1.B.2.a.iv 原油の精製・貯蔵(Refining/Storage)(CO₂, CH₄, N₂O)

1. 排出・吸収源の概要

1.1 排出・吸収源の対象及び温室効果ガス排出メカニズム

当該分野では、石油精製所で原油を精製及び貯蔵する際に漏出する CO_2 及び CH_4 の排出を扱う。なお、 CO_2 の排出については「NE」と報告している。我が国では原油及び NGL (Natural Gas Liquids: 天然ガス液) の精製及び貯蔵が行われており、原油中に CO_2 が溶存している場合には当該活動により CO_2 が排出されることが考えられる。当該活動による CO_2 の排出はごく微量と考えられるが、原油中の CO_2 含有量の測定例は存在せず、排出係数のデフォルト値が示されていないことから、 CO_2 排出量については算定を行っていない。

 N_2O の排出については「IE」と報告する。2019 年改良 IPCC ガイドラインには N_2O のデフォルト排出係数が与えられているが、これはオイルコークスの焼成時に発生する N_2O が対象だと考えられる。当該排出は「燃料の燃焼(1.A.)」に含まれている。

1.2 排出・吸収トレンド及びその要因

当該分野からの CH₄ 排出量については、原油の精製に伴う漏出が大半を占める。原油の精製に伴う漏出については、1990 年代前半は原油精製量の増加に伴い排出量が増加したが、2000 年代後半以降は原油精製量の減少に伴い排出量も減少傾向にある。

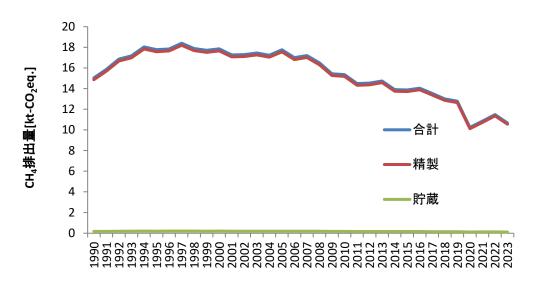


図 1 原油の精製・貯蔵からの CH4排出量の推移

2. 排出·吸収量算定方法

2.1 排出 · 吸収量算定式

①原油の精製

原油及び NGL の精製量(体積ベース)に排出係数を乗じて排出量を算定する。

E = EF * A

E: 原油の精製に伴う CH4排出量 [kt-CH4]

EF: 排出係数 [kt-CH₄/千 m³] *A*: 原油・NGL 精製量 [千 m³]

②原油の貯蔵

原油の精製に伴う漏出と同様に、原油及び NGL の精製量(体積ベース)に排出係数を乗じて 排出量を算定する。

E = EF * A

E: 原油の貯蔵に伴う CH の排出量 [kt-CH4]

EF: 排出係数 [kt-CH₄/千 m³] *A*: 原油・NGL 精製量 [千 m³]

2.2 排出係数

① 原油の精製

2006 年 IPCC ガイドラインに示されているデフォルト値を用いる。2006 年 IPCC ガイドラインには、排出係数のデフォルト値の上限値及び下限値が示されているが($2.6\times10^6\sim41.0\times10^6$ kt-CH₄/千 m^{3 1})、我が国における原油精製時の CH₄ 漏出は通常運転時には起こり得ず、原油精製に伴う CH₄ 排出量は非常に少量であると考えられることから、下限値である 2.6×10^{-6} kt-CH₄/千 m³ を用いる。

②原油の貯蔵

原油の貯蔵施設には、固定屋根タンクと浮屋根タンクの 2 種類がある。このうち、浮屋根タンクは貯蔵液の表面に密着して浮屋根を設ける形式であり、屋根と液面の間に空間がなく、油分が蒸発して CH4 が発生する空間がないため、CH4 の漏出はほとんどない。CH4 の漏出が起こるとすれば、貯蔵油を払い出す際の浮き屋根下降に伴い、原油で濡れた壁面が露出し付着した油が蒸発することが挙げられる。なお、我が国においては全ての原油貯蔵施設で浮屋根原油タンクを用いていることから、当該分野の CH4 の漏出量は非常に少ないと考えられる。

