	_	_		_
2.4.お釜池	0.5	< 1	< 0.5	< 0.5	< 0.2	< 0.2	1.80	1.71	0.154	0.151
2.5.底抜池	< 0.5	< 1	< 0.5	< 0.5	0.2	0.2	1.42	1.34	0.145	0.140
2.6.銚子池	< 0.5	< 2	< 0.5	< 0.5	0.2	< 0.2	1.91	1.85	0.154	0.144
2.7.湧池	< 0.5	<1	< 0.5	< 0.5	0.2	< 0.2	1.60	1.52	0.135	0.135
2.8.濁池	< 0.5	< 1	< 0.5	< 0.5	0.2	< 0.2	2.01	1.91	0.140	0.139
4.浅間神社	< 0.5	< 1	< 0.5	< 0.5	< 0.2	< 0.2	1.72	1.61	0.094	0.091
5.夏狩湧水	< 0.5	<1	0.6	< 0.5	0.2	< 0.2	1.88	1.79	0.104	0.094
8.永寿院	0.6	< 1	< 0.5	< 0.5	< 0.2	< 0.2	1.39	1.30	0.059	0.057
最小値	0.5	<1	0.5	0.5	0.2	0.2	0.72	0.69	0.059	0.057
最大値	0.6	< 2	0.6	0.5	0.2	0.2	2.01	1.91	0.154	0.151
平均値	0.5	< 1	0.5	0.5	0.2	0.2	1.56	1.48	0.121	0.117

注) 忍野八海上流(2.1,2.2) 及び忍野八海下流(2.3) は、BOD, COD, T-N が他の湧水と比べて高く、上流側の集落等の排水の影響を受けている可能性が考えられることから、湧水負荷量の算定に用いる湧水水質の平均値は2.1~2.3 の値は除外して算定した。

: 負荷量の算定に使用

3) 湧水負荷量の検討

湧水水質調査結果を用い、図 2.2.22 に示す湧水汚濁負荷量算定フローにより、湧水 負荷量の試算を行った。

富士北麓地域の湧水量1(相模ダム流入量・降水量・蒸発散等から試算)を算定

湧水の水質の実測調査を実施

湧水からの負荷量を「富士北麓地域の山林からの負荷量」と 「その他の地域(流域外)からの負荷量」に分ける

- ・湧水量1=湧水量2(富士北麓地域由来)+湧水量3(流域外由来) にわける
- ・湧水量3(流域外由来)=相模ダム流入量-相模ダム推定流入量とする。
- ・相模ダム推定流入量=相模川水系降水量-相模川水系蒸発量
- •湧水量2(富士北麓地域由来)=降水量-蒸発量-表面流出量
- •湧水由来汚濁負荷量=富士北麓地域由来湧水汚濁負荷量+流域外由来湧水汚濁負荷量

湧水由来汚濁負荷量

- ·富士北麓地域由来湧水汚濁負荷量=湧水実測水質×湧水量2
- · 流域外由来湧水汚濁負荷量=湧水実測水質×湧水量3

汚濁負荷量の整理

·富士北麓山林発生汚濁負荷量=

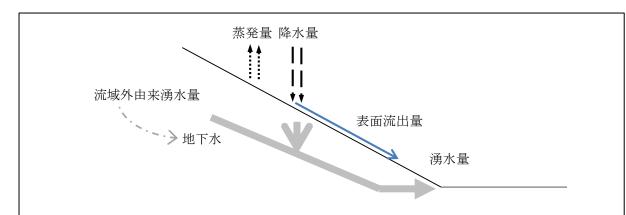
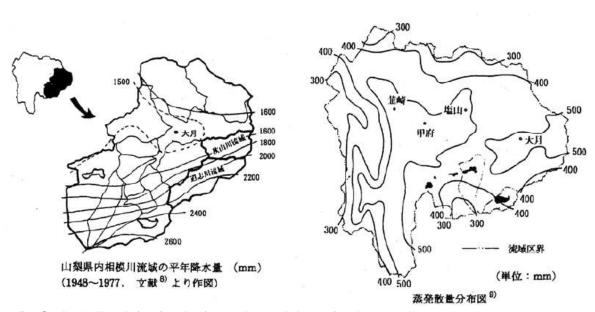

山林由来発生汚濁負荷量+富士北麓地域由来湧水汚濁負荷量

図 2.2.23 湧水汚濁負荷量算定フロー

表 2.2.39 山林及び湧水における汚濁負荷量算定方法の整理

項目	富士北麓流域	その他の流域		
山林汚濁負荷量	山林汚濁負荷量+湧水汚濁負荷量	山林汚濁負荷量		
湧水汚濁負荷量	流域外由来湧水汚濁負荷量	考慮しない		


注) 富士北麓流域は、山中湖、河口湖、宮川、富士見橋上流の流域とする。

湧水量=富士北麓流域湧水量±流域外由来湧水量 富士北麓流域湧水量=降水量-蒸発量-表面流出量 流域外由来湧水量=相模ダム流入量-相模ダム推定流入量 相模ダム推定流入量=相模川水系降水量-相模川水系蒸発量

注:表面流出量は実測調査を行っていないため、既往文献から設定した。 降水量、蒸発量、相模川水系降水量、相模川水系蒸発量は、「山梨県相模川流域の 降雨流出解析の試み 山梨衛生公害研究所年報 第31 号34~38 頁 1987」(次頁) を参考に設定した。相模ダム流入量は、ダム管理年報より算定した。

図 2.2.24 湧水負荷量の算定方法

出典:「山梨県相模川流域の降雨流出解析の試み 山梨衛生公害研究所年報 第31号34~38頁 1987」

図 2.2.25 蒸発散量分布図

4) 富士北麓地域由来湧水量の算定

山梨県内の相模川流域(桂川)について、流域面積・降水量・蒸発散量・湖水放流量・ 晴天時比流量などの値から、流域全体の降雨流出量及びその内訳として、晴天時流出量・ 湧水量・降雨時流出量を推定した。

湧水の流出量は、降雨量に係わらず一定とし、流域の平年の降水量と蒸発散量及び流域面積から降雨流出量を推定した。計算に用いた降水量・蒸発散量の値と得られた流出量を表 2.2.40 に示した。

流域面積 降水量 蒸発散量 流出高 推定流出量 流域区分 (mm/yr) (m^3/sec) (km^2) (mm/yr) (mm/yr) 富士見橋上流 78.25 2,250 400 1,850 4.59 宮川 56.14 2,250 400 1,850 3.29 山中湖流域 400 2,110 4.34 61.61 2,510 河口湖流域 129.51 400 6.26 1,860 1,460 325.51 18.48

表 2.2.40 桂川橋における降雨流出解析

表面流出量については当該地域についての調査結果等の知見がないことから、「山梨県相模川流域の降雨流出解析の試み山梨衛生公害研究所年報 第31号34~38頁 1987」における考え方に準じ、宮川、富士見橋上流流域については、流出する降雨の100%が地下流出するものと仮定した。

山中湖及び河口湖の表面流出量は、「山梨県相模川流域の降雨流出解析の試み 山梨衛 生公害研究所年報 第31号34~38頁 1987」で設定された平年値(東京電力による湖水 放流量)とした。

推定流出量から表面流出量を引いた残りを、富士北麓地域由来湧水量とみなし表 2.2.41のとおり算定した。

表 2.2.41 湧水量(湧水量2)の推定(平年)

(単位: m³/s)

流域区分	推定流出量	表面流出量	地下流出量 (湧水量)
富士見橋上流	4.59	0.00	4.59
宮川	3.29	0.00	3.29
山中湖流域	4.34	1.07	3.27
河口湖流域	6.26	0.73	5.53
計	18.48	1.80	16.68

注)降水量及び蒸発散量は、「山梨県相模川流域の降雨流出解析の試み 山梨衛生公害研究所年報 第 31 号 34~38 頁 1987」で整理された平年値を使用した。「富士見橋上流」については、資料中桂川 (1) 流域とほぼ同様であることから、桂川 (1) 流域の値を用いた。

5) 流域外湧水量の算定

流域外由来湧水量は、次式により算定した。

湧水量3 (流域外由来) = 相模ダム流入量 - 相模ダム推定流入量 相模ダム推定流入量 = 相模川水系降水量 - 相模川水系蒸発量

相模ダム推定流入量の算定結果は、表 2.2.42 に示すとおりである。

表 2.2.42 相模ダム推定流入量の算定

	流域面積 (km²)	相模ダム水 系降水量 (mm/年)	相模川水系 蒸発量 (mm/年)	流出高 (mm/年)	相模ダム推 定流入量 (m³/sec)
相模ダム水系	1,016.32	1,740	500	1,240	39.96

注) 相模川水系降水量及び蒸発量は、「山梨県相模川流域の降雨流出解析の試み 山梨衛生公害研究所年報 第 31 号 34~38 頁 1987」で整理された情報によった。(図 2.2.24)

相模ダム流入量の過去 10 年間の実績は、表 2.2.43 に示すとおりであり、本試算においては、過去 10 年間の平均流入量を用いて算定を行った。

流域外湧水量(湧水量3)の試算結果は、表 2.2.44に示すとおりである。

表 2.2.43 相模ダム流入量

年度	年平均 (m³/s)
Н6	34.44
H7	31.65
Н8	27.16
Н9	27.07
H10	67.80
H11	48.40
H12	34.99
H13	49.48
H14	40.02
H15	50.42
10ヶ年平均	41.14

出典:相模ダム管理年報

表 2.2.44 流域外由来湧水量 (湧水量3)

	相模ダム 流入量 (m³/s)	相模ダム 推定流入量 (m³/s)	湧水量3 (m³/s)	
年平均	41.14	39.96	1.18	

6) 湧水負荷量の算定結果

相模ダム貯水池に流入する湧水汚濁負荷量の試算結果は、表 2.2.45 に示すとおりである。富士北麓流域における山林汚濁負荷量としての湧水汚濁負荷量は、CODで720kg/日、T-Nで2,248kg/日、T-Pで174.38kg/日と試算される。

また、富士北麓流域における流域外からの湧水汚濁負荷量は、COD で 51kg/日、T-N で 159kg/日、T-P で 12kg/日と試算される。合計で COD 771kg/日、T-N 2, 407kg/日、T-P 187kg/日の湧水汚濁負荷量が相模湖に流入するものと試算される。

表 2.2.45 相模ダム貯水池流域における湧水汚濁負荷量の試算結果

区分	水質項目	流域	水量 (m³/s)	水質 (mg/L)	汚濁負荷量 (kg/日)
流域内由来	COD	山中湖	3.27	0.5	141
		河口湖	5.53	0.5	239
		宮川	3.29	0.5	142
		富士見橋上流	4.59	0.5	198
		計	16.68		720
	T-N	山中湖	3.27	1.56	441.0
		河口湖	5.53	1.56	745.0
		宮川	3.29	1.56	443.0
		富士見橋上流	4.59	1.56	619.0
		計	16.68		2,248.0
	T-P	山中湖	3.27	0.121	34.19
		河口湖	5.53	0.121	57.81
		宮川	3.29	0.121	34.39
		富士見橋上流	4.59	0.121	47.99
		計	16.68		174.38
流域外由来	COD	流域外	1.18	0.5	51
	T-N	流域外	1.18	1.56	159.0
	T-P	流域外	1.18	0.121	12.34
	COD	_	_	_	771
合計	T-N				2407.0
	T-P	_	_	_	186.72

なお、現在湧水が確認されている地点は、全て山梨県内に位置しているため、城山ダム貯水池に流入する湧水負荷量は、相模ダム貯水池に流入する湧水負荷量と同値となる。

(5) 城山ダム貯水池 (津久井湖) の発生負荷量

発生汚濁負荷量の算定手法は表 2.2.46 に示すとおり、点源については実測値法(負荷量=排水量×水質)、面源については原単位法(負荷量=フレーム×原単位)により算定した。面源の発生汚濁負荷量の算定に用いた原単位は表 2.2.47 に示すとおりである。

表 2.2.46 城山ダム貯水池 (津久井湖) の発生汚濁負荷量算定手法

発生活	原別	区分	算定手法
生活系	点源	下水道終末処理施設 (マップ調査)*	排水量(実測値)×排水水質(実測値)
		し尿処理施設(マップ調査)*	排水量(実測値)×排水水質(実測値)
	面源	し尿・雑排水(合併処理浄化槽)	合併処理浄化槽人口×原単位(し尿+雑排水)×(1-除去率)
		し尿(単独処理浄化槽)	単独処理浄化槽人口×原単位(し尿)×(1-除去率)
		し尿(計画収集)	計画収集人口×原単位(し尿)×(1-除去率)
		し尿(自家処理)	自家処理人口×原単位(し尿)×(1-除去率)
畜産系	点源	畜産業	排水量(実測値)×排水水質(実測値)
	面源	マップ調査以外の畜産業*	家畜頭数×原単位×(1-除去率)
土地系	面源	土地利用形態別負荷	土地利用形態別面積×原単位
産業系	点源	工場・事業場(マップ調査)*	排水量(実測値)×排水水質(実測値)

注)*マップ調査: 平成23 年度、平成25 年度、平成27 年度、平成29 年度水質汚濁物質排出量総合調査(環境省) ⇒マップ調査の調査対象は、①日排出量が50m³以上、もしくは②有害物質を排出するおそれのある工場・事業場であり、③指定地域特定施設及び湖沼水質保全特別措置法で定めるみなし指定地域特定施設を含む。

表 2.2.47 城山ダム貯水池 (津久井湖) の発生汚濁負荷量原単位

	E A	単位	C	OD	T	-N	T-P		
	区 分	早1年	原単位	除去率(%)	原単位	除去率(%)	原単位	除去率(%)	
	合併処理浄化槽	g/(人・日)	28.0	72.5	13.0	48. 5	1.40	46. 4	
生	単独処理浄化槽	g/(人・日)	10.0	53.5	9.0	34. 4	0.90	30.0	
活系	計画収集 (雑排水)	g/(人・日)	18. 0	0.0	4. 0	0.0	0. 50	0.0	
	自家処理	g/(人・日)	10.0	90.0	9.0	90.0	0.90	90.0	
	田	kg/(km ² ・日)	30.44	_	3.67	_	1. 13	_	
土	畑	kg/(km ² ・日)	13.56	_	27.51	_	0.35	_	
地	山林	kg/(km ² ・日)	1. 67	_	4. 54**	_	0.008	_	
系	市街地	kg/(km ² ・日)	29.32	_	4.44	_	0. 52	_	
	その他	kg/(km ² ・日)	7. 95	_	3.56	_	0. 10	_	
	乳用牛	g/(頭・日)	530. 0	97. 5	290. 0	96. 1	50.00	98.4	
家畜	肉用牛	g/(頭・日)	530. 0	97.5	290. 0	96. 1	50.00	98. 4	
音系	豚	g/(頭•日)	130. 0	95. 9	40.0	93. 5	25.00	95. 1	
	鶏	g/(羽・日)	2.9	95.5	1.91	94. 5	0. 27	95.5	

注)※:前回の暫定目標見直し時(平成28年3月)以降に見直された原単位及び除去率

出典:「流域別下水道整備総合計画調査 指針と解説 平成27年1月 国土交通省水管理・国土保全局下水道部」

- ・生活系の原単位は、「1人1日当たり汚濁負荷量の参考値」
- ・合併処理浄化槽の除去率は、「小型合併浄化槽の排水量・負荷量原単位」の排出負荷量の平均値と原単位から除去率を 算出した
- ・単独処理浄化槽の除去率は、「単独浄化槽の排出負荷量原単位」の排出負荷量の平均値と原単位から除去率を算出した
- ・自家処理の除去率は、前回の類型指定(平成25年6月)に係る検討時の値と同値とした
- ・土地系の山林の原単位 (COD、T-P) は「昭和62年度湖沼水質汚濁機構等検討調査 (昭和63年3月)」の調査結果から算出した
- 山林の原単位 (T-N) は「相模川流域の目標汚濁負荷量に関する基本方針,平成26年3月」の原単位を用いた
- ・土地系の山林以外の原単位は、各土地利用区分の原単位の平均値とした(田は純排出負荷量の平均値)。 土地系のその他については「大気降下物の汚濁負荷量原単位」の平均値とした。
- なお、CODは「非特定汚染源からの流出負荷量の推計手法に関する研究 H24.3 (社)日本水環境学会」の平均値とした
- ・家畜系原単位は、「家畜による発生負荷量原単位」における原単位の平均値とした
- ・家畜系除去率は、「牛、豚、鶏の汚濁負荷量原単位と排出率 (湖沼水質保全計画)」の排出率から算出した

(6) 城山ダム貯水池 (津久井湖) の発生汚濁負荷量

城山ダム貯水池(津久井湖)の発生汚濁負荷量は表 2.2.48 に示すとおりである。

表 2.2.48 城山ダム貯水池 (津久井湖) 流域の発生汚濁負荷量

			CC)D	T-	N	T-P		
	区 分		現況平均 (H23~H28年度平均)	将来 令和7年度	現況平均 (H23~H28年度平均)	将来 令和7年度	現況平均 (H23~H28年度平均)	将来 令和7年度	
	合併処理浄化槽	kg/日	304	338	264	294	30	33	
	単独処理浄化槽	kg/日	296	162	376	206	40	22	
生活系	計画収集	kg/日	308	141	68	31	9	4	
工伯尔	自家処理	kg/日	0	0	0	0	0	0	
	点源(水質汚濁物質排出量総合調査)	kg/日	193	195	206	222	18	14	
	小計		1,100	836	914	753	96	73	
	牛		29	26	25	22	2	2	
	豚	kg/日	40	42	19	21	9	10	
家畜系	鶏	kg/日	35	32	28	26	3	3	
	点源(水質汚濁物質排出量総合調査)	kg/日	0	0	0	0	0	0	
	小計	kg/日	104	100	72	68	14	14	
	田	kg/日	673	613	81	74	25	23	
	畑	kg/日	503	478	1,021	971	13	12	
土地系	山林	kg/日	1,713	1,709	4,657	4,645	8	8	
上地ボ	市街地	kg/日	2,986	3,219	452	487	53	57	
	その他	kg/日	464	452	208	202	6	6	
	小計	kg/日	6,339	6,470	6,419	6,379	105	106	
湧水	湧水	kg/日	771	771		_	187	187	
産業系	点源(水質汚濁物質排出量総合調査)	kg/日	100	92	59	70	12	15	
合計		kg/日	8,414	8,269	7,465	7,271	414	396	

注) 生活系のうち、「点源」は排水量 50m³/日以上の下水処理場、コミュニティプラント、農業集落排水処理施設等の大規模浄化槽及びし尿処理場を、「合併処理浄化槽」「単独処理浄化槽」は 50m³/日未満の浄化槽を、「計画収集」は市町村が計画処理区区域内で収集するし尿を、「自家処理」はし尿又は浄化槽汚泥を自家肥料として用いる等、自ら処分しているものを、それぞれ表す。

