令和2年度 臭素系ダイオキシン類排出実態等調査 結果報告書

令和3年3月 環境省 水·大気環境局 総務課

目次

1.	調了	至目的	1
2.	調才	〔概要	1
2	2.1	調査対象施設	1
2	2.2	調查媒体	1
2	2.3	分析項目	2
3.	試米	斗概要	3
٤	3.1	採取試料一覧	3
٤	3.2	試料採取状況	4
4.	分机	斤方法	5
4	1.1	分析方法	5
4	1.2	試料採取概要	6
4	1.3	分析フロー	6
4	1.4	測定条件1	2
4	1.5	検出下限値1	9
5.	調才	£結果(総括表)2	3
6.	まと	- め及び考察3	0
6	3.1	難燃繊維加工施設(A 施設)3	0
6	3.2	難燃プラスチック製造加工施設(B 施設)4	3
ļ	別表-	1 調査結果(個別結果)4	₽9
ļ	引図-	1 調査施設概要	
	(製造	5工程フロー、排ガス・排水処理フロー・試料採取箇所)	59
ļ	別図-	2 媒体別同族体組成	32
į	別図-	3 媒体別異性体組成	35
1	参考	資料 国内の難燃剤需要推移(推定)	38

略語一覧

本調査報告書に使用した主な略語の説明を以下に示す。

PBDD/Fs : ポリブロモジベンゾ-パラ-ジオキシン/ジベンゾフラン

PBDDs : ポリブロモジベンゾ-パラ-ジオキシン

PBDFs : ポリブロモジベンゾフラン

 TeBDDs
 : テトラフ・ロモシ・ヘンソ・・ハ・ラ・シ・オキシン

 PeBDDs
 : ヘンタフ・ロモシ・ヘンソ・・ハ・ラ・シ・オキシン

 HxBDDs
 : ヘキサフ・ロモシ・ヘンソ・・ハ・ラ・シ・オキシン

 OBDD
 : オクタフ・ロモシ・ヘンソ・・ハ・ラ・シ・オキシン

 TeBDFs
 : テトラフ ロモシ へンソブフラン

 PeBDFs
 : ペンタフ ロモシ へンソブフラン

 HxBDFs
 : ヘキサブロモシ へンソブフラン

 HpBDFs
 : ヘプタフ ロモシ へンソブフラン

 OBDF
 : オクタブロモシ ヘンソブフラン

PCDD/Fs : ポリクロロジベンゾ-パラ-ジオキシン/ジベンゾフラン

Co-PCB : コプ[°]ラナーホ[°]リクロロヒ^{*}フェニル **PBDEs** : ポリブロモジフェニルエーテル : モノフ゛ロモシ゛フェニルエーテル MoBDEs : シブロモシフェニルエーテル DiBDEs : トリフ゛ロモシ゛フェニルエーテル TrBDEs : テトラフ ロモシ フェニルエーテル TeBDEs PeBDEs : ペンタフ ロモシ フェニルエーテル HxBDEs : ヘキサフ ロモシ フェニルエーテル : ヘプ°タフ゛ロモシ゛フェニルエーテル HpBDEs : オクタフ・ロモシ・フェニルエーテル **OBDEs** NoBDEs : ノナフ ロモシ フェニルエーテル

 DeBDE
 : デカフ ロモシ フェニルエーテル

 TBBPA
 : テトラフ ロモヒ スフェノール A

 PBPhs
 : ポリフ ロモフェノール

 MoBPhs
 : モノフ ロモフェノール

 DiBPhs
 : ジブロモフェノール

 TrBPhs
 : トリフ ロモフェノール

 TeBPhs
 : テトラフ ロモフェノール

 PePh
 : ヘ°ンタフ ロモフェノール

 HBCDs
 : ヘキサフ ロモシクロト デカン

 DBDPE
 : デカフ ロモシ フェニルエタン

TEQ: ・毒性等量(または毒性当量)

TEF : 毒性等価係数

GC/HRMS : 高分解能ガスクロマトクブラフ質量分析計

LC/MS/MS : 液体クロマトクブラフ質量分析計

1. 調査目的

本調査は、ダイオキシン類対策特別措置法附則第二条の「政府は、臭素系ダイオキシンにつき、人の健康に対する影響の程度、その発生過程等に関する調査研究を推進し、その結果に基づき、必要な措置を講ずるものとする」との検討規定に基づき、臭素系ダイオキシン類の排出実態等を把握することを目的とする。

2. 調査概要

臭素系ダイオキシン類の暫定排出インベントリーによると、臭素系ダイオキシン類の排出量が多い施設として、過去 DeBDE を使用していた施設のうち、大気系への排出では難燃プラスチック製造加工施設、水系への排出では難燃繊維加工施設があげられる。

今年度は、化審法による DeBDE 規制効果の確認するために、過去 DeBDE を使用していた難燃繊維加工施設及び難燃プラスチック製造加工施設をそれぞれ 1 施設ずつの排出実態調査を実施した。

分析項目は、臭素系ダイオキシン類以外に、それ自体は臭素系ダイオキシン類ではないが、臭素系ダイオキシン類の発生に当たり、臭素の供給源となりうる物質である臭素系難燃物質等についても調査を行った。

2.1 調查対象施設

表 2-1 対象施設概要

	難燃繊維加工施設	難燃プラスチック製造加工施設
施設名	A施設	B施設
難燃加工製品	難燃加工した旗・のぼりを製造	難燃加工した折屋根材を製造
使用難燃剤	デカブロモジフェニルエタン (DBDPE)	デカブロモジフェニルエタン (DBDPE)
排ガス処理 フロー	なし	蓄熱燃焼式排ガス処理
排水処理フロー	加圧浮上+活性汚泥法 原水槽→調整槽→反応槽→加圧 浮上→曝気槽→沈殿槽→放流槽	未処理のまま、下水道へ放流
過年度調査	平成 27 年度(2015 年度) A 施設	平成 16 年度(2004 年度) A-1 施設

2.2 調査媒体

- (1) 難燃繊維加工施設(A施設)
 - · 排出水(工程水、総合排水)、脱水汚泥、返送汚泥
- (2) 難燃プラスチック製造加工施設(B施設)
 - ・ 排出ガス(処理前、処理後)、総合排水

- 2.3 分析項目
- (1) 臭素化ダイオキシン類 (PBDD/Fs)
 - a. 2,3,7,8-位臭素置換異性体

2,3,7,8-TeBDD, 1,2,3,7,8-PeBDD, 1,2,3,4,7,8-HxBDD,

1,2,3,6,7,8-HxBDD, 1,2,3,7,8,9-HxBDD, 1,2,3,4,6,7,8-HpBDD, OBDD,

2,3,7,8-TeBDF, 1,2,3,7,8-PeBDF, 2,3,4,7,8-PeBDF,

1,2,3,4,7,8-HxBDF、1,2,3,4,6,7,8-HpBDF、OBDF

b. 同族体

TeBDDs, PeBDDs, HxBDDs, HpBDDs, OBDD, TeBDFs, PeBDFs, HxBDFs, HpBDFs, OBDF

- (2) ポリブロモジフェニルエーテル類 (PBDEs)
 - a. PBDEs の異性体

4,4'-DiBDE (#15), 2,4,4'-TrBDE (#28), 2,2',4,4'-TeBDE (#47),

2,2',4,4',5-PeBDE (#99), 2,2',4,4',6-PeBDE (#100),

2,2',4,4',5,5'-HxBDE (#153), 2,2',4,4',5,6'-HxBDE (#154),

2,2',3,4,4',5',6-HpBDE (#183), DeBDE (#209)

b. PBDEs の同族体

MoBDEs, DiBDEs, TrBDEs, TeBDEs, PeBDEs, HxBDEs, HpBDEs, OBDEs, NoBDEs, DeBDE

- (3) テトラブロモビスフェノール A (TBBPA)
- (4) ブロモフェノール類 (PBPhs)
 - a. PBPhs の異性体

2-MoBPh, 3/4-MoBPh, 2,6-DiBPh, 2,5/3,5-DiBPh,

2,4-DiBPh, 3,4-DiBPh, 2,3-DiBPh, 2,4,6-TrBPh,

2,3,6-TrBPh、2,4,5-TrBPh、2,3,5-TrBPh、3,4,5-TrBPh、2,3,4-TrBPh、

2,3,4,5-TeBPh, 2,3,4,6-TeBPh, 2,3,5,6-TeBPh, 2,3,4,5,6-PeBPh

b. PBPhs の同族体

MoBPhs, DiBPhs, TrBPhs, TeBPhs, PeBPh

- (5) ヘキサブロモシクロドデカン (HBCDs)α-HBCD、β-HBCD、γ-HBCD
- (6) デカブロモジフェニルエタン (DBDPE)
- (7) 塩素化ダイオキシン類 (PCDD/Fs,Co-PCB)
 - a. PCDD/Fs の 2,3,7,8-位塩素置換異性体

2,3,7,8-TeCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD,

1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, OCDD,

2,3,7,8-TeCDF, 1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF,

1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 2,3,4,6,7,8-HxCDF,

- 1,2,3,4,6,7,8-HpCDF、1,2,3,4,7,8,9-HpCDF、OCDF
- b. PCDD/Fs の同族体

TeCDDs, PeCDDs, HxCDDs, HpCDDs, OCDD,

TeCDFs, PeCDFs, HxCDFs, HpCDFs, OCDF

c. Co-PCB

3,4,4',5-TeCB (#81) $\sqrt{3},3',4,4'$ -TeCB (#77) $\sqrt{3},3',4,4',5$ -PeCB (#126) $\sqrt{3},3',4,4',5,5'$ -HxCB (#169) $\sqrt{3}$

2',3,4,4',5-PeCB (#123) \, 2,3',4,4',5-PeCB (#118) \, 2,3,3',4,4'-PeCB (#105) \,

2,3,4,4',5-PeCB (#114), 2,3',4,4',5,5'-HxCB (#167),

2,3,3',4,4',5-HxCB (#156) \, 2,3,3',4,4',5'-HxCB (#157) \,

2,3,3',4,4',5,5'-HpCB (#189)

3. 試料概要

- 3.1 採取試料一覧
- (1) 難燃繊維加工施設(A施設)

表 3-1 採取試料一覧表

試料名	採取ポイント	採取方法
工程水 (原水槽)	原水槽	原水槽から、約1時間間隔毎に3回採取
総合排水 (処理後)	放流口前	放流土管前の側溝から、大量採取装置にて約 2.5 時間で約 200L 採取
脱水汚泥	脱水機	脱水汚泥コンテナから、約1時間間隔毎に2回採 取
返送汚泥	返送汚泥配管	返送汚泥配管から、約1時間間隔毎に2回採取

[※] 工程水、脱水汚泥及び返送汚泥試料は、複数回採取した試料を等量混合して、1 試料とした。

(2) 難燃プラスチック製造加工施設 (B施設)

表 3-2 採取試料一覧表

試料名	採取ポイント	採取方法
排ガス (処理前)	排ガス処理前煙道	JIS K 0311 の I 形採取装置 2 連で、難燃加工ライン稼働時に 4h 連続採取
排ガス (処理後)	処理後煙突	JIS K 0311 の I 形採取装置 2 連で、難燃加工ライン稼働時に 4h 連続採取
総合排水	排水集合ピット後 の下水道配管	排水集合ピット後の下水道配管からバケツにより1回 採取

3.2 試料採取状況

(1) 難燃繊維加工施設(A施設)

表 3-3 排出水試料の概況 (1)

試料名 採取 回数	大 4左	pН	水温	電気 伝導度	酸化還元 電位	透視度	
	L 35			(℃)	(mS/m)	(mV)	(cm)
元 和 J.	1回目	晴れ	7.82	20.1	31.5	161	0.3
工程水 (原水槽)	2回目	晴れ	7.83	19.9	31.5	135	0.4
(//)(/)(3回目	晴れ	7.78	20.0	15.9	131	0.5
40 A III. I.	1回目	晴れ	6.88	19.2	121.1	134	>30
総合排水 (処理後)	2回目	晴れ	7.00	18.8	129.9	122	>30
(/C-11/X/	3回目	晴れ	6.89	18.9	130.0	137	>30

表 3-4 排出水試料の概況 (2)

試料名	臭化物イオン	SS	外観	臭気
P*(//1/2)	(mg/L)	(mg/L)	ノ * 再列	大 人
工程水(処理前)	< 0.1	150	黒褐色	溶剤臭
総合排水(処理後)	< 0.1	9.0	薄黄色	無臭

表 3-5 返送汚泥試料の概況

試料名	SS 濃度	汚泥容量指標(SVI)	活性汚泥沈殿率(SV30)
PK/17 /11	(mg/L)	(mL/g)	(%)
返送汚泥	27,000	13	36

[※] 汚泥容量指標(SVI)とは、活性汚泥の沈降性を示す指標。

(2) 難燃プラスチック製造加工施設(B施設)

表 3-6 排出ガス試料の概況 (1)

試料名	ガス 温度	水分	ガス 流速	ガス量 (湿り)	ガス量 (乾き)	補正 吸引量
	(℃)	(vol%)	(m/s)	(m³/h)	(m³/h)	(m³)
排ガス (処理前)	63	1.37	9.0	22,800	22,500	7.7466
排ガス (処理後)	171	2.10	11.2	23,600	23,100	8.1154

[※] 本報告書における排出ガスのm³は、標準状態 [0℃、101.32kPa] の体積を示す(以下、同様)。

[※] 活性汚泥沈殿率(SV30)とは、活性汚泥の沈降性や濃度などを示す指標。

表 3-7 排出ガス試料の概況 (1)

試料名	一酸化炭素 濃度	酸素濃度	臭化水素 濃度	塩化水素 濃度	ばいじん 濃度
	(volppm)	(vol%)	(mg/m³)	(mg/m³)	(g/m ³)
排ガス (処理前)	87	20.3	<1	3	0.046
排ガス (処理後)	17	19.7	<1	2	< 0.001

表 3-8 排出水試料の概況(1)

試料名	天候	рН	水温	電気 伝導度	酸化還元 電位	透視度
			(℃)	(mS/m)	(mV)	(cm)
総合排水	晴れ	8.09	28.0	51.6	38	7.5

表 3-9 排出水試料の概況 (2)

試料名	臭化物イオン	SS	外観	臭気
八个个	(mg/L)	(mg/L)	クト街	天刈
総合排水	< 0.1	22	黄緑色	下水臭

4. 分析方法

4.1 分析方法

(1) PBDD/Fs

「ポリブロモジベンゾ・パラ・ジオキシン及びポリブロモジベンゾフランの暫定調査方法」(平成 19 年 3 月環境省水・大気環境局総務課ダイオキシン対策室)により測定を行った。各媒体別の試料抽出フロー図 4-1~図 4-4 により抽出後、各媒体共通分析フロー図 4-5 により測定を行った。

(2) PBDEs, TBBPA, HBCDs, PBPhs, DBDPE

各媒体別の試料抽出フロー図 4-1~図 4-4 により抽出後、各媒体共通分析フロー図 4-6 により測定を行った。

(3) PCDD/Fs 及び Co-PCB

排ガス試料は JIS K 0311 (2008)、排水試料は JIS K 0312 (2008)、汚泥等は厚生省告示 192 号により測定を行った。各媒体別の試料抽出フロー図 4-1 ~図 4-4 により抽出後、各媒体共通分析フロー図 4-7 により測定を行った。

4.2 試料採取概要

(1) 工程水

採水場所において、ステンレス製バケツ類により水をくみ取り、褐色ガラス 瓶の10%の空間が残る程度まで採取場所の水を採水した。採取回数は複数回採 水した。

(2) 総合排水

難燃繊維加工施設は、採取場所において、ポンプで水を毎分 1.0~1.5L 程度で 200L 程度吸引して、懸濁態をろ紙により捕捉した後、溶存態をポリウレタンフォームに吸着捕集した。

難燃プラスチック製造加工施設は、採水場所において、ステンレス製バケツ類により水をくみ取り、褐色ガラス瓶の10%の空間が残る程度まで採取場所の水を採水した。

(3) 脱水汚泥及び返送汚泥

脱水汚泥は、採取場所において、ステンレス製スコップにより褐色ガラス瓶 に採水した。採取回数は複数回採取した。

返送汚泥は、採取場所において、ステンレス製バケツ類により返送汚泥を採取し、褐色ガラス瓶の10%の空間が残る程度まで採取場所の返送汚泥を採取した。採取回数は複数回採取した。

(4) 排ガス

採取管部、フィルタ捕集部、液体捕集部、吸着捕集部、吸引ポンプ及び流量測定部からなる採取装置により、試料採取をした。なお、排ガスは採取試料量を多くするために、採取装置(インピンジャー)を2連で採取した。

4.3 分析フロー

各媒体別の試料抽出フローを図 4-1~図 4-4 に示す。また、各媒体共通の分析フローを図 4-5~図 4-7 に示す。

(1) 排出水(工程水、総合排水)及び返送汚泥

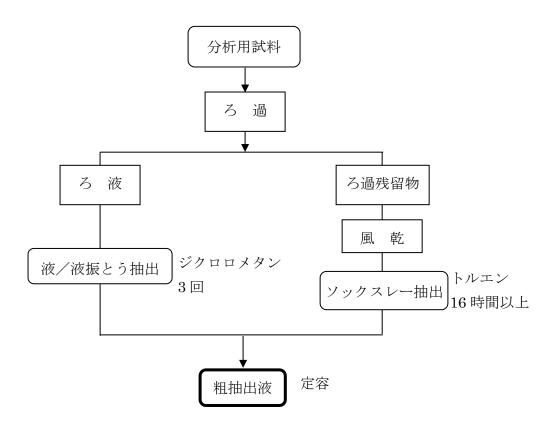


図 4-1 工程水等抽出分析フロー

(2) 排出水 (総合排水)

