1.B.2.a.iii 原油の輸送(Transport)(CO₂, CH₄)

1. 排出・吸収源の概要

1.1 排出・吸収源の対象及び温室効果ガス排出メカニズム

当該分野では、原油・コンデンセートをパイプライン、ローリー、タンク貨物車等で製油所へ輸送する際に漏出する CO₂ 及び CH₄ の排出を扱う。

なお、原油・コンデンセートの輸送に伴う漏出については、国内の洋上油井・ガス井で生産された原油・コンデンセートを陸地まで海上輸送する際の漏出と、貯蔵施設や陸上油井・ガス井から製油所まで陸上輸送する際の漏出があるが、海上輸送分は基本的にパイプライン輸送であり、輸送に伴う漏出はほとんどないものと考えられる。したがって、当該分野では陸上輸送分のみを扱う。

1.2 排出・吸収トレンド及びその要因

$[CO_2]$

原油の輸送に伴う漏出については、1990年代半ば以降、原油生産量が減少傾向であることに伴い、排出量も減少傾向にある 1 。コンデンセート輸送に伴う漏出については、1990年代~2000年代半ばはコンデンセート生産量の増加に伴い排出量が増加傾向にあったが、2000年代後半以降はコンデンセート生産量の減少に伴い排出量も減少傾向にある。

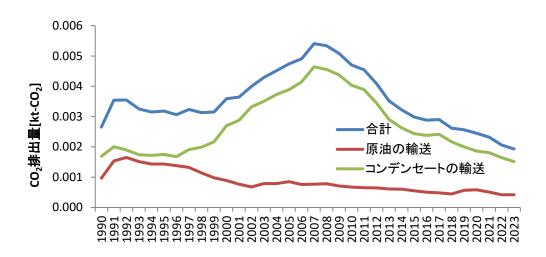


図 1 原油、コンデンセート輸送からの CO₂排出量の推移

- 1 -

¹ ここでいう原油生産量は、コンデンセートを含まない原油生産量を示している。

$[CH_4]$

CH4排出量のトレンドは、CO2排出量と同様である。

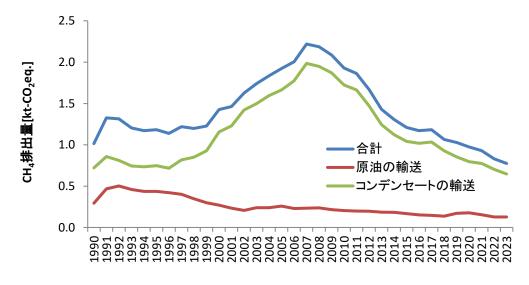


図 2 原油、コンデンセート輸送からの CH4排出量の推移

2. 排出·吸収量算定方法

2.1 排出·吸収量算定式

原油の輸送に伴う温室効果ガス (GHG) 排出量は、原油の生産量 (コンデンセートを含まない。) に排出係数を乗じて排出量を算定する。なお、原油の陸上輸送については、パイプライン、タンクローリー、タンク貨車など幾つかの手段が用いられているが、これらを統計的に分離することが困難なことから、全量をタンクローリー及び貨車で輸送しているものと仮定して算定する。

E = EF * A

E:原油の輸送に伴う CO₂、CH₄の排出量 [kt-GHG]

EF:排出係数 [kt-GHG/千 m³]

A: 原油生産量(コンデンセートを含まない。)[千 m^3]

コンデンセートの輸送に伴う GHG 排出量は、コンデンセート生産量に排出係数を乗じて排出量を算定する。

E = EF * A

E: コンデンセートの輸送に伴う CO₂、CH₄の排出量 [kt-GHG]

EF: 排出係数 [kt-GHG/千 m³] *A*: コンデンセート生産量 [千 m³]

2.2 排出係数

2006 年 IPCC ガイドラインに示されているデフォルト値を用いる 2 。

² 2019 年改良 IPCC ガイドラインにおいて、デフォルト値は変更されていない

表 1 原油、コンデンセート輸送時の排出係数「kt-GHG/千 m³]

排出源	CH ₄	CO ₂	N ₂ O ¹⁾		
原油輸送 (タンクローリー、タンク貨車)	2.5×10 ⁻⁵	2.3×10 ⁻⁶	NA		
コンデンセート輸送	1.1×10^{-4}	7.2×10^{-6}	ND		

⁽出典) 2006 年 IPCC ガイドライン Vol. 2, page 4.50 及び 4.53, Table 4.2.4

2.3 活動量

「エネルギー生産・需給統計年報(経済産業省)」及び「資源・エネルギー統計年報(経済産業省)」に示された我が国における原油生産量及びコンデンセート生産量を用いて把握する。

表 2 活動量(原油生産量(コンデンセートを含まない。)、コンデンセート生産量)の推移

[+ kL]													
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999			
原油生産量(コンデンセート含む)	655	946	981	899	863	866	834	840	773	728			
コンデンセート生産量	234	279	264	242	239	243	233	266	276	301			
原油生産量(コンデンセート含まない)	420	667	717	657	624	623	601	575	497	427			
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009			
原油生産量(コンデンセート含む)	761	734	756	830	860	911	905	979	973	917			
コンデンセート生産量	375	399	461	487	518	541	576	645	633	608			
原油生産量(コンデンセート含まない)	386	334	295	344	343	370	329	334	341	310			
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019			
原油生産量(コンデンセート含む)	853	824	759	668	626	578	549	546	496	524			
コンデンセート生産量	560	541	478	403	365	339	331	336	301	278			
原油生産量(コンデンセート含まない)	293	284	281	265	262	240	219	210	195	247			
	2020	2021	2022	2023									
原油生産量(コンデンセート含む)	513	473	410	392									
コンデンセート生産量	259	252	229	210									
原油生産量(コンデンセート含まない)	254	222	182	181									

⁽出典) 原油生産量 (コンデンセートを含む。)、コンデンセート生産量:エネルギー生産・需給統計年報(経済産業省)、資源・エネルギー統計年報(経済産業省)、生産動態統計年報(経済産業省)

3. 算定方法の時系列変更・改善経緯

当該分野については、初期割当量の報告以降、一貫して同様の算定方法、排出係数及び活動量を 用いている 3 。

¹⁾ デフォルト値が「NA」又は「ND」であり、CRT においても当該排出源からの N_2O 排出量を計上できないため N_2O は算定対象外とする。

³ 初期割当量報告時は Good Practice Guidance (GPG) (2000) の排出係数のデフォルト値を適用していたが、GPG (2000) と 2006 年 IPCC ガイドラインの間で排出係数のデフォルト値が同じ値となっているため、排出係数の変更は行われていない。