表 2.2.49 城山ダム貯水池 (津久井湖) 流域の発生汚濁負荷量の推移 (平成 23~平成 28 年度)

区分		単位	平成23年度	平成24年度	平成25年度	平成26年度	平成27年度	平成28年度	H23~H28年度 平均
	生活系	kg/日	1,260	1,193	1,125	1,055	984	986	1,100
	家畜系	kg/日	109	116	100	101	97	100	104
COD	土地系	kg/日	6,338	6,345	6,351	6,357	6,334	6,311	6,339
COD	湧水	kg/日	771	771	771	771	771	771	771
	産業系	kg/日	80	98	117	110	103	92	100
	合計	kg/日	8,559	8,522	8,463	8,393	8,289	8,261	8,414
	生活系	kg/日	989	957	926	890	854	870	914
	家畜系	kg/日	79	81	70	70	66	68	72
T-N	土地系	kg/日	6,453	6,440	6,426	6,413	6,399	6,384	6,419
1-14	湧水	kg/日	1	I	l	1	I	_	_
	産業系	kg/日	65	65	66	51	37	70	59
	合計	kg/日	7,586	7,543	7,487	7,424	7,356	7,392	7,465
	生活系	kg/日	111	104	98	91	84	88	96
	家畜系	kg/日	14	16	14	14	14	14	14
T-P	土地系	kg/日	106	106	106	105	104	103	105
1-P	湧水	kg/日	187	187	187	187	187	187	187
	産業系	kg/日	9	11	12	13	13	15	12
	合計	kg/日	426	423	416	410	402	407	414

産業系の「点源」は生活系、家畜系以外の水質汚濁防止法の特定事業場を表す。

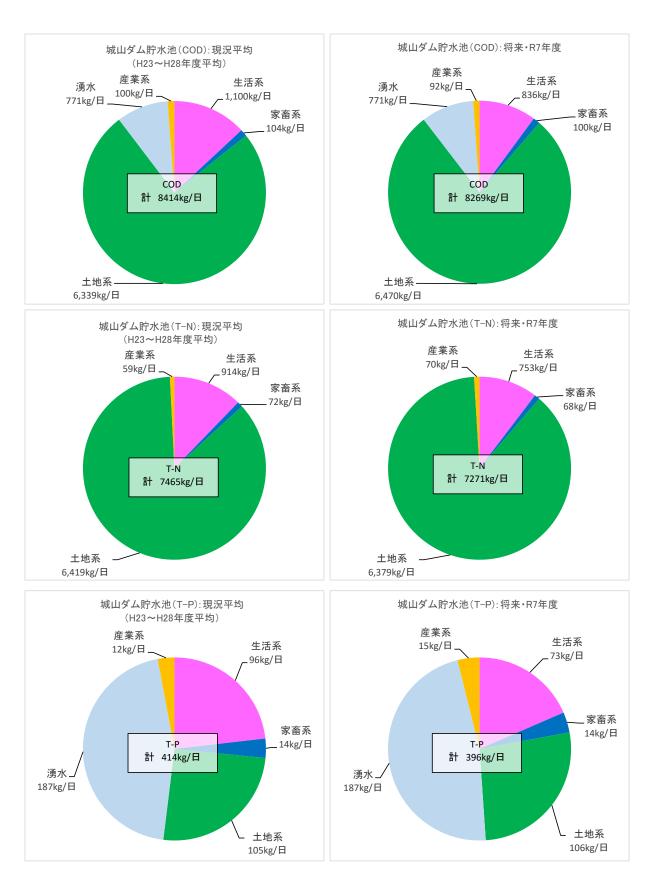


図 2.2.26 城山ダム貯水池 (津久井湖) 流域の汚濁負荷量内訳

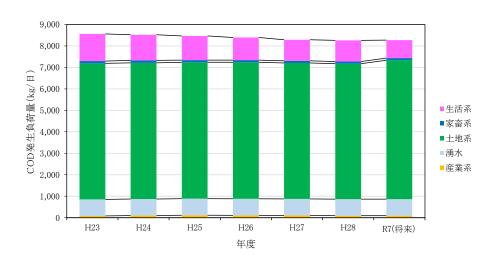


図 2.2.27 城山ダム貯水池流域の COD 発生負荷量経年変化

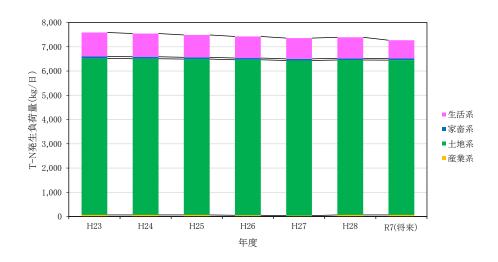


図 2.2.28 城山ダム貯水池流域の T-N 発生負荷量経年変化

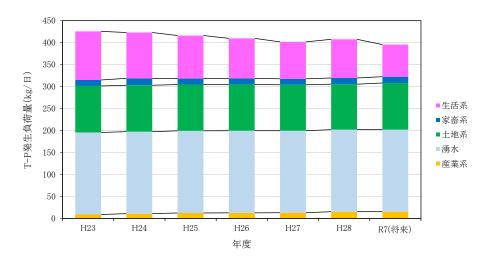


図 2.2.29 城山ダム貯水池流域の T-P 発生負荷量経年変化

2.2.6. 城山ダム貯水池 (津久井湖) の将来水質予測

城山ダム瀬貯水池の将来水質予測結果は、次のとおりである。

流入水量の経年変化は、神奈川県提供のデータを用いた。

なお、城山ダム貯水池への流入河川等としては、沼本ダム、道志川、串川導水があることから、それぞれに内訳を把握した。結果を表 2.2.50 に示した。

表 2.2.50 城山ダム貯水池の現況年平均流入量の経年変化

	H23	H24	H25	H26	H27	H28	平均
城山ダム年平均流入量(m³/s)	72	46	45	46	51	41	50
沼本ダム平均流入量(m³/s)	61	38	37	40	43	33	42
弁天橋(道志川)平均流入量(m³/s)	11	7.2	7.5	6.4	7.2	7.6	7.9
串川導水平均流入量(m³/s)	0.36	0.38	0.36	0.42	0.37	0.32	0.37

- 出典) 1. 年平均流入量:ダム諸量データベース (http://dam5. nilim. go. jp/dam/)
 - 2. 沼本ダム年平均流入量(=相模ダム放流量と同値とする): 神奈川県資料
 - 3. 串川導水年平均流入量(=串川からの導水量と同値とする): 神奈川県資料
 - 4. 弁天橋(道志川)年平均流入量:城山ダム貯水湖への総流入量と、沼本ダムからの流入量、 串川導水からの流入量の差により推計)

※有効数字二桁で表示しています。

(1) 城山ダム貯水池 (津久井湖) COD 水質予測

城山ダム貯水池への流入水と貯水池の水質の経年変化は、表 2.2.52 のとおりである。 なお、城山ダム貯水池の流入水質は、前述の3つの流入河川等毎に把握した。城山ダム 貯水池負荷量の経年変化を表 2.2.53 に示した。

表 2.2.51 城山ダム貯水池の流入水質 (COD)

COD	H23	H24	H25	H26	H27	H28	平均
城山ダム年平均流入水質(mg/L)	1.7	1.5	1.9	1.7	1.8	2.0	1.8
沼本ダム平均流入水質(mg/L)	1.7	1.6	2.0	1.8	1.9	2.1	1.9
弁天橋(道志川)年平均流入水質(mg/L)	1.4	1.0	1.2	1.1	1.3	1.4	1.2
串川導水平均流入水質(mg/L)	1.4	1.4	1.4	1.4	1.4	1.4	1.4

- 出典) 1. 年平均流入水質: 3 つの流入河川等の水質を流入水量で加重平均した結果とした。
 - 2. 沼本ダム年平均流入水質:「神奈川県公共用水域水質測定結果」(観測地点:沼本ダム)
 - 3. 串川導水年平均流入水質:「平成25年度河川のモニタリング調査結果」(観測地点:河原橋(串川)) 平成25年度の観測結果を、対象期間(H23~H27)に一律に適用した。
 - 4. 弁天橋(道志川) 年平均流入水質:「神奈川県公共用水域水質測定結果」

(観測地点:弁天橋(※道志川最下流の観測地点))

※有効数字二桁で表示しています。

表 2.2.52 城山ダム貯水池の現況 COD 水質の経年変化

COD	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	1.7	1.5	1.9	1.7	1.8	2.0	1.8
貯水池水質年平均値(mg/L)	1.8	1.8	2.0	1.9	2.1	2.2	2.0
貯水池水質75%值(mg/L)	2.0	2.0	2.6	2.1	2.3	2.4	2.2

※有効数字二桁で表示しています。

表 2.2.53 城山ダム貯水池の現況 COD 発生負荷量と流入負荷量の経年変化

COD	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	8,559	8,522	8,463	8,393	8,289	8,261	8414
流入負荷量(kg/日)	10,366	5,970	7,398	6,752	7,938	6,887	7552
流入率	1.21	0.70	0.87	0.80	0.96	0.83	0.90

注)流入負荷量=年平均流入量×年平均流入水質流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流出率は有効数字二桁で表示しています。

将来水質の算定には次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 2.2.54 城山ダム貯水池流域の将来 COD 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	2.0	表 2.2.52 の貯水池水質年平均値 (COD) の 6 ヵ年平均値
将来発生負荷量(kg/日)	8,269	表 2.2.48の将来の発生汚濁負荷量の合計 (COD)
現況平均流入率	0.90	表 2.2.53 の流入率の 6 ヶ年平均値
現況平均流入負荷量(kg/日)	7,552	表 2.2.53 の流入負荷量の 6 ヶ年平均値
将来流入負荷量(kg/日)	7,442	将来発生負荷量×現況平均流入率

COD 将来水質予測結果は、表 2.2.55 に示すとおりである。また、75%値は、図 2.2.30 に示す相関式に年平均値を当てはめて推計した。

表 2.2.55 城山ダム貯水池流域の将来 COD 水質予測結果

		城山ダ	ム貯水池	現在の類型			
項		将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値	現暫定目標値		
COD水質	年平均値	2.0	1.9~2.1		_		
CODAL	75%値	2.2	2.0~2.4	A類型 3mg/L以下	-		

※年平均値の変動範囲は、表 2.2.51の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。75%値の変動範囲は、表 2.2.51の貯水池の75%値から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

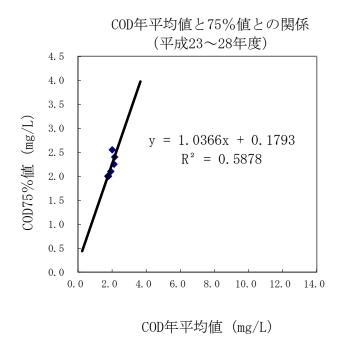


図 2.2.30 城山ダム貯水池の COD 水質年平均値と 75%値との関係

(2) 城山ダム貯水池 (津久井湖) T-N 水質予測

城山ダム貯水池の水質の経年変化は、表 2.2.57 のとおりである。なお、城山ダム貯水 池流入水質は、前述の3つの流入河川等毎に把握した。城山ダム貯水池負荷量の経年変化 は表 2.2.58 のとおりである。

表 2.2.56 城山ダム貯水池の流入水質 (T-N)

T-N	H23	H24	H25	H26	H27	H28	平均
城山ダム年平均流入水質(mg/L)	1.2	1.1	1.1	1.1	1.1	1.0	1.1
沼本ダム平均流入水質(mg/L)	1.3	1.2	1.2	1.2	1.1	1.0	1.2
弁天橋(道志川)年平均流入水質(mg/L)	0.74	0.65	0.58	0.59	0.60	0.51	0.61
串川導水平均流入水質(mg/L)	2.5	2.5	2.5	2.5	2.5	2.5	2.5

- 出典) 1. 年平均流入水質: 3 つの流入河川等の水質を流入水量で加重平均した結果とした。
 - 2. 沼本ダム年平均流入水質:「神奈川県公共用水域水質測定結果」(観測地点: 沼本ダム)
 - 3. 串川導水年平均流入水質:「平成25年度河川のモニタリング調査結果」(観測地点:河原橋(串川)) 平成25年度の観測結果を、対象期間(H23~H27)に一律に適用した。
 - 4. 弁天橋(道志川)年平均流入水質:「神奈川県公共用水域水質測定結果」

(観測地点:弁天橋(※道志川最下流の観測地点))

※有効数字二桁で表示しています。

表 2.2.57 城山ダム貯水池の現況 T-N 水質年平均値の経年変化

T-N	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	1.2	1.1	1.1	1.1	1.1	1.0	1.1
貯水池水質年平均値(mg/L)	1.2	1.1	1.1	1.1	1.2	1.0	1.1

※有効数字二桁で表示しています。

表 2.2.58 城山ダム貯水池流域の現況 T-N 発生負荷量と流入負荷量の経年変化

T-N	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	7,586	7,543	7,487	7,424	7,356	7,392	7,465
流入負荷量(kg/日)	7,678	4,285	4,260	4,373	4,685	3,333	4,769
流入率	1.01	0.57	0.57	0.59	0.64	0.45	0.64

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流出率は有効数字二桁で表示しています。

将来水質の算定は次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 2.2.59 城山ダム貯水池流域の将来 T-N 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	1.1	表 2.2.57 の貯水池水質年平均値(T-N)の 6 ヵ年平均値
将来発生負荷量(kg/日)	7,271	表 2.2.48 の将来の発生汚濁負荷量の合計 (T-N)
現況平均流入率	0.64	表 2.2.58 の流入率の 6 ヶ年平均値
現況平均流入負荷量(kg/日)	4,769	表 2.2.58 の流入負荷量の 6 ヶ年平均値
将来流入負荷量(kg/日)	4,654	将来発生負荷量×現況平均流入率

T-N 将来水質予測結果は、表 2.2.60 に示すとおりである。

表 2.2.60 城山ダム貯水池流域の将来 T-N 水質予測結果

		城山ダ	ム貯水池	現在の類型		
項	目	将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値	現暫定目標値	
T-N水質	年平均値	1.1	1.0~1.2	$_{ m II}$ 0.2mg/L	1.1mg/L	

注)変動範囲は表 2.2.57のダム貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

(3) 城山ダム貯水池 (津久井湖) T-P 水質予測

城山ダム貯水池水質の経年変化は表 2.2.62 に示すとおりである。なお、城山ダム貯水 池流入水質は、前述の3つの流入河川等毎に把握した。城山ダム貯水池負荷量の経年変化 を表 2.2.63 のとおりである

表 2.2.61 城山ダム貯水池の流入水質 (T-P)

T-P	H23	H24	H25	H26	H27	H28	平均
城山ダム年平均流入水質(mg/L)	0.070	0.064	0.070	0.069	0.065	0.071	0.068
沼本ダム平均流入水質(mg/L)	0.080	0.075	0.082	0.079	0.075	0.084	0.079
弁天橋(道志川)年平均流入水質(mg/L)	0.015	0.0070	0.0070	0.0070	0.0090	0.0120	0.0095
串川導水平均流入水質(mg/L)	0.049	0.049	0.049	0.049	0.049	0.049	0.049

- 出典)1.年平均流入水質:3つの流入河川等の水質を流入水量で加重平均した結果とした。
 - 2. 沼本ダム年平均流入水質:「神奈川県公共用水域水質測定結果」(観測地点:沼本ダム)
 - 3. 串川導水年平均流入水質:「平成25年度河川のモニタリング調査結果」(観測地点:河原橋(串川)) 平成25年度の観測結果を、対象期間(H23~H27)に一律に適用した。
 - 4. 弁天橋(道志川)年平均流入水質:「神奈川県公共用水域水質測定結果」

(観測地点:弁天橋(※道志川最下流の観測地点))

※有効数字二桁で表示しています。

表 2.2.62 城山ダム貯水池の現況 T-P 水質年平均値の経年変化

T-P	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	0.070	0.064	0.070	0.069	0.065	0.071	0.068
貯水池水質年平均値(mg/L)	0.060	0.048	0.051	0.049	0.055	0.043	0.051

※有効数字二桁で表示しています。

表 2.2.63 城山ダム貯水池流域の現況 T-P 発生負荷量と流入負荷量の経年変化

T-P	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	426	423	416	410	402	407	414
流入負荷量(kg/日)	439	252	271	276	286	247	295
流入率	1.03	0.60	0.65	0.67	0.71	0.61	0.71

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流出率は有効数字二桁で表示しています。

将来水質の算定は次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 2.2.64 城山ダム貯水池流域の将来 T-P 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	0.051	表 2.2.62 の貯水池水質年平均値(T-P)の 6 ヵ年平均値
将来発生負荷量(kg/日)	396	表 2.2.48 の将来の発生汚濁負荷量の合計 (T-P)
現況平均流入率	0.71	表 2.2.63 の流入率の 6 ヶ年平均値
現況平均流入負荷量(kg/日)	295	表 2.2.63 の流入負荷量の 6 ヶ年平均値
将来流入負荷量(kg/日)	282	将来発生負荷量×現況平均流入率

T-P 将来水質予測結果は、表 2.2.65 に示すとおりである。

表 2.2.65 城山ダム貯水池の将来 T-P 水質予測結果

		城山ダ	ム貯水池	現る	生の類型
項	目	将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値	現暫定目標値
T-P水質	年平均値	0.049	0.044~0.054	$\overline{ m II}$ 0.01mg/L	0.042mg/L

注)変動範囲は表 2.2.62のダム貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

2.2.7. 城山ダム貯水池 (津久井湖) の水域類型指定

水質予測結果及び現況年度(平成28年度)の翌年度以降(平成28年度)の水質調査結果を踏まえた城山ダム貯水池(津久井湖)の類型指定は下記のとおりである。なお、暫定目標の設定にあたっては、中央環境審議会水環境部会(第44回)資料1-別添1,2(巻末資料(7))に示す考え方を基本とした。

