中環審第 1188 号令和3年7月19日

環境大臣

小泉 進次郎 殿

中央環境審議会 会長 高村 ゆかり (公印省略)

水質汚濁に係る人の健康の保護に関する環境基準等の見直しについて(答申)

平成14年8月15日付け諮問第56号により中央環境審議会に対してなされた「水質汚濁に係る人の健康の保護に関する環境基準等の見直しについて(諮問)」については、別添のとおりとすることが適当であるとの結論を得たので、答申する。

水質汚濁に係る人の健康の保護に関する 環境基準等の見直しについて (第6次答申)

令和3年7月

中央環境審議会

1. はじめに

環境基本法(平成5年法律第91号)に基づく水質汚濁に係る環境基準のうち、公共用水域の水質汚濁に係る人の健康の保護に関する環境基準については、現在のところ、27項目が定められており、地下水の水質汚濁に係る環境基準については、28項目が定められている(以下、公共用水域の水質汚濁に係る人の健康の保護に関する環境基準及び地下水の水質汚濁に係る環境基準を合わせて「水質環境基準健康項目」という。)。

また、人の健康の保護に関連する物質ではあるが、公共用水域及び地下水 (以下「公共用水域等」という。)における検出状況等から見て、直ちに水質 環境基準健康項目とはせず、引き続き公共用水域等の検出状況などの知見の 集積に努めるべき物質については、要監視項目として位置づけられ、現在の ところ、公共用水域において27項目、地下水において25項目の監視等が行わ れている。

「水質汚濁に係る人の健康の保護に関する環境基準の項目の追加等について(第1次答申)」(平成11年2月中央環境審議会)において、水質環境基準健康項目及び要監視項目全般について、今後とも新たな科学的知見に基づいて必要な追加・削除等、見直し作業を継続して行っていくべきとされたところである。

その後、六価クロムについては、内閣府食品安全委員会の食品健康影響評価において耐容一日摂取量(以下「TDI」という。)が設定され、令和2年4月に水道法に基づく水質基準値の改正が行われた。

このような状況を踏まえ、六価クロムに関する基準値の見直しについて検 討し、結果を取りまとめた。

2. 検討事項

平成 30 年 9 月に、内閣府食品安全委員会において、六価クロムのTDIが $1.1~\mu$ g/kg 体重/日と評価されたことを受けて、令和 2 年 4 月に水道水質基準の基準値が 0.05~mg/L から 0.02~mg/L に改正された。このような状況を踏まえて、水質環境基準健康項目の基準値の見直しを行った。

水質環境基準健康項目及び要監視項目の選定の考え方については、令和2年中央環境審議会答申「水質汚濁に係る人の健康の保護に関する環境基準等の見直しについて(第5次答申)」(令和2年5月中央環境審議会)の2.(2)に記載された考え方を基本とした。

3. 検討結果

(1) 水道水質基準の改正等を踏まえた検討

六価クロムの水質環境基準健康項目については、従来の基準値 0.05 mg/L を 0.02 mg/Lに見直すことが適当である。また、変更する基準値に基づいた場合においても、公共用水域等における検出状況からみて、従来通り水質環境基準健康項目とすることが適当である。

1) 基準値の導出根拠

内閣府食品安全委員会において、2年間飲水投与試験においてみられた、雄マウスの十二指腸のびまん性上皮過形成に基づき算出した $BMDL_{10}$ 値 0.11 mg/kg 体重/日を基準点とし、不確実係数 100 を適用して、六価クロムのTD I が $1.1~\mu$ g/kg 体重/日と設定された。

また、水道水質基準の改正においては、食品中のクロムは三価の状態で存在するとされているが、飲料水以外からの六価クロムの摂取経路が確かに無いとは言えないため、水の飲用の寄与率は60%とするのが適当とされた。

これらの結果を踏まえ、<u>六価クロムのTDI1.1 μ g/kg 体重/日に対し、水の飲用に係る寄与率を 60%、体重 50 kg、1日当たりの摂取量 2 L/日として、</u>基準値を 0.02 mg/L とした。

