茨城県神栖市における地下水モニタリング(平成29年冬季~秋季)の結果について

1. 地下水モニタリングの概要

茨城県神栖市においては、地下水の水位測定を毎月(年 12 回)、有機ヒ素化合物であるジフェニルアルシン酸(以下「DPAA」という)、フェニルアルソン酸(以下「PAA」という)、フェニルメチルアルシン酸(以下「PMAA」という)の分析を平成 16 年夏季以降、季節毎(年 4 回)に実施している。平成 29 年冬季の採水は 2 月 6 日~2 月 8 日に、春季の採水は 5 月 15 日~5 月 17 日に、夏季の採水は 8 月 1 日~8 月 3 日に、秋季の採水は 10 月 30 日~11 月 1 日に実施した。

平成 29 年秋季の地下水モニタリングは、高濃度汚染対策の揚水処理(揚水実施期間は、平成 21 年 4 月から平成 24 年 3 月まで)の終了から約 5 年 7 ヶ月後のデータとなる。

2. 地下水汚染状況の整理・評価方法の変更について

神栖市における地下水汚染は、DPAA を主体としたものであり、これまで DPAA 濃度をもとに汚染状況の整理・評価を行ってきた。しかし近年、DPAA 濃度が低下傾向にあり、PAA 及び PMAA 濃度との差が小さくなった結果として、PAA 及び PMAA 濃度を無視できなくなりつつある。

平成 28 年度の本検討会において、DPAA 濃度をもとにした汚染状況の整理・評価から有機ヒ素化合物濃度 (DPAA、PAA 及び PMAA 濃度の合算値)による評価に変更することが了承され、今年度から地下水モニタリングの整理・評価は、有機ヒ素化合物濃度 (DPAA、PAA 及び PMAA 濃度の合算値)で行なうこととした。

3. 地下水モニタリングの結果概要(まとめ)

平成 29 年冬季~秋季モニタリングにおいて、飲用自粛範囲を超える汚染拡大は無いことが確認された。その結果概要を以下に示す。

(1)掘削調査地点付近について

大局的には緩やかな濃度低下傾向であるが、汚染源地域でもあり、平成29年時点でも唯一 1mg-As/Lを超えるオーダーの汚染が残存する区域である。この中でF-23とF-15は、高濃度汚染対策の終了後に濃度上昇が見られたが、平成29年ではF-23とF-15ともに濃度低下傾向に移行している。現時点では、直近1年間で見れば濃度上昇傾向を示すF-13を除いて、明らかに濃度上昇傾向を示す地点はない。

(2) A地区のA井戸近傍について

高濃度汚染対策により大きく濃度低下した A 井戸近傍では、平成 29 年はすべての地点で 0.1mg-As/L 以下であり高濃度の地点は見られない。現時点で A 井戸近傍に大きな高濃度汚染プルームが存在している可能性は低いと考えられる。

(3) A地区のA井戸下流について

過去、数 mg-As/L 程度の汚染が確認されていた No.27、No.201、No.202 は濃度変動を伴いながらピーク濃度は低下傾向にある。直近 1 年間における有機ヒ素化合物濃度の最大値は 1.1mg-As/L (No.201:夏季) であったが、この他の地点ではすべて 0.2mg-As/L 以下となった。 濃度変動の原因は地下水位変動に伴う汚染プルームの揺らぎの影響が考えられる。

(4) AB間について

有機ヒ素化合物による汚染は、これまでと同様に深度 30m を主体に低濃度の汚染が確認されている。直近 1 年間における有機ヒ素化合物濃度の最大値は 0.049mg-As/L (No.181: 春季)であり、低濃度で推移している。

(5) B地区について

これまでと同様に B 地区中心部の深度 30m を主体に低濃度の汚染が確認されており、濃度低下傾向が顕著である。直近 1 年間における有機ヒ素化合物濃度の最大値は 0.025mg-As/L (No.164:冬季) であり、濃度低下傾向が続いている。

(6) ABトラック外縁部について

有機ヒ素化合物が検出されたのは、これまでと同様に AB トラック外縁部(南西地域)のみであるが、濃度は低下傾向にある。同地域において有機ヒ素化合物濃度が最も高かった M-20 は、M-20 の北側に位置する M-19 と同程度まで濃度が低下した。なお、直近 1 年間における有機ヒ素化合物濃度の最大値は 0.057mg-As/L (M-20:春季) であった。また、新たな有機ヒ素化合物検出地点も無く、汚染の拡大は無いことが確認された。