		(6力年平均)	H29.H30水質	R7水質予測	改善目標値	R7までの 暫定目標
3mg/L (湖沼A)	-	2.2mg/L	H29:2.1mg/L H30:2.8mg/L	2.2mg/L (2.0~2.4)	-	設定しない
0.2mg/L (湖沼Ⅱ)	1.1mg/L	1.1mg/L	H29:1.1mg/L H30:0.9mg/L	1.1mg/L (1.0~1.2)	1.0mg/L (変動範囲の 下限値)	1.0mg/L
0.01mg/L (湖沼II)	0.042mg/L	0.051mg/L	H29:0.045mg/L H30:0.043mg/L	0.049mg/L (0.044~0.054)	0.044mg/L (変動範囲の 下限値)	0.042mg/L
((湖沼A) 0.2mg/L 湖沼I) 0.01mg/L 湖沼I)	(湖沼A) - 0.2mg/L 湖沼II) 1.1mg/L 池沼II) 0.042mg/L 湖沼II)	(湖沼A) - 2.2mg/L 0.2mg/L 湖沼II) 1.1mg/L 1.1mg/L 0.01mg/L 湖沼II) 0.042mg/L 0.051mg/L	(湖沼A) - 2.2mg/L H30:2.8mg/L 0.2mg/L	(湖沼A) - 2.2mg/L H30:2.8mg/L (2.0~2.4) 0.2mg/L 湖沼 I 1.1mg/L 1.1mg/L H29:1.1mg/L (1.0~1.2) 0.01mg/L 湖沼 I 0.042mg/L 0.051mg/L H30:0.043mg/L (0.044~0.054)	(湖沼A) - 2.2mg/L H30:2.8mg/L (2.0~2.4) 0.2mg/L 加沼Ⅱ) 1.1mg/L 1.1mg/L H29:1.1mg/L (2.0~2.4) 1.0mg/L 変動範囲の下限値) 0.01mg/L 湖沼Ⅱ) 0.042mg/L 0.051mg/L H29:0.045mg/L (0.044~0.054) 1.0mg/L 変動範囲の下限値) 0.044mg/L (変動範囲の下限値) 下限値)

表 2.2.66 城山ダムの将来水質予測結果と暫定目標

(1)類型指定

類型については、湖沼A類型・湖沼Ⅱ類型に相当する水道の利用があることから、引き続き「湖沼A類型・湖沼Ⅱ類型」とする。

(2) 達成期間 (暫定目標の設定を含む)

化学的酸素要求量 (COD) については、平成 23 年度から平成 28 年度の現況値 (75%値)、 令和 7 年度の水質予測結果 (75%値 2.2mg/L) ともに、基準値 (3mg/L) を下回っているこ とから、暫定目標は設定せず、達成期間は、引き続き【イ直ちに達成】とする。

T-N 及び T-P については、令和 7 年度の水質予測結果 (T-N 1.1mg/L、T-P 0.049mg/L) は湖沼 II 類型の基準値 (T-N 0.2mg/L、T-P 0.01mg/L) を大きく上回り、現在見込み得る対策を行ったとしても、5 年後において達成が困難なため、達成期間は【ニ 段階的に暫定目標を達成しつつ、環境基準の可及的速やかな達成に努める。】とする。

令和7年度までの暫定目標については、T-Nは、近年、将来水質予測結果を下回る実績値があることから、より良好な水質の実現が見込まれると判断し、将来水質予測結果の変動範囲の下限値である T-N 1.0mg/L と設定する。また、T-P は、近年の水質の実測値が、従前の暫定目標値(0.042mg/L)を上回って推移しており、将来水質予測結果の変動範囲の下限値(0.044mg/L)も従前の暫定目標を上回っているが、過去に従前の暫定目標を満たす年があったことから、実現可能と考えられる最も低い値として現行の暫定目標を据え置き、T-P 0.042mg/L と設定し、今後、経過を見守りつつ、引き続き、段階的な水質改善を図ることとする。

<参考:異常値の除外の考え方>

対数正規分布による異常値の除外の検討を行った。除外の候補とされた測定値について、藻類の異常増殖や出水の影響等を総合的に勘案し、異常値の除外を判断した。

表 2.2.67 城山ダム貯水池における異常値の候補と除外有無の判定(COD)

(異常値判定時の上限値: 4.0mg/L, 下限値: 1.1mg/L)

年度	年月	COD (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
21	2009/4/23	4.9	15	除外しない	降雨・藻類の異常発生等の影響は考 えられない。	前3日の降水量は17.5mm。
24	2012/8/1	4.1	43	除外する	藻類の異常増殖がみられる	前3日の降水量は0mm。
25	2013/6/5	5.2	99	除外する	藻類の異常増殖がみられる	前3日の降水量は0mm。
27	2015/6/10	6.0	230	除外する	藻類の異常増殖がみられる	前3日の降水量は28mm。
27	2015/7/15	4.2	62	除外する	藻類の異常増殖がみられる	前3日の降水量は1mm。
30	2018/7/4	4.3	41	除外する	藻類の異常増殖がみられる	前3日の降水量は2mm。
30	2019/3/6	4.5	60	除外する	藻類の異常増殖がみられる	2日前に29mmの降水あり。前3日の降水量は 46mm。

表 2.2.68 城山ダム貯水池における異常値の候補と除外有無の判定 (T-N)

(異常値判定時の上限値: 1.7mg/L, 下限値: 0.81mg/L)

年度	年月	T-N (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
18	2006/11/1	1.9	6.1	除外しない	降雨・藻類の異常発生等の影響は考 えられない。	前3日の降水量は6mm。
25	2013/8/7	0.78	27	除外しない	降雨・藻類の異常発生等の影響は考 えられない。	前3日の降水量は15mm。
25	2013/9/11	0.79	14	除外しない	降雨・藻類の異常発生等の影響は考 えられない。	前3日の降水量は8.5mm。
27	2015/6/10	1.9	230	除外する	藻類の異常増殖がみられる	前3日の降水量は28mm。
28	2016/6/1	0.76	21	除外しない	降雨・藻類の異常発生等の影響は考えられない。	前3日の降水量は14mm。
28	2016/7/6	0.75	11	除外しない	降雨・藻類の異常発生等の影響は考 えられない。	前3日の降水量は21mm。
28	2016/8/3	0.71	19	除外する	降雨の影響がみらえる	 前3日の降水量は46.5mm。
29	2017/7/7	0.80	17	除外する	降雨の影響がみらえる	3日前に48mmの降水あり。前3日の降水量は 49mm。
30	2018/8/1	0.74	10	除外する	降雨の影響がみらえる	4日前に145mmの降水あり。前3日の降水量は 63mm。
30	2018/9/19	0.80	8.4	除外しない	降雨・藻類の異常発生等の影響は考 えられない。	前3日の降水量は7mm。
30	2019/2/21	0.78	23	除外しない	降雨・藻類の異常発生等の影響は考 えられない。	前3日の降水量は2mm。

表 2.2.69 城山ダム貯水池における異常値の候補と除外有無の判定 (T-P)

(異常値判定時の上限値: 0.098mg/L, 下限値: 0.021mg/L)

年度	年月	T-P (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
21	2009/9/9	0.020	8.6	除外しない	降雨・藻類の異常発生等の影響は考 えられない。	前3日の降水量は0mm。
24	2012/9/5	0.015	2.6	除外する	降雨の影響がみらえる	前3日の降水量は37.5mm。
25	2013/8/7	0.014	27	除外しない	降雨・藻類の異常発生等の影響は考 えられない。	前3日の降水量は15mm。
27	2015/6/10	0.14	230	除外する	藻類の異常増殖がみられる	前3日の降水量は28mm。
27	2015/9/14	0.10	36	除外しない	降雨・藻類の異常発生等の影響は考 えられない。	前3日の降水量は0mm。
29	2017/7/7	0.02	17	除外する	降雨の影響がみらえる	3日前に48mmの降水あり。前3日の降水量は 49mm。
29	2017/9/13	0.01	13	除外しない	降雨・藻類の異常発生等の影響は考 えられない。	前3日の降水量は0mm。

2.3. 土師ダム貯水池 (八千代湖)

現在、湖沼AII類型が適用されている土師ダム貯水池においては、全窒素(以下、「T-N」という。)・全燐(以下、「T-P」という。)について、令和2年度までの暫定目標が設定されており、その見直しを検討した。

具体的には以下に示す検討を行い、類型指定を検討した。

■各節における検討概要(サマリー)

2.3.1. 土師ダムの概要

土師ダムの概要について、既存資料から整理した。

2.3.2. 土師ダム貯水池周辺の環境基準類型指定状況

土師ダム貯水池周辺の環境基準類型指定の状況について整理した。

土師ダム貯水池は、現在湖沼 AⅡ類型に指定されている。

2.3.3. 土師ダム貯水池の水質状況

土師ダムの水質について、水質測定データ、既存資料等から整理した。

T-Nの当てはめ有無を判定するための全窒素/全燐(以下、「T-N/T-P」という。)比について整理した。

■T-Nの基準の適用有無

今回、水質を整理した平成 $10\sim30$ 年度の期間中、T-N/T-P 比が 20 以下で、かつ T-P の平均濃度が 0.02mg/L 以上の年度は無かったため、平成 7 年度まで遡って T-N、T-P の状況を整理した結果、平成 9 年度のデータが、T-N の項目の基準値を適用すべき湖沼の条件に合致していることから、従来通り T-N の基準値を適用することとする。

2.3.4. 土師ダム貯水池の利水状況

土師ダムの利水状況、漁業権の設定状況等水産利用について、既存資料及び関係機関ヒアリング結果より整理した。

■利用状況等から見た適用類型

ダム下流に湖沼 AⅡ類型に相当する上水取水(水道2級の浄水場)がある。

⇒引き続き、湖沼 AII 類型に指定することが考えられる。

2.3.5. 土師ダム貯水池 (八千代湖) にかかる水質汚濁負荷量

土師ダムの将来水質予測を実施するにあたり、土師ダム貯水池流域の現況および将来の水質汚濁負荷量について、収集データ等から算定した。

2.3.6. 土師ダム貯水池 (八千代湖) の将来水質予測

土師ダムの現況水質、現況及び将来の汚濁負荷量より、将来の水質予測(化学的酸素要求量(以下、「COD」という。)、T-N、T-P)を行った。

■将来水質予測結果(R7)

, , , , , , ,			. ,					
項	Ħ	土師ダム貯水池						
块	, p	将来水質(mg/L)	変動範囲(mg/L)					
COD水質	75%値	2.9	2.6~3.2					
T-N水質	年平均値	0.64	$0.54 \sim 0.74$					
T-P水質	年平均値	0.025	0.021~0.029					

2.3.7. 土師ダム貯水池 (八千代湖) の水域類型指定

以上までの検討結果を踏まえ、土師ダム貯水池の類型指定を検討した。

_				. , , , , , , , , , , , , , , , , , , ,		•	
項目	基準値 (類型)	R2までの 暫定目標	H23~H28水質 (6力年平均)	H29,H30水質	R7水質予測	改善目標値	R7までの 暫定目標
COD	3mg/L (湖沼A)	-	2.9mg/L	H29:3.6mg/L H30:2.7mg/L	2.9mg/L (2.6~3.2)	-	-
T-N	0.2mg/L (湖沼II)	0.43mg/L	0.64mg/L	H29:0.64mg/L H30:0.57mg/L	0.64mg/L (0.54~0.74)	0.54mg/L (変動範囲の 下限値)	0.43mg/L
T-P	0.01mg/L (湖沼II)	0.018mg/L	0.024mg/L	H29:0.025mg/L H30:0.019mg/L	0.025mg/L (0.021~0.029)	0.021mg/L (変動範囲の 下限値)	0.018mg/L
%cor)は年75%値	T-N T-P	は年平均値を記録	競している。			

(1)類型指定

・ 類型については、湖沼A類型・湖沼Ⅱ類型に相当する水道及び水産の利用があることから、 引き続き「湖沼A類型・湖沼Ⅱ類型」とする。

(2)達成期間(暫定目標の設定を含む)

- ・ COD については、平成 23 年度から平成 28 年度の現況値 (75%値) は概ね基準値を満足し、 令和 7 年度の水質予測結果 (75%値 2.9mg/L) は基準値 (3mg/L) を下回っていることから、 暫定目標は設定せず、達成期間は、引き続き【イ直ちに達成】とする。
- ・ T-N 及び T-P については、令和 7 年度の水質予測結果(T-N 0.64mg/L、T-P 0.025mg/L)は湖沼 II 類型の基準値(T-N 0.2mg/L、T-P 0.01mg/L)を大きく上回り、現在見込み得る対策を行ったとしても、5 年後において達成が困難なため、達成期間は【ニ 段階的に暫定目標を達成しつつ、環境基準の可及的速やかな達成に努める。】とする。
- ・ 令和7年度までの暫定目標については、T-N・T-Pともに、近年の水質の実測値は、従前の暫定目標値 (T-N 0.43mg/L、T-P 0.018mg/L)を上回って推移しており、将来水質予測結果の変動範囲の下限値 (T-N 0.54mg/L、T-P 0.021mg/L) も従前の暫定目標を上回っているが、過去に従前の暫定目標を満たす年があったことから、実現可能と考えられる最も低い値として現行の暫定目標を据え置き、T-N 0.43mg/L、T-P 0.018mg/L と設定し、今後、経過を見守りつつ、引き続き、段階的な水質改善を図ることとする。

2.3.1. 土師ダムの概要

土師ダムは江の川の洪水調節、かんがい用水の補給、広島市周辺地域に対する都市用水の供給並びに発電を目的として昭和49年3月に完成した多目的ダムである。

江の川の本格的な河川改修は、昭和20年9月に発生した枕崎台風による被害を契機に、昭和25年から中小河川改修事業としてとして着手された。その後、昭和28年からは直轄改修事業(1級河川指定は昭和41年)として引き継がれ、昭和41年に策定された「江の川工事実施基本計画」に基づき、下土師地区から三次市までの江の川、三次市周辺の馬洗川及び西城川において主として堤防の新設、拡築、河川掘削等が実施されてきたが、昭和40年、昭和47年と相次ぐ大規模洪水に見舞われ、沿川各地に大災害を惹起したため、再度計画の見直しが必要となった。

一方、利水の面からは、広島市周辺の経済発展はめざましく、広島市東部及び呉地区に位置する広大な工業用地における工業用水の需要増大とともに、広島市及びその周辺都市圏の急激な人口増加に伴い、太田川水系からだけの利水能力では限界がみえ、新たな水源の確保が急務となっていた。また、江の川支川簸川沿川の農地約280ha(当時)は干ばつの常襲地帯であり、その水源確保が課題となっていた。

このような治水・利水両面の要請に応えるため、建設省(現国土交通省)では、昭和48年に「江の川工事実施計画」の改定を行い、尾関山基準点における基本高水 (10,200m³/s) を、土師ダムを含む江の川ダム群により7,600m³/sに調節する計画とするほか、土師ダムの建設により江の川の洪水調節、農業用水の供給のみならず、水資源の広域かつ多目的な利用を意図して、太田川に流域変更し、広島周辺地域に対する都市用水を確保し、併せて発電を実施するものとした。

土師ダムは建設省直轄事業として、昭和41年4月より本格的な調査が始められ、昭和49年3 月までに8年間の歳月をかけて完成した。

(出典:土師ダム水源地域ビジョン P.12 (平成18年2月 監修 土師ダム水源地ビジョン策定委員会(委員長中越信和) 制作・発行 国土交通省中国地方整備局 (事務局)土師ダム管理所))

土師ダムの概要及び諸元を表 2.3.1、表 2.3.2、土師ダムの標準断面図及び容量配分図を 図 2.3.1、土師ダム貯水池流域図を図 2.3.2に示した。

表 2.3.1 土師ダムの概要

(1)ダム名称	土師ダム
(2)管理者	中国地方整備局
(3) ダム所在地	(左岸所在) 広島県安芸高田市八千代町土師
(4)水系名・河川名	江の川水系江の川
(5)水域	土師ダム貯水池(八千代湖)(全域)
(6)集水面積	307. 5 (km²)
(7)環境基準類型	湖沼 A (直ちに達成) 湖沼 II (令和 2 年度までの暫定目標: T-N 0.43mg/L, T-P 0.018mg/L ※本来の湖沼 II 類型は T-N 0.2mg/L 以下, T-P 0.01mg/L 以下)

出典:ダム便覧 (http://damnet.or.jp/cgi-bin/binranA/All.cgi?db4=1980) 広島県 生活環境の保全に関する環境基準類型指定状況 WEB ページ (https://www.pref.hiroshima.lg.jp/site/eco/e-e4-kokyo-sokutei-gaiyo-no09.html)

表 2.3.2 土師ダムの諸元

(1)堰長	300 (m)
(2) 堤高	50 (m)
(3)総貯水容量	47, 300 (千 m³)
(4)有効貯水容量	41,100 (千 m³)
(5)サーチャージ水位	256. 40 (ELm)
(6)年平均滞留時間**	40.9 (日)

※年平均滞留時間=有効貯水容量/年平均流入量(それぞれ H23~H27 の滞留時間を求めて平均を算出) 出典:ダム諸量データベース (http://mudam.nilim.go.jp/home)

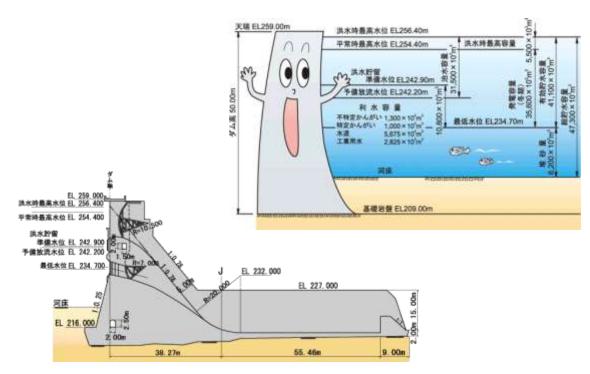



図 2.3.1 土師ダム容量配分図及び標準断面図

出典: 土師ダム管理所 ダム及び貯水池の諸元 WEB ページ (http://www.cgr.mlit.go.jp/haji/dam/outline/index.htm)

土師ダム 流域図

資料:国土数値情報[流域界・非集水域 (KS-273)] (国土交通省) をもとに国土地理院の数値地図 200000 (地図画像)を用いて作成した。

図 2.3.2 土師ダム貯水池流域図

2.3.2. 土師ダム貯水池周辺の環境基準類型指定状況

土師ダム貯水池周辺及び江の川流域の水域類型指定状況を、表 2.3.3 及び図 2.3.3 に示した。

表 2.3.3 土師ダム貯水池周辺の水域類型指定状況

水域名称	水 域	該当類型	達成期間	指定年月日	
江の川水系の江の川	江の川 (土師ダム貯水 池(土師ダム湖)(全域) に係る部分に限る。)を 除く全域)	河川 A	イ	昭和 48 年 3 月 31	環境庁 告示
	土師ダム貯水池 (八千代湖) (全域)	湖沼 A 湖沼 Ⅱ ^{注 2}	イ ニ	平成 28 年 3 月 31 日	環境省 告示