2) 公共用水域等における検出状況

過去 10 年間 (平成 22 年度以降) の公共用水域等における六価クロムの検出 状況は、別添 2 のとおりである。公共用水域等における水質測定計画に基づく 測定結果によると、公共用水域では、新たな基準値 (0.02 mg/L) の超過事例 は、平成 22 年度から平成 24 年度に計 4 地点であり、すべての地点が現行の基 準値 (0.05 mg/L) の範囲内となっている。また、地下水では、平成 23 年度、 平成 27 年度、平成 28 年度、平成 30 年度及び令和元年度に計 6 地点で新たな 基準値 (0.02 mg/L) を超過し、そのうち 4 地点が新たな基準値 (0.02 mg/L) と現行の基準値 (0.05 mg/L) の範囲内となっている。

水質環境基準健康項目に係る検討結果を、以下に示す。

項目名	新たな基準値	現行の基準値		
六価クロム	0.02mg/L以下	0.05 mg/L以下		

備考 基準値は年間平均値とする。

4. 測定方法

基準値を強化する六価クロムの測定方法については、以下に示す方法による ことが適当である。

測定方法の概要

	,
項目	測定法
六価クロム	日本産業規格 K0102 (以下「規格」という。) の 65.2 (規格 65.2.2 及び 65.2.7 を除く。) に 定める方法 (ただし、規格 65.2.1 に定める方法 による場合は、原則として光路長 50mm の吸収セルを用いる。規格 65.2.3、65.2.4 及び 65.2.5 の備考 11b) に定める方法による場合、並びに 規格 65.2.6 に定める方法により汽水又は海水を 測定する場合にあっては、試料に、濃度が基準 値相当分の 0.02mg/L増加するように六価クロム標準液を添加して添加回収率を求め、その値が 70~120%であることを確認する。また、規格 65.2.6 に定める方法により汽水又は海水を測定する場合にあっては、規格 K0170-7 の 7 の a) 又は b)に定める操作を行うものとする。)

5. おわりに

六価クロムの水質汚濁に係る人の健康の保護に関する環境基準等の見直し について、以上のとおり結論を得たところである。今後も引き続き適切な水質 環境基準健康項目等の設定に向けた検討を行うものとする。

別添1

六価クロムに係る基礎的情報

1. 物質情報

(1)物理化学的性状等

クロム及び主な六価クロム化合物に係る物理化学的性状に関する情報は、表 1に示すとおりである。

表1 クロム及び六価クロム化合物の物理化学的性状

	八 /	ус э т ш у		
名称	クロム	重クロム酸アンモニウム	重クロム酸カリウム (二クロム酸カリウム)	クロム酸ナトリウム
CAS 番号	7440-47-3	7789-09-5	7778-50-9	7775-11-3(無水物) 10034-82-9(四水和物)
分子式	Cr	(NH ₄) ₂ Cr ₂ O ₇	K ₂ Cr ₂ O ₇	Na ₂ CrO ₄ (無水物) Na ₂ CrO ₄ .4H ₂ O (四水和物)
分子量	52.0(原子量)	252.1	294.2	162(無水物) 234.03(四水和物)
外観	灰色粉末	橙色~赤色 結晶	橙色~赤色 結晶	黄色/吸湿性結晶(無水物) 黄色/潮解性結晶 (四水和物)
融点(℃)	1,900	180 で分解	398 500 で分解	762(無水物) -(四水和物)
沸点(℃)	2,642	-	-	-
密度 (g/cm³)	7.15	2.15	2.7	2.7(無水) -(四水和物)
溶解性(水)	不溶	36g/100 mL (20℃) (よく溶ける)	12g/100 mL (20℃) (よく溶ける)	53g/100 mL(20℃) (よく溶ける)(無水物) 可溶(四水和物)
溶解性 (その他)	希塩酸:反応 硫酸:反応	酸:反応	酸:反応	-(無水物) アルコール:僅かに可溶 (四水和物)

名称	重クロム酸ナトリウム (二クロム酸ナトリウム)	酸化クロム	クロム酸ストロン チウム	クロム酸亜鉛	クロム酸カリウム
CAS 番号	10588-01-9(無水物) 7789-12-0(二水和物)	1333-82-0	7789-06-2	13530-65-9	7789-00-6
分子式	Na ₂ Cr ₂ O ₇ (無水物) Na ₂ Cr ₂ O ₇ .2H ₂ O (二水和物)	CrO_3	SrCrO ₄	ZnCrO ₄	K ₂ CrO ₄
分子量	262(無水物) 297.99(二水和物)	100.0	203.6	181.4	194.2
外観	赤色~橙色/吸湿性結晶 (無水物) 赤色~橙色/潮解性結晶 (二水和物)	無臭、暗赤色 潮解性結晶、 薄片、顆粒状粉末	黄色 結晶性粉末	黄色 結晶性粉末	黄色結晶
融点(℃)	357/400 で分解(無水物) -(二水和物)	197 250 以上で分解	分解する	316 440 以上で 分解	968
沸点(℃)	-	_	_	_	1,000
密度 (g/cm ³)	2.5(無水) 2.348(25℃)(二水和物)	2.7	3.9	3.4	2.73(18°C)
溶解性(水)	236 g/100 mL(20℃) (非常によく溶ける) (無水物) 可溶(二水和物)	61.7g/100 mL (よく溶ける)	0.12g/100 mL (15℃) (溶けにくい)	不溶	62.9g/100mL (20℃) (よく溶ける)
溶解性 (その他)	_	硫酸:可溶	希塩酸:可溶 硝酸:可溶 酢酸:可溶	_	アルコール: 不溶