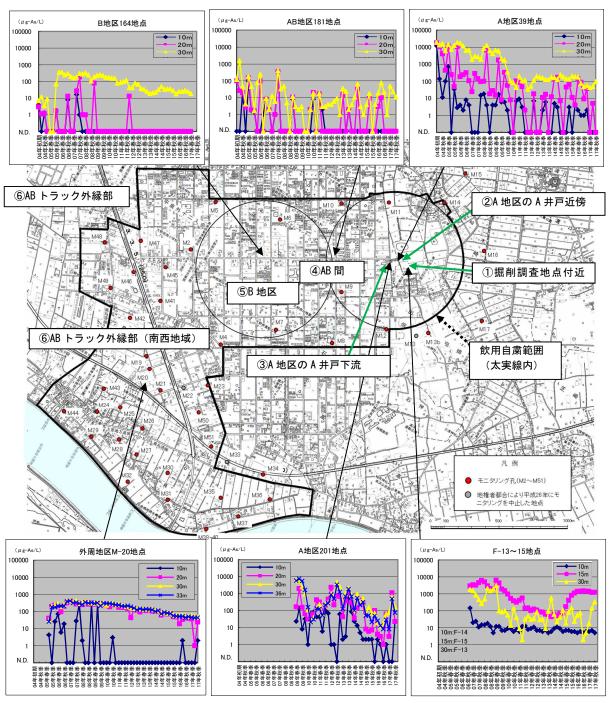


図1 地下水モニタリング結果概要図(有機ヒ素化合物濃度グラフ)

4. 地下水位の測定結果 (図 11 降水量と地下水位変動 及び 図 12 地下水位コンター参照)

地下水位は、平成28年12月から平成29年9月にかけて上下変動を示しながら低下し、平成29年9月に観測期間中の最低水位付近まで低下したが、10月の大雨により観測期間中の最高水位付近まで大きく上昇した。なお、11月以降は例年と同様低下傾向となっている。

A 井戸直近(No.36)と B 地区(No.167)の地下水位の差は表 1 のとおりである。AB 間の地下水の流れは、これまでと同様、いずれの時期も A 井戸から B 地区に向かっている。ただし、平成 29 年 11 月及び 12 月は、掘削調査地点-A 井戸間の地下水流れが普段とは違い A 井戸から掘削調査地点へ向かっていたと考えられる(図 2)。なお、地下水位が上昇すると地下水流向が A 井戸から掘削調査地点に向かうことはこれまでも確認されている事象である(図 2)が、その際には掘削調査地点南西側(AB トラック外縁部)への汚染範囲の拡大はみられていない。今回の現象に関しても、AB トラック外縁部について注視する。

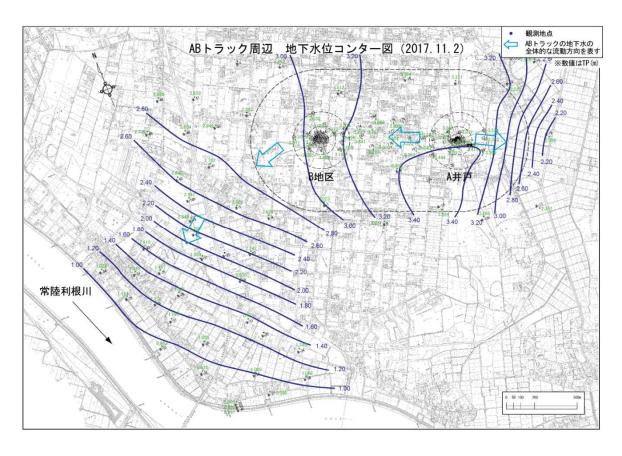

また、ABトラック南西および西地域の地下水の流れは、これまでと同様、いずれの時期も常 陸利根川方向に向かっている。

表1 A井戸直近、B地区の地下水位及びA井戸直近とB地区の水位差

(単位:標高 m)

年			平成 29 年	(2017年)		
測定月日	1月12日	2月1日	3月7日	4月12日	5月18日	6月8日
A 井戸直近 (No. 36)	2. 458	2. 247	1. 930	2. 277	2. 062	1. 790
B地区 (No. 167)	2. 198	2. 066	1. 760	1. 952	1. 849	1. 606
水位差	0. 260	0. 181	0. 170	0. 325	0. 213	0. 184

年			平成 29 年	(2017年)		
測定月日	7月4日	8月19日	9月5日	10月3日	11月2日	12月7日
A 井戸直近 (No. 36)	1. 732	1. 496	1. 490	1. 814	3. 380	2. 780
B地区 (No. 167)	1. 478	1. 290	1. 272	1. 496	3. 216	2. 648
水位差	0. 254	0. 206	0. 218	0. 318	0. 164	0. 132

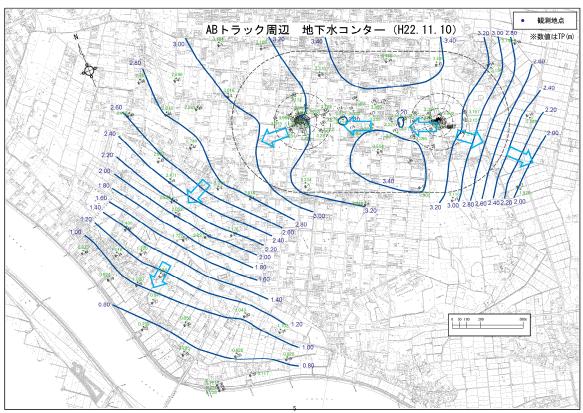
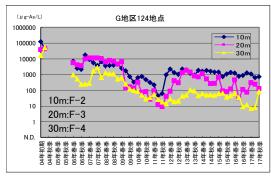