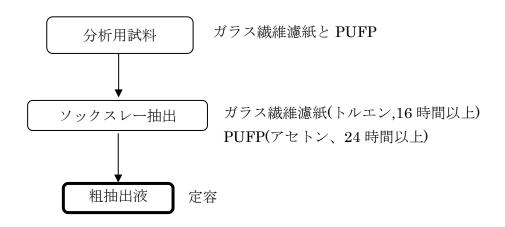


図 4-2 排出水 (総合排水) 抽出分析フロー

(3) 脱水汚泥

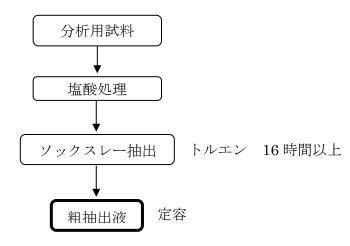


図 4-3 汚泥抽出分析フロー

(4) 排出ガス

図 4-4 排出ガス試料基本抽出分析フロー

- (5) 各媒体共通分析フロー
- (1) PBDD/Fs

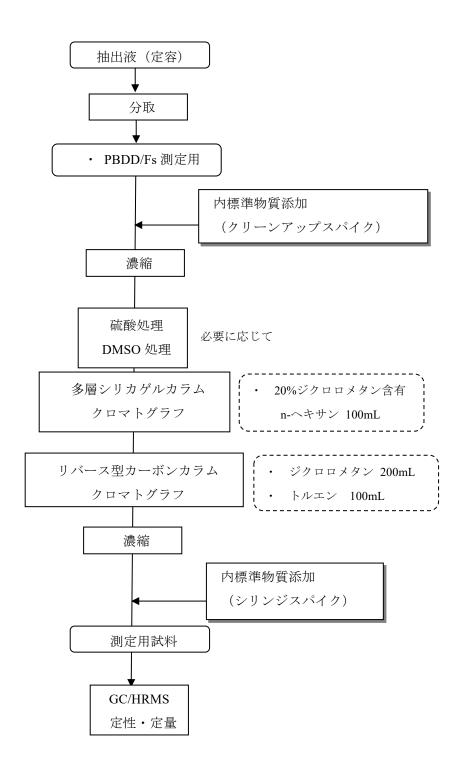


図 4-5 各媒体共通分析フロー(1)

② PBDEs、TBBPA、PBPhs、HBCDs、DBDPE

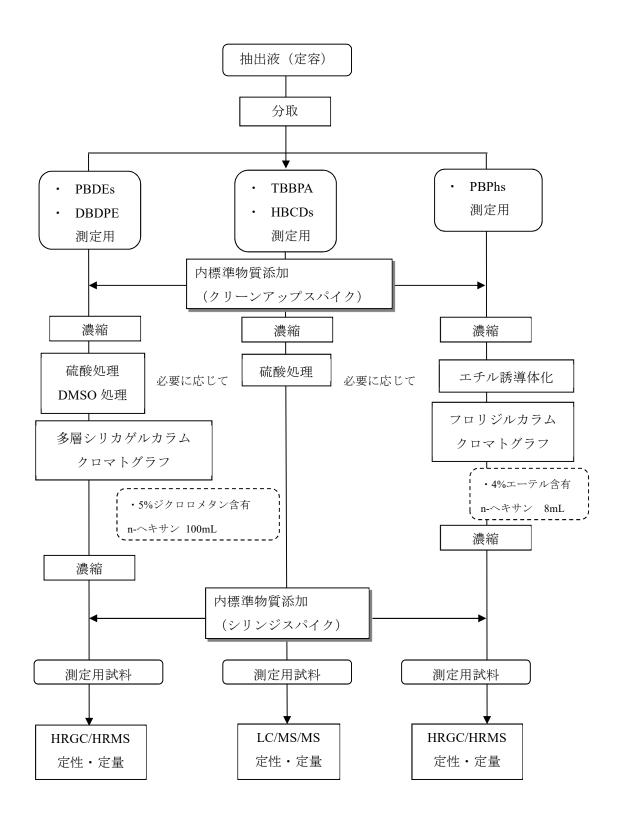


図 4-6 各媒体共通分析フロー(2)

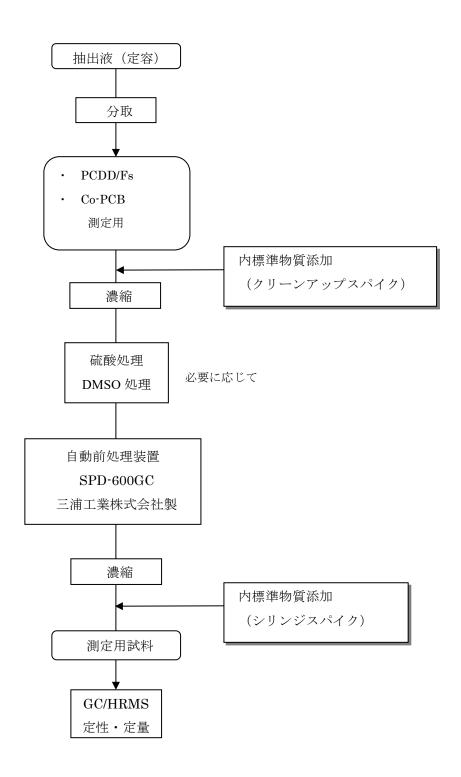


図 4-7 各媒体共通分析フロー (3)

4.4 測定条件

(1) PBDD/Fs

a. 分析装置

GC: Agilent-7890 (Agilent 社製)

MS: JMS-800D UltraFOCUS (日本電子社製)

b. GC 部条件

① 4~6 臭素化体

・ 分離カラム: DB-17HT (J&W 社製)

fused silica capillary column 30m×0.25mm (id),0.15µm

・ カラム温度:150°C (2min hold) \rightarrow 10°C/min \rightarrow 220°C \rightarrow 5°C/min \rightarrow

 280° C (20min hold) $\rightarrow 20^{\circ}$ C/min $\rightarrow 310^{\circ}$ C (14min hold)

・ 注入方法 : スプリットレス法

② 7~8 臭素化体

・ 分離カラム: DB-5MS (J&W 社製)

fused silica capillary column 15m×0.25mm (id) ,0.10µm

・ カラム温度: 170° C (1min hold) $\rightarrow 15^{\circ}$ C/min $\rightarrow 260^{\circ}$ C $\rightarrow 10^{\circ}$ C/min \rightarrow

310°C (8min hold)

・ 注入方法 : スプリットレス法

c. MS 部条件

MS 設定条件及び設定質量数を表 4-1~表 4-4 に示す。

① 4~6 臭素化体

表 4-1 MS 設定条件

イオン化方法	EI
イオン化電圧	38eV
イオン化電流	500μA
加速電圧	10kV
インターフェース温度	280℃
イオン源温度	280℃
分解能	10,000 以上

② 7~8 臭素化体

表 4-2 MS 設定条件

イオン化方法	EI
イオン化電圧	$38\mathrm{eV}$
イオン化電流	500μA
加速電圧	9kV
インターフェース温度	280℃
イオン源温度	280℃
分解能	10,000 以上

表 4-3 設定質量数

	(M+2) +	(M+4) +	(M+6) +	(M+8) +
TeBDDs	497.6924	499.6904		
PeBDDs		577.6009	579.5989	
HxBDDs		655.5114	657.5094	
HpBDDs			735.4199	737.4179
OBDD			813.3304	815.3284
TeBDFs	481.6975	483.6955		
PeBDFs		561.6060	563.6039	
HxBDFs		639.5165	641.5145	
HpBDFs			719.4250	721.4230
OBDF			797.3355	799.3335

表 4-4 設定質量数 (内標準物質)

	(M+2) +	(M+4) +	(M+6) +	(M+8) +
$^{13}\mathrm{C}_{12} ext{-}\mathrm{TeBDDs}$	509.7327	511.7307		
$^{13}\mathrm{C}_{12} ext{-}\mathrm{PeBDDs}$		589.6412	591.6391	
$^{13}\mathrm{C}_{12} ext{-}\mathrm{HxBDDs}$		667.5517	669.5496	
$^{13}\mathrm{C}_{12} ext{-}\mathrm{HpBDDs}$			747.4601	749.4581
$^{13}\mathrm{C}_{12} ext{-}\mathrm{OBDD}$			825.3706	827.3686
$^{13}\mathrm{C}_{12} ext{-}\mathrm{TeBDFs}$	493.7378	495.7357		
$^{13}\mathrm{C}_{12} ext{-}\mathrm{PeBDFs}$		573.6462	575.6442	
$^{13}\mathrm{C}_{12} ext{-}\mathrm{HxBDFs}$		651.5568	653.5547	
$^{13}\mathrm{C}_{12} ext{-}\mathrm{HpBDFs}$			731.4653	733.4632
$^{13}\mathrm{C}_{12} ext{-}\mathrm{OBDF}$			809.3757	811.3737

(2) PBDEs 及び DBDPE

a. 分析装置

GC: HP-7890 (Agilent 社製)

MS: JMS-800D UltraFOCUS (日本電子社製)

b. GC 部条件

① 1~7 臭素化体

・ 分離カラム: HP-5MS (Agilent 社製)

fused silica capillary column 30m×0.25mm (id) ,0.25µm

・ カラム温度: 90° C (2min hold) $\rightarrow 10^{\circ}$ C/min $\rightarrow 190^{\circ}$ C $\rightarrow 5^{\circ}$ C/min \rightarrow

 280° C (13min hold) $\rightarrow 15^{\circ}$ C/min $\rightarrow 310^{\circ}$ C (20min hold)

・ 注入方法 : スプリットレス法

② 8~10 臭素化体

・ 分離カラム: DB-5MS (J&W 社製)

fused silica capillary column 15m×0.25mm (id) ,0.10µm

- ・ カラム温度: 170°C (1min hold) \rightarrow 15°C/min \rightarrow 260°C \rightarrow 10°C/min \rightarrow 310°C (8min hold)
- ・ 注入方法 : スプリットレス法

c. MS 部条件

MS 設定条件及び設定質量数を表 4-5~表 4-8 に示す。

① 1~7 臭素化体

表 4-5 MS 設定条件

イオン化方法	EI
イオン化電圧	38eV
イオン化電流	500μΑ
加速電圧	10kV
インターフェース温度	280°C
イオン源温度	280°C
分解能	10,000 以上

② 8~10 臭素化体

表 4-6 MS 設定条件

イオン化方法	EI
イオン化電圧	38eV
イオン化電流	500μΑ
加速電圧	9kV
インターフェース温度	280°C
イオン源温度	280°C
分解能	10,000 以上

表 4-7 設定質量数

	M ⁺	(M+2) +	(M+4) +	(M+6) +	(M+8) +	(M+10) +
MoBDEs	247.9837	249.9816				
DiBDEs	325.8942	327.8921				
TrBDEs		405.8027	407.8006			
TeBDEs		483.7132	485.7111			
PeBDEs			563.6216	565.6196		
HxBDEs			641.5321	643.5301		
HpBDEs				721.4406	723.4386	
OBDEs	*[(M+6)-2B	r] +641.5145	*[(M+8)-2B	r]+643.5125	801.3491	803.3471
NoBDEs	*[(M+8)-2B	*[(M+8)-2Br] +719.4250		*[(M+10)-2Br]+721.4230		881.2576
DeBDE	*[(M+8)-2B	r] +797.3355	*[(M+10)-2H	3r]+799.3335	957.1701	959.1681
DBDPE	*[(M+4	$[-C_7H_2Br_5]^+48$	*[(M-		6)-C ₇ H ₂ Br ₅]+4	86.6012

^{*}フラグメントイオン

表 4-8 設定質量数(内標準物質)

	M ⁺	(M+2) +	(M+4) +	(M+6) +	(M+8) +	(M+10) +
¹³ C ₁₂ -MoBDEs	260.0239	262.0219				
¹³ C ₁₂ -DiBDEs	337.9344	339.9324				
$^{13}\mathrm{C}_{12} ext{-TrBDEs}$		417.8429	419.8409			
$^{13}\mathrm{C}_{12} ext{-}\mathrm{TeBDEs}$		495.7534	497.7514			
$^{13}\mathrm{C}_{12} ext{-}\mathrm{PeBDEs}$			575.6619	577.6599		
¹³ C ₁₂ -HxBDEs			653.5724	655.5704		
$^{13}\mathrm{C}_{12} ext{-}\mathrm{HpBDEs}$				733.4809	735.4789	
$^{13}\mathrm{C}_{12} ext{-}\mathrm{OBDEs}$	*[(M+4)-2B	r]+651.5568	*[(M+6)-2B	r]+653.5547	813.3894	815.3874
¹³ C ₁₂ -NoBDEs	*[(M+8)-2Br]+731.4652		*[(M+10)-2Br]+733.4632		891.2999	893.2979
¹³ C ₁₂ -DeBDE	*[(M+8)-2Br]+809.3757		*[(M+10)-2H	3r]+811.3737	969.2104	971.2084
$^{13}\mathrm{C}_{14}\text{-DBDPE}$	*[(M+4)-C ₇ H ₂ Br ₅]+ 49		91.6267	*[(M+6	s)-C ₇ H ₂ Br ₅]+ 49	93.6246

^{*}フラグメントイオン

(3) TBBPA 及び HBCDs

a. 分析装置

LC: 1200 シリーズ (Agilent 製)

MS/MS: Triple Quad 5500 (AB SCIEX 社製)

b. LC 部条件

・分離カラム: Develosil C30-UG-5 2.1mm×150mm (野村化学製)

・移動相: A:10mM 酢酸アンモニウム溶液 B:CH₃CN

 $A:B=65:35 \quad (1min) \rightarrow (15min) \rightarrow 0:100 \quad (5min)$

・流速:0.2mL/min ・カラム温度:40℃

· 注入量:10μL

c. MS/MS 部条件

MS/MS 設定条件及び設定質量数を表 4-9~表 4-11 に示す。

表 4-9 MS/MS 設定条件

インターフェース	エレクトロスプレー
モード	negative
カーテンガス(CUR)	40psi
イオンスプレー電圧(IS)	-4,500V
プローブ温度(TEM)	600°C
コリジョンガス(CAD)	5psi
イオンソースガス 1	$50\mathrm{psi}$
イオンソースガス 2	40psi

表 4-10 設定質量数

	プレカーサーイオン	プロダクトイオン
TBBPA	542.5	78.8
HBCDs	640.3	81.0

表 4-11 設定質量数 (内標準物質)

	プレカーサーイオン	プロダクトイオン
$^{13}\mathrm{C}_{12} ext{-}\mathrm{TBBPA}$	554.6	80.7
$^{13}\mathrm{C}_{12} ext{-}\mathrm{HBCDs}$	652.5	78.9
d_{16} -BPA(ビスフェノール A)	241.0	141.9

(4) PBPhs

a. 分析装置

GC: HP-6890 (Agilent 社製)

MS: AutoSpec-Ultima NT(Waters 社製)

b. GC 部条件

・分離カラム: HP-5MS(Agilent 社製)

fused silica capillary column 30m×0.25mm (id) ,0.15µm

・カラム温度: 60° C (1min hold) $\rightarrow 15^{\circ}$ C/min $\rightarrow 220^{\circ}$ C $\rightarrow 25^{\circ}$ C/min

 \rightarrow 320°C (5min hold)

・注入方法 : スプリットレス法

c. MS 部条件

MS 設定条件及び設定質量数を表 4-12~表 4-14 に示す。

表 4-12 MS 設定条件

イオン化方法	EI
イオン化電圧	38eV
イオン化電流	500μΑ
加速電圧	10kV
インターフェース温度	250°C
イオン源温度	250°C
分解能	10,000 以上

表 4-13 設定質量数

	$\mathrm{M}^{\scriptscriptstyle +}$	(M+2) +	(M+4) +	(M+6) +
MoBPhs	171.9524	173.9504		
DiBPhs	249.8629	251.8609		
TrBPhs		329.7714	331.7693	
TeBPhs		407.6819	409.6798	
PeBPh			487.5903	489.5883

表 4-14 設定質量数 (内標準物質)

	M^+	(M+2) +	(M+4) +	(M+6) +
¹³ C ₆ -MoBPhs	177.9725	179.9705		
¹³ C ₆ -DiBPhs	255.8830	257.8810		
¹³ C ₆ -TrBPhs		335.7915	337.7894	
¹³ C ₆ -TeBPhs		413.7020	415.6999	
¹³ C ₆ -PeBPh			493.6104	495.6084

(5) PCDD/Fs, Co-PCB

a. 分析装置

GC: HP-7890 (Agilent 社製)

MS: AutoSpec-Premier (Waters 社製)

b. GC 部条件

① BPX-DXN 測定

・分離カラム: BPX-DXN (SGE 社製)

fused silica capillary column 60m×0.25mm(id),膜厚

不明

・カラム温度: 130° (1min hold) $\rightarrow 15^{\circ}$ C/min $\rightarrow 210^{\circ}$ C $\rightarrow 3^{\circ}$ C/min $\rightarrow 310^{\circ}$ C $\rightarrow 5^{\circ}$ C/min $\rightarrow 320^{\circ}$ C (8min hold)

・注入方法 : スプリットレス法

② RH-12ms 測定

・分離カラム: RH-12ms (Invetx 社製)

fused silica capillary column 60m×0.25mm(id),膜厚

不明

・カラム温度: 130° C (1min hold) $\rightarrow 15^{\circ}$ C/min $\rightarrow 210^{\circ}$ C $\rightarrow 4^{\circ}$ C/min

 $\rightarrow 310^{\circ}\text{C} \rightarrow 5^{\circ}\text{C/min} \rightarrow 320^{\circ}\text{C}$ (8min hold)

・注入方法 : スプリットレス法

c. MS 部条件

MS 設定条件及び設定質量数を表 4-15~表 4-18 に示す。

① BPX-DXN 測定

表 4-15 MS 設定条件

イオン化方法	EI
イオン化電圧	$35 \mathrm{eV}$
イオン化電流	500μA
加速電圧	10kV
インターフェース温度	$250^{\circ}\!\mathrm{C}$
イオン源温度	$250^{\circ}\!\mathrm{C}$
分解能	10,000 以上