【出典】

1)清涼飲料水評価書 六価クロム(食品安全委員会;2018年9月)

(2)環境中運命1)

クロムは、主としてクロム鉄鉱($Fe0 \cdot Cr_2O_3$)として産出される。天然中に存在するクロムの原子価は、ほぼ三価のものに限られ、六価のものは人為起源であるとみられる。

水域において、溶解性六価クロムの主な化学種は、 $HCr0_4$ ⁻及び $Cr0_4$ ²-であり、その割合は pH に依存する *1 。高濃度 (0.4~g~Cr/L超) では、2 量体(例えば、 HCr_20_7 ^{-や} Cr_20_7 ²⁻)を形成する。環境中に存在する六価クロムの化学種は、三価クロムよりも溶解性は高い *2 が、バリウムイオンが存在すると相対的に溶けにくいバリウム塩を生成する。このような塩の生成は、環境中における六価クロムの溶解性を制限する。

水域における全クロムの多くは、粒子状で存在する**3。

六価クロムの三価クロムへの還元は、表層水ではある程度起こり、特に酸素が欠乏した環境下で起こる。Fe(II)や有機物が多い環境下では、還元されやすい。

三価クロムは、通常の環境条件では容易に、又は直ちに六価クロムへ酸化されない。三価クロムの酸化は、酸性溶液中では鉱物表面へアニオン吸着した六価クロムにより制限され、中性からアルカリ性の溶液中では Cr (OH) の沈殿を生じるために制限される。

六価クロムは、懸濁態や底質の正に帯電した部分へ吸着する。六価クロムの 吸着は、pH が高くなり溶解性の陰イオンと競合すると減少する。

地下水では、六価クロムの還元は低酸素濃度の状態や還元状態において起こる。地下水中の酸化マンガンは、三価クロムを溶解性の高い六価クロムへ酸化するが、酸化マンガン濃度が十分でない場合には、水溶性の三価クロムを酸化しない。

底質中の六価クロムは、主にオキソアニオンとして存在し、好気的な条件下では移動性は大きい。六価クロムの三価クロムへの還元は、嫌気的な条件下で起こる。

※1: pH6 付近を境に pH<6 では HCrO₄-、pH>6 では CrO₄2-が優占となる ²⁾。

※2: 溶存態として存在する主な $Cr(\mathbf{III})$ は、 $pH5\sim12$ では $Cr(OH)_3$ を形成し、その溶解度は、 $15~\mu$ g/L程度である。一方 Cr(VI)は、例えば Na_2CrO_4 で溶解度 53~g/100~mL $(20^{\circ}C)$ である。なお $BaCrO_4$ では、0.26~mg/100~mL $(20^{\circ}C)$ である $^{2/3/4}$ 。

※3: 大部分の Cr は最終的には底質に沈降する。液相中では Cr(III) の多くは、粘土、有機物、酸化鉄 (Fe_2O_3) に吸着した状態で懸濁物質として存在する $^{2)}$ 。

【出典】

- 1) 化学物質の環境リスク評価第10巻(環境リスク評価室,平成24年3月)
- 2) 詳細リスク評価書 クロム Version 0.3.1(2007年) https://unit.aist.go.jp/riss/crm/mainmenu/zantei_0.4/Chromium_0.4.pdf
- 3) 清涼飲料水評価書 六価クロム (食品安全委員会;2018年9月)
- 4) ILO ICSC データベース 国際化学物質安全性カード (ICSCs) (2006 年) https://www.ilo.org/dyn/icsc/showcard.display?p_card_id=1607&p_version=1&p_lang=ja

