Ⅲ 基本モデルの構築

1.モデル化対象物質

基本モデルの構築を試みた対象物質は、実地調査において水質及び底質 の両方又は一方で対象物質が検出された物質とした(表 3-23)。

エゴリル対色物質	検出状況				
モナル北別家初員	日光川	境川	手賀沼		
ノニルフェノール					
4-t-オクチルフェノール					
フタル酸ジ-n-ブチル					
トリブチルスズ					
トリフェニルスズ					
ベンゾフェノン					
2,4-ジクロロフェノール		×	×		
n-ブチルベンゼン		×	×		

表 3-23 モデル化対象物質

2. モデル化する挙動と環境

化学物質が環境中に放出されると,図 3-27 に示すような経路から人や野 生生物へ曝露するものと思われる。化学物質の排出は,水中,大気及び土 壌への放出が考えられるが,本年度は,対象物質の水環境での挙動につい てモデルの構築を試みた。なお,このモデルでは,単位時間あたりに流入 した水塊(単位水塊)が,河川や湖沼に設定した検証区間を移動していく 間の対象物質の挙動を考えた。

図 3-28 に示すように,水環境に存在する対象物質は,溶存態と懸濁物質 に収着した懸濁態に分配している。また底質においても,溶存態と底質粒 子に収着した収着態に分配している。溶存態は,水中での分解,揮発,

底質粒子・懸濁物質への収着, 生物への濃縮が起こる。懸濁態は,

沈降により底質へ移行し, 底質が水流等により巻き上がり水中へ懸濁態 として供給される。水-底質間では, 溶存態の濃度勾配によって拡散が 起こる。このような挙動によって,対象物質が水環境中を移動していくと 考えた。

モデル化にあたり,対象とする河川及び湖沼は,図 3-28 に示すように水 及び底質コンパートメントで構成されると考えた。

水コンパートメントは,単位時間あたりの流入水(単位水塊)とし,そ の容積は単位時間あたりの流入量と同じである。水コンパートメントは水, 懸濁物質を含んでおり,生物(魚類)が存在するとした。なお,河川では, 本流及び支流からの流入以外にも,水コンパートメントへの量を把握でき ない追加負荷があると考えた。

底質コンパートメントは,水コンパートメントが底質に接する部分の底 質とし,間隙水と底質粒子を含んでいるとした。

また,各コンパートメントでは以下の仮定が成り立っているとした。

水及び懸濁物質,あるいは間隙水と底質粒子の相に存在する対象物質 は,収着平衡が成立している。

水と生物の濃度平衡が成立している。

各コンパートメントの対象物質濃度,懸濁物質濃度,底質密度,間隙 率などは均一である。

図 3-27 対象物質の環境挙動の例

図 3-28 環境動態モデルで設定する評価環境

2. 基礎式

(1)対象物質の輸送量

検証区間に流入する対象物質の量は,下式で示される。なお,支流から 流入する対象物質量は,検証区間入口にて本流の対象物質量と合算した。 また,各式で使用した記号等を表 3-26 にまとめた。

- $M_{in} = Q_{in} c_{in} = Q_m c_m + Q_b c_b$ (式 1) M_{in} :流入する対象物質量(m³/s) Q_{in} :流入する水量(m³/s) c_{in} :流入する対象物質濃度(g/m³) Q_m :本流流入水量(m³/s) c_m :本流流入水中の対象物質濃度(g/m³)
 - *Q_b* : 支流流入水量(m³/s)
 - *c*_b : 支流流入水中の対象物質濃度(g/m³)

流出する対象物質量は下式で示される。

 $M_{out} = Q_{out} c_{out}$

(式 2)

- M_{out}:流出する対象物質量(m³/s)
- *Q*_{out} : 流出水量(m³/s)
- c_{out} : 流出水中の対象物質濃度(g/m³)

(2) 各コンパートメントでの物質収支

単位水塊の水及び底質コンパートメントにおける物質収支は,それぞれ 下式で示される。添え字の1は水中を,2は底質を示した。

*D*₂ : 底質で分解される対象物質量 (g/s)

なお,水及び底質コンパートメントはそれぞれ水と懸濁物質,間隙水と 底質粒子を含み,水中の懸濁物質に収着している懸濁態と水中へ溶存して いる溶存態,あるいは底質粒子に収着している収着態と間隙水へ溶存して いる溶存態に分配されている。各コンパートメントに存在する対象物質の 総濃度と以下の関係にある。

$$c = c_d + c_p$$
 (式 5)
 $c_d = F_d c$ (式 6)
 $c_p = F_p c$ (式 7)
 $F_d + F_p = 1$ (式 8)
 c :対象物質の総濃度 (g/m³)
 c_d :溶存態の対象物質濃度 (g/m³)
 c_p :懸濁態の対象物質濃度 (g/m³)
 F_d :溶存態分配率
 F_p :懸濁態分配率

