2.F.1. 自動販売機の製造、使用及び廃棄

(Automatic Vending machine Production, Use and Disposal) (HFCs)

1. 排出・吸収源の概要

1.1 排出・吸収源の対象及び温室効果ガス排出メカニズム

自動販売機の冷媒として HFCs が使用されており、自動販売機の生産時、故障時及び廃棄時に HFCs (R134a、R404A、R407C、R410A 及び R507A) ¹が排出される。

PFCs については、国内における製品製造時は使用実績がないため、「NO:ガスの排出・吸収に結びつく活動が存在しない」として報告している。輸入製品についても PFCs が使用されていることは考えにくく、国内で冷媒を補充することもないと考えられるため、使用時及び廃棄時についても「NO」として報告している。

1.2 排出・吸収トレンド及びその要因

「2.F.1.- 自動販売機の製造、使用及び廃棄」からの HFCs の排出は、HFCs 冷媒を使用した飲料自販機の出荷が開始された 1999 年から排出が始まり、2000~2007 年にかけては 1 kt-CO2 eq.程度で推移し、2008~2016 年は 20~35 kt-CO2 eq.程度に増加していたが、2016 年以降は大幅に減少している。増加の要因は 2007 年頃から使用済機器が発生し、廃棄時の排出量が計上され始めたことが要因であり、2017 年以降の減少は、HFC を使用した機器の廃棄が完了し、CO2、HC、HFO を冷媒とする機器への転換が進んだことが要因である。なお、HFCs 使用機器の市中稼働台数は 2007 年をピークに減少傾向であり、2016 年末での HFC 冷媒飲料自販機の普及率は全体の 18%で、残り 82%については、CO2、HC、HFO を冷媒とする低 GWP(地球温暖化係数)冷媒機である 1。

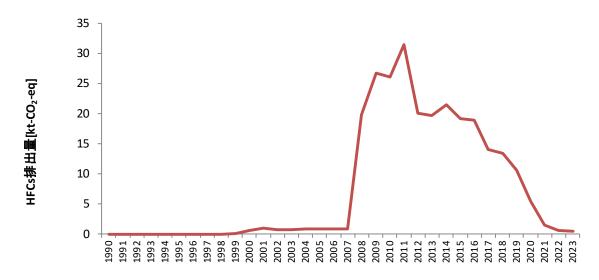


図 1 「2.F.1.- 自動販売機の製造、使用及び廃棄」からの HFCs 排出量の推移

¹ 経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ第 12 回資料 3-3

2. 排出·吸収量算定方法

2.1 排出·吸収量算定式

生産・出荷台数及び冷媒充填量等を使用して、①生産時漏えい量、②使用時(事故・故障時)排出量、③廃棄時排出量の別に排出量を算定している。

本排出源の算定結果については、製造時、使用時及び廃棄時のHFCs 排出量の合計値を報告している。なお、本算定式は2006年IPCC ガイドラインのTier 2a 法に相当する。

- ① 生産時漏えい量
- $=\sum_{\textit{機種}}$ (HFCs 使用機器生産台数×生産時冷媒充填量×生産時冷媒漏えい率)
- ②使用時(事故·故障時)排出量
- $=\sum_{m=0}^{\infty}$ (市中稼働台数×稼働時冷媒充填量×事故・故障発生率×故障時平均漏えい率)
- ③ 廃棄時排出量
 - (a) 2001 年まで

廃棄時排出量

 $=\sum_{\#}$ (使用済機器発生台数×廃棄時冷媒充填量×(1-回収率))

(b) 2002 年以降

廃棄時排出量

 $=\sum_{\#}$ (使用済機器発生台数×廃棄時平均冷媒充填量) - 法律に基づく回収量

2.2 排出係数

生産時冷媒充填量、生産時冷媒漏えい率、事故・故障発生率及び故障時平均漏えい率については、「経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料」に示された値を使用している。