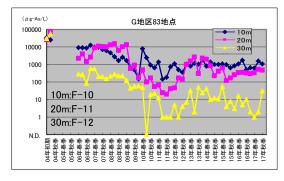
図 2 地下水位コンター図(上:平成29年11月2日 下:平成22年11月10日)

5. 有機ヒ素化合物の分析結果(詳細)

(1) 掘削調査地点付近(図13 有機ヒ素化合物濃度変化掘削調査地点周辺参照)


ア 掘削調査地点内


図 3 は F-32、No.124、No.83、No.109 の有機ヒ素化合物濃度推移であり、表 2 は同地点における平成 27 年以降の有機ヒ素化合物濃度一覧である。


平成 29 年の最大値は F-32 (深度 10m) の 1.548mg-As/L であり、依然として、1mg-As/L を超える汚染が残存している。

掘削調査地点内では、深度 10m と深度 30m の汚染濃度に大きな差がある。平成 29 年秋季では No.124 の深度 10m で 0.732mg-As/L、深度 20m で 0.130mg-As/L、深度 30m で 0.083mg-As/L であり、深度 10m と比較して深度 30m は低濃度となっている。これは No.83、 No.109 においても同様の傾向であった。

深度 10m がやや高濃度であるのは、高濃度汚染対策により除去しきれなかった汚染が残存していることに加え、透水性の低い埋土 (粘性土) や砂層が分布しているためと考えられる。 一方深度 30m 付近は、透水性の高い砂礫層が分布しており、上流から清浄な地下水が流下してくることによる希釈効果が高いためと考えられる。

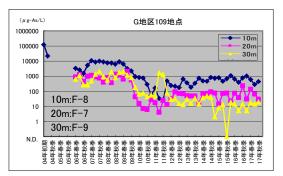


図3 掘削調査地点内の F-32、No. 124、No. 83、No. 109 の有機ヒ素化合物濃度推移

表 2 平成 27 年以降の F-32、No. 124、No. 83、No. 109 の有機ヒ素化合物濃度一覧表

(単位: μg-As/L)

#=	= 1.1	:70 de		平成	27年			平成	28年			平成	29年	
#/	■No.	深度	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季
F-	-32	10m	1184	1602	947	467	880	1060	584	336	560	1100	1166	1548
	F-2	10m	1426	1449	753	1093	1387	1245	792	886	1280	1089	633	732
124	F-3	20m	273	689	90	82	120	459	33	111	75	306	242	130
	F-4	30m	48	61	66	37	45	62	36	9	12	7	8	83
	F-10	10m	995	1051	949	636	822	1048	1718	498	641	611	1535	1046
83	F-11	20m	403	618	118	166	251	342	344	329	292	324	516	468
	F-12	30m	11	56	4	8	3	16	5	10	2	1	2	31
	F-8	10m	737	793	454	672	1073	647	385	773	1028	596	278	433
109	F-7	20m	73	14	71	73	22	72	37	225	30	132	63	29
	F-9	30m	2	8	13	N.D.	18	14	5	14	5	17	14	19

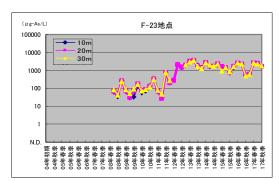

イ 掘削調査地点下流

図 4 は F-23、F-13 から F-15 の有機ヒ素化合物濃度推移であり、表 3 は同地点における平成 27 年以降の有機ヒ素化合物濃度一覧である。

高濃度汚染対策終了後に最大 3.568mg-As/L まで濃度が上昇した F-23 では、平成 28 年秋 季は 0.573 mg-As/L (深度 10m) と濃度低下が見られたが、平成 29 年秋季は 1.563~ 1.734mg-As/L に戻ったものの、長期的レンジでみれば緩やかな低下傾向にあると考えられる。 F-23 の直下流の F-15 (深度 15m) は、平成 27 年春季以降、濃度上昇傾向に転じたが、平成 28 年秋季の 1.509mg-As/L をピークに、その後は僅かに低下傾向となっており、平成 29年秋季では 1.230mg-As/L となっている。

F-23、F-15 において、高濃度汚染対策後に濃度上昇が見られた原因については、高濃度汚染対策後に、掘削調査地点内に残存していた汚染地下水が F-23、F-15 の順で流下してきたことが考えられる。

なお、地下水汚染シミュレーションにおいても、高濃度汚染対策後に数 mg-As/L の汚染が残存すると予測されていること、また、掘削調査地点内でも 1.548mg-As/L (平成 29 年秋季 F-32) 程度の汚染が確認されていることから、F-23、F-15 の濃度上昇は想定内の挙動ではあるが、今後の濃度推移を注視することとする。また、F-13 はピーク濃度としては低下傾向にあるものの、直近 1 年間を見ると濃度上昇傾向にあるため、F-23 及び F-15 と同様に今後の濃度推移を注視する。