石油連盟では浮屋根貯蔵タンクの模型を作成して壁面からの CH4 蒸発に関する実験を行い、 その結果に基づき、CH4排出の推計を行っている。原油の貯蔵に係る排出係数は、石油連盟の推 計結果 (0.007 kt-CH4/年 (1998 年度)) を原油の石油精製業への投入量で除した値を用いる。

表 1 原油貯蔵時の漏出の排出係数

項目	単位	数值
1998 年度における貯蔵時の CH4排出量	kt-CH ₄	7×10^{-3}
1998 年度における原油の石油精製業への投入量	千kl	242,861
CH4排出係数	kt-CH4/千 kl	2.9×10^{-8}

(出典) 1998 年度における貯蔵時の CH4 排出量:石油連盟提供データ

1998 年度における原油の石油精製業への投入量:総合エネルギー統計(資源エネルギー庁)

^{1 2006} 年 IPCC ガイドライン、vol. 2、p.4.53 Table1 4.2.4

2.3 活動量

「総合エネルギー統計(資源エネルギー庁)」に示された、石油精製業で精製された原油及びNGL精製量(体積ベース)を用いる。

表 2 活動量 (原油及び NGL 精製量 (体積ベース)) の推移 [百万 m³]

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
原油精製量	202	214	226	230	243	240	240	246	239	237
NGL精製量	2	2	3	3	2	1	2	4	4	4
合計	204	216	229	233	245	241	242	250	243	240
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
原油精製量	240	231	230	233	227	235	223	225	213	196
NGL精製量	3	3	5	4	7	6	8	9	11	13
合計	242	234	235	237	234	241	231	234	224	210
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
原油精製量	195	184	186	186	179	179	182	181	174	170
NGL精製量	13	12	12	14	10	9	9	3	3	3
合計	209	197	197	200	189	188	191	184	177	174
	2020	2021	2022	2023						
原油精製量	137	147	156	144						
NGL精製量	2	1	0	1						

(出典)総合エネルギー統計(資源エネルギー庁)

3. 算定方法の時系列変更・改善経緯

表 3 初期割当量報告書(2006年提出)以降の算定方法等の改訂経緯概要

	2015 年提出
排出・吸収量	2006 年 IPCC ガイドラインで新たに示され
算定式	た原油精製からの排出量算定方法を採用。
排出係数	_
活動量	-

(1) 初期割当量報告書における算定方法

1) 排出・吸収量算定式

① 原油の精製

原油及び NGL の精製量(熱量ベース)に排出係数を乗じて排出量を算定していた。

E = EF * A

E: 原油の精製に伴う CH4 排出量 [kt-CH4]

EF: 排出係数 [kt-CH₄/PJ] A: 原油・NGL 精製量 [PJ]

②原油の貯蔵

原油の精製に伴う漏出と同様に、原油及び NGL の精製量(熱量ベース)に排出係数を乗じて排出量を算定していた。

E = EF * A

E: 原油の貯蔵に伴う CH4 排出量 [kt-CH4]

EF: 排出係数 [kt-CH₄/ PJ] A: 原油・NGL 精製量 [PJ]

2) 排出係数

① 原油の精製

1996 年改訂 IPCC ガイドラインに示されている原油の精製における排出係数のデフォルト値(低位発熱量(NCV)ベース)を用いていた。1996 年改訂 IPCC ガイドラインには、排出係数の上限値及び下限値 $(90\sim1,400\,\mathrm{kg\text{-}CH_4/PJ^2})$ が示されているが、我が国における原油の精製時の $\mathrm{CH_4}$ 漏出は通常運転時には起こり得ず、原油精製に伴う $\mathrm{CH_4}$ 排出量は非常に少量であると考えられることから、デフォルト値の下限値 $(90\,\mathrm{kg\text{-}CH_4/PJ})$ を用いていた。

