2.C.1.a 鉄鋼製造(鋼製造)

(Iron and Steel Production — Steel Production) (CO₂, CH₄)

1. 排出・吸収源の概要

1.1 排出・吸収源の対象及び温室効果ガス排出メカニズム

鋼を製造する手段としては、高炉で得られた銑鉄を転炉で脱炭して鋼とする方法と、鉄スクラップを電気炉で溶融して不純物を取り除き鋼とする方法の大きく分けて 2 種類が存在する。各々のプロセスにおける温室効果ガス排出のメカニズムに関する概要は、以下のとおり。

1.1.1 転炉

転炉内で銑鉄に空気や酸素を吹き付けることで、銑鉄中に含まれる炭素が酸素と結合して取り除かれ、CO2となって排出される(下式参照)。

$$C + \frac{1}{2}O_2 \rightarrow CO$$

 $C + FeO \rightarrow CO + Fe$
 $C + O_2 \rightarrow CO_2$

なお、銑鉄中に含まれる炭素は高炉で投入されるコークス等の還元剤に由来するものであるが、高炉に投入されたコークスの消費量は、「1.A. 燃料の燃焼」からの CO_2 排出量を算定する際の活動量として使用している燃料消費量に含まれており、転炉からの CO_2 排出量は「1.A. 燃料の燃焼」において既に算定されていることから、ここでは排出量を算定せず、「IE (他の排出源に含まれる)」として報告している。

1.1.2 電気炉

製鋼用電気炉 (アーク炉) において、鉄スクラップをアーク放電による放電熱で融解する際に炭素電極から CO₂ が排出される (下式参照)。また、炭素電極が炉内で高温に曝されることにより、同時に CH₄ も排出される。

$$C + \frac{1}{2}O_2 \rightarrow CO$$

 $C + O_2 \rightarrow CO_2$

1.2 排出・吸収トレンド及びその要因

鋼製造(電気炉)からの CO_2 排出量については、おおむね電炉鋼生産量の増減に応じた推移となっている。電炉鋼のそのほとんどが建設用資材として使用されているため、建設需要が長期的に減少傾向になる中、電炉鋼需要も多少の増減はあるもののおおむね減少傾向にあり、排出量も減少傾向にある。ただし、 CH_4 排出量については、活動量を電気炉における電力消費量としており、生産量とは直結しないためか、2009 年度の金融危機以外では、そこまで明確な減少傾向は見られない。

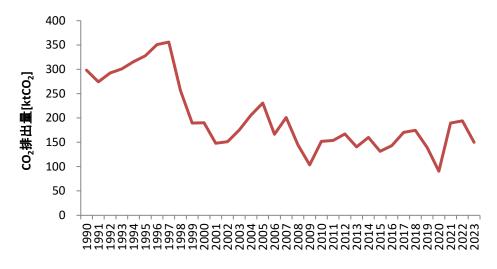


図 1 鋼製造 (電気炉) からの CO2 排出量の推移



図 2 鋼製造 (電気炉) からの CH4排出量の推移

2. 排出·吸収量算定方法

2.1 CO₂

2.1.1 排出 · 吸収量算定式

鋼製造における電気炉からの CO_2 排出量については、炭素電極の生産量と輸入量の合計から輸出量を差し引いた重量に相当する炭素量が電気炉において消費される炭素量とみなし、それを CO_2 換算した値を排出量としている。なお、「総合エネルギー統計(資源エネルギー庁)」において計上されている電気炉ガスに含まれる炭素分は、「1.A. 燃料の燃焼」にて計上されているため、活動量から控除している。また、本排出源の CO_2 排出量算定で活動量として使用する電気炉において消費される炭素量には、鉄以外の金属精錬用途も含まれるが、アルミニウム製造における炭素電極からの CO_2 排出量については、「2.C.3. アルミニウム製造」において別途計上を行い、本排出源の排出量からは控除する。

$E = (Im + P - Ex - EAF) * 44/12 - E_{Al}$

E: 鋼製造(電気炉)からCO2排出量[t-CO2]

 Im
 : 炭素電極の年間輸入量 [t-C]

 P
 : 炭素電極の年間生産量 [t-C]

 Ex
 : 炭素電極の年間輸出量 [t-C]

 EAF
 : 電気炉ガスの年間消費量 [t-C]

 E_{Al} : アルミニウム製造における炭素電極からの CO_2 排出量 $[t-CO_2]$

2.1.2 排出係数

活動排出量が炭素量であり、それを CO₂ 換算したものを排出量としていることから、排出係数は設定していない。

2.1.3 活動量

電気炉ガス消費量

電気炉電極の国内消費量

電気炉において消費される炭素電極における炭素量は、「窯業・建材統計年報(経済産業省)」における炭素電極の生産量、「日本貿易統計(財務省)」における炭素電極輸入量・輸出量、「総合エネルギー統計」における電気炉ガス消費量(炭素量)から算定している。

表 1 活動量(炭素電極の生産量・輸出入量、電気炉ガス消費量)の推移 [t-C]