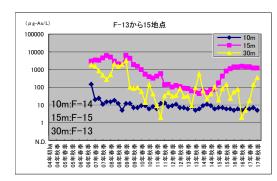
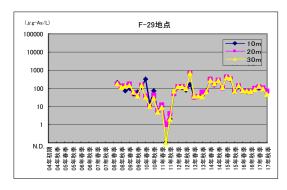


図 4 掘削調査地点下流の F-23、F-13 から F-15 の有機ヒ素化合物濃度推移

表 3 平成 27 年以降の F-23、F-13 から F-15 の有機ヒ素化合物濃度一覧表(単位: μg-As/L)


#="	:20 chc		平成	27年			平成	28年			平成	29年	
井戸No.	深度	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季
	10m	1986	1454	1305	734	1376	2423	2106	573	638	2567	2254	1563
F-23	20m	2288	1655	1409	760	1671	2514	2212	509	601	2559	2455	1645
	30m	2191	906	1407	819	1576	2526	2214	491	598	2565	2245	1734
F-13	30m	107	19	83	142	24	55	74	2	5	18	138	347
F-14	10m	6	7	7	6	6	5	6	5	6	6	7	5
F-15	15m	71	176	419	820	1111	1412	1412	1509	1429	1419	1221	1230

ウ 掘削調査地点外縁

図 5 は F-29、F-30 の有機ヒ素化合物濃度推移であり、表 4 は同地点における平成 27 年以降の有機ヒ素化合物濃度一覧である。

掘削調査地点外縁では、掘削調査地点上流の F-29、F-30 が 0.1mg-As/L 前後と高濃度汚染対策前と同程度で横ばい傾向が続いているのを除き、その他のモニタリング井戸では、不検出〜低濃度で推移しており、汚染は掘削調査地点の南側には拡散していないと考えられる。

掘削調査地点上流の F-29、F-30 は、汚染源の上流に位置するが、その他の外縁井戸と比較してもやや高濃度であること、平成 29 年秋季に地下水が上流側に移行する現象がみられたことから、今後も注視することとする。

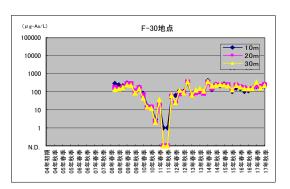
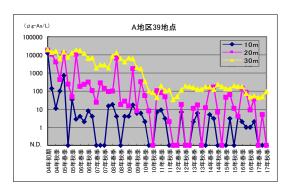
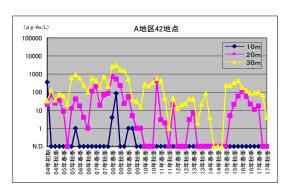


図 5 掘削調査地点外縁の F-29、F-30 の有機ヒ素化合物濃度推移

表 4 平成 27 年以降の F-29、F-30 の有機ヒ素化合物濃度一覧表(単位: μ g-As/L)

44=51	777.dx		平成	27年			平成	28年			平成	29年	
井戸No.	深度	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季
	10m	113	382	312	65	118	76	64	62	86	102	88	64
F-29	20m	104	417	324	69	137	73	68	63	98	119	105	70
	30m	111	401	353	69	138	75	69	65	85	130	92	46
	10m	211	264	223	101	156	148	102	111	151	192	159	205
F-30	20m	234	216	235	121	225	186	162	133	147	209	194	244
	30m	246	225	211	126	223	178	144	145	148	332	159	219


(2) A井戸近傍(図14 有機ヒ素化合物濃度変化A井戸周辺参照)


図 6 は No.39、No.42、No.79 の有機ヒ素化合物濃度推移であり、表 5 は同地点における平成 27 年以降の有機ヒ素化合物濃度一覧である。

A 井戸近傍は、汚染発覚当初より 20mg-As/L を超える高濃度の汚染が複数確認されていた区域であるが、高濃度汚染対策により大きく濃度が低下し、平成 29 年は A 井戸近傍の全地点で 0.1mg-As/L 以下となり高濃度の地点は見られない。

直近の平成 29 年秋季モニタリングにおいて、最も高濃度を示したのは、A 井戸の南西約 10m に位置する No.39 の深度 30m で 0.094mg·As/L(夏季:0.049 mg·As/L)であった。次いで、A 井戸の西南西約 10m に位置する No.79 の深度 30m で 0.038mg·As/L(夏季:0.021mg·As/L)であった。

No.39 は高濃度汚染対策(揚水)の実施中においても濃度低下が緩やかで、周辺のモニタリング井戸よりも濃度が高い傾向にあったが、平成22年夏季以降は0.2mg-As/L程度以下で推移し、平成28年夏季以降は0.1mg-As/L以下となっている。また、平成27年春季~平成29年夏季まで最も高濃度であったA井戸の南約23mに位置するNo.42は、平成29年秋季は大きく濃度を下げ0.004mg-As/Lであった。