② RH-12ms 測定

表 4-16 MS 設定条件

イオン化方法	EI
イオン化電圧	$35 \mathrm{eV}$
イオン化電流	500μΑ
加速電圧	10kV
インターフェース温度	250°C
イオン源温度	250°C
分解能	10,000以上

表 4-17 設定質量数

	$\mathrm{M}^{\scriptscriptstyle +}$	(M+2) +	(M+4) +
TeCDDs	319.8965	321.8936	
PeCDDs	353.8576	355.8546	
HxCDDs		389.8156	391.8127
HpCDDs		423.7767	425.7737
OCDD		457.7377	459.7348
TeCDFs	303.9016	305.8986	
PeCDFs		339.8597	341.8568
HxCDFs		373.8207	375.8178
HpCDFs		407.7818	409.7788
OCDF		441.7428	443.7398
TeCBs	289.9224	291.9194	
PeCBs		325.8804	327.8775
HxCBs		359.8415	361.8367
HpCBs		393.8025	395.7995

表 4-18 設定質量数 (内標準物質)

	M ⁺	(M+2) +	(M+4) +
¹³ C ₁₂ -TeCDDs	331.9368	333.9339	
¹³ C ₁₂ -PeCDDs	365.8978	367.8949	369.8919
¹³ C ₁₂ -HxCDDs	399.8589	401.8559	403.8530
¹³ C ₁₂ -HpCDDs		435.8169	437.8140
¹³ C ₁₂ -OCDD		469.7780	471.7750
¹³ C ₁₂ -TeCDFs	315.9419	317.9389	
¹³ C ₁₂ -PeCDFs		351.9000	353.8970
¹³ C ₁₂ -HxCDFs		385.8610	387.8580
¹³ C ₁₂ -HpCDFs		419.8220	421.8191
¹³ C ₁₂ -OCDF		453.7830	455.7801
¹³ C ₁₂ -TeCBs	301.9626	303.9597	
¹³ C ₁₂ -PeCBs		337.9207	339.9178
¹³ C ₁₂ -HxCBs		371.8817	373.8788
¹³ C ₁₂ -HpCBs		405.8428	407.8398

4.5 検出下限値 検出下限算出方法

$$C_{DL} = MDL \times \underbrace{v}_{v_i} \times \underbrace{V_E}_{V'_E} \times \underbrace{1}_{V}$$

C_{DL}: 試料における検出下限 (pg (ng) / 試料単位)

MDL: 測定方法の検出下限 (pg (ng))

vi : HRGC/HRMS (LC/MS/MS) への注入量 (μL)

v : 測定試料の液量 (μL)

V_E : 抽出液量 (mL)

V'E: 抽出液の分取量 (mL)

V : 試料量

表 4-19 PBDD/Fs 検出下限値一覧表

試料の種類	工程水	返送汚泥	総合排水	脱水汚泥	排ガス
試料量	20L	1L	200L	20g-dry	8 m ³
単位	pg/L	pg/L	pg/L	ng/g-dry	ng/m³
2,3,7,8-TeBDD	0.2	2	0.004	0.0001	0.001
1,2,3,7,8-PeBDD	0.6	6	0.01	0.0003	0.003
1,2,3,4,7,8-HxBDD	3	30	0.06	0.001	0.01
1,2,3,6,7,8-HxBDD	4	40	0.07	0.002	0.02
1,2,3,7,8,9-HxBDD	3	30	0.05	0.001	0.01
1,2,3,4,6,7,8-HpBDD	2	20	0.04	0.001	0.01
OBDD	6	60	0.1	0.003	0.03
2,3,7,8-TeBDF	0.2	2	0.004	0.0001	0.001
1,2,3,7,8-PeBDF	0.9	9	0.02	0.0005	0.005
2,3,4,7,8-PeBDF	1	10	0.02	0.0006	0.006
1,2,3,4,7,8-HxBDF	3	30	0.05	0.001	0.01
1,2,3,4,6,7,8-HpBDF	2	20	0.05	0.001	0.01
OBDF	6	60	0.1	0.003	0.03

※ 検出下限値は、試料量及び分取量により異なる場合がある。

表 4-20 PBDEs、DBDPE、TBBPA、HBCDs 検出下限値一覧表

試料の種類	工程水	返送汚泥	総合排水	脱水汚泥	排ガス
試料量	20L	1L	200L	20g-dry	8 m ³
単位	ng/L	ng/L	ng/L	ng/g-dry	ng/m³
MoBDEs	0.03	0.06	0.0003	0.003	0.007
4,4'-DiBDE (#15)	0.03	0.06	0.0003	0.003	0.007
DiBDEs	0.03	0.06	0.0003	0.003	0.007
2,4,4'-TrBDE (#28)	0.04	0.09	0.0004	0.004	0.01
TrBDEs	0.05	0.09	0.0005	0.005	0.01
2,2',4,4'-TeBDE (#47)	0.04	0.08	0.0004	0.004	0.01
TeBDEs	0.08	0.2	0.0008	0.008	0.02
2,2',4,4',6-PeBDE (#100)	0.04	0.09	0.0004	0.004	0.01
2,2',4,4',5-PeBDE (#99)	0.06	0.1	0.0006	0.006	0.02
PeBDEs	0.06	0.1	0.0006	0.006	0.02
2,2',4,4',5,6'-HxBDE (#154)	0.05	0.1	0.0005	0.005	0.01
2,2',4,4',5,5'-HxBDE (#153)	0.08	0.2	0.0008	0.008	0.02
HxBDEs	0.1	0.3	0.001	0.01	0.03
2,2',3,4,4',5',6-HpBDE (#183)	0.1	0.2	0.001	0.01	0.03
HpBDEs	0.1	0.2	0.001	0.01	0.03
OBDEs	0.07	0.1	0.0007	0.007	0.02
NBDEs	0.2	0.3	0.002	0.02	0.04
2,2',3,3',4,4',5,5',6,6'- DeBDE (#209)	0.2	0.5	0.002	0.02	0.06
DBDPE	6000	100000	600	6000	1
α-HBCD	0.2	5	0.02	0.2	0.6
в-нвср	0.06	1	0.006	0.06	0.1
y-HBCD	0.5	10	0.05	0.5	1.0
TBBPA	0.3	600	0.3	3	0.7

※ 検出下限値は、試料量及び分取量により異なる場合がある。

表 4-21 PBPhs 検出下限値一覧表

試料の種類	工程水	返送汚泥	総合排水	脱水汚泥	排ガス
試料量	20L	1L	200L	20g-dry	8 m ³
単位	ng/L	ng/L	ng/L	ng/g-dry	ng/m³
2-bromophenol	3	1000	0.06	3	0.8
3/4-bromophenol	3	1000	0.06	3	0.8
2,6-dibromophenol	3	1000	0.06	3	0.7
2,5/3,5-dibromophenol	3	1000	0.06	3	0.8
2,4-dibromophenol	3	1000	0.06	3	0.7
3,4-dibromophenol	3	1000	0.06	3	0.7
2,3-dibromophenol	3	1000	0.06	3	0.8
2,4,6-tribromophenol	3	900	0.06	3	0.6
2,3,6-tribromophenol	2	900	0.06	2	0.6
2,4,5-tribromophenol	2	900	0.05	2	0.6
2,3,5-tribromophenol	2	1000	0.05	2	0.6
3,4,5-tribromophenol	2	1000	0.05	2	0.6
2,3,4-tribromophenol	2	900	0.05	2	0.6
2,3,4,5- tetrabromophenol	2	900	0.05	2	0.6
2,3,4,6- tetrabromophenol	2	900	0.05	2	0.6
2,3,5,6- tetrabromophenol	2	900	0.05	2	0.6
2,3,4,5,6- pentabromophenol	2	900	0.05	2	0.6

[※] 検出下限値は、試料量及び分取量により異なる場合がある。

表 4-22 PCDD/Fs、Co-PCBs 検出下限値一覧表

試料の種類	工程水	返送汚泥	総合排水	脱水汚泥	排ガス
試料量	20L	1L	200L	20g-dry	8 m^3
単位	pg/L	pg/L	pg/L	ng/g-dry	ng/m³
2,3,7,8-TeCDD	0.2	3	0.2	0.0002	0.0007
1,2,3,7,8-PeCDD	0.2	3	0.2	0.0004	0.001
1,2,3,4,7,8-HxCDD	0.2	3	0.2	0.0003	0.001
1,2,3,6,7,8-HxCDD	0.2	4	0.2	0.0004	0.0005
1,2,3,7,8,9-HxCDD	0.1	3	0.1	0.0004	0.001
1,2,3,4,6,7,8-HpCDD	0.1	3	0.1	0.0002	0.001
OCDD	0.3	7	0.3	0.0007	0.002
2,3,7,8-TeCDF	0.08	2	0.08	0.0003	0.0002
1,2,3,7,8-PeCDF	0.2	3	0.2	0.0002	0.001
2,3,4,7,8-PeCDF	0.09	2	0.09	0.0002	0.001
1,2,3,4,7,8-HxCDF	0.2	4	0.2	0.0002	0.0005
1,2,3,6,7,8-HxCDF	0.1	2	0.1	0.0004	0.0005
1,2,3,7,8,9-HxCDF	0.1	2	0.1	0.0006	0.0005
2,3,4,6,7,8-HxCDF	0.05	0.9	0.05	0.0002	0.001
1,2,3,4,6,7,8-HpCDF	0.07	1	0.07	0.0004	0.0008
1,2,3,4,7,8,9-HpCDF	0.1	3	0.1	0.0005	0.0007
OCDF	0.3	6	0.3	0.001	0.002
3,4,4',5-TeCB(#81)	0.07	1	0.07	0.0001	0.0004
3,3',4,4'-TeCB(#77)	0.05	1	0.05	0.0002	0.0005
3,3',4,4',5-PeCB(#126)	0.09	2	0.09	0.0003	0.001
3,3',4,4',5,5'-HxCB(#169)	0.09	2	0.09	0.0003	0.0005
2',3,4,4',5-PeCB(#123)	0.08	2	0.08	0.0001	0.0006
2,3',4,4',5-PeCB(#118)	0.04	0.8	0.04	0.0002	0.0004
2,3,3',4,4'-PeCB(#105)	0.1	2	0.1	0.0003	0.0006
2,3,4,4',5-PeCB(#114)	0.03	0.6	0.03	0.0002	0.0006
2,3',4,4',5,5'-HxCB(#167)	0.07	1	0.07	0.0004	0.001
2,3,3',4,4',5-HxCB(#156)	0.08	2	0.08	0.0002	0.0006
2,3,3',4,4',5'-HxCB(#157)	0.07	1	0.07	0.0003	0.0008
2,3,3',4,4',5,5'-HpCB(#189)	0.09	2	0.09	0.0002	0.0005

[※] 検出下限値は、試料量及び分取量により異なる場合がある。

5. 調査結果(総括表)

- (1) 臭素化ダイオキシン類 (PBDD/Fs)
 - ① 難燃繊維加工施設(A施設)
 - a. 排出水

表 5-1 排出水の分析結果 (毒性等量相当値) (pg-TEQ/L)

		• `	•
物質名	工程水 (原水槽)	返送汚泥	総合排水 (処理後)
PBDDs	5.6	290	0.48
PBDDs	4.7	280	0.32
PBDFs	180	13,000	10
	180	13,000	10
DDDD/E	190	13,000	10
PBDD/Fs	180	13,000	10

- 注 1) PBDD/Fs (TEQ) は、WHO/IPCS(2006)による PCDD/Fs の TEF により 算出した参考値である。
- 注 2) 毒性等量相当値の表中の上段は検出下限値未満を検出下限値の 1/2 として 算出したもの、下段の数値は検出下限値未満を「0」として算出したもので ある。

表 5-2 排出水の分析結果 (実測濃度) (pg/L)

1.9			
物質名	工程水 (原水槽)	返送汚泥	総合排水 (処理後)
PBDDs	17,000	1,200,000	310
PBDFs	210,000	5,400,000	4,000
PBDD/Fs	230,000	6,600,000	4,400

b. 汚泥

表 5-3 汚泥の分析結果(毒性等量相当値)(ng-TEQ/g-dry)

物質名	脱水汚泥	
PBDDs	0.0014	
rddds	0.0010	
PBDFs	0.21	
PDDFS	0.21	
DDDD/E-	0.21	
PBDD/Fs	0.21	

- 注 1) PBDD/Fs (TEQ) は、WHO/IPCS(2006)による PCDD/Fs の TEF により 算出した参考値である。
- 注 2) 毒性等量相当値の表中の上段は検出下限値未満を検出下限値の 1/2 として 算出したもの、下段の数値は検出下限値未満を「0」として算出したもので ある。

表 5-4 汚泥の分析結果 (実測濃度) (ng/g-dry)

物質名	脱水汚泥	
PBDDs	5.9	
PBDFs	130	
PBDD/Fs	140	

- ② 難燃プラスチック製造加工施設 (B施設)
 - a. 排出ガス

表 5-5 排出ガスの分析結果 (毒性等量相当値) (ng-TEQ/m³)

物質名	排ガス (処理前)	排ガス (処理後)
PBDDs	0.0074	0.0055
PDDDs	0.0029	0.0015
PBDFs	0.31	0.15
PDDFS	0.31	0.15
DDDD/E ₂	0.32	0.16
PBDD/Fs	0.31	0.15

- 注 1) PBDD/Fs (TEQ) は、WHO/IPCS(2006)による PCDD/Fs の TEF により 算出した参考値である。
- 注 2) 毒性等量相当値の表中の上段は検出下限値未満を検出下限値の 1/2 として 算出したもの、下段の数値は検出下限値未満を「0」として算出したもので ある。

表 5-6 排出ガスの分析結果 (実測濃度) (ng/m³)

物質名	排ガス (処理前)	排ガス (処理後)
PBDDs	1.9	0.57
PBDFs	19	7.8
PBDD/Fs	21	8.4

b. 排出水

表 5-7 排出水の分析結果 (毒性等量相当値) (pg-TEQ/L)

物質名	総合排水 (未処理)
DDDDa	0.99
PBDDs	0.089
PBDFs	3.2
PDDrs	3.0
DDDD/E	4.2
PBDD/Fs	3.1

- 注 1) PBDD/Fs (TEQ) は、WHO/IPCS(2006)による PCDD/Fs の TEF により 算出した参考値である。
- 注 2) 毒性等量相当値の表中の上段は検出下限値未満を検出下限値の 1/2 として 算出したもの、下段の数値は検出下限値未満を「0」として算出したもので ある。

表 5-8 排出水の分析結果 (実測濃度) (pg/L)

物質名	総合排水 (未処理)
PBDDs	11
PBDFs	910
PBDD/Fs	920

- (2) 臭素系難燃物質 (PBDEs、DBDPE、TBBPA、PBPhs 及び HBCDs)
 - ① 難燃繊維加工施設(A施設)
 - a. 排出水

表 5-9 排出水の分析結果 (ng/L)

物質名	工程水 (原水槽)	返送汚泥	総合排水 (処理後)
PBDEs	200,000	110,000,000	38,000
DeBDE	190,000	110,000,000	37,000
DBDPE	14,000,000	38,000,000	17,000
TBBPA	140	13,000	12
PBPhs	400	9,300	4.0
HBCDs	180	290	0.19

b. 汚泥

表 5-10 汚泥の分析結果 (ng/g-dry)

物質名	脱水汚泥
PBDEs	220,000
DeBDE	210,000
DBDPE	5,300,000
TBBPA	150
PBPhs	120
HBCDs	81

② 難燃プラスチック製造加工施設 (B 施設)

a. 排出ガス

表 5-11 排出ガスの分析結果 (ng/m³)

物質名	排ガス (処理前)	排ガス (処理後)
PBDEs	350	77
DeBDE	300	66
DBDPE	200,000	12,000
TBBPA	ND	ND
PBPhs	14,000	1,000
HBCDs	ND	ND

注) 表中の「ND」は、検出下限値未満であることを示す。

b. 排出水

表 5-12 排出水の分析結果 (ng/L)

物質名	総合排水 (未処理)
PBDEs	250
DeBDE	230
DBDPE	12,000
TBBPA	1.6
PBPhs	12
HBCDs	ND

注)表中の「ND」は、検出下限値未満であることを示す。

(3) 塩素化ダイオキシン類 (PCDD/Fs、Co-PCB)

- ① 難燃繊維加工施設(A施設)
- a. 排出水

表 5-13 排出水の分析結果 (毒性等量値) (pg-TEQ/L)

物質名	工程水 (原水槽)	返送汚泥	総合排水 (処理後)
PCDDs	0.42	4.0	0.18
rodds	0.065	0.47	0.00045
PCDFs	0.20	1.4	0.073
	0.066	0.041	0
Co-PCB	1.3	0.71	0.0064
CO-FCB	1.3	0.61	0.00049
PCDD/Fs, Co-PCB	2.0	6.1	0.26
	1.5	1.1	0.00094

- 注 1) TEF は、WHO/IPCS(2006)の TEF を適用した。
- 注 2) 毒性等量値の表中の上段は検出下限値未満を検出下限値の 1/2 として算出 したもの、下段の数値は検出下限値未満を「0」として算出したものである。

表 5-14 排出水の分析結果 (実測濃度) (pg/L)

物質名	工程水 (原水槽)	返送汚泥	総合排水 (処理後)
PCDDs	32	640	2.3
PCDFs	220	210	ND
Co-PCB	1,500	2,600	13
PCDD/Fs, Co-PCB	1,700	3,400	15

注)表中の「ND」は、検出下限値未満であることを示す。

b. 汚泥

表 5-15 汚泥の分析結果 (毒性等量値) (ng-TEQ/g-dry)