注 1) 令和 2 年度までの暫定目標: T-N 0.43mg/L 以下、T-P 0.018mg/L 以下

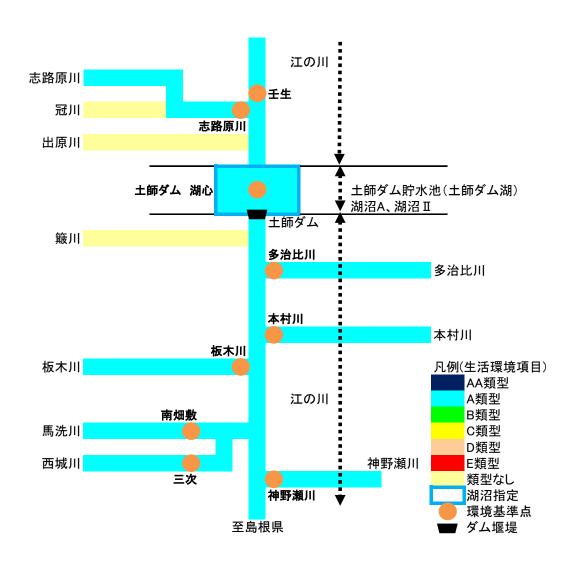
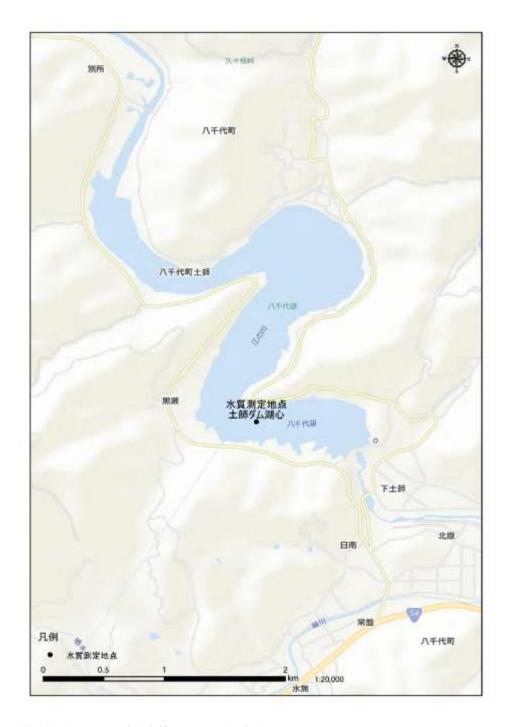



図 2.3.3 江の川流域の水域類型指定状況図

2.3.3. 土師ダム貯水池の水質状況

(1) 土師ダム貯水池の水質状況

土師ダム貯水池の水質測定地点を図 2.3.4 に示した。また、土師ダム貯水池の水質測定地点における水質 (pH、DO、SS、大腸菌群数、BOD、COD、T-N、T-P、底層 DO、水温) の推移を、表 2.3.4、図 2.3.5 に示した。

資料:水質測定地点は、水環境総合情報サイト (環境省) https://water-pub.env.go.jp/water-pub/mizu-site/公共用水域水質測定データ (水質測定点データ) 2017 年度の緯度経度情報より作成した。

図 2.3.4 土師ダム貯水池の水質測定地点

表 2.3.4(1) 土師ダム貯水池水質経年変化

左			ī	Н	全層					DO(mg/L)	全		
年度	最小		 最大		m/n	平均	75%値	最小		最大	m/		平均	75%値
H10	7. 1	\sim	9. 4	4	/ 12	<u> </u>	_	8.5	\sim	12.0	0 /	12	10.5	_
H11	7. 2	\sim	9. 2	3	/ 12	_	_	8. 9	\sim	12. 0	0 /	12	10. 4	_
H12	7. 1	\sim	10. 2	5	/ 12	_	_	8. 6	\sim	14. 0	0 /	12	10. 7	_
H13	7. 2	\sim	8. 9	2	/ 12	_	_	7.6	\sim	13. 0	0 /	12	10. 2	_
H14	7. 1	\sim	8. 9	1	/ 12	_	_	7. 3	\sim	12. 0	2 /	12	9.8	_
H15	7. 1	\sim	9. 2	2	/ 12	_	_	8. 7	\sim	12. 0	0 /	12	10.3	_
H16	7. 2	\sim	9. 4	3	/ 12	_	_	9. 5	\sim	12. 0	0 /	12	10. 3	_
H17		_					_		\sim		- /			
	7.2	\sim	8.5	0	/ 12	_		8.8			0 /	12	10. 1	_
H18	6. 9	\sim	7.7	0	/ 12	_	_	7.4	\sim	11.9	1 /	12	9.7	_
H19	7.0	\sim	7.6	0	/ 12	-	_	7.6	\sim	12. 3	0 /	12	9.5	_
H20	7.0	\sim	7.6	0	/ 12	_	— -	6. 2	\sim	11.0	1 /	12	9.3	-
H21	7. 1	\sim	7.6	0	/ 12		_	8.0	\sim	11.7	0 /	12	9.8	_
H22	7. 1	\sim	7.6	0	/ 12	_	_	6.6	\sim	11.3	1 /	12	9.6	_
H23	7. 1	\sim	<u>7. 7</u>	0	/ 12	_	_	8.3	\sim	12.0	0 /	12	9. 9	_
H24	7. 1	\sim	7. 5	0	/ 12	-	_	6.5	\sim	11. 7	1 /	12	9. 4	_
H25	7.0	\sim	7.8	0	/ 12	_	_	7.3	\sim	12. 3	1 /	12	9. 9	_
H26	7. 1	\sim	7. 9	0	/ 12	_	_	7.0	\sim	11. 3	2 /	12	9.6	_
H27	6.9	\sim	7. 5	0	/ 12	-	_	8.2	\sim	12. 7	0 /	12	9.8	_
H28	6.9	\sim	7. 7	0	/ 12	-	_	6.9	\sim	12.0	1 /	12	9. 5	_
H29	6.4	\sim	7.4	1	/ 12	_	_	7.0	\sim	11.0	2 /	12	9. 3	_
H30	6. 7	\sim	7.4	0	/ 12		_	6.6	\sim	12. 2	1 /	12	9. 5	
			SS (r	ng/		3			大	腸菌群数	(MPN/			
年度	最小		最大		m/n	平均	75%値	最小	ΓÍ	最大	m/		平均	75%値
H10	2. 0	\sim	8.0	0	/ 12	4. 3	- TOWNE	2	\sim	1400	2 /	12	320	
H11	1.0	\sim	6. 0	0	/ 12	3. 0	_	2	\sim	1300	1 /	12	170	_
H12	2. 0	\sim	33. 0	Ĭ	/ 12	7. 3	_	17	\sim	3500	3 /	12	700	_
H13	1. 0	\sim	10.0	2	/ 12	3. 3	_	5	\sim	13000	1 /	12	1300	_
H14	1.0	\sim	6.0	2	/ 12	3. 3	_	33	\sim	17000	2 /	12	1800	_
H15	1.0	\sim	10.0	1	/ 12	3. 4	_	9	\sim	3300	3 /	12	700	_
H16	1.0	\sim	6. 0	1	/ 12	3. 3	_	4	\sim	1700	3 /	12	510	_
H17	1.0	\sim	4.0	0	/ 12	2. 3	_	17	\sim	11000	4 /	12	2300	_
	2.0	\sim		_ ~		2. 3			\sim		- /.			
H18	1.0	\sim	8.0	1	/ 12	3. 5		23	\sim	9400	4 /	12	2100	
H19	1.3	\sim	6. 3	3	/ 12	3.9	_	27		4900	2 /	12	705	-
H20	1.0	\sim	6.3	2	/ 12	3.3	_	13	\sim	3300	4 /	12	771	_
H21	1.7	\sim	7.3	2	/ 12	3.6	_	2	\sim	14000	2 /	12	2034	_
H22	1.3	\sim	6. 7	2	/ 12	3. 5	_	0	\sim	1300	1 /	12	275	_
H23	2.0	\sim	8. 3	1	/ 12	3. 5	_	7	\sim	1300	1 /	12	246	_
H24	1. 3	\sim	7. 7	3	/ 12	3. 9	_	17	\sim	11000	4 /	12	1693	_
H25	1. 7	\sim	5. 3	1	/ 12	3.4	_	33	\sim	49000	8 /	12	5777	_
H26	1.5	\sim	4.0	0	/ 12	3.0	_	4	$ \sim $	7000	6 /	12	1595	_
H27	1.3	^	5. 7	1	/ 12	2.8	_	23	\sim	22000	6 /	12	3204	_
H28	1.5	^	4. 0	0	/ 12	2.7	_	33	\sim	24000	5 /	12	4234	_
H29	1.7	\sim	7. 3	4	/ 12	4. 1	_	11	\sim	9400	4 /	12	1596	_
H30	1. 3	\sim	6. 3	1	/ 12	2.6	_	23	\sim	2400	3 /	12	673	_
	1. 0		BOD	(mø							(mg/L)			
年度	最小		最大	` 6	m/n	平均	75%値	最小		最大	m/		平均	75%値
H10	0.5	\sim	2. 3	1	/ 12	1.4	1.6	1.6	\sim	6.3	- /	12	3. 1	3.5
H11	0. 5	\sim	3. 2	2	/ 12	1. 3	1.8	1. 4	\sim	4. 0	- /	12	2. 5	3. 1
H12	0. 5	\sim	5. 3	3	/ 12	1. 9	1.8	1. 5	$ \sim $	19. 0	- /	12	4. 6	4. 3
H13	0. 6	\sim	1.8	-	/ 12	1. 1	1.0	1. 3	\sim	3. 2	1 /	12	2. 1	2. 5
H14		\sim	2. 2	_	/ 12	1. 1		1. 6	\sim	3. 6	2 /	12	2. 4	2. 7
H15		\sim	1. 3	_	/ 12	1. 1		1. 7	\sim	3. 3	1 /	12	2. 3	2. 6
H16		\sim	3.8	=	/ 12	1. 1		1. 2	\sim		3 /	12	2. 5	2. 9
		\sim		=					\sim	4.0				
H17	0.0	_	2.0		/ 12	1.2	0.0	1.7	-	3.5	2 /	12	2.5	2.9
H18	0.5	\sim	1.5	_	/ 12	0.8	0.9	2.0	\sim	3.9	3 /	12	2.6	2.8
H19	0.5	\sim	1.2		/ 12	0.8	1.0	1.8	\sim	3.2	1 /	12	2. 5	2.8
H20	0.5	\sim	2. 1	_	/ 12	1.0	1.1	2.0	\sim	3.7	3 /	12	2.7	2.9
H21	0.7	\sim	2.0	_	/ 12	1.1	1.2	1.6	\sim	3.8	4 /	12	2.6	3.0
H22	•••	\sim	1.9	_	/ 12	1.3	1. 4	2.1	\sim	3. 5	2 /	12	2.8	3.0
H23	0.8	\sim	1.9	_	/ 12	1.3	1.5	1.6	\sim	4.1	3 /	12	2.8	3.0
H24	0.8	\sim	3. 1	-	/ 12	2.0	2. 3	1.4	\sim	5. 1	3 /	12	2. 7	2.9
H25	0.9	\sim	1. 7	-	/ 12	1.3	1. 3	1.5	\sim	3. 0	0 /	12	2. 2	2.4
H26	0.6	\sim	2. 6	-	/ 12	1.2	1. 3	1.3	\sim	3. 5	2 /	12	2. 4	2.7
H27		\sim	_	-	/ –	_	_	1.0	\sim	4.0	4 /	12	2.6	3.0
H28	_	\sim	_	-	/ -	_	_	1.6	\sim	4. 0	4 /	12	2.8	3. 2
H29	_	\sim	_	-	/ -	_	_	1.8	\sim	3.8	8 /	12	3. 1	3.6
H30	-	\sim	_	-	/ -	_	_	1.7	\sim	3. 6	1 /	12	2. 5	2. 7
			2字坛口粉								-			

注) m/n欄は、n:測定実施日数、m:環境基準を満足しない日数

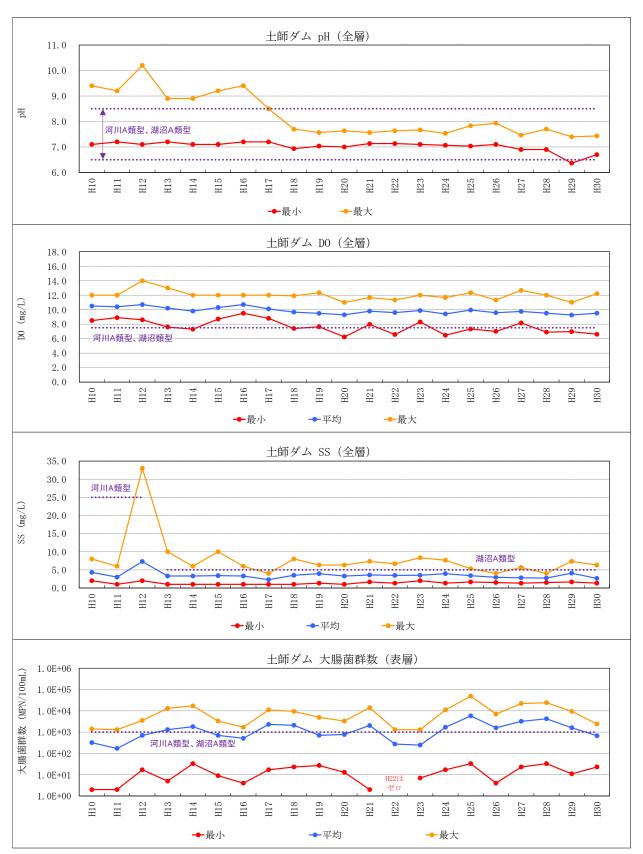
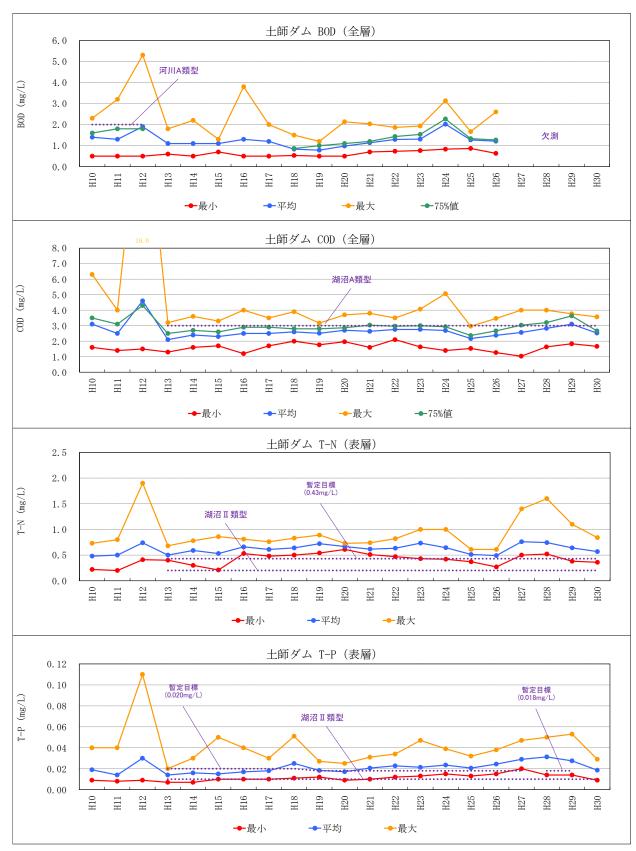

出典:公共用水域の水質調査結果(広島県)、土師ダム管理所資料

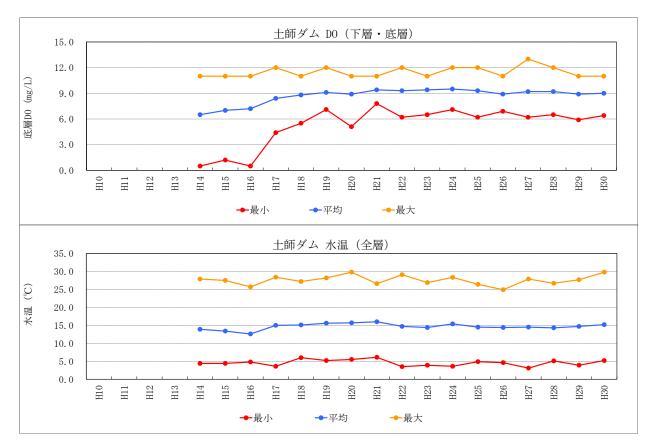
表 2.3.4(2) 土師ダム貯水池水質経年変化(続き)