したがって,各コンパートメントにおける分配率は,下式で求められる ^の。

(水)

$$F_{d1} = \frac{1}{1 + K_{d1} \cdot SS}$$
 (**x** 9)

 F_{d1}
 :水中の溶存態分配率

 K_{d1}
 :粒子・水分配係数(m³/g)

 SS
 :懸濁物質の濃度(g/m³)

(底質)

$$F_{d2} = \frac{1}{\phi + K_{d2}(1 - \phi)\rho}$$
 (IT 10)

 K_{a} は,平衡条件下にある懸濁物質または底質と水との間の化学物質の分配挙動を表わし,下式のように表わされる。

$$K_d = \frac{c_p}{c_d} \tag{\vec{x} 11}$$

その際,化学物質が収着している懸濁物質及び底質の質量は,その有機 炭素含有量に還元されることから,K_aは下式のように求めた⁷⁾。

$$K_d = K_{oc} \times POC \qquad (\vec{\mathfrak{T}} \ 12)$$

- *K_{oc}*: 有機炭素・水分配係数(m³/g)
- POC : 懸濁物質または底質の有機炭素の割合

(3) 対象物質の移動及び減少の過程

評価環境内では,コンパートメント間での対象物質の移動や減少がおこ るが,このモデルでは以下のような過程で考慮した。

ア 水中における分解

水中において分解される対象物質量は、下式で示される。なお, k₁は 光分解,加水分解,微生物等による生分解など環境中における分解をす べて考慮した水中半減期より求めた。

> $D_{1} = k_{1}V_{1} F d_{1}c_{1}$ (式 13) k_{1} :水中での対象物質の分解速度定数 (/s) V_{1} :単位水塊の容積 (m³)

$$k_1 = 1 - \exp\left(-\frac{0.693}{T_{1/2}}\right)$$
 (式 14)
 $T_{1/2}$: 水中半減期 (s)

イ 底質における分解

底質において分解される対象物質量は、下式で示される。k₂は式 14 にしたがって底質中半減期より求めた。

$$D_2 = k_2 V_2 c_2$$
 (式 15)

 V_2
 : 単位水塊の接する底質の容積(m³)

 k_2
 : 底質での対象物質分解速度定数(/s)

c₂ : 底質の対象物質濃度 (g/m³)

ウ 水中からの揮発による移動

水中から揮発によって大気へ移動する対象物質量は、下式で示される。

 $V_1 = v_v A F d_1 c_1 \qquad (\vec{\mathbf{x}} \ 16)$

A : 単位水塊の面積(=単位水塊が底質に接する面積)(m²)

*v*_v : 揮発物質移動係数(m/s)

*c*₁:水中の対象物質濃度(g/m³)

なお,水中における対象物質の分解率 k_1 を,揮発による減少も考慮された水中半減期から求めた場合は, $V_1 = 0$ とした。

エ 懸濁物質の沈降及び底質の巻き上げによる移動

懸濁物質に収着した化学物質は,沈降によって水中から底質へ移行す ると考えられる。また,水流による底質の巻き上げにより,底質から水 中への移行も考えられる。河川と手賀沼では水理条件が大きく異なるた め,それぞれのプロセスを考慮した。

なお、底質コンパートメントにおける物質収支では、仮に底質層の厚 みを 2cm として試算すると , S_s , S_r は底質中分解量 D_2 に対しては るかに小さいことから 、 $S_s = 0$, $S_r = 0$ とした。

(ア)日光川及び境川

今回調査対象とした河川は,水深が浅く,水流が複雑であることか ら,沈降速度と巻き上げ速度を記述することは困難であった。そのた め,沈降量の割合は,流入した懸濁物質量と流出する懸濁物質量の比 によって式 17 に従うものと仮定して求めた。

これは,懸濁物質量の流入量及び流出量が同じ場合(*SS_{out}/SS_{in}=1*), 流入した懸濁物質の半量は沈降して,流出する懸濁物質の半量は底質 より巻き上がったと仮定したものである。この仮定に従うと,検証区 間に流出する懸濁物質量が流入量より多い場合には,底質からの巻き 上げ量が大きく沈降量が少なくなる,逆に流出する懸濁物質量が少な い場合には沈降量が大きくなる(図 3-29)。

この仮定から,懸濁態沈降量及び巻き上げ量は下式を用いた。

$$\Delta S_s = \frac{S}{t} V_1 F_{p1} c_1 \tag{(\vec{x}, 17)}$$

$$\Delta S_r = \frac{SS_{out} - (1 - S)SS_{in}}{t} \cdot \frac{c_2}{\rho}$$
(IT 18)

$$S = \exp\left(-0.693 \frac{SS_{out}}{SS_{in}}\right) \qquad (\vec{z} \ 19)$$

$$SS_{in} = SS_{cin} \cdot V_{in} \tag{\vec{t} 20}$$

$$SS_{out} = SS_{cout} \cdot V_{out}$$
 (\vec{rt} 21)

