EDTA Conceptual Framework (2002)

5 levels of increasing biological complexity:

Increasing knowledge on MoA

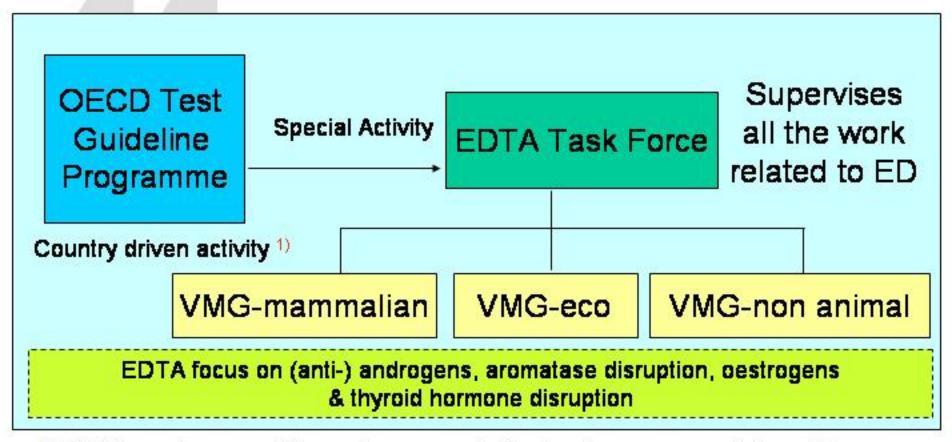
Level 1: existing info, QSARs

Level 2: in vitro assays on ER, AR binding

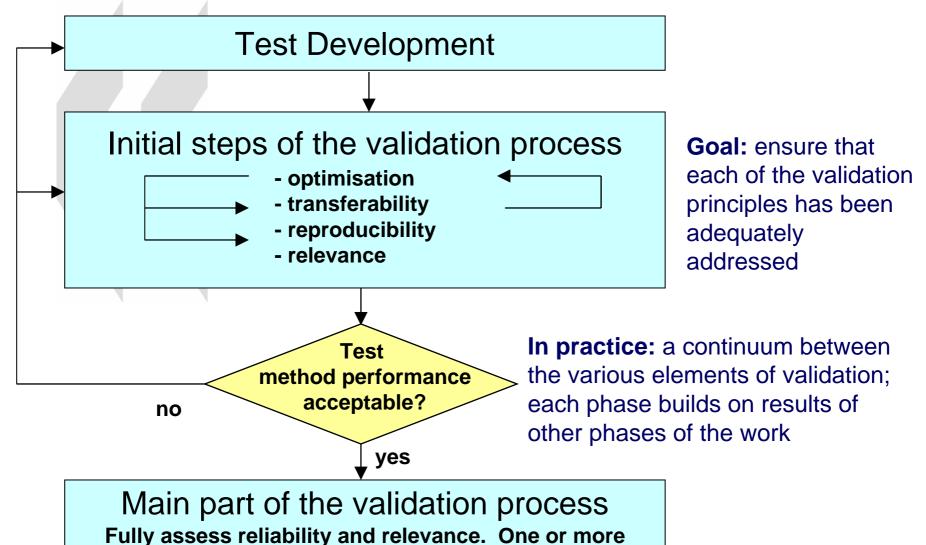
Level 3: in vivo assays about single endocrine mechanisms

Level 4: in vivo assays about multiple endocrine mechanisms

Level 5: in vivo assays on adverse effects about endocrine and other mechanisms for risk assessment


Increasing relevance at population level

= assays and tests are tools that regulators can pick-up as they need for conducting for HA/RA


Endocrine Disruptor Testing & Assessment (EDTA): A Special OECD Task Force

OECD member countries make proposals to develop new or update existing TG; proposals are prioritized by countries and a lead is designated for the work.