左曲		T-P(mg/L) 表層									
年度	最小	最大	mg/L) 表 m/n	平均	75%値	最小		最大	m/n	平均	75%値
H10	0.22 ~	0.73	- / 12	0.48	_	0.009	\sim	0.040	- / 12	0.019	_
H11	0.20 ~	0.80	- / 12	0.50	_	0.008	\sim	0.040	- / 12	0.014	_
H12	0.41 ~	1. 90	- / 12	0.74	_	0.009	\sim	0.110	- / 12	0.030	_
H13	0.40 ~	0.68	12 / 12	0.50	_	0.007	\sim	0.020	5 / 12	0.014	_
H14	0.30 ~	0.78	12 / 12	0. 59	_	0.007	\sim	0.030	6 / 12	0.016	_
H15	0.21 ~	0.86	12 / 12	0.53	_	0.010	\sim	0.050	3 / 12	0.015	_
H16	0.53 ~	0.81	12 / 12	0.66	-	0.010	\sim	0.040	6 / 12	0.017	1
H17	0.48 ~	0.76	12 / 12	0.61	-	0.010	~	0.030	7 / 12	0.018	-
H18	0.50 ~	0.83	12 / 12	0.64	_	0.011	~	0.051	12 / 12	0.025	-
H19	0.54 ~	0.89	12 / 12	0.72	_	0.012	\sim	0.027	12 / 12	0.018	_
H20	0.61 ~	0.73	8 / 8	0.67	-	0.009	~	0.025	6 / 7	0.017	1
H21	0.51 ~	0.74	12 / 12	0.62	-	0.010	\sim	0.031	11 / 12	0.021	-
H22	0.47 ~	0.82	12 / 12	0.63	-	0.012	\sim	0.034	12 / 12	0.023	-
H23	0.43 ~	1.00	12 / 12	0. 73	_	0.013	\sim	0.047	12 / 12	0.021	_
H24	0.42 ~	1.00	12 / 12	0.64	-	0.015	\sim	0.039	12 / 12	0.024	-
H25	0.37 ~	0.61	12 / 12	0.51	_	0.013	\sim	0.032	12 / 12	0.021	_
H26	0.27 ~	0.61	12 / 12	0.49	_	0.015	\sim	0.038	12 / 12	0.024	_
H27	0.50 ~	1.40	12 / 12	0.76	-	0.020	\sim	0.047	12 / 12	0.029	-
H28	0.52 ~	1.60	12 / 12	0.74	_	0.014	\sim	0.050	12 / 12	0.031	_
H29	0.38 ~	1. 10	12 / 12	0.64	_	0.014	\sim	0.053	12 / 12	0.028	_
H30	0.36 ~	0.84	12 / 12	0. 57	_	0.009	\sim	0.029	11 / 12	0.019	_
年度		DO(mg/							L(℃) 全層		
	最小	最大	m/n	平均	75%値	最小		最大	m/n	平均	75%値
H10							-	1707	111/ 11	1 20	
									111/11	1 70	, <u>, </u>
H11								770.7	111/11	1 **	,—
H12									111/ 11	1.53	,—
H12 H13											
H12 H13 H14	0.5 ~	11.0	6 / 12	6. 5	+	4.4	~	27. 9	- / 12	13. 9	-
H12 H13 H14 H15	1.2 ~	11. 0	5 / 12	7.0	-	4.4	\sim	27. 9 27. 5	- / <u>12</u> - / <u>12</u>	13. 9	-
H12 H13 H14 H15 H16	1.2 ~ 0.5 ~	11. 0 11. 0	5 / 12 5 / 12	7. 0 7. 2	_	4. 4 4. 4 4. 8	~	27. 9 27. 5 25. 7	- / 12 - / 12 - / 12	13. 9 13. 4 12. 6	-
H12 H13 H14 H15 H16 H17	1. 2 ~ 0. 5 ~ 4. 4 ~	11. 0 11. 0 12. 0	5 / 12 5 / 12 4 / 12	7. 0 7. 2 8. 4	- - -	4. 4 4. 4 4. 8 3. 6	~ ~ ~	27. 9 27. 5 25. 7 28. 4	- / 12 - / 12 - / 12 - / 12	13. 9 13. 4 12. 6 15. 0	- - -
H12 H13 H14 H15 H16 H17 H18	1. 2 ~ 0. 5 ~ 4. 4 ~ 5. 5 ~	11. 0 11. 0 12. 0 11. 0	5 / 12 5 / 12 4 / 12 2 / 12	7. 0 7. 2 8. 4 8. 8	- - -	4. 4 4. 4 4. 8 3. 6 6. 0	~ ~ ~	27. 9 27. 5 25. 7 28. 4 27. 2	- / 12 - / 12 - / 12 - / 12 - / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1	- - -
H12 H13 H14 H15 H16 H17 H18 H19	$\begin{array}{c cccc} 1.2 & \sim \\ 0.5 & \sim \\ 4.4 & \sim \\ 5.5 & \sim \\ 7.1 & \sim \end{array}$	11. 0 11. 0 12. 0 11. 0 12. 0	5 / 12 5 / 12 4 / 12 2 / 12 1 / 12	7. 0 7. 2 8. 4 8. 8 9. 1	- - - -	4. 4 4. 4 4. 8 3. 6 6. 0 5. 2	~ ~ ~ ~ ~ ~ ~ ~ ~	27. 9 27. 5 25. 7 28. 4 27. 2 28. 2	- / 12 - / 12 - / 12 - / 12 - / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1 15. 6	- - - -
H12 H13 H14 H15 H16 H17 H18 H19 H20	1. 2 ~ 0. 5 ~ 4. 4 ~ 5. 5 ~ 7. 1 ~ 5. 1 ~	11. 0 11. 0 12. 0 11. 0 12. 0 11. 0	5 / 12 5 / 12 4 / 12 2 / 12 1 / 12 3 / 12	7. 0 7. 2 8. 4 8. 8 9. 1 8. 9	- - - -	4. 4 4. 4 4. 8 3. 6 6. 0 5. 2 5. 5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	27. 9 27. 5 25. 7 28. 4 27. 2 28. 2 29. 8	- / 12 - / 12 - / 12 - / 12 - / 12 - / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1 15. 6 15. 7	- - - - -
H12 H13 H14 H15 H16 H17 H18 H19 H20 H21	1. 2 ~ 0. 5 ~ 4. 4 ~ 5. 5 ~ 7. 1 ~ 5. 1 ~ 7. 8 ~	11. 0 11. 0 12. 0 11. 0 12. 0 11. 0	5 / 12 5 / 12 4 / 12 2 / 12 1 / 12 3 / 12 0 / 12	7. 0 7. 2 8. 4 8. 8 9. 1 8. 9 9. 4	- - - - -	4. 4 4. 4 4. 8 3. 6 6. 0 5. 2 5. 5 6. 1	~ ~ ~ ~ ~ ~ ~	27. 9 27. 5 25. 7 28. 4 27. 2 28. 2 29. 8 26. 6	- / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1 15. 6 15. 7 16. 0	- - - - -
H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22	$\begin{array}{c cccc} 1.2 & \sim \\ 0.5 & \sim \\ 4.4 & \sim \\ 5.5 & \sim \\ 7.1 & \sim \\ 5.1 & \sim \\ 7.8 & \sim \\ 6.2 & \sim \\ \end{array}$	11. 0 11. 0 12. 0 11. 0 12. 0 11. 0 11. 0 12. 0	5 / 12 5 / 12 4 / 12 2 / 12 1 / 12 0 / 12 1 / 12 1 / 12	7. 0 7. 2 8. 4 8. 8 9. 1 8. 9 9. 4 9. 3	- - - - - -	4. 4 4. 4 4. 8 3. 6 6. 0 5. 2 5. 5 6. 1 3. 5	~ ~ ~ ~ ~ ~ ~ ~ ~	27. 9 27. 5 25. 7 28. 4 27. 2 28. 2 29. 8 26. 6 29. 1	- / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1 15. 6 15. 7 16. 0 14. 7	- - - - - -
H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23	$\begin{array}{c cccc} 1.2 & \sim \\ 0.5 & \sim \\ 4.4 & \sim \\ 5.5 & \sim \\ 7.1 & \sim \\ 5.1 & \sim \\ 7.8 & \sim \\ 6.2 & \sim \\ 6.5 & \sim \\ \end{array}$	11. 0 11. 0 12. 0 11. 0 12. 0 11. 0 11. 0 12. 0 11. 0	5 / 12 5 / 12 4 / 12 2 / 12 1 / 12 0 / 12 1 / 12 1 / 12 1 / 12	7. 0 7. 2 8. 4 8. 8 9. 1 8. 9 9. 4 9. 3 9. 4	- - - - - - -	4. 4 4. 4 4. 8 3. 6 6. 0 5. 2 5. 5 6. 1 3. 5 3. 9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	27. 9 27. 5 25. 7 28. 4 27. 2 28. 2 29. 8 26. 6 29. 1 26. 9	- / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1 15. 6 15. 7 16. 0 14. 7 14. 4	- - - - - - -
H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24	$\begin{array}{c cccc} 1.2 & \sim \\ 0.5 & \sim \\ 4.4 & \sim \\ 5.5 & \sim \\ 7.1 & \sim \\ 5.1 & \sim \\ 7.8 & \sim \\ 6.2 & \sim \\ 6.5 & \sim \\ 7.1 & \sim \\ \end{array}$	11. 0 11. 0 12. 0 11. 0 12. 0 11. 0 12. 0 11. 0 12. 0 11. 0	5 / 12 5 / 12 4 / 12 2 / 12 3 / 12 0 / 12 1 / 12 1 / 12 1 / 12 1 / 12 1 / 12	7. 0 7. 2 8. 4 8. 8 9. 1 8. 9 9. 4 9. 3 9. 4 9. 5	- - - - - - - - -	4. 4 4. 4 4. 8 3. 6 6. 0 5. 2 5. 5 6. 1 3. 5 3. 9 3. 6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	27. 9 27. 5 25. 7 28. 4 27. 2 28. 2 29. 8 26. 6 29. 1 26. 9 28. 4	- / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1 15. 6 15. 7 16. 0 14. 7 14. 4 15. 4	- - - - - - - -
H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25	$\begin{array}{c cccc} 1.2 & \sim \\ 0.5 & \sim \\ 4.4 & \sim \\ 5.5 & \sim \\ 7.1 & \sim \\ 5.1 & \sim \\ 7.8 & \sim \\ 6.2 & \sim \\ 6.5 & \sim \\ 7.1 & \sim \\ 6.2 & \sim \\ \end{array}$	11. 0 11. 0 12. 0 11. 0 12. 0 11. 0 12. 0 11. 0 12. 0 11. 0 12. 0	5 / 12 5 / 12 4 / 12 2 / 12 3 / 12 0 / 12 1 / 12 1 / 12 1 / 12 1 / 12 1 / 12 1 / 12 1 / 12	7. 0 7. 2 8. 4 8. 8 9. 1 8. 9 9. 4 9. 3 9. 4 9. 5 9. 3	- - - - - - - - -	4. 4 4. 4 4. 8 3. 6 6. 0 5. 2 5. 5 6. 1 3. 5 3. 9 3. 6 4. 9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	27. 9 27. 5 25. 7 28. 4 27. 2 28. 2 29. 8 26. 6 29. 1 26. 9 28. 4 26. 4	- / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1 15. 6 15. 7 16. 0 14. 7 14. 4 15. 4	- - - - - - - - -
H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H23 H24 H25 H26	$\begin{array}{c cccc} 1.2 & \sim \\ 0.5 & \sim \\ 4.4 & \sim \\ 5.5 & \sim \\ 7.1 & \sim \\ 5.1 & \sim \\ 7.8 & \sim \\ 6.2 & \sim \\ 6.5 & \sim \\ 7.1 & \sim \\ 6.2 & \sim \\ 6.9 & \sim \\ \end{array}$	11. 0 11. 0 12. 0 11. 0 12. 0 11. 0 12. 0 11. 0 12. 0 12. 0 11. 0 12. 0	5 / 12 5 / 12 4 / 12 2 / 12 3 / 12 0 / 12 1 / 12 1 / 12 1 / 12 1 / 12 2 / 12	7. 0 7. 2 8. 4 8. 8 9. 1 8. 9 9. 4 9. 3 9. 4 9. 5 9. 3 8. 9	- - - - - - - - - -	4. 4 4. 4 4. 8 3. 6 6. 0 5. 2 5. 5 6. 1 3. 5 3. 9 3. 6 4. 9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	27. 9 27. 5 25. 7 28. 4 27. 2 28. 2 29. 8 26. 6 29. 1 26. 9 28. 4 26. 4	- / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1 15. 6 15. 7 16. 0 14. 7 14. 4 15. 4 14. 5 14. 4	- - - - - - - - - -
H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27	$\begin{array}{c cccc} 1.2 & \sim \\ 0.5 & \sim \\ 4.4 & \sim \\ 5.5 & \sim \\ 7.1 & \sim \\ 5.1 & \sim \\ 7.8 & \sim \\ 6.2 & \sim \\ 6.5 & \sim \\ 7.1 & \sim \\ 6.2 & \sim \\ 6.9 & \sim \\ 6.2 & \sim \\ 6.9 & \sim \\ 6.2 & \sim \\ \end{array}$	11. 0 11. 0 12. 0 11. 0 12. 0 11. 0 11. 0 12. 0 11. 0 12. 0 11. 0 12. 0 13. 0	5 / 12 5 / 12 4 / 12 2 / 12 1 / 12 3 / 12 0 / 12 1 / 12	7. 0 7. 2 8. 4 8. 8 9. 1 8. 9 9. 4 9. 3 9. 4 9. 5 9. 3 9. 2	- - - - - - - - - - - - -	4. 4 4. 4 4. 8 3. 6 6. 0 5. 2 5. 5 6. 1 3. 5 3. 9 3. 6 4. 9 4. 6 3. 1		27. 9 27. 5 25. 7 28. 4 27. 2 28. 2 29. 8 26. 6 29. 1 26. 9 28. 4 26. 4 24. 9 27. 9	- / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1 15. 6 15. 7 16. 0 14. 7 14. 4 15. 4 14. 5	- - - - - - - - - - - - - - - - - - -
H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28	$\begin{array}{c cccc} 1.2 & \sim \\ 0.5 & \sim \\ 4.4 & \sim \\ 5.5 & \sim \\ \hline 7.1 & \sim \\ \hline 5.1 & \sim \\ \hline 7.8 & \sim \\ 6.2 & \sim \\ \hline 6.5 & \sim \\ \hline 7.1 & \sim \\ 6.2 & \sim \\ \hline 6.9 & \sim \\ 6.2 & \sim \\ 6.5 & \sim \\ \hline 6.5 & \sim \\ \hline \end{array}$	11. 0 11. 0 12. 0 11. 0 12. 0 11. 0 11. 0 12. 0 11. 0 12. 0 11. 0 12. 0 13. 0 14. 0 15. 0 16. 0 17. 0 18. 0 19. 0 19	5 / 12 5 / 12 4 / 12 2 / 12 1 / 12 0 / 12 1 / 12 1 / 12 1 / 12 2 / 12 1 / 12 1 / 12 1 / 12 1 / 12	7. 0 7. 2 8. 4 8. 8 9. 1 8. 9 9. 4 9. 3 9. 4 9. 5 9. 3 9. 4 9. 5 9. 3	- - - - - - - - - - - - - - - - - - -	4. 4 4. 8 3. 6 6. 0 5. 2 5. 5 6. 1 3. 5 3. 9 3. 6 4. 9 4. 6 3. 1 5. 1		27. 9 27. 5 25. 7 28. 4 27. 2 28. 2 29. 8 26. 6 29. 1 26. 9 28. 4 26. 4 24. 9 27. 9 27. 9	- / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1 15. 6 15. 7 16. 0 14. 7 14. 4 15. 4 14. 5 14. 3	
H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27	$\begin{array}{c cccc} 1.2 & \sim \\ 0.5 & \sim \\ 4.4 & \sim \\ 5.5 & \sim \\ 7.1 & \sim \\ 5.1 & \sim \\ 7.8 & \sim \\ 6.2 & \sim \\ 6.5 & \sim \\ 7.1 & \sim \\ 6.2 & \sim \\ 6.9 & \sim \\ 6.2 & \sim \\ 6.9 & \sim \\ 6.2 & \sim \\ \end{array}$	11. 0 11. 0 12. 0 11. 0 12. 0 11. 0 11. 0 12. 0 11. 0 12. 0 11. 0 12. 0 13. 0	5 / 12 5 / 12 4 / 12 2 / 12 1 / 12 3 / 12 0 / 12 1 / 12	7. 0 7. 2 8. 4 8. 8 9. 1 8. 9 9. 4 9. 3 9. 4 9. 5 9. 3 9. 2	- - - - - - - - - - - - -	4. 4 4. 4 4. 8 3. 6 6. 0 5. 2 5. 5 6. 1 3. 5 3. 9 3. 6 4. 9 4. 6 3. 1		27. 9 27. 5 25. 7 28. 4 27. 2 28. 2 29. 8 26. 6 29. 1 26. 9 28. 4 26. 4 24. 9 27. 9	- / 12 - / 12	13. 9 13. 4 12. 6 15. 0 15. 1 15. 6 15. 7 16. 0 14. 7 14. 4 15. 4 14. 5	- - - - - - - - - - - - - - - - - - -


注) m/n欄は、n:測定実施日数、m:環境基準を満足しない日数

出典:公共用水域の水質調査結果(広島県)、土師ダム管理所資料

注) 1.H12 は春先〜夏場にかけてミクロキスティスを種とする藍藻類の異常発生による影響を受けたと考えられる。 (平成 26 年度中国地方ダム管理フォローアップ委員会 土師ダム定期報告書概要版(平成 27 年 1 月 22 日) p. 62) 出典:公共用水域の水質調査結果(広島県)、土師ダム管理所資料


図 2.3.5(1) 土師ダム貯水池における水質の推移

注)1.H12 は春先~夏場にかけてミクロキスティスを種とする藍藻類の異常発生による影響を受けたと考えられる。

2. 平成 24 年 8 月にアオコが貯水池全面に発生したため、同年の COD の最大値が高くなっている (平成 26 年度中国地方ダム管理フォローアップ委員会 土師ダム定期報告書概要版 (平成 27 年 1 月 22 日) p. 62) 出典:公共用水域の水質調査結果(広島県)、土師ダム管理所資料

図 2.3.5(2) 土師ダム貯水池における水質の推移 (続き)

出典:公共用水域の水質調査結果(広島県)、土師ダム管理所資料

図 2.3.5(3) 土師ダム貯水池における水質の推移 (続き)

今回、水質を整理した平成 $10\sim30$ 年度の期間中、T-N/T-P 比が 20 以下で、かつ T-P の 平均濃度が 0.02mg/L 以上の年度は無かった。そこで、水質の整理期間を、類型指定を河川 →湖沼に変更した平成 10 年度より前にさかのぼり、平成 7 年度から平成 30 年度の期間中の T-N, T-P の状況を整理した。

表 2.3.5 土師ダム貯水池 T-N・T-P 水質経年変化 (H7~H9 追加)

年度	T-N平均值 (mg/L)	T-P平均值 (mg/L)	N/P比
H7	0.51	0.023	22.2
Н8	0.45	0.019	23.7
Н9	0.48	0.025	19.2
H10	0.48	0.019	25.3
H11	0.5	0.014	35.7
H12	0.74	0.030	24.7
H13	0.5	0.014	35.7
H14	0.59	0.016	36.9
H15	0.53	0.015	35.3
H16	0.66	0.017	38.8
H17	0.61	0.018	33.9
H18	0.64	0.025	25.6
H19	0.72	0.018	40.0
H20	0.67	0.017	39.4

年度	T-N平均值	T-P平均值	N/P比		
十尺	(mg/L)	(mg/L)	1N/1 JU		
H21	0.62	0.021	29.5		
H22	0.63	0.023	27.4		
H23	0.73	0.021	34.8		
H24	0.64	0.024	26.7		
H25	0.51	0.021	24.3		
H26	0.49	0.024	20.4		
H27	0.76	0.029	26.2		
H28	0.74	0.031	23.9		
H29	0.64	0.028	22.9		
H30	0.57	0.019	30.0		
※芸色でマーカ」を答正がT_Nの甘進な					

※黄色でマークした箇所がT-Nの基準を

適用する条件にマッチした水質

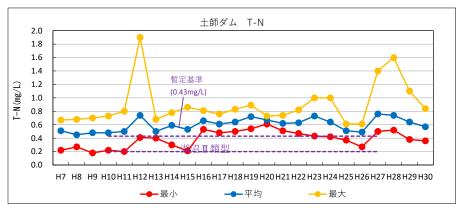


図 2.3.6 土師ダム貯水池 T-N・T-P 水質経年変化 (H7~H9 追加)

平成7年度から平成30年度の期間中、T-N/T-P比が20以下の年度は平成9年度であった。一方、T-P年平均濃度が0.02mg/L以上の年が平成7,9,12,18,21~29年度であった。 平成9年度のデータが、T-Nの項目の基準値を適用すべき湖沼の条件に合致していることから、T-Nの基準値を適用することとする。

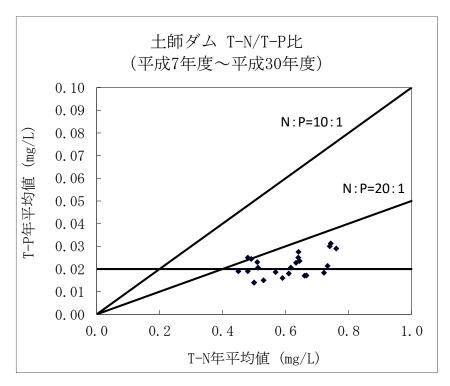
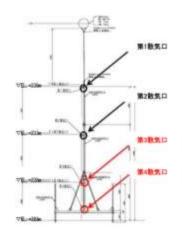