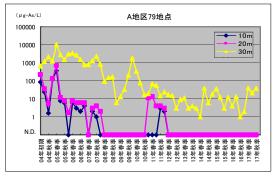


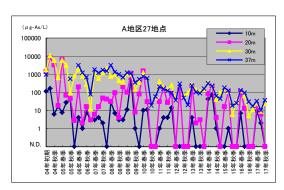
図 6 A 井戸近傍の No. 39、No. 42、No. 79 の有機ヒ素化合物濃度推移

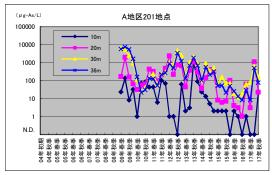
表 5 平成 27 年以降の No. 39、No. 42、No. 79 の有機ヒ素化合物濃度一覧(単位: μg-As/L)

#=v	:70 etc		平成:	27年			平成	28年			平成	29年	
井戸No.	深度	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季
	10m	N.D.	N.D.	3	N.D.	4	2	1	1	2	N.D.	N.D.	N.D.
No.39	20m	N.D.	45	64	11	4	144	85	9	37	N.D.	5	N.D.
	30m	177	136	135	197	180	175	75	48	54	43	49	94
	10m	N.D.											
No.42	20m	N.D.	N.D.	5	21	60	112	58	22	11	17	N.D.	N.D.
	30m	N.D.	241	239	335	438	181	126	88	91	98	69	4
	10m	N.D.											
No.79	20m	N.D.											
	30m	18	36	12	3	12	4	13	1	2	40	21	38

(3) A井戸下流、No. 201 付近からグラウンド南西角 No. 28 にかけて

(図 15 有機ヒ素化合物濃度変化 A 井戸下流参照)


図 7-1 は No.27、No.201、No.202 の有機ヒ素化合物濃度推移であり、表 6-1 は同地点における平成 27 年以降の有機ヒ素化合物濃度一覧である。


A 井戸下流は、高濃度汚染対策実施の下流に位置し、B 地区等へ向かう汚染地下水の状況を 把握する上で重要な地点であり、時期によって濃度変動が著しい地点でもある。

過去に高濃度の汚染が確認されていた No.27、No.201、No.202 は濃度変動を伴いながらもピーク濃度は低下傾向にある。

直近の平成 29 年秋季モニタリングにおいて、最も高濃度を示したモニタリング井戸は No.201 の深度 30m で 0.161mg-As/L(夏季:0.630mg-As/L)、次いで No.27 の深度 37m で 0.036mg-As/L(夏季:0.010mg-As/L)であった。

なお、No.201 は夏季モニタリングにおいて深度 20m で 1.100 mg-As/L、秋季モニタリングにおいて深度 30m で 0.075 mg-As/L が確認された。No.201 の濃度変動は、水位変動に伴うものであると考えられるが、地下水位の高い時期に濃度が上昇し、地下水位の低い時期に低下する傾向にある。

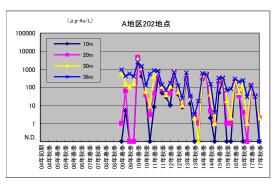
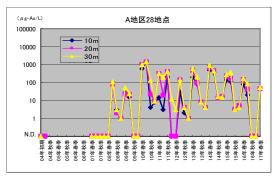



図 7-1 A地区下流の No. 27、No. 201、No. 202 の有機ヒ素化合物濃度推移

#=1	深度		平成	27年			平成	28年			平成	29年	
井戸No.	床度	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季
	10m	N.D.	N.D.	1	N.D.	N.D.	7	N.D.	N.D.	N.D.	9	2	N.D.
No.27	20m	N.D.	16	112	N.D.	N.D.	112	13	N.D.	N.D.	18	6	N.D.
NO.27	30m	97	171	112	6	32	122	64	5	11	25	9	24
	37m	44	182	122	18	25	132	95	30	17	33	10	36
	10m	2	2	2	2	N.D.	2	1	N.D.	1	N.D.	N.D.	23
No.201	20m	270	8	6	7	100	4	3	1	61	3	1100	22
140.201	30m	511	68	153	72	69	19	12	17	61	76	630	161
	36m	314	50	52	21	49	25	13	8	28	8	491	75
	10m	N.D.	49	254	N.D.	N.D.	219	49	N.D.	N.D.	109	33	N.D.
N - 000	20m	1	205	320	1	1	203	34	4	N.D.	129	34	2
No.202	30m	1	316	344	18	2	256	51	151	1	128	33	2
	36m	4	321	331	67	80	292	200	243	29	129	30	N.D.