物質名	脱水汚泥	
DCDD _a	0.00040	
PCDDs	0.000036	
PCDFs	0.00020	
	0.000025	
Co-PCB	0.00073	
	0.00073	
PCDD/Fs, Co-PCB	0.0013	
	0.00079	

- 注 1) TEF は、WHO/IPCS(2006)の TEF を適用した。
- 注 2) 毒性等量値の表中の上段は検出下限値未満を検出下限値の 1/2 として算出 したもの、下段の数値は検出下限値未満を「0」として算出したものである。

表 5-16 汚泥の分析結果 (実測濃度) (ng/g-dry)

物質名	脱水汚泥
PCDDs	0.023
PCDFs	0.083
Co-PCB	0.81
PCDD/Fs, Co-PCB	0.92

② 難燃プラスチック製造加工施設(B施設)

a. 排出ガス

表 5-17 排出ガスの分析結果 (毒性等量値) (ng-TEQ/m³)

		3 <u></u>
物質名	排ガス (処理前)	排ガス (処理後)
PCDDs	0.0010	0.00096
	0.0000069	0.0000011
PCDFs	0.0031	0.00094
	0.0031	0.00089
Co-PCB	0.000074	0.000060
	0.000024	0.0000023
PCDD/Fs, Co-PCB	0.0042	0.0020
	0.0031	0.00090

注1) TEFは、WHO/IPCS(2006)のTEFを適用した。

注 2) 毒性等量値の表中の上段は、検出下限値未満を検出下限値の 1/2 として算出したもの、下段の数値は、検出下限値未満を「0」として算出したものである。

表 5-18 排出ガスの分析結果(実測濃度)(ng/m³)

物質名	排ガス (処理前)	排ガス (処理後)
PCDDs	0.029	0.005
PCDFs	0.20	0.049
Co-PCB	0.067	0.056
PCDD/Fs, Co-PCB	0.30	0.11

b. 排出水

表 5-19 排出水の分析結果 (毒性等量値) (pg-TEQ/L)

物質名	総合排水 (未処理)
PCDDs	0.23
	0.00093
PCDFs	0.074
	0
Co-PCB	0.0080
	0.0015
PCDD/Fs, Co-PCB	0.31
	0.0024

注1) TEF は、WHO/IPCS(2006)の TEF を適用した。

注 2) 毒性等量値の表中の上段は、検出下限値未満を検出下限値の 1/2 として算出 したもの、下段の数値は、検出下限値未満を「0」として算出したものである。

表 5-20 排出水の分析結果 (実測濃度) (pg/L)

物質名	総合排水 (未処理)
PCDDs	4.4
PCDFs	ND
Co-PCB	41
PCDD/Fs, Co-PCB	46

注)表中の「ND」は、検出下限値未満であることを示す。

6. まとめ及び考察

本調査では、過去 DeBDE を使用していた難燃繊維加工施設及び難燃プラスチック製造加工施設を調査した。 DeBDE の代替難燃剤は、両施設とも DBDPE を使用していた。

難燃繊維加工施設では、加圧浮上+活性汚泥処理により排水を処理していた。施設での排水処理効果を把握するために、処理前の工程水、処理後の総合排水を採取した。汚泥試料として、排水処理施設から発生する余剰の脱水汚泥、加圧浮上処理後の活性汚泥処理で発生する返送汚泥試料を採取した。なお、調査施設は、2015年度A施設と同じである。

難燃プラスチック製造加工施設では、排ガスは蓄熱燃焼式排ガス処理装置により処理し、排水は未処理のまま下水道に放流していた。施設での排ガス処理効果を把握するために、処理前と処理後の排ガスを採取した。排水は、集合枡ピットから下水道配管に排出される総合排水を採取した。なお、調査施設は、2004年度 A 施設と同じである。

6.1 難燃繊維加工施設(A施設)

(1) 排出水

a. PBDD/Fs

PBDD/Fs 実測濃度は、処理前の工程水 (原水槽) 230,000 pg/L、処理後の総合排水 4,400 pg/L であった。毒性等量相当値 (ND=0)は、処理前の工程水 (原水槽) 180 pg-TEQ/L、処理後の総合排水 10 pg-TEQ/L であった (図 6-1)。

過去実施した同施設の 2015 年度調査データと比較すると、工程水では 2 桁低く、総合排水中では 1 桁低い濃度レベルであった。過年度調査時の難燃繊維加工施設のデータと比較すると、中央値 4,400 ng/L の濃度レベルであった(図 6-2、表 6-1)。

PBDD/Fs 同族体組成は、OBDF が主体であった(図 6-3)。PBDD/Fs 異性体組成は、OBDD、1,2,3,4,6,7,8-HpBDF 及び OBDF が主要な異性体であった(図 6-4)。

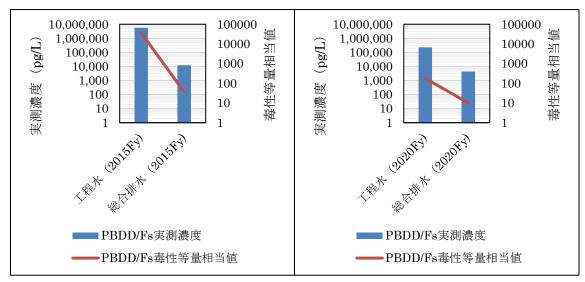


図 6-1 同一難燃繊維加工施設における排水中の PBDD/Fs 濃度比較

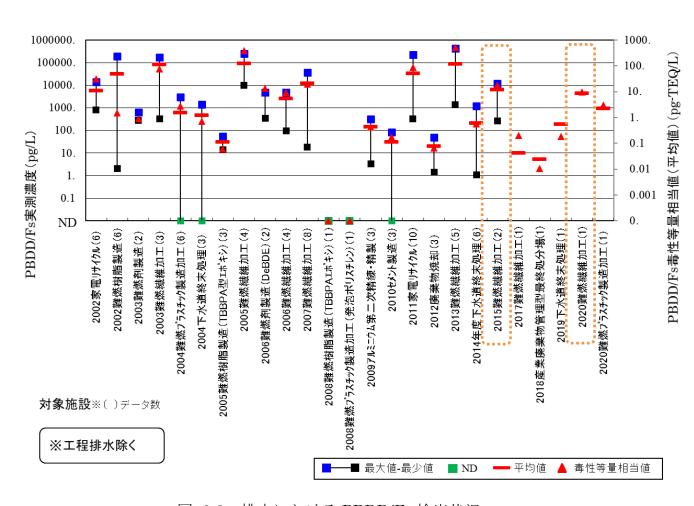


図 6-2 排水における PBDD/Fs 検出状況

表 6-1 難燃繊維加工施設における処理後排水中の PBDD/Fs 調査データ

	施	P	BDD/Fs			
調査年度	設名	実測濃度 (pg/L)	毒性等量相当値 (pg-TEQ/L)	使用 BFRs	排水処理法	
	B-1	320	3.6	HBCDs	活性汚泥処理	
2002 年度 (H15 年度)	B-2	170,000	130	DeBDE,HBCDs	活性汚泥処理	
(1116 +/2)	B-3	70,000	97	HBCDs	活性汚泥処理	
	D 1	11,000	57	HBCDs	活性汚泥処理	
2005 年度	B-1	250,000	1,200	HBCDs	估性仍泥处埋	
(H17年度)	B-2	85,000	290	DeBDE,HBCDs	活性汚泥処理	
	B-3	10,000	26	HBCDs	活性汚泥処理	
	D-1	95	0.37	HBCDs	活性汚泥処理	
2006 年度	B-1	1,100	1.7	HBCDs	1 111111111111111111111111111111111111	
(H18 年度)	B-3	4,300	16	HBCDs	活性汚泥処理	
	D-9	4,700	19	HBCDs	1百1生7万亿火电生	
		91	0.21	HBCDs		
	B-1	18	0.15	HBCDs	活性汚泥処理	
		280	0.57	HBCDs		
2007 年度		110	0.43	HBCDs		
(H19 年度)	B-2	35,000	48	DeBDE,HBCDs	活性汚泥処理	
		37,000	62	DeBDE,HBCDs	估性仍泥处埋	
	B-3	13,000	26	HBCDs	活性汚泥処理	
	D-9	12,000	23	HBCDs	1日11177亿亿亿年	
	A	4,400	21	DeBDE,HBCDs	活性汚泥処理	
	В	1,400	2.3	他の BFRs	活性汚泥処理	
	Б	2,900	2.7	他vク DF IIS	→下水道放流	
2013 年度 (H25 年度)	C	420,000	2,500	DeBDE	未処理→下水道 放流	
	D	1,400	2.0	DeBDE	活性汚泥処理→ 凝集沈殿→加圧 浮上	
2015 年度	A	12,000	36	DeBDE	加圧浮上+活性汚 泥処理	
(H27 年度)	В	270	0.34	DeBDE	凝集沈殿→砂ろ過 →生物活性炭	
2017 年度 (H29 年度)	A	10	0.019	DeBDE,DBDPE	凝集沈殿→砂ろ過 →生物活性炭	
2020 年度 (R2 年度)	A	4,400	10	DBDPE	加圧浮上+活性汚 泥処理	

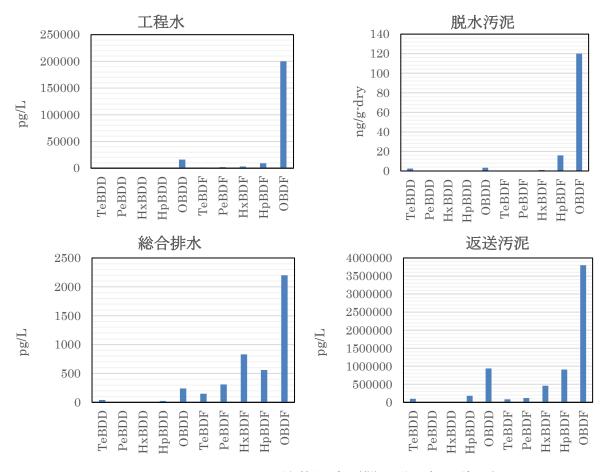


図 6-3 PBDD/Fs 同族体組成(難燃繊維加工施設)

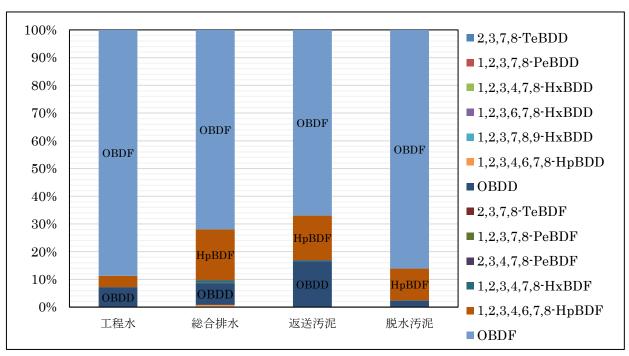


図 6-4 PBDD/Fs 異性体組成 (難燃繊維加工施設)

b. PCDD/Fs 及び Co-PCB

PCDD/Fs 及び Co-PCB 実測濃度は、処理前の工程水 (原水槽) 1,700 pg/L、処理後の総合排水 15 pg/L であった。毒性等量値 (ND=0)は、処理前の工程水 (原水槽) 1.5 pg-TEQ/L、処理後の総合排水 0.00094 pg-TEQ/L であった。

処理後の総合排水を過去の難燃繊維加工施設の PCDD/Fs 及び Co-PCB 調査データ $(0.0084\sim12 \text{ pg-TEQ/L})$ (平均 $3.1\pm3.3 \text{ pg-TEQ/L}$ 、n=24))と比較すると、過去データよりも低濃度であった。

PCDD/Fs/Co-PCB 同族体組成は、工程水、脱水汚泥及び返送汚泥では、TeCBs が主体であり、総合排水では PeCBs が主体であった(図 6-5)。PCDD/Fs/Co-PCB 異性体組成では、OCDD、OCDF 及び TeCB(#77)が主体であった。

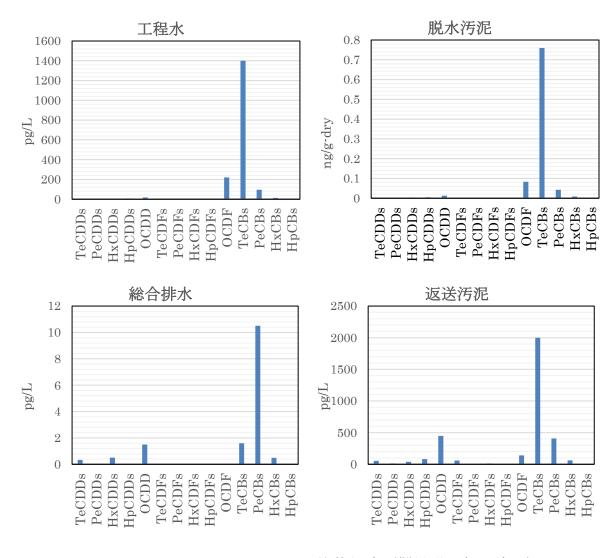


図 6-5 PCDD/Fs/Co-PCB 同族体組成(難燃繊維加工施設)

c. PBDEs

PBDEs 実測濃度は、処理前の工程水 (原水槽) 200,000 ng/L、処理後の総合排水 38,000 ng/L であった。同施設の 2015 年度調査データと比較すると、1 桁低い濃度レベルあった (図 6-6、表 6-2)。他の難燃繊維加工施設の処理後排水の調査データと比較すると、PBDEs は中央値 23,500 ng/L より高い濃度レベルであった (図 6-7、表 6-2)。

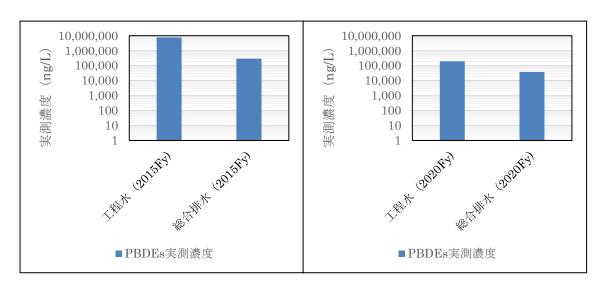


図 6-6 同一難燃繊維加工施設における排水中の PBDEs 濃度比較

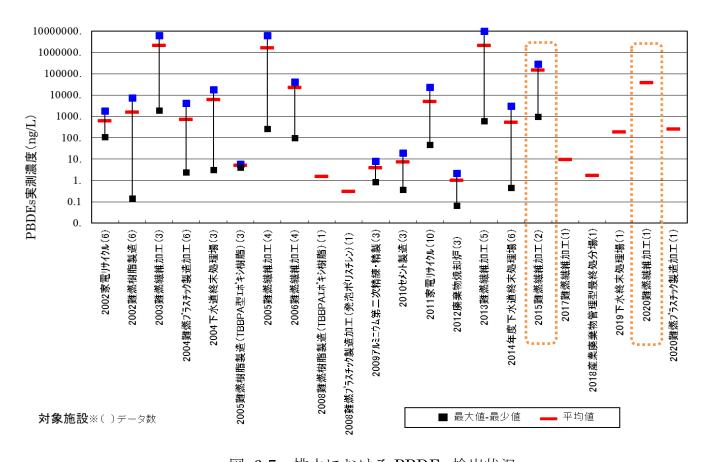


図 6-7 排水における PBDEs 検出状況

表 6-2 難燃繊維加工施設における処理後排水中の BFRs 調査データ

調査年度	施設	PBDEs 実測濃度	HBCDs 実測濃度	TBBPA 実測濃度	PBPhs 実測濃度	使用 BFRs
	名	(ng/L)	(ng/L)	(ng/L)	(ng/L)	
2002 左座	B-1	1,900	180,000	540	未測定	HBCDs
2002 年度 (H15 年度)	B-2	6,200,000	2,000,000	61	未測定	DeBDE, HBCDs
(1110 + /2/)	B-3	240,000	1,400,000	710	未測定	HBCDs
	B-1	6,900	8,100,000	8.7	未測定	HBCDs
2005 年度	\mathbf{p}_{-1}	270	610,000	7.9	未測定	HBCDs
(H17年度)	B-2	6,400,000	2,200,000	6.2	未測定	DeBDE, HBCDs
	B-3	100,000	4,400,000	3.7	未測定	HBCDs
	B-1	99	未測定	未測定	未測定	HBCDs
2006 年度	D-1	14,000	未測定	未測定	未測定	HBCDs
(H18年度)	D o	33,000	未測定	未測定	未測定	HBCDs
	B-3	42,000	未測定	未測定	未測定	HBCDs
	B-1	72	780,000	未測定	510	HBCDs
		140	340,000	未測定	230	HBCDs
		150	2,100,000	未測定	160	HBCDs
2007 年度		160	1,500,000	未測定	540	HBCDs
(H19年度)	B-2	7,900,000	410,000	未測定	91	DeBDE, HBCDs
		1,100,000	620,000	未測定	140	DeBDE, HBCDs
	D o	29,000	780,000	未測定	92	HBCDs
	B-3	23,000	630,000	未測定	81	HBCDs
	A	190,000	100	0.43	未測定	DeBDE, HBCDs
	D	620	0.63	ND	未測定	他の BFRs
2013 年度 (H25 年度)	В	24,000	2.2	ND	未測定	他の Dr Ns
(1120 +/文)	С	10,000,000	970	2.2	未測定	DeBDE
	D	23,000	1.1	ND	未測定	DeBDE
2015 年度	A	290,000	5.1	0.88	20	DeBDE
(H27年度)	В	1,000	1.6	4.6	11	DeBDE
2017 年度 (H29 年度)	A	9.3	3.2	3.7	290	DeBDE, DBDPE
2020 年度 (R2 年度)	A	38,000	0.19	12	4.0	DBDPE