図 2.3.7 土師ダム貯水池における T-N/T-P 比の状況

<参考>T-Nの項目の基準値を適用すべき湖沼の条件


T-Nが湖沼植物プランクトンの増殖の要因となる湖沼 (T-N/T-P比が20以下であり、かつT-P 濃度が0.02mg/L以上である湖沼) についてのみ適用

(2) 土師ダム貯水池の水質保全対策

水道利用においては、アオコの発生によるカビ臭が発生しているため、各種水質保全対策が実施されている。水質保全施設として、曝気施設(H11:4 基、H13:4 基追加)及び噴水設備(H11:2 基設置済み)がある。これらの設置が完了する平成 13 年以前は、アオコの発生期間は 50 日/年を超えることが多く、最大で 106 日/年であった。水質保全施設完成後の平成 14 年以降は $19\sim28$ 日/年とほぼ半減している (平成 16 年は 99 日/年となった)。なお、アオコの発生時期は主に、7 月 ~10 月である。

曝気循環装置については、平成 11年度にはダム堤体から発電取水 口の間の停滞水域に4基が設置され た。

その後、平成12年は6月後半から 7月の降水量が非常に少なく、猛暑 の影響でアオコが再び発生した。 これを受け、平成13年度に4基の 曝気循環装置が追加設置された。 平成20年以降は、常時EL 223m付 近(第4散気口)から散気を行う 運用が行われている。

項目	職気循環装置の諸元等		
基数	8基		
位置	ダムサイトより200mビッチ		
空気量	3,700L/min(1基あたり)		
曝気敷高	4標高 (EL. 223m(上流側4基はEL. 225. 5m)、228m、233m、238m		
装置タイプ	湖底設置式		

※土跡ダムの各種気種爆装置は種々の状況に対応できるように散気口を4水提に設け、いずれかの散気口から 環気できるように設計されている。また、運気基数も可変である。

出典:平成26年度中国地方ダム管理フォローアップ委員会

土師ダム定期報告書概要版(平成 27 年 1 月 22 日)p. 66

図 2.3.8 土師ダム貯水池のばっ気循環装置について

2.3.4. 土師ダム貯水池の利水状況

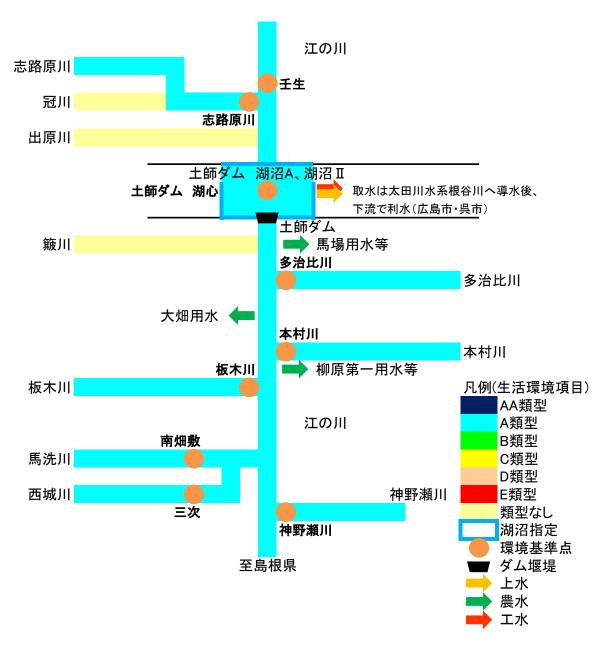
土師ダム貯水池の利用目的を表 2.3.6に、利水の状況を表 2.3.7及び図 2.3.9に示した。 土師ダムは洪水調節、流水機能維持、農業用水、水道用水、工業用水及び発電を利用目的と している。

表 2.3.6 土師ダム貯水池の利用目的

洪水調節	流水機能 維持	農業 用水	水道 用水	工業 用水	発電	消流雪 用水	レクリエー ション
0	0	0	0	0	0		

表 2.3.7 土師ダム貯水池の利水の状況

用途	取水場所	浄水場名	処理水準	特記事項
		広島市緑井浄水場	水道2級(急速ろ過・塩素処理・マンガン接触ろ過・その他浄水処理)(AII類型相当)	
水道用水	ダム直接取水から太 田川水系に流域変更 し、高瀬堰から取水	広島市高陽浄水場	水道2級(急速ろ過・塩素処理・ マンガン接触ろ過・その他浄水処 理)(AⅡ類型相当)	土師ダム貯 水池におい て、アオコに
水坦用水	(広島市周辺地域や 瀬戸内海の島しょ部 の5市5町)	広島県瀬野川浄水 場	水道2級(急速ろ過・前塩素処理・ 中間塩素処理・後塩素処理・アル カリ剤処理)(AII類型相当)	よるカビ臭 あり
		呉市宮原浄水場	水道2級(急速ろ過・塩素処理・ アルカリ剤処理) (AII類型相当)	
農業用水	ダム下流の江の川支 川の簸川沿岸等	_	_	_
工業用水	ダム直接取水から太 田川水系に流域変更 し、高瀬堰から取水 (広島市周辺地域や 瀬戸内海の島しよ部 の5市5町)	_	工業用水 1 級	_


出典:水道データベース(http://www.jwwa.or.jp/mizu/or_up.html)

広島市水道局「水質について」(http://www.water.city.hiroshima.jp/quality/index.html)

呉市上下水道局(https://www.city.kure.lg.jp/site/jougesui/)

広島県水道課(https://www.pref.hiroshima.lg.jp/soshiki/111/)

広島県企業局(https://www.pref.hiroshima.lg.jp/site/kigyo/1172463214618.html#2)

注)水道用水は、土師ダムから太田川へ導水し、下流において広島市、呉市に供給する。下流で取水している。浄水場では主に急速ろ過・塩素処理方式が採用されており、水道2級に相当する(AII類型相当)。アオコの発生によるカビ臭が報告されている。

図 2.3.9 土師ダム貯水池流域の利用状況

土師ダム周辺の漁業権について、表 2.3.8に示した。

表 2.3.8 土師ダム周辺の漁業権

免許番号	魚種	魚場	漁業時期	備考
内水共第27号	アユ、コイ	江の川,簸ノ川,出原川,冠川,寺原川,	コイ漁業は1月1日か	土師ダム上流
(第5種共同漁		志路原川,多治比川(安芸高田市吉田町,	ら12月31日まで	土師ダム貯水池
業権)		八千代町,山県郡北広島町)	アユ漁業は5月20日	土師ダム下流
			から12月31日まで	
内水共第28号	ウナギ、マス	江の川,簸ノ川,出原川,冠川,寺原川,志	ウナギ漁業は1月1日	土師ダム上流
(第5種共同漁		路原川,田原川,筏津川,清水が丸川,小滝	から12月31日まで	土師ダム貯水池
業権)		川,大谷川,大塚川,岩戸川,琴平川,大倉	マス漁業は3月1日か	土師ダム下流
		川,二重谷川,多治比川(安芸高田市吉田町,	ら8月31日まで	
		八千代町,山県郡北広島町)		
内水共第29号	フナ	江の川(安芸高田市八千代町,吉田町,山県	1月1日から12月31日	土師ダム上流
(第5種共同漁		郡北広島町)	まで	土師ダム貯水池
業権)				
内水共第32号	ハヤ	江の川(安芸高田市八千代町, 吉田町,山県	1月1日から12月31日	土師ダム上流
(第5種共同漁		郡北広島町)	まで	土師ダム貯水池
業権)				土師ダム下流

出典:広島県資料(農林水産局ヒアリング)

広島県 河川・湖沼(内水面)体長等の制限・禁止期間 WEB ページ (https://www.pref.hiroshima.lg.jp/soshiki/88/naisuimen.html)

出典:広島県資料に加筆

図 2.3.10 土師ダム貯水池周辺の漁業権の状況

内水共第27号、28号、29号及び32号(第5種共同漁業権)に限定した漁獲量については公表 資料が得られなかったが、参考として漁業法第127条に基づき免許を受けた漁業協同組合に義 務付けられる当該水産動物の増殖の基準として県が定めた魚種ごとの増殖方法及び増殖規模 を表 2.3.9に示した。

表 2.3.9 土師ダム貯水池流域の魚種別増殖方法及び増殖規模

免許番号	魚種	増殖方法	増殖規模
内水共第27号	あゆ	種苗放流	1, 350kg
	こい	種苗放流	200kg
内水共第 28 号	ます	種苗放流	160kg
	うなぎ	種苗放流	90kg
内水共第 29 号	ふな	種苗放流	40kg
内水共第32号	はや(おいかわ、	産卵床造成又は	$2,000\text{m}^2$
	かわむつ)	種苗放流	120kg

出典:広島県報(平成25年8月26日付定期第67号)

2.3.5. 土師ダム貯水池 (八千代湖) にかかる水質汚濁負荷量

(1) 土師ダム貯水池 (八千代湖) の水質汚濁負荷量の算定について

土師ダム貯水池 (八千代湖) の水質汚濁負荷量の算定及び将来水質予測手法の概要は、図 2.3.11 に示すとおりである。現況は平成 28 年度**として、基礎的な統計データである平成 27 年度国勢調査 3 次メッシュ別人口等の値を用いると共に、平成 28 年度の値が入手可能な統計データを更新した。将来は現行の暫定目標の達成年度の 5 年後である令和 7 年度とした。

まず、流域フレーム(現況、将来)を設定したのち、点源については実測値法(排水量×水質)、面源については原単位法(フレーム×原単位)により水質汚濁負荷量を算定した。 将来水質は、算定した現況の発生負荷量、将来の発生負荷量、平均流入率及び平均流入量を用いて算定した。

なお、フレームの設定方法及び使用した資料は表 2.3.10に示すとおりである。

※湖沼の水質データ(表 2.3.4、図 2.3.5で整理)は、入手可能な最新年度が平成30年度となっているが、将来水質予測の現況年度については、負荷量算定に用いる各種統計データの入手可能な最新の実績年度を踏まえ、平成28年度とした。

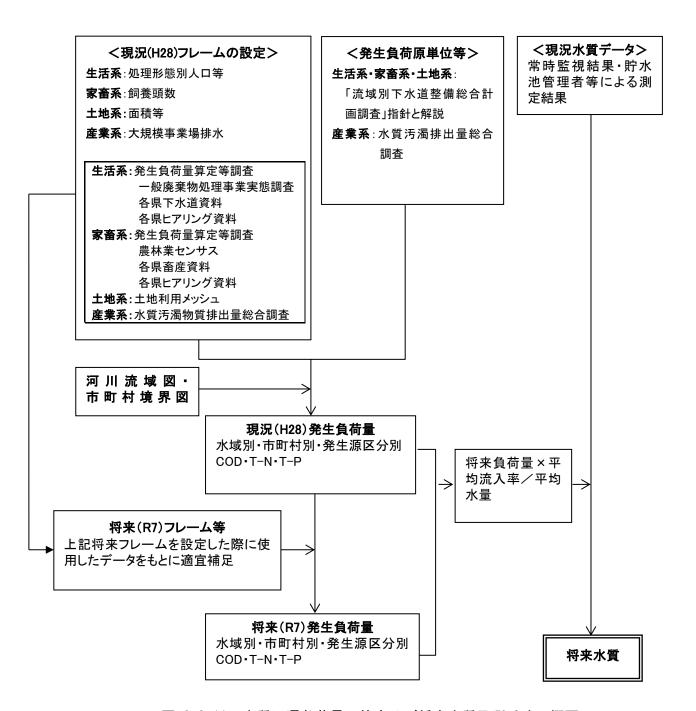


図 2.3.11 水質汚濁負荷量の算定及び将来水質予測手法の概要

表 2.3.10 江の川流域における現況・将来フレームの設定方法及び使用した資料

分類	設定方法	使用した資料
生活系	●現況 (平成 28 年度)	
生活糸	●現況 (平成 28 年度) ・流域内の総人口は、平成 27 年度国勢調査 3 次メッシュ別人口の値を使用。 ・し尿処理形態別人口は、環境省資料及び、流域市町村へのヒアリングにより把握し、流域内外の人口の配分については、市町村別に 3 次メッシュ別人口の流域内外の人口比により配分。 <安芸高田市> ・下水道・コミュニティプラント・農業集落排水施設・合併処理浄化槽人口は、ヒアリングにより把握。 ・単独処理浄化槽・計画収集・自家処理人口に ついてはまとめて計上されているため、一般 廃棄物処理事業実態調査の現況年度における比率で按分。 <北広島町> ・各処理形態別人口は、ヒアリングにより把握。	1) 「国勢調査地域メッシュ統計アータ(H27)」 (総務省) 2) 「一般廃棄物処理事業実態調査」(環境省) 3) 「安芸高田市ヒアリング資料」(安芸高田市) 4) 「北広島町ヒアリング資料」(北広島町)
	●将来(令和7年度) ・将来総人口は、流域市町村へのヒアリングにより設定。 ・し尿処理形態別人口は、流域市町村へのヒアリングにより設定し、流域内外の人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分。 <安芸高田市> ・下水道・コミュニティプラント・農業集落排水施設・合併処理浄化槽人口は、ヒアリングより設定。 ・単独処理浄化槽・計画収集・自家処理人口についてはまとめて計上されているため、現況年度のフレームにおける比率で按分。 <北広島町> ・各処理形態別人口は、ヒアリングにより設定。	3) (前出)「安芸高田市ヒアリング資料」(安芸高田市) 4) (前出)「北広島町ヒアリング資料」(北広島町) 1) (前出)「国勢調査地域メッシュ統計データ(H27)」(総務省)
家畜系	●現況(平成28年度) ・流域市町村へのヒアリングにより土師ダム貯水池流域に該当する市町村別の飼養頭(羽)数を把握。市町村別の飼養頭(羽)数は、流域内の農地(田・畑)面積と市町村の農地面積の比率から、土師ダム貯水池流域に按分。 ●将来(令和7年度) ・各家畜ともに、現況と同じとした。	3)(前出)「安芸高田市ヒアリング資料」(安芸 高田市) 4)(前出)「北広島町ヒアリング資料」(北広島 町)
土地系	●現況(平成28年度) ・平成28年度~(現行整備事業の整備済み範囲成果)の「土地利用第3次メッシュデータ(土地利用区分別面積)(国土交通省)」の土地利用別面積を設定。	5)「土地利用第3次メッシュデータ(土地利用 区分別面積)(H28~)」(国土交通省)

分類	設定方法	使用した資料
	●将来(令和7年度) ・過去の土地利用面積の推移において、明確な 市街地面積の増加傾向はみられなかったた め、現況年度(平成28年度)と同様の土地 利用別面積を設定。	
点源 ·生活系 ·家畜系 ·産業系	●現況(平成 28 年度) ・環境省資料により平成 27 年度および平成 29 年度の流域内の対象工場・事業場における総 排水量、排出負荷量を把握し、両年の平均値 を設定。	6)「水質汚濁物質排出量総合調査」(環境省)
	●将来(令和7年度) ・生活系は、下水道は下水道人口の伸び率を対象工場の排水量に乗じて負荷量を算定した。 それ以外の生活系点源は現状維持とした。 ・産業系は総排水量の傾向がつかめないため、 現状維持とした。	

(2) 土師ダム貯水池 (八千代湖) の流域フレーム

土師ダム貯水池(八千代湖)に係る現況フレームについては、当該流域が含まれる広島 県安芸高田市、北広島町のフレーム値(生活系、産業系、家畜系、土地系)を収集・整理 して設定した。

現況及び将来フレームの設定方法の詳細は以下に示すとおりである。

1) 生活系

ア) 現況

i)総人口

流域内の総人口は、平成27年度国勢調査3次メッシュ別人口の値を使用した。

ii) し尿処理形態別人口

し尿処理形態別人口は、一般廃棄物処理事業実態調査(環境省)及び、流域市町村へのヒアリングにより把握し、流域内外の人口の配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分した。

<安芸高田市>

- ・ 下水道・コミュニティプラント・農業集落排水施設・合併処理浄化槽人口は、ヒアリン グにより把握した。
- ・ 残りの、単独処理浄化槽・計画収集・自家処理人口についてはまとめて計上されている ため、一般廃棄物処理事業実態調査の現況年度における比率で按分した。

<北広島町>

· 各処理形態別人口は、ヒアリングにより把握した。

表 2.3.11 土師ダム貯水池流域のし尿処理別形態人口(現況・平成28年度)

	区:	分	単位	現況•平成28年度
生活系	総人口		人	14,063
	下水道		人	5,689
	コミュニテ	ティプラント	人	0
	農集排水	(人	1,990
	浄化槽		人	5,286
		合併処理箳化槽	人	4,641
		単独処理箳化槽	人	645
	計画収集		人	507
	自家処理		人	591

※単位未満を四捨五入しているため、内訳の計と合計が一致しない場合がある

1) 将来

i)総人口

将来総人口は、流域市町村へのヒアリングにより設定した。

ii) し尿処理形態別人口

し尿処理形態別人口は、流域市町村へのヒアリングにより設定し、流域内外の人口の 配分については、市町村別に3次メッシュ別人口の流域内外の人口比により配分した。

<安芸高田市>

- ・ 下水道・コミュニティプラント・農業集落排水施設・合併処理浄化槽人口は、ヒアリン グより設定した。
- ・ 残りの、単独処理浄化槽・計画収集・自家処理人口についてはまとめて計上されている ため、現況年度のフレームにおける比率で按分した。

<北広島町>

・ 各処理形態別人口は、ヒアリングにより設定した。

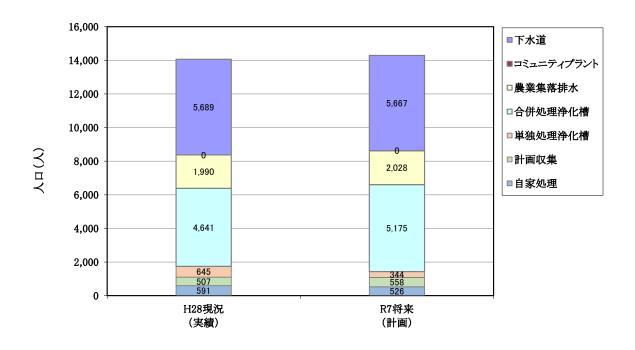


図 2.3.12 流域市町村のし尿処理形態人口の変化

表 2.3.12 将来人口算出に使用した単独処理浄化槽と計画収集人口比率

県	市町村	単独処理 浄化槽	計画収集	自家処理
広島県	安芸高田市	0.12	0.88	0.00
	北広島町	0.38	0.28	0.35

表 2.3.13 土師ダム貯水池流域のし尿処理形態別人口(将来・令和7年度)