②原油の貯蔵

石油連盟による 1998 年度の原油貯蔵施設からの CH4 排出量推計結果(上述)を、「総合エネルギー統計」から把握した同年度の石油精製業での原油及び NGL の精製量(熱量ベース)で除した値を用いていた。なお、原油の精製に伴う CH4 の漏出の排出係数が NCV ベースで設定されていることと整合を取るため、当該分野の排出係数の設定においては、「総合エネルギー統計」から把握した高位発熱量(GCV)ベースの原油及び NGL の精製量を NCV ベースに換算して用

² 1996 年改訂 IPCC ガイドライン、vol. 2、p.1.30 Table 1-6

いていた。

表 4 原油貯蔵時の漏出の排出係数

項目	単位	数值
1998 年度における貯蔵時の CH4排出量	kt-CH ₄	7×10^{-3}
1998年度における原油の石油精製業への投入量(GCVベース)	PJ	9,921
GCV の NCV への換算係数	-	0.95
1998 年度における原油の石油精製業への投入量(NCV ベース)	PJ	9,425
CH4排出係数	kt-CH ₄ /PJ	7.427×10 ⁻⁷

(出典) 1998 年度における貯蔵時の CH4排出量:石油連盟提供データ 1998 年度における原油の石油精製業への投入量 (GCV ベース):総合エネルギー統計 (資源エネル ギー庁)

3) 活動量

「総合エネルギー統計」に示された、石油精製業における原油及び NGL の精製量 (GCV ベース) を低位発熱量 (NCV ベース) に換算した値を用いていた。

表 5 活動量(原油及び NGL 精製量(熱量ベース))の推移

	単位	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
原油精製量(GCVベース)	PJ	7,886	8,305	8,817	8,969	9,423	9,279	9,319	9,587	9,309	9,218
NGL精製量(GCVベース)	PJ	252	263	228	197	163	97	163	149	132	128
原油・NGL精製量(GCVベース)	PJ	8,138	8,569	9,045	9,166	9,587	9,375	9,482	9,736	9,441	9,346
GCVのNCVへの換算係数	-	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
原油・NGL精製量(NCVベース)	PJ	7,732	8,140	8,592	8,708	9,108	8,907	9,008	9,250	8,969	8,878

	単位	2000	2001	2002	2003	2004
原油精製量(GCVベース)	PJ	9,277	8,959	8,984	9,058	8,932
NGL精製量(GCVベース)	PJ	89	91	90	103	85
原油・NGL精製量(GCVベース)	PJ	9,366	9,051	9,075	9,161	9,017
GCVのNCVへの換算係数	-	0.95	0.95	0.95	0.95	0.95
原油・NGL精製量(NCVベース)	PJ	8,898	8,598	8,621	8,703	8,566

(出典) 原油精製量 (GCV ベース)、NGL 精製量 (GCV ベース):総合エネルギー統計 (資源エネルギー庁)

(2) 2015 年提出インベントリにおける算定方法

原油の精製に伴う漏出について、2006 年 IPCC ガイドラインで体積ベースの原油精製量を活動量とする新たな算定方法が示されたことから、2013 年度における検討により、体積ベースの原油及び NGL 精製量を活動量とする方法を用いて排出量を算定することとなった。また、原油の貯蔵に伴う漏出についても、原油の精製に伴う漏出における算定方法と整合を取るため、同年度の検討において体積ベースの原油及び NGL 精製量を活動量とする方法を用いて排出量を算定することとなった。

1) 排出·吸収量算定式

現行の算定方法と同様。

2) 排出係数

現行の算定方法と同様。

3) 活動量

現行の算定方法と同様。