1.C.1.c CO2の輸送(その他)(Other)(CO2)

1. 排出・吸収源の概要

1.1 排出・吸収源の対象及び温室効果ガス排出メカニズム

当該分野では、 CO_2 の地中貯留において、パイプライン・船舶以外の輸送手段で CO_2 が輸送される際の CO_2 の漏えいを扱う。

我が国における過去の CO_2 地中貯留事例(表 1)で当該分野に該当し得る排出源として、液化炭酸ガスを製造工場から圧入サイトまでタンクローリーで輸送する際の排出や、液化炭酸ガス貯蔵タンクからの排出等が考えられる。これらの排出源については、表 1 の CO_2 地中貯留事例の実施主体に対するヒアリングから、 CO_2 の漏えいは基本的には起こらず、漏えいしたとしても微量であることが確認されている。また、各 CO_2 地中貯留事例における年間の CO_2 圧入量を考えると、当該分野の年間の排出量が平成 24 年度温室効果ガス排出量算定方法検討会(第 1 回)で設定された「NE」の適用基準 1である 3,000 t- CO_2 eq.を上回ることは考え難い。このため、当該分野は重要でないという意味での「NE」と報告することとしている(CO_2 圧入が実施された年度のみ「NE」と報告し、その他の年度は「NO」と報告。)。また、2016 年度の検討における苫小牧の CO_2 地中貯留事例の実施主体に対するヒアリング結果から、苫小牧 CCS 実証実験では報告対象となる活動が行われていないことが確認できたため「NO」として報告している。

圧入サイト	CO ₂ 圧入期間	CO ₂ 圧入目的
頸城	1991年3月~1993年6月	石油増進回収
申川	1997年9月~1999年9月	石油増進回収
長岡	2003年7月~2005年1月	CO ₂ 地中貯留実証試験
夕張	2004年11月~2007年10月	炭層メタン増進回収
苫小牧	2016年4月~2019年11月	CO ₂ 地中貯留実証試験

表 1 我が国における過去の CO₂の地中貯留の事例

1.2 排出・吸収トレンド及びその要因

記載事項なし。

2. 排出・吸収量算定方法

記載事項なし。

 ¹ 平成 24 年度温室効果ガス排出量算定方法検討会(第1回) 資料 4-1「インベトリにおける算定方法の改善等ついて(案)(分野横断的事項:インベントリワーキンググループ)」参照。
http://www.env.go.jp/earth/ondanka/santei k/24 01/mat04 1.pdf

3. 算定方法の時系列変更・改善経緯

表 2 初期割当量報告書(2006年提出)以降の算定方法等の改訂経緯概要

	2015 年提出	
排出・吸収量 算定式	2006 年 IPCC ガイドラインで新たに示された CO_2 輸送段階における漏出の排出量算定方法を採用。	
排出係数	_	
活動量	_	

(1) 初期割当量報告書における算定方法

2006 年 IPCC ガイドラインから新たに追加された排出源であり、初期割当量報告書では算定対象にはしていなかった。

(2) 2015 年提出インベントリにおける算定方法

2006年 IPCC ガイドラインにおいて、本排出源が新たに追加されたため、2014年度に算定・報告方法を検討した。この検討において、我が国における過去の CO_2 地中貯留事例の実施主体に対してヒアリングを行ったところ、液化炭酸ガスを製造工場から圧入サイトまでタンクローリーで輸送する際や、液化炭酸ガス貯蔵タンクからの CO_2 の漏えいは基本的には起きておらず、漏えいしたとしても微量であることが確認された。また、各 CO_2 地中貯留事例における年間の CO_2 圧入量は最大でも約6,000 t- CO_2 eq.程度であるが、この CO_2 圧入量の規模を考えれば年間の CO_2 漏えい量が、排出量の算定を必要とする基準である 3,000 t- CO_2 eq.を上回る可能性は極めて低いことが想定されたため、当該分野は「NE」と報告することとした $(CO_2$ 圧入が実施された年度のみ「NE」と報告し、その他の年度は「NO」と報告。)。