表 6-1 平成 27 年以降の No. 27、No. 201、No. 202 の有機ヒ素化合物濃度一覧(単位: μg-As/L)

他方、グラウンド南西角に位置する No.28 は、例年同様、春季及び夏季に濃度が上昇する傾向にあり、平成 29 年も冬季は全深度で不検出あったが、春季 $0.043\sim0.051$ mg-As/L、夏季 $0.011\sim0.014$ mg-As/L、秋季 0.006mg-As/L(全深度)と春季・夏季に濃度上昇が見られた。なお、同地点のピーク濃度は低下傾向にある。また、No.28 と No.201 の間に位置する No.27、No.202、No.203 においても No.28 と概ね同様の傾向が見られた。

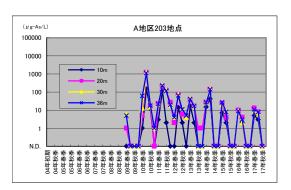


図 7-2 A地区下流の No. 28、No. 203 の有機ヒ素化合物濃度推移

表 6-2	平成 2	7年以降の No. 28、	No. 203	の有機ヒ素化合物濃度-	-覧	(単位:μg-As/L)	
		亚成27年		亚成20年		亚成20年	Ī

#=#	:70 pts		平成	27年			平成	28年			平成	29年	
井戸No.	深度	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季
	10m	17	137	113	3	5	78	20	N.D.	N.D.	43	14	6
No.28	20m	16	236	164	3	5	147	43	N.D.	N.D.	44	12	6
	30m	15	276	365	3	4	167	84	N.D.	N.D.	51	11	6
	10m	N.D.	7	2	N.D.	N.D.	10	2	N.D.	N.D.	5	3	N.D.
No.203	20m	N.D.	24	4	N.D.	N.D.	10	4	N.D.	N.D.	13	8	N.D.
NO.203	30m	N.D.	21	9	N.D.	N.D.	9	2	N.D.	N.D.	10	7	N.D.
	36m	N.D.	27	8	N.D.	N.D.	9	3	N.D.	N.D.	11	8	N.D.

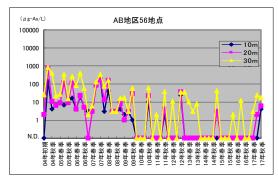

(4) AB間について(図16有機ヒ素化合物濃度変化AB間参照)

図8はNo.56、No.181の有機ヒ素化合物濃度推移であり、表7は同地点における平成27年 以降の有機ヒ素化合物濃度一覧である。

AB 間は、A 井戸から B 地区に向かう汚染地下水の経路に位置し、汚染発覚当時は A 井戸から B 地区にかけ帯状に汚染が確認されていた地域である。汚染発覚時には、深度 10m、深度 20m にしばしば汚染が見られたが、平成 26 年夏季以降は上流側 (A 地区側) の No.56、No.181 を除いて、深度 10m、20m では有機ヒ素化合物は検出されておらず、深度 30m を主体に汚染が確認されている状況である。

直近の平成 29 年秋季モニタリングにおいて、最も高濃度を示したのは、No.56 の深度 30m で 0.017mg-As/L(夏季 : 0.024mg-As/L)であった。

深度 30m で汚染が検出されるのは、流速の早い砂礫層が深度 30m 付近にあり、それが地下水汚染の流動層になっているためと考えられる。深度 10m、20m で汚染が確認されなくなってきている理由としては、深度 30m の汚染濃度自体が低下していることに加え、周辺の農業用井戸で汚染地下水を汲み上げ水田へ涵養することが無くなったことが考えられる。なお、この現象については B 地区で実施した汚染シミュレーションによっても再現されている。

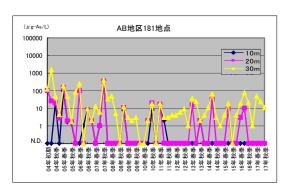


図8 AB間のNo.56、No.181の有機ヒ素化合物濃度推移

井戸No.	深度		平成	27年			平成	28年			平成	29年	
		冬季	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季
	10m	N.D.	4										
No.56	20m	3	N.D.	2	6								
	30m	42	N.D.	N.D.	N.D.	2	N.D.	12	N.D.	N.D.	3	24	17
	10m	N.D.											
No.181	20m	N.D.	N.D.	9	N.D.	N.D.	3	10	N.D.	N.D.	N.D.	N.D.	N.D.

表 7 平成 27 年以降の No. 56、No. 181 の有機ヒ素化合物濃度一覧(単位: μg-As/L)

(5) B地区について(図17有機ヒ素化合物濃度変化B地区参照)

図 9 は No.59、No.195、No.64、No.167 の有機ヒ素化合物濃度推移であり、表 8 は同地点における平成 27 年以降の有機ヒ素化合物濃度一覧である。

B地区は、汚染発覚時から複数の飲用井戸で有機ヒ素化合物が確認され、平成 16 年夏季には最大 2.974mg·As/L(No.66: 深度 10m)が確認された地区であるが、その後、全体的に濃度低下傾向にある。平成 29年秋季、最も高濃度を示したのは、B地区の中心から東約 100m に位置する No.59 の深度 30m、及び南東約 150m に位置する No.195 の深度 30m で 0.006mg·As/L(夏季: ともに不検出)であった。