(3) 用途

六価クロム化合物の主な用途は表2に示すとおりである。

表 2 主な用途 1)

物質名	用途
重クロム酸アンモニウム	グラビア印刷の写真製版、染料・染色、有機合成の酸化剤・触媒
重クロム酸カリウム	顔料の原料、染色用剤、酸化剤・触媒、マッチ・花火・医薬品などの原料、着火剤
クロム酸ナトリウム	酸化剤
重クロム酸ナトリウム	クロム化合物の原料、顔料・染料などの原料、酸化剤・触媒、金 属表面処理、皮なめし、防腐剤、分析用試薬
クロム酸	顔料の原料、窯業原料、研磨材、酸化剤、メッキや金属表面処理
クロム酸ストロンチウム	塗料や絵の具の原料
クロム酸亜鉛	錆止め塗料の原料
クロム酸カリウム	クロム酸塩の製造、酸化剤、媒染剤、顔料、インキ

【出典】

1) 化学物質の環境リスク評価第10巻(環境リスク評価室, 平成24年3月)

(4) 製造·輸入量

主な六価クロム化合物に係る製造・輸入量は表3に示すとおりである。

表3 主な六価クロム化合物の製造・輸入量

	1人。	<u> </u>		<u>п п 1/2 v 2 3х</u>		E.				
物質	物質		製造・輸入量 (トン/年) **1							
名称	化審法 官報公示 整理番号	H25 年度	H 26 年度	H 27 年度	H 28 年度	H 29 年度	H30 年度			
重クロム酸アン モニウム	1-273	なし	なし	X**2	X	なし	X			
重クロム酸カリウム	1-278	X	X	X	X	X	1,000 未満			
クロム酸ナトリ ウム	1-282	なし	なし	なし	なし	なし	X			
重クロム酸ナト リウム	1-283	X	10,000 以上~ 20,000 未満	X	9,000 以上~ 10,000 未満	X	なし			
酸化クロム	1-284	2,000以上 ~3,000 未満		~3,000		~5,000	8,000			
クロム酸ストロンチ ウム	1-288	1,000 未満	1,000 未満	1,000 未満	X	1,000 未満	1,000 未満			
クロム酸亜鉛	1-289	X	X	X	1,000 未満	1,000 未満	X			
クロム酸カリウム	1-661	X	X	X	X	なし	なし			

^{※1:}一般化学物質の製造・輸入数量(経済産業省製造産業局)による。

https://www.meti.go.jp/policy/chemical_management/kasinhou/information/volume_general.html ※2:届出がなされている物質であるが、"届出事業者数"が2社以下の場合には事業者の機密情報保持のため、「製造輸入数量」欄に「X」を入れている。

2. PRTR制度による全国の届出排出量等

六価クロム化合物について、PRTR制度に基づく届出排出量(全国合計)は、表4及び表5に示すとおりである。媒体別では、公共用水域への排出が約10トン/年と多い。最近の5年間において排出量の明確な増減傾向は確認できないが、廃棄物移動量については減少傾向にある(表4)。六価クロム化合物の排出が多い主な業種は、下水道業、パルプ・紙・紙加工品製造業、一般廃棄物処理業(ごみ処分業に限る。)、鉄鋼業、産業廃棄物処分業、金属製品製造業、非鉄金属製造業である(表5)。

表4 六価クロム化合物の届出排出量及び届出移動量(単位:kg/年)1)

区分	排出・移動先	平成 25 年度	平成 26 年度	平成 27 年度	平成 28 年度	平成 29 年度
	大気	247	364	388	288	398
届出排	公共用水域	10, 582	10, 642	12, 925	10, 177	8, 467
排	土壌	0	1	0	0	0
出量	埋め立て	2	3	3	3	3
里	合計	10, 831	11, 009	13, 315	10, 468	8, 868
届	廃棄物移動量	380, 087	374, 160	352, 449	333, 843	301, 627
出移動	下水道への移動	2, 294	2, 705	902	699	420
動量	合計	382, 381	376, 865	353, 351	334, 542	302, 047

注:公共用水域への排出量について、特別要件施設に該当する施設(例:下水道終末処理施設)においては、当該物質の排出水濃度測定における定量下限値未満の測定結果も多く含まれていると考えられ、排出量算出に当たってそれらが「定量下限値の2分の1の値」として評価されることにより排出量が過大となっている可能性がある。