S : 懸濁物質の沈降比率

- SS_{in}:区間入口の単位水塊に含まれる懸濁物質量(g)
- SS_{out}:区間出口の単位水塊に含まれる懸濁物質量(g)
- SS_{cin}:区間入口の単位水塊の懸濁物質濃度(g/m³)
- SS_{cout}:区間出口の単位水塊の懸濁物質濃度(g/m³)
- V_{in}:区間入口の単位水塊の容積(m³)
- *V_{out}*:区間出口の単位水塊の容積(m³)
- t : 単位水塊の区間における滞留時間(s)

図 3-29 懸濁物質の沈降比率

(イ) 手賀沼

手賀沼については, 文献より底質の堆積速度がわかっていることか ら, これを懸濁物質の沈降と底質の巻上げを含んだ収支であると考え, 懸濁物質の沈降量 *SS*_a に換算し, これが単位水塊内で沈降していくと 考えた。したがって, 懸濁態沈降量及び巻き上げ量は下式のように表 わされる。

$$\Delta S_s - \Delta S_r = F_{p1} c_1 V_1 \cdot \frac{SS_a \cdot A}{SS_{in}} \qquad (\vec{\mathbf{x}} 22)$$

 SS_a :文献値より求めた懸濁物質の沈降量 ($g/m^2/s$)

オ 水 - 底質間の移動

水-底質間では,水中と間隙水中の溶存態濃度の差を推進力とした対象物質の移動が起こる。これは,両方向に向かうことのできる可逆的な 過程である。なお,水及び懸濁物質,間隙水及び底質粒子の間では収着 平衡が成立しているものとする。

> $S_d = v_d A(F_{d2}c_2 - F_{d1}c_1)$ (式 23) v_d : 拡散混合速度(m/s)

 v_d は,下式で求められる⁸⁾。

 v_d (m/yr)= 69.35 $\phi M^{-2/3}$ (式 24) M : 対象物質の分子量

なお、底質コンパートメントにおける物質収支では、仮に底質層の厚 さを 2cm として試算すると, S_d は底質中分解量 D_2 に対してはるか に小さいことから、 $S_d = 0$ とした。

カ 生物への濃縮と漁獲による移動

水中の化学物質は生物へ取り込まれ,その性状により生物中に濃縮される。漁獲が行われる場合は,対象物質の系外への移動が起こる。漁獲 の対象は魚類のみであると仮定すると,漁獲によって系外へ移動する対 象物質は下式のように表わされる。なお,魚類と水の間では対象物質濃 度の平衡が成立しているものとする。

$$\Delta F = BCF \frac{C_f}{\rho_f} c_1 \qquad (式 25)$$
BCF : 生物濃縮係数
$$C_f \qquad : 漁獲量 (g/s)$$

$$\rho_f \qquad : 魚の比重 (g/m^3)$$

3.パラメータの値

(1) 評価環境に関するパラメータ

評価環境に関するパラメータの値は,主に現場調査より得られた実測値 を用い,測定できなかったものについては表 3-24 に示す文献値等を用い た。

表 3-24 評価環境に関するパラメータの値

パラメータ	値	単位	出典
<i>C_f</i> 漁獲量	1.1 × 10	(g/s)	9)
面積	5.5×10^{6}	(m ²)	10)
平均水深	9.0 × 10 ⁻¹	(m)	11)
堆積速度	9.5 × 10 ⁻¹¹	(m/s)	12)

(手賀沼)

(日光川)

	值				<u></u>
ハラメータ	A 区間	B 区間	C 区間	D 区間	里1⊻
流程	1.0×10^{3}	4.0×10^{3}	1.9×10^{3}	1.9×10^{3}	(m)
t 滞留時間	2.3×10^{3}	1.8×10^{4}	6.4×10^{3}	6.6×10^3	(s)

(境川)

	值					<u></u>	
ハラメーダ	A 区間	B 区間	C 区間	D 区間	E 区間	F 区間	単1⊻
流程	2.3×10^{3}	2.3×10^{3}	3.9×10^3	3.5×10^3	2.7×10^3	1.6×10^3	(m)
t 滞留時間	1.5×10^4	2.0×10^4	4.1×10^{4}	2.2×10^4	1.0×10^{4}	9.0×10^{3}	(s)

(2) 対象物質の物性に関するパラメータ

計算に使用した物性に関するパラメータの値は,表 3-25 に示した。

表 3-25 物性に関するパラメータの値

物質	水中当	水中半減期		底質中半減期		BCE
	河川	湖沼	河川	湖沼	Roc	DCI
ノニルフェノール	7日	14日	7日	10日	60000	15
4-t-オクチルフェノール	7日	14日	7日	10日	78124	60
ベンゾフェノン	26日	26日	26日	26日	440	60