表 1 排出係数等(生産時冷媒漏えい率、事故・故障発生率、故障時平均漏えい率)の推移

		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
生産時冷媒充填量	g/台						0	0	0	0	300
生産時冷媒漏洩率	%						0.4%	0.4%	0.4%	0.4%	0.4%
事故・故障発生率	%						0.4%	0.4%	0.4%	0.4%	0.4%
故障時平均漏洩率	%						20.0%	20.0%	20.0%	20.0%	20.0%
		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
生産時冷媒充填量	g/台	300	280	240	220	220	220	219	219	219	219
生産時冷媒漏洩率	%	0.4%	0.5%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
事故・故障発生率	%	0.4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.3%	0.3%	0.3%	0.3%
故障時平均漏洩率	%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%
		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
生産時冷媒充填量	g/台	219	219	219	219	219	219	219	219	219	219
生産時冷媒漏洩率	%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
事故・故障発生率	%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
故障時平均漏洩率	%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%
		2020	2021	2022	2023						
生産時冷媒充填量	g/台	219	219	219	219						
生産時冷媒漏洩率	%	0.3%	0.3%	0.3%	0.3%						
事故・故障発生率	%	0.3%	0.3%	0.3%	0.3%						
故障時平均漏洩率	%	20.0%	20.0%	20.0%	20.0%						

⁽出典) 経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググルー プ資料

2.3 活動量

HFC 冷媒飲料自販機の出荷は 1999 年以降 2 のため、1990~1998 年の排出量は「NO」としている。

1995 年以降の HFCs 使用機器生産台数、市中稼働台数及び使用済機器発生台数については、「経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料」に示された値を使用している。

表 2 活動量(HFCs 使用機器生産台数、市中稼働台数、使用済機器発生台数)の推移

		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
HFCs使用機器生産台数	1,000台	0	0	0	0	0	0	0	0	0	12
市中稼働台数	1,000台	0	0	0	0	0	0	0	0	0	12
使用済機器発生台数	1,000台	0	0	0	0	0	0	0	0	0	0
		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
HFCs使用機器生産台数	1,000台	272	344	321	344	350	355	338	301	270	173
市中稼働台数	1,000台	284	628	949	1,293	1,643	1,999	2,265	2,393	2,384	2,368
使用済機器発生台数	1,000台	0	0	0	0	0	0	0	183	213	293
		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
HFCs使用機器生産台数	1,000台	173	124	30	10	8	7	7	6	6	5
市中稼働台数	1,000台	2,279	2,055	1,759	1,530	1,068	748	431	330	187	140
使用済機器発生台数	1,000台	286	347	277	273	299	266	264	196	188	148

^{2 「}冷媒フロンの廃棄等の見通しについて <参考 1> (環境省報道発表、2000 年 7 月 31 日)」

		2020	2021	2022	2023
HFCs使用機器生產台数	1,000台	2	2	0	0
市中稼働台数	1,000台	66	48	40	32
使用済機器発生台数	1,000台	77	20	9	7

(出典) 1990~1994 年: HFC 冷媒飲料自販機の出荷は1999 年以降のため、全て0 としている。 1995 年以降:経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策 ワーキンググループ資料

3. 算定方法の時系列変更・改善経緯

表 3 初期割当量報告書(2006年提出)以降の算定方法等の改訂経緯概要

	2009 年提出	2014 年提出	2018 年提出
排出・吸収量 算定式	・排出量の算定単位を変更。・PFCs の報告方法を変更。	1990~1994 年の排出量を算 定、計上。	2017 年度のインベントリ審査を受けて、冷媒コンテナの管理に関する排出の検討。
排出係数	実態調査結果を踏まえ、使 用時漏えい率を更新。	_	_
活動量	_	_	_

(1) 初期割当量報告書における算定方法

1) 排出·吸収量算定式

生産・出荷台数及び冷媒充填量等を使用して、①生産時漏えい量、②事故・故障時排出量、③故障発生後の修理時排出量、④廃棄時排出量の別に 1995 年以降の HFCs 排出量を算定していた(なお、1990~1994 年の排出量は「NE:未推計」として報告していた。)。

また、PFCs の排出については、国内の冷凍空調機器メーカーが PFCs 冷媒を用いた冷凍空調機器を製造した実態はなく、製造時については「NO」としていた。輸入製品に PFCs 冷媒が充填されている場合や PFCs を含む混合冷媒を補充用途として使用する可能性はあり、その量は微量であると考えられるものの、使用時及び廃棄時については「NE:未推計」として報告していた。

- ① 生産時漏えい量
- $=\sum_{\#}$ (HFCs 使用機器生産台数×生産時冷媒充填量×生産時冷媒漏えい率)
- ② 事故·故障時排出量
- $=\sum_{\#}$ (市中稼働台数×稼働時冷媒充填量×事故・故障発生率×故障時平均漏えい率)
- ③ 故障発生後の修理時漏えい量
- $=\sum_{\#}($ 市中稼働台数 × 稼働時冷媒充填量 × 事故・故障発生率 × 修理時平均漏えい率)
- ④ 廃棄時排出量
 - (a) 2001 年まで