【出典】

1) PRTR 制度 集計結果 (集計表) (経済産業省) https://www.meti.go.jp/policy/chemical_management/law/prtr/6.html

表5 PRTRによる業種別の届出排出量(六価クロム化合物;公共用水域)

						公共用水均	或への排出				
業種	業種名	平成 2	25 年度		26 年度	平成 2	27 年度		28 年度		29 年度
コード	未僅石	件数 (件)	排出量 (kg/年)								
500	金属鉱業	1	11	3	14	3	14	2	13	2	14
1400	繊維工業	1	13	2	25	2	30	2	23	2	20
1800	パルプ・紙・紙加工 品製造業	3	1, 098	3	1, 100	3	1, 090	3	1, 110	2	280
1900	出版·印刷·同関連 産業	-	_	1	0. 1	-	-	-	_	1	1
2000	化学工業	4	29	5	37	4	30	5	28	6	5
2200	プラスチック製品製造業	3	56	3	43	2	16	1	20	1	9
2600	鉄鋼業	3	140	4	165	4	150	4	175	4	159
2700	非鉄金属製造業	5	98	5	112	5	111	5	80	5	82
2800	金属製品製造業	37	133	36	132	34	94	35	84	33	108
2900	一般機械器具製造業	1	1	1	6	1	0	1	1	1	1
3000	電気機械器具製造業	1	6	-	_	-	-	-	_	-	_
3100	輸送用機械器具製造業	7	47	6	47	7	58	7	52	7	53
3830	下水道業注3	398	8, 516	402	8, 524	425	10, 846	405	8, 141	410	7, 377
8716	一般廃棄物処理業 (ごみ処分業に限 る。) ^{注3}	383	285	368	305	364	311	368	292	364	245
8722	産業廃棄物処分業 ^{注3}	55	151	50	162	54	166	52	149	50	123

注1:過去5年間で届出があった業種のみを示す。

注2:排出量がゼロの事業所を除き集計した。

注3:これらの業種は、特別要件施設に該当するため、当該物質の排出水濃度測定における定量下限値未満の測定結果も多く含まれていると考えられ、排出量が過大となっている可能性がある。

3. 諸外国における基準等

(1)諸外国における基準等

六価クロムに係る諸外国の水質基準等は、表7のとおりである。

表7 六価クロムに係る主な諸外国の水質基準等

機関等	基準等の種類	項目	基準値等
WHO	飲料水水質ガイドライン値	総クロム	0.05 mg/L
WHO	(第4版) ¹⁾	応クロム	(毒性データに不確実性があるため暫定値)
Codex	ナチュラルミネラルウォーター	総クロム	0.05/1
Codex	に関するコーデックス規格 ²⁾	応クロム	$0.05~\mathrm{mg}/~\mathrm{L}$
EU	水質環境基準 3)	-	-
EU	飲料水指令 ⁴⁾	総クロム	0.05 mg/L
U.S.	水質環境基準 5)6)	総クロム	0.05 mg/L
EPA	飲料水基準7)	総クロム	0.1 mg/L

【出典】

- 1) Guidelines for drinking-water quality, fourth edition (World Health Organization, 2011年) http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf
- 2) Codex Standard for Natural Mineral Waters (Codex, 2011年改訂版) http://www.codexalimentarius.org/download/standards/223/CXS_108e.pdf
- 3) DIRECTIVE 2008/105/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 December 2008 (European Union, 2008年)
 - http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:2008:348:0084:0097:EN:PDF
- 4) COUNCIL DIRECTIVE 98/83/EC of 3 November 1998 on the quality of water intended for human consumption (European Union, 1998年)
 - http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:1998:330:0032:0054:EN:PDF
- 5) National Recommended Water Quality Criteria Human Health Criteria Table (United States Environmental Protection Agency, 2015年)
 - $\label{lem:https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table$
- 6) Ambient Water Quality Criteria for Chromium (United States Environmental Protection Agency, 1980年)
 - https://www.epa.gov/sites/production/files/2018-12/documents/ambient-wqc-chromium.pdf
- 7) National Primary Drinking Water Regulations (United States Environmental Protection Agency, 1992年)
 - http://water.epa.gov/drink/contaminants/

公共用水域等における六価クロムの検出状況

(1) 公共用水域における検出状況

六価クロムに係る公共用水域における検出状況は、表8のとおりである。

表8 新基準値案 (0.02 mg/L) の超過状況 (公共用水域)