表 3-26(1) 基礎式に使用した記号一覧

Α	単位水塊の面積 (=単位水塊が底質に接する面積)(m²)
BCF	生物濃縮係数
С	対象物質の総濃度(g/m³)
c_1	水中の対象物質濃度(g/m³)
c_2	底質の対象物質濃度(g/m³)
C_d	溶存態の対象物質濃度(g/m ³)
c_p	懸濁態の対象物質濃度(g/m³)
C_{f}	漁獲量 (g/s)
F_d	溶存態分配率
F_{d1}	水中の溶存態分配率
F_{d2}	間隙水中の溶存態分配率
F_p	懸濁態分配率
k_1	水中での対象物質分解速度定数 (/s)
k_2	底質での対象物質分解速度定数(/s)
K_d	粒子・水分配係数(m³/g)
K_{d1}	粒子・水分配係数(m³/g)
K_{d2}	底質・水分配係数(m³/g)
K_{oc}	有機炭素・水分配係数
М	対象物質の分子量
M_{in}	流入する対象物質量(g/s)
Mout	流入する対象物質量(g/s)
POC	懸濁物質の有機炭素の割合
Q_b	支流流入水量(m³/s)
Q_{in}	流入する水量(m³/s)
Q_m	本流流入水量(m ³ /s)
Q_{out}	流出水量 (m³/s)
S	懸濁物質の沈降比率
SS_a	文献値より求めた懸濁物質の沈降量(g/m²/s)
SS	流入する懸濁物質濃度(g/m³)
SS _{cin}	区間入口の単位水塊の懸濁物質濃度(g/m³)
SS _{cout}	区間出口の単位水塊の懸濁物質濃度(g/m³)
SS _{in}	区間入口の単位水塊に含まれる懸濁物質量(g)
SS _{out}	区間出口の単位水塊に含まれる懸濁物質量(g)
t	区間における単位水塊の滞留時間(s)
$T_{1/2}$	半減期(s)

表 3-26(2) 基礎式に使用した記号一覧

V_1	単位水塊の容積 (m ³)
V_2	底質の容積(m ³)
V_{in}	区間入口の単位水塊の容積 (m ³)
V_{out}	区間出口の単位水塊の容積 (m ³)
v_a	堆積速度(m/s)
v_d	拡散混合速度(m/s)
V _r	底質の巻き上げ速度(m/s)
v_s	懸濁物質の沈降速度(m/s)
V _v	揮発物質移動係数(m/s)
W	底質水分率
ΔD_1	水中で分解される対象物質量 (g/s)
ΔD_2	底質で分解される対象物質量 (g/s)
ΔF	漁獲により取り除かれる対象物質量 (g/s)
ΔM_1	水中で増加する対象物質量(g/s)
ΔM_2	底質で増加する対象物質量(g/s)
ΔS_d	間隙水の拡散によって水中へ移行する対象物質量(g/s)
ΔS_r	巻き上げによって水中へ移行する対象物質量 (g/s)
ΔS_s	懸濁物質の沈降によって底質へ移行する対象物質量(g/s)
ΔV_1	水表面から揮発する対象物質量(g/s)
ϕ	間隙率
ρ	底質密度(g/m³)
$ ho_{f}$	魚の比重 (g/m³)

IV モデルの計算

実測値より求めた各区間入口の対象物質量から,各区間出口における対象 物質量,区間内の挙動ごとの移行量を計算した。モデルの検証には実地調査 結果を用いた。なお,河川については,日光川は3月14日正午,境川は3月 21日正午の調査結果を用いた。

また,河川については,対象物質が実地調査を行った本流及び支流以外か らも流入していると考え,それを追加負荷量として求めた。追加負荷は,各 区間の滞留時間の中央時点で,区間内で増加する水とともに溶存態として一 度に流入するとして計算し,区間出口の実測値と追加負荷が流入した場合の 計算値が一致するように求めた。したがって,河川の区間内の挙動ごとの移 行量は,追加負荷があった場合の計算結果を記載した。

1.モデルの検証区間

河川については,実地調査の各調査点ごとに,日光川は A~D の 4 つ, 境川は A~F の 6 つの区間に区分し,検証を行った(図 3-30,図 3-31)。な お,日光川においては N-1, N-4 が水門の影響で河川流量が大きく変動する こと,境川においては S-9 と S-10 では調査対象外とした支流と合流してい ることから、今回はモデル検討の対象外とした。

湖沼では,手賀沼全体を一つの区間と見なして,手賀沼の流出口においてモデルの検証を行った。

図 3-31 境川の検証区間

2. モデルの計算結果

- (1) 湖沼(手賀沼)
 - ア ノニルフェノール, 4-t-オクチルフェノール

計算結果を,図 3-32 に示した。

これらの2物質は,水中では懸濁態より溶存態で存在する物質量が多かった。溶存態は,半分以上が分解あるいは揮発し,1割程度が底質へ 収着され,流入量の約2割になって流出した。懸濁態は,ほぼ全量が沼 内で沈降あるいは溶存態へ移行した。