廃棄時排出量

^{※1999} 年、2000 年の使用済機器発生台数は、故障がほとんどない(数台程度) ことから 0 とした。2001 年 以降は故障発生を計算に反映した。

 $=\sum_{\#}$ (使用済機器発生台数×廃棄時冷媒充填量×(1-回収率))

(b) 2002 年以降

廃棄時排出量

= <u>Name of the line of the l</u>

2) 排出係数

生産時冷媒充填量、生産時冷媒漏えい率、事故・故障発生率、故障時平均漏えい率及び修理時(平均)漏えい率は、「産業構造審議会化学・バイオ部会地球温暖化防止小委員会(現:経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ)資料」で把握された値を使用していた。

3)活動量

1995 年以降の HFCs 使用機器生産台数、市中稼働台数及び使用済機器発生台数は、「産業構造審議会化学・バイオ部会地球温暖化防止小委員会資料」で把握された値を使用していた (現行の活動量と同様。)。

(2) 2009 年提出インベントリにおける算定方法

1) 排出·吸収量算定式

①生産時漏えい量、②使用時(事故・故障時)排出量、③廃棄時排出量の別に排出量を算定するよう算定方法を変更した。

- ① 生産時漏えい量
- $=\sum_{\#}$ (HFCs 使用機器生産台数×生産時冷媒充填量×生産時冷媒漏えい率)
- ②使用時(事故·故障時)排出量
- $=\sum_{m=0}^{\infty}$ (市中稼働台数×稼働時冷媒充填量×事故・故障発生率×故障時平均漏えい率)
- ③ 廃棄時排出量
 - (a) 2001 年まで

廃棄時排出量

 $=\sum_{\#}$ (使用済機器発生台数×廃棄時冷媒充填量×(1-回収率))

(b) 2002 年以降

廃棄時排出量

= <u>></u>(使用済機器発生台数×廃棄時平均冷媒充填量) - 法律に基づく回収量

また、PFCs の排出については、未加盟の企業や輸入等も含めて、PFCs 使用機器が国内に存在しないことを証明することは困難であるが、実際にはほとんどないと想定されること

から、専門家判断により、製造時だけでなく、使用時及び廃棄時も「NO」として報告する こととした。

2) 排出係数

生産時冷媒充填量、生産時冷媒漏えい率、事故・故障発生率及び故障時平均漏えい率は、 「産業構造審議会化学・バイオ部会地球温暖化防止小委員会資料」で把握された値を使用 した(現行の排出係数と同様。)。

3) 活動量

初期割当量報告書における活動量と同様(現行の活動量と同様。)。

(3) 2014 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

2009 年提出インベントリと同様。ただし、1990~1994 年の排出量も算定を行い、報告することとした(現行の算定方法と同様。)。なお、HFCs 冷媒を使用した飲料自販機の出荷は1999 年以降であるため、1990~1998 年の排出量は「NO」とした。

2) 排出係数

2009年提出インベントリと同様(現行の排出係数と同様。)。

3) 活動量

初期割当量報告書における活動量と同様(現行の活動量と同様。)。

(4) 2018 年提出インベントリにおける算定方法

2017 年度のインベントリ審査を受けて、冷媒コンテナの管理に関する排出については、排出実態が把握されておらず、現状の算定では未計上となっている可能性があることから、実態を把握するとともに、当該排出源からの排出量の試算を行った。

排出量の試算結果は約0.7万t-CO $_2$ eq.であり、「重要でない」という意味での「NE」の適用基準を定めたデシジョンツリー 3 に従って、50万t-CO $_2$ eq.未満でありかつ経年的に排出量を把握できる統計及び資料はないことから、「重要でない(considered insignificant)」という意味での注釈記号「NE」と報告することとした。

³ 平成 24 年度インベントリ WG において、2013 年以降のインベントリ作成に適用する改訂 UNFCCC インベントリ報告ガイドラインで排出量が小さい (新規) 排出源について重要でない (considered insignificant) 排出源として「NE:未推計」を使用することが可能となったことを受け、注釈記号「NE」を適用する場合のデシジョンツリーを策定した。