	区	分	単位	将来•令和7年度
生活系	総人口		人	14,298
	下水道		人	5,667
		ティプラント	人	0
	農集排	水	人	2,028
	浄化槽		人	5,519
		合併処理净化槽	人	5,175
		単独処理踭化槽	人	344
	計画収	集	人	558
	自家処理	里	人	526

※単位未満を四捨五入しているため、内訳の計と合計が一致しない場合がある

2) 家畜系

ア) 現況

流域市町村へのヒアリングにより平成28年度の土師ダム貯水池流域に該当する市町村 別の飼養頭(羽)数を把握した。

市町村別の飼養頭(羽)数は、流域内の農地(田・畑)面積と市町村の農地面積の比率から、土師ダム貯水池流域に按分した。

流域内の飼養頭(羽)数の算定は次式を用いた。

流域内飼養頭(羽)数=

各市町村飼養頭(羽)数×(流域内各市町村農地(田・畑)面積/各市町村農地(田・畑)面積)

表 2.3.14 各市町村飼養頭(羽)数と流域内飼養頭(羽)数(現況・平成28年度)

県	市町村	各市町村飼養頭(羽)数				流域内農	流域内飼養頭(羽)数			
	111m1 火月	牛(頭)	豚(頭)	鶏(羽)	馬(頭)	地面積比	牛(頭)	豚(頭)	鶏(羽)	馬(頭)
広島県	安芸高田市	2,640	2		20	0.00	8	0	3,154	0
	北広島町	2,290	7,497	711,427	28	0.54	1,241	4,064	385,618	15

表 2.3.15 土師ダム貯水池流域の飼養頭(羽)数(現況・平成28年度)

×	三 分	単位	現況•平成28年度		
家畜系	牛	頭	1,249		
	豚	頭	4,064		
	鶏	羽	388,772		
	馬	頭	15		

4) 将来

牛、鶏、馬については、明瞭な増減傾向が見られないため、現況と同じとした。豚については、やや増加傾向もみられるが、今後の動向が不明瞭であるため、近年で最も飼養頭数が多い現況年(H28)の数字と同じとした。

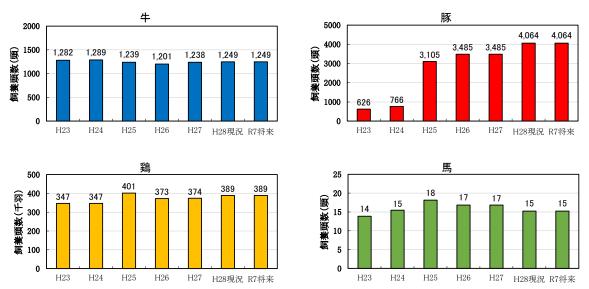


図 2.3.13 土師ダム貯水池流域の飼養頭(羽)数の変化

表 2.3.16 土師ダム貯水池流域の飼養頭 (羽)数 (将来・令和7年度)

×	分	単位	将来•令和7年度
家畜系	牛	頭	1,249
	豚	頭	4,064
	鶏	羽	388,772
	馬	頭	15

3) 土地系

ア) 現況

流域の土地利用面積は、平成28年度~(現行整備事業の整備済み範囲成果)の「土地利用第3次メッシュデータ(土地利用区分別面積)(国土交通省)」より設定した。

土地利用第3次メッシュデータは、土地利用区分として12区分されており、表 2.3.17 のように5区分に集約した。

表 2.3.17 土地利用第3次メッシュデータの土地利用区分の集約

国土数値情報の 土地利用区分	集約区分
田	田
他農用地	畑
森林	山林
建物用地	
道路	市街地
鉄道	川街地
他用地	
荒地	
河川湖沼	その他
海浜	て 07世
ゴルフ場	
海水域	除外

表 2.3.18 土師ダム貯水池流域の土地利用区分別面積(現況・平成28年度)

×	分	単位	現況•平成28年度
土地系	田	ha	3,273
	畑	ha	279
	山林	ha	25,105
	市街地	ha	953
	その他	ha	928
	総面積	ha	30,537

イ) 将来

過去の土地利用面積の推移において、明確な市街地面積の増加傾向はみられなかった ため、現況年度と同様の土地利用別面積を設定した。

図 2.3.14 土師ダム貯水池流域の土地利用区分面積の変化

表 2.3.19 土師ダム貯水池流域の土地利用区分別面積 (将来・令和7年度)

区	分	単位	将来•令和7年度
土地系	田	ha	3,273
	畑	ha	279
	山林	ha	25,105
	市街地	ha	953
	その他	ha	928
	総面積	ha	30,537

4) 点源の排水

ア) 現況

平成27年度および平成29年度の「水質汚濁物質排出負荷量総合調査」において、流域内の対象工場・事業場を把握し、稼動事業場の実測排水量および発生汚濁負荷量の両年度の平均値を平成28年度に適用した。発生汚濁負荷量の算定は、実測排水量に実測排水水質を乗じて算出した。実測水質が無い場合は、水質汚濁物質排出量総合調査において取りまとめられている、代表特定施設別平均水質の値を適用した。

4) 将来

平成23年度、平成25年度、平成27年度、平成29年度における「水質汚濁物質排出負荷量総合調査」において、流域内の対象工場・事業場を把握し、稼動事業場の実測排水量と発生汚濁負荷量を把握した。

生活系は、下水道は、下水道人口の平成27年度から令和7年度の伸び率を対象工場の排水量に乗じて負荷量を算定した。それ以外の生活系点源は現状維持とした。

産業系は総排水量の経年変化の傾向がつかめないため、現状維持とした。

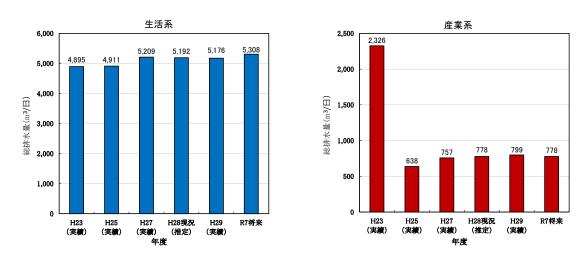


図 2.3.15 土師ダム貯水池流域の総排水量の変化

表 2.3.20 土師ダム貯水池流域の点源の総排水量

X	.分	単位	現況•平成28年度	将来•令和7年度
生活系	点源	m^3/ \exists	5,192	5,308
産業系	点源	m ³ /日	778	778

表 2.3.21 土師ダム貯水池流域のフレームの推移(平成23年度~平成28年度)

	区 分	単位	H23	H24	H25	H26	H27	H28
	総人口	人	14,374	14,322	14,271	14,219	14,168	14,063
	下水道	人	4,900	5,054	5,209	5,363	5,517	5,689
	コミュニティプラント	人	0	0	0	0	0	0
	農業集落排水	人	2,158	2,113	2,067	2,022	1,976	1,990
生活系	合併処理浄化槽	人	4,480	4,533	4,585	4,637	4,690	4,641
	単独処理浄化槽	人	896	837	777	718	658	645
	計画収集	人	1,418	1,259	1,101	943	784	507
	自家処理	人	521	527	532	538	543	591
	点源	m ³ /日	4,895	4,903	4,911	5,060	5,209	5,192
	牛	頭	1,282	1,289	1,240	1,200	1,237	1,249
	豚	頭	627	766	3,104	3,480	3,480	4,064
家畜系	鶏	羽	347,150	346,965	401,658	372,273	373,622	388,772
	馬	頭	14	15	18	17	17	15
家畜系	点源	m ³ /日	0	0	0	0	0	0
	田	ha	3,055	3,050	3,044	3,039	3,156	3,273
	畑	ha	253	261	269	277	278	279
土地系	山林	ha	25,367	25,314	25,260	25,207	25,156	25,105
土地糸	市街地	ha	1,258	1,248	1,238	1,229	1,091	953
	その他	ha	605	665	724	784	856	928
	総面積	ha	30,537	30,537	30,537	30,537	30,537	30,537
産業系	点源	m^3/\exists	2,326	1,482	638	698	757	778

表 2.3.22 土師ダム貯水池流域の水質汚濁負荷量に係るフレーム (現況、将来)

	区分	単位	現況•平成28年度	将来•令和7年度
	総人口	人	14,063	14,298
	下水道	人	5,689	5,667
	コミュニティプラント	人	0	0
	農業集落排水	人	1,990	2,028
生活系	合併処理浄化槽	人	4,641	5,175
	単独処理浄化槽	人	645	344
	計画収集	人	507	558
	自家処理	人	591	526
	点源	m^3/ \exists	5,192	5,308
	牛	頭	1,249	1,249
	豚	頭	4,064	4,064
家畜系	鶏	羽	388,772	388,772
	馬	頭	15	15
	点源	m^3/ \exists	0	0
	田	ha	3,273	3,273
	畑	ha	279	279
1.44.7	山林	ha	25,105	25,105
土地系	市街地	ha	953	953
	その他	ha	928	928
	総面積	ha	30,537	30,537
産業系	点源	m^3/ B	778	778

(3) 土師ダム貯水池 (八千代湖) の発生汚濁負荷量の算定方法

発生汚濁負荷量の算定手法は表 2.3.23 に示すとおり、点源については実測値法(負荷量=排水量×水質)、面源については原単位法(負荷量=フレーム×原単位)により算定した。面源の発生汚濁負荷量の算定に用いた原単位は表 2.3.24 に示すとおりである。

表 2.3.23 土師ダム貯水池 (八千代湖) の発生汚濁負荷量算定手法

発生活	原別	区分	算定手法
生活系	点源	下水道終末処理施設 (マップ調査)*	排水量(実測値)×排水水質(実測値)
		し尿処理施設(マップ調査)*	排水量(実測値)×排水水質(実測値)
	面源	し尿・雑排水(合併処理浄化槽)	合併処理浄化槽人口×原単位(し尿+雑排水)×(1-除去率)
		し尿(単独処理浄化槽)	単独処理浄化槽人口×原単位(し尿)×(1-除去率)
		し尿(計画収集)	計画収集人口×原単位(し尿)×(1-除去率)
		し尿(自家処理)	自家処理人口×原単位(し尿)×(1-除去率)
畜産系	点源	畜産業	排水量(実測値)×排水水質(実測値)
	面源	マップ調査以外の畜産業*	家畜頭数×原単位×(1-除去率)
土地系	面源	土地利用形態別負荷	土地利用形態別面積×原単位
産業系	点源	工場・事業場(マップ調査)*	排水量(実測値)×排水水質(実測値)

注)*マップ調査: 平成23 年度、平成25 年度、平成27 年度、平成29 年度水質汚濁物質排出量総合調査(環境省) ⇒マップ調査の調査対象は、①日排出量が50m³以上、もしくは②有害物質を排出するおそれのある工場・事業場であり、③指定地域特定施設及び湖沼水質保全特別措置法で定めるみなし指定地域特定施設を含む。