ノニルフェノールの流出量の計算値と実測値を比較すると,約 1.3 倍 とほぼ一致していた。

なお,4-t-オクチルフェノールは流出量の実測値が検出限界値未満で あったため,実測値との比較はできなかった。

イ フタル酸ジ-n-ブチル,トリブチルスズ,トリフェニルスズ,ベンゾフ ェノン

流入量の実測値が検出限界値未満であったため,計算を行わなかった。

- (2)河川(日光川及び境川)
 - ア ノニルフェノール, 4-t-オクチルフェノール

日光川における計算結果を図 3-33(1),図 3-33(2)に,境川における計算結果を図 3-34(1),図 3-34(2)に示した。

これらの2物質は,全ての区間で水中では懸濁態より溶存態で存在す る物質量が多かった。区間へ流入した物質が,溶存態として分解,揮発 及び底質への収着により減少する量は少なかった。懸濁態は,底質の巻 上げよりも沈降により底質へ移行する量が多かった。

流出量の計算結果と実測値が一致するように追加負荷量を求めたとこ

ろ,正または負の追加負荷量が求められた(図 3-35,図 3-37)。日光川 において,いずれかの物質の追加負荷量が正となったA,B及びD区間 では,下水道業,繊維工業などの特定事業場の届出排水量が多くなって いた(図 3-36)。同様に,境川のA,D,E及びF区間では,非鉄金属 製造業,飲料・たばこ・飼料製造業などの届出排水量が多くなっていた (図 3-38)。

イ ベンゾフェノン

流出入量の実測値が得られた一部の区間で計算を行った。日光川における計算結果を図 3-33(3)に,境川における計算結果を図 3-34(3)に示した。

全ての区間で,水中ではほぼ全量が溶存態で存在していた。区間へ流 入した物質が,溶存態として分解,揮発及び底質への収着により減少す る量は少なかった。懸濁態は,日光川のC区間及び境川のE区間では, 底質の巻き上げよりも沈降により底質へ移行する量が多かった。日光川 のD区間及び境川のA区間では,沈降よりも巻上げにより水中へ移行 する量が多かった。

流出量の計算結果と実測値が一致するように追加負荷量を求めたところ,正または負の追加負荷量が求められた(図 3-35,図 3-37)。日光川において追加負荷量が正となったC区間では,窯業・土石製品製造業, し尿処理施設等の届出排水量が多くなっていた(図 3-36)。同様に境川のA区間では,非鉄金属製造業,金属製品製造業,電気機械器具製造業などの届出排水量があった。E区間では,飲料・たばこ・飼料製造業, 医療業,学術研究機関などの届出排水量があった(図 3-38)。

ウ フタル酸ジ-n-ブチル,トリブチルスズ,トリフェニルスズ,2,4-ジク

ロロフェノール, n-ブチルベンゼン

全ての区間で流出入量いずれかの実測値が検出限界値未満であったた め,計算を行なわなかった。

3.考察

水環境において考えられる対象物質の移動,収着,分解及び揮発などの 挙動を検討し,基本モデルの構築及び基本的なパラメータの収集・整理を 行った。さらに,実地調査で得られたデータ等を用いて,対象河川・湖沼 における対象物質の挙動推定を試みた。

(1) 湖沼

手賀沼は,調査を行った河川以外からの流入負荷源が少ないことが分かっており,対象物質の流出入量が十分に把握でき,構築したモデルの検証 に適していると考えられた。今回の検証の結果,ノニルフェノールの計算 結果と実測値が 1.3 倍とほぼ一致しており,このモデルの妥当性が示された。

4-t-オクチルフェノールについては,流出量の実測値が検出限界値未満 であったため,検証は出来なかった。しかし,沼内で検出された値が検出 限界値未満に近い値であることから,流出量も検出限界値に近い値(6.4 ×10⁻⁶g/s)であると仮定して,計算値との比較を行ってみたところ,0.94 倍の近い値であった。仮定の数値を用いているため,モデル適用の妥当性 は判断出来ないが,物理化学的性状がノニルフェノールに近い事も含める と,本モデル適用の可能性があると考えられた。

他の対象物質については,流入量の実測値が検出限界値未満となったた め,モデルの検証を行う事が出来なかった。 (2)河川

対象物質の流出入量の実測値が得られた区間でモデルの計算を行った。 区間の上端及び下端で実測された対象物質濃度を「区間の正確な流出入 量」と仮定し、水中での分解過程や、水・底質間の物質移動などを考慮す ることで,区間内で周辺環境から流入する(あるいは流出する)と考えら れる追加負荷量を求めた。この追加負荷量には,実地調査で把握できない 対象物質の流入や流出及びモデルで再現できていない区間内での対象物質 の変化などが含まれていると考えられる。

仮に上端・下端の濃度差が同じであっても、例えば区間内で大量の負荷 があり、同時に底質や生物体に大量に移行する場合と、負荷が僅かであり、 それがそのまま下端での濃度増になっている場合では、その区間に生息す る水生生物の曝露量は勿論のこと、それらを餌とするような陸上動物の曝 露量は大きく変ってくる。したがって、その区間内で生じている追加負荷 量を知ることは、今後必要となる人並びに野生生物への曝露評価を行う際 に重要と考えられる。