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
電極の輸入量	12,341	12,844	10,776	9,724	14,185	18,463	17,407	15,458	10,998	10,858
電極の生産量	211,933	193,576	185,992	181,946	174,855	186,143	187,298	185,335	175,089	182,145
電極の輸出量	87,108	80,294	82,123	78,186	75,067	92,812	90,500	85,569	94,023	101,046
電気炉ガス消費量	39,983	37,960	25,933	23,213	19,608	14,300	10,498	10,291	15,220	35,700
電気炉電極の国内消費量	97,184	88,166	88,712	90,271	94,365	97,493	103,706	104,933	76,844	56,257
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
電極の輸入量	11,363	10,906	10,860	12,001	15,430	15,075	13,893	15,035	15,116	11,218
電極の生産量	184,728	179,028	208,655	206,088	206,924	216,061	221,112	229,734	201,256	169,545
電極の輸出量	107,998	112,142	135,294	131,169	130,260	138,409	149,330	150,491	134,509	116,489
電気炉ガス消費量	33,201	34,292	39,978	36,114	32,924	26,700	37,217	36,415	39,349	33,709
電気炉電極の国内消費量	54,892	43,499	44,242	50,805	59,170	66,028	48,458	57,864	42,514	30,564
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
電極の輸入量	17,321	20,437	20,027	19,960	19,226	18,209	19,773	16,653	15,720	18,056
電極の生産量	205,081	217,847	197,278	180,322	180,555	151,979	141,193	161,919	160,049	119,233
電極の輸出量	139,757	154,204	135,863	128,435	121,079	103,834	90,664	104,032	100,268	72,307
電気炉ガス消費量	39,017	39,949	33,898	32,146	34,760	30,444	31,273	28,049	27,806	27,022
電気炉電極の国内消費量	43,629	44,132	47,544	39,700	43,941	35,910	39,029	46,491	47,695	37,959
	2020	2021	2022	2023						
電極の輸入量	17,380	23,099	21,195	18,706						
電極の生産量	76,338	103,026	107,352	103,250						
電極の輸出量	44,578	46,239	50,859	56,135						
					l					

(出典) 窯業・建材統計年報 (経済産業省)、日本貿易統計 (財務省)、総合エネルギー統計 (資源エネルギー庁)

24,888

40,934

24,727

52,961

28,195

51,692

24,397

24,743

2.2 CH₄

2.2.1 排出 · 吸収量算定式

電気炉における電力消費量に、我が国の実測データより設定した排出係数を乗じて排出量を算定している。

E = AD * EF

E:鋼製造(電気炉)から CH4 排出量 [kg-CH4]

AD : 電気炉における電力消費量 [TJ]

EF: 電気炉における電力消費量当たり CH4排出量 [kg-CH4/TJ]

2.2.2 排出係数

我が国で行われた実測調査のデータを基に、排ガス中の CH4 濃度、単位時間当たりの実測乾き排ガス量、及び単位時間当たりの発生熱量の測定結果より設定した電気炉からの電力消費に伴う排出係数 (12.8 kg-CH4/TJ) を用いている。

2.2.3 活動量

電気炉における電力消費量は、「総合エネルギー統計」における鉄鋼業の細目分類である「電気炉」に計上された電力消費量を用いている。

表 2 活動量(電気炉における電力消費量)の推移 [TJ]

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
電気炉における電力消費量	57,564	54,380	54,539	52,581	55,339	55,986	57,270	57,095	50,393	50,198
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
電気炉における電力消費量	52,457	49,307	51,999	51,906	53,453	52,747	55,051	55,687	47,316	39,753
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
電気炉における電力消費量	45,793	47,185	46,195	46,786	46,156	42,919	43,045	46,109	46,697	41,978
	2020	2021	2022	2023						
電気炉における電力消費量	38.160	43.848	42.015	40.589						

(出典)総合エネルギー統計(資源エネルギー庁)

3. 算定方法の時系列変更・改善経緯

表 3 初期割当量報告書(2006年提出)以降の算定方法等の改訂経緯概要

	2021 年提出
排出・吸収量 算定式	「2.C.3. アルミニウム製造」の CO ₂ 排出量を新たに 算定・追加計上するとともに、本排出源における炭 素電極由来の CO ₂ 排出量から当該排出量を控除。
排出係数	_
活動量	_

(1) 初期割当量報告書における算定方法

現行の算定方法と同様。

(2) 2021 年提出インベントリにおける算定方法

本排出源で活動量として設定している国内の炭素電極消費量全量は鉄鋼用途に限定していないことから、アルミ精錬用の陽極ペーストも含まれると考えられるが、令和 2 年度の温室効果ガス排出量算定方法検討会において、各国間におけるインベントリの比較可能性を担保するため、「2.C.3. アルミニウム製造」の CO_2 排出量を新たに算定・追加計上するとともに、本排出源における炭素電極由来の CO_2 排出量から当該排出量を差し引くこととなった(現行の算定方法と同様。)。