左座	測定	有効測定	検出	検出	範囲	新基準値(0.02 の超過状況	
年度	地点数	地点数	地点数	最小値 (mg/L)	最大値 (mg/L)	超過地点数/ 有効測定地点数	超過率
H22	4,043	3, 701	5	0. 006	0.04	2/3, 701	0.05%
H23	3, 931	3, 666	8	0. 005	0.04	1/3, 666	0.03%
H24	3,852	3, 767	9	0.001	0.03	1/3, 767	0.03%
H25	3, 920	3, 818	3	0.004	0.02	0/3, 818	0%
H26	3, 901	3, 763	2	0.0006	0.01	0/3, 763	0%
H27	3,892	3, 756	6	0. 005	0.02	0/3, 756	0%
H28	3, 918	3, 612	2	0. 0005	0.02	0/3,612	0%
H29	3, 906	3, 665	6	0.005	0.02	0/3, 665	0%
Н30	3,820	3, 750	6	0.005	0.01	0/3, 750	0%
R1	3, 785	3, 699	0	_	_	0/3, 699	0%

注1:公共用水域水質測定結果に基づく。

注2:本表における「有効測定地点」とは、測定地点のうち定量下限値が基準値 0.02 mg/L以下である地点を意味する。

注3:本表における「検出地点」とは、測定地点のうち1回以上の検出があった地点を意味する。

(2) 地下水における検出状況

六価クロムに係る地下水における検出状況は、表9のとおりである。

表 9 新基準値案 (0.02 mg/L) の超過状況 (地下水)

左由	測定	有効測定	検出	検出	範囲	新基準値(0.02 の超過状況	
年度	地点数	地点数	地点数	最小値 (mg/L)	最大値 (mg/L)	超過地点数/ 有効測定地点数	超過率
H22	3, 015	2, 399	1	0. 02	0.02	0/2, 399	0%
H23	2, 882	2, 431	1	0. 05	0.05	1/2, 431	0.04%
H24	2, 849	2, 613	3	0.02	0.02	0/2, 613	0%
H25	2, 869	2, 547	0	_	_	0/2, 547	0%
H26	2, 662	2, 362	1	0. 005	0. 005	0/2, 362	0%
H27	2, 625	2, 330	3	0. 01	0. 22	2/2, 330	0.09%
H28	2, 708	2, 387	4	0. 009	0.03	1/2, 387	0.04%
H29	2, 673	2, 413	2	0. 006	0.01	0/2, 413	0%
Н30	2, 664	2, 439	1	0. 03	0.03	1/2, 439	0.04%
R1	2, 640	2, 408	4	0. 005	0.027	1/2, 408	0.04%

注1:地下水質測定結果(概況調査)に基づく。

注2:本表における「有効測定地点」とは、測定地点のうち定量下限値が基準値0.02 mg/L以下である地点を意味する。

注3: 本表における「検出地点」とは、測定地点のうち1回以上の検出があった地点を意味する。

内閣府食品安全委員会における六価クロムの評価結果の概要

平成30年9月18日付けで、内閣府食品安全委員会委員長より厚生労働大臣 へ六価クロムに係る食品健康影響評価の結果(清涼飲料水評価書)が通知された。 評価結果の概要は、以下のとおりである。

非発がん影響

げっ歯類を用いた試験において、十二指腸のびまん性上皮過形成や貧血等がみられている。

● 発がん影響

げっ歯類を用いた飲水投与試験において、マウスでは小腸で、ラットでは口腔粘膜及び舌で、 発がん頻度の有意な増加がみられていることから、六価クロムは発がん物質であると考えられた。

● 遺伝毒性

in vitro 試験及び飲水投与以外の in vivo 試験の多くで陽性を示したことから、六価クロムは遺伝毒性を有すると考えられるが、飲水投与条件での遺伝毒性は十分に明らかではないと考えられた。

以上より、六価クロムの飲料水からのばく露に係る評価においては、動物実験の結果を用いて耐容一日摂取量(TDI)を設定することが適切であると判断した。

TDI設定の基準点については、非発がん影響においてNOAEL(無毒性量)を得ることができないこと、及びBMD(benchmark dose)法は従来のNOAELを用いる方法に替わり得る評価手法であることを踏まえ、BMD法を適用して検討を行うこととした。

BMD法を適用する毒性試験として、げっ歯類を用いた飲水投与による2年間慢性毒性/発がん性試験を対象とした。モデルを用いて算出した結果、最も低い値が得られたエンドポイントは、雄マウスの十二指腸のびまん性上皮過形成に係るBMDL $_{10}$ (10% of benchmark dose lower confidence limit) 0.11 mg/kg 体重/日であった。