算出された追加負荷量(図 3-33,図 3-35)と,これらの対象河川へ排出 される特定事業場の届出排水量(図 3-34,図 3-36)と照らし合わせると, 追加負荷量が多かった区間は,届出排水量の多い地域とほぼ一致していた。 届出排水量の多い地域を全排水量が多い地域と仮定すると,算出された追 加負荷量を裏付けるものと想定される。

なお,追加負荷量があると計算された物質と特定事業場業種との関係の 解釈については,届出排水量は排水実績量を示しているものではないこと や,特定事業場以外の事業場や家庭排水等からの負荷も大きいと考えられ ることに注意が必要である。

図3-32(1) 手賀沼におけるノニルフェノールの物質収支

図3-32(2) 手賀沼における4-t-オクチルフェノールの物質収支

図3-33(1) 日光川におけるノニルフェノールの物質収支

図3-33(2) 日光川における4-t-オクチルフェノールの物質収支

図3-33(3) 日光川におけるベンゾフェノンの物質収支

図3-34(1) 境川におけるノニルフェノールの物質収支

図3-34(1) 境川におけるノニルフェノールの物質収支

図3-34(2) 境川における4-t-オクチルフェノールの物質収支

図3-34(2) 境川における4-t-オクチルフェノールの物質収支

下段:モデルにより求められた追加負荷量

図 3-35 日光川における対象物質負荷量(計算値)

図 3-36 日光川へ排出する特定事業場業種

水質汚濁防止法に定める特定事業場を、「日本標準産業分類」(総務 庁)の中分類に従って業種を区分し、届出排水量を集計した。 なお、10%未満の業種については「その他」として合算し,し尿 処理施設は別途集計した。し尿処理施設のほとんどは共同住宅 である。

下段:モデルにより求められた追加負荷量

図 3-37 境川における対象物質負荷量(計算値)

図 3-38 境川へ排出する特定事業場業種

水質汚濁防止法に定める特定事業場を、「日本標準産業分類」(総務 庁)の中分類に従って業種を区分し、届出排水量を集計し た。

なお、10%未満の業種については「その他」として合算した。

V まとめ

水環境において考えられる対象物質の移動,収着,分解及び揮発などの挙 動を検討し,基本モデルの構築及び基本的なパラメータの収集・整理を行っ た。さらに,実地調査で得られたデータ等を用いて,対象河川・湖沼におけ る対象物質の挙動推定を試みた。

この推定に必要な, 分子量,有機炭素・水分配係数,水中・底質中での半 減期,生物濃縮係数など対象物質の物性を示すパラメータ及び 対象水域の 流量,懸濁物質濃度,懸濁物質・底質の有機炭素濃度など対象水域の特性を 示すパラメータを,文献調査及び実地調査によって得た。

今回得られた計算結果によれば,本モデルを用いたノニルフェノール等の 挙動推定は,実測値や対象水域周辺の状況をある程度適切に反映できている と考えられた。他の対象物質については,水中濃度が検出限界値未満となり モデル適用の検討が出来なかった。

河川における挙動推定にあっては,ある区間に周辺環境から流入する(あるいは流出する)対象物質量(追加負荷量)を推定することができ,将来の 曝露評価や排出源対策に有用であると考えられた。

VI 今後の課題

今回,基本モデルの構築とその計算によって,対象物質の環境挙動の推定 を行ったが,水中濃度が検出限界値未満となり,モデルの検証が出来なかっ た物質があった。これらの物質についても,モデルの妥当性を検証する必要 があり,検証対象とした物質が比較的高濃度で検出される水域における実地 調査も含めた実証的な検討が必要である。しかし,内分泌攪乱作用を有する おそれのある化学物質の中には,環境中では極く微量なために水中で検出さ れない(検出限界未満)場合もあると思われる。このような場合には,不十 分な文献値しか得られないパラメータについて実環境に近い実験から取得す ること等により,モデルの環境挙動や濃度予測の精度を確保する必要がある。

また,本モデルで考慮していない環境挙動として,環境中における対象物 質の生成がある。ノニルフェノールなどのアルキルフェノール類は,アルキ ルフェノールポリエトキシレートとして排出されることが多いと考えられ, 環境中にてアルキルフェノールに分解することが知られている¹³⁾。この過程 は,現在のモデルでは追加負荷量の中に含まれていると見なしているが,い わば「内部で発生する負荷量」と「外部の負荷源からの負荷量」に分離する ことで,アルキルフェノールポリエトキシレートのような前駆物質の排出に ついて検討することが可能と考えられる。