表 2.3.24 土師ダム貯水池 (八千代湖) の発生汚濁負荷量原単位

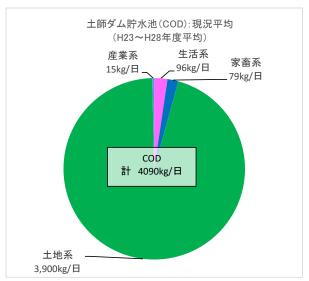
		~~~	C	OD	T-	-N	Т	-P
	区 分	単位	原単位 除去率(%)		原単位 除去率(%)		原単位	除去率(%)
	合併処理浄化槽	g/(人·日)	28.0	72. 5	13. 0	48. 5	1. 40	46. 4
生	単独処理浄化槽	g/(人·日)	10.0	53. 5	9.0	34. 4	0.90	30.0
活系	計画収集 (雑排水)	g/(人・目)	18. 0	0.0	4. 0	0.0	0. 50	0.0
	自家処理	g/(人·日)	10.0	90.0	9.0	90.0	0.90	90.0
	田	kg/(km ² ・日)	30.44	_	3.67	_	1. 13	_
土	畑	kg/(km ² ・目)	13.56	_	27.51	_	0.35	_
地	山林	kg/(km ² ・日)	9. 97	_	1.34	_	0.08	_
系	市街地	kg/(km ² ・日)	29.32	_	4.44	_	0. 52	_
	その他	kg/(km ² ・日)	7. 95	_	3.56	_	0.10	_
	乳用牛	g/(頭・日)	530.0	97. 5	290. 0	96. 1	50.00	98.4
家畜	肉用牛	g/(頭・日)	530. 0	97.5	290. 0	96. 1	50.00	98. 4
	豚	g/(頭•日)	130.0	95. 9	40.0	93. 5	25.00	95. 1
	鶏	g/(羽・目)	2.9	95. 5	1.91	94. 5	0. 27	95. 5

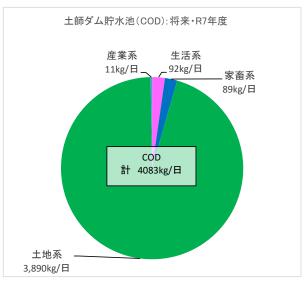
- 注) 前回の暫定目標見直し(平成28年3月)以降に見直した原単位及び除去率は無い
- 出典:「流域別下水道整備総合計画調査 指針と解説 平成27年1月 国土交通省水管理・国土保全局下水道部」
  - ・生活系の原単位は、「1人1日当たり汚濁負荷量の参考値」
  - ・合併処理浄化槽の除去率は、「小型合併浄化槽の排水量・負荷量原単位」の排出負荷量の平均値と原単位から除去率を 算出した
  - ・単独処理浄化槽の除去率は、「単独浄化槽の排出負荷量原単位」の排出負荷量の平均値と原単位から除去率を算出した
  - ・自家処理の除去率は、前回の類型指定(平成25年6月)に係る検討時の値と同値とした
  - ・土地系原単位は、各土地利用区分の原単位の平均値とした(田は純排出負荷量の平均値)。土地系のその他については「大気降下物の汚濁負荷量原単位」の平均値とした。なお、COD は「非特定汚染源からの流出負荷量の推計手法に関する研究 H24.3 (社)日本水環境学会」の平均値とした
  - ・家畜系原単位は、「家畜による発生負荷量原単位」における原単位の平均値とした
  - ・家畜系除去率は、「牛、豚、鶏の汚濁負荷量原単位と排出率(湖沼水質保全計画)」の排出率から算出した

## (4) 土師ダム貯水池 (八千代湖) の発生汚濁負荷量

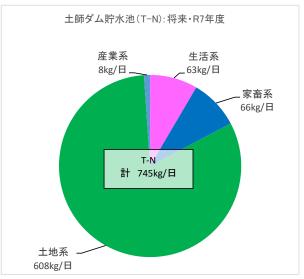
土師ダム貯水池(八千代湖)の発生汚濁負荷量は表 2.3.25 に示すとおりである。

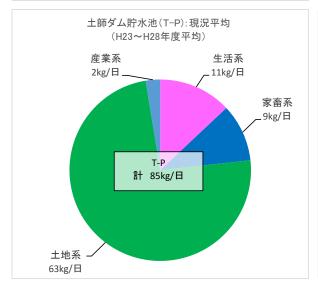
表 2.3.25 土師ダム貯水池 (八千代湖) 流域の発生汚濁負荷量


区 分			CC	)D	T-	·N	T-	Р
	区 分		現況平均 (H23~H28年度平均)	将来 令和7年度	現況平均 (H23~H28年度平均)	将来 令和7年度	現況平均 (H23~H28年度平均)	将来 令和7年度
	合併処理浄化槽	kg/日	35	40	31	35	3	4
	単独処理浄化槽	kg/日	4	2	4	2	0	0
生活系	計画収集	kg/日	18	10	4	2	1	0
工伯尔	自家処理	kg/日	1	1	0	0	0	0
	点源(水質汚濁物質排出量総合調査)	kg/日	39	40	27	24	7	7
	小計	kg/日	96	92	66	63	11	11
	牛	kg/日	17	17	14	14	1	1
	豚	kg/日	14	22	7	11	3	5
家畜系	鶏	kg/日	49	51	39	41	5	5
<b>外田</b> バ	馬	kg/日	0	0	0	0	0	0
	点源(水質汚濁物質排出量総合調査)	kg/日	0	0	0	0	0	0
	小計	kg/日	79	89	60	66	9	11
	田	kg/日	944	996	114	120	35	37
	畑	kg/日	37	38	74	77	1	1
土地系	山林	kg/日	2,516	2,503	338	336	20	20
ユルロカバ	市街地	kg/日	343	279	52	42	6	5
	その他	kg/日	60	74	27	33	1	1
	小計	kg/日	3,900	3,890	605	608	63	64
産業系	点源(水質汚濁物質排出量総合調査)	kg/日	15	11	14	8	2	2
合計	•	kg/日	4,090	4,083	745	745	85	88


注)生活系のうち、「点源」は排水量 50m³/日以上の下水処理場、コミュニティプラント、農業集落排水処理施設等の大規模浄化槽及びし尿処理場を、「合併処理浄化槽」「単独処理浄化槽」は 50m³/日未満の浄化槽を、「計画収集」は市町村が計画処理区区域内で収集するし尿を、「自家処理」はし尿又は浄化槽汚泥を自家肥料として用いる等、自ら処分しているものを、それぞれ表す。

産業系の「点源」は生活系、家畜系以外の水質汚濁防止法の特定事業場を表す。


表 2.3.26 土師ダム貯水池(八千代湖)流域の発生汚濁負荷量の推移(平成23~平成28年度)


Z	区分	単位	平成23年度	平成24年度	平成25年度	平成26年度	平成27年度	平成28年度	H23~H28年度 平均
COD	生活系	kg/∃	104	100	96	95	94	89	96
	家畜系	kg/日	66	67	85	83	84	89	79
	土地系	kg/日	3,910	3,906	3,902	3,899	3,894	3,890	3,900
	産業系	kg/日	35	21	6	8	10	11	15
	合計	kg/日	4,115	4,093	4,090	4,084	4,082	4,079	4,090
	生活系	kg/日	72	70	68	65	62	61	66
	家畜系	kg/日	53	53	64	62	62	66	60
T-N	土地系	kg/日	599	602	605	608	608	608	605
	産業系	kg/日	31	19	7	8	10	8	14
COD	合計	kg/日	755	744	744	743	743	743	745
	生活系	kg/日	11	11	11	11	11	12	11
	家畜系	kg/日	6	6	10	10	10	11	9
T-P	土地系	kg/∃	63	63	63	63	63	64	63
	産業系	kg/日	5	3	1	1	1	2	2
	合計	kg/∃	85	82	84	84	86	89	85











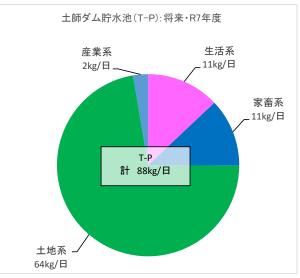



図 2.3.16 土師ダム貯水池 (八千代湖) 流域の汚濁負荷量内訳

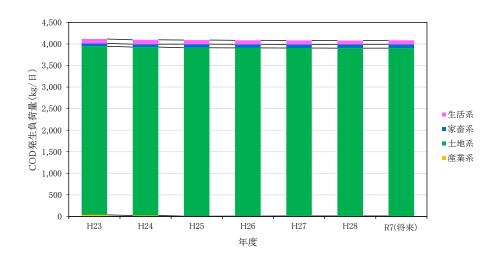



図 2.3.17 土師ダム貯水池流域の COD 発生負荷量経年変化

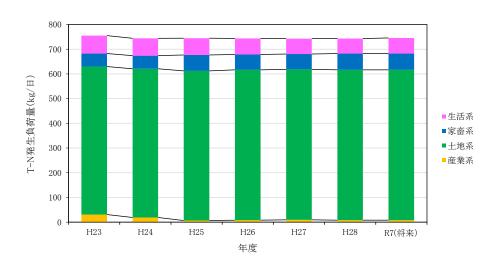



図 2.3.18 土師ダム貯水池流域の T-N 発生負荷量経年変化

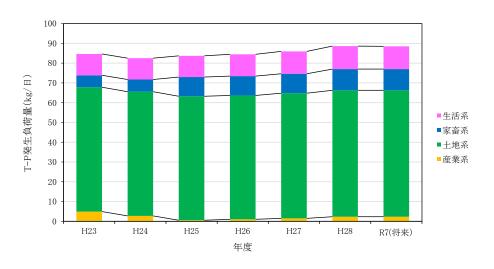



図 2.3.19 土師ダム貯水池流域の T-P 発生負荷量経年変化

2. 3-36

#### 2.3.6. 土師ダム貯水池 (八千代湖) の将来水質予測

土師ダム瀬貯水池 (八千代湖) の将来水質予測結果は、次のとおりである。 流入水量の経年変化は、ダム諸量データベースの値を用いた。

表 2.3.27 土師ダム貯水池の現況年平均流入量の経年変化

	H23	H24	H25	H26	H27	H28	平均
流入量年平均(m³/s)	13	9	13	12	12	14	12

※有効数字二桁で表示しています。

### (1)土師ダム貯水池(八千代湖) COD 水質予測

土師ダム貯水池への流入水と貯水池の水質の経年変化は、表 2.3.28 のとおりである。 流入水質は、土師ダム貯水池上流にある川井の値を用いた。土師ダム貯水池への負荷量の 経年変化は表 2.3.29 のとおりである。

表 2.3.28 土師ダム貯水池の現況 COD 水質の経年変化

COD	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	2.6	1.9	2.1	2.2	1.9	2.0	2.1
貯水池水質年平均値(mg/L)	2.8	2.7	2.2	2.4	2.6	2.8	2.6
貯水池水質75%值(mg/L)	3.0	2.9	2.4	2.7	3.0	3.2	2.9

※有効数字二桁で表示しています。

表 2.3.29 土師ダム貯水池の現況 COD 発生負荷量と流入負荷量の経年変化

COD	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	4,115	4,093	4,090	4,084	4,082	4,079	4,090
流入負荷量(kg/日)	2,899	1,571	2,335	2,227	1,958	2,485	2,246
流入率	0.70	0.38	0.57	0.55	0.48	0.61	0.55

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流入率は有効数字二桁で表示しています。

将来水質の算定には次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 2.3.30 土師ダム貯水池流域の将来 COD 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	2.6	表 2.3.28 の貯水池水質年平均値 (COD) の 6 ヵ年平均値
将来発生負荷量(kg/日)	4,083	表 2.3.25 の将来の発生汚濁負荷量の合計 (COD)
現況平均流入率	0.55	表 2.3.29 の流入率の 6 ヶ年平均値
現況平均流入負荷量(kg/日)	2,246	表 2.3.29 の流入負荷量の 6 ヶ年平均値
将来流入負荷量(kg/日)	2,241	将来発生負荷量×現況平均流入率

COD 将来水質予測結果は、表 2.3.31 に示すとおりである。また、75%値は、図 2.3.20 に示す相関式に年平均値を当てはめて推計した。

表 2.3.31 土師ダム貯水池流域の将来 COD 水質予測結果

_		土師ダ.	ム貯水池	現在の類型		
項目		将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値 現暫定目標		
COD水質	年平均値	2.6	2.4~2.8	_		
	75%値	2.9	2.6~3.2	A類型 3mg/L以下	-	

※年平均値の変動範囲は、**表 2.3.28** の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来 水質に加算、減算して求めた。75%値の変動範囲は、**表 2.3.28** の貯水池の75%値から標準偏差(不偏分散)を 求め、その数値を将来水質に加算、減算して求めた。

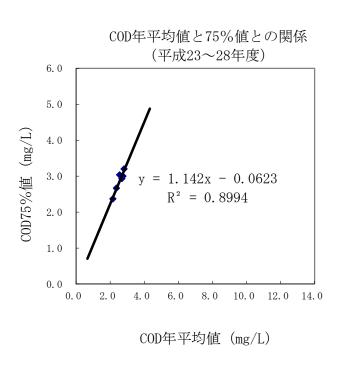



図 2.3.20 土師ダム貯水池の COD 水質年平均値と 75%値との関係

## (2) 土師ダム貯水池 (八千代湖) T-N 水質予測

土師ダム貯水池の水質の経年変化は、表 2.3.32のとおりである。流入水質は、土師ダム貯水池上流にある川井の値を用いた。土師ダム貯水池への負荷量の経年変化は表 2.3.33のとおりである。

表 2.3.32 土師ダム貯水池の現況 T-N 水質年平均値の経年変化

T-N	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	0.65	0.53	0.50	0.52	0.50	0.45	0.53
貯水池水質年平均値(mg/L)	0.73	0.64	0.51	0.49	0.70	0.74	0.64

※有効数字二桁で表示しています。

表 2.3.33 土師ダム貯水池流域の現況 T-N 発生負荷量と流入負荷量の経年変化

T-N	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	755	744	744	743	743	743	745
流入負荷量(kg/日)	717	434	567	533	505	563	553
流入率	0.95	0.58	0.76	0.72	0.68	0.76	0.74

注)流入負荷量=年平均流入量×年平均流入水質

流入率=流入負荷量/発生負荷量

※発生負荷量・流入負荷量は小数点以下四捨五入、流入率は有効数字二桁で表示しています。

将来水質の算定は次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 2.3.34 土師ダム貯水池流域の将来 T-N 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	0.64	表 2.3.32 の貯水池水質年平均値 (T-N) の 6 ヵ年平均値
将来発生負荷量(kg/日)	745	表 2.3.25 の将来の発生汚濁負荷量の合計 (T-N)
現況平均流入率	0.74	表 2.3.33 の流入率の6ヶ年平均値
現況平均流入負荷量(kg/日)	553	表 2.3.33 の流入負荷量の6ヶ年平均値
将来流入負荷量(kg/日)	553	将来発生負荷量×現況平均流入率

T-N 将来水質予測結果は、表 2.3.35 に示すとおりである

表 2.3.35 土師ダム貯水池流域の将来 T-N 水質予測結果

		土師ダ.	ム貯水池	現在の類型		
項目 将来水質(mg/L) 変動		変動範囲(mg/L)	類型指定 基準値	現暫定目標値		
T-N水質	T-N水質 年平均値 0.64		0.54~0.74	$_{ m II}$ 0.2mg/L	$0.43 \mathrm{mg/L}$	

[※]変動範囲は表 2.3.32 の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

## (3) 土師ダム貯水池 (八千代湖) T-P 水質予測

土師ダム貯水池の水質の経年変化は、表 2.3.36のとおりである。流入水質は、土師ダム貯水池上流にある川井の値を用いた。土師ダム貯水池への負荷量の経年変化は表 2.3.37のとおりである。

表 2.3.36 土師ダム貯水池の現況 T-P 水質年平均値の経年変化

T-P	H23	H24	H25	H26	H27	H28	平均
年平均流入水質(mg/L)	0.033	0.035	0.031	0.040	0.036	0.034	0.035
貯水池水質年平均値(mg/L)	0.019	0.024	0.021	0.024	0.027	0.031	0.024

※有効数字二桁で表示しています。

表 2.3.37 土師ダム貯水池流域の現況 T-P 発生負荷量と流入負荷量の経年変化

T-P	H23	H24	H25	H26	H27	H28	平均
発生負荷量(kg/日)	85	82	84	84	86	89	85
流入負荷量(kg/日)	36	29	35	42	37	42	37
流入率	0.43	0.35	0.41	0.49	0.43	0.48	0.43

注)流入負荷量=年平均流入量×年平均流入水質 流入率=流入負荷量/発生負荷量 ※発生負荷量・流入負荷量は小数点以下四捨五入、流出率は有効数字二桁で表示しています。

将来水質の算定は次式を用いた。

将来貯水池水質年平均值=現況平均貯水池水質×将来流入負荷量/現況平均流入負荷量 ※将来流入負荷量=将来発生負荷量×現況平均流入率

表 2.3.38 土師ダム貯水池流域の将来 T-P 水質算出に用いる値

項目	値	引用箇所
現況平均貯水池水質(mg/L)	0.024	表 2.3.36 の貯水池水質年平均値 (T-P) の 6 ヵ年平均値
将来発生負荷量(kg/日)	88	表 2.3.25 の将来の発生汚濁負荷量の合計 (T-P)
現況平均流入率	0.43	表 2.3.37 の流入率の 6 ヶ年平均値
現況平均流入負荷量(kg/日)	37	表 2.3.37 の流入負荷量の 6 ヶ年平均値
将来流入負荷量(kg/日)	38	将来発生負荷量×現況平均流入率

T-P 将来水質予測結果は、表 2.3.39 に示すとおりである

表 2.3.39 土師ダム貯水池の将来 T-P 水質予測結果

		土師ダ、	ム貯水池	現在の類型		
項目将来水		将来水質(mg/L)	変動範囲(mg/L)	類型指定 基準値	現暫定目標値	
T-P水質	T-P水質 年平均値 0.025		0.021~0.029	$\overline{ m II}$ $0.01$ mg/L	0.018mg/L	

[※]変動範囲は表 2.3.36の貯水池の年平均水質から標準偏差(不偏分散)を求め、その数値を将来水質に加算、減算して求めた。

#### 2.3.7. 土師ダム貯水池 (八千代湖) の水域類型指定

水質予測結果及び現況年度(平成 28 年度)の水質調査結果を踏まえた土師ダム貯水池(八千代湖)の類型指定は下記のとおりである。なお、暫定目標の設定にあたっては、中央環境審議会水環境部会(第 44 回)資料 1-別添 1,2(巻末資料(7))に示す考え方を基本とした。

基準値 (類型)	R2までの 暫定目標	H23~H28水質 (6力年平均)	H29,H30水質	R7水質予測	改善目標値	R7までの 暫定目標
3mg/L (湖沼A)	-	2.9mg/L	H29:3.6mg/L H30:2.7mg/L	2.9mg/L (2.6~3.2)	-	-
0.2mg/L (湖沼II)	0.43mg/L	0.64mg/L	H29:0.64mg/L H30:0.57mg/L	0.64mg/L (0.54~0.74)	0.54mg/L (変動範囲の 下限値)	0.43mg/L
0.01mg/L (湖沼I)	0.018mg/L	0.024mg/L	H29:0.025mg/L H30:0.019mg/L	0.025mg/L (0.021~0.029)	0.021mg/L (変動範囲の 下限値)	0.018mg/L
	(類型) 3mg/L (湖沼A) 0.2mg/L (湖沼II) 0.01mg/L	(類型) 暫定目標 3mg/L (湖沼A) - 0.2mg/L (湖沼I) 0.43mg/L	(類型) 暫定目標 (6力年平均) 3mg/L (湖沼A) - 2.9mg/L (湖沼A) - 0.43mg/L 0.64mg/L 0.01mg/L 0.018mg/L 0.024mg/L	(類型) 暫定目標 (6力年平均) H29,H30水負 3mg/L (湖沼A) - 2.9mg/L H29:3.6mg/L H30:2.7mg/L H30:2.7mg/L (湖沼耳) 0.43mg/L 0.64mg/L H30:0.57mg/L H29:0.025mg/L 0.01mg/L 0.018mg/L 0.024mg/L H29:0.025mg/L	(類型)   暫定目標 (6力年平均)   H29.H30水質   R/水質予測   3mg/L (湖沼A)   - 2.9mg/L   H29:3.6mg/L (2.6~3.2)   H30:2.7mg/L (2.6~3.2)   H29:0.64mg/L (湖沼耳)   0.43mg/L	(類型)   暫定目標 (6力年平均)   H29;H30水資   R7水資予測   改善目標値   R7水資予測   改善目標値   R7水資予測   改善目標値   R7水資予測   改善目標値   R7水資予測   改善目標値   R7水資予測   公書目標値   R7水資予測   公書目標値   R7水資予測   公書目標値   R7水資予測   公書目標値   R7水資予測   公書目標値   R7水資予測   C2.9mg/L (2.6~3.2)   -

表 2.3.40 土師ダムの将来水質予測結果と暫定目標

### (1)類型指定

類型については、湖沼A類型・湖沼Ⅱ類型に相当する水道及び水産の利用があることから、引き続き「湖沼A類型・湖沼Ⅱ類型」とする。

#### (2)達成期間(暫定目標の設定を含む)

化学的酸素要求量 (COD) については、平成23年度から平成28年度の現況値 (75%値)は概ね基準値を満足し、令和7年度の水質予測結果 (75%値2.9mg/L) は基準値(3mg/L)を下回っていることから、暫定目標は設定せず、達成期間は、引き続き【イ直ちに達成】とする。

T-N 及び T-P については、令和 7 年度の水質予測結果 (T-N 0.64mg/L、T-P 0.025mg/L) は湖沼 II 類型の基準値 (T-N 0.2mg/L、T-P 0.01mg/L) を大きく上回り、現在見込み得る対策を行ったとしても、5 年後において達成が困難なため、達成期間は【ニ 段階的に暫定目標を達成しつつ、環境基準の可及的速やかな達成に努める。】とする。

令和7年度までの暫定目標については、T-N・T-Pともに、近年の水質の実測値は、従前の暫定目標値(T-N 0.43mg/L、T-P 0.018mg/L)を上回って推移しており、将来水質予測結果の変動範囲の下限値(T-N 0.54mg/L、T-P 0.021mg/L)も従前の暫定目標を上回っているが、T-Nについては過去に従前の暫定目標に近い水質濃度(0.45)を示す年があり、T-Pについては過去に従前の暫定目標を満たす年があったことから、実現可能と考えられる最も低い値として現行の暫定目標を据え置き、T-N 0.43mg/L、T-P 0.018mg/Lと設定し、今後、経過を見守りつつ、引き続き、段階的な水質改善を図ることとする。

# <参考:異常値の除外の考え方>

対数正規分布による異常値の除外の検討を行った。除外の候補とされた測定値について、藻類の異常増殖や出水の影響等を総合的に勘案し、異常値の除外を判断した。

表 2.3.41 土師ダム貯水池における異常値の候補と除外有無の判定(COD)

(異常値判定時の上限値: 4.2mg/L, 下限値: 1.5mg/L)

年度	年月	COD (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
24	2012/8/22	5.1	29	除外しない		大きな降水、流入はない。他、気象に関する大き な変動は見られない。
24	2013/3/5	1.4	2.5	除外しない	降雨・藻類の異常発生等の影響は考えられない。	前3日間の降水量は1mm程度。他、気象に関する大きな変動は見られない。
26	2015/2/10	1.3	9.3	除外しない	降雨・藻類の異常発生等の影響は考えられない。	前3日間の降水量は6mm程度。他、気象に関する大きな変動は見られない。
26	2015/3/3	1.5	20	除外しない	降雨・藻類の異常発生等の影響は考えられない。	前3日間の降水量は15mm程度。他、気象に関する大きな変動は見られない。
27	2016/3/1	1.0	3.4	除外しない	降雨・藻類の異常発生等の影響は考えられない。	前3日間の降水量は11mm程度。他、気象に関する大きな変動は見られない。

※降水量は大朝観測所のデータを参考とした。

### 表 2.3.42 土師ダム貯水池における異常値の候補と除外有無の判定 (T-N)

(異常値判定時の上限値: 1.0mg/L, 下限値: 0.38mg/L)

年度	年月	T-N (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
25	2013/7/10			除外しない		前3日間の降水量は14mm程度。他、気象に関する 大きな変動は見られない。
26	2014/6/3	0.27	4.0	除外しない		大きな降水、流入はない。他、気象に関する大きな 変動は見られない。
27	2015/4/28	1.1	7.6	除外しない		大きな降水、流入はない。他、気象に関する大きな 変動は見られない。
27	2015/9/8	1.4	19.7	除外する	降雨の影響が考えらえる。	前3日間の降水量は45mm程度。
28	2016/9/2	1.6	6.6	除外しない		前3日間の降水量は1mm程度。他、気象に関する大きな変動は見られない。
29	2017/8/3	1.1	11.0	除外しない		大きな降水、流入はない。他、気象に関する大きな 変動は見られない。
30	2018/11/5	0.4		除外しない		大きな降水はない。他、気象に関する大きな変動は 見られない。

※降水量は大朝観測所のデータを参考とした。

表 2.3.43 土師ダム貯水池における異常値の候補と除外有無の判定 (T-P)

(異常値判定時の上限値: 0.046mg/L, 下限値: 0.010mg/L)

年度	年月	T-P (mg/L)	クロロフィルa (μg/L)	除外有無	理由	備考
18	2006/5/9	0.051	59.0	除外する	藻類の異常発生の影響が考え らえる。	前3日間の降水量は30mm程度。
18	2006/7/4	0.048	12.0	除外する	降雨の影響が考えらえる。	前3日間の降水量は96mm程度。
20	2009/1/13	0.0090	13.0	除外する	降雨の影響が考えらえる。	前3日間の降水量は34mm程度。
21	2010/1/12	0.010	8.8	除外しない	降雨・藻類の異常発生の影響は 考えられない。	大きな降水、流入はない。
23	2011/9/6	0.047	5.5	除外する	降雨の影響が考えらえる。	前3日間の降水量は32mm程度。
27	2015/9/8	0.047	13.0	除外する	降雨の影響が考えらえる。	前3日間の降水量は45mm程度。
28	2016/7/5	0.050	5.1	除外しない	降雨・藻類の異常発生等の影響 は考えられない。	前3日間の降水量は20mm程度。他、気象に関する 大きな変動は見られない。
29	2017/4/20	0.053	14.0	除外する	降雨の影響が考えらえる。	3日前に73mmの降水あり。2日前に78m3/sの比較 的大きな流入あり。
30	2018/11/5	0.009	2.2	除外しない	降雨・藻類の異常発生等の影響 は考えられない。	大きな降水、流入はない。他、気象に関する大きな 変動は見られない。

※降水量は大朝観測所のデータを参考とした。