3.D.a.5 農用地の土壌(土壌有機物中の炭素の消失により無機化された窒素からの N₂O 排出)(Agriculture Soils(Mineralization/Immobilization Associated with Loss/Gain of Soil Organic Matter))(N₂O)

1. 排出・吸収源の概要

1.1 排出・吸収源の対象及び温室効果ガス排出メカニズム

本排出源では、鉱質土壌において土壌中の有機物が分解されたのち、土壌中に残存した窒素が 微生物の作用により化学変化を起こして発生する N_2O について扱う(または、土壌中に固定される N_2O について取り扱うが、我が国は計上なし。)。対象は水田、畑地となる。

鉱質土壌において、耕起等の営農活動により土壌中の有機物が酸化や微生物の働きによって分解される。その際に炭素は CO_2 などの形で失われるが、窒素は微生物により無機化されアンモニウムイオン (NH_4^+) として土壌中に残存することになる。好気条件下でそのアンモニウムイオンが微生物により硝酸態窒素に酸化される過程で N_2O が発生する。また、微生物により硝酸態窒素が脱窒する過程でも N_2O が発生する。

(硝化)

※N₂Oは副産物として発生する。

(脱窒)

$$NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

1.2 排出・吸収トレンド及びその要因

土壌有機物中の炭素の消失により無機化された窒素からの N₂O 排出量は、1990 年度から現在まで減少傾向にある。これは、鉱質土壌の耕地面積の減少が要因である。

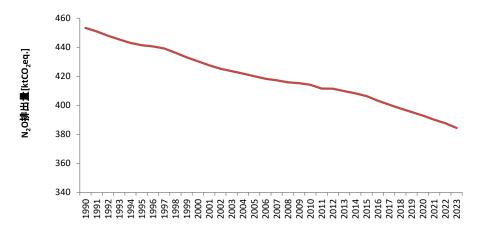


図 1 土壌有機物中の炭素の消失により無機化された窒素からの N₂O 排出量の推移

2. 排出 · 吸収量算定方法

2.1 排出·吸収量算定式

土壌有機物中の炭素の消失により無機化された窒素からの N_2O 排出量は、鉱質土壌の耕地面積に、単位面積当たりの土壌有機物中の炭素の消失により無機化された窒素からの N_2O 排出量である N_2O 排出係数を乗じて算出している。

$$E = EF_{ik} \times A_{ik} \times 44/28$$

E: 土壌有機物中の炭素の消失により無機化された窒素からの N_2O 排出量 $[kg-N_2O]$

 EF_{ik} : 地域別・耕地種別の単位面積当たりの土壌有機物中の炭素の消失により無機化された窒素からの N_2O 排出量 $[kg-N_2O-N/ha]$

Aik:地域別・耕地種別の鉱質土壌の耕地面積 [ha]

2.2 排出係数

排出係数である「単位面積当たりの土壌有機物中の炭素の消失により無機化された窒素からの N_2O 排出量」(EF) は、Shirato et al. (2021) ¹で得られた値を用いる(表 1)。Shirato et al. (2021) では、日本全国の農地に RothC モデルを適用し、過去の土壌炭素量変化を計算した上で、近年について土壌への有機物投入量を 0 として計算を行うことで、「投入された有機物由来ではない土壌炭素の分解量」を求めている。この土壌炭素の分解量を土壌タイプ別 C/N 比で除し、窒素の無機化量を算出した上で、窒素無機化量と N_2O 発生量を関係付ける統計モデルを用いて 2、 N_2O 排出量を排出係数の形で算出している。

表 1 地域別・耕地種別の単位面積当たりの土壌有機物中の炭素の消失により無機化された窒素からの N₂O 排出量 [kg-N₂O-N/ha/年]

地域	水田	畑地
北海道	0.244	0.210
東北	0.269	0.189
関東	0.291	0.166
北陸	0.265	0.167
東海近畿	0.284	0.172
中国四国	0.307	0.200
九州沖縄	0.310	0.197

(出典) Shirato et al. 2021

2.3 活動量

活動量である鉱質土壌の面積(A)は、都道府県別に、「耕地及び作付面積統計(農林水産省)」の全耕地面積から有機質土壌面積(泥炭土及び黒泥土)を除いた面積を使用する。有機質土壌面積の算出方法は「4.B.1 転用のない農地」及び「3.D.a.6 有機質土壌の耕起」を参照。なお、鉱質土

¹ Shirato, Y. et al. (2021) A modeling approach to estimating N2O emission derived from loss of soil organic matter for the Japanese greenhouse gas inventory. Soil Science and Plant Nutrition, 67(3):347-352.