上記のBMDL $_{10}$ に不確実係数 100 を適用し、六価クロムに関するTDI = $1.1~\mu$ g/kg 体重/日が 算出された。

TDI 設定根拠	慢性毒性/発がん性試験
動物種	マウス
期間	2 年間
投与方法	飲水投与
設定根拠所見	十二指腸のびまん性上皮過形成
BMDL ₁₀ 値	0.11 mg/kg 体重/日
不確実係数	100

<まとめ>

食品中のクロムは三価クロムの状態で存在していると考えられるため、ミネラルウォーター及び水道水を六価クロムの摂取源と仮定し、日本人における六価クロムの一日摂取量を推定した結果、平均的な見積 9 では約 0 0.04 μ g/kg 体重/日、高摂取量の見積 9 では 0 0.290 μ g/kg 体重/日であった。これらの値はいずれもTDI 1 1.1 μ g/kg 体重/日よ 0 1.5 低かったことから、現状のミネラルウォーター及び水道水の検出レベルにおいては健康影響が生じるリスクは低いと考えられる。

水道水質基準の六価クロムの見直しについて

厚生労働省は、内閣府食品安全委員会の食品健康影響評価を受けて、令和2年3月30日に水質基準に関する省令について、六価クロム化合物の基準を「0.05 mg/L以下であること。」から「0.02 mg/L以下であること。」に改正しているところ、その概要は以下のとおりである。

<以下、令和元年度第1回水質基準逐次改正検討会資料より抜粋>

資料1 六価クロム化合物に係る水質基準に関する省令等の改正について(案)

2. 六価クロム化合物に関する情報収集及び検討状況

(1) 新基準値案について

食品安全委員会の食品健康影響評価におけるTDIは1.1 μ g/kg 体重/日であり、1日2 L摂取、体重 50 kg、寄与率 60%として算出される新評価値は 0.02 mg/Lとなる(参考 1)。 (以下略)

資料1参考1 六価クロムの新評価値設定の考え方について

(1) 食品安全委員会の評価結果(平成30年9月18日)

六価クロムの発がんメカニズムの考察から、発がん影響と非発がん影響とを分けずに評価を行った。

2年間飲水投与試験においてみられた、雄マウスの十二指腸びまん性上皮過形成に基づき算出したBMD L_{10} 値 0.11 mg/kg 体重/日を基準点とし、不確実係数 100 を適用して、六価クロムのTD I を 1.1 μ g/kg 体重/日とした。

BMD L₁₀=0.11 mg/kg 体重/日

TD I = 1.1 μ g/kg 体重/目

(UF = 100)

考えられる。

(種差10、個体差10として算出)

(2) 評価結果を踏まえた考え方

- 平成 30 年9月 18 日の内閣府食品安全委員会の答申により、新しいTDIとして 1.1 μg/kg 体重/日が示された。食品安全委員会評価書では、食品中のクロムは三価の状態で存在すると考えられ、食事中からの六価クロムの摂取量については推計対象外としている。一方、水道水中では残留塩素の影響で水中のクロムはほぼ六価となるとしている。
 ※ なお、食品安全委員会評価書には水道水における総クロム中の六価クロムが約7割などの報告もあるが、測定数は限られており、また、安全側の観点からほぼ六価として扱うことが適当と
- 飲料水以外からの摂取がない確かなデータがある場合、割当率はWHOやUSEPAで示されている上限の80%となる。食品安全委員会評価書では、食品中のクロムは三価の状態で存在するとされているが、飲料水以外からの六価クロムの摂取経路が確かに無いとは言えないため、割当率は60%とするのが適当と考えられる。

この場合、1 日 2 L 摂取、体重 50 kg、寄与率 60% として算出される新評価値は 0.02 mg/L となり、現評価値 0.05 mg/L と異なるため、見直しが必要な項目と考えられる。

%引用:https://www.mhlw.go.jp/stf/shingi2/0000183130_00002.html

六価クロムに係る水質測定方法

(1)環境省告示の概要(R3.6月時点)

六価クロムに係る公共用水域の水質測定方法として、平成31年3月20日付環境省告示46号【水質汚濁に係る環境基準について】において、表10のとおり測定方法が示されている。