PBDEs 同族体組成は、全ての試料において DeBDE が 90 %以上を占めた組成であった(図 6-8)。 DeBDE 以外の PBDEs 異性体組成は、#153-HxBDE、#148/#154-HxBDE、#175/#183-HpBDE が主要な異性体であった(図 6-9)。

図 6-8 PBDEs 同族体組成 (難燃繊維加工施設)

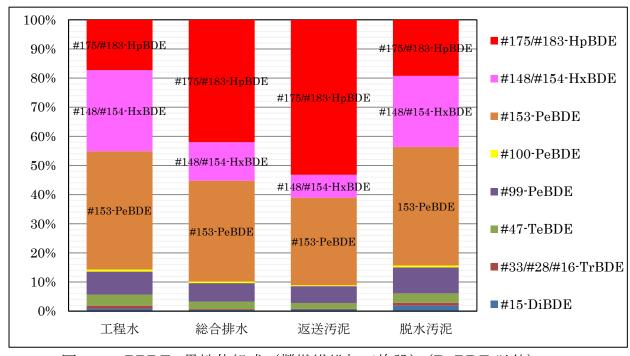


図 6-9 PBDEs 異性体組成(難燃繊維加工施設)(DeBDE 以外)

d. TBBPA

TBBPA 実測濃度は、処理前の工程水(原水槽)140 ng/L、処理後の総合排水 12 ng/L であった。同施設の 2015 年度調査データと比較すると、1 桁高い濃度レベルあった(表 6-2)。

e. HBCDs

HBCDs 実測濃度は、処理前の工程水(原水槽)180 ng/L、処理後の総合排水 0.19 ng/L であった。同施設の 2015 年度調査データと比較すると、1 桁低い濃度レベルあった(表 6-2)。

f. PBPhs

PBPhs 実測濃度は、処理前の工程水(原水槽)400 ng/L、処理後の総合排水 4.0 ng/L であった。同施設の2015 年度調査データと比較すると、1 桁低い濃度レベルあった(表 6-2)。

PBPhs 異性体組成では、処理前の工程水では、2,3,4,5,6-PeBPh が 70%以上を占めていたが、総合排水、返送汚泥及び脱水汚泥では、2,4,6-TrBPh が主要な異性体であった(図 6-10)。

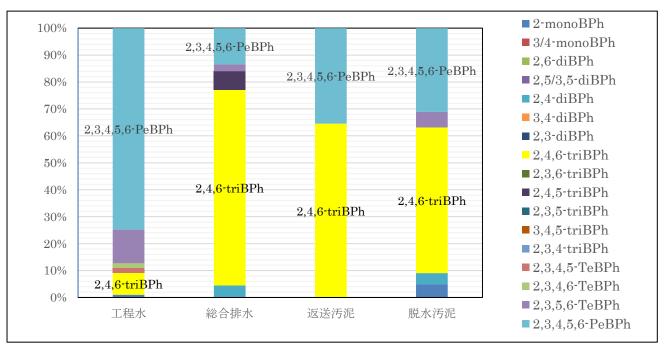


図 6-10 PBPhs 異性体組成 (難燃繊維加工施設)

g. DBDPE

DBDPE 実測濃度は、処理前の工程水 (原水槽) 14,000,000 ng/L、処理後の総合排水 17,000 ng/L であった。DBDPE は DeBDE から DBDPE の切り替え時期に他の難燃繊維加工の 1 施設を 2017 年度調査しており、調査データ (工程水 13,000 ng/L、放流水 33 ng/L) と比較すると、3 桁高い濃度レベルあった。

(2) 汚泥

a. PBDD/Fs

脱水汚泥中のPBDD/Fs 実測濃度は140 ng/g-dry、毒性等量相当値(ND=0)は0.21 ng-TEQ/g-dryであり、返送汚泥中のPBDD/Fs 実測濃度は6,600,000 pg/L、毒性等量相当値(ND=0)は13,000 pg-TEQ/Lであった。過去データと比較すると、脱水汚泥は2019年度の下水終末処理施設とほぼ同程度の濃度レベルであったが、返送汚泥は最も高濃度であった。(表6-3)。

b. PCDD/Fs 及び Co-PCB

脱水汚泥中の PCDD/Fs 及び Co-PCB 実測濃度は 0.92 ng/g-dry、毒性等量値 (ND=0)は 0.00079 ng-TEQ/g-dry であり、返送汚泥中の PCDD/Fs 及び Co-PCB 実測濃度は 3,400 pg/L、毒性等量相当値 (ND=0)は 1.1 pg-TEQ/L であった。過去データと比較すると、 $1\sim2$ 桁低い濃度レベルであった(表 6-3)。

c. PBDEs

脱水汚泥中の PBDEs 実測濃度は 220,000 ng/g-dry であり、返送汚泥中の PBDEs 実測濃度は 110,000,000 ng/L であった。過去データと比較すると、脱水汚泥は DeBDE 使用時の未処理排水が流入する下水終末処理施設とほぼ同程度の濃度レベルであり、返送汚泥は過去データで最も高濃度であった(表 6-3)。

d. TBBPA

脱水汚泥中の TBBPA 実測濃度は 150 ng/g-dry であり、返送汚泥中の TBBPA 実測濃度は 13,000 ng/L であった。過去データと比較すると、脱水汚泥では、最も高濃度であった(表 6-3)。

e. HBCDs

脱水汚泥中の HBCDs 実測濃度は 81 ng/g-dry であり、返送汚泥中の HBCDs 実測濃度は 290 ng/L であった。過去データと比較すると、脱水汚泥では、2014年度 D 施設とほぼ同程度の濃度レベルであった(表 6-3)。

f. PBPhs

脱水汚泥中の PBPh 実測濃度は 120 ng/g-dry であり、返送汚泥中の PBPh 実測濃度は 9,300 ng/L であった。過去データと比較すると、脱水汚泥では、最も高濃度であった(表 6-3)。

g. DBDPE

脱水汚泥中の DBDPE 実測濃度は 5,300,000 ng/g-dry であり、返送汚泥中の DBDPE 実測濃度は 38,000,000 ng/L であった。 DBDPE は DeBDE から

DBDPE の切り替え時期に他の難燃繊維加工の 1 施設を 2017 年度調査しており、脱水汚泥の調査データ(乾燥前 18,000 ng/g-dry、乾燥後 22,000 ng/g-dry) と比較すると、3 桁高い濃度レベルあった。

表 6-3 活性汚泥処理法における返送汚泥及び脱水汚泥中の調査データ

			試	PE	BDD/Fs	PCDE	O/Fs/Co-PCB	PBDEs	HBCDs	TBBPA	PBPhs			
調査年度	施	設名	料	実測濃度	毒性等量相当值	実測濃度	毒性当量値	実測濃度	実測濃度	実測濃度	実測濃度	使用 BFRs 等		
			名	pg/L	pg-TEQ/L	pg/L	pg-TEQ/L	ng/L	ng/L	ng/L	ng/L			
					34,000	210	54,000	360	94,000	未測定	未測定	未測定		
9000 左座	群	B-1		30,000	200	45,000	350	75,000	未測定	未測定	未測定	HBCDs		
2006 年度 (H18 年度)	燃料	БТ	返	21,000	140	51,000	300	47,000	未測定	未測定	未測定	HDCDs		
(1110 /2/)	難燃繊維加		送汚	19,000	160	37,000	190	41,000	未測定	未測定	未測定			
	加 - 工	B-3	泥	1,200,000	2,700	400,000	730	5,900,000	未測定	未測定	未測定	HBCDs		
2020 年度 (R2 年度)		A		6,600,000	13,000	3,400	1.1	110,000,0 00	290	13,000	9,300	DBDPE		
					試	PE	BDD/Fs	PCDD	/Fs /Co-PCB	PBDEs	HBCDs	TBBPA	PBPhs	
調査年度	施	施設名			実測濃度	毒性等量相当值	実測濃度	実測濃度	実測濃度	実測濃度	実測濃度	実測濃度	使用 BFRs 等	
				名	ng/g-dry	ng-TEQ/g-dry	ng/g-dry	ng-TEQ/g-dry	ng/g-dry	ng/g-dry	ng/g-dry	ng/g-dry		
2004 年度 (H16 年度)	 下	B-3		170	0.29	4.2	0.011	500,000	52,000	37	未測定	DeBDE 未処理排 水が流入		
2014 年度 (H26 年度)	下水処理	D	脱水	560	7.4	未測定	未測定	670,000	23	21	7	DeBDE 未処理排 水が流入		
2019 年度 (R1 年度)	<u> </u>	A	汚泥	0.84	0.0021	7.4	0.0053	16,000	9.6	19	5.9	DBDPE 未処理排 水が流入		
2020 年度 (R2 年度)	繊維	A		140	0.21	0.92	0.00079	220,000	81	150	120	DBDPE		

(3) 考察

本施設では、加圧浮上+活性汚泥処理により排水処理を行っている。排水処理で発生する脱水汚泥は、加圧浮上処理で発生する汚泥と活性汚泥処理で発生する汚泥からなり、返送汚泥は活性汚泥処理の汚泥が返送率 70%で曝気槽に戻される汚泥である。

工程水と脱水汚泥の PBDD/Fs や PBDEs の同族体組成は類似しており、工程水中の PBDD/Fs や PBDEs は排水処理によって除去された SS 分に吸着し汚泥に移行濃縮していると考えられる。工程水流量は 100~200 m³/日で変動しており、活性汚泥処理の汚泥は一定の割合(140 m³/日)で返送汚泥として曝気槽に戻されている。総合排水と返送汚泥の PBDD/Fs や PBDEs の同族体組成は類似しており、施設内に残留している活性汚泥の影響を受けていることが示唆された。

本施設の排水処理効果の有効性を確認するために、工程水濃度と総合排水濃度から各物質の除去率の算出結果を表 6-4 に示す。DBDPE 濃度に対して、PBDEs 濃度の低減率が小さいことは、過去に使用した DeBDE 含有の活性汚泥が排水処理施設内で循環し、活性汚泥処理の曝気槽内で活性汚泥の影響を受けている可能性が考えられる。

使用する BFRs が DeBDE から DBDPE に替わることにより、総合排水中の PBDD/Fs 毒性等量相当値は 2015 年度調査と比較して約 70%低くなり、塩素化 ダイオキシン類の排水基準相当値 10 pg-TEQ/L を下回っており、化審法の DeBDE 規制効果が確認できた。

本施設の排水処理(加圧浮上+活性汚泥処理)は、各物質の除去率から判断すると、有効であると示唆されたが、活性汚泥処理の返送汚泥中に高濃度に濃縮されており、その濃度によっては、汚泥の適切な処理が必要であると考える。

表 6-4 排水処理における除去率(%)の比較

	PBDD/Fs 実測濃度	PBDD/Fs 毒性等量相当値	PBDEs 実測濃度	DBDPE 実測濃度	備考
2015 年度 (H27 年度)	99.9	99.8	96.3	未測定	DeBDE 使用
2020 年度 (R2 年度)	98.1	94.4	81.0	99.8	DBDPE 使用

6.2 難燃プラスチック製造加工施設 (B施設)

(1) 排出ガス

a. PBDD/Fs

PBDD/Fs 実測濃度は、処理前の排ガス 21 ng/m³、処理後の排ガス 8.4 ng/m³ であった。毒性等量相当値 (ND=0)は、処理前の排ガス 0.31 ng-TEQ/m³、排ガス処理後の排ガス 0.15 ng-TEQ/m³ であった。排ガス中のPBDD/Fs 濃度レベルは、過去実施した同施設の調査データ(図 6-11、表 6-5) と比較すると、 $1\sim2$ 桁低い濃度レベルであった。排ガス処理後の排ガス中のPBDD/Fs 濃度レベルは、2004年度調査時の難燃プラスチック製造加工施設データ(4 施設)よりも 1 桁低い濃度レベルであったが、毒性等量相当値では同レベルの濃度であった(図 6-11)。

PBDD/Fs 同族体組成は、排ガス処理前後で類似した組成であり、2004 年度 調査と同様に PBDDs よりも PBDFs の比率が高く、TeBDF、PeBDF 及び HxBDF が主要な同族体であった(図 6-12)。PBDD/Fs 異性体組成は、OBDD 及び OBDF が主要な異性体であった(図 6-13)。

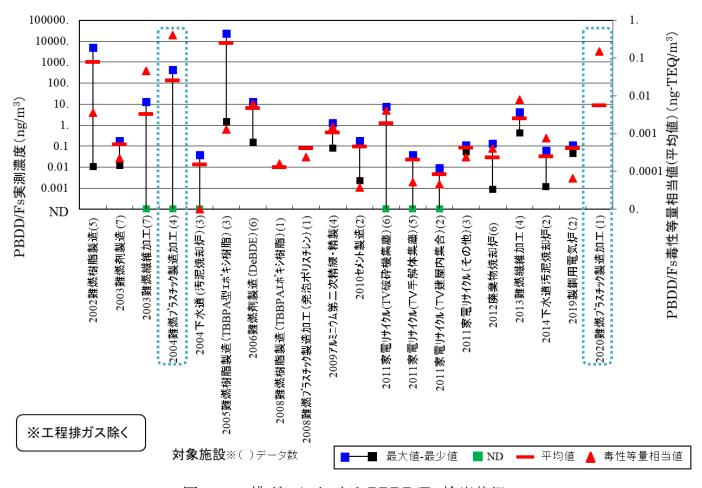


図 6-11 排ガスにおける PBDD/Fs 検出状況

表 6-5 同施設の難燃プラスチック製造加工施設における排ガス調査データ

	2004 年度	A-1 施設	2020年月	度 B 施設	
	排ガス(熱 処理炉)	排ガス(湿 式集塵機)	排ガス (処理前)	排ガス (処理後)	
PBDD/Fs 実測濃度 (ng/m³)	7,100	21	21	8.4	
PBDD/Fs 毒性等量相当値 (ng-TEQ/m³)	33	0.15	0.31	0.15	
PCDD/Fs/Co-PCB 実測濃度(ng/m³)	13	3.5	0.30	0.11	
PCDD/Fs/Co-PCB 毒性等量值 (ng-TEQ/m³)	0.16	0.0084	0.0031	0.00090	
PBDEs 実測濃度 (ng/m³)	2,100,000	13,000	350	77	
TBBPA 実測濃度(ng/m³)	12	4.5	ND	ND	
HBCDs 実測濃度 (ng/m³)	790	18	ND	ND	
PBPhs 実測濃度(ng/m³)	未測定	未測定	14,000	1,000	
DBDPE 実測濃度 (ng/m³)	未測定	未測定	200,000	12,000	

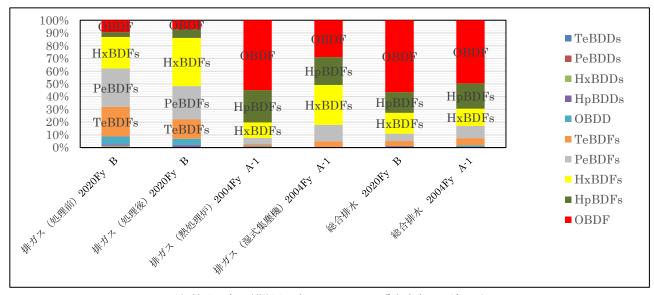


図 6-12 PBDD/Fs 同族体組成 (難燃プラスチック製造加工施設)

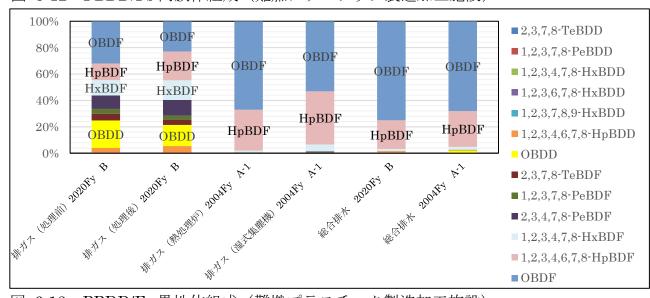


図 6-13 PBDD/Fs 異性体組成 (難燃プラスチック製造加工施設)

b. PCDD/Fs, Co-PCB

PCDD/Fs 及び Co-PCB 実測濃度は、処理前の排ガス 0.30 ng/m^3 、処理後の排ガス 0.11 ng/m^3 であった。毒性等量値 (ND=0)は、排ガス処理前の排ガス $0.0031 \text{ ng-TEQ/m}^3$ 、処理後の排ガス $0.00090 \text{ ng-TEQ/m}^3$ であった。2004 年度調査の過去データと比較すると、1 桁低い濃度レベルであった (表 6-5)。

c. PBDEs

PBDEs 実測濃度は、処理前の排ガス 350 ng/m^3 、処理後の排ガス 77 ng/m^3 であった。2004 年度調査の過去データと比較すると、 $3\sim4$ 桁低い濃度レベルであった(表 6-5)。

PBDEs 同族体組成は、DeBDE が約 85%を占めた(図 6-14)。DeBDE 以外の PBDEs 異性体組成では、#15-DiBDE、#33/#28/#16-TrBDE、#47-TeBDE、#148/#154-HxBDEの比率が高かった(図 6-15)。

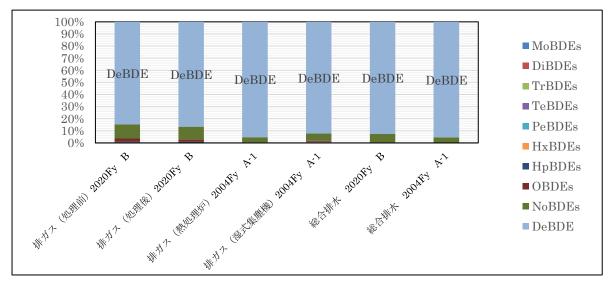


図 6-14 PBDEs 同族体組成 (難燃プラスチック製造加工施設)