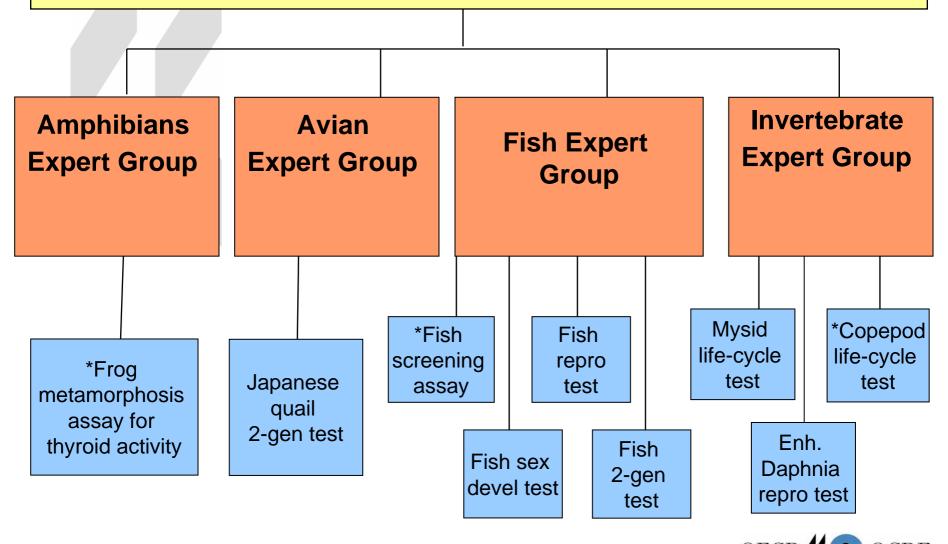
OECD Guidance Document 34

phases including inter-laboratory testing, blind testing (as appropriate) and assessment of positive/negative controls

OECD ((1) OCDE

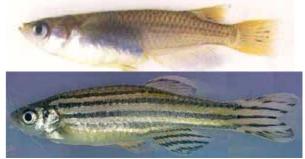
Challenges

 Test methods need to cover a range of species commonly used in OECD member countries;


Validate methods that can be internationally accepted and adopted;

- assays must stay simple enough to be used globally;
- Validate methods to demonstrate their relevance and reliability (reproducibility).
 - long stepwise process: labour- and cost- intensive;

OECD Validation Management Group for Ecotoxicity Testing (VMG-eco)



^{*} Inter-laboratory validation work & reporting in progress

In vivo Fish screen for ED (1)

- Validation completed for the 21-day fish screening assay;
- 21-d exposure duration;
- ♂/♀ analysed separately;
- Endpoints evaluated: vitellogenin (VTG), secondary sex characteristics (SSC), gonad histology, spawning status;
- Inter-laboratory work range of reference substances
- Model species
 - fathead minnow
 - medaka
 - zebrafish

In vivo Fish Screen for ED (2)

Phase 1A and Phase 1B – Highlights:

Substance/ response	MoA	VTG	2y sex characters	Gonad histology	Spawning status
17-β estradiol	E	$\uparrow \circlearrowleft (32 \text{ng/l})$	Not measured	↑ oocyte atresia	n.a.
Trenbolone	A	$\downarrow $ \bigcirc (500ng/l)	↑ ♀		n.a.
4-tert- pentylphenol	Weak E	↑ ♂(320µg/l)	$\downarrow \mathcal{O}(1\text{mg/l})$	↑ % spermatogonia ↑ (immat.) oocyte atresia	↓ FHM
Prochloraz	Ar. inhibitor	↓ \(\partial (300\mu g/l)	-	↑ % spermatozoa ↑ (immat.) oocyte atresia	↓ all sp.
Fadrozole	Ar. inhibitor	↓ \(\partial (100\mu g/l)	-		↓ all sp.
Flutamide	Anti- androgen	↑ ♂/♀but not reproducibly	↓ but not reproducibly	↑ % spermatogonia ↑ (immat.) oocyte atresia	↓ FHM