² N₂O 統計モデル (Mu et al. 2009) を基に算出。ただし、この統計モデルでは水田のデータが考慮されていないため、 水田については 2006 年 IPCC ガイドライン 2019 年改良版の排出係数を使用して算出した値を採用する。

壌のうち他の用途に転用された水田・畑地については、「土地利用、土地利用変化及び林業 (LULUCF) 分野」で計上するため、その面積は控除する。また、牧草地からの排出は LULUCF 分野で計上するため、ここでは計上を行わない。

$$Aik = \sum_{j} (C_{i,j} - C_{ORGi,j} - C_{LULUCFi,j})$$

Aik: 地域別・耕地種別の鉱質土壌の耕地面積[ha]

i: 耕地の種別(水田、畑地)

j:都道府県

k:地域(北海道、東北、関東、北陸、東海近畿、中国四国、九州沖縄)

 $C_{i,j}$: 耕地の種別 i・都道府県jの全耕地面積 [ha]

CORGij: 耕地の種別 i・都道府県jの有機質土壌面積 [ha]

 $C_{LULUCFi,j}$: 耕地の種別 i・都道府県jの鉱質土壌のうち転用された面積 [ha]

表 2 全耕地面積 (C)、有機質土壌面積 (C_{ORG})、鉱質土壌のうち転用された面積 (C_{LULUCF})、算 定に使用する鉱質土壌総面積 (A) [ha]

(水田)										
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
全耕地面積	2,846,485	2,825,147	2,802,399	2,781,411	2,764,280	2,745,260	2,724,257	2,701,367	2,679,288	2,659,547
有機質土壌面積	131,603	130,924	130,183	130,045	129,907	129,769	129,630	129,492	129,354	129,215
鉱質土壌総面積	2,714,882	2,694,223	2,672,216	2,651,366	2,634,373	2,615,491	2,594,627	2,571,875	2,549,934	2,530,332
鉱質土壌のうち転用された面積	84,947	76,316	69,354	60,891	56,466	43,686	27,588	13,933	11,985	12,839
算定に使用する鉱質土壌面積	2,629,936	2,617,907	2,602,862	2,590,475	2,577,908	2,571,806	2,567,038	2,557,942	2,537,950	2,517,492
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
全耕地面積	2,641,168	2,623,486	2,606,812	2,592,125	2,575,641	2,555,732	2,542,898	2,529,867	2,515,850	2,505,567
有機質土壌面積	129,077	128,939	128,531	128,123	127,715	127,307	126,900	126,492	126,084	125,676
鉱質土壌総面積	2,512,091	2,494,547	2,478,281	2,464,002	2,447,926	2,428,425	2,415,998	2,403,375	2,389,766	2,379,891
鉱質土壌のうち転用された面積	13,366	12,930	12,850	12,234	11,847	11,294	12,442	12,749	12,838	12,668
算定に使用する鉱質土壌面積	2,498,725	2,481,617	2,465,431	2,451,768	2,436,079	2,417,131	2,403,557	2,390,626	2,376,928	2,367,223
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
全耕地面積	2,496,107	2,473,610	2,469,203	2,465,191	2,457,696	2,446,407	2,431,037	2,417,911	2,405,108	2,393,279
有機質土壌面積	125,268	124,753	124,895	125,092	125,211	125,176	125,060	125,126	125,156	125,190
鉱質土壌総面積	2,370,839	2,348,857	2,344,308	2,340,099	2,332,485	2,321,231	2,305,977	2,292,785	2,279,952	2,268,089
鉱質土壌のうち転用された面積	12,638	12,354	15,436	18,631	20,122	20,878	22,227	25,140	28,639	30,558
算定に使用する鉱質土壌面積	2,358,201	2,336,504	2,328,872	2,321,468	2,312,363	2,300,353	2,283,750	2,267,645	2,251,313	2,237,531
	2020	2021	2022	2023						
全耕地面積	2,379,885	2,365,763	2,352,085	2,335,341						
有機質土壌面積	125,179	125,122	125,040	124,983						
鉱質土壌総面積	2,254,706	2,240,641	2,227,045	2,210,358						
鉱質土壌のうち転用された面積	32,729	35,828	38,258	41,828						
算定に使用する鉱質土壌面積	2,221,977	2,204,814	2,188,787	2,168,530						
			•	•						
(畑地)										
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
全耕地面積	1,274,910	1,265,920	1,253,440	1,242,820	1,234,380	1,224,980	1,218,900	1,213,500	1,205,590	1,196,750
有機質土壤面積	16,400	16,466	16,501	16,563	16,625	16,687	16,750	16,812	16,874	16,936
鉱質土壌総面積	1,258,510	1,249,454	1,236,939	1,226,257	1,217,755	1,208,293	1,202,150	1,196,688	1,188,716	1,179,814
鉱質土壌のうち転用された面積	95,874	95,629	94,703	94,287	94,125	93,017	89,440	85,416	81,267	76,566
算定に使用する鉱質土壌面積	1,162,636	1,153,825	1,142,236	1,131,970	1,123,630	1,115,275	1,112,711	1,111,273	1,107,449	1,103,248
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
全耕地面積	1,188,090	1,179,310	1,172,120	1,168,220	1,169,240	1,172,910	1,172,740	1,172,110	1,171,380	1,169,370
有機質土壌面積	16,998	17,060	17,026	16,992	16,957	16,923	16,889	16,854	16,820	16,786
鉱質土壌総面積	1,171,092	1,162,250	1,155,094	1,151,228	1,152,283	1,155,987	1,155,851	1,155,256	1,154,560	1,152,584
鉱質土壌のうち転用された面積	71,281	67,241	63,321	58,155	54,812	51,335	48,180	42,775	37,785	32,284
算定に使用する鉱質土壌面積	1,099,811	1.095,008	1.091,773	1.093.073	1,097,470	1,104,652	1,107,672	1,112,480	1,116,775	1,120,300