B 地区の No.64、No.167 では、近年、深度 10m、20m では汚染は検出されず、深度 30m のみで検出されている。

B 地区も AB 間と同様、深度 30m で汚染が検出されるのは、流速の早い砂礫層が深度 30m 付近にあり、それが地下水汚染の流動層になっているためと考えられる。深度 10m、20m で汚染が確認されなくなった理由としては、深度 30m の汚染濃度自体が低下していることに加え、周辺の農業用井戸で地下水を汲み上げ水田へ涵養することが無くなったことが考えられる。

なお、地権者の意向により、No.164、No.168 は平成 29 年春季をもってモニタリングを終了した。なお、B 地区の中心から北東約 25m に位置する No.167 が No.164 及び No.168 と同様の濃度変動を示すことから、これら 2 本のモニタリング井戸が無くなった後も引き続き B 地区の汚染状況は把握できるものと考えられる。

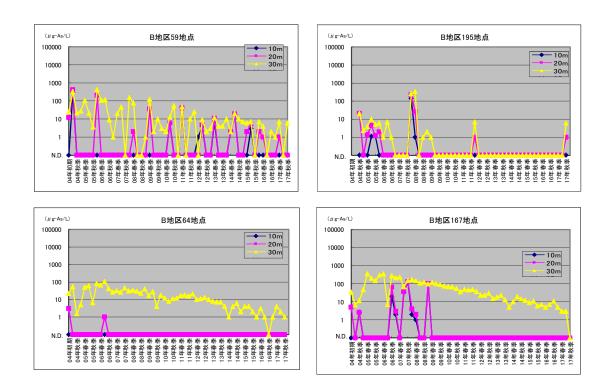
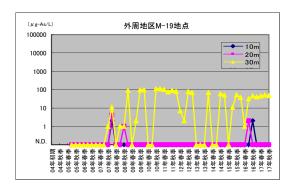


図 9 B地区の No. 59、No. 195、No. 64、No. 167 の有機ヒ素化合物濃度推移

表 8 平成 27 年以降の No. 59、No. 195、No. 64、No. 167 の有機ヒ素化合物濃度一覧 (単位: μg-As/L)


4=			平成	27年			平成:	28年			平成	29年	
井戸No.	深度	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季
	10m	N.D.	N.D.	3	N.D.								
No.59	20m	N.D.	2	5	N.D.	2	1	N.D.	N.D.	N.D.	1	N.D.	N.D.
	30m	7	6	7	N.D.	7	4	N.D.	2	1	7	N.D.	6
	10m	N.D.											
No.195	20m	N.D.	1										
	30m	N.D.	6										
	10m	N.D.											
No.64	20m	N.D.											
	30m	2	4	4	2	1	3	1	N.D.	1	4	2	1
	10m	N.D.											
No.167	20m	N.D.											
	30m	12	9	11	6	7	5	7	11	5	3	3	N.D.

(6) ABトラックの外縁部について(図18 有機ヒ素化合物濃度変化ABトラック外縁部参照)

図 10-1 は M-19、M-20 の有機ヒ素化合物濃度推移であり、表 9-1 は同地点における平成 27 年以降の有機ヒ素化合物濃度一覧である。

ABトラック外縁では、平成17年冬季に当時のABトラックの外縁であったM-3で有機ヒ素化合物が確認されて以降、地下水流向の下流部を中心に、汚染の拡大に応じて、飲用自粛範囲の変更並びに追加モニタリング井戸の設置を実施している。なお、飲用自粛範囲の変更は、平成24年3月にM-22での有機ヒ素化合物の検出を受けて実施したのを最後に実施していない。

直近の平成 29 年秋季モニタリングにおいて、最も高濃度を示したのは、これまで最も高濃度を示してきた AB トラック南西側の M-20 ではなく、M-20 から北約 200m に位置する M-19 の深度 30m で 0.047mg-As/L(夏季: 0.051mg-As/L)であった。一方、M-20 は、平成 29 年春季までは A 地区以外では最も濃度が高く、一定の濃度で検出され続けている地点であったが、平成 26 年夏季・秋季に平成 17 年夏季の観測開始以来、初めて全深度で濃度が 0.1 mg-As/L を下回り、その後も 0.01mg-As/L 以下へと緩やかな濃度低下が続いていた。このため、平成 29 年夏季・秋季は、近年、横ばい傾向が続いている M-19 が最も高濃度となった。

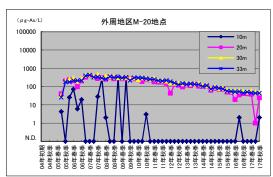


図 10-1 ABトラック外縁部の M-19、M-20 の有機ヒ素化合物濃度推移

_	<u></u>	'Tr et-		平成	27年			平成	28年			平成	29年	
,	井戸No.	深度	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季
		10m	N.D.	2	N.D.	N.D.	N.D.	N.D.						
	M-19	20m	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	2	N.D.	N.D.	N.D.	N.D.	N.D.
		30m	51	N.D.	11	52	38	1	32	46	40	45	51	47
		10m	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	2	N.D.	N.D.	N.D.	0	2
	M 00	20m	76	70	71	49	48	19	34	41	40	37	1	24
	M-20	30m	93	78	80	61	56	56	57	53	49	57	48	45
		33m	89	80	74	56	53	51	52	44	49	45	43	43