項目 測定方法 日本産業規格 K0102 の測定方法の概要 日本産業規格 K0102 65.2(65.2.7 65.2.1: ジフェニルカルバジド吸光光度法 を除く。)に定める方法(ただし、65.2.2: フレーム原子吸光法 65.2.6 に定める方法により汽水又は 65.2.3: 電気加熱原子吸光法 65.2.3: 電気加熱原子吸光法 65.2.4: ICP 発光分光分析法 本産業規格 K0170-7 の 7 の a)又 は b)に定める操作を行うものとす 65.2.6: 流れ分析法 る。)

表 10 六価クロムの測定方法(環境省告示※)

(2)新たな環境省告示(案)の概要

表11 六価クロムの測定方法

式II 八個ノローのの例だりに		
項目	測定方法	日本産業規格 K0102 の測定方法の概要
六価クロム	日本産業規格 K0102(以下「規格」	65.2.1: ジフェニルカルバジド吸光光度法
	という。)の65.2(規格65.2.2及	65.2.3: 電気加熱原子吸光法
	び 65.2.7 を除く。) に定める方法	65.2.4: ICP 発光分光分析法
	(ただし、規格 65.2.1 に定める方	65.2.5: ICP 質量分析法
	法による場合は、原則として光路	65.2.6: 流れ分析法
	長 50mm の吸収セルを用いる。規格	
	65.2.3、65.2.4 及び 65.2.5 の備	
	考 11b)に定める方法による場合、	
	並びに規格 65.2.6 に定める方法	
	により汽水又は海水を測定する場	
	合にあっては、試料に、濃度が基	
	準値相当分の 0.02mg/L増加する	
	ように六価クロム標準液を添加し	

[※]平成31年3月20日付環境省告示94号【水質汚濁に係る環境基準について】による。

て添加回収率を求め、その値が70~120%であることを確認する。また、規格65.2.6に定める方法により汽水又は海水を測定する場合にあっては、規格 K0170-7の7のa)又はb)に定める操作を行うものとする。)

※1:目標とする定量下限値を 0.01mg/L(新たな基準値(0.02mg/L)の 1/2)として設定した。

※2:従来の告示における測定方法に含まれている 65.2.2:フレーム原子吸光法は、精度確認試験の結果、目標と する定量下限値を担保できないため、測定方法から除かれる。

なお、日本産業規格 K0102 は平成 31 年 3 月 20 日に改正され、「65.2.7 液体 クロマトグラフィー誘導結合プラズマ質量分析法」が追加されたが、公共用水域 の水質測定方法の対象とはされていない。

また、「65.2.6 流れ分析法」に関連する「日本産業規格 K0170-7 の 7 の a) 又はb) に定める操作」は、以下のとおりである。

7 濃度の計算

- a) 方法1
 - 1) 通常の測定条件で, 試料を測定する。
 - 2) ジフェニルカルバジド溶液の代わりに試料ブランク測定用溶液を流し、試料を測定する。 得られた測定値を試料ブランク値とする。
 - 3) 通常の測定条件で測定した測定値から試料ブランク値を差し引き補正する。
- b) 方法 2
 - 1) 試料の適量を 2 個のビーカー(A)及び(B)にとり、試料が酸性の場合には、水酸化ナトリウム溶液(40 g/L)で、また、アルカリ性の場合は、硫酸(1+35)で中和する。
 - 2) ビーカー(A)の溶液を全量フラスコ 50 mL(A)に移し入れ, 硫酸(1+9)2.5 mL を加えた後, 水を加えて 50 mL にする(試料溶液)。
 - 3) ビーカー(B)の溶液に硫酸(1+9)2.5 mLを加え, 次に JIS K8102 に規定するエタノール (95)を少量加え, 煮沸してクロム(VI)をクロム(III)に還元し, 過剰のエタノールを追い出す。 放冷後, 全量フラスコ 50 mL(B)に移し入れ, 水を加えて 50 mL にする(試料ブランク溶液)。
 - 4) 全量フラスコ(A)の試料溶液を測定する。また、全量フラスコ(B)の試料ブランク溶液を測定し、この測定値を試料溶液の測定値から差し引き補正する。

この方法2の場合は、ジフェニルカルバジド溶液を試料ブランク測定用溶液に変える必要はない。

注記 方法 2 のクロム(VI)をクロム(III)に還元する方法を, FIA 法システム又は CFA 法システムに組み入れた方法もある(附属書 JB 参照)。

【出典】

1)日本産業規格 K0107-7より抜粋