さらに,今後水生生物の曝露評価を行うためには,使用量や排出源情報の 充実を継続するとともに,今回構築した環境挙動モデルを曝露予測モデルへ と発展させる必要がある。曝露予測モデルのためには,評価対象とする生物 の曝露(取り込み)経路などの検討が重要となり,対象生物の生態系におけ る位置や特性をも考慮する必要がある。

VII 参考文献

- 1) 愛知県環境部水質保全課資料
- 2) 愛知県日光川排水機場管理出張所資料
- 3) 相模原市環境保全部環境保全課資料、町田市環境部環境保全課資料
- 4) 千葉県環境生活部環境生活課資料
- 5) 若林明子:「化学物質と生態毒性」,丸善(2000)
- ⁶⁾ Elzerman, A.W. & J.T. Coates (1987) in: "Sources and fate of aquatic pollutants", p.264-317, Eds.: Hites, R.A., S.J. Eisenreich; American Chemical Society, Washington, D.C.
- ⁷⁾ Karickhoff, S.W., D.S. Brown & T.A. Scott (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res. 13, 241-248.
- ⁸⁾ Di Toro, D.M., O'Connor, D.J., Thomann, R.V., and St. John, J.P.: Analysis of Fate of Chemicals in Receiving Water Phase 1. Chemical Manufact. Assoc. Washington, D.C. Prepared by HydroQual Inc., Mahwah, NJ. (1981)
- ⁹⁾ 関東農政局千葉統計情報事務所(1998)千葉農林水産統計年報
- 10) 相原正義 (1983) 手賀沼 100 話, 崙書房
- ¹¹⁾ 平間幸雄,小林節子(1995)印旛沼,手賀沼の水質予測の試算-流入負荷量と沼内水質との関係-,
 千葉県水保研年報(平成7年度),131-134
- ¹²⁾ 井内美郎(1991)58 湖沼汚染底質の浄化手法に関する研究,海洋・湖沼の汚染防止に関する総合研究
 究 平成2年度,58-1-58-19
- ¹³⁾ Ahel, M., W.Giger, and C.Schaffner: Behavior of alkylphenol polyethoxylate surfactants in the aquatic environment-II. Occurrence and transformation in rivers, Water Research, 28, 1143-1152 (1994)

Appendix 1 環境に関するパラメータの値の計算方法

(1) 河川区間流程

地形図より読み取り

(2) 河川平均水深

断面積 河川幅

(3) 河川区間容積

区間上端の断<u>面積 +区間下端の断面積</u> ×河川区間流程

2

(4) 湖沼容積

湖沼面積×湖沼平均水深

(5) 単位水塊容積

単位時間あたり流入量

(6) 河川の区間滞留時間

区間容積

単位水塊容積

(7) 湖沼の滞留時間

<u>湖沼容積</u> 単位水塊容積

(8) 単位水塊の面積

<u>単位水塊容積</u> 平均水深

Appendix 2 対象物質の物性に関するパラメータの値

対象物質の物性に関するパラメータは, 文献による報告を参考に, 計算に用いる値を決 定した。

(1) ノニルフェノール

パラメータ	值	実 験 条 件 等
水中半減期	2.5 日 ¹⁾	河川・湖沼水,初期濃度 1mg/L,換気あり,16
水中半減期	16.5 日 ¹⁾	河川水,換気なし
水中半減期	16.3 日 ¹⁾	湖沼水,換気なし
水中半減期	12 日 ²⁾	河川水,初期濃度 500ug/L,20 ± 2 ,静置
水中半減期	9日 2)	河川水,初期濃度 500ug/L,20 ± 2 ,撹拌
水中半減期	10-15 時間 ³⁾	湖水,快晴,夏,表層
(非生物学的分解)		
水中半減期	20000 日 ⁴⁾	モデル河川 , ヘンリー定数より推定
(揮発)		
水中半減期	160000 日 4)	モデル湖沼 , ヘンリー定数より推定
(揮発)		
底質中半減期	7-10 日	湖沼水(初期濃度 1mg/L) + 底質,室温で 70 日後に
		20%残留 ¹⁾ 。半減期はグラフより推定。
Koc	60000 4)	
BCF	0.9-3.3 ⁵⁾	化審法 , コイ
BCF	49 ⁶⁾	フィールド調査,フナ
BCF	24000 ⁷⁾	計算值
BCF	90-125 ⁸⁾	ニジマス,3週間曝露,設定濃度65ug/L,筋肉
BCF	24 ⁹⁾	ニジマス,2-5 時間曝露平均値,設定濃度 18ug/L
		, 10-15 , 筋肉
BCF	13-410 ¹⁰⁾	フィールド調査(スイス),各種淡水魚