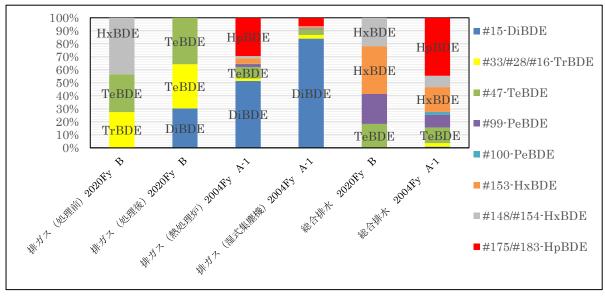


図 6-15 PBDEs 異性体組成(難燃プラスチック製造加工施設)(DeBDE 以外)

d. TBBPA

TBBPA 実測濃度は、処理前の排ガス ND ng/m^3 、処理後の排ガス ND ng/m^3 であった。2004 年度調査の過去データと比較すると、 $1\sim2$ 桁低い濃度レベルであった(表 6-5)。

e. HBCDs

HBCDs 実測濃度は、処理前の排ガス ND ng/m^3 、処理後の排ガス ND ng/m^3 であった。2004 年度調査の過去データと比較すると、 $2\sim3$ 桁低い濃度レベルであった(表 6-5)。

f. PBPhs

PBPhs 実測濃度は、処理前の排ガス 14,000 ng/m³、処理後の排ガス 1,000 ng/m³であった。

PBPhs 異性体組成は、排ガスでは低臭素化体の 2-MoBPh 及び 3/4-MoBPh が約 8~9 割を占めていた(図 6-16)。

g. DBDPE

DBDPE 実測濃度は、処理前の排ガス 200,000 ng/m³、処理後の排ガス 12,000 ng/m³であった。

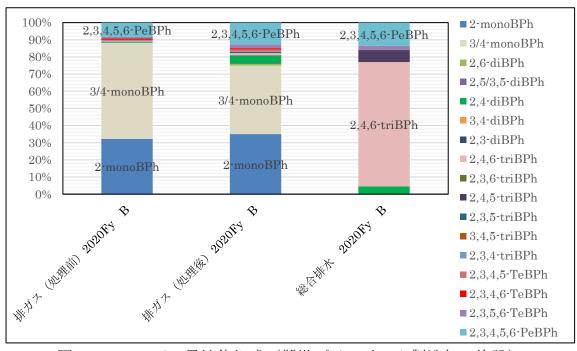


図 6-16 PBPhs 異性体組成 (難燃プラスチック製造加工施設)

(2) 排出水

a. PBDD/Fs

総合排水の PBDD/Fs 実測濃度は 920 pg/L であり、毒性等量相当値(ND=0)は 3.1 pg-TEQ/L であった。総合排水中の PBDD/Fs 実測濃度レベルは、同

施設の 2004 年度調査データと比較すると、約 70%低い濃度レベルであった(表 6-6)。

PBDD/Fs 同族体組成は、前回調査時の排水とほぼ同様な組成であり、2004年度調査と同様に PBDDs よりも PBDFs の比率が高く、HpBDF 及び OBDFが主要な同族体であった(図 6-12)。PBDD/Fs 異性体組成は、1,2,3,4,6,7,8-HpBDF 及び OBDF が主要な異性体であった(図 6-13)。

表 6-6 同施設の難燃プラスチック製造加工施設における総合排水調査データ比較

	2004 年度 A-1 施設	2020 年度 B 施設
	総合排水	総合排水
PBDD/Fs 実測濃度 (pg/L)	3,000	920
PBDD/Fs 毒性等量相当値(pg-TEQ/L)	14	3.1
PCDD/Fs/Co-PCB 実測濃度 (pg/L)	220	46
PCDD/Fs/Co-PCB 毒性等量値(pg-TEQ/L)	0.76	0.0024
PBDEs 実測濃度 (ng/L)	4,200	250
TBBPA 実測濃度(ng/L)	1.4	1.6
HBCDs 実測濃度 (ng/L)	5.0	ND
PBPhs 実測濃度(ng/L)	未測定	12
DBDPE 実測濃度(ng/L)	未測定	12,000

b. PCDD/Fs 及び Co-PCB

総合排水の PCDD/Fs 及び Co-PCB 実測濃度は 46 pg/L であり、毒性等量相当値 (ND=0)は 0.0024 pg-TEQ/L であった。総合排水中の PCDD/Fs 及び Co-PCB 濃度レベルは、同施設の 2004 年度調査データと比較すると、1 桁低い濃度レベルであった(表 6-6)。

c. PBDEs

総合排水の PBDEs 実測濃度は 250 ng/L であった。総合排水中の PBDEs 濃度レベルは、同施設の 2004 年度調査データと比較すると、1 桁低い濃度レベルであった(表 6-6)。

d. TBBPA

総合排水の TBBPA 実測濃度は、1.6 ng/L であった。総合排水中の TBBPA 濃度レベルは、同施設の 2004 年度調査データと比較すると、ほぼ同程度の濃度レベルあった(表 6-6)。

e. HBCDs

総合排水のHBCDs 実測濃度は、ND ng/L であった。総合排水中のHBCDs 濃度レベルは、同施設の 2004 年度調査データと比較すると、1 桁低い濃度レベルあった(表 6-6)。

f. PBPhs

総合排水の PBPhs 実測濃度は、12 ng/L であった。PBPhs 異性体組成では、2,4,6-TrBPh が主要な異性体であった(図 6-16)。

g. DBDPE

総合排水の DBDPE 実測濃度は、12,000 ng/L であった。

(3) 考察

本施設では、過去 DeBDE を使用して、難燃プラスチック加工製品を製造して おり、2018 年 4 月から化審法により DeBDE は使用禁止となり、代替物質は DBDPE になっていた。

調査の結果、処理後排ガス及び未処理排水中の PBDD/Fs 実測濃度は、前回調査と比較して、やや低くなっており、PBDD/Fs 毒性等量相当値では、排ガスではほぼ同レベル、排水では約 80%低い濃度レベルであった。前回と製造工程はほぼ変化ないことから、DeBDE から DBDPE の代替効果によるもの推察された。排ガスから低臭素化体の PBDFs が検出されており、DBDPE 使用による熱工程における PBDD/Fs の排出も注視する必要がある。

排ガス処理設備が前回調査時から変更となっており、排ガス処理設備の処理 前後の排ガス濃度から PBDD/Fs 除去率を算出し比較した結果を表 6-7 に示 す。表 6-7 から、湿式集塵機の方の除去率が高い結果となった。2004 年度の湿 式集塵機処理の方の除去率が高い結果の要因は、処理前の排ガスは熱処理炉 の上部ダクトに吸引される排ガスを直接採取しており、設備構造上、排ガス量が 測定できなかったため、湿式集塵機出口の排ガス量と同量と仮定して計算した結 果であるため、見た目の除去率が上がっているためだと考えられる。

表 6-7 排ガス処理装置における除去率(%)の比較

	2004 年度 A-1 施設	2020 年度 B 施設
	湿式集塵機	蓄熱燃焼式
PBDD/Fs 実測濃度 (ng/m³)	99.7 %	60.0 %
PBDD/Fs 毒性等量相当値(ng-TEQ/m³)	99.5 %	51.6~%
PCDD/Fs/Co-PCB 実測濃度 (ng/m³)	73.1 %	63.3 %
PCDD/Fs/Co-PCB 毒性等量値 (ng-TEQ/m³)	94.8 %	70.9 %
PBDEs 実測濃度 (ng/m³)	99.4 %	78.0 %
DBDPE 実測濃度 (ng/m³)	未測定	94.0 %
PBPh 実測濃度(ng/m³)	未測定	92.8 %

別表 - 1

調査結果(個別結果)

調査結果

①排出水

表 1 排出水及び返送汚泥中のPBDD/Fs分析結果(実測濃度) (pg/L)

表 1 所由小灰 0 这起的化 1		A施設	10	B施設
物質名	工程水 (原水槽)	総合排水 (処理後)	返送汚泥	総合排水 (未処理排 水)
2,3,7,8-TeBDD	ND	ND	ND	ND
TeBDDs	780	41	99000	1.9
1,2,3,7,8-PeBDD	ND	ND	ND	ND
PeBDDs	ND	ND	450	ND
1,2,3,4,7,8-HxBDD	ND	ND	ND	ND
1,2,3,6,7,8-HxBDD	ND	ND	ND	ND
1,2,3,7,8,9-HxBDD	ND	ND	ND	ND
HxBDDs	ND	4.7	4100	ND
1,2,3,4,6,7,8-HpBDD	ND	25	ND	9
HpBDDs	ND	25	180000	9
OBDD	16000	240	940000	ND
Total PBDDs	17000	310	1200000	11
2,3,7,8-TeBDF	17	1.9	840	0.5
TeBDFs	1300	150	82000	37
1,2,3,7,8-PeBDF	55	1.9	1100	1
2,3,4,7,8-PeBDF	29	3.3	1800	ND
PeBDFs	1900	310	120000	53
1,2,3,4,7,8-HxBDF	160	25	17000	12
HxBDFs	3100	830	460000	150
1,2,3,4,6,7,8-HpBDF	9200	560	910000	150
HpBDFs	9200	560	910000	150
OBDF	200000	2200	3800000	520
Total PBDFs	210000	4000	5400000	910
Total (PBDDs+PBDFs)	230000	4400	6600000	920

表 2 排出水及び返送汚泥中のPBDD/Fs分析結果(毒性等量相当値) (pg-TEQ/L)

		A 施設					
物質名	工程水 (原水槽)	総合排水 (処理後)	返送汚泥	総合排水 (未処理排 水)			
2,3,7,8-TeBDD	0.1	0.02	1	0.1			
1,2,3,7,8-PeBDD	0.3	0.05	3	0.3			
1,2,3,4,7,8-HxBDD	0.15	0.03	1.5	0.15			
1,2,3,6,7,8-HxBDD	0.2	0.035	1.5	0.2			
1,2,3,7,8,9-HxBDD	0.15	0.025	1.5	0.15			
1,2,3,4,6,7,8-HpBDD	0.01	0.25	0.1	0.09			
OBDD	4.7	0.072	280	0.0009			
2,3,7,8-TeBDF	1.7	0.19	84	0.05			
1,2,3,7,8-PeBDF	1.7	0.057	32	0.04			
2,3,4,7,8-PeBDF	8.6	0.98	540	0.15			
1,2,3,4,7,8-HxBDF	16	2.5	1700	1.2			
1,2,3,4,6,7,8-HpBDF	92	5.6	9100	1.5			
OBDF	60	0.66	1100	0.16			
Total TEQ(下限×1/2)	190	10	13000	4.2			
Total TEQ (ND=0)	180	10	13000	3.1			

^{*}毒性等量相当値は、WHO-TEF(2006)によるPCDD/FsのTEFに準じて算出した参考値である。

^{*}毒性等量相当値は、検出下限未満を検出下限の1/2として算出した値である。

表 3 排出水及び返送汚泥中のPCDD/Fs・Co-PCB分析結果(実測濃度) (pg/L)

公 6 好出水灰 6 超起 7 7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0				B施設		
11 50 5			A 施設			
	Į.	物質名	工程水	総合排水	返送汚泥	総合排水 (未処理排
			(原水槽)	(処理後)	2221770	水)
	2,3,7,8-TeC	מתי	ND	ND	ND	ND
	TeCDDs	DD	1.5	0.33	55	0.3
	1,2,3,7,8-Pe	CDD	ND	ND	ND	ND
	PeCDDs	сорр	ND	ND	15	ND
	1,2,3,4,7,8	П"CDD	ND	ND ND	ND	ND
$^{\rm s}$	1,2,3,4,7,8		ND	ND	ND	ND
PCDDs						
P(1,2,3,7,8,9	нхсии	ND	ND	ND	ND
	HxCDDs	o II. CDD	4.0	0.50	39	0.4
	1,2,3,4,6,7,	8-НрСДД	6.0	ND	34	ND
	HpCDDs		8.1	ND	83	0.6
	OCDD		18	1.5	450	3.1
	Total PCDI		32	2.3	640	4.4
	2,3,7,8-TeO	CDF	ND	ND	ND	ND
	TeCDFs		ND	ND	59	ND
	1,2,3,7,8-Pe		ND	ND	ND	ND
	2,3,4,7,8-Pe	eCDF	ND	ND	ND	ND
	PeCDFs		ND	ND	ND	ND
	1,2,3,4,7,8-	HxCDF	ND	ND	ND	ND
$^{\rm E}_{\rm s}$	1,2,3,6,7,8-	HxCDF	ND	ND	ND	ND
PCDFs	1,2,3,7,8,9-	HxCDF	ND	ND	ND	ND
P(2,3,4,6,7,8+	-1,2,3,6,8,9-HxCDF	ND	ND	ND	ND
	HxCDFs		ND	ND	13	ND
	1,2,3,4,6,7,	8-HpCDF	ND	ND	ND	ND
	1,2,3,4,7,8,	9-HpCDF	ND	ND	ND	ND
	HpCDFs		ND	ND	ND	ND
	OCDF		220	ND	140	ND
	Total PCDI	Fs	220	ND	210	ND
, r	Total PCDD/F	s	250	2.3	850	4.4
	3,4,4',5-TeO	CB(#81)	0.65	ND	ND	0.11
	3,3',4,4'-Te	CB(#77)	1400	1.6	2000	3.2
	3,3',4,4',5-P		9.6	ND	ND	ND
		'-HxCB(#169)	8.3	ND	13	ND
	Total non-c		1400	1.6	2000	3.3
	2',3,4,4',5-F		6.7	ND	97	ND
CB	2,3',4,4',5-F		56	7.2	300	21
Co-P(2,3,3',4,4'-F		19	3.3	110	9.3
ŭ	2,3,4,4',5-P		4.0	ND	ND	0.94
		'-HxCB(#167)	1.7	ND	19	1.4
		-HxCB(#156)	3.1	0.49	22	3.8
		'-HxCB(#157)	0.78	ND	7	1.0
		,5'-HpCB(#189)	ND	ND	ND	0.28
	Total mono		92	11	550	38
H	Total Co-PCB	01010 010	1500	13	2600	41
_	Total PCDD/F	s · Co-PCB	1700	15	3400	46
H	I COMIT CODIT	Total PCDD/Fs	0.13	0.00045	0.51	0.00093
1	毒性等量	Total Co-PCB	1.3	0.00049	0.61	0.00093
	pg-TEQ/L)	Total PCDD/Fs •	1.0	0.00043	0.01	
1	he indini	Co-PCB	1.5	0.00094	1.1	0.0024
<u>v</u> ≡	集性等量は、検	COTCB	ア管山 こたはつ	. サ		

^{*}毒性等量は、検出下限未満を「0」として算出した値である。

表 4 排出水及び返送汚泥中のPBDEs,DBDPE分析結果(実測濃度) (ng/L)

		A 施設				
物質名	工程水 (原水槽)	総合排水 (処理後)	返送汚泥	総合排水 (未処理排 水)		
MoBDEs	ND	ND	13	ND		
4,4'-DiBDE(#15)	0.34	0.0058	25	ND		
DiBDEs	1.1	0.0093	31	ND		
2',3,4/2,4,4'/2,2',3-TrBDE(#33/#28/#16)	0.41	0.0039	7.7	ND		
TrBDEs	4.4	0.028	48	ND		
2,2',4,4'-TeBDE(#47)	1.5	0.035	75	0.016		
TeBDEs	15	0.22	470	0.016		
2,2',4,4',5-PeBDE(#99)	3.1	0.086	210	0.020		
2,2',4,4',6-PeBDE(#100)	0.29	0.0070	13	ND		
PeBDEs	15	0.27	420	0.020		
2,2',4,4',5,5'-HxBDE(#153)	16	0.47	1200	0.032		
2,2',4,4',5,6'-HxBDE(#154)	11	0.18	340	0.019		
HxBDEs	43	0.77	2100	0.052		
2,2',3,3',4,5',6/2,2',3,4,4',5',6-HpBDE(#175/#183)	6.8	0.57	2300	ND		
HpBDEs	14	0.75	2800	ND		
OBDEs	430	36	62000	1.2		
NoBDEs	8700	1100	3000000	17		
DeBDE	190000	37000	110000000	230		
Total PBDEs	200000	38000	110000000	250		
DBDPE	14000000	17000	38000000	12000		

表 5 排出水及び返送汚泥中のHBCDs,TBBPA及びPBPhs分析結果(実測濃度) (ng/L)

		B 施設		
物質名	工程水 (原水槽)	総合排水 (処理後)	返送汚泥	総合排水 (未処理排 水)
α-HBCD	16	0.19	210	ND
в-нвср	2.9	ND	8	ND
y-HBCD	160	ND	75	ND
Total HBCDs	180	0.19	290	ND
TBBPA	140	12	13000	1.6
2-MoBPh	4	ND	ND	1.5
3/4-MoBPh	ND	ND	ND	0.9
MoBPhs	4	ND	ND	2.4
2,6-DiBPh	ND	ND	ND	1.2
2,5/3,5-DiBPh	ND	ND	ND	ND
2,4-DiBPh	ND	0.18	ND	1.4
3,4-DiBPh	ND	ND	ND	ND
2,3-DiBPh	ND	ND	ND	ND
DiBPhs	ND	0.18	ND	2.6
2,4,6-TrBPh	33	2.9	6000	6.8
2,3,6-TrBPh	ND	ND	ND	ND
2,4,5-TrBPh	ND	0.28	ND	ND
2,3,5-TrBPh	ND	ND	ND	ND
3,4,5-TrBPh	ND	ND	ND	ND
2,3,4-TrBPh	ND	ND	ND	ND
TrBPhs	33	3.2	6000	6.8
2,3,4,5-TeBPh	7	ND	ND	ND
2,3,4,6-TeBPh	7	ND	ND	0.5
2,3,5,6-TeBPh	50	0.10	ND	ND
TeBPhs	64	0.10	ND	0.5
2,3,4,5,6-PeBPh	300	0.54	3300	ND
Total PBPhs	400	4.0	9300	12