工物地面域	1,102,170	1,105,550	1,105,020	1,100,710
有機質土壌面積	16,752	16,645	16,597	16,576
鉱質土壌総面積	1,152,718	1,148,705	1,147,223	1,144,364
鉱質土壌のうち転用された面積	28,291	25,865	23,782	22,248
算定に使用する鉱質土壌面積	1,124,428	1,122,840	1,123,441	1,122,116
	2020	2021	2022	2023
全耕地面積	1,129,990	1,126,190	1,123,380	1,119,610
有機質土壌面積	16,373	16,301	16,244	16,191
鉱質土壌総面積	1,113,617	1,109,889	1,107,136	1,103,419
鉱質土壌のうち転用された面積	25,011	26,097	27,245	28,726
算定に使用する鉱質土壌面積	1,088,606	1,083,792	1,079,891	1,074,693

2010

1,169,470

全耕地面積

2011

1,165,350

2012

1,163,820

2013

1,160,940

(出典)「耕地及び作付面積統計(農林水産省)」等より算出

2014

1,156,420

1,139,880

21,104 1,118,776

16,540

2015

1,151,370

1,134,888

1,114,674

16,482

20,214

2017

1,142,100

16,387 1,125,713 20,301 1,105,411 2018

1,138,250

1,121,874

1,100,002

16,376

21,872

2016

1,148,720

16,455 1,132,265

20,251 1,112,014 2019

1,134,170

16,379 1,117,791

23,914 1,093,877

3. 方法の時系列変更・改善経緯

	初期割当量報告書 (2006 年提出)	2015 年提出	2016 年提出
排出・吸収量 算定式	未推計	_	_
排出係数	-	Akiyama et al. (2006) における 農地の土壌中に元から存在す る (バックグラウンドの) 窒素 由来の N ₂ O 排出係数を使用す	「3.D.a.4 作物残渣」で計上する N ₂ O 排出量との二重計上を避けるため、すき込まれた作物残渣の窒素由来分を控除す

る方法に変更

る方法に変更

表 3 初期割当量報告書(2006年提出)以降の算定方法等の改訂経緯概要

	2019 年提出	2021 年提出	2022 年提出
排出・吸収量 算定式	_	-	_
排出係数	_	-	土壌の炭素動態を反映した排 出係数を用いる方法に変更。
活動量	LULUCF 分野における有機質 土壌面積の算定方法の変更に 伴う鉱質土壌面積の変更を反 映。	LULUCF 分野における有機質 土壌面積の算定方法の変更に 伴う鉱質土壌面積の変更を反 映。	_