水中半減期

河川水及び湖沼水で 2.5~16.5 日と報告されている。試験水の撹拌の有無によって水中半減期が異なっていることや,河川では水深が浅く光分解があることを考慮

し,河川では7日,湖沼では14日とした。

底質中半減期

湖沼水で 7~10 日と報告されていることから,河川では 7 日,湖沼では 10 日とした。

Koc

60000 と報告されていることから,60000 とした。

BCF

0.9~24000 と報告されているが,手賀沼の実地調査において,コイで15 であったことから15 とした。

(2) 4-t-オクチルフェノール

パラメータ	值	実 験 条 件 等
水中半減期	不明	
底質中半減期	不明	
Koc	78124	オクチルフェノールの Log Kow5.28 ¹¹⁾ より推定
Koc	3466-18500 ¹²⁾	「 河川底質への Koc
Koc	82000-390000 ¹²⁾	河川懸濁質への Koc
BCF	113-469 ¹³⁾	コイ,p-オクチルフェノール,設定濃度 0.1mg/L
BCF	12-135 ¹³⁾	コイ, p-オクチルフェノール, 設定濃度 0.01mg/L

水中半減期

不明であり,物性はノニルフェノールと類似していると考えられることから,ノ ニルフェノールと同様とした。

底質中半減期

不明であり,物性はノニルフェノールと類似していると考えられることから,ノ ニルフェノールと同様とした。

Koc

3466~390000 と報告されている。物性はノニルフェノールと類似していると考え られることから,近い値である 78124 とした。 BCF

p-オクチルフェノールで 12~469 と報告されている。環境水の濃度と試験水の設 定濃度を考慮し,60 とした。

(3) ベンゾフェノン

パラメータ	值	実 験 条 件 等
水中半減期	26 日 ⁴⁾	モデル河川
底質中半減期	不明	
Koc	440 ± 30^{14}	有機炭素率 1.2%
Koc	530 ± 130^{14}	有機炭素率 0.05%
Koc	580 ± 100^{14}	有機炭素率 0.11%
BCF	58 ¹⁵⁾	
BCF	45 ¹⁵⁾	
BCF	76 ¹⁵⁾	
BCF	70-90 ¹¹⁾	水生生物

水中半減期

26日と報告されていることから,河川及び湖沼とも26日とした。

底質中半減期

不明であることから,水中半減期と同様とした。

Koc

440~580 と報告されているが, 底質の有機炭素率を考慮して 440 とした。

BCF

45~76と報告されていることから,60とした。

⁷) Hellmann H; Fresenius' Z Anal Chem 328: 475-9 (1987)

10) Ahel, M., J. McEvoy and W. Giger: Bioaccumulation of the lipophilic metabolites of nonionic surfactants in freshwater organisms. Environ. Pollut., 79, 243-248 (1993)

11) Syracuse Research Corporation, Environmental Fate Data Base.

¹²⁾ Johnson, A.C., C.White, T.J.Besien & M.D. Jurgens (1998) The sorption potential of octylphenol, a xenobiotic oestrogen, to suspended and bed-sediments collected from industrial and rural reaches of three English rivers, Sci.Total Environ, 210/211, 271-282.

13)(財)化学品検査協会 (1992) 化審法の既存化学物質安全性点検データ集,(社)日本化学物質安全・情報センター

- ¹⁴⁾ Southworth, G.R.& J.L. Keller (1986) Hydrophobic Sorption of Polar Organics by Low Organic Carbon Soils. Water Air Soil Poll. 28, 239-248.
- ¹⁵⁾ Briggs, Geoffrey G. (1981) Theoretical and experimental relationship between soil adsorption, octanolwater partition coefficents, water solubilities, bioconcentration factors, and the parachor. J. Agric. Food Chem, 29, 1050-1059.

¹⁾ Sundaram K MS *et.al.*; The dissipation of nonlyphenol in stream and pond water under simulated field conditions., J Environ Sci Health Part B Pestic Food Contam Agric Wastes 16 (6): 767 (1982)

²⁾ Ahel,M. ; Biogeochemical behavior of alkylphenol polyethoxylates in the aquatic environment. University of Zagreb Ph. D thesis p.200. (1987)

³⁾ Ahel M *et al.* ; Photochemical Degradation of Nonylphenol and Nonylphenol Polyethoxylates in Natural Waters. Chemosphere 28: 1361-1368 (1994)

⁴⁾ Lyman WJ *et al*; Handbook of Chemical Property Estimation Methods. Washington DC: Amer Chem Soc pp. 5-4, 5-10, 15-1 to 15-29 (1990)

⁵⁾ 化学物質検査協会: 化審法既存化学物質安全点検データ集(1992)

⁶⁾ 津田泰三,瀧野昭彦,村木一枝,原田浩之,小嶋美穂子;日本水環境学会年会講演集第 33 回,113 (1999)

⁸⁾ Blackburn, M.A., S.J. Kirby and M.J. Waldock: Concentration of alkyphenol polyethoxylates entering UK estuaries. Mar. Pollut. Bull., 38, 109-118 (1999)

⁹⁾ Lewis, S.K. and J.J. Lech: Uptake, disposition, and persistence of nonylphenol from water in rainbow trout (*Oncorhynchus mykiss*). Xenobiotica, 26, 813-819 (1996)