表 6 汚泥中のPBDD/Fs分析結果(実測濃度) (ng/g-dry)

双 6 行作中のI DDD/ITS///	
	A 施設
物質名	脱水汚泥
2,3,7,8-TeBDD	ND
${ m TeBDDs}$	2.5
1,2,3,7,8-PeBDD	ND
PeBDDs	0.021
1,2,3,4,7,8-HxBDD	ND
1,2,3,6,7,8-HxBDD	ND
1,2,3,7,8,9-HxBDD	ND
${ m HxBDDs}$	ND
1,2,3,4,6,7,8-HpBDD	ND
$_{ m HpBDDs}$	ND
OBDD	3.3
Total PBDDs	5.9
2,3,7,8-TeBDF	0.0062
${ m TeBDFs}$	0.32
1,2,3,7,8-PeBDF	0.017
2,3,4,7,8-PeBDF	0.0056
PeBDFs	0.44
1,2,3,4,7,8-HxBDF	0.091
HxBDFs	1.0
1,2,3,4,6,7,8-HpBDF	16
HpBDFs	16
OBDF	120
Total PBDFs	130
Total (PBDDs+PBDFs)	140

表 7 汚泥中のPBDD/Fs分析結果(毒性等量相当値) (ng-TEQ/g-dry)

	A 施設
物質名	脱水汚泥
2,3,7,8-TeBDD	0.00005
1,2,3,7,8-PeBDD	0.00015
1,2,3,4,7,8-HxBDD	0.00005
1,2,3,6,7,8-HxBDD	0.0001
1,2,3,7,8,9-HxBDD	0.00005
1,2,3,4,6,7,8-HpBDD	0.000005
OBDD	0.0010
2,3,7,8-TeBDF	0.00062
1,2,3,7,8-PeBDF	0.00051
2,3,4,7,8-PeBDF	0.0017
1,2,3,4,7,8-HxBDF	0.0091
1,2,3,4,6,7,8-HpBDF	0.16
OBDF	0.035
Total TEQ(下限×1/2)	0.21
Total TEQ (ND=0)	0.21

^{*}毒性等量相当値は、WHO-TEF(2006)によるPCDD/FsのTEFに準じて算出した参考値である。

^{*}毒性等量相当値は、検出下限未満を検出下限の1/2として算出した値である。

表 8 汚泥中のPCDD/Fs・Co-PCB分析結果(実測濃度) (ng/g-dry)

10	1.71/17.1.451	CDD/FS COTCD/J///	A 施設
			A JULIX
		物質名	时本注定
			脱水汚泥
-	0.07.070.0	TDD.	ND
	2,3,7,8-TeO TeCDDs	עעע	ND 0.0018
l ⊦		°CDD	0.0012 ND
	1,2,3,7,8-P	есии	
l	PeCDDs	II CDD	0.0004
$\stackrel{\mathbf{s}}{\sim}$	1,2,3,4,7,8		ND
PCDDs	1,2,3,6,7,8		ND
\sim	1,2,3,7,8,9	HXCDD	ND
-	HxCDDs	o II. CDD	0.0039
	1,2,3,4,6,7,	8-нрСDD	0.0032
╽┢	HpCDDs		0.0050
I⊨	OCDD	D	0.013
\vdash	Total PCD		0.023
I ⊦	2,3,7,8-TeO	J D F	ND
I ⊦	TeCDFs 1,2,3,7,8-P	- CDE	ND
	_ , , , ,		ND
l H	2,3,4,7,8-P	eCDF	ND
-	PeCDFs	II ODE	ND
	1,2,3,4,7,8		ND
PCDFs	1,2,3,6,7,8		ND
اك[⊢	1,2,3,7,8,9		ND
l"⊦		+1,2,3,6,8,9-HxCDF	ND
l H	HxCDFs	o II. ODE	ND
	1,2,3,4,6,7,		ND
	1,2,3,4,7,8,	э-прсиг	ND
l H	HpCDFs		ND
l ⊨	OCDF	D.	0.083
T	Total PCD otal PCDD/F		0.083
\perp			0.11 ND
l	3,4,4',5-Teo 3,3',4,4'-Te		
l	. , , ,	PeCB(#126)	0.76 0.0050
l H			
l ⊨	Total non-	S'-HxCB(#169)	0.0051
 		PeCB(#123)	0.77 0.0039
CB		PeCB(#118)	0.0039
Co-P		PeCB(#105)	0.0084
ರ ರ		PeCB(#114)	0.0015
		5'-HxCB(#167)	0.0013
		6-HxCB(#156)	0.0012
		5'-HxCB(#157)	0.0022
I ⊦		5,5'-HpCB(#189)	ND
I ⊨		o-ortho CBs	0.042
Т	otal Co-PCB	7 01 III 0 0 D8	0.042
	otal PCDD/F	's · Co-PCB	0.92
	own i ODD/I	Total PCDD/Fs	0.000061
3	毒性等量	Total Co-PCB	0.00073
	-TEQ/g-dry)	Total PCDD/Fs ·	
,s	-24/8 (11 <i>y</i>)	Co-PCB	0.00079
Щ.	[나사 사 티) 그 나		fata a taran a sa a tara

^{*}毒性等量は、検出下限未満を「0」として算出した値である。

表 9 汚泥中のPBDEs,DBDPE分析結果(実測濃度) (ng/g-dry)

	A 施設
物質名	脱水汚泥
MoBDEs	ND
4,4'-DiBDE(#15)	0.50
DiBDEs	1.2
2',3,4/2,4,4'/2,2',3-TrBDE(#33/#28/#16)	0.27
TrBDEs	2.6
2,2',4,4'-TeBDE(#47)	0.88
TeBDEs	9.9
2,2',4,4',5-PeBDE(#99)	2.4
2,2',4,4',6-PeBDE(#100)	0.19
PeBDEs	9.5
2,2',4,4',5,5'-HxBDE(#153)	11
2,2',4,4',5,6'-HxBDE(#154)	6.6
HxBDEs	30
2,2',3,3',4,5',6/2,2',3,4,4',5',6-HpBDE(#175/#183)	5.2
HpBDEs	13
OBDEs	490
NoBDEs	8600
DeBDE	210000
Total PBDEs	220000
DBDPE	5300000

表 10 汚泥中のHBCDs,TBBPA及びPBPhs分析結果(実測濃度) (ng/g-dry)

	A 施設
物質名	脱水汚泥
α-HBCD	4.8
в-нвср	1.0
y-HBCD	75
Total HBCDs	81
TBBPA	150
2-MoBPh	6
3/4-MoBPh	ND
MoBPhs	6
2,6-DiBPh	ND
2,5/3,5-DiBPh	ND
2,4-DiBPh	5
3,4-DiBPh	ND
2,3-DiBPh	ND
DiBPhs	5
2,4,6-TrBPh	66
2,3,6-TrBPh	ND
2,4,5-TrBPh	ND
2,3,5-TrBPh	ND
3,4,5-TrBPh	ND
2,3,4-TrBPh	ND
TrBPhs	66
2,3,4,5-TeBPh	ND
2,3,4,6-TeBPh	ND
2,3,5,6-TeBPh	7
TeBPhs	7
2,3,4,5,6-PeBPh	38
Total PBPhs	120

表 11 排出ガス中のPBDD/Fs分析結果(実測濃度) (ng/m³)

表 11 排出ガス中のPBDD		
	В	施設
物質名	排ガス (処理前)	排ガス (処理後)
2,3,7,8-TeBDD	ND	ND
TeBDDs	0.035	0.022
1,2,3,7,8-PeBDD	ND	ND
PeBDDs	0.098	ND
1,2,3,4,7,8-HxBDD	ND	ND
1,2,3,6,7,8-HxBDD	ND	ND
1,2,3,7,8,9-HxBDD	ND	ND
${ m HxBDDs}$	0.17	ND
1,2,3,4,6,7,8-HpBDD	0.25	0.14
$_{ m HpBDDs}$	0.25	0.14
OBDD	1.3	0.42
Total PBDDs	1.9	0.57
2,3,7,8-TeBDF	0.31	0.099
${ m TeBDFs}$	5.0	1.3
1,2,3,7,8-PeBDF	0.24	0.085
2,3,4,7,8-PeBDF	0.63	0.31
PeBDFs	6.4	2.2
1,2,3,4,7,8-HxBDF	0.73	0.39
HxBDFs	5.3	3.2
1,2,3,4,6,7,8-HpBDF	0.79	0.57
HpBDFs	0.79	0.57
OBDF	2.0	0.60
Total PBDFs	19	7.8
Total (PBDDs+PBDFs)	21	8.4

表 12 排出ガス中のPBDD/Fs分析結果(毒性等量相当値) (ng-TEQ/m³)

	B :	施設
物質名	排ガス (処理前)	排ガス (処理後)
2,3,7,8-TeBDD	0.0005	0.0005
1,2,3,7,8-PeBDD	0.0015	0.0015
1,2,3,4,7,8-HxBDD	0.001	0.0005
1,2,3,6,7,8-HxBDD	0.001	0.001
1,2,3,7,8,9-HxBDD	0.0005	0.0005
1,2,3,4,6,7,8-HpBDD	0.0025	0.0014
OBDD	0.00040	0.00012
2,3,7,8-TeBDF	0.031	0.0099
1,2,3,7,8-PeBDF	0.0073	0.0025
2,3,4,7,8-PeBDF	0.19	0.092
1,2,3,4,7,8-HxBDF	0.073	0.039
1,2,3,4,6,7,8-HpBDF	0.0079	0.0057
OBDF	0.00060	0.00018
Total TEQ(下限×1/2)	0.32	0.16
Total TEQ (ND=0)	0.31	0.15

^{*}毒性等量相当値は、WHO-TEF(2006)によるPCDD/FsのTEFに準じて算出した参考値である。

^{*}毒性等量相当値は、検出下限未満を検出下限の1/2として算出した値である。

表 13 排出ガス中のPCDD/Fs・Co-PCB分析結果(実測濃度) (ng/m³)

	13 HHNAHORODDIES COTO		色 設
1	物質名	LII. 18	₩.28
	物貨名	排ガス (処理前)	排ガス (処理後)
	2,3,7,8-TeCDD	ND	ND
	TeCDDs	ND	ND
	1,2,3,7,8-PeCDD	ND	ND
	PeCDDs	0.006	0.001
70	1,2,3,4,7,8-HxCDD	ND	ND
PCDDs	1,2,3,6,7,8-HxCDD	ND	ND
CI	1,2,3,7,8,9-HxCDD	ND	ND
H	HxCDDs	ND	ND
	1,2,3,4,6,7,8-HpCDD	ND	ND
	HpCDDs	ND	ND
	OCDD	0.023	0.004
	Total PCDDs	0.029	0.005
	2,3,7,8-TeCDF	0.0008	0.0009
	TeCDFs	0.022	0.025
	1,2,3,7,8-PeCDF	ND	ND
	2,3,4,7,8-PeCDF	0.002	0.001
	PeCDFs	0.024	0.011
	1,2,3,4,7,8-HxCDF	0.0032	0.0013
ŝ	1,2,3,6,7,8-HxCDF	0.0037	0.0014
PCDFs	1,2,3,7,8,9-HxCDF	ND	ND
P(2,3,4,6,7,8+1,2,3,6,8,9-HxCDF	0.013	0.002
	HxCDFs	0.050	0.009
	1,2,3,4,6,7,8-HpCDF	0.023	ND
	1,2,3,4,7,8,9-HpCDF	0.0040	ND
	HpCDFs	0.046	ND
	OCDF	0.062	0.005
	Total PCDFs	0.20	0.049
7	Total PCDD/Fs	0.23	0.054
	3,4,4',5-TeCB(#81)	0.0009	0.0007
	3,3',4,4'-TeCB(#77)	0.0082	0.0058
	3,3',4,4',5-PeCB(#126)	ND	ND
	3,3',4,4',5,5'-HxCB(#169)	0.0007	ND
	Total non-ortho CBs	0.0098	0.0064
В	2',3,4,4',5-PeCB(#123)	ND	ND
	2,3',4,4',5-PeCB(#118)	0.037	0.035
Co-PC	2,3,3',4,4'-PeCB(#105)	0.016	0.012
ľ	2,3,4,4',5-PeCB(#114)	ND	ND
	2,3',4,4',5,5'-HxCB(#167)	0.001	ND
	2,3,3',4,4',5-HxCB(#156)	0.0020	0.0018
	2,3,3',4,4',5'-HxCB(#157)	0.0010	ND
	2,3,3',4,4',5,5'-HpCB(#189)	ND	ND
H	Total mono-ortho CBs	0.057	0.049
_	Total Co-PCB	0.067	0.056
\vdash	Total PCDD/Fs · Co-PCB	0.30	0.11
1	Total PCDD/Fs	0.0031	0.00089
	毒性等量 Total Co-PCB	0.000024	0.0000023
(1	ng-TEQ/m ³) Total PCDD/Fs ·	0.0031	0.00090
<u></u>	【 Co-PCB 舞性等量は、検出下限未満を「0」とし	て答山したはつ	. よ フ

^{*}毒性等量は、検出下限未満を「0」として算出した値である。

表 14 排出ガス中のPBDEs,DBDPE分析結果(実測濃度) (ng/m³)

X 14		施設
物質名	排ガス (処理前)	排ガス (処理後)
MoBDEs	ND	ND
4,4'-DiBDE(#15)	ND	0.017
DiBDEs	0.09	0.017
2',3,4/2,4,4'/2,2',3-TrBDE(#33/#28/#16)	0.2	0.02
TrBDEs	0.8	0.02
2,2',4,4'-TeBDE(#47)	0.2	0.02
TeBDEs	0.4	0.02
2,2',4,4',5-PeBDE(#99)	ND	ND
2,2',4,4',6-PeBDE(#100)	ND	ND
PeBDEs	ND	ND
2,2',4,4',5,5'-HxBDE(#153)	ND	ND
2,2',4,4',5,6'-HxBDE(#154)	0.3	ND
HxBDEs	0.3	ND
2,2',3,3',4,5',6/2,2',3,4,4',5',6-HpBDE(#175/#183)	ND	ND
HpBDEs	1.5	0.58
OBDEs	10	1.4
NoBDEs	41	8.2
DeBDE	300	66
Total PBDEs	350	77
DBDPE	200000	12000

表 15 排出ガス中のHBCDs,TBBPA及びPBPhs分析結果(実測濃度) (ng/m³)

表 15 折山ガヘ中のHBCDs, IBBFA及OFBFIIs 力析福未得		施設
物質名	排ガス (処理前)	排ガス (処理後)
α-HBCD	ND	ND
в-нвср	ND	ND
y-HBCD	ND	ND
Total HBCDs	ND	ND
TBBPA	ND	ND
2-MoBPh	4600	360
3/4-MoBPh	8000	410
MoBPhs	13000	770
2,6-DiBPh	11	9.5
2,5/3,5-DiBPh	14	2.8
2,4-DiBPh	56	46
3,4-DiBPh	ND	1.8
2,3-DiBPh	ND	1.2
DiBPhs	80	61
2,4,6-TrBPh	39	14
2,3,6-TrBPh	10	0.7
2,4,5-TrBPh	11	3.0
2,3,5-TrBPh	32	2.9
3,4,5-TrBPh	9	2.0
2,3,4-TrBPh	7	3.8
TrBPhs	110	26
2,3,4,5-TeBPh	63	9.3
2,3,4,6-TeBPh	110	7.8
2,3,5,6-TeBPh	120	23
TeBPhs	290	40
2,3,4,5,6-PeBPh	1200	130
Total PBPhs	14000	1000

別 図 - 1

調査施設概要

(製造工程フロー、排ガス・排水処理フロー、試料採取箇所)

調査施設概要(A施設)

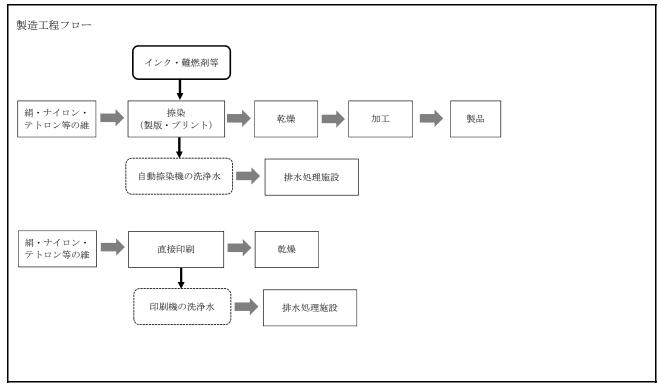


図-1 製造工程フロー

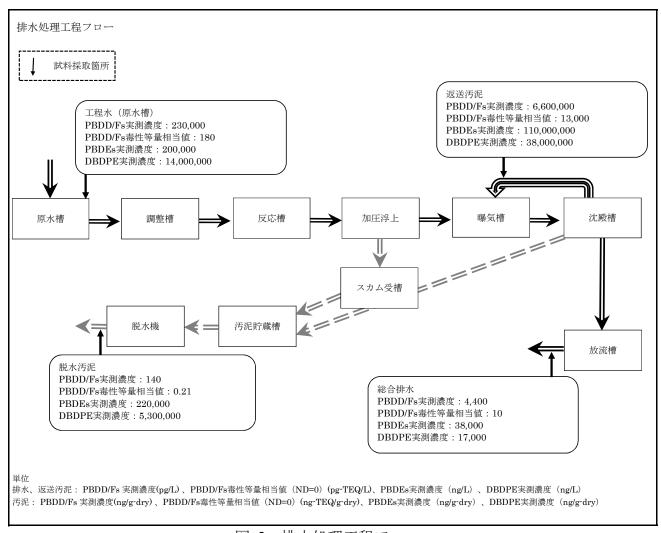
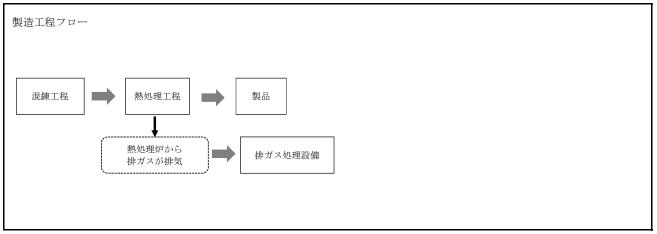