表 9-1 平成 27 年以降の M-19、M-20 の有機ヒ素化合物濃度一覧(単位: μg-As/L)

常陸利根川に近い地域では、平成 29 年は M-20 の下流域と考えられる M-24(深度 40m)、M-25 (全深度)、M-27 (全深度)、M-28 (全深度)、M-29 (深度 10、20、30m)、M-32 (深度 10、20、30m) において低濃度ではあるが汚染が確認された。このうち 0.01mg-As/L を超える汚染が確認されている地点は M-25 (全深度)、M-27 (深度 10、20、30m)、M-28 (深度 33m)、M-32 (深度 20m) であり、その他の地点は 0.01mg-As/L 以下の汚染である。

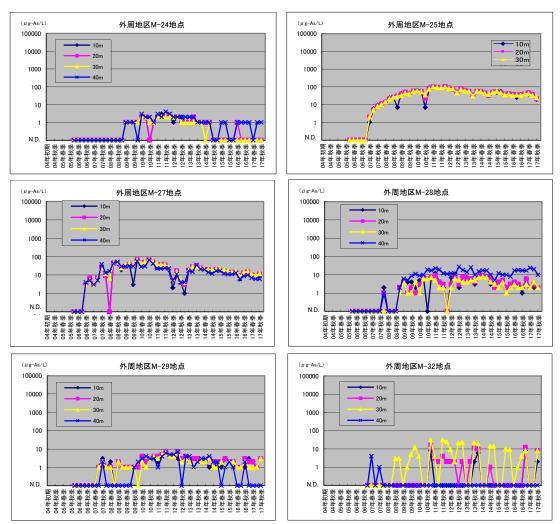


図 10-2 ABトラック外縁部の M-24、M-25、M-27、M-28、M-29、M-32 の有機ヒ素化合物濃度推移

表 9-2 平成 27 年以降の M-24、M-25、M-27、M-28、M-29、M-32 の有機ヒ素化合物濃度一覧 (単位: μg-As/L)

井戸No.	深度	平成27年					平成	28年		平成29年			
		冬季	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季
	10m	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
M-24	20m	N.D.	N.D.	N.D.	N.D.	N.D.	1	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
IVI-Z4	30m	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
	40m	N.D.	1	1	N.D.	N.D.	1	1	1	1	N.D.	1	1
	10m	52	49	54	38	41	32	25	36	39	40	32	19
M-25	20m	49	53	45	38	41	37	36	34	40	46	38	21
	30m	49	56	46	35	40	33	34	33	40	42	33	24
	10m	20	20	16	13	14	14	6	12	16	9	9	9
M-27	20m	20	18	16	14	14	14	9	13	15	10	9	11
IVI Z7	30m	21	21	19	16	14	17	8	14	16	11	10	12
	33m	17	17	12	11	11	13	6	9	10	7	6	6
	10m	2	4	5	2	3	4	3	1	6	2	2	2
M-28	20m	2	4	5	2	3	4	3	2	6	2	3	2
W 20	30m	3	2	4	1	2	3	2	2	3	2	4	2
	33m	5	12	10	10	8	17	18	17	17	24	20	10
	10m	1	1	3	2	2	1	1	1	3	2	1	3
M-29	20m	2	2	3	2	2	1	1	3	2	2	1	3
W 25	30m	1	2	1	2	2	1	1	2	1	1	1	3
	40m	2	N.D.	1	2	1	N.D.	N.D.	2	N.D.	N.D.	N.D.	N.D.
	10m	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	8	N.D.	N.D.	2
M-32	20m	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	12	N.D.	N.D.	8
IVI 32	30m	14	N.D.	N.D.	10	9	N.D.	1	4	8	N.D.	N.D.	8
	33m	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

AB トラックの西側に位置する M-41 は、平成 20 年夏季に深度 20m で 0.053mg-As/L であったが、平成 29 年秋季では全深度で $0.004\sim0.005$ mg-As/L (夏季:0.006mg-As/L)であり、低濃度で推移している。

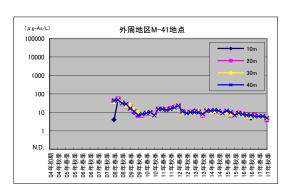


図 10-3 ABトラック外縁部の M-41 の有機ヒ素化合物濃度推移

表 9-3 平成 27 年以降の M-41 の有機ヒ素化合物濃度一覧(単位: μg-As/L)

	#=N	深度	平成27年				平成28年				平成29年			
	カアNo.		冬季	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	春季	夏季	秋季
		10m	9	10	8	8	9	8	7	5	7	6	6	4
		20m	9	10	7	8	9	8	7	6	7	6	6	4
	IVI-4 I	30m	9	10	8	8	9	8	7	6	6	6	6	5
		40m	9	12	10	7	9	8	7	7	6	6	6	5