(1) 初期割当量報告書における算定方法

1) 排出・吸収量算定式

1996年 IPCC ガイドライン及び Good Practice Guidance (2000) には排出源として定められていなかったため、初期割当量報告書作成時においては算定を行っていなかった。

2) 排出係数

活動量

初期割当量報告書作成時には算定を行っていなかった。

3) 活動量

初期割当量報告書作成時には算定を行っていなかった。

(2) 2015 年提出インベントリにおける算定方法

1) 排出·吸収量算定式

2006年 IPCC ガイドラインに従い、新たに算定を実施した(現行の方法と同様。)。

2) 排出係数

Akiyama et al. (2006) 3 における農地の土壌中に元から存在する(バックグラウンドの)窒素由来の N_2O 排出係数 (0.65 kg- N_2O -N/ha)を使用することとした。ただし、「3.D.b.1 大気沈降」で計上する N_2O 排出量との二重計上を避けるため、降雨により農地に沈降する窒素由来分の N_2O

³ Akiyama, H., Yagi, K., and Yan, X.: "Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: Summary of available data", Soil Science and Plant Nutrition, 52, 774-787 (2006)

を控除して使用した (0.55 kg-N₂O-N/ha)。

農地に沈降した窒素由来の N_2O 分については、Hayashi(2010) 4 の研究成果から10 kg-N/ha 前後の窒素が大気沈降により土地に沈着していると判断し、1 ha 当たり10 kg の窒素から微生物の作用による変化で発生する N_2O 排出量0.10 kg- N_2O -N/ha(排出係数は大気沈降の1%)を二重計上分とした。

3) 活動量

現行の活動量と同様。

(3) 2016 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

2015年提出インベントリにおける算定式と同様(現行の方法と同様。)。

2) 排出係数

従来は二重計上されている N_2O 排出量として降雨により農地に沈降する窒素由来分を控除していたが、それに加え「3.D.a.4 作物残渣」で計上する N_2O 排出量との二重計上を避けるため、すき込まれた作物残渣の窒素由来分を控除することとした $(0.23 kg N_2 O-N/ha)$ 。

土壌にすき込まれた作物残渣由来の N_2O 分については、 $\lceil 3.D.a.4$ 作物残渣」におけるすき込まれる窒素量を作付面積で割って単位面積当たりの窒素すき込み量 $32\,kg$ -N/ha を算出し、すき込まれた残渣由来の N_2O 排出量 $0.32\,kg$ -N $_2O$ -N/ha (排出係数は作物残渣のすき込みの 1%) を二重計上分とした。

3) 活動量

2015年提出インベントリにおける活動量と同様。

(4) 2019 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

2015年提出インベントリにおける算定式と同様(現行の方法と同様。)。

2) 排出係数

2016年提出インベントリにおける排出係数と同様。

3)活動量

LULUCF 分野において、有機質土壌面積の算定方法の変更を行い、それに伴い鉱質土壌面積も変更されたことから、有機質土壌及び鉱質土壌面積を共通で使用している農業分野においても変更後の面積を使用することとした。

⁴ Airborne nitrogen load in Japanese and Chinese agroecosystems (Kentaro HAYASHI and Xiaoyuan YAN, Soil Science and Plant Nutrition (2010) 56, 2-18)

(5) 2021 年提出インベントリにおける算定方法

1) 排出·吸収量算定式

2015年提出インベントリにおける算定式と同様(現行の方法と同様)。

2) 排出係数

2016年提出インベントリにおける排出係数と同様。

3) 活動量

LULUCF 分野において、有機質土壌面積の算定方法の変更を行い、それに伴い鉱質土壌面積も変更されたことから、有機質土壌及び鉱質土壌面積を共通で使用している農業分野においても変更後の面積を使用することとした(現行の活動量と同様。)。

(6) 2022 年提出インベントリにおける算定方法

1) 排出·吸収量算定式

2015年提出インベントリにおける算定式と同様(現行の方法と同様。)。

2) 排出係数

従来の算定方法は 2006 年 IPCC ガイドラインの 2019 年改良版で示されている「土壌炭素の分解量から N_2O 排出量を求める算定方法」とは異なるため、同ガイドラインに即した算定方法となるよう、土壌の炭素動態を取扱う RothC モデルを用いた研究(Shirato et al. (2021))で得られた N_2O 排出係数を用いる方法に変更した。

3) 活動量

2021年提出インベントリにおける活動量と同様。