図-2 排水処理工程フロー

調查施設概要(B施設)

製造工程フロー 図-3

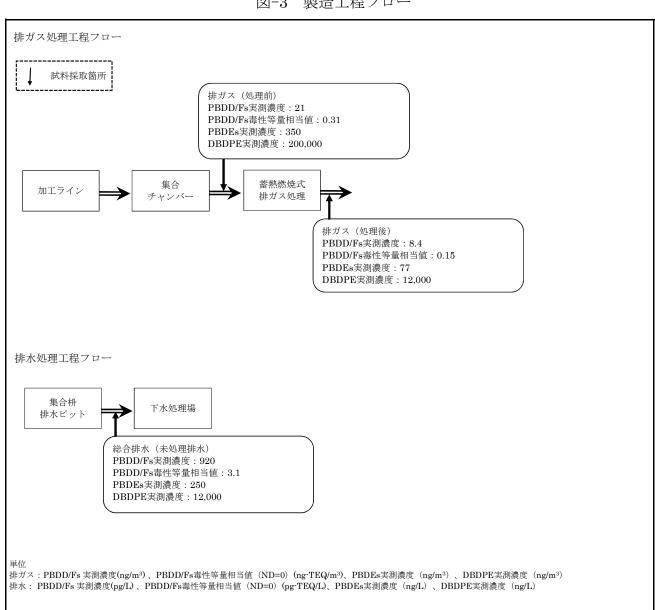


図-4 排ガス・排水処理工程フロー

別図-2

媒体別同族体組成

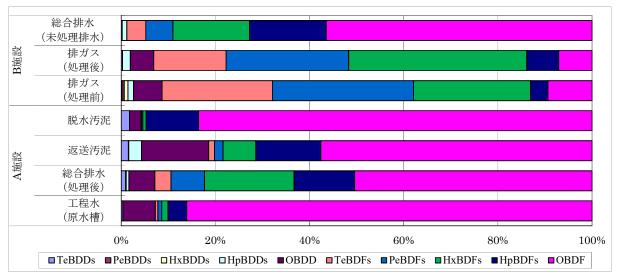


図 1 PBDD/Fs同族体組成(%)

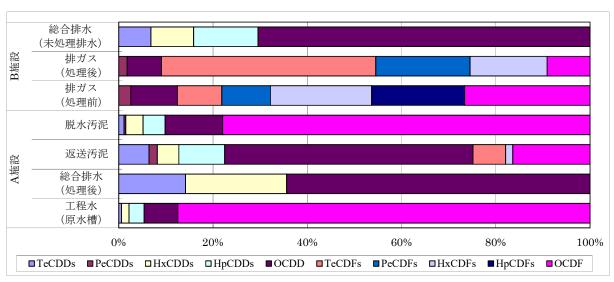


図 2 PCDD/Fs同族体組成 (%)

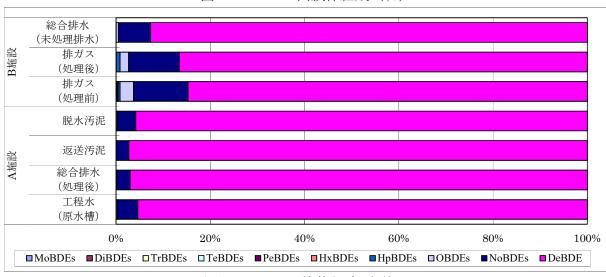


図3 PBDEs同族体組成(%)

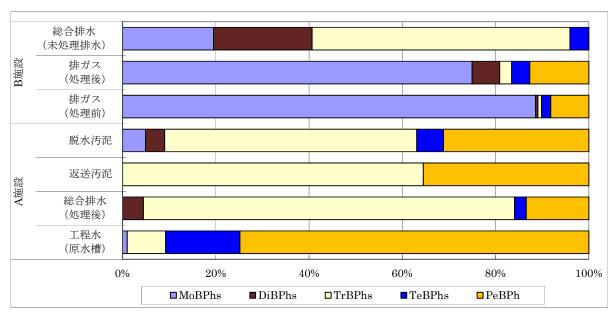


図4 PBPhs同族体組成(%)

別図-3

媒体別異性体組成

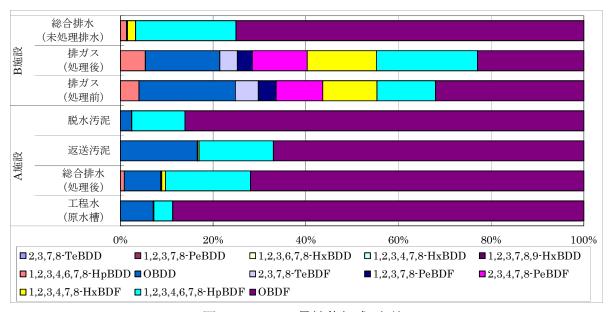


図 1 PBDD/Fs異性体組成(%)

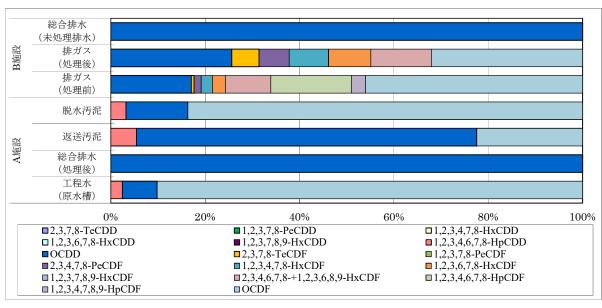


図 2 PCDD/Fs異性体組成 (%)

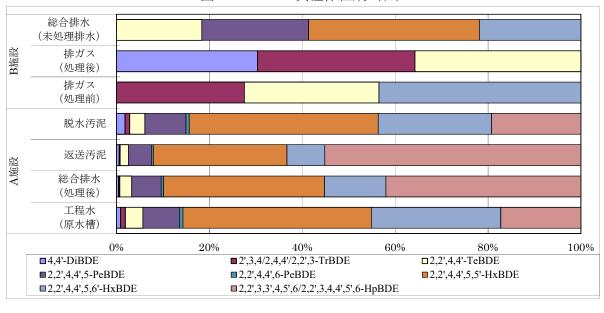


図3 PBDEs異性体組成 (%)

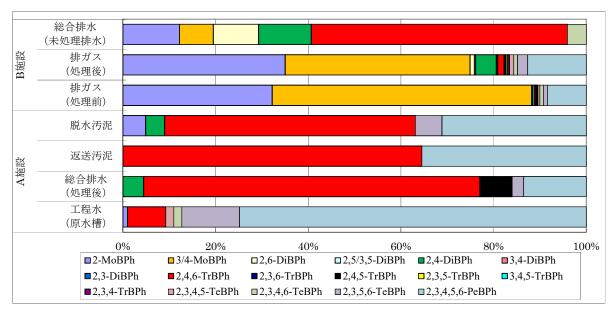


図4 PBPhs異性体組成 (%)

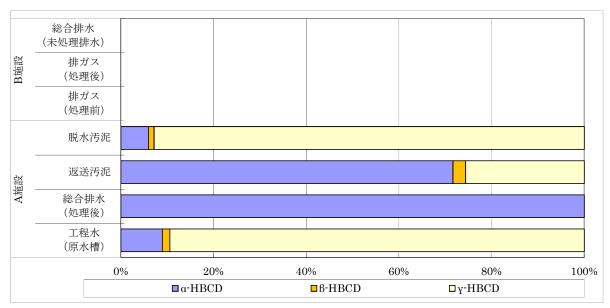


図5 HBCDs異性体組成 (%)

参考資料

国内の主な難燃剤需要量推移(推定)について

国内の主な臭素系難燃剤の需要推移(推定) (単位:t/年)

化 合 物	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
テトラブロモビスフェノールA(TBBPA)	12,000	14,000	18,000	20,000	23,000	24,500	23,000	22,000	24,000	30,000	29,000	31,000	29,500	31,000	32,300	27,300	31,000	32,000	35,000	30,000	29,000	25,000	22,500	17,000	18,000	16,200	15,000	14,000	14,000	14,000	11,000	12,000	12,000	10,000
デカブロモジフェニルエーテル(DeBDE)	3,000	4,000	5,000	6,000	10,000	9,800	6,300	5,800	5,500	4,900	4,200	4,450	4,000	3,800	2,800	2,500	2,200	2,200	2,000	1,800	1,700	1,700	1,600	1,300	1,100	990	990	900	800	700	500	100	0	0
オクタブロモジフェニルエーテル(OBDE)	500	1,000	1,100	1,100	1,100	1,500	1,100	900	500	300	280	250	75	75	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	-	_	_	_	_
テトラブロモジフェニルエーテル(TeBDE)	1,000	1,000	1,000	1,000	1,000	_	_	_	_	1	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	-	_	_	_	_
ヘキサブロモシクロドデカン(HBCD)	600	600	700	700	700	1,000	1,400	1,600	1,600	1,800	2,000	2,000	1,850	1,950	2,000	2,200	2,400	2,400	2,600	2,600	2,600	3,000	3,000	2,300	2,800	2,800	2,600	1,500	0	0	0	0	0	0
エチレンビス(テトラブロモフタルイミド)		400	600	600	1,000	1,200	1,300	1,300	2,500	2,500	2,500	2,500	2,000	2,000	2,000	1,750	1,500	1,500	1,500	1,500	1,500	1,500	1,300	1,000	1,000	1,000	900	900	900	900	900	900	900	900
トリブロモフェノール	100	250	450	450	450	1,500	2,000	2,700	3,500	4,000	4,100	4,300	4,300	4,300	4,300	3,600	3,800	4,150	4,150	4,150	4,000	3,500	3,150	2,600	2,700	2,400	2,000	2,000	2,000	2,000	2,000	2,400	2,500	2,400
ビス(トリブロモフェノキシエタン)	400	400	400	400	400	1,000	1,000	900	900	750	500	400	100	250	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
TBBPAポリカーボネートオリゴマー	_	_	_	_	_	2,500	2,500	2,500	2,500	2,750	3,000	3,000	3,000	2,800	2,900	1,800	2,500	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	2,500	2,500	2,500	2,500	2,000	2,200	2,200	2,000
ブロモポリスチレン						1,300	1,300	1,300	1,300	1,500	1,600	2,000	2,000	3,500	3,300	2,500	2,800	3,000	5,100	6,000	7,500	7,500	7,000	5,000	7,000	7,000	6,000	6,000	6,500	4,000	4,000	4,400	4,400	4,400
TBBPAエポキシオリゴマー	_	_	_	1,000	3,000	4,700	6,000	6,500	7,000	7,450	9,000	8,500	8,500	8,500	8,500	8,500	8,500	9,000	12,000	12,000	12,000	10,000	9,000	6,000	7,000	6,200	5,400	5,000	5,000	5,000	4,000	4,200	4,200	4,000
デカブロモジフェニルエタン	_	_	_	_	_	_	_	1,000	1,600	2,600	3,000	4,600	4,600	5,000	5,000	4,500	5,000	5,000	5,000	5,000	6,000	6,000	5,500	6,000	7,000	6,700	5,500	5,900	6,000	6,000	6,500	7,000	7,200	7,200
TBBPA-ビス(ジブロモプロピルエーテル)	_	_	_	_	_	_	_	_	_	_	_	700	1,750	1,750	2,000	1,000	1,350	1,200	1,000	900	800	800	700	490	490	490	1,000	1,500	1,500	1,500	1,200	1,300	1,300	1,200
ポリジブロモフェニルエーテル	100	170	200	_	_	_	_	_	200	200	400	400	800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ヘキサブロモベンゼン	_	_	_	_	_	_	_	_	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350
ペンタブロモベンジルポリアクリレート	_	160	160	_	_	_	_	_	_	_	_	-	_	_	1,000	550	800	1,000	1,200	1,200	1,400	1,400	1,400	980	1,000	1,200	1,080	1,080	1,100	1,100	1,100	1,100	1,100	1,000
臭素化芳香族トリアジン	_	_	_	_	_	_	_	_	_	_	_	-	_	_	800	1,000	1,100	900	1,000	1,000	1,800	2,000	2,000	2,500	2,250	1,500	1,000	1,200	1,200	1,200	1,200	1,000	1,000	1,000
臭素化ブタジエン・スチレン共重合	_	-	_	_	_	-		_	_	_	_	_	_	_		-		_	_	_	_	_	_	_	_	_	_	_	_	2,000	1,500	1,500	1,500	1,500
その他	2,300	-	_	_	_	-	-	_	_	_	_		_	-	-	-	-	_	_	_	_	-	_	_	_	-	_	_	_	_	-	_	_	_
숌 計	20,000	21,980	27,610	31,250	40,650	49,000	45,900	46,500	51,450	59,100	59,930	64,450	62,825	65,275	67,250	57,550	63,300	65,700	73,900	69,500	71,650	65,750	60,500	48,520	53,690	49,830	44,320	42,830	41,850	41,250	36,250	38,450	38,650	35,950

⁽注)TBBPAは他のTBBPA系難燃剤(TBBPAボリカーボネートオリゴマー、TBBPAエボキシオリゴマー、TBBPAピス(ジブロモブロビルエーテル))の 原料としても使用されるため、TBBPAの需要量には、TBBPA系難燃剤の原料分が含まれ、合計の需要量はその分ダブルカウントされている。 出典:化学工業日報社調査資料より作成

国内の主な塩素系・リン系・無機系難燃剤の需要推移(推定) (単位:t/年)

	化 合 物	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	塩素化パラフィン	4,000	4,000	4,500	4,500	4,500	4,500	4,500	4,300	4,300	4,300	4,300	4,300	4,300	4,300	4,300	4,300	4,300	4,300	4,300	4,300	4,300	4,300	4,300	4,000	4,000	4,000	4,000	4,000	4,000	4,000	3,500	3,500		
塩	パークロロシクロペンタデカン	300	400	400	400	400	600	600	600	600	600	660	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	_	- 1
素	テトラクロロ酸無水フタル酸	150	150	150	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	- 1
糸	クロレンド酸	300	300	300	300	300	300	300	300	300	300	300	300	390	300	300	300	300	300	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	- 1
	슴 計	4,750	4,850	5,350	5,200	5,200	5,400	5,400	5,200	5,200	5,200	5,260	5,200	5,290	5,200	5,200	5,200	5,200	5,200	4,900	4,900	4,900	4,900	4,900	4,600	4,600	4,600	4,600	4,600	4,600	4,600	4,100	4,100	-	-
	リン酸エスエル系	4,000	4,000	4,200	4,400	4,400	4,400	4,400	4,400	4,400	4,000	4,400	4,600	22,000	22,000	22,000	20,000	20,000	20,000	24,000	24,000	24,000	25,000	20,000	19,000	20,000	20,000	20,000	20,000	20,000	19,000	19,000	19,000	19,000	19,000
	含ハロゲンリン酸エステル系	2,900	2,900	3,000	3,000	3,000	3,100	3,100	3,100	3,100	3,100	3,300	3,100	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500	2,500
	ポリリン酸塩系(アンモニウム)(APP)	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	3,000	3,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,500	1,500	1,000	1,000	1,000	1,000	1,000	1,000
IJ	APP以外のイントメッセント系	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	500	200	200	200	200
系	赤リン系	225	225	250	250	250	310	310	310	310	310	400	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
	ホスファフェナントレン系	_	_	_	_	_	_	_	_	_	_	_	_	500	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,500	1,500	3,000	3,000	4,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
	ホスファゼン系	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500
	슴 計	8,625	8,625	8,950	9,150	9,150	9,310	9,310	9,310	10,810	10,410	9,100	9,200	28,000	28,500	28,500	26,500	26,500	26,500	30,500	30,500	30,500	33,500	28,500	27,500	28,500	29,500	29,000	29,000	28,500	28,000	27,700	27,700	27,700	27,700
	三酸化アンチモン	8,300	13,000	15,000	15,000	16,000	18,500	18,500	17,000	17,000	17,000	18,000	19,100	17,000	16,000	16,000	14,000	14,000	14,000	17,000	15,000	15,000	14,700	11,000	7,900	9,500	9,540	8,830	8,380	9,137	8,400	8,500	9,400	8,900	7,800
	水酸化アルミニウム	48,000	30,000	33,000	35,000	37,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	42,000	_	10,000	10,000	10,000
	ホウ酸亜鉛	400	400	400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>
無	窒素化グアニジン	4,000	4,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	-	-	
恢	五酸化アンチモン	数100	数100	数100	300	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	700	700	1,000	700	700	700	700	700	_	-	
	水酸化マグネシウム	2,000	2,000	2,200	2,400	2,400	3,000	3,000	3,000	3,000	3,000	4,000	4,000	4,000	4,000	4,000	5,000	7,000	8,000	14,000	14,000	14,000	14,000	12,500	10,000	10,000	10,000	11,000	11,000	11,000	11,000	11,000	11,000	10,000	10,000
	ジルコニウム系	200	200	140	_	_		_		_	-	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
	合 計	62,900	49,600	55,740	57,700	61,400	69,500	69,500	68,000	68,000	68,000	70,000	71,100	69,000	68,000	68,000	67,000	69,000	70,000	79,000	77,000	77,000	76,700	71,500	65,600	67,200	67,540	67,530	67,080	67,837	67,100	25,200	30,400	28,900	27,800

⁽注)塩素化パラフィンは、可塑剤用も含む数量 (注)リン酸エステル系は、可塑剤向け含まず (注)ポリリン酸アンモニウムは、非難燃剤を含む。

出典:化学工業日報社調査資料より作成